WO2013161991A1 - Fluorescence sensor - Google Patents

Fluorescence sensor Download PDF

Info

Publication number
WO2013161991A1
WO2013161991A1 PCT/JP2013/062368 JP2013062368W WO2013161991A1 WO 2013161991 A1 WO2013161991 A1 WO 2013161991A1 JP 2013062368 W JP2013062368 W JP 2013062368W WO 2013161991 A1 WO2013161991 A1 WO 2013161991A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
indicator
sensor
analyte
light
Prior art date
Application number
PCT/JP2013/062368
Other languages
French (fr)
Japanese (ja)
Inventor
亮 太田
Original Assignee
オリンパス株式会社
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社, テルモ株式会社 filed Critical オリンパス株式会社
Publication of WO2013161991A1 publication Critical patent/WO2013161991A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14503Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6421Measuring at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • G01N2021/6441Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks with two or more labels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/80Indicating pH value

Definitions

  • the present invention relates to a fluorescent sensor that measures the concentration of an analyte, and more particularly to a fluorescent sensor that is a micro-fluorescence spectrophotometer manufactured using semiconductor manufacturing technology and MEMS technology.
  • Various analyzers have been developed to confirm the presence of analytes in liquids, that is, substances to be measured, or to measure concentrations.
  • a fluorescent dye whose properties change due to the presence of the analyte and generates fluorescence and a solution to be measured containing the analyte are injected, and excitation light is irradiated to increase the fluorescence intensity from the fluorescent dye.
  • Fluorescence spectrophotometers that measure analyte concentration by measuring are known.
  • a small fluorescent spectrophotometer has a photodetector and an indicator containing a fluorescent dye. And, by irradiating the indicator into which the analyte in the solution to be measured can enter the excitation light from the light source, the fluorescent dye in the indicator generates a fluorescence having a light amount corresponding to the analyte concentration in the solution to be measured, The fluorescence is received by the photodetector.
  • the photodetector is a photoelectric conversion element and outputs an electrical signal corresponding to the amount of received light. The analyte concentration in the solution to be measured is measured from this electrical signal.
  • microfluorescence spectrophotometer manufactured using semiconductor manufacturing technology and MEMS technology.
  • the microfluorometer is referred to as a “fluorescence sensor”.
  • a fluorescent sensor 110 shown in FIGS. 1 and 2 is disclosed in US Pat. No. 5,039,490.
  • the fluorescence sensor 110 includes an optical plate-like portion 105 having a transparent support substrate 101 that can transmit excitation light, a photoelectric conversion element 103 that converts fluorescence into an electrical signal, and a condensing function portion 105A that collects excitation light.
  • the indicator 117 is configured to generate fluorescence by interacting with the analyte 9 by the excitation light, and the cover layer 109.
  • the photoelectric conversion element 103 is formed on a substrate 103A made of, for example, silicon.
  • the substrate 103A does not transmit excitation light.
  • the fluorescence sensor 110 has a void region 120 that can transmit excitation light around the photoelectric conversion element 103.
  • Fluorescence F is generated by the interaction between the condensed excitation light E and the analyte 9 that has entered the indicator 117. Part of the generated fluorescence enters the photoelectric conversion element 103, and a signal such as a current or voltage proportional to the fluorescence intensity, that is, the concentration of the analyte 9, is generated in the photoelectric conversion element 103.
  • the excitation light does not enter the photoelectric conversion element 103 due to the action of a filter (not shown) formed on the photoelectric conversion element 103.
  • the photodiode which is the photoelectric conversion element 103 is formed on the substrate 103A laminated on the transparent support substrate 101, and the optical plate portion 105 and the indicator 117 are formed thereon. Are stacked.
  • the above-described fluorescent sensor 110 has the gap region 120 which is a passage of excitation light and the region of the photoelectric conversion element 103 on the same plane. For this reason, if the area of the gap region 120, which is a passage, is increased in order to guide more excitation light to the indicator 117, the area of the photoelectric conversion element 103 is reduced, and thus the sensitivity of the fluorescent sensor is not increased. . On the other hand, if the area of the photoelectric conversion element 103 is increased in order to increase the detection sensitivity of the photoelectric conversion element 103, the area of the gap region 120, which is the path of the excitation light, is reduced, and the excitation light guided to the indicator 117 is reduced. Therefore, the sensitivity of the fluorescence sensor is not increased. That is, with the fluorescent sensor 110, it is not easy to obtain high detection sensitivity.
  • An object of the present invention is to provide a fluorescent sensor with high detection sensitivity.
  • the fluorescent sensor of one embodiment of the present invention includes a substrate portion on which a plurality of recesses are formed on a main surface, and a photoelectric conversion element that receives fluorescence and outputs a detection signal is formed on a wall surface of each recess, A filter that covers the photoelectric conversion element and blocks excitation light; an indicator that is disposed inside each of the recesses; and that generates the fluorescence corresponding to the amount of analyte when receiving the excitation light; and The light-shielding layer that covers the opening and blocks external light from entering the indicator but through which the analyte passes and a light-emitting element that irradiates the indicator with excitation light from the bottom surface side of the recess.
  • the fluorescence sensor 4 constitutes a sensor system 1 together with the main body 2 and the receiver 3. That is, the sensor system 1 includes a fluorescent sensor 4, a main body 2, and a receiver 3 that receives and stores a signal from the main body 2. Transmission / reception of signals between the main body 2 and the receiver 3 is performed wirelessly or by wire.
  • the needle-type fluorescent sensor 4 includes a needle portion 7 having a needle tip portion 5 having a sensor portion 10 as a main functional portion and an elongated needle body portion 6, and a connector portion integrated with a rear end portion of the needle body portion 6. 8 and. Needle tip 5, needle body 6 and connector 8 may be integrally formed of the same material.
  • the connector part 8 is detachably fitted to the fitting part 2A of the main body part 2.
  • the plurality of wirings 60 extending from the sensor unit 10 of the fluorescent sensor 4 are electrically connected to the main body unit 2 when the connector unit 8 is mechanically fitted to the fitting unit 2A of the main body unit 2. .
  • the main body unit 2 includes a control unit 2B including a CPU that drives and controls the sensor unit 10, and a calculation unit 2C including a CPU that processes a signal output from the sensor unit 10.
  • a control unit 2B including a CPU that drives and controls the sensor unit 10 and a calculation unit 2C including a CPU that processes a signal output from the sensor unit 10.
  • the control unit 2B and the calculation unit 2C may be disposed in the connector unit 8 of the fluorescent sensor 4 or may be disposed in the receiver 3. Further, the control unit 2B and the calculation unit 2C may be the same CPU.
  • the main body 2 when performing wired transmission / reception with the receiver 3, the main body 2 has a signal line instead of a wireless antenna. Further, when the main body 2 has a memory unit having a necessary capacity, the receiver 3 is not necessary.
  • the fluorescence sensor 4 is a needle-type sensor that measures an analyte in the body, and is a short-term subcutaneous indwelling type with a continuous use period of about one week.
  • the collected bodily fluid or the bodily fluid that circulates inside the body via a flow path outside the body may be contacted outside the body without inserting the fluorescent sensor 4 into the body.
  • the sensor unit 10 which is the main functional unit of the fluorescence sensor 4 includes a substrate unit 20 and a light emitting diode (Light Emitting Diode: hereinafter referred to as “LED”) that generates excitation light. 15A and 15B, indicators 17A and 17B that generate fluorescence corresponding to the excitation light and the amount of analyte, and a light shielding layer 18.
  • LED Light Emitting Diode
  • 15A and 15B indicators 17A and 17B that generate fluorescence corresponding to the excitation light and the amount of analyte
  • a light shielding layer 18 In the fluorescent sensor 4, the analyte 9 passes through the light shielding layer 18 and enters the indicator 17 when the light shielding layer 18 comes into contact with blood or body fluid in the living body.
  • the substrate unit 20 includes a wiring substrate unit 30 that is a first substrate unit and a frame-shaped substrate unit that is a second substrate unit in which two through holes 46A and 46B are formed on the main surface 20SA (main surface 20SB). 40 are bonded to each other through an adhesive layer 13.
  • substrate part 20 is a multicavity with two recessed part 23A, 23B in main surface 20SA. That is, the surface of the wiring board portion 30 is the bottom surface of the recesses 23A and 23B, and the wall surfaces of the through holes 46A and 46B of the frame-like substrate portion 40 are the wall surfaces of the recesses 23A and 23B.
  • an insulating layer is appropriately formed on the surface of the substrate portion 20 made of, for example, an N-type semiconductor, that is, the wiring substrate portion 30 and the frame-like substrate portion 40, but is not shown. Further, hereinafter, when referring to each component having the same function, the last letter (A or B) is omitted.
  • each of the through holes 46A and 46B is referred to as a through hole 46.
  • the indicator 17A and the LED 15A are disposed inside the recess 23A, and the indicator 17B and the LED 15B are disposed inside the recess 23B.
  • the light emitting element is not limited to the LED. However, a substantially rectangular chip-shaped LED is preferable from the viewpoints of light generation efficiency, wide wavelength selectivity of excitation light, and generation of only light having a wavelength other than ultraviolet light serving as excitation light.
  • the indicator 17 generates fluorescence with a light amount corresponding to the amount of the analyte 9 by the interaction with the analyte 9 that has entered and the excitation light.
  • the indicator 17 generates fluorescence having a longer wavelength, for example, a wavelength of 460 nm with respect to excitation light having a wavelength of 375 nm.
  • the thickness of the indicator 17 is set to about several tens ⁇ m to 200 ⁇ m.
  • the indicator 17 is composed of a base material containing a fluorescent dye that generates fluorescence having an intensity corresponding to the amount of the analyte 9, that is, the concentration of the analyte in the sample.
  • the fluorescent dye is selected according to the type of the analyte 9 and can be used for any fluorescent dye in which the amount of fluorescence generated according to the amount of the analyte 9 changes reversibly. That is, the fluorescent sensor 4 corresponds to various uses such as an oxygen sensor, a glucose sensor, a pH sensor, an immunosensor, or a microorganism sensor, depending on the selection of the fluorescent dye.
  • the indicator 17 includes, for example, a hydrogel that easily contains water as a base material and contains or is bonded to the fluorescent dye in the hydrogel.
  • Hydrogel components are prepared from acrylic hydrogels prepared by polymerizing polysaccharides such as methylcellulose or dextran, monomers such as (meth) acrylamide, methylolacrylamide, or hydroxyethyl acrylate, or from polyethylene glycol and diisocyanate. Urethane hydrogel can be used.
  • the indicator 17 may be joined to the LED 15 through a transparent protective layer that protects the LED 15.
  • a transparent protective layer silicon oxide, epoxy resin, silicone resin, or transparent amorphous fluororesin can be used.
  • the transparent protective layer is selected from materials having characteristics such as electrical insulation, moisture barrier properties, and good transmittance for excitation light and fluorescence. As a characteristic of the transparent protective layer, it is important that the generation of fluorescence in the layer is small even when irradiated with excitation light. Needless to say, the characteristic that the fluorescence is small is an important characteristic of all the transparent materials of the fluorescent sensor 4 except the indicator.
  • the light shielding layer 18 is a layer formed on the upper surface side of the indicator 17 and having a thickness of several tens of ⁇ m or less.
  • the light shielding layer 18 may be divided for the indicator 17A and the indicator 17B.
  • a photodiode (Photo Diode: hereinafter referred to as “PD”) that receives fluorescence and outputs a detection signal.
  • the element 12A is also formed, and the PD element 12B is also formed on the wall surface of the through hole 46B. That is, the light receiving portion 12 ⁇ / b> D of the PD element 12 is provided so as to surround the indicator 17, and is formed so that the light receiving surface faces the indicator 17.
  • the light receiving unit 12D is referred to as a PD element 12.
  • the PD element 12 may be formed on the entire wall surface, but may be formed only in a region facing the indicator 17 in order to efficiently receive only fluorescence.
  • the PD element 12 may be formed on all four wall surfaces, or may be formed on only a part of the surfaces.
  • the PD element 12 may be formed on at least a part of the wall surface of the recess 23.
  • the photoelectric conversion element may be a photoconductor (photoconductor), a phototransistor (Phototransistor, PT), or the like.
  • Filters 14A and 14B are disposed so as to cover the PD elements 12A and 12B formed on the wall surface.
  • the filter 14 covering at least a part of the PD elements 12A and 12B is a high-pass absorption filter that blocks excitation light but allows fluorescence having a wavelength longer than that of the excitation light to pass.
  • a silicon layer or a silicon carbide layer is suitable as a material for such a filter.
  • the transmittance of the silicon layer and the silicon carbide layer is 10 ⁇ 5 % or less at the excitation light wavelength of 375 nm, whereas the transmittance is 10% or more at the fluorescence wavelength of 460 nm (the transmittance of the excitation light wavelength).
  • the filter 14 may be a bandpass filter having a high fluorescence wavelength transmittance.
  • the filter 14 may be arrange
  • the wiring board portion 30 is a wiring layer comprising three wirings 51A, 52, 51B for transmitting detection signals from the PD elements 12A, 12B, and wirings 53, 54 for transmitting drive signals to the LEDs 15A, 15B. 50.
  • the wiring 52 is connected by partially introducing an N-type impurity such as phosphorus or arsenic into the surface of the frame-shaped substrate portion 40, which is an N-type semiconductor, to form a low-resistance region 12H with higher conductivity. Yes.
  • each wiring is arrange
  • the wiring 51 and the wiring 51 ⁇ / b> B may be connected to any one of the plurality of wirings 60 that transmit signals to the main body 2.
  • the material of the frame-shaped substrate portion 40 is preferably single crystal silicon in order to form the PD element 12 on the frame-shaped substrate portion 40, but may be glass or ceramic.
  • a semiconductor thin film such as polysilicon or amorphous silicon of several microns or less is formed on the surface of the recess 23 and the surface of one main surface 20SB of the frame-shaped substrate portion 40, and the PD element 12 is formed thereon.
  • the excitation light generated by the LED 15 is applied to the fluorescent dye in the indicator 17.
  • a part of the fluorescence generated by the interaction of the fluorescent dye with the analyte 9 passes through the filter 14 and reaches the PD element 12 and is converted into a detection signal.
  • the fluorescence sensor 4 has a high detection sensitivity because the PD element 12 formed on the wall surface surrounding the indicator 17 detects fluorescence.
  • the fluorescence sensor 4 Furthermore, in the fluorescence sensor 4, PD elements 12A and 12B are formed on the wall surfaces of the two recesses 23A and 23B, respectively. For this reason, the wall surface area, that is, the area of the light receiving portion 12D of the PD element 12 is large. Further, since the distance from the center of the recess 23 to the light receiving portion of the PD element 12 is short, the fluorescence generated by the fluorescent dye reaches the PD element 12 without being attenuated. For this reason, the fluorescence sensor 4 has a high signal output and a high dynamic sensitivity with a good S / N ratio, and therefore has high detection sensitivity.
  • 6A to 6E are partial cross-sectional views of the region of one fluorescent sensor 4, but in the actual process, a large number of sensor portions 10 are collectively formed as a wafer process.
  • the conductive (N-type) silicon wafer 40W is etched through the mask layer 71 to obtain a large number of through holes 46A, 46B is formed.
  • Various known methods can be used for etching.
  • the size of the opening of the through hole 46 is designed according to the specifications. However, since the location is the needle tip portion 5, the plurality of openings have an elongated shape such as 150 ⁇ m in length and 500 ⁇ m in width, for example.
  • the one opening is preferably about 10 ⁇ m to several hundred ⁇ m.
  • the wall surface of the through hole 46 is perpendicular to the main surface, but the wall surface may have a predetermined angle, that is, a tapered shape, as will be described later.
  • the tapered recess can be produced, for example, by wet etching.
  • the PD element 12 is formed on the wall surface of the through hole 46. That is, the ion implantation process is performed from four directions in a state where the silicon wafer 40W on which the mask layer 72 is formed is inclined by 5 degrees to 30 degrees.
  • the conditions for implanting boron (B) are acceleration voltage: 10 to 100 keV and implantation amount: about 1 ⁇ 10 15 cm ⁇ 2 .
  • the filter 14 is formed by the CVD method on the PD element 12 on the wall surface of the through hole 46 of the silicon wafer 40W.
  • a conductive (N-type) silicon wafer 30 ⁇ / b> W to be the wiring board unit 30 is prepared.
  • an insulating film such as an oxide film is formed on the silicon wafer 30W, drive signals are sent to the wirings 51, 52, 51B and the LEDs 15A, 15B for transmitting the detection signals from the PD element 12.
  • Wirings 53 and 54 for supply are formed by sputtering or vapor deposition.
  • the silicon wafer 40W is turned upside down, and the main surface 20SB of the silicon wafer 40W is bonded to the silicon wafer 30W through the adhesive layer 13.
  • the through hole 46 of the frame-shaped substrate portion 40 becomes a recess 23 having a bottom surface.
  • LEDs 15A and 15B are disposed on the bottom surfaces of the recesses 23A and 23B of the bonded wafer 20W.
  • a bonding method using an optically transparent acrylic resin or silicone resin, or various bonding methods such as a flip chip bonding method can be used.
  • the indicator 17A, 17B is arrange
  • the light shielding layer 18 is formed on the indicators 17A and 17B, and the sensor substrate 10W is completed.
  • the light shielding layer 18 has a submicron pore structure, an inorganic thin film such as metal or ceramic, or a composite structure with hydrogels in which carbon black is mixed in a base material of organic polymer such as polyimide or polyurethane, or Further, a resin obtained by mixing carbon black into an analyte-permeable polymer such as celluloses or polyacrylamide, or a resin obtained by laminating them is used.
  • a large number of sensor units 10 are manufactured at once by separating the sensor substrate 10W into individual pieces. And the fluorescence sensor 4 is completed by joining the sensor part 10 with the front-end
  • the manufacturing method of the fluorescent sensor is not limited to this, and the LED 15 and the like are arranged in the recess 23 after joining the separated wiring board part 30 and the separated frame-like board part 40.
  • a method such as setting may be used.
  • the first silicon wafer may be processed so that the extended portion of the wiring board portion 30 constitutes the needle main body portion 6 of the needle portion 7, or the separately prepared needle main body portion 6 and the fluorescence sensor 4 are provided. You may comprise the needle part 7 by joining the needle front-end
  • the fluorescent sensor 4 can be mass-produced by a wafer process. For this reason, the fluorescence sensor 4 can provide stable quality at low cost.
  • the LED 15 emits pulsed excitation light having a center wavelength of around 375 nm at intervals of, for example, once every 30 seconds.
  • the pulse current to the LED 15 is 1 mA to 100 mA
  • the pulse width of light emission is 101 ms to 100 ms.
  • the excitation light generated by the LED 15 enters the indicator 17.
  • the indicator 17 emits fluorescence having an intensity corresponding to the amount of the analyte 9.
  • the analyte 9 passes through the light shielding layer 18 and enters and exits the indicator 17.
  • a part of the fluorescence generated by the indicator 17 enters the PD element 12 through the filter 14. Fluorescence is photoelectrically converted in the PD element 12 to generate photogenerated charges, which are output as detection signals. Part of the excitation light generated by the LED 15 is incident on the wall surface of the recess 23, but hardly enters the PD element 12 due to the action of the filter 14.
  • the calculation unit 2C of the main body 2 performs calculation processing based on the detection signal, that is, the current caused by the photogenerated charge from the PD element 12 or the voltage caused by the accumulated photogenerated charge. Calculate the amount of light.
  • the fluorescence sensor 4 has two sets of sensor function units capable of independently measuring the analyte, that is, two sets of the LED 15 and the PD element 12. For this reason, the fluorescence sensor 4 can exhibit a specific effect by various driving methods.
  • the LED 15A and the LED 15B may be caused to emit light alternately.
  • the signal output decreases, the fluorescent sensor 4 can perform measurement for a longer time (longer life).
  • the measurement can be continued if the other is operating normally, and thus the fluorescence sensor 4 is improved in reliability. Further, usually, measurement is performed using one sensor function unit, and the other may be used for backup.
  • the indicator 17A and the indicator 17B may be in different deterioration states by changing the integrated light amount irradiated to the LED 15A and the integrated light amount irradiated to the LED 15B. Since it is possible to correct a decrease in the amount of fluorescent light due to deterioration, the fluorescent sensor 4 becomes more accurate.
  • the fluorescent sensor 4 having two sets of sensor function units has effects such as high output, high reliability, long life, and high accuracy by selecting a control method according to the purpose.
  • the fluorescence sensor 4A of the second embodiment will be described. Since the fluorescence sensor 4A is similar to the fluorescence sensor 4 of the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the sensor unit 10A includes a frame-shaped substrate unit 40A and a wiring substrate unit 30A on which one LED 15L is mounted to join the substrate unit 20A. It is composed. That is, one LED 15L irradiates excitation light from below to the two indicators 17A and 17B filled in the two recesses 23A and 23B.
  • the PD element 12A and the PD element 12B are connected, and a detection signal is output via the common wirings 51 and 52.
  • the fluorescent sensor 4A has a simple structure because one LED 15L is used as a common excitation light source for the two indicators 17A and 17B.
  • the fluorescence sensor 4B of the third embodiment will be described. Since the fluorescence sensor 4B is similar to the fluorescence sensors 4 and 4A, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the substrate portion 20 ⁇ / b> B of the sensor portion 10 ⁇ / b> B is a region directly below the opening on the side opposite to the opening covered with the light shielding layer 18.
  • One LED 15L is joined to the frame-shaped substrate portion 40B so as to cover the frame.
  • the LED 15L covers the region immediately below the opening on the main surface 20SB side of the two through holes 46A and 46B.
  • the bottom surfaces of the through holes 46A and 46B are constituted by the upper surface of the LED 15L.
  • the bottom surfaces of the through holes 46A and 46B may be the transparent adhesive layer 13.
  • the wiring layer 50 which comprises the wiring connected with PD element 12A, 12B and LED15L is arrange
  • the light leakage prevention layer 19 disposed so as to cover the bottom surface (lower surface) and the side surface of the LED 15L is excited by the excitation light emitted from the bottom surface and the side surface and the excitation reflected by the second main surface 20SB of the frame-shaped substrate portion 40B. Prevent light from leaking outside. That is, the light leakage prevention layer 19 has a function similar to that of the light shielding layer 18, but does not require analyte permeability.
  • the fluorescence sensor 4B has the effects of the fluorescence sensors 4 and 4A, and further has a simple configuration, so that it is easier to manufacture.
  • the substrate portion 20C constituting the sensor portion 10C is integrally made of silicon which is a semiconductor. That is, the recesses 23A and 23B of the substrate portion 20C are recesses formed by an etching method.
  • etching method a wet etching method using a tetramethylammonium hydroxide (TMAH) aqueous solution, a potassium hydroxide (KOH) aqueous solution, or the like is preferable, but dry etching such as reactive ion etching (RIE) or chemical dry etching (CDE) is used.
  • TMAH tetramethylammonium hydroxide
  • KOH potassium hydroxide
  • CDE chemical dry etching
  • PD elements 12A and 12B are formed on the wall surfaces of the recesses 23A and 23B, respectively.
  • the concave portion 23 having the wall surface taper not only has a larger area for forming the PD element than the concave portion having a vertical wall surface, but also facilitates the formation of the PD element 12.
  • the PD elements 12A and 13A and the LEDs 15A and 15B are connected to the wiring layer 50 of the second main surface 20SB through the through wiring.
  • the fluorescence sensor 4C has the effects of the fluorescence sensor 4 and is simpler in configuration, and therefore easier to manufacture.
  • the sensor units 10 to 10C have the two concave portions 23A and 23B that are rectangular in a plan view (cross-sectional shape).
  • the number, that is, the number of indicators 17 may be three or more.
  • it may have four recesses 23A to 23D like a fluorescent sensor 4D (sensor unit 10D) of the modification shown in FIG. 10B.
  • the cross-sectional shape of the plurality of recesses 23 may be a polygon such as a hexagon or an ellipse, or various shapes such as a combination thereof. But you can.
  • the fluorescence sensor has high detection sensitivity.
  • the intensity of the excitation light generated by the LED 15 has an in-plane distribution.
  • the fluorescence intensity emitted from the indicator 17 in the region irradiated with the high-intensity excitation light is high.
  • the fluorescence intensity emitted by the indicator 17 in the region where the intensity of the incident excitation light is low is low. That is, if the intensity of the excitation light incident on the indicator 17 has a large in-plane distribution, the detection sensitivity of the fluorescent sensor may be reduced, or deterioration with time may be accelerated.
  • the intensity distribution of the excitation light incident on the indicator 17 can be averaged by the opening area, shape, arrangement, and the like of the plurality of recesses 23.
  • Fluorescence sensors 4D to 4D2 of Modification 1 can not only have higher detection sensitivity, but also suppress the deterioration of indicator 17 in addition to the effects of fluorescence sensors 4 to 4C.
  • the plurality of indicators 17 and the plurality of PD elements 12 measure the same type of analyte 9, for example, glucose. That is, the fluorescence sensors 4 to 4D2 correspond to various applications such as an oxygen sensor, a glucose sensor, a pH sensor, an immunosensor, or a microorganism sensor, depending on the selection of the fluorescent dye. However, only one type of analyte 9 can be measured.
  • the sensor unit 10E of the fluorescence sensor 4E of the modification 2 shown in FIG. 11 is a multi-sensing type capable of measuring a plurality of types of analytes.
  • the indicator generates a first indicator 17A1 that generates fluorescence according to the amount of the first analyte 9A, and a second indicator 17B1 that generates fluorescence according to the amount of the second analyte 9B. And consist of
  • the first indicator 17A that fills the recess 23A includes the phosphor 81A that generates fluorescence of the first wavelength according to the amount of glucose that is the first analyte 9A, and the second indicator that fills the recess 23B.
  • the indicator 17B includes a phosphor 81B that generates fluorescence of the second wavelength corresponding to the hydrogen ion concentration, which is the second analyte 9B.
  • the phosphor 81A includes a phenylboronic acid derivative, and the phosphor 81B includes, for example, CdSe / Zn nanoparticles.
  • both the phosphor 81A and the phosphor 81B receive the excitation light of 375 nm, the phosphor 81A and the phosphor 81B generate fluorescence corresponding to the glucose concentration or the hydrogen ion concentration as the analyte.
  • the computing unit 2C may correct the glucose concentration measured by the first indicator 17A according to the hydrogen ion concentration (pH) measured by the second indicator 17B. Even when the first indicator 17A and the second indicator 17B contain the same phosphor at different concentrations, the concentration of the measured analyte can be corrected.
  • the type of indicator 17 is selected according to the analyte to be measured. Further, a fluorescent sensor having three or more recesses may have a different indicator in each recess.
  • the indicator for example, when measuring potassium ion, a phosphor (fluorescence wavelength: 500 nm) including a crown ether derivative having a fluorescent residue can be used, and when measuring oxygen, Tris (4 , 7-diphenyl-1,10-phenanthroline) a phosphor containing a ruthenium (II) perchlorate molecule (fluorescence wavelength: 530 nm) can be used.
  • the multi-sensing type fluorescence sensor 4E has the effect of the fluorescence sensor 4 and the like, and moreover, since a plurality of analytes can be measured with one sensor, the environment and biological information can be measured more accurately. Furthermore, since the measured analyte concentration can be corrected, the accuracy is higher.
  • the wavelength of the excitation light to be irradiated may be changed depending on the type of analyte to be measured, that is, the type of indicator. That is, the first indicator 17A may be irradiated with the excitation light E1 having the first wavelength, and the second indicator 17B may be irradiated with the excitation light E2 having the second wavelength.
  • the first indicator 17A including a phenylboronic acid derivative as a phosphor is irradiated with a first excitation light E1 having a wavelength of 375 nm
  • the second indicator 17B including a GFP (green fluorescent protein) derivative as a phosphor You may irradiate the 2nd excitation light E2 of wavelength 490nm.
  • the sensor unit 10E of the fluorescence sensor 4E includes an LED 15A1 that is a first light emitting element that generates excitation light E1 of the first wavelength, and excitation light E2 of the second wavelength.
  • LED15B1 which is the 2nd light emitting element which generate
  • the wavelength conversion filter 80 may be used as in the sensor unit 10F of the fluorescence sensor 4F of Modification 3 shown in FIG.
  • the wavelength conversion filter 80 emits the excitation light E1 of the first wavelength of 375 nm generated by the LED 15L to the first indicator 17A as it is, and the excitation light E1 generated by the LED 15L to the second indicator 17B. Is converted into excitation light E2 having a second wavelength of 460 nm and irradiated.
  • the indicators 17A and 17B generate the first phosphor F1 that generates the first fluorescence F1 according to the amount of the first analyte 9A.
  • produces the 2nd fluorescence F2 according to the quantity of the 2nd analyte 9B may be sufficient.
  • the first PD element 12A covered by the first filter 14A1 that selectively transmits the first fluorescence F1 generated by the first phosphor 81A and the second phosphor 81B are generated. If it has 2nd PD element 12B covered with 2nd filter 14B1 which permeate

Abstract

A fluorescence sensor (4) is provided with: a substrate part (20) in which a plurality of recesses (23A, 23B) are formed in a principal surface (20SA), PD elements (12A, 12B) for receiving fluorescence and outputting a detection signal being formed on wall surfaces of the recesses (23A, 23B), respectively; filters (14A, 14B) for covering the PD elements (12A, 12B) and blocking excitation light; indicators (17A, 17B) for generating fluorescence in accordance with the quantity of an analyte when excitation light is received, the indicators (17A, 17B) being provided inside the recesses (23A, 23B), respectively; a light-shielding layer (18) for covering openings of the recesses (23A, 23B) and blocking the penetration of external light into the indicators (17A, 17B) but passing an analyte (9); and LEDs (15A, 15B) for irradiating excitation light to the indicators (17A, 17B), respectively, from a bottom side of the recesses (23A, 23B).

Description

蛍光センサFluorescent sensor
 本発明は、アナライトの濃度を計測する蛍光センサに関し、特に半導体製造技術およびMEMS技術を用いて作製される微小蛍光分光光度計である蛍光センサに関する。 The present invention relates to a fluorescent sensor that measures the concentration of an analyte, and more particularly to a fluorescent sensor that is a micro-fluorescence spectrophotometer manufactured using semiconductor manufacturing technology and MEMS technology.
 液体中のアナライトすなわち被計測物質の存在確認、または、濃度を測定するための様々な分析装置が開発されている。例えば、一定容量の透明容器に、アナライトの存在によって性質が変化し蛍光を発生する蛍光色素と、アナライトを含む被計測溶液とを注入し、励起光を照射し蛍光色素からの蛍光強度を計測することによりアナライト濃度を計測する蛍光分光光度計が知られている。 Various analyzers have been developed to confirm the presence of analytes in liquids, that is, substances to be measured, or to measure concentrations. For example, in a transparent container with a certain volume, a fluorescent dye whose properties change due to the presence of the analyte and generates fluorescence and a solution to be measured containing the analyte are injected, and excitation light is irradiated to increase the fluorescence intensity from the fluorescent dye. Fluorescence spectrophotometers that measure analyte concentration by measuring are known.
 小型の蛍光分光光度計は、光検出器と蛍光色素を含有したインジケータとを有している。そして、被計測溶液中のアナライトが進入可能なインジケータに光源からの励起光を照射することで、インジケータ内の蛍光色素が被計測溶液中のアナライト濃度に応じた光量の蛍光を発生し、その蛍光を光検出器が受光する。光検出器は光電変換素子であり、受光した光量に応じた電気信号を出力する。この電気信号から被計測溶液中のアナライト濃度が測定される。 A small fluorescent spectrophotometer has a photodetector and an indicator containing a fluorescent dye. And, by irradiating the indicator into which the analyte in the solution to be measured can enter the excitation light from the light source, the fluorescent dye in the indicator generates a fluorescence having a light amount corresponding to the analyte concentration in the solution to be measured, The fluorescence is received by the photodetector. The photodetector is a photoelectric conversion element and outputs an electrical signal corresponding to the amount of received light. The analyte concentration in the solution to be measured is measured from this electrical signal.
 近年、微量試料中のアナライトを計測するために、半導体製造技術およびMEMS技術を用いて作製される微小蛍光分光光度計が提案されている。以下、微小蛍光光度計のことを、「蛍光センサ」と呼ぶ。 In recent years, in order to measure an analyte in a small amount of sample, a micro-fluorescence spectrophotometer manufactured using semiconductor manufacturing technology and MEMS technology has been proposed. Hereinafter, the microfluorometer is referred to as a “fluorescence sensor”.
 例えば、図1および図2に示す蛍光センサ110が米国特許第5039490号明細書に開示されている。蛍光センサ110は、励起光が透過可能な透明支持基板101と、蛍光を電気信号に変換する光電変換素子103と、励起光を集光する集光機能部105Aとを有する光学板状部105と、アナライト9と相互作用することによって励起光の入射により蛍光を発生するインジケータ117と、カバー層109と、から構成されている。 For example, a fluorescent sensor 110 shown in FIGS. 1 and 2 is disclosed in US Pat. No. 5,039,490. The fluorescence sensor 110 includes an optical plate-like portion 105 having a transparent support substrate 101 that can transmit excitation light, a photoelectric conversion element 103 that converts fluorescence into an electrical signal, and a condensing function portion 105A that collects excitation light. The indicator 117 is configured to generate fluorescence by interacting with the analyte 9 by the excitation light, and the cover layer 109.
 光電変換素子103は、例えばシリコンからなる基板103Aに形成されている。基板103Aは励起光を透過しない。このため、蛍光センサ110では、光電変換素子103の周囲に励起光が透過可能な空隙領域120を有している。 The photoelectric conversion element 103 is formed on a substrate 103A made of, for example, silicon. The substrate 103A does not transmit excitation light. For this reason, the fluorescence sensor 110 has a void region 120 that can transmit excitation light around the photoelectric conversion element 103.
 すなわち、空隙領域120を透過した励起光Eだけが、集光機能部105Aの作用により、インジケータ117中の、光電変換素子103の上部付近に集光される。集光された励起光Eと、インジケータ117の内部に進入したアナライト9の相互作用により、蛍光Fが発生する。発生した蛍光の一部は光電変換素子103に入射し、光電変換素子103において蛍光強度、つまりアナライト9の濃度に比例した電流または電圧などの信号が発生する。なお励起光は、光電変換素子103上に形成されたフィルタ(不図示)の作用により、光電変換素子103には入射しない。 That is, only the excitation light E transmitted through the gap region 120 is condensed near the upper portion of the photoelectric conversion element 103 in the indicator 117 by the action of the condensing function unit 105A. Fluorescence F is generated by the interaction between the condensed excitation light E and the analyte 9 that has entered the indicator 117. Part of the generated fluorescence enters the photoelectric conversion element 103, and a signal such as a current or voltage proportional to the fluorescence intensity, that is, the concentration of the analyte 9, is generated in the photoelectric conversion element 103. The excitation light does not enter the photoelectric conversion element 103 due to the action of a filter (not shown) formed on the photoelectric conversion element 103.
 以上の説明のように、蛍光センサ110は、透明支持基板101の上に積層される基板103Aに光電変換素子103であるフォトダイオードを形成し、その上に、光学板状部105およびインジケータ117が積層されている。 As described above, in the fluorescence sensor 110, the photodiode which is the photoelectric conversion element 103 is formed on the substrate 103A laminated on the transparent support substrate 101, and the optical plate portion 105 and the indicator 117 are formed thereon. Are stacked.
 しかし、上記の蛍光センサ110は、励起光の通路である空隙領域120と光電変換素子103の領域とを、同一平面上に有する。このため、より多くの励起光をインジケータ117に導光するために通路である空隙領域120の面積を広くすると、光電変換素子103の面積が狭くなるため、蛍光センサの感度を高めることにはならない。反対に光電変換素子103の検出感度を高くするために光電変換素子103の面積を広くすると、励起光の通路である空隙領域120の面積が狭くなりインジケータ117に導光する励起光が減少してしまうために、やはり蛍光センサの感度を高めることにはならない。すなわち、蛍光センサ110では、高い検出感度を得ることは容易ではなかった。 However, the above-described fluorescent sensor 110 has the gap region 120 which is a passage of excitation light and the region of the photoelectric conversion element 103 on the same plane. For this reason, if the area of the gap region 120, which is a passage, is increased in order to guide more excitation light to the indicator 117, the area of the photoelectric conversion element 103 is reduced, and thus the sensitivity of the fluorescent sensor is not increased. . On the other hand, if the area of the photoelectric conversion element 103 is increased in order to increase the detection sensitivity of the photoelectric conversion element 103, the area of the gap region 120, which is the path of the excitation light, is reduced, and the excitation light guided to the indicator 117 is reduced. Therefore, the sensitivity of the fluorescence sensor is not increased. That is, with the fluorescent sensor 110, it is not easy to obtain high detection sensitivity.
 本発明は検出感度の高い蛍光センサを提供することを目的とする。 An object of the present invention is to provide a fluorescent sensor with high detection sensitivity.
 本発明の一態様の蛍光センサは、主面に複数の凹部が形成されており、それぞれの凹部の壁面に蛍光を受光し検出信号を出力する光電変換素子が形成されている基板部と、前記光電変換素子を覆う、励起光を遮断するフィルタと、それぞれの前記凹部の内部に配設されている、前記励起光を受光するとアナライト量に応じた前記蛍光を発生するインジケータと、前記凹部の開口を覆う、前記インジケータへの外光進入を遮断するが、アナライトは通過する遮光層と、前記凹部の底面側から前記インジケータに励起光を照射する発光素子と、を具備する。 The fluorescent sensor of one embodiment of the present invention includes a substrate portion on which a plurality of recesses are formed on a main surface, and a photoelectric conversion element that receives fluorescence and outputs a detection signal is formed on a wall surface of each recess, A filter that covers the photoelectric conversion element and blocks excitation light; an indicator that is disposed inside each of the recesses; and that generates the fluorescence corresponding to the amount of analyte when receiving the excitation light; and The light-shielding layer that covers the opening and blocks external light from entering the indicator but through which the analyte passes and a light-emitting element that irradiates the indicator with excitation light from the bottom surface side of the recess.
従来の蛍光センサの断面図である。It is sectional drawing of the conventional fluorescence sensor. 従来の蛍光センサの構造を説明するための分解図である。It is an exploded view for demonstrating the structure of the conventional fluorescence sensor. 第1実施形態の蛍光センサを有するセンサシステムを説明するための説明図である。It is explanatory drawing for demonstrating the sensor system which has the fluorescence sensor of 1st Embodiment. 第1実施形態の蛍光センサの構造を説明するための分解図である。It is an exploded view for demonstrating the structure of the fluorescence sensor of 1st Embodiment. 第1実施形態の蛍光センサの断面図である。It is sectional drawing of the fluorescence sensor of 1st Embodiment. 第1実施形態の蛍光センサの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the fluorescence sensor of 1st Embodiment. 第1実施形態の蛍光センサの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the fluorescence sensor of 1st Embodiment. 第1実施形態の蛍光センサの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the fluorescence sensor of 1st Embodiment. 第1実施形態の蛍光センサの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the fluorescence sensor of 1st Embodiment. 第1実施形態の蛍光センサの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the fluorescence sensor of 1st Embodiment. 第2実施形態の蛍光センサの構造を説明するための分解断面図である。It is a disassembled sectional view for demonstrating the structure of the fluorescence sensor of 2nd Embodiment. 第3実施形態の蛍光センサの構造を説明するための分解断面図である。It is a disassembled sectional view for demonstrating the structure of the fluorescence sensor of 3rd Embodiment. 第4実施形態の蛍光センサの製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the fluorescence sensor of 4th Embodiment. 変形例1の蛍光センサのインジケータの配置を説明するための上面図である。It is a top view for demonstrating arrangement | positioning of the indicator of the fluorescence sensor of the modification 1. 変形例1の蛍光センサのインジケータの配置を説明するための上面図である。It is a top view for demonstrating arrangement | positioning of the indicator of the fluorescence sensor of the modification 1. 変形例1の蛍光センサのインジケータの配置を説明するための上面図である。It is a top view for demonstrating arrangement | positioning of the indicator of the fluorescence sensor of the modification 1. 変形例1の蛍光センサのインジケータの配置を説明するための上面図である。It is a top view for demonstrating arrangement | positioning of the indicator of the fluorescence sensor of the modification 1. 変形例2の蛍光センサを説明するための断面図である。It is sectional drawing for demonstrating the fluorescence sensor of the modification 2. 変形例3の蛍光センサを説明するための断面図である。It is sectional drawing for demonstrating the fluorescence sensor of the modification 3. 変形例4の蛍光センサを説明するための断面図である。It is sectional drawing for demonstrating the fluorescence sensor of the modification 4.
<第1実施形態>
 以下、本発明の第1実施形態の蛍光センサ4について説明する。
<First Embodiment>
Hereinafter, the fluorescence sensor 4 according to the first embodiment of the present invention will be described.
 図3に示すように、蛍光センサ4は、本体部2およびレシーバー3と、ともにセンサシステム1を構成する。すなわち、センサシステム1は、蛍光センサ4と、本体部2と、本体部2からの信号を受信し記憶するレシーバー3と、を有する。本体部2とレシーバー3との間の信号の送受信は無線または有線で行われる。 As shown in FIG. 3, the fluorescence sensor 4 constitutes a sensor system 1 together with the main body 2 and the receiver 3. That is, the sensor system 1 includes a fluorescent sensor 4, a main body 2, and a receiver 3 that receives and stores a signal from the main body 2. Transmission / reception of signals between the main body 2 and the receiver 3 is performed wirelessly or by wire.
 針型の蛍光センサ4は、主要機能部であるセンサ部10を有する針先端部5と細長い針本体部6とを有する針部7と、針本体部6の後端部と一体化したコネクタ部8と、を具備する。針先端部5、針本体部6、およびコネクタ部8は同一材料により一体形成されていてもよい。 The needle-type fluorescent sensor 4 includes a needle portion 7 having a needle tip portion 5 having a sensor portion 10 as a main functional portion and an elongated needle body portion 6, and a connector portion integrated with a rear end portion of the needle body portion 6. 8 and. Needle tip 5, needle body 6 and connector 8 may be integrally formed of the same material.
 コネクタ部8は、本体部2の嵌合部2Aと着脱自在に嵌合する。蛍光センサ4のセンサ部10から延設された複数の配線60は、コネクタ部8が本体部2の嵌合部2Aと機械的に嵌合することにより、本体部2と電気的に接続される。 The connector part 8 is detachably fitted to the fitting part 2A of the main body part 2. The plurality of wirings 60 extending from the sensor unit 10 of the fluorescent sensor 4 are electrically connected to the main body unit 2 when the connector unit 8 is mechanically fitted to the fitting unit 2A of the main body unit 2. .
 本体部2は、センサ部10の駆動および制御などを行うCPU等からなる制御部2Bと、センサ部10から出力された信号を処理するCPU等からなる演算部2Cと、を有する。なお、制御部2Bまたは演算部2Cの少なくともいずれかが、蛍光センサ4のコネクタ部8等に配設されていてもよいし、レシーバー3に配設されていてもよい。また、制御部2B及び演算部2Cが同一のCPUであってもよい。 The main body unit 2 includes a control unit 2B including a CPU that drives and controls the sensor unit 10, and a calculation unit 2C including a CPU that processes a signal output from the sensor unit 10. Note that at least one of the control unit 2B and the calculation unit 2C may be disposed in the connector unit 8 of the fluorescent sensor 4 or may be disposed in the receiver 3. Further, the control unit 2B and the calculation unit 2C may be the same CPU.
 なお、レシーバー3との間を有線送受信する場合には、本体部2は無線アンテナに代えて信号線を有する。また、本体部2が必要な容量のメモリ部を有する場合にはレシーバー3は不要である。 In addition, when performing wired transmission / reception with the receiver 3, the main body 2 has a signal line instead of a wireless antenna. Further, when the main body 2 has a memory unit having a necessary capacity, the receiver 3 is not necessary.
 蛍光センサ4は本体部2と嵌合した状態で、被検者自身が体表面から穿刺して針先端部5が体内に留置される。そして、例えば体液中のグルコース濃度を連続して測定し、レシーバー3のメモリに記憶する。すなわち、蛍光センサ4は、体内のアナライトを計測する針型センサであり、連続使用期間が一週間程度の短期皮下留置型である。しかし、蛍光センサ4を体内に挿入しないで、採取した体液、または体外の流路を介して体内と循環する体液を、体外において接触させてもよい。 When the fluorescent sensor 4 is fitted to the main body 2, the subject himself punctures the body surface and the needle tip 5 is left in the body. For example, the glucose concentration in the body fluid is continuously measured and stored in the memory of the receiver 3. That is, the fluorescence sensor 4 is a needle-type sensor that measures an analyte in the body, and is a short-term subcutaneous indwelling type with a continuous use period of about one week. However, the collected bodily fluid or the bodily fluid that circulates inside the body via a flow path outside the body may be contacted outside the body without inserting the fluorescent sensor 4 into the body.
 そして、図4、図5に示すように、蛍光センサ4の主機能部であるセンサ部10は、基板部20と、励起光を発生する発光素子である発光ダイオード(Light Emitting Diode:以下「LED」ともいう)15A、15Bと、励起光とアナライト量とに応じた蛍光を発生するインジケータ17A、17Bと、遮光層18と、を有する。蛍光センサ4では、遮光層18が生体中の血液または体液と接触することにより、アナライト9が遮光層18を通過してインジケータ17に進入する。 As shown in FIGS. 4 and 5, the sensor unit 10 which is the main functional unit of the fluorescence sensor 4 includes a substrate unit 20 and a light emitting diode (Light Emitting Diode: hereinafter referred to as “LED”) that generates excitation light. 15A and 15B, indicators 17A and 17B that generate fluorescence corresponding to the excitation light and the amount of analyte, and a light shielding layer 18. In the fluorescent sensor 4, the analyte 9 passes through the light shielding layer 18 and enters the indicator 17 when the light shielding layer 18 comes into contact with blood or body fluid in the living body.
 基板部20は、第1の基板部である配線基板部30と、主面20SA(主面20SB)に2個の貫通孔46A、46Bが形成された第2の基板部である枠状基板部40と、を接着層13を介して接合することにより作製されている。このため、基板部20は、主面20SAに2つの凹部23A、23Bがあるマルチキャビティである。すなわち、配線基板部30の表面が、凹部23A、23Bの底面であり、枠状基板部40の貫通孔46A、46Bの壁面が、凹部23A、23Bの壁面である。 The substrate unit 20 includes a wiring substrate unit 30 that is a first substrate unit and a frame-shaped substrate unit that is a second substrate unit in which two through holes 46A and 46B are formed on the main surface 20SA (main surface 20SB). 40 are bonded to each other through an adhesive layer 13. For this reason, the board | substrate part 20 is a multicavity with two recessed part 23A, 23B in main surface 20SA. That is, the surface of the wiring board portion 30 is the bottom surface of the recesses 23A and 23B, and the wall surfaces of the through holes 46A and 46B of the frame-like substrate portion 40 are the wall surfaces of the recesses 23A and 23B.
 なお、例えばN型半導体からなる基板部20、すなわち配線基板部30および枠状基板部40の表面等には適宜、絶縁層が形成されるが図示していない。また、以下、同じ機能の構成要素のそれぞれをいうときは末尾の一文字(AまたはB)を省略する。例えば、貫通孔46A、46Bのそれぞれを貫通孔46という。 For example, an insulating layer is appropriately formed on the surface of the substrate portion 20 made of, for example, an N-type semiconductor, that is, the wiring substrate portion 30 and the frame-like substrate portion 40, but is not shown. Further, hereinafter, when referring to each component having the same function, the last letter (A or B) is omitted. For example, each of the through holes 46A and 46B is referred to as a through hole 46.
 凹部23Aの内部には、インジケータ17AとLED15Aとが配設されており、凹部23Bの内部にはインジケータ17BとLED15Bとが配設されている。発光素子としては、LEDに限られるものではない。しかし、光発生効率、励起光の波長選択性の広さ、および励起光となる紫外線以外の波長の光を僅かしか発生しないことなどの観点から、略矩形のチップ状のLEDが好ましい。 The indicator 17A and the LED 15A are disposed inside the recess 23A, and the indicator 17B and the LED 15B are disposed inside the recess 23B. The light emitting element is not limited to the LED. However, a substantially rectangular chip-shaped LED is preferable from the viewpoints of light generation efficiency, wide wavelength selectivity of excitation light, and generation of only light having a wavelength other than ultraviolet light serving as excitation light.
 インジケータ17は、進入してきたアナライト9との相互作用および励起光によりアナライト9の量に応じた光量の蛍光を発生する。例えば、インジケータ17は波長375nmの励起光に対して、より長波長の例えば波長460nmの蛍光を発生する。インジケータ17の厚さは数十μm~200μm程度に設定されている。インジケータ17は、アナライト9の量、すなわち試料中のアナライト濃度に応じた強度の蛍光を発生する蛍光色素が含まれたベース材料から構成されている。 The indicator 17 generates fluorescence with a light amount corresponding to the amount of the analyte 9 by the interaction with the analyte 9 that has entered and the excitation light. For example, the indicator 17 generates fluorescence having a longer wavelength, for example, a wavelength of 460 nm with respect to excitation light having a wavelength of 375 nm. The thickness of the indicator 17 is set to about several tens μm to 200 μm. The indicator 17 is composed of a base material containing a fluorescent dye that generates fluorescence having an intensity corresponding to the amount of the analyte 9, that is, the concentration of the analyte in the sample.
 蛍光色素は、アナライト9の種類に応じて選択され、アナライト9の量に応じて発生する蛍光の光量が可逆的に変化する蛍光色素ならば、どのようなものにも使用できる。すなわち、蛍光センサ4は、蛍光色素の選択によって、酸素センサ、グルコースセンサ、pHセンサ、免疫センサ、または微生物センサなど、多様な用途に対応している。 The fluorescent dye is selected according to the type of the analyte 9 and can be used for any fluorescent dye in which the amount of fluorescence generated according to the amount of the analyte 9 changes reversibly. That is, the fluorescent sensor 4 corresponds to various uses such as an oxygen sensor, a glucose sensor, a pH sensor, an immunosensor, or a microorganism sensor, depending on the selection of the fluorescent dye.
 インジケータ17は、例えば、含水し易いハイドロゲルをベース材料として、ハイドロゲル内に上記蛍光色素を含有するまたは結合されている。ハイドロゲルの成分としてはメチルセルロースもしくはデキストランなどの多糖類、(メタ)アクリルアミド、メチロールアクリルアミド、もしくはヒドルキシエチルアクリレート等のモノマーを重合して作製するアクリル系ハイドロゲル、またはポリエチレングリコールとジイソシアネートから作製するウレタン系ハイドロゲルなどを用いることができる。 The indicator 17 includes, for example, a hydrogel that easily contains water as a base material and contains or is bonded to the fluorescent dye in the hydrogel. Hydrogel components are prepared from acrylic hydrogels prepared by polymerizing polysaccharides such as methylcellulose or dextran, monomers such as (meth) acrylamide, methylolacrylamide, or hydroxyethyl acrylate, or from polyethylene glycol and diisocyanate. Urethane hydrogel can be used.
 インジケータ17はLED15を保護する透明な保護層を介してLED15と接合されていてもよい。透明保護層としては、酸化シリコン、エポキシ樹脂、シリコーン樹脂、または透明な非晶性フッ素樹脂などが使用可能である。透明保護層は、電気的絶縁性を有すること、水分遮断性を有すること、励起光および蛍光に対して良好な透過率を有すること、などの特性を有する材料から選択される。透明保護層の特性として、励起光が照射されても層中での蛍光の発生が小さいことが重要である。なお、この蛍光が小さいという特性は、インジケータを除いた蛍光センサ4の全ての透明材料の重要特性であることは言うまでもない。 The indicator 17 may be joined to the LED 15 through a transparent protective layer that protects the LED 15. As the transparent protective layer, silicon oxide, epoxy resin, silicone resin, or transparent amorphous fluororesin can be used. The transparent protective layer is selected from materials having characteristics such as electrical insulation, moisture barrier properties, and good transmittance for excitation light and fluorescence. As a characteristic of the transparent protective layer, it is important that the generation of fluorescence in the layer is small even when irradiated with excitation light. Needless to say, the characteristic that the fluorescence is small is an important characteristic of all the transparent materials of the fluorescent sensor 4 except the indicator.
 遮光層18は、インジケータ17の上部表面側に形成された、厚さが数十μm以下の層である。なお、遮光層18はインジケータ17A用とインジケータ17B用とで分割されていてもよい。 The light shielding layer 18 is a layer formed on the upper surface side of the indicator 17 and having a thickness of several tens of μm or less. The light shielding layer 18 may be divided for the indicator 17A and the indicator 17B.
 一方、枠状基板部40の貫通孔46Aの壁面、すなわち基板部20の凹部23Aの壁面には、蛍光を受光し検出信号を出力する光電変換素子であるフォトダイオード(Photo Diode:以下「PD」ともいう)素子12Aが形成されており、同様に貫通孔46Bの壁面にもPD素子12Bが形成されている。すなわち、PD素子12の受光部12Dは、インジケータ17を囲むように設けられ、受光面がインジケータ17に向くように形成されている。以下、受光部12DをPD素子12という。 On the other hand, on the wall surface of the through hole 46A of the frame-shaped substrate portion 40, that is, the wall surface of the recess portion 23A of the substrate portion 20, a photodiode (Photo Diode: hereinafter referred to as “PD”) that receives fluorescence and outputs a detection signal. The element 12A is also formed, and the PD element 12B is also formed on the wall surface of the through hole 46B. That is, the light receiving portion 12 </ b> D of the PD element 12 is provided so as to surround the indicator 17, and is formed so that the light receiving surface faces the indicator 17. Hereinafter, the light receiving unit 12D is referred to as a PD element 12.
 PD素子12は、壁面の全体に形成されていてもよいが、蛍光のみを効率的に受光するために、インジケータ17との対向領域にのみに形成してもよい。またPD素子12は、4面ある壁面の全てに形成されていてもよいし、一部の面のみに形成されていてもよい。 The PD element 12 may be formed on the entire wall surface, but may be formed only in a region facing the indicator 17 in order to efficiently receive only fluorescence. The PD element 12 may be formed on all four wall surfaces, or may be formed on only a part of the surfaces.
 すなわち、PD素子12は、凹部23の壁面の少なくとも一部に形成されていればよい。また、光電変換素子としては、フォトコンダクタ(光導電体)、またはフォトトランジスタ(Photo Transistor、PT)などでもよい。 That is, the PD element 12 may be formed on at least a part of the wall surface of the recess 23. The photoelectric conversion element may be a photoconductor (photoconductor), a phototransistor (Phototransistor, PT), or the like.
 壁面に形成された、それぞれのPD素子12A、12Bを覆うようにフィルタ14A、14Bが配設されている。PD素子12A、12Bの少なくとも一部を覆うフィルタ14は励起光を遮断するが、励起光よりも長波長の蛍光は通すハイパス型の吸収型フィルタである。このようなフィルタの材料としては、シリコン層または炭化シリコン層が好適である。例えば、シリコン層および炭化シリコン層は、励起光波長の375nmでは透過率は10-5%以下であるのに対して、蛍光波長の460nmでは透過率10%以上と、(励起光波長の透過率/蛍光波長の透過率)の比として6桁以上の透過率選択性を有する。なお、フィルタ14として蛍光波長の透過率が高いバンドパスフィルタであってもよい。また、PD素子12を保護する透明層、例えば酸化シリコン層を介してフィルタ14が配設されていてもよい。 Filters 14A and 14B are disposed so as to cover the PD elements 12A and 12B formed on the wall surface. The filter 14 covering at least a part of the PD elements 12A and 12B is a high-pass absorption filter that blocks excitation light but allows fluorescence having a wavelength longer than that of the excitation light to pass. As a material for such a filter, a silicon layer or a silicon carbide layer is suitable. For example, the transmittance of the silicon layer and the silicon carbide layer is 10 −5 % or less at the excitation light wavelength of 375 nm, whereas the transmittance is 10% or more at the fluorescence wavelength of 460 nm (the transmittance of the excitation light wavelength). (Transmittance of fluorescence wavelength) and the transmittance selectivity of 6 digits or more. Note that the filter 14 may be a bandpass filter having a high fluorescence wavelength transmittance. Moreover, the filter 14 may be arrange | positioned through the transparent layer which protects PD element 12, for example, a silicon oxide layer.
 配線基板部30は、PD素子12A、12Bからの検出信号を伝達するための3本の配線51A、52、51B、およびLED15A、15Bに駆動信号を伝達するための配線53、54からなる配線層50を有する。配線52は、N型半導体である枠状基板部40の表面に部分的にN型不純物、例えばリンまたはヒ素等を導入して、より導電率の高い低抵抗領域12Hを形成し、接続されている。なお、LED15A、15Bを別々に駆動する場合には、それぞれの配線が配設される。また、配線51と配線51Bとは接続されてから本体部2に信号を伝達する複数の配線60のいずれかと接続されてもよい。 The wiring board portion 30 is a wiring layer comprising three wirings 51A, 52, 51B for transmitting detection signals from the PD elements 12A, 12B, and wirings 53, 54 for transmitting drive signals to the LEDs 15A, 15B. 50. The wiring 52 is connected by partially introducing an N-type impurity such as phosphorus or arsenic into the surface of the frame-shaped substrate portion 40, which is an N-type semiconductor, to form a low-resistance region 12H with higher conductivity. Yes. In addition, when driving LED15A, 15B separately, each wiring is arrange | positioned. In addition, the wiring 51 and the wiring 51 </ b> B may be connected to any one of the plurality of wirings 60 that transmit signals to the main body 2.
 枠状基板部40の材料は、PD素子12を枠状基板部40に形成するためには単結晶シリコンが好ましいが、ガラスまたはセラミック等でもよい。その場合、凹部23の表面および枠状基板部40の主面のひとつ20SBの表面に、数ミクロン以下のポリシリコンまたはアモルファスシリコン等の半導体薄膜が形成され、それにPD素子12が形成される。 The material of the frame-shaped substrate portion 40 is preferably single crystal silicon in order to form the PD element 12 on the frame-shaped substrate portion 40, but may be glass or ceramic. In that case, a semiconductor thin film such as polysilicon or amorphous silicon of several microns or less is formed on the surface of the recess 23 and the surface of one main surface 20SB of the frame-shaped substrate portion 40, and the PD element 12 is formed thereon.
 LED15が発生した励起光は、インジケータ17中の蛍光色素に照射される。そして、蛍光色素がアナライト9との相互作用により発生した蛍光の一部は、フィルタ14を通過してPD素子12に到達し、検出信号に変換される。 The excitation light generated by the LED 15 is applied to the fluorescent dye in the indicator 17. A part of the fluorescence generated by the interaction of the fluorescent dye with the analyte 9 passes through the filter 14 and reaches the PD element 12 and is converted into a detection signal.
 蛍光センサ4は、インジケータ17を取り囲む壁面に形成されたPD素子12により蛍光を検出するために、検出感度が高い。 The fluorescence sensor 4 has a high detection sensitivity because the PD element 12 formed on the wall surface surrounding the indicator 17 detects fluorescence.
 さらに、蛍光センサ4では2つの凹部23A、23Bの壁面にそれぞれPD素子12A、12Bが形成されている。このため、壁面面積すなわちPD素子12の受光部12Dの面積が広い。さらに、凹部23の中心からPD素子12の受光部までの距離が短いために蛍光色素が発生した蛍光が減衰することなくPD素子12に到達する。このため、蛍光センサ4は、信号出力が高く、S/N比のよい広いダイナミックレンジのため、検出感度が高い。 Furthermore, in the fluorescence sensor 4, PD elements 12A and 12B are formed on the wall surfaces of the two recesses 23A and 23B, respectively. For this reason, the wall surface area, that is, the area of the light receiving portion 12D of the PD element 12 is large. Further, since the distance from the center of the recess 23 to the light receiving portion of the PD element 12 is short, the fluorescence generated by the fluorescent dye reaches the PD element 12 without being attenuated. For this reason, the fluorescence sensor 4 has a high signal output and a high dynamic sensitivity with a good S / N ratio, and therefore has high detection sensitivity.
 次に、蛍光センサ4の製造方法について簡単に説明する。なお、図6A~図6Eでは1個の蛍光センサ4の領域の部分断面図であるが、実際の工程では、ウエハプロセスとして一括して多数のセンサ部10を形成する。 Next, a method for manufacturing the fluorescent sensor 4 will be briefly described. 6A to 6E are partial cross-sectional views of the region of one fluorescent sensor 4, but in the actual process, a large number of sensor portions 10 are collectively formed as a wafer process.
 最初に、図6Aに示すように、枠状基板部40の作製では、導電性(N型)のシリコンウエハ40Wに対して、マスク層71を介してエッチングが行われ、多数の貫通孔46A、46Bが形成される。エッチングには公知の各種の方法を用いることができる。 First, as shown in FIG. 6A, in the production of the frame-shaped substrate portion 40, the conductive (N-type) silicon wafer 40W is etched through the mask layer 71 to obtain a large number of through holes 46A, 46B is formed. Various known methods can be used for etching.
 なお、貫通孔46の開口の大きさは仕様に応じて設計されるが、配設箇所が針先端部5であるために、複数の開口は、例えば、縦150μm、横500μmのように細長い形状の領域に配置されることが好ましく、一つの開口は10μmから数百μm程度の大きさが好ましい。 The size of the opening of the through hole 46 is designed according to the specifications. However, since the location is the needle tip portion 5, the plurality of openings have an elongated shape such as 150 μm in length and 500 μm in width, for example. The one opening is preferably about 10 μm to several hundred μm.
 また、蛍光センサ4では、貫通孔46の壁面は主面に垂直であるが、後述するように、壁面は所定の角度、すなわちテーパーのある形状であってもよい。テーパー形状の凹部は例えばウエットエッチングにより作製できる。 Further, in the fluorescent sensor 4, the wall surface of the through hole 46 is perpendicular to the main surface, but the wall surface may have a predetermined angle, that is, a tapered shape, as will be described later. The tapered recess can be produced, for example, by wet etching.
 次に、図6Bに示すように、貫通孔46の壁面にPD素子12が形成される。すなわち、マスク層72が形成されたシリコンウエハ40Wを5度~30度に傾けた状態で、4方向からイオン注入処理が行われる。例えば、ほう素(B)を注入する場合の条件は、加速電圧:10~100keV、注入量:1×1015cm-2程度である。 Next, as shown in FIG. 6B, the PD element 12 is formed on the wall surface of the through hole 46. That is, the ion implantation process is performed from four directions in a state where the silicon wafer 40W on which the mask layer 72 is formed is inclined by 5 degrees to 30 degrees. For example, the conditions for implanting boron (B) are acceleration voltage: 10 to 100 keV and implantation amount: about 1 × 10 15 cm −2 .
 そして、シリコンウエハ40Wの貫通孔46の壁面のPD素子12上に、フィルタ14がCVD法により、形成される。 Then, the filter 14 is formed by the CVD method on the PD element 12 on the wall surface of the through hole 46 of the silicon wafer 40W.
 別途、配線基板部30となる導電性(N型)のシリコンウエハ30Wが準備される。シリコンウエハ30Wには、図示していないが、酸化膜等の絶縁膜が形成された後、PD素子12からの検出信号を送信するための配線51、52、51BおよびLED15A、15Bに駆動信号を供給するための配線53、54が、スパッタ法または蒸着法等により形成される。 Separately, a conductive (N-type) silicon wafer 30 </ b> W to be the wiring board unit 30 is prepared. Although an insulating film such as an oxide film is formed on the silicon wafer 30W, drive signals are sent to the wirings 51, 52, 51B and the LEDs 15A, 15B for transmitting the detection signals from the PD element 12. Wirings 53 and 54 for supply are formed by sputtering or vapor deposition.
 図6Cに示すように、シリコンウエハ40Wが上下反転されて、シリコンウエハ40Wの主面20SBが接着層13を介してシリコンウエハ30Wと接合される。 As shown in FIG. 6C, the silicon wafer 40W is turned upside down, and the main surface 20SB of the silicon wafer 40W is bonded to the silicon wafer 30W through the adhesive layer 13.
 図6Dに示すように、2枚のウエハが接合された接合ウエハ20Wでは、枠状基板部40の貫通孔46は底面のある凹部23となる。次に接合ウエハ20Wの凹部23A、23Bのそれぞれの底面に、LED15A、15Bが配設される。LED15の配設には、光学的に透明なアクリル樹脂もしくはシリコーン樹脂などを使用した接着法、または、フリップチップボンディング法などの各種接合法などの方法が使用可能である。 As shown in FIG. 6D, in the bonded wafer 20W in which two wafers are bonded, the through hole 46 of the frame-shaped substrate portion 40 becomes a recess 23 having a bottom surface. Next, LEDs 15A and 15B are disposed on the bottom surfaces of the recesses 23A and 23B of the bonded wafer 20W. For the arrangement of the LED 15, a bonding method using an optically transparent acrylic resin or silicone resin, or various bonding methods such as a flip chip bonding method can be used.
 そして、図6Eに示すように、接合ウエハ20Wの凹部23A、23Bのそれぞれの内部に、インジケータ17A、17Bが配設される。 And as shown to FIG. 6E, the indicator 17A, 17B is arrange | positioned inside each of the recessed parts 23A, 23B of the bonded wafer 20W.
 次に、遮光層18がインジケータ17A、17B上に形成されセンサ基板10Wが完成する。遮光層18には、サブミクロンサイズのポア構造からなる、金属、セラミック等の無機薄膜または、ポリイミドもしくはポリウレタン等の有機ポリマーの基材にカーボンブラックが混入されたハイドロゲル類とのコンポジット構造、または、セルロース類もしくはポリアクリルアミド等のアナライト透過性ポリマーにカーボンブラックを混入した樹脂、または、それらを積層化した樹脂等を用いる。 Next, the light shielding layer 18 is formed on the indicators 17A and 17B, and the sensor substrate 10W is completed. The light shielding layer 18 has a submicron pore structure, an inorganic thin film such as metal or ceramic, or a composite structure with hydrogels in which carbon black is mixed in a base material of organic polymer such as polyimide or polyurethane, or Further, a resin obtained by mixing carbon black into an analyte-permeable polymer such as celluloses or polyacrylamide, or a resin obtained by laminating them is used.
 センサ基板10Wが個片化されることにより、多数のセンサ部10が一括して作製される。そして、センサ部10が、別途作製された、コネクタ部8から延設された針本体部6の先端部と接合されることで、蛍光センサ4が完成する。 A large number of sensor units 10 are manufactured at once by separating the sensor substrate 10W into individual pieces. And the fluorescence sensor 4 is completed by joining the sensor part 10 with the front-end | tip part of the needle | hook main-body part 6 extended from the connector part 8 produced separately.
 蛍光センサの製造方法としては、これに限られるものではなく、個片化された配線基板部30と、個片化された枠状基板部40とを接合した後に、凹部23にLED15等を配設する等の方法を用いてもよい。 The manufacturing method of the fluorescent sensor is not limited to this, and the LED 15 and the like are arranged in the recess 23 after joining the separated wiring board part 30 and the separated frame-like board part 40. A method such as setting may be used.
 また、配線基板部30の延設部が針部7の針本体部6を構成するように第1のシリコンウエハを加工してもよいし、別途作製した針本体部6と、蛍光センサ4を有する針先端部5とを接合して針部7を構成してもよい。 Further, the first silicon wafer may be processed so that the extended portion of the wiring board portion 30 constitutes the needle main body portion 6 of the needle portion 7, or the separately prepared needle main body portion 6 and the fluorescence sensor 4 are provided. You may comprise the needle part 7 by joining the needle front-end | tip part 5 which has.
 以上の説明のように、蛍光センサ4は、ウエハプロセスにより一括大量生産が可能である。このため、蛍光センサ4は、安価に安定した品質を提供できる。 As described above, the fluorescent sensor 4 can be mass-produced by a wafer process. For this reason, the fluorescence sensor 4 can provide stable quality at low cost.
 次に、蛍光センサ4の動作の一例を説明する。 Next, an example of the operation of the fluorescence sensor 4 will be described.
 LED15は、例えば30秒に1回の間隔で中心波長が375nm前後の励起光をパルス発光する。例えば、LED15へのパルス電流は1mA~100mAであり、発光のパルス幅は101ms~100msである。 The LED 15 emits pulsed excitation light having a center wavelength of around 375 nm at intervals of, for example, once every 30 seconds. For example, the pulse current to the LED 15 is 1 mA to 100 mA, and the pulse width of light emission is 101 ms to 100 ms.
 LED15が発生した励起光はインジケータ17に入射する。インジケータ17は、アナライト9の量に対応した強度の蛍光を発する。なお、アナライト9は遮光層18を通過して、インジケータ17に出入する。 The excitation light generated by the LED 15 enters the indicator 17. The indicator 17 emits fluorescence having an intensity corresponding to the amount of the analyte 9. The analyte 9 passes through the light shielding layer 18 and enters and exits the indicator 17.
 インジケータ17が発生した蛍光の一部は、フィルタ14を介して、PD素子12に入射する。そして蛍光は、PD素子12において光電変換され光発生電荷を生じることで、検出信号として出力される。なお、LED15が発生する励起光も一部は、凹部23の壁面に入射するが、フィルタ14の作用によりPD素子12へは殆ど入射しない。 A part of the fluorescence generated by the indicator 17 enters the PD element 12 through the filter 14. Fluorescence is photoelectrically converted in the PD element 12 to generate photogenerated charges, which are output as detection signals. Part of the excitation light generated by the LED 15 is incident on the wall surface of the recess 23, but hardly enters the PD element 12 due to the action of the filter 14.
 蛍光センサ4では、本体部2の演算部2Cが検出信号、すなわち、PD素子12からの光発生電荷に起因する電流または蓄積した光発生電荷に起因する電圧をもとに演算処理を行い、アナライト量を算出する。 In the fluorescence sensor 4, the calculation unit 2C of the main body 2 performs calculation processing based on the detection signal, that is, the current caused by the photogenerated charge from the PD element 12 or the voltage caused by the accumulated photogenerated charge. Calculate the amount of light.
 ここで、蛍光センサ4は、独立してアナライトの測定が可能な2組のセンサ機能部、すなわち、LED15とPD素子12のセットを2組、を有する。このため、蛍光センサ4は各種の駆動方法により特有の効果を奏することができる。 Here, the fluorescence sensor 4 has two sets of sensor function units capable of independently measuring the analyte, that is, two sets of the LED 15 and the PD element 12. For this reason, the fluorescence sensor 4 can exhibit a specific effect by various driving methods.
 例えば、励起光の照射によりインジケータの劣化が進行する場合には、LED15AとLED15Bとを交互に発光させてもよい。信号出力は低下するが、蛍光センサ4はより長時間の測定(長寿命)が可能となる。 For example, when deterioration of the indicator progresses due to irradiation with excitation light, the LED 15A and the LED 15B may be caused to emit light alternately. Although the signal output decreases, the fluorescent sensor 4 can perform measurement for a longer time (longer life).
 また、一方のセンサ機能部(LED15またはPD素子12等)が故障しても他方が正常に動作していれば測定を継続できるため、蛍光センサ4は信頼性が向上する。また、通常は、一方のセンサ機能部を用いて測定を行い、他方をバックアップ用としてもよい。 In addition, even if one sensor function unit (LED 15 or PD element 12 or the like) fails, the measurement can be continued if the other is operating normally, and thus the fluorescence sensor 4 is improved in reliability. Further, usually, measurement is performed using one sensor function unit, and the other may be used for backup.
 さらに、LED15Aに照射する積算光量とLED15Bに照射する積算光量とを変えることで、インジケータ17Aとインジケータ17Bを異なる劣化状態としてもよい。劣化による蛍光光量減少を補正することが可能となるため、蛍光センサ4はより高精度となる。 Further, the indicator 17A and the indicator 17B may be in different deterioration states by changing the integrated light amount irradiated to the LED 15A and the integrated light amount irradiated to the LED 15B. Since it is possible to correct a decrease in the amount of fluorescent light due to deterioration, the fluorescent sensor 4 becomes more accurate.
 以上の説明のように、2組のセンサ機能部を有する蛍光センサ4は、目的に応じて制御方法を選択することにより、高出力、高信頼性、長寿命、高精度等の効果を有する。 As described above, the fluorescent sensor 4 having two sets of sensor function units has effects such as high output, high reliability, long life, and high accuracy by selecting a control method according to the purpose.
<第2実施形態>
 次に、第2実施形態の蛍光センサ4Aについて説明する。蛍光センサ4Aは第1実施形態の蛍光センサ4と類似しているため同じ構成要素には同じ符号を付し説明は省略する。
<Second Embodiment>
Next, the fluorescence sensor 4A of the second embodiment will be described. Since the fluorescence sensor 4A is similar to the fluorescence sensor 4 of the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
 図7に示すように、第2実施形態の蛍光センサ4Aでは、センサ部10Aは、枠状基板部40Aと、1個のLED15Lが実装された配線基板部30Aとが接合されて基板部20Aを構成している。すなわち、2つの凹部23A、23Bに充填された2つのインジケータ17A、17Bに、1個のLED15Lが下方から励起光を照射する。 As shown in FIG. 7, in the fluorescent sensor 4A of the second embodiment, the sensor unit 10A includes a frame-shaped substrate unit 40A and a wiring substrate unit 30A on which one LED 15L is mounted to join the substrate unit 20A. It is composed. That is, one LED 15L irradiates excitation light from below to the two indicators 17A and 17B filled in the two recesses 23A and 23B.
 なお、図7に示す蛍光センサ4Aでは、PD素子12AとPD素子12Bとは接続されており、共通の配線51、52を介して検出信号を出力する。 In the fluorescent sensor 4A shown in FIG. 7, the PD element 12A and the PD element 12B are connected, and a detection signal is output via the common wirings 51 and 52.
 蛍光センサ4Aは、1個のLED15Lを2つのインジケータ17A、17Bの共通の励起光源としているため構造が簡単である。 The fluorescent sensor 4A has a simple structure because one LED 15L is used as a common excitation light source for the two indicators 17A and 17B.
<第3実施形態>
 次に、第3実施形態の蛍光センサ4Bについて説明する。蛍光センサ4Bは蛍光センサ4、4Aと類似しているため同じ構成要素には同じ符号を付し説明は省略する。
<Third Embodiment>
Next, the fluorescence sensor 4B of the third embodiment will be described. Since the fluorescence sensor 4B is similar to the fluorescence sensors 4 and 4A, the same components are denoted by the same reference numerals and description thereof is omitted.
 図8に示すように、第3実施形態の蛍光センサ4Bでは、センサ部10Bの基板部20Bは、貫通孔46の開口のうち、遮光層18に覆われた開口と反対側の開口の直下領域を覆うように1個のLED15Lが、枠状基板部40Bと接合されて構成されている。 As shown in FIG. 8, in the fluorescent sensor 4 </ b> B of the third embodiment, the substrate portion 20 </ b> B of the sensor portion 10 </ b> B is a region directly below the opening on the side opposite to the opening covered with the light shielding layer 18. One LED 15L is joined to the frame-shaped substrate portion 40B so as to cover the frame.
 すなわち、LED15Lは、2つの貫通孔46A、46Bの主面20SB側の開口の直下領域を覆っている。言い換えれば、貫通孔46A、46Bの底面はLED15Lの上面により構成されている。なお貫通孔46A、46Bの底面は、透明な接着層13であってもよい。 That is, the LED 15L covers the region immediately below the opening on the main surface 20SB side of the two through holes 46A and 46B. In other words, the bottom surfaces of the through holes 46A and 46B are constituted by the upper surface of the LED 15L. The bottom surfaces of the through holes 46A and 46B may be the transparent adhesive layer 13.
 そして、PD素子12A、12BおよびLED15Lと接続された配線を構成する配線層50が枠状基板部40Bに配設されている。 And the wiring layer 50 which comprises the wiring connected with PD element 12A, 12B and LED15L is arrange | positioned in the frame-shaped board | substrate part 40B.
 LED15Lの底面(下面)および側面を覆うように配設された漏光防止層19は、底面および側面から出射される励起光、および、枠状基板部40Bの第2の主面20SBで反射した励起光が外部に漏光するのを防止する。すなわち、漏光防止層19は遮光層18と類似した機能を有するが、アナライト透過性は必要ない。 The light leakage prevention layer 19 disposed so as to cover the bottom surface (lower surface) and the side surface of the LED 15L is excited by the excitation light emitted from the bottom surface and the side surface and the excitation reflected by the second main surface 20SB of the frame-shaped substrate portion 40B. Prevent light from leaking outside. That is, the light leakage prevention layer 19 has a function similar to that of the light shielding layer 18, but does not require analyte permeability.
 以上の説明のように、蛍光センサ4Bは、蛍光センサ4、4Aの効果を有し、さらに構成が簡単なため、より製造が容易である。 As described above, the fluorescence sensor 4B has the effects of the fluorescence sensors 4 and 4A, and further has a simple configuration, so that it is easier to manufacture.
<第4実施形態>
 次に、第4実施形態の蛍光センサ4Cについて説明する。蛍光センサ4Cは蛍光センサ4と類似しているため同じ構成要素には同じ符号を付し説明は省略する。
<Fourth embodiment>
Next, the fluorescence sensor 4C of the fourth embodiment will be described. Since the fluorescence sensor 4C is similar to the fluorescence sensor 4, the same components are denoted by the same reference numerals and description thereof is omitted.
 図9に示すように、蛍光センサ4Cでは、センサ部10Cを構成する基板部20Cが半導体であるシリコンにより一体的に作製されている。すなわち、基板部20Cの凹部23A、23Bは、エッチング法により形成された凹部である。 As shown in FIG. 9, in the fluorescence sensor 4C, the substrate portion 20C constituting the sensor portion 10C is integrally made of silicon which is a semiconductor. That is, the recesses 23A and 23B of the substrate portion 20C are recesses formed by an etching method.
 エッチング法としては、水酸化テトラメチルアンモニウム(TMAH)水溶液、水酸化カリウム(KOH)水溶液などを用いるウエットエッチング法が望ましいが、反応性イオンエッチング(RIE)、ケミカルドライエッチング(CDE)などのドライエッチング法も用いることができる
 例えば、シリコンとしてシリコン(100)面を主面とする基板を用いた場合には、(111)面のエッチング速度が(100)面に比べて遅い異方性エッチングとなるため、の凹部23A、23Bの壁面は(111)面となり、(100)面との角度θ1は54.74度となる。すなわち、壁面はテーパー形状である。
As an etching method, a wet etching method using a tetramethylammonium hydroxide (TMAH) aqueous solution, a potassium hydroxide (KOH) aqueous solution, or the like is preferable, but dry etching such as reactive ion etching (RIE) or chemical dry etching (CDE) is used. For example, when a substrate having a silicon (100) surface as a main surface is used as silicon, anisotropic etching with a slower etching rate of the (111) surface than the (100) surface is performed. Therefore, the wall surfaces of the recesses 23A and 23B are the (111) plane, and the angle θ1 with the (100) plane is 54.74 degrees. That is, the wall surface is tapered.
 そして、凹部23A、23Bの壁面に、それぞれPD素子12A、12Bが形成される。壁面テーパーのある凹部23は、壁面が垂直な凹部に比べてPD素子を形成する面積が広いだけでなく、PD素子12の形成が容易である。 PD elements 12A and 12B are formed on the wall surfaces of the recesses 23A and 23B, respectively. The concave portion 23 having the wall surface taper not only has a larger area for forming the PD element than the concave portion having a vertical wall surface, but also facilitates the formation of the PD element 12.
 なお、PD素子12A、13A、LED15A、15Bは、貫通配線を介して第2の主面20SBの配線層50と接続されている。 The PD elements 12A and 13A and the LEDs 15A and 15B are connected to the wiring layer 50 of the second main surface 20SB through the through wiring.
 以上の説明のように、蛍光センサ4Cは、蛍光センサ4の効果を有し、さらに構成が簡単なため、より製造が容易である。 As described above, the fluorescence sensor 4C has the effects of the fluorescence sensor 4 and is simpler in configuration, and therefore easier to manufacture.
<変形例1>
 図10Aに示すように、実施形態1の蛍光センサ4~4Cでは、センサ部10~10Cは2個の平面視(断面形状)が矩形の凹部23A、23Bを有していたが、凹部23の数、すなわち、インジケータ17の数は3個以上であってもよい。例えば、図10Bに示す変形例の蛍光センサ4D(センサ部10D)のように4個の凹部23A~23Dを有していてもよい。また、図10Cに示す蛍光センサ4D1(センサ部10D1)のように複数の凹部23の断面形状は6角形等の多角形もしくは楕円形等でもよいし、または、それらを組み合わせたような各種の形状でもよい。また図10Dに示す蛍光センサ4D2(センサ部10D2)のように、形状および大きさが異なる凹部23を組み合わせてもよい。
<Modification 1>
As shown in FIG. 10A, in the fluorescent sensors 4 to 4C of the first embodiment, the sensor units 10 to 10C have the two concave portions 23A and 23B that are rectangular in a plan view (cross-sectional shape). The number, that is, the number of indicators 17 may be three or more. For example, it may have four recesses 23A to 23D like a fluorescent sensor 4D (sensor unit 10D) of the modification shown in FIG. 10B. Further, like the fluorescent sensor 4D1 (sensor unit 10D1) shown in FIG. 10C, the cross-sectional shape of the plurality of recesses 23 may be a polygon such as a hexagon or an ellipse, or various shapes such as a combination thereof. But you can. Moreover, you may combine the recessed part 23 from which a shape and magnitude | size differ like fluorescence sensor 4D2 (sensor part 10D2) shown to FIG. 10D.
 同一面積のセンサ部であっても凹部23の数が多いと壁面の面積が増加するため、蛍光センサは検出感度が高くなる、
 ここで、LED15が発生する励起光の強度には面内分布がある。高強度の励起光が照射される領域のインジケータ17が発光する蛍光強度は高い。しかし、高強度の励起光が照射されると、インジケータ17の劣化が促進されるおそれがある。これに対して入射する励起光の強度が低い領域のインジケータ17が発光する蛍光強度は低い。すなわち、インジケータ17に入射する励起光の強度に大きな面内分布があると、蛍光センサの検出感度が低下したり、経時劣化が加速したりするおそれがある。
Even if the sensor portions have the same area, if the number of the recesses 23 is large, the area of the wall surface increases. Therefore, the fluorescence sensor has high detection sensitivity.
Here, the intensity of the excitation light generated by the LED 15 has an in-plane distribution. The fluorescence intensity emitted from the indicator 17 in the region irradiated with the high-intensity excitation light is high. However, when high-intensity excitation light is irradiated, deterioration of the indicator 17 may be promoted. On the other hand, the fluorescence intensity emitted by the indicator 17 in the region where the intensity of the incident excitation light is low is low. That is, if the intensity of the excitation light incident on the indicator 17 has a large in-plane distribution, the detection sensitivity of the fluorescent sensor may be reduced, or deterioration with time may be accelerated.
 しかし、蛍光センサ4D2のように、複数の凹部23の開口面積、形状および配置等により、インジケータ17に入射する励起光の強度分布を平均化することもできる。 However, like the fluorescence sensor 4D2, the intensity distribution of the excitation light incident on the indicator 17 can be averaged by the opening area, shape, arrangement, and the like of the plurality of recesses 23.
 変形例1の蛍光センサ4D~4D2は、蛍光センサ4~4Cが有する効果に加えて、さらに、より検出感度が高いだけでなく、インジケータ17の劣化進行を抑制することもできる。 Fluorescence sensors 4D to 4D2 of Modification 1 can not only have higher detection sensitivity, but also suppress the deterioration of indicator 17 in addition to the effects of fluorescence sensors 4 to 4C.
<変形例2~4>
 すでに説明した蛍光センサ4~4D2では、複数のインジケータ17および複数のPD素子12が同じ種類のアナライト9、例えばグルコースを測定した。すなわち、蛍光センサ4~4D2は、蛍光色素の選択によって、酸素センサ、グルコースセンサ、pHセンサ、免疫センサ、または微生物センサなど、多様な用途に対応している。しかし、測定できるアナライト9は1種類であった。
<Modifications 2 to 4>
In the fluorescence sensors 4 to 4D2 already described, the plurality of indicators 17 and the plurality of PD elements 12 measure the same type of analyte 9, for example, glucose. That is, the fluorescence sensors 4 to 4D2 correspond to various applications such as an oxygen sensor, a glucose sensor, a pH sensor, an immunosensor, or a microorganism sensor, depending on the selection of the fluorescent dye. However, only one type of analyte 9 can be measured.
 これに対して、図11に示す変形例2の蛍光センサ4Eのセンサ部10Eは複数種類のアナライトを測定可能なマルチセンシング型である。蛍光センサ4Eでは、インジケータが、第1のアナライト9Aの量に応じた蛍光を発生する第1のインジケータ17A1と、第2のアナライト9Bの量に応じた蛍光を発生する第2のインジケータ17B1と、からなる。 On the other hand, the sensor unit 10E of the fluorescence sensor 4E of the modification 2 shown in FIG. 11 is a multi-sensing type capable of measuring a plurality of types of analytes. In the fluorescence sensor 4E, the indicator generates a first indicator 17A1 that generates fluorescence according to the amount of the first analyte 9A, and a second indicator 17B1 that generates fluorescence according to the amount of the second analyte 9B. And consist of
 例えば、凹部23Aに充填する第1のインジケータ17Aが、第1のアナライト9Aであるグルコースの量に応じた第1の波長の蛍光を発生する蛍光体81Aを含み、凹部23Bに充填する第2のインジケータ17Bが、第2のアナライト9Bである水素イオン濃度に応じた第2の波長の蛍光を発生する蛍光体81Bを含む。蛍光体81Aはフェニルボロン酸誘導体を含み、蛍光体81Bは、例えば、CdSe/Znナノ微粒子を含む。蛍光体81A及び蛍光体81Bは共に375nmの励起光を受光すると、アナライトであるグルコース濃度または水素イオン濃度に応じた蛍光を発生する。 For example, the first indicator 17A that fills the recess 23A includes the phosphor 81A that generates fluorescence of the first wavelength according to the amount of glucose that is the first analyte 9A, and the second indicator that fills the recess 23B. The indicator 17B includes a phosphor 81B that generates fluorescence of the second wavelength corresponding to the hydrogen ion concentration, which is the second analyte 9B. The phosphor 81A includes a phenylboronic acid derivative, and the phosphor 81B includes, for example, CdSe / Zn nanoparticles. When both the phosphor 81A and the phosphor 81B receive the excitation light of 375 nm, the phosphor 81A and the phosphor 81B generate fluorescence corresponding to the glucose concentration or the hydrogen ion concentration as the analyte.
 なお、演算部2Cが、第2のインジケータ17Bが測定した水素イオン濃度(pH)等に応じて、第1のインジケータ17Aが測定したグルコース濃度を補正してもよい。なお、第1のインジケータ17Aと第2のインジケータ17Bとが同じ蛍光体を異なる濃度で含んでいる場合も、測定したアナライトの濃度補正が可能である。 The computing unit 2C may correct the glucose concentration measured by the first indicator 17A according to the hydrogen ion concentration (pH) measured by the second indicator 17B. Even when the first indicator 17A and the second indicator 17B contain the same phosphor at different concentrations, the concentration of the measured analyte can be corrected.
 測定するアナライトに応じて、インジケータ17の種類は選択される。さらに、3個以上の凹部のある蛍光センサが、それぞれの凹部に異なるインジケータを有していてもよい。インジケータとしては、例えば、カリウムイオンを測定する場合には蛍光残基を有するクラウンエーテル誘導体などを含む蛍光体(蛍光波長:500nm)を用いることができ、酸素を測定する場合には、トリス(4,7-ジフェニル-1,10-フェナントロリン)過塩素酸ルテニウム(II)分子を含む蛍光体(蛍光波長:530nm)を用いることができる。 The type of indicator 17 is selected according to the analyte to be measured. Further, a fluorescent sensor having three or more recesses may have a different indicator in each recess. As the indicator, for example, when measuring potassium ion, a phosphor (fluorescence wavelength: 500 nm) including a crown ether derivative having a fluorescent residue can be used, and when measuring oxygen, Tris (4 , 7-diphenyl-1,10-phenanthroline) a phosphor containing a ruthenium (II) perchlorate molecule (fluorescence wavelength: 530 nm) can be used.
 マルチセンシング型の蛍光センサ4Eは蛍光センサ4等の効果を有し、さらに、1つのセンサで複数のアナライトを測定できるため、より環境や生体情報を正確に計測可能である。さらに測定したアナライト濃度の補正が可能であるため、より高精度である。 The multi-sensing type fluorescence sensor 4E has the effect of the fluorescence sensor 4 and the like, and moreover, since a plurality of analytes can be measured with one sensor, the environment and biological information can be measured more accurately. Furthermore, since the measured analyte concentration can be corrected, the accuracy is higher.
 測定するアナライトの種類、すなわちインジケータの種類により、照射する励起光の波長を変えてもよい。すなわち、第1のインジケータ17Aに第1の波長の励起光E1を照射し、第2のインジケータ17Bには第2の波長の励起光E2が照射されてもよい。例えば、フェニルボロン酸誘導体を蛍光体として含む第1のインジケータ17Aには波長375nmの第1の励起光E1を照射し、GFP(green fluorescent protein)誘導体を蛍光体として含む第2のインジケータ17Bには波長490nmの第2の励起光E2を照射してもよい。 The wavelength of the excitation light to be irradiated may be changed depending on the type of analyte to be measured, that is, the type of indicator. That is, the first indicator 17A may be irradiated with the excitation light E1 having the first wavelength, and the second indicator 17B may be irradiated with the excitation light E2 having the second wavelength. For example, the first indicator 17A including a phenylboronic acid derivative as a phosphor is irradiated with a first excitation light E1 having a wavelength of 375 nm, and the second indicator 17B including a GFP (green fluorescent protein) derivative as a phosphor. You may irradiate the 2nd excitation light E2 of wavelength 490nm.
 異なる波長の励起光を照射するためには、蛍光センサ4Eのセンサ部10Eは、第1の波長の励起光E1を発生する第1の発光素子であるLED15A1と、第2の波長の励起光E2を発生する第2の発光素子であるLED15B1とを有していればよい。 In order to irradiate excitation light of different wavelengths, the sensor unit 10E of the fluorescence sensor 4E includes an LED 15A1 that is a first light emitting element that generates excitation light E1 of the first wavelength, and excitation light E2 of the second wavelength. LED15B1 which is the 2nd light emitting element which generate | occur | produces.
 または、図12に示す変形例3の蛍光センサ4Fのセンサ部10Fのように波長変換フィルタ80を用いてもよい。例えば、LED15Lが発生する波長375nmの第1の波長の励起光E1を、第1のインジケータ17Aには、そのまま照射し、第2のインジケータ17BにはLED15Lが発生する励起光E1を波長変換フィルタ80により第2の波長である460nmの励起光E2に変換して照射する。 Alternatively, the wavelength conversion filter 80 may be used as in the sensor unit 10F of the fluorescence sensor 4F of Modification 3 shown in FIG. For example, the wavelength conversion filter 80 emits the excitation light E1 of the first wavelength of 375 nm generated by the LED 15L to the first indicator 17A as it is, and the excitation light E1 generated by the LED 15L to the second indicator 17B. Is converted into excitation light E2 having a second wavelength of 460 nm and irradiated.
 また、図13に示す変形例4の蛍光センサ4Gのセンサ部10Gのようにインジケータ17A、17Bが、第1のアナライト9Aの量に応じた第1の蛍光F1を発生する第1の蛍光体81Aと第2のアナライト9Bの量に応じた第2の蛍光F2を発生する第2の蛍光体81Bとを含む、同じものであってもよい。 Further, as in the sensor unit 10G of the fluorescence sensor 4G of the modification 4 shown in FIG. 13, the indicators 17A and 17B generate the first phosphor F1 that generates the first fluorescence F1 according to the amount of the first analyte 9A. 81A and the same thing including the 2nd fluorescent substance 81B which generate | occur | produces the 2nd fluorescence F2 according to the quantity of the 2nd analyte 9B may be sufficient.
 この場合には、第1の蛍光体81Aが発生する第1の蛍光F1を選択的に透過する第1のフィルタ14A1に覆われた第1のPD素子12Aと、第2の蛍光体81Bが発生する第2の蛍光F2を選択的に透過する第2のフィルタ14B1に覆われた第2のPD素子12Bと、を有していれば、マルチセンシングが可能である。 In this case, the first PD element 12A covered by the first filter 14A1 that selectively transmits the first fluorescence F1 generated by the first phosphor 81A and the second phosphor 81B are generated. If it has 2nd PD element 12B covered with 2nd filter 14B1 which permeate | transmits the 2nd fluorescence F2 to perform selectively, multi sensing is possible.
 本発明は、上述した実施形態等に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。 The present invention is not limited to the above-described embodiments and the like, and various changes and modifications can be made without departing from the scope of the present invention.
 本出願は、2012年4月27日に日本国に出願された特願2012-103605号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。 This application is filed on the basis of a priority claim based on Japanese Patent Application No. 2012-103605 filed in Japan on April 27, 2012. The above disclosure includes the present specification, claims, It shall be cited in the drawing.

Claims (8)

  1.  主面に複数の凹部が形成されており、それぞれの凹部の壁面に蛍光を受光し検出信号を出力する光電変換素子が形成されている基板部と、
     前記光電変換素子を覆う、励起光を遮断するフィルタと、
     それぞれの前記凹部の内部に配設されている、前記励起光を受光するとアナライト量に応じた前記蛍光を発生するインジケータと、
     前記凹部の開口を覆う、前記インジケータへの外光進入を遮断するが、アナライトは通過する遮光層と、
     前記凹部の底面側から前記インジケータに励起光を照射する発光素子と、を具備することを特徴とする蛍光センサ。
    A plurality of concave portions are formed on the main surface, and a substrate portion on which photoelectric conversion elements that receive fluorescence and output detection signals are formed on the wall surfaces of the respective concave portions,
    A filter that covers the photoelectric conversion element and blocks excitation light;
    An indicator that is arranged inside each of the recesses and generates the fluorescence according to the amount of analyte when receiving the excitation light;
    Covering the opening of the recess, blocking external light entry to the indicator, but the light-shielding layer through which the analyte passes,
    And a light emitting element that irradiates the indicator with excitation light from the bottom surface side of the recess.
  2.  前記複数の凹部の底面に、それぞれ前記発光素子が配設されていることを特徴とする請求項1に記載の蛍光センサ。 The fluorescent sensor according to claim 1, wherein the light emitting elements are respectively disposed on the bottom surfaces of the plurality of recesses.
  3.  前記基板部が、複数の発光素子が主面に配設された第1の基板部と、前記第1の基板部の前記主面と接合された複数の貫通孔が形成されている第2の基板部と、からなること特徴とする請求項2に記載の蛍光センサ。 The substrate part includes a first substrate part in which a plurality of light emitting elements are disposed on a main surface, and a plurality of through holes joined to the main surface of the first substrate part. The fluorescent sensor according to claim 2, further comprising a substrate portion.
  4.  前記基板部の前記複数の凹部が貫通孔であり、前記複数の貫通孔の前記遮光層に覆われた開口と反対側の開口の直下領域を覆うように前記基板部に前記発光素子が接合されていることを特徴とする請求項1に記載の蛍光センサ。 The plurality of concave portions of the substrate portion are through holes, and the light emitting element is bonded to the substrate portion so as to cover a region directly below the opening of the plurality of through holes on the side opposite to the opening covered with the light shielding layer. The fluorescent sensor according to claim 1, wherein:
  5.  前記複数のインジケータが、第1のアナライトの量に応じた第1の蛍光を発生する第1の蛍光体を含む第1のインジケータと、第2のアナライトの量に応じた第2の蛍光を発生する第2の蛍光体を含む第2のインジケータと、からなることを特徴とする請求項1から請求項4のいずれか1項に記載の蛍光センサ。 The plurality of indicators include a first indicator including a first phosphor that generates a first fluorescence according to the amount of the first analyte, and a second fluorescence according to the amount of the second analyte. The fluorescent sensor according to any one of claims 1 to 4, further comprising a second indicator including a second phosphor that generates light.
  6.  前記第1のインジケータに第1の波長の励起光が照射され、前記第2のインジケータに第2の波長の励起光が照射されることを特徴とする請求項5に記載の蛍光センサ。 6. The fluorescence sensor according to claim 5, wherein the first indicator is irradiated with excitation light having a first wavelength, and the second indicator is irradiated with excitation light having a second wavelength.
  7.  前記インジケータが、第1のアナライトの量に応じた第1の蛍光を発生する第1の蛍光体と第2のアナライトの量に応じた第2の蛍光を発生する第2の蛍光体とを含み、
     前記第1の蛍光体が発生する第1の蛍光を透過する第1のフィルタに覆われた第1の光電変換素子と、前記第2の蛍光体が発生する第2の蛍光を透過する第2のフィルタに覆われた第2の光電変換素子と、を有することを特徴とする請求項1から請求項4のいずれか1項に記載の蛍光センサ。
    A first phosphor that generates a first fluorescence according to an amount of the first analyte, and a second phosphor that generates a second fluorescence according to an amount of the second analyte; Including
    The first photoelectric conversion element covered with the first filter that transmits the first fluorescence generated by the first phosphor, and the second that transmits the second fluorescence generated by the second phosphor. The fluorescent sensor according to claim 1, further comprising: a second photoelectric conversion element covered with a filter.
  8.  前記基板部、前記フィルタ、前記インジケータ、前記遮光層および前記発光素子を含むセンサ部を有する針先端部と、体外に配置される本体部の嵌合部と嵌合するコネクタ部と、を具備する、体内のアナライトを計測する針型センサであることを特徴とする請求項1に記載の蛍光センサ。 A needle tip portion having a sensor portion including the substrate portion, the filter, the indicator, the light shielding layer, and the light emitting element; and a connector portion fitted to a fitting portion of a main body portion arranged outside the body. The fluorescent sensor according to claim 1, wherein the fluorescent sensor is a needle-type sensor that measures an analyte in the body.
PCT/JP2013/062368 2012-04-27 2013-04-26 Fluorescence sensor WO2013161991A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012103605 2012-04-27
JP2012-103605 2012-04-27

Publications (1)

Publication Number Publication Date
WO2013161991A1 true WO2013161991A1 (en) 2013-10-31

Family

ID=49483288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062368 WO2013161991A1 (en) 2012-04-27 2013-04-26 Fluorescence sensor

Country Status (1)

Country Link
WO (1) WO2013161991A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11500825A (en) * 1995-02-21 1999-01-19 アーサー・イー・コルヴィン・ジュニアー Optical fluorescence sensor
US20040161853A1 (en) * 2003-02-13 2004-08-19 Zhongping Yang Implantable chemical sensor with rugged optical coupler
WO2010119916A1 (en) * 2009-04-13 2010-10-21 Olympus Corporation Fluorescence sensor, needle-type fluorescence sensor, and method for measuring analyte

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11500825A (en) * 1995-02-21 1999-01-19 アーサー・イー・コルヴィン・ジュニアー Optical fluorescence sensor
US20040161853A1 (en) * 2003-02-13 2004-08-19 Zhongping Yang Implantable chemical sensor with rugged optical coupler
WO2010119916A1 (en) * 2009-04-13 2010-10-21 Olympus Corporation Fluorescence sensor, needle-type fluorescence sensor, and method for measuring analyte

Similar Documents

Publication Publication Date Title
JP5307901B2 (en) Fluorescence sensor, needle-type fluorescence sensor, and analyte measurement method
JP5638343B2 (en) Fluorescent sensor
US20230337951A1 (en) Apparatus and methods for detecting optical signals from implanted sensors
EP1596712B1 (en) Chemical sensor
JPS6398548A (en) Sensor element for measuring substance concentration
JP6087337B2 (en) Fluorescence sensor and sensor system
EP2557415A1 (en) Fluorescence sensor
WO2013161991A1 (en) Fluorescence sensor
JP2015059869A (en) Fluorescence sensor
WO2014045761A1 (en) Fluorescent light sensor
WO2013161990A1 (en) Fluorescent light sensor
WO2014045388A1 (en) Fluorescent sensor
WO2013161989A1 (en) Fluorescence sensor
WO2014045384A1 (en) Fluorescent sensor
WO2014045386A1 (en) Fluorescent sensor
WO2014045762A1 (en) Fluorescent light sensor and sensor system
WO2013094562A1 (en) Fluorescence sensor, sensor system, and fluorescence sensor correction method
JP2016016127A (en) Sensor for living body
WO2014045385A1 (en) Fluorescent sensor
MXPA99010459A (en) Improved fluorescence sensing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13780675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP