WO2013161824A1 - Automatic cad design system, automatic cad design method, and storage medium - Google Patents

Automatic cad design system, automatic cad design method, and storage medium Download PDF

Info

Publication number
WO2013161824A1
WO2013161824A1 PCT/JP2013/061937 JP2013061937W WO2013161824A1 WO 2013161824 A1 WO2013161824 A1 WO 2013161824A1 JP 2013061937 W JP2013061937 W JP 2013061937W WO 2013161824 A1 WO2013161824 A1 WO 2013161824A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
building
information
site
automatic
Prior art date
Application number
PCT/JP2013/061937
Other languages
French (fr)
Japanese (ja)
Inventor
長尾良幸
佐藤昌康
杉山淳
石川健
Original Assignee
株式会社コンピュータシステム研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コンピュータシステム研究所 filed Critical 株式会社コンピュータシステム研究所
Publication of WO2013161824A1 publication Critical patent/WO2013161824A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads

Definitions

  • the present invention relates to an automatic CAD design system, an automatic CAD design method, and an automatic CAD design program. It relates to the design program.
  • the design staff Upon receiving the request, the design staff creates a rough drawing suitable for the candidate site by using drawing software such as CAD. Only after such a rough drawing is completed, the sales staff visits the owner, who is the owner of the candidate site, with the drawing and starts the original sales activities.
  • drawing software such as CAD
  • the conventional sales method requires three stages of work: searching for candidate locations for sales staff, creating drawings for design staff, and sales activities for sales staff.
  • searching for a candidate site by a sales staff basically requires walking, so it is very inefficient and cannot always search for a candidate site.
  • the design of the building to be constructed in the candidate site requires specialized design staff other than the sales staff, which is also inefficient because it is also a work of a plurality of staff.
  • JP 2011-198293 A Japanese Patent Laid-Open No. 11-236770
  • Patent Document 1 since the room layout and internal structure of the building are unknown, it is difficult for the owner candidate to have an image of the actual final building, and further, the actual business profitability It is not suitable for practical cost estimation (feasibility estimation) to judge In other words, 3D display of buildings (2D display, perspective view, etc.) for which practical cost estimation and room allocation have been completed is impossible only after the designer has actually created the drawing. As described above, this conventional technology still lacks functions as a sales activity support system.
  • an object of the present invention is to provide an automatic CAD design system, an automatic CAD design method, and an automatic CAD design program that solve the above-described problems.
  • an automatic CAD design system includes: Site information that defines the site (area, shape, orientation, roadway status, corner lot information, geographical information, etc.) and building type information (eg, studio apartment type, 1K type, 2LDK type, office type, hall) Type, store type, hotel type, composite type including multiple types, etc.) Group definition information including at least a floor area ratio, and individual unit information that defines at least one individual unit associated with each building type information (eg, 1K, 2LDK, conference room, office, reception room, machine room, Storage units for storing elevators, elevator rooms, sewage units, parking equipment units, bicycle parking facility units, stairs, roofs, rooftops, floors, foundations, etc.) Based on the acquired site information, an extraction unit that extracts group specification information applied to the site specified by the site information; Based on the acquired site information, with reference to the extracted group regulation information (building coverage ratio, floor area ratio, oblique line regulation, height restriction, shadow restriction,
  • An automatic CAD design system includes:
  • the site information includes geographical information of the site (use area information, address, latitude / longitude information, direction, direction, etc.) and / or contact information of the site (length of road surface, road in contact with the site) Including width)
  • the extraction unit is Based on the acquired geographical information of the site and / or site information including the road access information of the site, the group specification information applied to the site specified by the site information is extracted. It is characterized by that.
  • the site information was GPS surveyed at several points on the site with a mobile terminal (cell phone, smartphone, etc.) having a GPS function unit, and the geographical information of the site (latitude / longitude altitude, these information were calculated) It is preferable to acquire a site area, a direction, and the like. In that case, it is preferable to improve the positioning accuracy by utilizing not only GPS satellites but also ground GPS base stations and mobile phone base stations. Furthermore, it is preferable to acquire not only the site but also information on the road in contact with the site by GPS surveying that acquires several points on the road.
  • An automatic CAD design system (apparatus) according to still another embodiment of the present invention includes:
  • the individual unit is Includes a central corridor unit (for example, dimension information of the central corridor) and a room unit including at least one room (for example, an individual residence such as 1K, 2LDK, and 3LDK, an office, a hotel room, a conference room, etc.)
  • the automatic design unit When the area of the site specified by the site information is less than a predetermined value, Create a building outer peripheral shape based on the site shape (or space where it can exist), determine the planar center of gravity of the building, place the central corridor unit through the center of gravity, and place the room unit in the central corridor Automatically designing the building by arranging it sequentially along at least a part of both sides in the longitudinal direction of the unit (preferably so as to enter the existence space); It is characterized by that.
  • An automatic CAD design system (apparatus) according to still another embodiment of the present invention includes: The individual unit is Including a balcony unit (for example, basic shape and dimension information of the balcony) and a room unit (for example, individual residences such as 1K, 2LDK, 3LDK, Totsubo office, 20 tsubo office, etc.)
  • the automatic design unit When the area of the site stipulated by the site information is equal to or greater than a predetermined value, at least one side of the site (preferably a side facing a neighboring area with a good view such as a roadside, a park or a vacant land, or the south
  • the balcony unit is arranged along one side of the direction, and the room unit is sequentially arranged along at least a part of one side inside the site in the longitudinal direction of the balcony unit to automatically design the building (preferably So that it can enter the possible space) It is characterized by that.
  • An automatic CAD design system (apparatus) according to still another embodiment of the present invention includes: The acquisition unit Based on the geographical information of the site specified in the site information, further obtaining group specification information applied to the site from an external server, The extraction unit is Extracting the acquired group definition information as group definition information applied to the site; It is characterized by that.
  • An automatic CAD design system (apparatus) according to still another embodiment of the present invention includes: The individual unit is An evacuation staircase unit, a room unit including at least one room and an entrance, and a passage unit connecting the entrance of the room unit and the entrance of another room unit,
  • the storage unit The distance from the entrance of the room unit to the evacuation staircase unit via the passage unit (for example, within 30 m, within 40 m, or within 50 m at semi-refractory hotels), or the evacuation staircase unit specified according to the building conditions
  • Single unit information including evacuation route setting information that defines the number (for example, two or more hotels, two or more apartment buildings, two or more, the number set according to the number of floors, total floor area, etc.)
  • the automatic design unit The distance from each entrance of each room unit of the automatically designed building to the evacuation staircase unit (emergency staircase) as an evacuation route satisfies the distance specified by the evacuation route setting information and / or the building Arranging at least one emergency stair unit in the building so as to satisfy the number of evacuation stair unit
  • An automatic CAD design system (apparatus) according to still another embodiment of the present invention includes: The storage unit Further storing a plurality of patterned CAD information for the first floor of a building including a plurality of individual units,
  • the automatic CAD design system is A first input receiving unit that receives designation of one piece of patterned CAD information selected from the plurality of pieces of patterned CAD information;
  • the automatic design unit Based on the received patterned CAD information, referring to at least a part of the extracted group definition information, a hierarchy including at least a part of the patterned CAD information is sequentially stacked to automatically build a building in the existence space. design, It is characterized by that.
  • An automatic CAD design system (apparatus) according to still another embodiment of the present invention includes: The storage unit Unit unit price information for each individual unit specified in the individual unit information and / or building unit price information (for example, basic unit price information for basic construction, three-story basic unit price information, five-story basic unit price information, accompanying Store the equipment costs, equipment construction costs, etc.)
  • the automatic CAD design system is A building including a plurality of individual units is referred to the unit unit price information and / or the building unit price information based on the individual unit included in the building that is automatically designed in the existing space, and the building An estimate calculation unit for calculating the construction cost of It is characterized by that.
  • An automatic CAD design system (apparatus) according to still another embodiment of the present invention includes: The storage unit Further storing building grade information defining a plurality of building grades having different costs and / or specifications, unit unit price information for each individual unit defined by the building grade, and / or building unit price information;
  • the automatic CAD design system is A second input receiving unit that receives an input of one building grade selected from the plurality of building grades;
  • the automatic design unit Calculate the building cost of the building based on the individual units included in the automatically designed building based on the accepted building grade input. It is characterized by that.
  • An automatic CAD design system (apparatus) according to still another embodiment of the present invention includes: The storage unit Building grade information defining multiple building grades with different costs and / or specifications; Unit unit price information for each individual unit specified for each building grade and / or building unit price information is further stored, and the automatic CAD design system includes: A second input receiving unit that receives an input of one building grade selected from the plurality of building grades; The automatic design unit Based on the accepted building grade input, execute the automatic design of the building, and calculate the building cost of the building based on the individual units included in the building. It is characterized by that.
  • An automatic CAD design system includes: The storage unit Further store rental unit price information for each individual unit and / or region specified in the individual unit information, The acquisition unit Get additional down payment for construction costs, loan interest rates and at least part of the region or address, The estimate calculation unit Rent standard unit price for which at least one of the individual units included in the building is determined based on at least a part of the acquired area or address based on the calculated construction cost, the acquired down payment and the loan interest rate. Calculate a time-series balance plan when renting at the rent specified in the information (finally output as a balance sheet) It is characterized by that.
  • An automatic CAD design system (apparatus) according to still another embodiment of the present invention includes:
  • the storage unit Stores feasibility rule information that defines feasibility rules for evaluating the profitability of rental business based on income and expenditure plans,
  • the estimate calculation unit Evaluate the business profitability of the income and expenditure plan calculated by the estimate calculation unit based on the feasibility rule information (for example, business success probability 80% (business failure risk is 20%), 95% success probability, etc. Risk assessment of business success), It is characterized by that.
  • the solution of the present invention has been described as a system (apparatus).
  • the present invention can also be realized as a method, a program, and a computer-readable storage medium recording the program. It should be understood that these are included in the scope of the present invention.
  • Each step of the following methods and programs uses an arithmetic processing unit (processor) such as a CPU or DSP as necessary for data processing.
  • Input data, processed / generated data, etc. Is stored in a storage device such as a magnetic tape, HDD, or memory.
  • a program according to another aspect of the present invention is realized as an automatic CAD design program that causes a computer to function as the automatic CAD design system of each aspect described above.
  • the storage medium by another aspect of this invention is implement
  • an automatic CAD design method using a computer in which the present invention is implemented as a method
  • Site information that defines the site (area, shape, orientation, roadway status, corner lot information, geographical information, etc.) and building type information (eg, studio apartment type, 1K type, 2LDK type, office type, hall) Type, store type, hotel type, composite type including multiple types, etc.)
  • Group definition information including at least a floor area ratio, and individual unit information that defines at least one individual unit associated with each building type information (eg, 1K, 2LDK, conference room, office, reception room, machine room, Storage steps for storing elevators, elevator rooms, sewage units, parking equipment units, bicycle parking facility units, stairs, roofs, rooftops, floors, foundations, etc.)
  • an extraction step for extracting group definition information applied to the site specified by the site information
  • Based on the acquired site information Based on the acquired site information, with reference to the extracted group regulation information (building coverage ratio, floor area ratio, oblique line regulation, height restriction, shadow
  • An automatic CAD design method includes:
  • the site information includes geographical information of the site (use area information, address, latitude / longitude information, direction, direction, etc.) and / or contact information of the site (length of road surface, road in contact with the site) Including width)
  • the extraction step comprises: Based on the acquired geographical information of the site and / or site information including the road access information of the site, the group specification information applied to the site specified by the site information is extracted. It is characterized by that.
  • An automatic CAD design method includes:
  • the individual unit is Includes a central corridor unit (for example, dimension information of the central corridor) and a room unit including at least one room (for example, an individual residence such as 1K, 2LDK, and 3LDK, an office, a hotel room, a conference room, etc.)
  • the automatic design step includes When the area of the site stipulated by the site information is less than a predetermined numerical value, a building outer peripheral shape is created based on the shape of the site (or a space that can exist), and the planar center of gravity of the building is obtained,
  • the interior corridor unit is arranged so as to pass through the center of gravity, and the room unit is sequentially arranged along at least a part of both sides in the longitudinal direction of the interior corridor unit to automatically design the building (preferably the existence space) ) It is characterized by that.
  • An automatic CAD design method includes: The individual unit is Including a balcony unit (for example, basic shape and dimension information of the balcony) and a room unit (for example, individual residences such as 1K, 2LDK, 3LDK, Totsubo office, 20 tsubo office, etc.)
  • the automatic design step includes When the area of the site stipulated by the site information is equal to or greater than a predetermined value, the balcony unit is arranged along at least one side of the site (preferably a side of a roadway or a side facing south), The room unit is sequentially arranged along at least a part of one side inside the longitudinal site of the balcony unit to automatically design the building (preferably so as to enter the existence space). It is characterized by that.
  • An automatic CAD design method includes: The obtaining step comprises Based on the geographical information of the site specified in the site information, further obtaining group specification information applied to the site from an external server, The extraction step comprises: Extracting the acquired group definition information as group definition information applied to the site; It is characterized by that.
  • An automatic CAD design method includes:
  • the individual unit is An evacuation staircase unit, a room unit including at least one room and an entrance, and a passage unit connecting the entrance of the room unit and the entrance of another room unit
  • the storing step includes The distance from the entrance of the room unit to the evacuation staircase unit through the passage unit (within 30m, within 40m, within 50m at semi-refractory hotels, etc.), or the number of evacuation staircase units specified according to the building conditions (The hotel further stores single provision information including evacuation route setting information that defines two or more hotels, two or more apartments on the fifth floor or more, the number set according to the number of floors or total floor area, etc.
  • the automatic design step includes The distance from each entrance of each room unit of the automatically designed building to the evacuation staircase unit (emergency staircase) as an evacuation route satisfies the distance specified by the evacuation route setting information and / or the building Arranging at least one emergency stair unit in the building so as to satisfy the number of evacuation stair unit defined according to the conditions of It is characterized
  • An automatic CAD design method includes: The storing step includes Further storing a plurality of patterned CAD information for the first floor of a building including a plurality of individual units,
  • the automatic CAD design method comprises: A first input receiving step of receiving designation of one piece of patterned CAD information selected from the plurality of pieces of patterned CAD information;
  • the automatic design step includes Based on the received patterned CAD information, referring to at least a part of the extracted group definition information, a hierarchy including at least a part of the patterned CAD information is sequentially stacked to automatically build a building in the existence space. design, It is characterized by that.
  • An automatic CAD design method includes: The storing step includes Unit unit price information for each individual unit specified in the individual unit information, and / or building unit price information (basic construction unit price information, three-story basic unit price information, five-story basis unit price information, and associated equipment Costs, equipment construction costs, etc.)
  • the automatic CAD design method comprises: A building including a plurality of individual units is referred to the unit unit price information and / or the building unit price information based on the individual unit included in the building that is automatically designed in the existing space, and the building An estimate calculating step for calculating the construction cost of It is characterized by that.
  • An automatic CAD design method includes: The storing step further stores building grade information defining a plurality of building grades having different costs and / or specifications, unit unit price information for each individual unit specified for each building grade, and / or building unit price information,
  • the automatic CAD design method comprises: A second input receiving step of receiving an input of one building grade selected from the plurality of building grades;
  • the automatic design step comprises Calculate the building cost of the building based on the individual units included in the automatically designed building based on the accepted building grade input. It is characterized by that.
  • An automatic CAD design method includes: The storing step includes Further storing building grade information defining a plurality of building grades having different costs and / or specifications, unit unit price information for each individual unit defined by the building grade, and / or building unit price information;
  • the automatic CAD design method comprises: A second input receiving step of receiving an input of one building grade selected from the plurality of building grades;
  • the automatic design step comprises Based on the accepted building grade input, execute the automatic design of the building, and calculate the building cost of the building based on the individual units included in the building. It is characterized by that.
  • An automatic CAD design method is
  • the storing step includes Further store rental unit price information for each individual unit and / or region specified in the individual unit information
  • the obtaining step comprises Get additional down payment for construction costs, loan interest rates and at least part of the region or address
  • the estimate calculation step includes: Rent standard unit price for which at least one of the individual units included in the building is determined based on at least a part of the acquired area or address based on the calculated construction cost, the acquired down payment and the loan interest rate. Calculate a time-series balance plan when renting at the rent specified in the information (finally output as a balance sheet) It is characterized by that.
  • An automatic CAD design method is
  • the storing step includes Stores feasibility rule information that defines feasibility rules for evaluating the profitability of rental business based on income and expenditure plans
  • the estimate calculation step includes: Evaluate the business profitability of the income and expenditure plan calculated by the estimate calculation unit based on the feasibility rule information (for example, business success probability 80% (business failure risk is 20%), 95% success probability, etc. Risk assessment of business success), It is characterized by that.
  • FIG. 1 is a block diagram showing an outline of an automatic CAD design system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG.
  • FIG. 3 is a schematic diagram showing an outline of processing executed by the automatic CAD design system shown in FIG.
  • FIG. 4 is a schematic diagram showing an outline of processing executed by the automatic CAD design system shown in FIG.
  • FIG. 5 is a schematic diagram for explaining planar growth of individual units.
  • FIG. 6 is a schematic diagram for explaining planar growth of individual units.
  • FIG. 7 is a schematic diagram for explaining planar growth of individual units.
  • FIG. 8 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG. FIG.
  • FIG. 9 is a schematic diagram for explaining planar growth of individual units.
  • FIG. 10 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG. This FIG. 11 is a flowchart showing a process executed in parallel with the process executed in the automatic CAD design system shown in FIG.
  • FIG. 12 is a schematic diagram for explaining planar growth of individual units.
  • FIG. 13 is a schematic diagram for explaining planar growth of individual units.
  • FIG. 14 is a schematic diagram for explaining planar growth of individual units.
  • FIG. 15 is a schematic diagram for explaining planar growth of individual units.
  • FIG. 16 is a schematic diagram for explaining a hierarchical block on the first floor and a hierarchical block on the second floor.
  • FIG. 17 is a schematic diagram illustrating a hierarchical block (store) on the first floor and a hierarchical block on the second floor.
  • FIG. 18 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG.
  • FIG. 19 is a schematic diagram for explaining planar growth of individual units by the process when it is determined that the site area is small in the process of FIG.
  • FIG. 20 is a schematic diagram for explaining planar growth of individual units by another logic that is automatically and efficiently designed when the site area is small.
  • FIG. 21 is a schematic diagram showing an outline of processing executed in the automatic CAD design system shown in FIG.
  • FIG. 22 is a schematic diagram showing an outline of processing executed by the automatic CAD design system shown in FIG. FIG.
  • FIG. 23 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG.
  • FIG. 24 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG.
  • FIG. 25 is a block diagram showing an outline of an automatic CAD design system according to an embodiment of the present invention.
  • FIG. 26 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG.
  • FIG. 27 is an explanatory diagram showing a plurality of patterned CAD information PCI for the first floor of a building including a plurality of individual units.
  • FIG. 28 is an explanatory diagram for explaining that a building is automatically designed according to given information and conditions.
  • FIG. 29 is an explanatory diagram for explaining that a building including an accompanying facility is automatically designed according to given information and conditions.
  • FIG. 30 is a schematic diagram for explaining a process of enlarging the building object (individual unit) or increasing the thickness in order to check whether the regulations such as the oblique line regulation, the building coverage ratio, the setback, and the height restriction are cleared.
  • FIG. 31 is a schematic diagram showing a state in which piles are automatically designed on the virtual support layer according to the ground survey.
  • FIG. 32 is a flowchart illustrating an example of processing executed in the automatic CAD design system.
  • FIG. 33 is a schematic diagram for explaining the screen interface of the present system. It is the schematic for demonstrating the outline of this system.
  • FIG. 34 is a schematic diagram for explaining the screen interface of the present system.
  • FIG. 35 is a schematic diagram for explaining the screen interface of the present system.
  • FIG. 36 is a schematic diagram for explaining a screen interface of the present system.
  • FIG. 37 is a schematic diagram for explaining the screen interface of the present system.
  • FIG. 1 is a block diagram showing an outline of an automatic CAD design system according to an embodiment of the present invention.
  • the automatic CAD design system 100 includes a control unit (CPU, processor) 110, a storage unit 120, an input unit IN, an output unit OUT, a communication unit COM, and a display unit DIS.
  • the control unit 110 includes site information that defines the site (area, shape, orientation, roadway connection status, corner information, geographical information, etc.) and building type information (for example, one-room apartment type, 1K type, 2LDK type, Office type, hall type, store type, hotel type, composite type including a plurality of the above types, etc.).
  • the storage unit 120 includes group definition information GRI including at least the floor area ratio and each building type information (or various conditions related to the building, such as the width of the frontage, the depth, the presence or absence of the balcony, the size thereof, the presence or absence of the window, and the like.
  • Individual unit information UI that defines at least one individual unit associated with the size, room area, room layout, 2 living rooms + 2K indicating kitchen, 3 rooms + living room, 3LDK indicating dining kitchen, etc.
  • 1K, 2K, 2LDK, 3LDK conference room, office, reception room, machine room, elevator, elevator room, sewage unit, sewage tack, shared toilet, parking facility unit, bicycle parking facility unit, stairs, roof, Stores the unit type (rooftop, floor, foundation, etc.).
  • the unit type (rooftop, floor, foundation, etc.).
  • the most important ones are individual units to be grown such as 1K, 2LDK, 3DLK and office spaces (15 tsubo type, 20 tsubo type, etc.) which are units of a single office or residence.
  • This individual unit may be referred to as a room unit.
  • This system can automatically extract, automatically place, and grow these individual units to be grown according to the site conditions and building type given, and automatically generate 3D CAD objects for the final building. Is possible.
  • the control unit 110 further includes an extraction unit EXT, a space calculation unit SPC, and an automatic design unit AUD.
  • the extraction unit EXT extracts group specification information applied to the site specified by the site information.
  • the space calculation unit SPC refers to the extracted group provision information (building coverage ratio, floor area ratio, oblique line regulation, height restriction, shadow restriction, etc.) of building that can be built on the site. Find possible space.
  • the automatic design unit AUD automatically designs a building including a plurality of individual units in the possible existence space with reference to at least a part of the extracted group definition information.
  • the acquisition unit ACQ receives geographical information (for example, from the geographical information server GIS that provides geographical information based on a geographical search key such as an address, latitude / longitude, and region name via the communication unit COM and the network NET. Acquire map, house map, public map, etc. as site shape, roadway information, or adjacent site information), store the acquired geographical information in the storage unit 120, or update the stored information It is possible to do.
  • the acquisition unit ACQ acquires the latest group definition information from the building restriction information server CLS via the communication unit COM and the network NET, and uses it for the extraction processing of the extraction unit EXT, or the information in the storage unit 120 Can be updated.
  • the building regulation information server CLS may be included in the geographic information server GIS, or may include the function of the geographic information server GIS.
  • the building regulation information server CLS and the geographic information server GIS are preferably servers related to building regulations managed by design offices, building CAD software companies, local governments, countries, and public institutions.
  • this system stores the access procedure that defines the address and data format of the local government server in the storage unit, and extracts the shape, area, direction, etc. of the site from the server using the address as a key. It is possible to extract building regulation information such as site use area and group regulations.
  • This system accesses several building regulation information servers CLS and geographical information server GIS which are such an external server as needed, refers to or acquires necessary information, and stores them in the storage unit. It can be stored.
  • the Building Standard Act is used as a fundamental law (group provision), but the website of the municipality having jurisdiction over the address is referred to as the building regulation information server CLS or Refers to the geographic information server GIS (or group provision information or unit provision information prescribed for each region in the storage unit), and the laws and regulations (group provisions) that should be applied to the building constructed on the site in the area It is possible to automatically design based on the extracted laws and regulations.
  • Communication department COM is the terminal PC1, PC2, mobile terminal PDA1. It is possible to exchange information by connecting to the mobile phone terminal MS1.
  • the output unit OUT can output information stored in the server or generated information to the printer PRN.
  • the display unit DIS can also display information stored in the server and generated information.
  • the input unit IN receives an operation instruction or information input that is input via the mouse MUS or the keyboard KBD.
  • the system is a general-purpose computer, a special-purpose computer, a server, a PC, or the like, or a program module that implements (executes) the function and processing procedure (method) of the system on the computer. It is preferable to construct this system on a computer by holding it in a CPU or storage unit of the computer or reading it from an external server or storage, and the same applies to each of the following embodiments.
  • FIG. 2 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG.
  • the acquisition unit ACQ acquires site information that defines the site and building type information.
  • group definition information including at least the floor area ratio and individual unit information that defines at least one individual unit associated with each building type information are stored. This storage step can be omitted if it is performed once in advance.
  • the extraction unit EXT extracts group definition information to be applied to the site specified by the site information based on the acquired site information.
  • the space calculation unit SPC refers to the group definition information (building ratio, floor area ratio, oblique line regulation, height restriction, shadow restriction, etc.) extracted based on the acquired site information, The space where a building that can be built can be found is found. Alternatively, the group definition information suitable for the site may be manually extracted by the user.
  • the automatic design unit AUD can refer to at least a part of the extracted group definition information based on the acquired building type information, and the building including a plurality of individual units can exist. Design automatically in space. Incidentally, the automatically designed building is displayed on the display unit DIS, or transmitted to an external terminal or PC connected via the communication unit COM and displayed on the display unit of the terminal.
  • step S12 As described above, once the storage step such as step S12 is performed, it is not necessary to re-execute until the information is changed. Alternatively, the storing step becomes unnecessary by installing a ROM or flash memory storing the information in a system (apparatus or computer).
  • FIG. 3 is a schematic diagram showing an outline of processing executed by the automatic CAD design system shown in FIG.
  • the present system acquires site information indicating the site SITE 10. “Volume ratio: 900%, height limit: 10 m” is extracted as the group definition information corresponding to the site from the group definition information GRI in the storage unit.
  • a building space AVS 10 building existence space
  • the individual unit UI10 is extracted as individual unit information corresponding to the specified conditions (building type information) from the individual unit information UI of the storage unit.
  • the individual unit can be used as a block for one layer as it is.
  • the extracted individual unit UI10 is arranged in the buildable space AVS10 of the site SITE10.
  • the arranged individual unit UI10 is tried to be duplicated (grown) in the plane in the site SITE10.
  • the individual unit UI10 is not duplicated in a plane. Therefore, the trial of planar duplication (growth) is stopped, and blocks for the first floor hierarchy are determined.
  • the hierarchical blocks on the first floor are sequentially replicated upward in the building space and within the limits of the floor area ratio.
  • the hierarchical level is increased by automatic design until the volume ratio is limited to 900% and the height limit is limited to 10 m.
  • the construction cost of the nine-storey building OBJ10 automatically designed in this way is calculated to determine the final business success possibility.
  • FIG. 4 is a schematic diagram showing an outline of processing executed by the automatic CAD design system shown in FIG.
  • the present system acquires site information indicating the site SITE 20. “Volume ratio: 900%, height limit: 10 m” is extracted as the group definition information corresponding to the site from the group definition information GRI in the storage unit. Based on a part of the group definition information (in this case, the height restriction), the building space AVS20 (building existence space) is set (calculated) on the site SITE20. Next, the individual unit UI 20 is extracted as individual unit information corresponding to the specified conditions (building type information) from the individual unit information UI of the storage unit.
  • the individual unit UI20 is an independent room unit, and one of four horizontal surfaces is an opening (portion with a window), an entrance (portion where an entrance is installed), and a connection (wall). Thus, individual units such as room units can be connected to the connection portion.
  • the extracted individual unit UI20 is arranged in the buildable space AVS20 of the site SITE20.
  • the arranged individual unit UI20 is tried to be duplicated (growth) in a plane in the site SITE20. In this example, there are two room for growth in the plane of the building space AVS20. Only one is duplicated. Therefore, the trial of planar duplication (growth) is stopped, and a block BLK20 corresponding to the first floor including three individual units UI20 is constructed (generated).
  • Hierarchical blocks usually include hallways, stairs, elevators, etc., but are omitted here for the sake of drawing and explanation.
  • the hierarchical block BLK20 on the first floor is sequentially replicated upward within the limits of the building space and the floor area ratio.
  • the hierarchical blocks are stacked by automatic design until the volume ratio is limited to 900% and the height limit is limited to 10 m (in this example, to the limit of the volume ratio).
  • the hierarchical blocks BLK20-1, BLK20-2,..., BLK20-8 and 8 hierarchical blocks are stacked, and a nine-story building OBJ20 is automatically constructed (generated). The construction cost of the 9-story building OBJ20 automatically designed in this way is calculated to determine the final business success possibility.
  • the unit price information for an individual unit is 10 million yen
  • multiplying this unit price by 27 for the number of individual units it is possible to obtain an estimated construction cost of 270 million yen using the approximate cost calculation function of automatic estimation. It is.
  • FIG. 5 is a schematic diagram for explaining planar growth of individual units.
  • the present system extracts a balcony and an individual unit UI30 as individual units based on given conditions (building type).
  • the balcony is a CAD member that can expand and contract in the longitudinal direction. This balcony is arranged on the road side of the site, and is extended from the end of the side to the other end to be arranged as a balcony BLKN30.
  • individual unit UI30 is arrange
  • the individual unit UI30 has an opening (window unit) on the balcony side and a entrance (entrance unit) on the opposite side of the individual unit UI30, and further, a room configuration (for example, 20 square meter living, 10 square meter kitchen, 8 square meter unit bath, etc.).
  • the balcony unit BLKN30 includes an emergency evacuation ladder unit.
  • the balcony unit BLKN30 is provided with a partition plate PTN30N for partitioning the balcony to separate the balcony portions corresponding to the individual units and maintain the independence of each room.
  • the corridor unit CLD30 is automatically arranged on the opposite side of the individual unit UI30, UI30-1, UI30-2, UI30-3, UI30-4 from the balcony side.
  • the hierarchical block BLK30 is automatically designed.
  • the hierarchical blocks BLK30 are stacked in the vertical direction, and are automatically designed within the range of the limit of the building space or the volume ratio.
  • direct emergency staircases evacuation routes
  • FIG. 6 is a schematic diagram for explaining planar growth of individual units.
  • this system uses a balcony unit MLKN30-M and a corridor unit as individual units based on the given conditions (building type).
  • the individual unit UI30-M which is a room unit including the CLD 30-M, is extracted. Since this individual unit is a room unit that combines a balcony and a corridor, it is possible to simplify the process of automatic design and the configuration of the growth logic.
  • the balcony is located on the road side of the site.
  • the individual unit UI30-M is duplicated based on a predetermined automatic design rule (for example, the duplication of the room unit of the individual units in the site or the building space is repeated as much as possible). Then, four individual units UI30-M are duplicated and connected to automatically design one hierarchical block BLK30-M.
  • the hierarchical blocks BLK30-M are stacked in the vertical direction, and are automatically designed within the limits of the building space or the volume ratio.
  • emergency staircases evacuation routes
  • FIG. 7 is a schematic diagram for explaining planar growth of individual units. As shown in the figure, for the site SITE30-S in contact with the road RD30-S and road RD30-E, this system automatically designs the hierarchical block BLK30-T1 based on the given conditions (building type). Build in.
  • the floor area percentage digestion rate (the percentage of the total floor area of the object divided by the floor area of the floor area limit) of the candidate building object automatically designed by stacking the upper floors using this hierarchical block If it is smaller than the threshold (for example, 75%), it is considered that the site has not been used effectively yet, and sub-hierarchical blocks BLK30-T2, BLK30-T3, BLK30-T4, BLK30-
  • Several candidate building objects are automatically constructed by adding T41, BLK30-T5, and BLK30-T6, respectively.
  • the sub-hierarchy blocks to be added are once stacked in the shape of the hierarchies, but some room units or corridor units on the north side or adjacent land side may be deleted in a staircase shape due to slanting restrictions etc. Many.
  • the floor area of the sub-hierarchical block decreases as the level goes up. It is preferable that the emergency stairs and the position of the elevator are designed automatically in consideration of the situation of the hierarchical block.
  • the sub-hierarchical block to be added is automatically arranged so that the corridor of the sub-hierarchical block is connected to the corridor of the original hierarchical block. In this way, while changing the arrangement and growth direction of the sub-hierarchical blocks, several candidate objects are constructed (that is, the sub-hierarchical blocks are stacked vertically together with or independently of the hierarchical blocks), and their volume ratio The digestibility is compared, and the candidate object with the highest floor fraction digestibility is determined as the final building object.
  • the building object OBJ30-M composed of the hierarchical block BLK30-T1 and the sub-hierarchical block BLK30-T6, which has the highest volume ratio digestibility, is automatically selected. All the above processing is performed by automatic design. By this processing technique, it becomes possible to use the site more effectively by reducing the undigested volume ratio.
  • FIG. 8 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG. This process is executed as an option after automatically generating candidate building objects once in the process of FIG.
  • step A11 it is determined whether the volume ratio digestion rate of the generated candidate building object is smaller than a predetermined threshold (for example, 70%) stored in the storage unit. If the digestibility is not smaller than the threshold value, it is considered that automatic design that fully utilizes the site has been completed, and the processing is finished. When the digestibility is lower than the threshold, it is considered that automatic design using the site sufficiently has not been made, and the process proceeds to Step A12.
  • a predetermined threshold for example, 70%
  • step A12 a sub-hierarchical block connected to the hierarchical block included in the generated building object is added, the layers are stacked, and a candidate building object is generated.
  • step A13 the volume ratio digestion rate of the candidate building object to which the sub-hierarchy block is added is calculated.
  • step A14 the candidate building object is stored in the storage unit.
  • step A15 it is determined whether or not an executable change pattern remains.
  • the number of patterns of the change pattern increases or decreases depending on, for example, the pitch of the sub-layer arrangement and the growth direction. Accordingly, by appropriately setting a numerical value such as 5 meters or 10 degrees, it is set as appropriate so that the process converges in a reasonable calculation time.
  • step A16 the connection position of the sub-hierarchy block to the existing hierarchical block or the growth direction of the sub-hierarchical block is changed in step A16.
  • step A16 the process returns to step A12, and A12-14 is repeated until the condition of step A15 is removed.
  • step A17 the candidate with the highest volume ratio digestibility is selected as the final building object.
  • the building object generated in this way it is possible to calculate an approximate construction cost or calculate a balance (described in detail later). Furthermore, by storing candidate building objects that have not been finally adopted, it is possible to display candidate building objects for comparison later or to compare business balances according to user preferences. Is possible.
  • FIG. 9 is a schematic diagram for explaining planar growth of individual units.
  • this system automatically designs hierarchical block BLK30-R1 based on given conditions (building type) Build in.
  • the floor area percentage digestion rate of the candidate building object automatically designed by stacking the upper floors using this hierarchy block (the percentage when the total floor area of the object is divided by the total floor area of the floor area limit) If it is smaller than the threshold (for example, 75%), it is considered that the site has not yet been used effectively, and the location of the hierarchical block itself (for example, the growth start point) or the growth direction is changed, and the most digestible rate Search with high placement patterns and trial and error.
  • sub-hierarchy block is also added as shown in FIG. 7 while changing the arrangement pattern, there is a high possibility that a building object having a higher digestibility than FIG. 7 can be found (that is, automatic design).
  • a hierarchical block 30-R1 and a hierarchical block 30-R3 are constructed, and sub-hierarchical blocks BLK30-A1 to A6 are respectively added.
  • a volume ratio and a building coverage ratio are within the allowable range, it is also attempted to provide a plurality of sub-hierarchy blocks.
  • the building object OBJ30-R composed of the hierarchical block BLK30-R1 and the sub-hierarchical blocks BLK30-A5 and A6 having the highest volume ratio digestibility is automatically selected.
  • Other generated candidate objects and hierarchical block patterns are stored in the storage unit for later use. Some users may select other candidate building objects for reasons such as placement patterns and construction costs rather than digestibility, so it is possible to display these candidates and compare costs. is there. All the above processing is performed by automatic design. By this processing technique, it becomes possible to use the site more effectively by reducing the undigested volume ratio. Detailed processing logic will be described with reference to FIG.
  • FIG. 10 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG. This process is executed as an option after automatically generating candidate building objects once in the process of FIG.
  • step B11 it is determined whether the volume ratio digestion rate of the generated candidate building object is smaller than a predetermined threshold value (for example, 70%) stored in the storage unit. If the digestibility is not smaller than the threshold value, it is considered that automatic design that fully utilizes the site has been completed, and the processing is finished. If the digestibility is lower than the threshold, it is considered that automatic design that fully utilizes the site has not been made, and the process proceeds to step B12.
  • a predetermined threshold value for example, 70%
  • step B13 the volume ratio digestibility of the candidate building object is calculated.
  • step B14 the candidate building object is stored in the storage unit.
  • step B15 it is determined whether or not an executable change pattern remains. Alternatively, it is reasonable to abort the processing at a predetermined time (for example, 5 minutes). If it is determined that an executable change pattern remains, the process returns to step B12, and B12-14 is repeated until the condition of step B15 is not met.
  • step B15 when the determination condition of step B15 is not satisfied, the processing loop is exited, and in step B16, the candidate with the highest volume ratio digestibility is selected as the final building object.
  • FIG. 11 is a flowchart showing a process executed in parallel with the process executed in the automatic CAD design system shown in FIG.
  • the storage unit has a distance from the entrance of the room unit to the escape stair unit through the passage unit (for example, within 30m, within 40m, within 50m at the semi-fire resistant hotel), or
  • single provisional information including evacuation route setting information that prescribes the number of evacuation staircase units prescribed according to building conditions (two or more for hotels, two or more for apartments on the 5th floor or more, etc.) To do.
  • step K12 the distance from the entrance of each room unit of the building automatically designed by the process of FIG.
  • At least one emergency stair unit is arranged in the building so as to satisfy the distance defined in (1) and / or to satisfy the number of evacuation stair units defined in accordance with the building conditions.
  • FIG. 12 is a schematic diagram for explaining planar growth of individual units.
  • the present system is based on given conditions (in this case, the building type), and includes a balcony and an individual unit UI 40 (room unit) as individual units.
  • a balcony is arrange
  • individual unit UI40 is arrange
  • the corridor unit CLD40 is automatically arranged on the opposite side of the individual unit UI40, UI40-1, UI40-2, UI40-3, UI40-4 from the balcony side.
  • the position and number of emergency staircases EMRS40 satisfying the standard of the evacuation route are automatically arranged so as to be connected to the corridor CLD40.
  • the hierarchical block BLK40 is automatically designed.
  • the hierarchical blocks BLK40 are stacked in the vertical direction, and are automatically designed within the limits of the building space or the volume ratio.
  • the number and location of emergency staircases and elevators is the top floor block that the elevators and emergency staircases directly access (if the building to be designed is a staircase structure due to diagonal restrictions, etc.
  • the position and number of evacuation stairs comply with legal regulations such as group regulations. If not, the position of elevators and evacuation stairs can be shifted or increased or decreased to comply. It has the function to do.
  • the blame stairs and elevators may be added and set by automatic design so that the system complies with laws and regulations such as group regulations applied to the site. The same applies to other embodiments.
  • FIG. 13 is a schematic diagram for explaining planar growth of individual units.
  • the present system extracts a balcony and an individual unit UI 50 as individual units based on given conditions (here, building type).
  • a balcony is arrange
  • individual unit UI50 is arrange
  • a predetermined automatic design rule For example, duplication of an individual unit is repeated in the site or a building space
  • the corridor unit CLD50 is automatically arranged on the side opposite to the balcony side of the individual units UI50, UI50-1, UI50-2, UI50-3, and UI50-4.
  • the position and number of emergency staircases EMRS50 satisfying the standard of the evacuation route are automatically arranged so as to be connected to the hallway CLD50.
  • the elevator unit is extracted as an individual unit, and the elevator ELV 50 is automatically arranged to be connected to the corridor CLD 50 in the same manner. .
  • the hierarchical block BLK50 is automatically designed.
  • the hierarchical blocks BLK50 are stacked in the vertical direction, and are automatically designed within the range of the building space or the volume ratio limit value.
  • FIG. 14 is a schematic diagram for explaining planar growth of individual units.
  • the present system extracts a balcony and an individual unit UI 60 as individual units based on given conditions (here, building type).
  • the site SITE 60 has a larger area than the conventional site, so that more individual units are arranged.
  • a balcony is arrange
  • individual unit UI60 is arrange
  • the hallway unit CLD60 is disposed on the opposite side of the individual unit UI60, UI60-1, UI60-2, UI60-3, UI60-4, UI60-5, UI60-6, UI60-7, UI60-8 from the balcony side. Are automatically arranged.
  • the elevator unit is extracted as an individual unit, and the elevator ELV 60 is automatically arranged to be connected to the corridor CLD 60 in the same manner. .
  • the hierarchical block BLK60 is automatically designed.
  • the hierarchical blocks BLK60 are stacked in the vertical direction, and are automatically designed within the limits of the building space or the volume ratio.
  • This system extracts individual units based on given conditions (in this case, building type). For this, the designation of the room type is most suitable. For example, 1K (one kitchen between 66 tatami mats), 2K, etc. Alternatively, the frontage 8m, the frontage 6m, and the depth 10m may be specified. Furthermore, it is possible to specify types such as unit bath type, kitchen type, corridor, western-style room, and Japanese-style room. This system can automatically design buildings according to the above conditions.
  • FIG. 15 is a schematic diagram for explaining planar growth of individual units.
  • the site SITE 70 that is in contact with the road RD 70, the present system extracts a balcony and an individual unit UI 70 as individual units based on given conditions (here, building type).
  • the site SITE 70 has a large site area in the same manner as in FIG. 7, and thus more individual units are arranged.
  • a balcony is arrange
  • a balcony is arranged on this surface, but this system can automatically arrange balconies (openings) according to the tangential surface in this way. is there.
  • individual unit UI70 is arrange
  • the corridor unit CLD70 is automatically arranged on the opposite side of the individual unit UI70, UI70-1, UI70-2, UI70-3, UI70-4, UI70-5, UI70-6, UI70-7 from the balcony side.
  • the two emergency staircases EMRS70 and EMRS70-1 that meet the evacuation route criteria and the number are automatically arranged so as to be connected to the corridor CLD70.
  • the elevator unit is extracted as an individual unit, and the elevator ELV 70 is automatically arranged to be connected to the corridor CLD 70 in the same manner. . That is, in this system, it is possible to automatically determine whether or not an elevator installation is necessary based on laws and regulations, and to implement automatic design reflecting that.
  • the entrance hall ENT70 is further extracted as an individual unit and arranged on the road surface.
  • Corridor CLD 70-1 connecting entrance hall ENT70 and corridor CLD 70 is also extracted and arranged.
  • the hierarchical block BLK 70 is automatically designed. If this hierarchical block BLK70 is grown as it is, entrance halls will be arranged on the second and third floors, which is inconvenient. In view of this, the present system can automatically obtain a hierarchical block on the first floor and a hierarchical block on the second floor or later or an underground hierarchical block separately.
  • FIG. 16 is a schematic diagram for explaining the hierarchical block on the first floor and the hierarchical block on the second floor.
  • the hierarchical block BLK 70 is the same as FIG.
  • the hierarchical block BLK71 is obtained by replacing the entrance hall ENT70 and the hallway CLD70-1 that are not required on the second floor and higher floors with the balcony BLKN71 and the individual unit UI71, respectively, by the automatic design unit AUD.
  • the automatic design unit AUD stacks the hierarchical blocks BLK71 in the vertical direction in the 3rd and 4th floors, and automatically designs them within the range of the limit of the building space or the volume ratio.
  • the underground level can be automatically constructed using the same technique. Therefore, in this example, it is possible to obtain a construction estimation cost with considerably high reliability in consideration of the difference in the structure of each floor.
  • FIG. 17 is a schematic diagram for explaining a hierarchical block (store) on the first floor and a hierarchical block on the second floor.
  • FIG. 17 illustrates a state in which an automatic design is performed when a condition for providing a store on the first floor is designated as a building type on the same site as FIG. 16.
  • the hierarchical block BKL71-S of the second and higher floors in FIG. 17 is the same as the hierarchical block BKL71 that is that of FIG.
  • store units are extracted as individual units according to conditions, and are automatically arranged as store units SHP1, 2, and 3.
  • the extraction and arrangement of the entrance and hallway units are the same as in FIG.
  • the hierarchical block BLK71-S is obtained by replacing the entrance hall ENT70 and the corridor CLD70-1 that are not required on the second floor and higher floors with the balcony BLKN71 and the individual unit UI71, respectively, by the automatic design unit AUD. is there.
  • the automatic design unit AUD stacks the hierarchical blocks BLK71-S in the vertical direction in the third and fourth floors, and automatically designs them within the range of the limit of the building space or the floor area ratio.
  • the first floor can be automatically designed separately for the store and the second and subsequent floors, more accurate automatic design can be performed.
  • the 1-2 floor, the basement and the first floor, and the basement and the first and second floors can be automatically designed freely as a store. Therefore, in this example, it is possible to obtain a highly reliable construction estimation cost that takes into account the difference in the structure of each floor with a store on the first floor, which is a typical apartment form particularly in urban areas. .
  • FIG. 18 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG.
  • the inventors of the present application automatically design a building with a larger total floor area by efficiently using the floor area ratio of the same site when an automatic design method is selected according to the size of the site area when actually designing automatically. Found that it is possible to do.
  • the storage unit 120 includes individual units such as a central corridor unit (for example, dimension information of the central corridor) and a room unit (for example, an individual residence such as 1K, 2LDK, and 3LDK, Totsubo office, 20 Tsubo office, etc.), balcony units (e.g., balcony dimension information), and room units (e.g., individual residences such as 1K, 2LDK, 3LDK, Totsubo office, 20 tsubo office, etc.).
  • the automatic design unit AUD determines whether the area of the site specified by the site information is smaller than a threshold (a predetermined numerical value stored in the storage unit, for example, 300 square meters). Determine whether or not.
  • a threshold a predetermined numerical value stored in the storage unit, for example, 300 square meters.
  • step S22 the automatic design unit AUD creates a building outer peripheral shape based on the shape of the site (or space where the building can exist), and calculates the planar center of gravity of the building.
  • step S23 the central corridor unit is arranged so as to pass through the center of gravity, and the individual unit (room unit) serving as an individual residence or office is arranged along at least a part of both sides in the longitudinal direction of the central corridor unit. Arrange sequentially and automatically design buildings. If the determination condition in step S21 is not satisfied, in step S24, the automatic design unit AUD normally performs automatic design processing as shown in FIG.
  • a balcony unit is arranged along at least one side of the site (preferably a side of a roadway or a side facing south),
  • the building unit is automatically designed by sequentially arranging the room units along at least a part of one side inside the site in the longitudinal direction of the balcony unit.
  • FIG. 19 is a schematic diagram for explaining planar growth of individual units by the process when it is determined that the site area is small in the process of FIG.
  • the process of FIG. 18 proceeds to step S22 and subsequent processes.
  • a corridor unit INCLD80 passing through the center of gravity is set.
  • the individual unit UI80 which is a room unit with an attribute of being able to grow (duplicatable or connectable), is extracted as an individual unit as an individual unit. To do.
  • the individual unit UI80-N is arranged at the end of one side in the longitudinal direction of the inner corridor unit INCLD80, and the predetermined automatic design rule (for example, maximizing the duplication of the individual unit in the site or the building space) Duplicated according to the number of repetitions).
  • the individual unit UI80-N1 and the corridor units INCLD80-N2 to N7 are arranged by automatic design.
  • the individual unit UI80-S is arranged at the end of one side in the longitudinal direction (lower side of the drawing) of the inner corridor unit INCLD80, and a predetermined automatic design rule (for example, site or construction is possible) And so on.
  • the individual units UI80-S1 and the corridor units INCLD80-S2 to S7 are arranged by automatic design.
  • the hierarchical block BLK80 is automatically designed.
  • the hierarchical blocks BLK80 are stacked in the vertical direction, and are automatically designed within the range of the limit value of the building space or the volume ratio.
  • emergency staircases evacuation routes
  • elevators machine rooms, etc.
  • unit price the unit price of each individual unit It is also possible to obtain an approximate cost.
  • FIG. 20 is a schematic diagram for explaining planar growth of individual units by another logic that efficiently and automatically designs when the site area is small.
  • the site SITE 80-M first, the center of gravity of the site (or the contour of the assumed building may be obtained and the center of gravity may be obtained).
  • a central corridor CTR is installed at the center of gravity.
  • the individual units UI80-FX1 that are extendable and connectable to be a single office or residence are extracted as individual units.
  • the individual units UI80-FX1-3 are arranged on each side of the central corridor CTR, and the individual units are extended to the full building space.
  • the elevator EV and emergency staircase STP are extracted and arranged in the central corridor CTR.
  • the hierarchical block 80-M can be automatically designed.
  • this processing logic functions very efficiently in a small area in an urban area and efficiently digests the floor area ratio.
  • FIG. 21 is a schematic diagram showing an outline of processing executed by the automatic CAD design system shown in FIG.
  • the automatic CAD design system shown in FIG.
  • the present system acquires site information indicating the site SITE 90-W and the site SITE 90-N that have the same site shape and site area but are in contact with roads with different conditions.
  • volume ratio: 400% “building coverage ratio: 80%”, and “volume ratio reduction coefficient: not applicable” are extracted as the group definition information corresponding to the site SITE90-W.
  • the site SITE90-W is connected to the wide road RD90-W with a road width of 12 m, so there is no application of the floor area ratio reduction factor by city planning. Therefore, the real volume ratio is 400%, which is a numerical value as it is.
  • the present system can automatically obtain the real floor area ratio based on the geographical information, the housing display, or the lot number included in the site information, and can perform automatic design using this. As described above, since many local governments are obligated to apply the floor area ratio reduction factor, it is not possible to automatically calculate the actual floor area ratio and apply it to automatic design as in this system. It is very important to consider sex.
  • the building OBJ90-W and the building OBJ90-N are required by automatic design, respectively, depending on the difference in the applicable group regulations.
  • a four-story building OBJ90-W is automatically constructed on the site SITE90-W that touches a wide road by automatic design, and a two-story building on the site SITE90-N that touches a narrow road.
  • OBJ90-N is automatically constructed. It is possible to determine the final business success possibility by calculating the construction cost of each building automatically designed in this way. Therefore, according to this system, it is possible to compare and examine projects for a plurality of sites.
  • FIG. 22 is a schematic diagram showing an outline of processing executed by the automatic CAD design system shown in FIG.
  • the use area is divided according to the area, and a significantly different floor area ratio is set depending on the conditions of the commercial district and the residential district.
  • a state will be described in which different buildings are automatically designed according to the conditions of the use area and the access road conditions even if the sites have the same site area and site shape.
  • this system acquires site information indicating the site SITE 100-L and the site SITE 100-C of the districts that are in the same site shape and site area but are in contact with roads with different conditions and have different uses.
  • the present system can automatically obtain the real floor area ratio based on the geographical information, the housing display, or the lot number included in the site information, and can perform automatic design using this.
  • the building OBJ100-L and the building OBJ100-C are required by automatic design, respectively, depending on the difference in the applicable group regulations.
  • a three-story building OBJ100-L is automatically built on the site SITE100-L in the residential area in contact with a wide road by automatic design, and the site SITE100-C in a commercial area in contact with a narrow road.
  • the five-story building OBJ100-C is automatically constructed. It is possible to determine the final business success possibility by calculating the construction cost of each building automatically designed in this way. Therefore, according to this system, it is possible to compare and examine projects for a plurality of sites. In this way, this system was originally a final building that was difficult to grasp unless architects or design engineers designed it in consideration of site conditions, roadway conditions, ordinances, laws and regulations. Can be automatically designed.
  • FIG. 23 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG.
  • a default value for example, 2LDK type
  • the acquisition unit ACQ acquires site information that defines the site.
  • group definition information and individual unit information including at least the volume ratio are stored. This storage step can be omitted if it is performed once in advance.
  • the extraction unit EXT extracts group definition information applied to the site specified by the site information.
  • a 2LDK type individual unit is extracted as building type information corresponding to the default value and used in subsequent processing.
  • step S34 referring to the extracted group definition information, a hierarchical block of the first floor portion including a plurality of individual units on the site is automatically designed.
  • step S35 based on the acquired site information, with reference to the extracted group definition information (building ratio, floor area ratio, oblique line regulation, height restriction, shadow restriction, etc.), within the restrictions of the group provision information The building is automatically designed by stacking hierarchical blocks including a plurality of individual units.
  • FIG. 24 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG.
  • group input information used by the user is used.
  • the acquisition unit ACQ determines the site information that prescribes the site, the building type information (information on the building, front door, office type, housing type, 2LDK, etc. , With bath, with unit bath, toilet type, etc.) and group specified information specified by the user.
  • individual unit information is stored in step S42. This storage step can be omitted if it is performed once in advance.
  • the extraction unit EXT or the automatic design unit AUD
  • step S44 referring to the acquired group definition information, a hierarchical block of the first floor portion including a plurality of individual units on the site is automatically designed.
  • step S35 based on the acquired site information, the group definition information obtained (designated) with reference to the group definition information (building ratio, floor area ratio, oblique line regulation, height restriction, shadow regulation, etc.) within the limits, hierarchical blocks including a plurality of individual units are stacked to automatically design a building. There are various ways to accommodate a building within the limits of group stipulation information.
  • the building-definable space is obtained from the group regulation information and automatically designed to be accommodated therein, or after the automatic design, the individual unit corresponding to the portion protruding from the building-able space is deleted.
  • automatic design may be performed up to the limits of the building coverage ratio and the floor area ratio.
  • FIG. 25 is a block diagram showing an outline of an automatic CAD design system according to an embodiment of the present invention.
  • the automatic CAD design system 200 includes a control unit (CPU, processor) 210, a storage unit 220, an input unit IN, an output unit OUT, a communication unit COM, and a display unit DIS.
  • the control unit 210 includes site information that defines the site (area, shape, direction, roadway status, corner information, geographical information, etc.), and building type information (for example, one-room apartment type, 1K type, 2LDK type, Office type, hall type, store type, hotel type, composite type including a plurality of the above types, etc.).
  • the storage unit 220 includes group definition information GRI including at least a floor area ratio, and individual unit information UI (eg, 1K, 2LDK, meeting room, office) that defines at least one individual unit associated with each building type information. , Reception rooms, machine rooms, elevators, elevator rooms, sewage units, parking equipment units, bicycle parking facility units, staircases, roofs, rooftops, floors, foundations and other unit types).
  • GRI group definition information
  • individual unit information UI eg, 1K, 2LDK, meeting room, office
  • the control unit 210 further includes an extraction unit EXT, a space calculation unit SPC, and an automatic design unit AUD.
  • the extraction unit EXT extracts group specification information applied to the site specified by the site information.
  • the space calculation unit SPC refers to the extracted group provision information (building coverage ratio, floor area ratio, oblique line regulation, height restriction, shadow restriction, etc.) of building that can be built on the site. Find possible space.
  • the automatic design unit AUD automatically designs a building including a plurality of individual units in the possible existence space with reference to at least a part of the extracted group definition information.
  • the acquisition unit ACQ receives geographical information (for example, from a geographical information server GIS that provides geographical information based on a geographical search key such as an address, latitude / longitude, and region name via the communication unit COM and the network NET. (Including site shape, roadway information, or adjacent site information), and the acquired geographical information can be stored in the storage unit 220, or the stored information can be updated.
  • the acquisition unit ACQ acquires the latest group definition information, single unit information, and the like from the building restriction information server CLS via the communication unit COM and the network NET, and uses them for the extraction processing of the extraction unit EXT, or stores them. It is possible to update the information of the unit 220.
  • control unit 210 further includes an estimate calculation unit EST.
  • the storage unit 220 includes unit unit price information for each individual unit specified in the individual unit information and building unit price information (basic unit price information for basic construction, three-story basic unit price information, and five-story unit price. Unit price information UP including information etc. is further stored.
  • the estimate calculation unit EST calculates the construction cost of the building based on the individual unit included in the building that is automatically designed in the existing space for the building including a plurality of individual units.
  • the storage unit 220 further stores architectural grade information GI that defines a plurality of architectural grades having different costs.
  • the unit price information UP further stores unit unit price information for each individual unit specified for each building grade and building unit price information.
  • the input unit (input receiving unit) IN receives an input of one building grade selected from a plurality of building grades via the mouse MUS and the keyboard KBD.
  • Several architectural grades are several candidates read from the grade information GI (for example, high-grade construction, normal construction, low cost version, exterior tile finish, RC structure, steel structure, foundation pile seismic strengthening version, insulation material strengthening version Are displayed on the display unit DIS, and at least one building grade is selected by the user from these candidate grades.
  • the estimate calculation unit EST calculates the building cost of the building with reference to the unit price information UP based on the individual unit included in the building automatically designed based on the received building grade input.
  • the unit price information UP of the storage unit 220 further includes rental standard unit price information for each individual unit and / or for each region specified in the individual unit information.
  • the rental standard unit price information includes the vacancy rate for each region, the vacancy rate for each room type (ie, for each individual unit), the vacancy rate for each region and for each room type (ie, 2K for A district)
  • the room type includes vacancy rate information that stipulates the vacancy rate 20%, the vacancy rate 7% for the 10 tsubos office type in the B area, etc.
  • the estimate calculation unit EST obtains at least one of the individual units included in the building based on the calculated construction cost, the acquired down payment and the loan interest rate, Calculate a time-series balance plan when renting at the rent specified by the rental standard unit price information obtained based on at least a part of the acquired area or address (and finally outputting as a balance sheet).
  • Vacancy rate information mentioned above By using the et al., It is possible to calculate the high income and expenditure plan of accuracy than in consideration of the vacancy rates by region and room type.
  • the storage unit 220 further stores feasibility rule information FRI that defines a feasibility rule for evaluating the business profitability of a rental business based on a revenue and expenditure plan.
  • Feasibility rules include, for example, numerical values, evaluation indices, evaluation points, evaluation grades, evaluation indices and evaluation point indices for the ratio of loan amount to construction cost, loan interest rate, investment efficiency (ratio of return on investment), etc. This is a set of numerical evaluation values for business feasibility.
  • the estimate calculation unit EST evaluates the business profitability of the balance plan calculated based on the feasibility rule information FRI. For example, if the evaluation points are 70 points for the ratio of loan amount to construction cost, loan interest rate, investment efficiency (ratio of return on investment), etc., the probability of business success is 80% (the risk of business failure is 20%) Risk assessment in the form of).
  • the storage unit 220 further stores a plurality of patterned CAD information PCI for the first floor of a building including a plurality of individual units.
  • the input unit IN receives designation of one piece of patterned CAD information selected from the plurality of pieces of patterned CAD information PCI, and the automatic design unit AUD receives at least one of the group definition information extracted based on the received patterned CAD information.
  • a hierarchy including at least a part of the patterned CAD information is sequentially stacked to automatically design a building in the existence space.
  • the automatic design unit AUD inspects whether the building is accommodated in the space where the building can exist after building the building by sequentially stacking the hierarchy up to the limit of the floor area, and if there is an overhanging part, It is also possible to automatically design by deleting individual units corresponding to the part.
  • the building automatically designed by this system is 3D CAD data, it can be output to the 3D printer 3DP and molded as a 3D model.
  • the three-dimensional CAD data of the building is full color, it is possible to obtain a full color three-dimensional model with the three-dimensional printer 3DP.
  • FIG. 26 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG.
  • the estimate of the building automatically designed by this system is calculated.
  • the storage unit 220 has unit unit price information for each individual unit specified in the individual unit information and building unit price information (basic unit price information for basic construction, three-story basic unit price. Unit price information UP including information, 5-story unit price information, etc.) is further stored.
  • the estimate calculation unit EST calculates the building cost of the building based on the individual unit included in the building that is automatically designed in the existing space for the building including a plurality of individual units. To do.
  • it is preferable to include various expenses such as a building construction cost of the building, an accompanying equipment construction cost, and a common cost in the construction cost.
  • the storage unit 220 further stores architectural grade information GI that defines a plurality of architectural grades having different costs.
  • the unit price information UP further stores unit unit price information for each individual unit specified for each building grade and building unit price information.
  • the input unit (input receiving unit) IN receives an input of one building grade selected from a plurality of building grades via the mouse MUS and the keyboard KBD.
  • Several architectural grades are several candidates read from the grade information GI (for example, high-grade construction, normal construction, low cost version, exterior tile finish, RC structure, steel structure, foundation pile seismic strengthening version, insulation material strengthening version Are displayed on the display unit DIS, and at least one building grade is selected by the user from these candidate grades.
  • the estimate calculation unit EST calculates the building cost of the building with reference to the unit price information UP based on the individual unit included in the building automatically designed based on the received building grade input. Based on the selected building grade, the building may be automatically redesigned in the form of replacing, adding, or deleting individual units corresponding to the building grade, but only the building cost may be recalculated.
  • FIG. 27 is an explanatory diagram showing a plurality of patterned CAD information PCI for the first floor of a building including a plurality of individual units.
  • a staircase type template TP1 including a staircase STR, a one-way corridor type template TP2, a middle corridor type template TP3, a twin doll type template TP4, a core type (central staircase type) template TP5, A void type (central open space type) template TP6 and the like are included.
  • the user selects a template suitable for the site shape and conditions from these templates, and manually places it on the site on the 3D CAD drawing, or performs automatic placement by the system.
  • this system automatically checks the stacking, layering ratio, building ratio such as occupancy ratio, etc., single rules such as evacuation routes, etc., and automatically deletes warnings or parts of CAD objects that violate the rules automatically.
  • Automatic design to meet the regulations by reducing the size, manual editing by the user, and subsequent processing such as approximate cost estimation. That is, by using such a template, it is possible to allow the user to select only the first layer and execute a partial automatic design process that is performed on the system side after that.
  • a balcony or the like is not shown, but it is preferable to include CAD data (objects) such as a balcony, an entrance in a living room, a fitting, a unit bath, a toilet, and a kitchen in a template.
  • FIG. 28 is an explanatory diagram for explaining that a building is automatically designed according to given information and conditions.
  • a block for one layer, BLK 200 selected from a template or automatically designed from various conditions is arranged on the site SITE 200.
  • the building OBJ200-1 is constructed by automatic design of the block BLK200, the block BLK200-2, and the block BLK200-3 and the three-story building within the range of the building space PV-a.
  • the building OBJ200 is a three-story building in which the north side of the block is cut out with a slanted line NTL in the range of the building space PV-b cut out with a slanted line NTL with respect to the north side adjacent land NN. It is a thing.
  • the present system can automatically construct a building suitable for the site according to the given site conditions.
  • FIG. 29 is an explanatory diagram for explaining that a building including an accompanying facility is automatically designed according to given information and conditions.
  • site SITE 210 a block for one layer selected from a template or automatically designed from various conditions such as site information, selected building type and group definition information, BLK 210 is arranged.
  • the building OBJ 210 is a three-story building constructed by automatic design by building up blocks in the range of the building space PV-c.
  • accompanying facilities are also added by automatic design. That is, the automatic design unit AUD of this system automatically arranges the multistory parking lot PK210 and the bicycle parking facility PK210-C in an empty area where no buildings are installed in the site SITE210.
  • this system may require the installation of a predetermined number of parking lots and bicycle parking facilities according to the conditions as a group rule, and this system uses individual storage stored in the storage unit according to such rules. It is possible to automatically design a building OBJ210-1 that complies with the group regulations by extracting appropriate ones from the three-dimensional parking lot unit and the bicycle parking unit, and automatically arranging them in the vacant area in the site. . In addition, when installing certain parking lots or bicycle parking lots, there are cases where there is a reduction in floor area ratio or a reduction in occupancy ratio, but this system can perform automatic design that applies such relaxation laws.
  • ancillary facilities include various types such as sewage treatment facilities, water supply facilities (pumps, tanks, etc.), distribution rooms, electrical rooms, disaster prevention facilities, elevator rooms, and machine rooms.
  • FIG. 30 is a schematic diagram for explaining a process of enlarging the building object (individual unit) or increasing the thickness in order to check whether the regulations such as the oblique line regulation, the building coverage ratio, the setback, and the height restriction are cleared.
  • a building object OBJ230-1 that can be accommodated in a buildable space PV-a set in the site SITE230-1 is required by automatic design.
  • the size is smaller than the actual building by the wall thickness. In such a case, there is a risk of spilling out of the actual building space in violation of regulations such as oblique line regulation, building coverage ratio, setback, and height restriction.
  • the building object OBJ230-1 is equivalent to the wall thickness (for example, the outer wall is 30 mm and the roof portion is 50 mm).
  • Etc. can be arbitrarily set according to the type of building, grade, type of individual unit, etc.) to make it a building object OBJ230-2. It is possible to accurately check whether the building space PV-a is entered or not protruding. Or, by adding the slice layer object OBJ230-SL corresponding to the wall thickness only to the outer part of the building object OBJ230-1, to make the building object OBJ230-3, the diagonal line regulation etc. are cleared? It is possible to accurately check whether or not.
  • FIG. 31 is a schematic diagram showing a state in which piles are automatically designed on the virtual support layer according to the ground survey.
  • This system can construct such pile objects by automatic design and calculate the construction cost including the construction cost.
  • the building object OBJ 240 that can be accommodated in the building space PV-c set in the site SITE 240 is required by automatic design.
  • the present system automatically determines whether or not the building requires a pile on the support layer, based on the weight of the building object OBJ240, the structure type, and the like.
  • the weight xx tons or more, or the reinforced concrete 3rd floor or more is determined based on the criteria that a pile is necessary. If it is determined that stakeout to the support layer is necessary, the ground data of the relevant area or neighboring area is searched from the site information with an external server or storage unit, and the corresponding ground data (or bowling data) is acquired. To do. Then, as shown in the figure, based on the ground data, a virtual support layer SPT 240 is constructed at the lower part of the site (that is, the lower part of the building object).
  • the virtual support layer preferably has a thickness of 5 meters or more and an N value of 50 or more.
  • This system automatically designs the pile PIN 240 that supports the building object OBJ 240 to be driven into the virtual support layer SPT 240 based on a predetermined standard (pile pitch, every other meter, etc.).
  • the construction cost of such piles may account for 20% to 20% of the total construction cost, so it is possible to include the necessary pile cost in the total construction cost when the building on the site is built Is very important.
  • FIG. 32 is a flowchart showing an example of processing executed in the automatic CAD design system.
  • Pile work is not necessary when the need for piles is scarce in a light building such as a wooden house, but in the case of heavy buildings such as reinforced concrete such as the 8th floor, it has a certain level of support. Pile work on the strata is essential and the construction cost is high.
  • This system can automatically design such pile driving costs corresponding to the ground of the site and the building.
  • the acquisition unit ACQ acquires corresponding ground data from an external server or storage unit based on site information (geographic information such as an address) that defines the site.
  • site information geoographic information such as an address
  • a virtual support layer is set at the lower part of the site based on the corresponding ground data and boring data.
  • step S63 a pile (individual unit) necessary to support the building with the virtual support layer is obtained, and the obtained pile is added as an appendage of the CAD object of the building.
  • the required number of piles, pile pitch, pile thickness, etc. are stored in a predetermined standard (stored in the storage unit) based on factors such as the expected earthquake resistance and the weight and structure of building objects obtained by automatic design. ) Automatically.
  • step S64 the construction cost of the building is calculated based on the individual unit including the “pile” included in the automatically designed building.
  • pile length such as the length of 3m embedded in the support layer from the building
  • unit price per pile length such as the length of 3m embedded in the support layer from the building
  • construction unit price per pile length such as the length of 3m embedded in the support layer from the building
  • construction unit price per pile length such as the number of 3m embedded in the support layer from the building
  • pile length such as the length of 3m embedded in the support layer from the building
  • unit price per pile length such as the length of 3m embedded in the support layer from the building
  • construction unit price per pile length such as the length of 3m embedded in the support layer from the building
  • construction unit price per pile length such as the number of piles obtained by automatic design (in some cases, grades and materials of piles)
  • building blocks are automatically generated by entering site information by tracing an electronic map and then determining a residence type (building type information).
  • a planned site map is obtained by tracing (designating) a desired area of an electronic map. This planned site map becomes the input data to this system.
  • a residential type such as a studio type or family type is specified using this planned site map as site information, this system automatically creates building blocks, reveals the approximate floor area, number of houses, etc. A rough estimate is made.
  • site information is input by tracing an electronic map, and then a building block (block for one layer) is automatically generated by determining a residence type (building type information).
  • a building block block for one layer
  • determining a residence type building type information
  • FIG. 33 is a schematic diagram for explaining the screen interface of this system. As shown in the figure, according to this system, building blocks (blocks for one layer) are automatically generated by designating a residence type as various conditions, and a building is automatically designed by stacking them. It is possible.
  • 34 and 35 are schematic diagrams for explaining the screen interface of this system.
  • a building is designated by specifying a patterned building type (building template), placing it on the site, and stacking it as building blocks (blocks for one layer). Automatic design is possible.
  • FIG. 36 is a schematic diagram for explaining the screen interface of this system. As shown in the figure, this system can edit a building constructed by automatic design. By editing, it is possible to effectively utilize the undigested volume ratio or increase the floor height until the height restriction allows.
  • FIG. 37 is a schematic diagram for explaining the screen interface of this system.
  • a business plan including an estimated cost estimate for an automatically designed building, a loan plan, a budget plan, a rental plan, and a balance plan.
  • the rental plan it is possible to extract the rental income corresponding to the property, the grade, and the floor plan from the address of the site information and use the rental income data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Computational Mathematics (AREA)
  • Architecture (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

This automatic CAD design system (100; 200) comprises: an acquisition unit (ACQ) that acquires building type information and site information that defines a site; a storage unit (120; 220) that stores community rule information and individual unit information that defines an individual unit; an extraction unit (EXT) that, on the basis of the acquired site information, extracts the community rule information to be applied to the site defined by said site information; a space calculation unit (SPC) that finds an existable space, which is the space in which a building allowed to be built on said site can exist, on the basis of the acquired site information and by referencing the extracted community rule information (building-to-land ratio, floor area ratio, setback regulation, height restriction, sun/shadow regulation, etc.); and an automatic design unit (AUD) that automatically designs, within said existable space, a building including a plurality of individual units on the basis of the acquired building type information and by referencing at least a portion of the extracted community rule information.

Description

自動CAD設計システム、自動CAD設計方法および記憶媒体Automatic CAD design system, automatic CAD design method, and storage medium
 本発明は、自動CAD設計システム、自動CAD設計方法および自動CAD設計プログラムに関し、特に、敷地に適した建築物の構造や構成を自動的に規定する自動CAD設計システム、自動CAD設計方法および自動CAD設計プログラムに関するものである。 The present invention relates to an automatic CAD design system, an automatic CAD design method, and an automatic CAD design program. It relates to the design program.
関連出願へのクロスリファレンスCross-reference to related applications
 本願は、日本国特許出願第2012-099286号(2012年4月24日出願)の優先権の利益を主張し、これの全内容を参照により本願明細書に取り込むものとする。 This application claims the benefit of priority of Japanese Patent Application No. 2012-099286 (filed on April 24, 2012), the entire contents of which are incorporated herein by reference.
 従来、建築業者(建設業者、工務店、マンション開発業者(デベロッパー)および、住宅販売会社などを含む)における営業スタッフの営業手法の1つとして、担当する営業地域を歩いて空き地や遊休地、或いは、駐車場などのような新規の住宅やビルなどの建築に適した土地を「売り込み先候補地」として見つけ出すという作業がある。候補地を見つけた後、営業スタッフは会社に戻り、当該候補地の住宅地図や公図などを入手し、社内の設計スタッフに候補地に建てる建築物のラフな平面図や立面図の作成を依頼する。或いは、需要な売り込み先候補地の場合には、「パース図」などの完成予想図を作成することもある。依頼を受けた設計スタッフは、CADなどの製図ソフトウェアを用いて候補地に適したラフな図面などを作成する。このようなラフ図面が完成してはじめて営業スタッフは、候補地の所有者である施主の所に図面を携えて訪問し、本来の営業活動を開始することになる。 Traditionally, as one of the sales methods of sales staff in contractors (including contractors, construction companies, condominium developers (developers), and housing sales companies), walking in the sales area in charge, There is a work of finding a land suitable for construction such as a new house such as a parking lot or a building as a “sale candidate site”. After finding the candidate site, the sales staff returns to the company, obtains a housing map and public maps of the candidate site, and creates a rough plan and elevation of the building to be built at the candidate site in the company's design staff Request. Alternatively, in the case of a demanded sales destination candidate site, a completion forecast map such as a “perspective map” may be created. Upon receiving the request, the design staff creates a rough drawing suitable for the candidate site by using drawing software such as CAD. Only after such a rough drawing is completed, the sales staff visits the owner, who is the owner of the candidate site, with the drawing and starts the original sales activities.
 このように、従来型の営業手法では、営業スタッフの候補地の捜索作業、設計スタッフの図面の作成作業、営業スタッフの営業活動という3段階の作業が必要であった。また、営業スタッフによる候補地探しは基本的に徒歩で回る必要があるため、非常に効率が悪く、必ずしも候補地を探しあてることもできない。候補地探しのため、本来業務である施主候補者へのセリングに費やす時間が不足したり、徒歩での候補地探しの効率の悪さによる候補地不足のため、セリングの機会も不足したりするという事態に至っている。また、候補地に建築する建物の設計は、営業スタッフ以外の専門の設計スタッフを必要とするため、これも複数のスタッフの作業になるため効率が悪い。 As described above, the conventional sales method requires three stages of work: searching for candidate locations for sales staff, creating drawings for design staff, and sales activities for sales staff. In addition, searching for a candidate site by a sales staff basically requires walking, so it is very inefficient and cannot always search for a candidate site. There is not enough time for selling to the owner candidate who is the original job for searching for candidate sites, or there is insufficient opportunity for selling due to lack of candidate sites due to inefficiency of searching for candidate sites on foot The situation has been reached. In addition, the design of the building to be constructed in the candidate site requires specialized design staff other than the sales staff, which is also inefficient because it is also a work of a plurality of staff.
 このような営業スタッフの労力や設計コストを低減し、営業活動を支援するCADシステムとして、本出願人により「CAD情報生成システム、その方法およびプログラム」(特許文献1を参照されたい。)という技法が開発されている。この従来技術は、候補地を探し出すという作業および候補地に適したラフなCAD図面やラフなコスト計算は可能である。 As a CAD system that reduces the labor and design cost of sales staff and supports sales activities, the present applicant assigns a technique called “CAD information generation system, method and program” (refer to Patent Document 1). Has been developed. This prior art can find a candidate site and rough CAD drawings and rough cost calculation suitable for the candidate site.
 また、設計した建築物が建築可能空間に収容可能か否かを簡易に判別するために「建築物の設計方法および該設計方法を用いた建築物の製造方法」(特許文献2を参照されたい。)という技法が開発されている。 Further, in order to easily determine whether or not the designed building can be accommodated in the building space, “a building design method and a building manufacturing method using the design method” (see Patent Document 2) )) Has been developed.
特開2011-198293号公報JP 2011-198293 A 特開平11-236770号公報Japanese Patent Laid-Open No. 11-236770
 しかしながら、特許文献1による従来技術では、建築物の部屋割りや内部構造が不明であるため、施主候補者にとっても実際の最終建築物のイメージを持つことが難しく、さらには、実際の事業収益性を判断するための実用的なコスト試算(フィジビリティ試算)などには適しない。即ち、実用的なコスト試算や部屋割りが済んだ建築物3D表示(2D表示、パース図など)は、実際に設計士が図面を作成した後でなければ不可能である。このように、この従来技術は営業活動支援システムとして依然として機能不足である。 However, in the prior art disclosed in Patent Document 1, since the room layout and internal structure of the building are unknown, it is difficult for the owner candidate to have an image of the actual final building, and further, the actual business profitability It is not suitable for practical cost estimation (feasibility estimation) to judge In other words, 3D display of buildings (2D display, perspective view, etc.) for which practical cost estimation and room allocation have been completed is impossible only after the designer has actually created the drawing. As described above, this conventional technology still lacks functions as a sales activity support system.
 また、特許文献2による従来技術では、設計した建築物が建築可能空間に収容可能か否かを判定することは可能であるが、判定対象の建築物を自動設計したり、事業成功可能性(即ち、採算性)を見積もったり、事業成功可能性の判断に資するのに十分裏づけをもった数値を出力したり、判定したりする機能はない。即ち、この従来技術では、設計した建築物の内部構造や付随する施設は全く考慮せずに、当該敷地に候補の外枠だけの建築物を収容可能か否かを判定する。よって、当該従来技術では、建築物の内部構造や部屋割りなどを考慮した実用に使用し得るような、見積り、積算、事業成功可能性の判定などを行うことは極めて困難である。或いは、避難経路が法律に準拠しているのかを考慮した自動設計を行うことが不可能であった。また、現在では、フルカラーの建築用の立体プリンタが実用化されているが、これに出力して立体模型を作製できようなCADデータを自動設計することも従来技術では困難であった。 Moreover, in the prior art by patent document 2, although it is possible to determine whether the designed building can be accommodated in a building space, the building to be judged can be designed automatically, or the possibility of business success ( In other words, there is no function for estimating (profitability), outputting a numerical value with sufficient support to contribute to the determination of business success possibility, or determining. That is, in this prior art, it is determined whether or not a building having only a candidate outer frame can be accommodated in the site without taking into consideration the internal structure of the designed building and the accompanying facilities. Therefore, it is extremely difficult for the related art to perform estimation, integration, determination of business success, etc. that can be used practically in consideration of the internal structure of the building, room allocation, and the like. Or it was impossible to perform automatic design considering whether the evacuation route complies with the law. At present, full-color architectural 3D printers have been put into practical use, but it has been difficult in the prior art to automatically design CAD data that can be output to this to produce a 3D model.
 そこで、本発明の目的は、上述した諸課題を解決した自動CAD設計システム、自動CAD設計方法および自動CAD設計プログラムを提供することである。 Therefore, an object of the present invention is to provide an automatic CAD design system, an automatic CAD design method, and an automatic CAD design program that solve the above-described problems.
 上述した諸課題を解決すべく、本発明の一実施態様による自動CAD設計システム(装置)は、
 敷地を規定する敷地情報(面積、形状、方位、接道状況、角地情報、地理的情報など)、および、建築物タイプ情報(例えば、ワンルームマンションタイプ、1Kタイプ、2LDKタイプ、事務所タイプ、ホールタイプ、店舗タイプ、ホテルタイプ、上記タイプを複数含む複合タイプなど)を取得する取得部と、
 少なくとも容積率を含む集団規定情報、および、各建築物タイプ情報に関連付けられた少なくとも1つの個別ユニットを規定する個別ユニット情報(例えば、1K、2LDK、会議室、事務所、応接室、機械室、エレベータ、エレベータ室、下水ユニット、駐車設備ユニット、駐輪施設ユニット、階段、屋根、屋上、床面、基礎などのユニットタイプ)を格納する記憶部と、
 前記取得した敷地情報に基づき、該敷地情報で規定される敷地に適用される集団規定情報を抽出する抽出部と、
 前記取得した敷地情報に基づき、抽出した集団規定情報(建蔽率、容積率、斜線規制、高さ制限、日影規制など)を参照して、前記敷地上に建築可能な建築物の存在可能空間を求める空間計算部と、
 前記取得した建築物タイプ情報に基づき、抽出した集団規定情報の少なくとも一部を参照して、複数の個別ユニットを含む建築物を前記存在可能空間内で自動設計する自動設計部と、
を有する。
In order to solve the above-described problems, an automatic CAD design system (apparatus) according to an embodiment of the present invention includes:
Site information that defines the site (area, shape, orientation, roadway status, corner lot information, geographical information, etc.) and building type information (eg, studio apartment type, 1K type, 2LDK type, office type, hall) Type, store type, hotel type, composite type including multiple types, etc.)
Group definition information including at least a floor area ratio, and individual unit information that defines at least one individual unit associated with each building type information (eg, 1K, 2LDK, conference room, office, reception room, machine room, Storage units for storing elevators, elevator rooms, sewage units, parking equipment units, bicycle parking facility units, stairs, roofs, rooftops, floors, foundations, etc.)
Based on the acquired site information, an extraction unit that extracts group specification information applied to the site specified by the site information;
Based on the acquired site information, with reference to the extracted group regulation information (building coverage ratio, floor area ratio, oblique line regulation, height restriction, shadow restriction, etc.), the possible space of buildings that can be built on the site is determined. A spatial calculation unit to be obtained;
Based on the acquired building type information, referring to at least a part of the extracted group definition information, an automatic design unit that automatically designs a building including a plurality of individual units in the existing space,
Have
 また、本発明の別の実施態様による自動CAD設計システム(装置)は、
 前記敷地情報が、前記敷地の地理的情報(用途地域情報、住所、緯度経度情報、方位、方角など)、および/または、前記敷地の接道情報(接道面の長さ、接している道路の幅など)を含み、
 前記抽出部が、
前記取得した、前記敷地の地理的情報、および/または、前記敷地の接道情報を含む敷地情報に基づき、該敷地情報で規定される敷地に適用される集団規定情報を抽出する、
ことを特徴とする。
 ここで、敷地情報は、GPS機能部を有する携帯端末(携帯電話、スマートフォンなど)で敷地の幾つかの地点でGPS測量して、敷地の地理的情報(緯度経度高度、これらの情報を演算した敷地面積、方位など)を取得することが好適である。その際には、GPS衛星のみならずの地上のGPS基地局や携帯電話の基地局も活用して、測位精度を向上させることが好適である。さらに敷地のみならず、敷地に接している道路の情報も道路上で幾つかの地点を取得するGPS測量で取得することが好適である。
An automatic CAD design system (apparatus) according to another embodiment of the present invention includes:
The site information includes geographical information of the site (use area information, address, latitude / longitude information, direction, direction, etc.) and / or contact information of the site (length of road surface, road in contact with the site) Including width)
The extraction unit is
Based on the acquired geographical information of the site and / or site information including the road access information of the site, the group specification information applied to the site specified by the site information is extracted.
It is characterized by that.
Here, the site information was GPS surveyed at several points on the site with a mobile terminal (cell phone, smartphone, etc.) having a GPS function unit, and the geographical information of the site (latitude / longitude altitude, these information were calculated) It is preferable to acquire a site area, a direction, and the like. In that case, it is preferable to improve the positioning accuracy by utilizing not only GPS satellites but also ground GPS base stations and mobile phone base stations. Furthermore, it is preferable to acquire not only the site but also information on the road in contact with the site by GPS surveying that acquires several points on the road.
 また、本発明のさらに別の実施態様による自動CAD設計システム(装置)は、
 前記個別ユニットが、
中廊下ユニット(例えば、中廊下の寸法情報など)と、少なくとも1つの部屋を含む部屋ユニット(例えば、1K、2LDK,3LDKなどの個別住居、事務所、ホテルの居室、会議室など)とを含み、
 前記自動設計部は、
前記敷地情報で規定される敷地の面積が、所定の数値未満のときは、
敷地の形状(または存在可能空間)に基づき建築物外周形状を作成し、建築物の平面的な重心を求め、該重心を通るように前記中廊下ユニットを配置し、前記部屋ユニットを前記中廊下ユニットの長手方向の両辺の少なくとも一部に沿って順次配置して建築物を自動設計する(好適には存在可能空間に入るように)、
ことを特徴とする。
An automatic CAD design system (apparatus) according to still another embodiment of the present invention includes:
The individual unit is
Includes a central corridor unit (for example, dimension information of the central corridor) and a room unit including at least one room (for example, an individual residence such as 1K, 2LDK, and 3LDK, an office, a hotel room, a conference room, etc.) ,
The automatic design unit
When the area of the site specified by the site information is less than a predetermined value,
Create a building outer peripheral shape based on the site shape (or space where it can exist), determine the planar center of gravity of the building, place the central corridor unit through the center of gravity, and place the room unit in the central corridor Automatically designing the building by arranging it sequentially along at least a part of both sides in the longitudinal direction of the unit (preferably so as to enter the existence space);
It is characterized by that.
 また、本発明のさらに別の実施態様による自動CAD設計システム(装置)は、
 前記個別ユニットが、
バルコニーユニット(例えば、バルコニーの基本形状および寸法情報など)と、部屋ユニット(例えば、1K、2LDK,3LDKなどの個別住居、十坪事務所、20坪事務所など)とを含み、
 前記自動設計部は、
前記敷地情報で規定される敷地の面積が、所定の数値以上のときは、敷地の少なくとも一辺(好適には接道辺、公園や空き地などの見晴がよい隣接地に面した辺、或いは、南向きの一辺)に沿って前記バルコニーユニットを配置し、前記部屋ユニットを前記バルコニーユニットの長手方向の敷地内側の一辺の少なくとも一部に沿って順次配置して建築物を自動設計する(好適には存在可能空間に入るように)、
ことを特徴とする。
An automatic CAD design system (apparatus) according to still another embodiment of the present invention includes:
The individual unit is
Including a balcony unit (for example, basic shape and dimension information of the balcony) and a room unit (for example, individual residences such as 1K, 2LDK, 3LDK, Totsubo office, 20 tsubo office, etc.)
The automatic design unit
When the area of the site stipulated by the site information is equal to or greater than a predetermined value, at least one side of the site (preferably a side facing a neighboring area with a good view such as a roadside, a park or a vacant land, or the south The balcony unit is arranged along one side of the direction, and the room unit is sequentially arranged along at least a part of one side inside the site in the longitudinal direction of the balcony unit to automatically design the building (preferably So that it can enter the possible space)
It is characterized by that.
 また、本発明のさらに別の実施態様による自動CAD設計システム(装置)は、
 前記取得部が、
前記敷地情報に規定される敷地の地理的情報に基づき、外部のサーバから該敷地に適用される集団規定情報をさらに取得し、
 前記抽出部が、
前記取得した集団規定情報を、該敷地に適用される集団規定情報として抽出する、
ことを特徴とする。
An automatic CAD design system (apparatus) according to still another embodiment of the present invention includes:
The acquisition unit
Based on the geographical information of the site specified in the site information, further obtaining group specification information applied to the site from an external server,
The extraction unit is
Extracting the acquired group definition information as group definition information applied to the site;
It is characterized by that.
 また、本発明のさらに別の実施態様による自動CAD設計システム(装置)は、
 前記個別ユニットが、
避難階段ユニットと、少なくとも1つの部屋と玄関を含む部屋ユニットと、部屋ユニットの玄関と別の部屋ユニットの玄関とを接続する通路ユニットとを含み、
 前記記憶部が、
部屋ユニットの玄関から通路ユニットを経た避難階段ユニットまでの距離(例えば、30m以内、40m以内、準耐火のホテルでは50m以内など)、または、建築物の条件に応じて規定される避難階段ユニットの個数(例えば、ホテルは2個以上、共同住宅の5階以上は2個以上、階数や延床面積などに応じて設定された個数など)を規定する避難経路設定情報を含む単体規定情報をさらに格納し、
 前記自動設計部が、
自動設計された建築物の各部屋ユニットの各玄関から避難経路である避難階段ユニット(非常階段)までの距離が前記避難経路設定情報で規定された距離を満たすように、および/または、建築物の条件に応じて規定される避難階段ユニットの個数を満たすように、前記建築物に少なくとも1つの非常階段ユニットを配置する、
ことを特徴とする。
An automatic CAD design system (apparatus) according to still another embodiment of the present invention includes:
The individual unit is
An evacuation staircase unit, a room unit including at least one room and an entrance, and a passage unit connecting the entrance of the room unit and the entrance of another room unit,
The storage unit
The distance from the entrance of the room unit to the evacuation staircase unit via the passage unit (for example, within 30 m, within 40 m, or within 50 m at semi-refractory hotels), or the evacuation staircase unit specified according to the building conditions Single unit information including evacuation route setting information that defines the number (for example, two or more hotels, two or more apartment buildings, two or more, the number set according to the number of floors, total floor area, etc.) Store and
The automatic design unit
The distance from each entrance of each room unit of the automatically designed building to the evacuation staircase unit (emergency staircase) as an evacuation route satisfies the distance specified by the evacuation route setting information and / or the building Arranging at least one emergency stair unit in the building so as to satisfy the number of evacuation stair unit defined according to the conditions of
It is characterized by that.
 また、本発明のさらに別の実施態様による自動CAD設計システム(装置)は、
 前記記憶部が、
複数の個別ユニットを含む建築物の1階分の複数のパターン化CAD情報をさらに格納し、
 前記自動CAD設計システムが、
前記複数のパターン化CAD情報から選択される1つのパターン化CAD情報の指定を受け付ける第一の入力受付部をさらに有し、
 前記自動設計部が、
前記受け付けたパターン化CAD情報に基づき、抽出した集団規定情報の少なくとも一部を参照して、前記パターン化CAD情報の少なくとも一部を含む階層を順次積み上げて建築物を前記存在可能空間内で自動設計する、
ことを特徴とする。
An automatic CAD design system (apparatus) according to still another embodiment of the present invention includes:
The storage unit
Further storing a plurality of patterned CAD information for the first floor of a building including a plurality of individual units,
The automatic CAD design system is
A first input receiving unit that receives designation of one piece of patterned CAD information selected from the plurality of pieces of patterned CAD information;
The automatic design unit
Based on the received patterned CAD information, referring to at least a part of the extracted group definition information, a hierarchy including at least a part of the patterned CAD information is sequentially stacked to automatically build a building in the existence space. design,
It is characterized by that.
 また、本発明のさらに別の実施態様による自動CAD設計システム(装置)は、
 前記記憶部が、
個別ユニット情報に規定された個別ユニット毎のユニット単価情報、および/または、建築単価情報(例えば、基礎工事の坪単価情報、3階建ての基本坪単価情報、5階建ての坪単価情報、付随する設備費用、設備工事費など)をさらに格納し、
 前記自動CAD設計システムが、
複数の個別ユニットを含む建築物を前記存在可能空間内で自動設計された建築物に含まれる個別ユニットに基づき、前記ユニット単価情報、および/または、前記建築単価情報を参照して、該建築物の建築費用を計算する見積算出部をさらに有する、
ことを特徴とする。
An automatic CAD design system (apparatus) according to still another embodiment of the present invention includes:
The storage unit
Unit unit price information for each individual unit specified in the individual unit information and / or building unit price information (for example, basic unit price information for basic construction, three-story basic unit price information, five-story basic unit price information, accompanying Store the equipment costs, equipment construction costs, etc.)
The automatic CAD design system is
A building including a plurality of individual units is referred to the unit unit price information and / or the building unit price information based on the individual unit included in the building that is automatically designed in the existing space, and the building An estimate calculation unit for calculating the construction cost of
It is characterized by that.
 また、本発明のさらに別の実施態様による自動CAD設計システム(装置)は、
 前記記憶部が、
コストおよび/または仕様が異なる複数の建築グレードを規定する建築グレード情報、前記建築グレード別に規定された個別ユニット毎のユニット単価情報、および/または、建築単価情報をさらに格納し、
 前記自動CAD設計システムが、
 前記複数の建築グレードから選択される1つの建築グレードの入力を受け付ける第二の入力受付部をさらに有し、
 前記自動設計部が、
受け付けた建築グレードの入力に基づき、自動設計された建築物に含まれる個別ユニットに基づき、該建築物の建築費用を計算する、
ことを特徴とする。
An automatic CAD design system (apparatus) according to still another embodiment of the present invention includes:
The storage unit
Further storing building grade information defining a plurality of building grades having different costs and / or specifications, unit unit price information for each individual unit defined by the building grade, and / or building unit price information;
The automatic CAD design system is
A second input receiving unit that receives an input of one building grade selected from the plurality of building grades;
The automatic design unit
Calculate the building cost of the building based on the individual units included in the automatically designed building based on the accepted building grade input.
It is characterized by that.
 また、本発明のさらに別の実施態様による自動CAD設計システム(装置)は、
 前記記憶部が、
コストおよび/または仕様が異なる複数の建築グレードを規定する建築グレード情報と、
前記建築グレード別に規定された個別ユニット毎のユニット単価情報、および/または、建築単価情報をさらに格納し
 前記自動CAD設計システムが、
 前記複数の建築グレードから選択される1つの建築グレードの入力を受け付ける第二の入力受付部をさらに有し、
 前記自動設計部が、
受け付けた建築グレードの入力に基づき、建築物の自動設計を実行し、該建築物に含まれる個別ユニットに基づき、該建築物の建築費用を計算する、
ことを特徴とする。
An automatic CAD design system (apparatus) according to still another embodiment of the present invention includes:
The storage unit
Building grade information defining multiple building grades with different costs and / or specifications;
Unit unit price information for each individual unit specified for each building grade and / or building unit price information is further stored, and the automatic CAD design system includes:
A second input receiving unit that receives an input of one building grade selected from the plurality of building grades;
The automatic design unit
Based on the accepted building grade input, execute the automatic design of the building, and calculate the building cost of the building based on the individual units included in the building.
It is characterized by that.
 また、本発明のさらに別の実施態様による自動CAD設計システム(装置)は、
 前記記憶部が、
個別ユニット情報に規定された個別ユニット毎、および/または、地域毎の賃貸標準単価情報をさらに格納し、
 前記取得部が、
建設費用の頭金と、融資金利と、地域或いは住所の少なくとも一部をさらに取得し、
 前記見積算出部が、
計算された建築費用と、取得された頭金と融資金利とに基づき、前記建築物に含まれる個別ユニットの少なくとも1つを、前記取得された地域或いは住所の少なくとも一部に基づき求めた賃貸標準単価情報で規定される賃料で賃した場合の時系列の収支計画を計算する(最終的には収支表として出力する)、
ことを特徴とする。
An automatic CAD design system (apparatus) according to still another embodiment of the present invention includes:
The storage unit
Further store rental unit price information for each individual unit and / or region specified in the individual unit information,
The acquisition unit
Get additional down payment for construction costs, loan interest rates and at least part of the region or address,
The estimate calculation unit
Rent standard unit price for which at least one of the individual units included in the building is determined based on at least a part of the acquired area or address based on the calculated construction cost, the acquired down payment and the loan interest rate. Calculate a time-series balance plan when renting at the rent specified in the information (finally output as a balance sheet)
It is characterized by that.
 また、本発明のさらに別の実施態様による自動CAD設計システム(装置)は、
 前記記憶部が、
収支計画による賃貸事業の事業採算性を評価するためのフィジビリティルールを規定するフィジビリティルール情報をさらに格納し、
 前記見積算出部が、
前記フィジビリティルール情報に基づき前記見積算出部により計算された収支計画の事業採算性を評価する(例えば、事業の成功可能性80%(事業失敗リスクが20%)、95%の成功可能性などの事業の成否をリスク評価する)、
ことを特徴とする。
An automatic CAD design system (apparatus) according to still another embodiment of the present invention includes:
The storage unit
Stores feasibility rule information that defines feasibility rules for evaluating the profitability of rental business based on income and expenditure plans,
The estimate calculation unit
Evaluate the business profitability of the income and expenditure plan calculated by the estimate calculation unit based on the feasibility rule information (for example, business success probability 80% (business failure risk is 20%), 95% success probability, etc. Risk assessment of business success),
It is characterized by that.
 上述したように本発明の解決手段をシステム(装置)として説明してきたが、本発明はこれらに実質的に相当する方法、プログラム、プログラムを記録したコンピュータ可読な記憶媒体としても実現し得るものであり、本発明の範囲にはこれらも包含されるものと理解されたい。なお、下記の方法やプログラムの各ステップは、データの処理においては必要に応じて、CPU、DSPなどの演算処理装置(プロセッサ)を使用するものであり、入力したデータや加工・生成したデータなどを磁気テープ、HDD、メモリなどの記憶装置に格納するものである。 As described above, the solution of the present invention has been described as a system (apparatus). However, the present invention can also be realized as a method, a program, and a computer-readable storage medium recording the program. It should be understood that these are included in the scope of the present invention. Each step of the following methods and programs uses an arithmetic processing unit (processor) such as a CPU or DSP as necessary for data processing. Input data, processed / generated data, etc. Is stored in a storage device such as a magnetic tape, HDD, or memory.
 例えば、本発明の別の態様によるプログラムは、コンピュータを上記各態様の自動CAD設計システムとして機能させる自動CAD設計プログラムとして実現させたものである。或いは、本発明の別の態様による記憶媒体は、上記の自動CAD設計プログラムを格納したコンピュータ可読な記憶媒体として実現させたものである。 For example, a program according to another aspect of the present invention is realized as an automatic CAD design program that causes a computer to function as the automatic CAD design system of each aspect described above. Or the storage medium by another aspect of this invention is implement | achieved as a computer-readable storage medium which stored said automatic CAD design program.
 例えば、本発明を方法として実現させた本発明の別の態様によるコンピュータを用いた自動CAD設計方法は、
 敷地を規定する敷地情報(面積、形状、方位、接道状況、角地情報、地理的情報など)、および、建築物タイプ情報(例えば、ワンルームマンションタイプ、1Kタイプ、2LDKタイプ、事務所タイプ、ホールタイプ、店舗タイプ、ホテルタイプ、上記タイプを複数含む複合タイプなど)を取得する取得ステップと、
 少なくとも容積率を含む集団規定情報、および、各建築物タイプ情報に関連付けられた少なくとも1つの個別ユニットを規定する個別ユニット情報(例えば、1K、2LDK、会議室、事務所、応接室、機械室、エレベータ、エレベータ室、下水ユニット、駐車設備ユニット、駐輪施設ユニット、階段、屋根、屋上、床面、基礎などのユニットタイプ)を格納する格納ステップと、
 前記取得した敷地情報に基づき、該敷地情報で規定される敷地に適用される集団規定情報を抽出する抽出ステップと、
 前記取得した敷地情報に基づき、抽出した集団規定情報(建蔽率、容積率、斜線規制、高さ制限、日影規制など)を参照して、前記敷地上に建築可能な建築物の存在可能空間を求める空間計算ステップと、
 前記取得した建築物タイプ情報に基づき、抽出した集団規定情報の少なくとも一部を参照して、複数の個別ユニットを含む建築物を前記存在可能空間内(建築可能空間内)で自動設計する自動設計ステップと、
を有する。
For example, an automatic CAD design method using a computer according to another aspect of the present invention, in which the present invention is implemented as a method,
Site information that defines the site (area, shape, orientation, roadway status, corner lot information, geographical information, etc.) and building type information (eg, studio apartment type, 1K type, 2LDK type, office type, hall) Type, store type, hotel type, composite type including multiple types, etc.)
Group definition information including at least a floor area ratio, and individual unit information that defines at least one individual unit associated with each building type information (eg, 1K, 2LDK, conference room, office, reception room, machine room, Storage steps for storing elevators, elevator rooms, sewage units, parking equipment units, bicycle parking facility units, stairs, roofs, rooftops, floors, foundations, etc.)
Based on the acquired site information, an extraction step for extracting group definition information applied to the site specified by the site information;
Based on the acquired site information, with reference to the extracted group regulation information (building coverage ratio, floor area ratio, oblique line regulation, height restriction, shadow restriction, etc.), the possible space of buildings that can be built on the site is determined. The required spatial calculation step;
Based on the acquired building type information, automatic design for automatically designing a building including a plurality of individual units in the existing space (in a building space) with reference to at least a part of the extracted group definition information Steps,
Have
 また、本発明の別の実施態様による自動CAD設計方法は、
 前記敷地情報が、前記敷地の地理的情報(用途地域情報、住所、緯度経度情報、方位、方角など)、および/または、前記敷地の接道情報(接道面の長さ、接している道路の幅など)を含み、
 前記抽出ステップが、
前記取得した、前記敷地の地理的情報、および/または、前記敷地の接道情報を含む敷地情報に基づき、該敷地情報で規定される敷地に適用される集団規定情報を抽出する、
ことを特徴とする。
An automatic CAD design method according to another embodiment of the present invention includes:
The site information includes geographical information of the site (use area information, address, latitude / longitude information, direction, direction, etc.) and / or contact information of the site (length of road surface, road in contact with the site) Including width)
The extraction step comprises:
Based on the acquired geographical information of the site and / or site information including the road access information of the site, the group specification information applied to the site specified by the site information is extracted.
It is characterized by that.
 また、本発明のさらに別の実施態様による自動CAD設計方法は、
 前記個別ユニットが、
中廊下ユニット(例えば、中廊下の寸法情報など)と、少なくとも1つの部屋を含む部屋ユニット(例えば、1K、2LDK,3LDKなどの個別住居、事務所、ホテルの居室、会議室など)とを含み、
 前記自動設計ステップは、
前記敷地情報で規定される敷地の面積が、所定の数値未満のときは、敷地の形状(または存在可能空間)に基づき建築物外周形状を作成し、建築物の平面的な重心を求め、該重心を通るように前記中廊下ユニットを配置し、前記部屋ユニットを前記中廊下ユニットの長手方向の両辺の少なくとも一部に沿って順次配置して建築物を自動設計する(好適には存在可能空間に入るように)、
ことを特徴とする。
An automatic CAD design method according to still another embodiment of the present invention includes:
The individual unit is
Includes a central corridor unit (for example, dimension information of the central corridor) and a room unit including at least one room (for example, an individual residence such as 1K, 2LDK, and 3LDK, an office, a hotel room, a conference room, etc.) ,
The automatic design step includes
When the area of the site stipulated by the site information is less than a predetermined numerical value, a building outer peripheral shape is created based on the shape of the site (or a space that can exist), and the planar center of gravity of the building is obtained, The interior corridor unit is arranged so as to pass through the center of gravity, and the room unit is sequentially arranged along at least a part of both sides in the longitudinal direction of the interior corridor unit to automatically design the building (preferably the existence space) )
It is characterized by that.
 また、本発明のさらに別の実施態様による自動CAD設計方法は、
 前記個別ユニットが、
バルコニーユニット(例えば、バルコニーの基本形状および寸法情報など)と、部屋ユニット(例えば、1K、2LDK,3LDKなどの個別住居、十坪事務所、20坪事務所など)とを含み、
 前記自動設計ステップは、
前記敷地情報で規定される敷地の面積が、所定の数値以上のときは、敷地の少なくとも一辺(好適には接道辺、或いは、南向きの一辺)に沿って前記バルコニーユニットを配置し、前記部屋ユニットを前記バルコニーユニットの長手方向の敷地内側の一辺の少なくとも一部に沿って順次配置して建築物を自動設計する(好適には存在可能空間に入るように)、
ことを特徴とする。
An automatic CAD design method according to still another embodiment of the present invention includes:
The individual unit is
Including a balcony unit (for example, basic shape and dimension information of the balcony) and a room unit (for example, individual residences such as 1K, 2LDK, 3LDK, Totsubo office, 20 tsubo office, etc.)
The automatic design step includes
When the area of the site stipulated by the site information is equal to or greater than a predetermined value, the balcony unit is arranged along at least one side of the site (preferably a side of a roadway or a side facing south), The room unit is sequentially arranged along at least a part of one side inside the longitudinal site of the balcony unit to automatically design the building (preferably so as to enter the existence space).
It is characterized by that.
 また、本発明のさらに別の実施態様による自動CAD設計方法は、
 前記取得ステップが、
前記敷地情報に規定される敷地の地理的情報に基づき、外部のサーバから該敷地に適用される集団規定情報をさらに取得し、
 前記抽出ステップが、
前記取得した集団規定情報を、該敷地に適用される集団規定情報として抽出する、
ことを特徴とする。
An automatic CAD design method according to still another embodiment of the present invention includes:
The obtaining step comprises
Based on the geographical information of the site specified in the site information, further obtaining group specification information applied to the site from an external server,
The extraction step comprises:
Extracting the acquired group definition information as group definition information applied to the site;
It is characterized by that.
 また、本発明のさらに別の実施態様による自動CAD設計方法は、
 前記個別ユニットが、
避難階段ユニットと、少なくとも1つの部屋と玄関を含む部屋ユニットと、部屋ユニットの玄関と別の部屋ユニットの玄関とを接続する通路ユニットとを含み、
 前記格納ステップが、
部屋ユニットの玄関から通路ユニットを経た避難階段ユニットまでの距離(30m以内、40m以内、準耐火のホテルでは50m以内など)、または、建築物の条件に応じて規定される避難階段ユニットの個数(ホテルは2個以上、共同住宅の5階以上は2個以上、階数や延床面積などに応じて設定された個数など)を規定する避難経路設定情報を含む単体規定情報をさらに格納し、
 前記自動設計ステップが、
自動設計された建築物の各部屋ユニットの各玄関から避難経路である避難階段ユニット(非常階段)までの距離が前記避難経路設定情報で規定された距離を満たすように、および/または、建築物の条件に応じて規定される避難階段ユニットの個数を満たすように、前記建築物に少なくとも1つの非常階段ユニットを配置する、
ことを特徴とする。
An automatic CAD design method according to still another embodiment of the present invention includes:
The individual unit is
An evacuation staircase unit, a room unit including at least one room and an entrance, and a passage unit connecting the entrance of the room unit and the entrance of another room unit,
The storing step includes
The distance from the entrance of the room unit to the evacuation staircase unit through the passage unit (within 30m, within 40m, within 50m at semi-refractory hotels, etc.), or the number of evacuation staircase units specified according to the building conditions ( The hotel further stores single provision information including evacuation route setting information that defines two or more hotels, two or more apartments on the fifth floor or more, the number set according to the number of floors or total floor area, etc.,
The automatic design step includes
The distance from each entrance of each room unit of the automatically designed building to the evacuation staircase unit (emergency staircase) as an evacuation route satisfies the distance specified by the evacuation route setting information and / or the building Arranging at least one emergency stair unit in the building so as to satisfy the number of evacuation stair unit defined according to the conditions of
It is characterized by that.
 また、本発明のさらに別の実施態様による自動CAD設計方法は、
 前記格納ステップが、
複数の個別ユニットを含む建築物の1階分の複数のパターン化CAD情報をさらに格納し、
 前記自動CAD設計方法が、
前記複数のパターン化CAD情報から選択される1つのパターン化CAD情報の指定を受け付ける第一の入力受付ステップをさらに有し、
 前記自動設計ステップが、
前記受け付けたパターン化CAD情報に基づき、抽出した集団規定情報の少なくとも一部を参照して、前記パターン化CAD情報の少なくとも一部を含む階層を順次積み上げて建築物を前記存在可能空間内で自動設計する、
ことを特徴とする。
An automatic CAD design method according to still another embodiment of the present invention includes:
The storing step includes
Further storing a plurality of patterned CAD information for the first floor of a building including a plurality of individual units,
The automatic CAD design method comprises:
A first input receiving step of receiving designation of one piece of patterned CAD information selected from the plurality of pieces of patterned CAD information;
The automatic design step includes
Based on the received patterned CAD information, referring to at least a part of the extracted group definition information, a hierarchy including at least a part of the patterned CAD information is sequentially stacked to automatically build a building in the existence space. design,
It is characterized by that.
 また、本発明のさらに別の実施態様による自動CAD設計方法は、
 前記格納ステップが、
個別ユニット情報に規定された個別ユニット毎のユニット単価情報、および/または、建築単価情報(基礎工事の坪単価情報、3階建ての基本坪単価情報、5階建ての坪単価情報、付随する設備費用、設備工事費など)をさらに格納し、
 前記自動CAD設計方法が、
複数の個別ユニットを含む建築物を前記存在可能空間内で自動設計された建築物に含まれる個別ユニットに基づき、前記ユニット単価情報、および/または、前記建築単価情報を参照して、該建築物の建築費用を計算する見積算出ステップをさらに有する、
ことを特徴とする。
An automatic CAD design method according to still another embodiment of the present invention includes:
The storing step includes
Unit unit price information for each individual unit specified in the individual unit information, and / or building unit price information (basic construction unit price information, three-story basic unit price information, five-story basis unit price information, and associated equipment Costs, equipment construction costs, etc.)
The automatic CAD design method comprises:
A building including a plurality of individual units is referred to the unit unit price information and / or the building unit price information based on the individual unit included in the building that is automatically designed in the existing space, and the building An estimate calculating step for calculating the construction cost of
It is characterized by that.
 また、本発明のさらに別の実施態様による自動CAD設計方法は、
 前記格納ステップが、コストおよび/または仕様が異なる複数の建築グレードを規定する建築グレード情報、前記建築グレード別に規定された個別ユニット毎のユニット単価情報、および/または、建築単価情報をさらに格納し、
 前記自動CAD設計方法が、
 前記複数の建築グレードから選択される1つの建築グレードの入力を受け付ける第二の入力受付ステップをさらに有し、
 前記自動設計ステップが、
受け付けた建築グレードの入力に基づき、自動設計された建築物に含まれる個別ユニットに基づき、該建築物の建築費用を計算する、
ことを特徴とする。
An automatic CAD design method according to still another embodiment of the present invention includes:
The storing step further stores building grade information defining a plurality of building grades having different costs and / or specifications, unit unit price information for each individual unit specified for each building grade, and / or building unit price information,
The automatic CAD design method comprises:
A second input receiving step of receiving an input of one building grade selected from the plurality of building grades;
The automatic design step comprises
Calculate the building cost of the building based on the individual units included in the automatically designed building based on the accepted building grade input.
It is characterized by that.
 また、本発明のさらに別の実施態様による自動CAD設計方法は、
 前記格納ステップが、
コストおよび/または仕様が異なる複数の建築グレードを規定する建築グレード情報、前記建築グレード別に規定された個別ユニット毎のユニット単価情報、および/または、建築単価情報をさらに格納し、
 前記自動CAD設計方法が、
 前記複数の建築グレードから選択される1つの建築グレードの入力を受け付ける第二の入力受付ステップをさらに有し、
 前記自動設計ステップが、
受け付けた建築グレードの入力に基づき、建築物の自動設計を実行し、該建築物に含まれる個別ユニットに基づき、該建築物の建築費用を計算する、
ことを特徴とする。
An automatic CAD design method according to still another embodiment of the present invention includes:
The storing step includes
Further storing building grade information defining a plurality of building grades having different costs and / or specifications, unit unit price information for each individual unit defined by the building grade, and / or building unit price information;
The automatic CAD design method comprises:
A second input receiving step of receiving an input of one building grade selected from the plurality of building grades;
The automatic design step comprises
Based on the accepted building grade input, execute the automatic design of the building, and calculate the building cost of the building based on the individual units included in the building.
It is characterized by that.
 また、第24の発明による自動CAD設計方法は、
 前記格納ステップが、
個別ユニット情報に規定された個別ユニット毎、および/または、地域毎の賃貸標準単価情報をさらに格納し、
 前記取得ステップが、
建設費用の頭金と、融資金利と、地域或いは住所の少なくとも一部をさらに取得し、
 前記見積算出ステップが、
計算された建築費用と、取得された頭金と融資金利とに基づき、前記建築物に含まれる個別ユニットの少なくとも1つを、前記取得された地域或いは住所の少なくとも一部に基づき求めた賃貸標準単価情報で規定される賃料で賃した場合の時系列の収支計画を計算する(最終的には収支表として出力する)、
ことを特徴とする。
An automatic CAD design method according to the twenty-fourth invention is
The storing step includes
Further store rental unit price information for each individual unit and / or region specified in the individual unit information,
The obtaining step comprises
Get additional down payment for construction costs, loan interest rates and at least part of the region or address,
The estimate calculation step includes:
Rent standard unit price for which at least one of the individual units included in the building is determined based on at least a part of the acquired area or address based on the calculated construction cost, the acquired down payment and the loan interest rate. Calculate a time-series balance plan when renting at the rent specified in the information (finally output as a balance sheet)
It is characterized by that.
 また、第25の発明による自動CAD設計方法は、
 前記格納ステップが、
収支計画による賃貸事業の事業採算性を評価するためのフィジビリティルールを規定するフィジビリティルール情報をさらに格納し、
 前記見積算出ステップが、
前記フィジビリティルール情報に基づき前記見積算出部により計算された収支計画の事業採算性を評価する(例えば、事業の成功可能性80%(事業失敗リスクが20%)、95%の成功可能性などの事業の成否をリスク評価する)、
ことを特徴とする。
An automatic CAD design method according to the twenty-fifth aspect of the invention is
The storing step includes
Stores feasibility rule information that defines feasibility rules for evaluating the profitability of rental business based on income and expenditure plans,
The estimate calculation step includes:
Evaluate the business profitability of the income and expenditure plan calculated by the estimate calculation unit based on the feasibility rule information (for example, business success probability 80% (business failure risk is 20%), 95% success probability, etc. Risk assessment of business success),
It is characterized by that.
 本発明によれば、敷地情報からその敷地情報に応じた建築物を自動設計することが可能となる。 According to the present invention, it is possible to automatically design a building corresponding to the site information from the site information.
図1は、本発明の一実施態様による自動CAD設計システムの概要を示すブロック図である。FIG. 1 is a block diagram showing an outline of an automatic CAD design system according to an embodiment of the present invention. 図2は、図1に示した自動CAD設計システムで実行される処理の一例を示すフローチャートである。FIG. 2 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG. 図3は、図1に示した自動CAD設計システムで実行される処理の概要を示す模式図である。FIG. 3 is a schematic diagram showing an outline of processing executed by the automatic CAD design system shown in FIG. 図4は、図1に示した自動CAD設計システムで実行される処理の概要を示す模式図である。FIG. 4 is a schematic diagram showing an outline of processing executed by the automatic CAD design system shown in FIG. 図5は、個別ユニットの平面的な成長を説明するための模式図である。FIG. 5 is a schematic diagram for explaining planar growth of individual units. 図6は、個別ユニットの平面的な成長を説明するための模式図である。FIG. 6 is a schematic diagram for explaining planar growth of individual units. 図7は、個別ユニットの平面的な成長を説明するための模式図である。FIG. 7 is a schematic diagram for explaining planar growth of individual units. 図8は、図1に示した自動CAD設計システムで実行される処理の一例を示すフローチャートである。FIG. 8 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG. 図9は、個別ユニットの平面的な成長を説明するための模式図である。FIG. 9 is a schematic diagram for explaining planar growth of individual units. 図10は、図1に示した自動CAD設計システムで実行される処理の一例を示すフローチャートである。こFIG. 10 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG. This 図11は、図1に示した自動CAD設計システムで実行される処理と並行して実行される処理を示すフローチャートである。FIG. 11 is a flowchart showing a process executed in parallel with the process executed in the automatic CAD design system shown in FIG. 図12は、個別ユニットの平面的な成長を説明するための模式図である。FIG. 12 is a schematic diagram for explaining planar growth of individual units. 図13は、個別ユニットの平面的な成長を説明するための模式図である。FIG. 13 is a schematic diagram for explaining planar growth of individual units. 図14は、個別ユニットの平面的な成長を説明するための模式図である。FIG. 14 is a schematic diagram for explaining planar growth of individual units. 図15は、個別ユニットの平面的な成長を説明するための模式図である。FIG. 15 is a schematic diagram for explaining planar growth of individual units. 図16は、1階の階層ブロックと2階の階層ブロックとをそれぞれ説明する模式図である。FIG. 16 is a schematic diagram for explaining a hierarchical block on the first floor and a hierarchical block on the second floor. 図17は、1階の階層ブロック(店舗)と2階の階層ブロックとをそれぞれ説明する模式図である。FIG. 17 is a schematic diagram illustrating a hierarchical block (store) on the first floor and a hierarchical block on the second floor. 図18は、図1に示した自動CAD設計システムで実行される処理の一例を示すフローチャートである。FIG. 18 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG. 図19は、図18の処理で敷地面積が小さいと判定された場合の処理による個別ユニットの平面的な成長を説明するための模式図である。FIG. 19 is a schematic diagram for explaining planar growth of individual units by the process when it is determined that the site area is small in the process of FIG. 図20は、敷地面積が小さい場合に効率良く自動設計する別ロジックによる個別ユニットの平面的な成長を説明するための模式図である。FIG. 20 is a schematic diagram for explaining planar growth of individual units by another logic that is automatically and efficiently designed when the site area is small. 図21は、図1に示した自動CAD設計システムで実行される処理の概要を示す模式図である。FIG. 21 is a schematic diagram showing an outline of processing executed in the automatic CAD design system shown in FIG. 図22は、図1に示した自動CAD設計システムで実行される処理の概要を示す模式図である。FIG. 22 is a schematic diagram showing an outline of processing executed by the automatic CAD design system shown in FIG. 図23は、図1に示した自動CAD設計システムで実行される処理の一例を示すフローチャートである。FIG. 23 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG. 図24は、図1に示した自動CAD設計システムで実行される処理の一例を示すフローチャートである。FIG. 24 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG. 図25は、本発明の一実施態様による自動CAD設計システムの概要を示すブロック図である。FIG. 25 is a block diagram showing an outline of an automatic CAD design system according to an embodiment of the present invention. 図26は、図25に示した自動CAD設計システムで実行される処理の一例を示すフローチャートである。FIG. 26 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG. 図27は、複数の個別ユニットを含む建築物の1階分の複数のパターン化CAD情報PCIを示す説明図である。FIG. 27 is an explanatory diagram showing a plurality of patterned CAD information PCI for the first floor of a building including a plurality of individual units. 図28は、与えられる情報や条件に応じて建築物が自動設計されることを説明するための説明図である。FIG. 28 is an explanatory diagram for explaining that a building is automatically designed according to given information and conditions. 図29は、与えられた情報や条件に応じて付随施設を含む建築物が自動設計されることを説明するための説明図である。FIG. 29 is an explanatory diagram for explaining that a building including an accompanying facility is automatically designed according to given information and conditions. 図30は、斜線規制、建蔽率、セットバック、高さ制限などの規制をクリアしているかをチェックするために建築物オブジェクト(個別ユニット)を拡大または厚さを増す処理を説明する模式図である。FIG. 30 is a schematic diagram for explaining a process of enlarging the building object (individual unit) or increasing the thickness in order to check whether the regulations such as the oblique line regulation, the building coverage ratio, the setback, and the height restriction are cleared. . 図31は、地盤調査に応じた仮想支持層への杭を自動設計する様子を示す模式図である。FIG. 31 is a schematic diagram showing a state in which piles are automatically designed on the virtual support layer according to the ground survey. 図32は、自動CAD設計システムで実行される処理の一例を示すフローチャートである。FIG. 32 is a flowchart illustrating an example of processing executed in the automatic CAD design system. 図33は、本システムのスクリーンインターフェイスを説明するための概略図である。本システムの概略を説明するための概略図である。FIG. 33 is a schematic diagram for explaining the screen interface of the present system. It is the schematic for demonstrating the outline of this system. 図34は、本システムのスクリーンインターフェイスを説明するための概略図である。FIG. 34 is a schematic diagram for explaining the screen interface of the present system. 図35は、本システムのスクリーンインターフェイスを説明するための概略図である。FIG. 35 is a schematic diagram for explaining the screen interface of the present system. 図36は、本システムのスクリーンインターフェイスを説明するための概略図である。FIG. 36 is a schematic diagram for explaining a screen interface of the present system. 図37は、本システムのスクリーンインターフェイスを説明するための概略図である。FIG. 37 is a schematic diagram for explaining the screen interface of the present system.
 以降、諸図面を参照しながら、本発明の実施態様を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の一実施態様による自動CAD設計システムの概要を示すブロック図である。図に示すように、自動CAD設計システム100(ACDS)は、制御部(CPU、プロセッサ)110、記憶部120、入力部IN、出力部OUT、通信部COM、および、表示部DISを有する。制御部110は、敷地を規定する敷地情報(面積、形状、方位、接道状況、角地情報、地理的情報など)、および、建築物タイプ情報(例えば、ワンルームマンションタイプ、1Kタイプ、2LDKタイプ、事務所タイプ、ホールタイプ、店舗タイプ、ホテルタイプ、上記タイプを複数含む複合タイプなど)を取得する取得部ACQを有する。記憶部120は、少なくとも容積率を含む集団規定情報GRI、および、各建築物タイプ情報(或いは、建築物に関する諸条件である、間口の幅、奥行き、バルコニー有無やそのサイズ、窓の有無やそのサイズ、部屋面積、部屋割りである2居室+キッチンを示す2K、3部屋+リビング、ダイニングキッチンを示す3LDKなど、ユニットバス付きなど)に関連付けられた少なくとも1つの個別ユニットを規定する個別ユニット情報UI(例えば、1K、2K、2LDK、3LDK,会議室、事務所、応接室、機械室、エレベータ、エレベータ室、下水ユニット、汚水タック、共用トイレ、駐車設備ユニット、駐輪施設ユニット、階段、屋根、屋上、床面、基礎などのユニットタイプ)を格納する。個別ユニットのなかで最も重要なものは、一戸の事務所や住居の単位となる1K、2LDK、3DLK、事務所スペース(15坪タイプ、20坪タイプなど)などの成長対象の個別ユニットである。この個別ユニットを部屋ユニットと称することがある。本システムは、これらの成長対象の個別ユニットを与えられた敷地条件や建築タイプに応じて、自動抽出し、自動配置し、自動成長させ、最終的な建築物の3DCADオブジェクトを自動生成することが可能である。 FIG. 1 is a block diagram showing an outline of an automatic CAD design system according to an embodiment of the present invention. As shown in the figure, the automatic CAD design system 100 (ACDS) includes a control unit (CPU, processor) 110, a storage unit 120, an input unit IN, an output unit OUT, a communication unit COM, and a display unit DIS. The control unit 110 includes site information that defines the site (area, shape, orientation, roadway connection status, corner information, geographical information, etc.) and building type information (for example, one-room apartment type, 1K type, 2LDK type, Office type, hall type, store type, hotel type, composite type including a plurality of the above types, etc.). The storage unit 120 includes group definition information GRI including at least the floor area ratio and each building type information (or various conditions related to the building, such as the width of the frontage, the depth, the presence or absence of the balcony, the size thereof, the presence or absence of the window, and the like. Individual unit information UI that defines at least one individual unit associated with the size, room area, room layout, 2 living rooms + 2K indicating kitchen, 3 rooms + living room, 3LDK indicating dining kitchen, etc. (For example, 1K, 2K, 2LDK, 3LDK, conference room, office, reception room, machine room, elevator, elevator room, sewage unit, sewage tack, shared toilet, parking facility unit, bicycle parking facility unit, stairs, roof, Stores the unit type (rooftop, floor, foundation, etc.). Among the individual units, the most important ones are individual units to be grown such as 1K, 2LDK, 3DLK and office spaces (15 tsubo type, 20 tsubo type, etc.) which are units of a single office or residence. This individual unit may be referred to as a room unit. This system can automatically extract, automatically place, and grow these individual units to be grown according to the site conditions and building type given, and automatically generate 3D CAD objects for the final building. Is possible.
 制御部110は、抽出部EXT、空間計算部SPC、および自動設計部AUDをさらに有する。抽出部EXTは、取得した敷地情報に基づき、該敷地情報で規定される敷地に適用される集団規定情報を抽出する。空間計算部SPCは、取得した敷地情報に基づき、抽出した集団規定情報(建蔽率、容積率、斜線規制、高さ制限、日影規制など)を参照して、敷地上に建築可能な建築物の存在可能空間を求める。自動設計部AUDは、取得した建築物タイプ情報に基づき、抽出した集団規定情報の少なくとも一部を参照して、複数の個別ユニットを含む建築物を存在可能空間内で自動設計する。 The control unit 110 further includes an extraction unit EXT, a space calculation unit SPC, and an automatic design unit AUD. Based on the acquired site information, the extraction unit EXT extracts group specification information applied to the site specified by the site information. Based on the acquired site information, the space calculation unit SPC refers to the extracted group provision information (building coverage ratio, floor area ratio, oblique line regulation, height restriction, shadow restriction, etc.) of building that can be built on the site. Find possible space. Based on the acquired building type information, the automatic design unit AUD automatically designs a building including a plurality of individual units in the possible existence space with reference to at least a part of the extracted group definition information.
 取得部ACQは、通信部COM、ネットワークNETを介して、住所、緯度経度、地域名などの地理的な検索キーに基づき地理的情報を提供する地理的情報サーバGISから、地理的情報(例えば、敷地形状、接道情報、または隣接地情報を含む)として地図、住宅地図、公図などを取得すること、および、取得した地理的情報を記憶部120に格納したり、格納済みの情報を更新したりすることが可能である。また、取得部ACQは、通信部COM、ネットワークNETを介して、建築制限情報サーバCLSから、最新の集団規定情報を取得して、抽出部EXTの抽出処理に利用したり、記憶部120の情報を更新したりすることが可能である。 The acquisition unit ACQ receives geographical information (for example, from the geographical information server GIS that provides geographical information based on a geographical search key such as an address, latitude / longitude, and region name via the communication unit COM and the network NET. Acquire map, house map, public map, etc. as site shape, roadway information, or adjacent site information), store the acquired geographical information in the storage unit 120, or update the stored information It is possible to do. In addition, the acquisition unit ACQ acquires the latest group definition information from the building restriction information server CLS via the communication unit COM and the network NET, and uses it for the extraction processing of the extraction unit EXT, or the information in the storage unit 120 Can be updated.
 建築規制情報サーバCLSは、地理的情報サーバGISに包含されていてもよいし、地理的情報サーバGISの機能を包含していてもよい。建築規制情報サーバCLSや地理的情報サーバGISは、設計事務所、建築CADソフトウェア会社、地方自治体、国、公共機関が管理する建築法規関連サーバとすることが好適である。例えば、本システムは、地方自治体のサーバのアドレスやデータフォーマットを規定したアクセス手順を記憶部に格納してあり、そのサーバから住所をキーとして敷地の形状、面積、方角などを抽出したり、その敷地の用途地域、集団規定などの建築規制情報を抽出したりできる。本システムは、必要に応じてそのような外部サーバである幾つかの建築規制情報サーバCLSや地理的情報サーバGISにアクセスして必要な情報を参照したり、取得したりして、記憶部に格納しておくことが可能である。例えば、ある敷地情報として住所や緯度経度が入力された場合には、原則的な法令(集団規定)としては建築基準法を用いるが、当該住所の管轄自治体のウェブサイトを建築規制情報サーバCLSや地理的情報サーバGISを参照して(或いは記憶部にある地域別に規定された集団規定情報や単体規定情報)、当該地域の当該敷地に建築される建築物に適用されるべき法規制(集団規定や単体規定)を抽出して、抽出した法規制に基づく自動設計を行うことが可能である。即ち、典型的には、原則の建築基準法、自治体が定めた都市計画による設定規制、そして、自治体が定めた条例などの規制の優先順位(後者のものほど優先適用される)で、規制や設定数値などが更新されるが、本システムは、このような複雑な法規制の適用関係を容易かつ正確に決定し、その適用関係に基づく自動設計が可能である。 The building regulation information server CLS may be included in the geographic information server GIS, or may include the function of the geographic information server GIS. The building regulation information server CLS and the geographic information server GIS are preferably servers related to building regulations managed by design offices, building CAD software companies, local governments, countries, and public institutions. For example, this system stores the access procedure that defines the address and data format of the local government server in the storage unit, and extracts the shape, area, direction, etc. of the site from the server using the address as a key. It is possible to extract building regulation information such as site use area and group regulations. This system accesses several building regulation information servers CLS and geographical information server GIS which are such an external server as needed, refers to or acquires necessary information, and stores them in the storage unit. It can be stored. For example, when an address or latitude / longitude is input as certain site information, the Building Standard Act is used as a fundamental law (group provision), but the website of the municipality having jurisdiction over the address is referred to as the building regulation information server CLS or Refers to the geographic information server GIS (or group provision information or unit provision information prescribed for each region in the storage unit), and the laws and regulations (group provisions) that should be applied to the building constructed on the site in the area It is possible to automatically design based on the extracted laws and regulations. In other words, typically, according to the building standards law of the principle, regulations set by city planning established by local governments, and regulations such as ordinances established by local governments (the latter ones are applied preferentially) Although the set numerical values and the like are updated, the present system can easily and accurately determine the application relationship of such complicated laws and regulations, and can perform automatic design based on the application relationship.
 また、このとき、表示部に当該敷地の当該建築物に適用される法規制を表示して、設計者の参考に資することが可能である。例えば、建築基準法であれば10メートルの高さ規制や日影規制がある建築物であっても、区や市のような自治体の条例によって、規制緩和されて、より高い12メートルや30メートルの建築物や、より高い容積率や耐火構造にすることによってより大きな建蔽率を適用されることがあるが、そのような詳細な自治体による法規制の適用や非期用について、本システムは自動的に把握して、それに基づく自動設計を行うことが可能である。また、自動設計で作成された建築物に応じて適用される法規制は変動するが、本システムは、自動設計で作成される建築物に応じて、適用される法規制を動的に変動させて、自動設計される建築物が規制をクリアした適法建築物であることを保証することが可能である。 Also, at this time, it is possible to display the laws and regulations applicable to the building on the site on the display unit to help the designer. For example, in the Building Standard Law, even buildings with height restrictions of 10 meters and shadow restrictions are relaxed by the regulations of local governments such as wards and cities, and higher 12 meters and 30 meters Larger occupancy rates may be applied by building higher floor ratios or fireproof structures, but the system will automatically It is possible to carry out automatic design based on this. In addition, the applicable laws and regulations vary depending on the buildings created by automatic design, but this system dynamically varies the applicable laws and regulations depending on the buildings created by automatic design. Thus, it is possible to guarantee that the automatically designed building is a legitimate building that has cleared the regulations.
 通信部COMは、建築会社の営業スタッフ、設計スタッフが持つ端末PC1,PC2、携帯端末PDA1.携帯電話端末MS1と接続し、情報のやり取りが可能である。出力部OUTは、プリンタPRNに本サーバに格納される情報や生成された情報を出力することができる。表示部DISも、本サーバに格納される情報や生成された情報を表示することができる。入力部INは、マウスMUSやキーボードKBDを介して入力される操作指示や情報入力を受け付ける。 Communication department COM is the terminal PC1, PC2, mobile terminal PDA1. It is possible to exchange information by connecting to the mobile phone terminal MS1. The output unit OUT can output information stored in the server or generated information to the printer PRN. The display unit DIS can also display information stored in the server and generated information. The input unit IN receives an operation instruction or information input that is input via the mouse MUS or the keyboard KBD.
 このように、生成した情報や中間データおよび取得したデータを外部に送信したり、表示部に表示したり、生成した情報や中間データおよび取得したデータなどを記憶部に格納したりすることは、後述する他の実態態様でも同様に可能であることに注意されたい。なお、本システム(装置)は、汎用コンピュータ、特定用途コンピュータ、サーバ、PCなどのコンピュータ、或いは、これらコンピュータに本システムの機能や処理手順(方法)をコンピュータ上で実現(実行)するプログラムモジュールをコンピュータが持つCPUや記憶部に保持したり、外部のサーバやストレージから読み込んだりすることで、コンピュータ上に本システムを構築することが好適であり、後続の各実施態様においても同様である。 In this way, the generated information and intermediate data and acquired data are transmitted to the outside, displayed on the display unit, and the generated information and intermediate data and acquired data are stored in the storage unit. It should be noted that other actual modes described later are possible as well. The system (apparatus) is a general-purpose computer, a special-purpose computer, a server, a PC, or the like, or a program module that implements (executes) the function and processing procedure (method) of the system on the computer. It is preferable to construct this system on a computer by holding it in a CPU or storage unit of the computer or reading it from an external server or storage, and the same applies to each of the following embodiments.
 図2は、図1に示した自動CAD設計システムで実行される処理の一例を示すフローチャートである。図に示すように、ステップS11にて、取得部ACQが、敷地を規定する敷地情報、および、建築物タイプ情報を取得する。次に、ステップS12にて、少なくとも容積率を含む集団規定情報、および、各建築物タイプ情報に関連付けられた少なくとも1つの個別ユニットを規定する個別ユニット情報を格納する。この格納ステップは、予め一回実施しておけば省略することが可能である。ステップS13にて、抽出部EXTは、取得した敷地情報に基づき、該敷地情報で規定される敷地に適用される集団規定情報を抽出する。その後、ステップS14にて、空間計算部SPCは、取得した敷地情報に基づき、抽出した集団規定情報(建蔽率、容積率、斜線規制、高さ制限、日影規制など)を参照して、前記敷地上に建築可能な建築物の存在可能空間を求める。或いは、その敷地に適合した集団規定情報は、手動でユーザが抽出してもよい。最後に、ステップS15にて、自動設計部AUDは、記取得した建築物タイプ情報に基づき、抽出した集団規定情報の少なくとも一部を参照して、複数の個別ユニットを含む建築物を前記存在可能空間内で自動設計する。ちなみに自動設計された建築物は、表示部DISにより表示されたり、通信部COMを介して接続される外部の端末やPCなどに送信され、当該端末の表示部に表示されたりする。 FIG. 2 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG. As shown in the figure, in step S11, the acquisition unit ACQ acquires site information that defines the site and building type information. Next, in step S12, group definition information including at least the floor area ratio and individual unit information that defines at least one individual unit associated with each building type information are stored. This storage step can be omitted if it is performed once in advance. In step S13, the extraction unit EXT extracts group definition information to be applied to the site specified by the site information based on the acquired site information. Thereafter, in step S14, the space calculation unit SPC refers to the group definition information (building ratio, floor area ratio, oblique line regulation, height restriction, shadow restriction, etc.) extracted based on the acquired site information, The space where a building that can be built can be found is found. Alternatively, the group definition information suitable for the site may be manually extracted by the user. Finally, in step S15, the automatic design unit AUD can refer to at least a part of the extracted group definition information based on the acquired building type information, and the building including a plurality of individual units can exist. Design automatically in space. Incidentally, the automatically designed building is displayed on the display unit DIS, or transmitted to an external terminal or PC connected via the communication unit COM and displayed on the display unit of the terminal.
 上述したうように、ステップS12などの格納ステップは、一回実施しておけば、その情報が変更されるまでは再実施する必要はない。或いは、格納ステップは、当該情報を格納したROMやフラッシュメモリをシステム(装置やコンピュータ)に搭載することで不要となる。 As described above, once the storage step such as step S12 is performed, it is not necessary to re-execute until the information is changed. Alternatively, the storing step becomes unnecessary by installing a ROM or flash memory storing the information in a system (apparatus or computer).
 図3は、図1に示した自動CAD設計システムで実行される処理の概要を示す模式図である。図に示すように、本システムは、敷地SITE10を示す敷地情報を取得する。記憶部の集団規定情報GRIから敷地に対応する集団規定情報として「容積率:900%、高さ制限:10m」が抽出される。集団規定情報に基づき、敷地SITE10上に、建築可能空間AVS10(建築物存在可能空間)が設定(計算)される。次に、また、記憶部の個別ユニット情報UIから、指定された諸条件(建築物タイプ情報)に対応する個別ユニット情報として個別ユニットUI10が抽出される。この例では、個別ユニットは、そのまま1階層分のブロックとして使用可能なものである。抽出された個別ユニットUI10は、敷地SITE10の建築可能空間AVS10内に配置される。配置された個別ユニットUI10は、敷地SITE10内で平面的な複製(成長)を試行されるが、この例では、建築可能空間AVS10の平面内では成長余地がないため、平面的には複製されない。そこで、平面的な複製(成長)の試行を停止し、1階の階層分のブロックが決定される。次に、1階の階層ブロックが、建築可能空間内でかつ容積率の制限内で上方に順次複製される。この例では、自動設計により、容積率:900%、高さ制限:10mのどちらかで制限されるまで、階層を増やす。このようにして自動設計された9階建ての建築物OBJ10の建築費用を算出して、最終的な事業成功可能性を判断する。 FIG. 3 is a schematic diagram showing an outline of processing executed by the automatic CAD design system shown in FIG. As shown in the figure, the present system acquires site information indicating the site SITE 10. “Volume ratio: 900%, height limit: 10 m” is extracted as the group definition information corresponding to the site from the group definition information GRI in the storage unit. On the site SITE 10, a building space AVS 10 (building existence space) is set (calculated) on the site SITE 10. Next, the individual unit UI10 is extracted as individual unit information corresponding to the specified conditions (building type information) from the individual unit information UI of the storage unit. In this example, the individual unit can be used as a block for one layer as it is. The extracted individual unit UI10 is arranged in the buildable space AVS10 of the site SITE10. The arranged individual unit UI10 is tried to be duplicated (grown) in the plane in the site SITE10. In this example, there is no room for growth in the plane of the building space AVS10, and therefore, the individual unit UI10 is not duplicated in a plane. Therefore, the trial of planar duplication (growth) is stopped, and blocks for the first floor hierarchy are determined. Next, the hierarchical blocks on the first floor are sequentially replicated upward in the building space and within the limits of the floor area ratio. In this example, the hierarchical level is increased by automatic design until the volume ratio is limited to 900% and the height limit is limited to 10 m. The construction cost of the nine-storey building OBJ10 automatically designed in this way is calculated to determine the final business success possibility.
 図4は、図1に示した自動CAD設計システムで実行される処理の概要を示す模式図である。図に示すように、本システムは、敷地SITE20を示す敷地情報を取得する。記憶部の集団規定情報GRIから敷地に対応する集団規定情報として「容積率:900%、高さ制限:10m」が抽出される。集団規定情報の一部(この場合は、高さ制限)に基づき、敷地SITE20上に、建築可能空間AVS20(建築物存在可能空間)が設定(計算)される。次に、また、記憶部の個別ユニット情報UIから、指定された諸条件(建築物タイプ情報)に対応する個別ユニット情報として個別ユニットUI20が抽出される。個別ユニットUI20は、1つの独立した部屋ユニットであり、水平方向の4面のうちの1面が開口部(窓がある部分)、玄関部(玄関が設置された部分)、接続部(壁)となっており、接続部に部屋ユニットなどの個別ユニットを連結可能となっている。抽出された個別ユニットUI20は、敷地SITE20の建築可能空間AVS20内に配置される。配置された個別ユニットUI20は、敷地SITE20内で平面的な複製(成長)を試行されるが、この例では、建築可能空間AVS20の平面内では2つの成長余地があるため、平面的には2つだけ複製される。そこで、平面的な複製(成長)の試行を停止し、3個の個別ユニットUI20を含む1階の階層分のブロックBLK20が構築(生成)される。階層ブロックには、通常、廊下、階段、エレベータなどを含むが、作図、説明の便宜上ここでは省略するものとする。次に、1階の階層ブロックBLK20が、建築可能空間および容積率の制限内で上方に順次複製される。この例では、自動設計により、容積率:900%、高さ制限:10mのどちらかで制限されるまで(この例では、容積率の制限まで)、階層ブロックを積み上げていく。ここでは、階層ブロックBLK20-1、BLK20-2、…、BLK20-8と8個の階層ブロックが積み上げられ、9階建ての建築物OBJ20が自動構築(生成)される。このようにして自動設計された9階建ての建築物OBJ20の建築費用を算出して、最終的な事業成功可能性を判断する。例えば、個別ユニットの単価情報が1000万円である場合、この単価に個別ユニット数の27を乗ずれば、概算建築費用2億7千万円を自動見積りの概算コスト計算機能で求めることが可能である。 FIG. 4 is a schematic diagram showing an outline of processing executed by the automatic CAD design system shown in FIG. As shown in the figure, the present system acquires site information indicating the site SITE 20. “Volume ratio: 900%, height limit: 10 m” is extracted as the group definition information corresponding to the site from the group definition information GRI in the storage unit. Based on a part of the group definition information (in this case, the height restriction), the building space AVS20 (building existence space) is set (calculated) on the site SITE20. Next, the individual unit UI 20 is extracted as individual unit information corresponding to the specified conditions (building type information) from the individual unit information UI of the storage unit. The individual unit UI20 is an independent room unit, and one of four horizontal surfaces is an opening (portion with a window), an entrance (portion where an entrance is installed), and a connection (wall). Thus, individual units such as room units can be connected to the connection portion. The extracted individual unit UI20 is arranged in the buildable space AVS20 of the site SITE20. The arranged individual unit UI20 is tried to be duplicated (growth) in a plane in the site SITE20. In this example, there are two room for growth in the plane of the building space AVS20. Only one is duplicated. Therefore, the trial of planar duplication (growth) is stopped, and a block BLK20 corresponding to the first floor including three individual units UI20 is constructed (generated). Hierarchical blocks usually include hallways, stairs, elevators, etc., but are omitted here for the sake of drawing and explanation. Next, the hierarchical block BLK20 on the first floor is sequentially replicated upward within the limits of the building space and the floor area ratio. In this example, the hierarchical blocks are stacked by automatic design until the volume ratio is limited to 900% and the height limit is limited to 10 m (in this example, to the limit of the volume ratio). Here, the hierarchical blocks BLK20-1, BLK20-2,..., BLK20-8 and 8 hierarchical blocks are stacked, and a nine-story building OBJ20 is automatically constructed (generated). The construction cost of the 9-story building OBJ20 automatically designed in this way is calculated to determine the final business success possibility. For example, if the unit price information for an individual unit is 10 million yen, then multiplying this unit price by 27 for the number of individual units, it is possible to obtain an estimated construction cost of 270 million yen using the approximate cost calculation function of automatic estimation. It is.
 図5は、個別ユニットの平面的な成長を説明するための模式図である。図に示すように、道路RD30に接する敷地SITE30に対しては、本システムは、与えられた条件(建築物タイプ)に基づき、個別ユニットとしてバルコニーと、個別ユニットUI30とを抽出する。バルコニーは、長手方向の長さを伸縮可能なCAD部材である。このバルコニーは敷地の道路側に配置され、その辺の端部から他端部まで伸ばされバルコニーBLKN30として配置される。そして、バルコニーBLKN30の長手方向の敷地内側の一辺の端部に個別ユニットUI30が配置され、所定の自動設計ルール(例えば、敷地または建築可能空間において個別ユニットのうちの部屋ユニットの複製を最大限繰り返すなど)に基づき、複製される。なお、図示しないが、個別ユニットUI30は、その内部にバルコニー側に開口部(窓ユニット)およびその対抗する辺に玄関部(玄関ユニット)を有すること、さらには、その内部の部屋構成(例えば、20平方mのリビング、10平方mのキッチン、8平方mのユニットバスなど)を含むが好適である。或いは、CAD情報としてユニットを含ませなくても、玄関部や開口部がユニット内のどの位置に存在するのかをデータとして格納しておき、後述する避難経路の計算などに用いることが好適である。また、直通解題の避難経路以外に、予備の避難経路を設けるために、バルコニーユニットBLKN30には、緊急避難ハシゴユニットを含ませることが好適である。また、例えば、バルコニーユニットBLKN30は、バルコニーを仕切る仕切り板PTN30Nを設けて個別ユニットに対応するバルコニー部を分離して、各部屋の独立性を保持することが好適である。そして、個別ユニットUI30、UI30-1、UI30-2、UI30-3、UI30-4のバルコニーの側とは反対側に、廊下ユニットCLD30が自動配置される。このようにして、階層ブロックBLK30が自動設計される。この階層ブロックBLK30を垂直方向に積み重ねて、建築可能空間或いは容積率の制限値の範囲内で自動設計される。ここでは直通の非常階段(避難経路)は考慮されていないが、部屋割りが済んだ概略のCAD図面を描画することが可能であり、さらに、各個別ユニットの単価を積算して概算コストを求めることも可能である。もちろん、総建築坪数を求めて坪単価などでの概算見積りも可能である。 FIG. 5 is a schematic diagram for explaining planar growth of individual units. As shown in the figure, for the site SITE 30 in contact with the road RD30, the present system extracts a balcony and an individual unit UI30 as individual units based on given conditions (building type). The balcony is a CAD member that can expand and contract in the longitudinal direction. This balcony is arranged on the road side of the site, and is extended from the end of the side to the other end to be arranged as a balcony BLKN30. And individual unit UI30 is arrange | positioned at the edge part of the inner side of the site | part of the longitudinal direction of balcony BLKN30, and repeats duplication of the room unit of a predetermined | prescribed automatic design rule (for example, a site or a building possible space in an individual unit to the maximum) Etc.). Although not shown in the figure, the individual unit UI30 has an opening (window unit) on the balcony side and a entrance (entrance unit) on the opposite side of the individual unit UI30, and further, a room configuration (for example, 20 square meter living, 10 square meter kitchen, 8 square meter unit bath, etc.). Alternatively, even if the unit is not included as CAD information, it is preferable to store the position of the entrance or opening in the unit as data and use it for calculation of an evacuation route to be described later. . Further, in order to provide a spare evacuation route in addition to the direct evacuation route, it is preferable that the balcony unit BLKN30 includes an emergency evacuation ladder unit. In addition, for example, it is preferable that the balcony unit BLKN30 is provided with a partition plate PTN30N for partitioning the balcony to separate the balcony portions corresponding to the individual units and maintain the independence of each room. The corridor unit CLD30 is automatically arranged on the opposite side of the individual unit UI30, UI30-1, UI30-2, UI30-3, UI30-4 from the balcony side. In this way, the hierarchical block BLK30 is automatically designed. The hierarchical blocks BLK30 are stacked in the vertical direction, and are automatically designed within the range of the limit of the building space or the volume ratio. Here, direct emergency staircases (evacuation routes) are not considered, but it is possible to draw a rough CAD drawing with room allocation, and calculate the approximate cost by integrating the unit price of each individual unit It is also possible. Of course, it is possible to estimate the total number of floors of the building and estimate it by unit price.
 図6は、個別ユニットの平面的な成長を説明するための模式図である。図に示すように、道路RD30―Mに接する敷地SITE30-Mに対しては、本システムは、与えられた条件(建築物タイプ)に基づき、個別ユニットとして、バルコニーユニットMLKN30-Mと、廊下ユニットCLD30-Mとを含む部屋ユニットである個別ユニットUI30-Mを抽出する。この個別ユニットは、バルコニーと廊下とを合体した部屋ユニットであるため、自動設計の処理や成長ロジックの構成を簡便にすることが可能となる。バルコニーは敷地の道路側に配置される。個別ユニットUI30-Mは、所定の自動設計ルール(例えば、敷地または建築可能空間において個別ユニットのうちの部屋ユニットの複製を最大限繰り返すなど)に基づき、複製される。そして、個別ユニットUI30-Mは、4個複製して連結されて1つの階層ブロックBLK30-Mが自動設計される。この階層ブロックBLK30-Mを垂直方向に積み重ねて、建築可能空間或いは容積率の制限値の範囲内で自動設計される。ここでは、非常階段(避難経路)は考慮されていないが、部屋割りが済んだ概略のCAD図面を描画することが可能であり、さらに、各個別ユニットの単価を積算して概算コストを求めることも可能である。もちろん、総建築坪数を求めて坪単価などでの概算見積りも可能である。 FIG. 6 is a schematic diagram for explaining planar growth of individual units. As shown in the figure, for the site SITE30-M that is in contact with the road RD30-M, this system uses a balcony unit MLKN30-M and a corridor unit as individual units based on the given conditions (building type). The individual unit UI30-M, which is a room unit including the CLD 30-M, is extracted. Since this individual unit is a room unit that combines a balcony and a corridor, it is possible to simplify the process of automatic design and the configuration of the growth logic. The balcony is located on the road side of the site. The individual unit UI30-M is duplicated based on a predetermined automatic design rule (for example, the duplication of the room unit of the individual units in the site or the building space is repeated as much as possible). Then, four individual units UI30-M are duplicated and connected to automatically design one hierarchical block BLK30-M. The hierarchical blocks BLK30-M are stacked in the vertical direction, and are automatically designed within the limits of the building space or the volume ratio. Here, emergency staircases (evacuation routes) are not considered, but it is possible to draw a rough CAD drawing with room allocation completed, and to calculate the approximate cost by adding the unit price of each individual unit Is also possible. Of course, it is possible to estimate the total number of floors of the building and estimate it by unit price.
 図7は、個別ユニットの平面的な成長を説明するための模式図である。図に示すように、道路RD30―S,道路RD30-Eに接する敷地SITE30-Sに対しては、本システムは、与えられた条件(建築物タイプ)に基づき、階層ブロックBLK30-T1を自動設計で構築する。この階層ブロックを用いて上階の階層を積み上げて自動設計した候補建築物オブジェクトの容積率消化率(オブジェクトの延床面積を容積率限界の延床面積で除したときの百分率)が、所定の閾値(例えば、75%)よりも小さい場合は、敷地をまだ有効活用できていないとみなし、使っていない敷地内の空き領域にサブ階層ブロックBLK30-T2、BLK30-T3、BLK30-T4、BLK30-T41、BLK30-T5、BLK30-T6をそれぞれ追加して候補建築物オブジェクトを幾つか自動構築する。例えば、追加するサブ階層ブロックは、一旦、そのまま階層の形状で積み上げることになるが、斜線規制などで北側や隣接地側の一部の部屋ユニットや廊下ユニットなどは階段状に削除されることが多い。即ち、上階に行くほどサブ階層ブロックの床面積は減少していくことなる。非常階段やエレベータの位置などは、このような階層ブロックの状況も考慮して自動設計することが好適である。追加するサブ階層ブロックは、元となる階層ブロックの廊下にサブ階層ブロックの廊下が接続するように自動配置する。このようにサブ階層ブロックの配置や成長方向を変更しながら、幾つかの候補オブジェクトを構築して(即ち、階層ブロックと共に或いは独立してサブ階層ブロックを垂直方向に積み上げて)、それらの容積率消化率を比較して、最も高い容積率消化率の候補オブジェクトを最終の建築物オブジェクトに決定する。この図では、最も容積率消化率の高い、階層ブロックBLK30-T1とサブ階層ブロックBLK30-T6から構成される建築物オブジェクトOBJ30-Mが自動選択される。上記の処理を全て自動設計で行う。この処理技法によって、未消化の容積率を低減することで、敷地をより有効活用することが可能となる。詳しい処理ロジックの一例を図8で説明する。なお、図7では、敷地が2つの道路に接道する角地であるため、建蔽率の10=20%の緩和措置を受けることが可能である。本システムは、その緩和措置の適用を自動判断し、その建蔽率で自動設計を行うことが可能である。また、エントランスホール、エレベータホール、開放型の廊下などは、所定の場合には、それらの床面積は容積率の計算に不算入となるが、これらの算入、不算入も本システムは自動で判定し、それに基づき自動設計することが可能である。 FIG. 7 is a schematic diagram for explaining planar growth of individual units. As shown in the figure, for the site SITE30-S in contact with the road RD30-S and road RD30-E, this system automatically designs the hierarchical block BLK30-T1 based on the given conditions (building type). Build in. The floor area percentage digestion rate (the percentage of the total floor area of the object divided by the floor area of the floor area limit) of the candidate building object automatically designed by stacking the upper floors using this hierarchical block If it is smaller than the threshold (for example, 75%), it is considered that the site has not been used effectively yet, and sub-hierarchical blocks BLK30-T2, BLK30-T3, BLK30-T4, BLK30- Several candidate building objects are automatically constructed by adding T41, BLK30-T5, and BLK30-T6, respectively. For example, the sub-hierarchy blocks to be added are once stacked in the shape of the hierarchies, but some room units or corridor units on the north side or adjacent land side may be deleted in a staircase shape due to slanting restrictions etc. Many. That is, the floor area of the sub-hierarchical block decreases as the level goes up. It is preferable that the emergency stairs and the position of the elevator are designed automatically in consideration of the situation of the hierarchical block. The sub-hierarchical block to be added is automatically arranged so that the corridor of the sub-hierarchical block is connected to the corridor of the original hierarchical block. In this way, while changing the arrangement and growth direction of the sub-hierarchical blocks, several candidate objects are constructed (that is, the sub-hierarchical blocks are stacked vertically together with or independently of the hierarchical blocks), and their volume ratio The digestibility is compared, and the candidate object with the highest floor fraction digestibility is determined as the final building object. In this figure, the building object OBJ30-M composed of the hierarchical block BLK30-T1 and the sub-hierarchical block BLK30-T6, which has the highest volume ratio digestibility, is automatically selected. All the above processing is performed by automatic design. By this processing technique, it becomes possible to use the site more effectively by reducing the undigested volume ratio. An example of detailed processing logic will be described with reference to FIG. In FIG. 7, since the site is a corner lot connected to two roads, it is possible to receive a relaxation measure of 10 = 20% of the building coverage ratio. This system can automatically determine the application of the mitigation measures and perform automatic design with the building coverage ratio. In addition, entrance halls, elevator halls, open corridors, etc., in certain cases, their floor areas are not included in the calculation of the floor area ratio, but this system automatically determines whether these are included or not included. However, it is possible to automatically design based on that.
 図8は、図1に示した自動CAD設計システムで実行される処理の一例を示すフローチャートである。この処理は、図2の処理などで一旦、候補の建築物オブジェクトを自動生成した後でオプションとして実行される。図に示すように、ステップA11にて、生成した候補建築物オブジェクトの容積率消化率が、記憶部に格納された所定の閾値(例えば70%)より小さいか否かを判定する。消化率が閾値よりも小さくない場合は、敷地を十分に活用した自動設計ができたとみなして、処理を終える。消化率が閾値よりも小さい場合は、敷地を十分に活用した自動設計ができていないとみなして、ステップA12に進む。ステップA12では、生成した建築物オブジェクトに含まれる階層ブロックに接続するサブ階層ブロックを追加して、階層積み上げを行い、候補建築物オブジェクトを生成する。次にステップA13では、サブ階層ブロックが追加された候補建築物オブジェクトの容積率消化率を計算する。そして、ステップA14では、候補建築物オブジェクトを記憶部に格納する。次に、ステップA15にて、実行可能な変更パターンが残っているか否かを判定する。変更パターンは、例えば、サブ階層の配置や成長方向をどれくらいのピッチでシフトしていくかによってパターン数が増減する。したがって、5メートルとか、10度とかの数値を適正なものに設定することによって、合理的な演算時間で処理が収束するように適宜設定しておく。或いは、所定の時間(例えば3分、5分)などで処理を打ち切るのも合理的である。実行可能な変更パターンが残っていると判定された場合は、ステップA16にて、サブ階層ブロックの既存階層ブロックへの接続位置またはサブ階層ブロックの成長の向きを変える。ステップA16の後は、ステップA12に戻り、ステップA15の条件から外れるまでA12-14を繰り返す。最終的には、ステップA15の判定条件を満たさない場合に、処理ループを抜け出し、ステップA17にて、候補建築物オブジェクトのうち最も高い容積率消化率のものを最終の建築物オブジェクトとして選択する。この処理技法によって、未消化の容積率を低減することで、敷地をより有効活用することが可能となる。また、このようにして生成した建築物オブジェクトについては、概算建築費用を求めたり、収支計算をしたりすることが可能である(後で詳細に述べる)。さらに、最終採用されなかった候補の建築物オブジェクトを格納しておくことで、後でユーザの嗜好によって、候補の建築物オブジェクトを比較のために表示したり、事業収支を比較したりすることが可能である。 FIG. 8 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG. This process is executed as an option after automatically generating candidate building objects once in the process of FIG. As shown in the figure, in step A11, it is determined whether the volume ratio digestion rate of the generated candidate building object is smaller than a predetermined threshold (for example, 70%) stored in the storage unit. If the digestibility is not smaller than the threshold value, it is considered that automatic design that fully utilizes the site has been completed, and the processing is finished. When the digestibility is lower than the threshold, it is considered that automatic design using the site sufficiently has not been made, and the process proceeds to Step A12. In step A12, a sub-hierarchical block connected to the hierarchical block included in the generated building object is added, the layers are stacked, and a candidate building object is generated. Next, in step A13, the volume ratio digestion rate of the candidate building object to which the sub-hierarchy block is added is calculated. In step A14, the candidate building object is stored in the storage unit. Next, in step A15, it is determined whether or not an executable change pattern remains. The number of patterns of the change pattern increases or decreases depending on, for example, the pitch of the sub-layer arrangement and the growth direction. Accordingly, by appropriately setting a numerical value such as 5 meters or 10 degrees, it is set as appropriate so that the process converges in a reasonable calculation time. Alternatively, it is reasonable to abort the processing at a predetermined time (for example, 3 minutes, 5 minutes). If it is determined that an executable change pattern remains, the connection position of the sub-hierarchy block to the existing hierarchical block or the growth direction of the sub-hierarchical block is changed in step A16. After step A16, the process returns to step A12, and A12-14 is repeated until the condition of step A15 is removed. Finally, when the determination condition of step A15 is not satisfied, the processing loop is exited, and in step A17, the candidate with the highest volume ratio digestibility is selected as the final building object. By this processing technique, it becomes possible to use the site more effectively by reducing the undigested volume ratio. Further, for the building object generated in this way, it is possible to calculate an approximate construction cost or calculate a balance (described in detail later). Furthermore, by storing candidate building objects that have not been finally adopted, it is possible to display candidate building objects for comparison later or to compare business balances according to user preferences. Is possible.
 図9は、個別ユニットの平面的な成長を説明するための模式図である。図に示すように、道路RD30―S,道路RD30-Eに接する敷地SITE30-Sに対しては、本システムは、与えられた条件(建築物タイプ)に基づき、階層ブロックBLK30-R1を自動設計で構築する。この階層ブロックを用いて上階の階層を積み上げて自動設計した候補建築物オブジェクトの容積率消化率(オブジェクトの延床面積を容積率限界の延床面積で除したときの百分率)が、所定の閾値(例えば、75%)よりも小さい場合は、敷地をまだ有効活用できていないとみなし、階層ブロック自体の配置場所(例えば、成長開始点)や成長方向などを変更しながら、最も消化率の高い配置パターンと試行錯誤で探し出す。また、配置パターンを変えながら、さらに、図7のようにサブ階層ブロックも追加するため、図7よりも消化率の高い建築物オブジェクトを探し出せる(即ち自動設計)可能性が高くなる。この例では、階層ブロック30-R1に加えて、階層ブロック30-R2、階層ブロック30-R3を構築して、それぞれにサブ階層ブロックBLK30-A1~A6を追加している。また、この例では、容積率や建蔽率が許容する範囲内であれば、サブ階層ブロックを複数設けることも試行する。この実施態様では、最終的に、最も容積率消化率の高い、階層ブロックBLK30-R1とサブ階層ブロックBLK30-A5,A6から構成される建築物オブジェクトOBJ30-Rが自動選択される。他の生成した候補オブジェクトや階層ブロックのパターンは、後で利用するために記憶部に格納しておく。ユーザによっては、消化率よりも、配置パターンや建築費用などの理由で他の候補建築物オブジェクトを選択する場合があるため、これらの候補も表示したり、費用を比較したりすることが可能である。上記の処理を全て自動設計で行う。この処理技法によって、未消化の容積率を低減することで、敷地をより有効活用することが可能となる。詳しい処理ロジックを図10で説明する。 FIG. 9 is a schematic diagram for explaining planar growth of individual units. As shown in the figure, for site SITE30-S in contact with road RD30-S and road RD30-E, this system automatically designs hierarchical block BLK30-R1 based on given conditions (building type) Build in. The floor area percentage digestion rate of the candidate building object automatically designed by stacking the upper floors using this hierarchy block (the percentage when the total floor area of the object is divided by the total floor area of the floor area limit) If it is smaller than the threshold (for example, 75%), it is considered that the site has not yet been used effectively, and the location of the hierarchical block itself (for example, the growth start point) or the growth direction is changed, and the most digestible rate Search with high placement patterns and trial and error. Further, since the sub-hierarchy block is also added as shown in FIG. 7 while changing the arrangement pattern, there is a high possibility that a building object having a higher digestibility than FIG. 7 can be found (that is, automatic design). In this example, in addition to the hierarchical block 30-R1, a hierarchical block 30-R2 and a hierarchical block 30-R3 are constructed, and sub-hierarchical blocks BLK30-A1 to A6 are respectively added. In this example, if a volume ratio and a building coverage ratio are within the allowable range, it is also attempted to provide a plurality of sub-hierarchy blocks. In this embodiment, finally, the building object OBJ30-R composed of the hierarchical block BLK30-R1 and the sub-hierarchical blocks BLK30-A5 and A6 having the highest volume ratio digestibility is automatically selected. Other generated candidate objects and hierarchical block patterns are stored in the storage unit for later use. Some users may select other candidate building objects for reasons such as placement patterns and construction costs rather than digestibility, so it is possible to display these candidates and compare costs. is there. All the above processing is performed by automatic design. By this processing technique, it becomes possible to use the site more effectively by reducing the undigested volume ratio. Detailed processing logic will be described with reference to FIG.
 図10は、図1に示した自動CAD設計システムで実行される処理の一例を示すフローチャートである。この処理は、図2の処理などで一旦、候補の建築物オブジェクトを自動生成した後でオプションとして実行される。図に示すように、ステップB11にて、生成した候補建築物オブジェクトの容積率消化率が、記憶部に格納された所定の閾値(例えば70%)より小さいか否かを判定する。消化率が閾値よりも小さくない場合は、敷地を十分に活用した自動設計ができたとみなして、処理を終える。消化率が閾値よりも小さい場合は、敷地を十分に活用した自動設計ができていないとみなして、ステップB12に進む。ステップB12では、生成開始点および/または生成方向を変えて候補建築物オブジェクトを生成する。このとき、建蔽率および容積率が許す限り、生成した階層ブロックに接続する1つまたは複数のサブ階層ブロックを追加して、階層積み上げを行い、候補建築物オブジェクトを生成する。次にステップB13では、候補建築物オブジェクトの容積率消化率を計算する。そして、ステップB14では、候補建築物オブジェクトを記憶部に格納する。次に、ステップB15にて、実行可能な変更パターンが残っているか否かを判定する。或いは、所定の時間(例えば5分)などで処理を打ち切るのも合理的である。実行可能な変更パターンが残っていると判定された場合は、ステップB12に戻り、ステップB15の条件から外れるまでB12-14を繰り返す。最終的には、ステップB15の判定条件を満たさない場合に、処理ループを抜け出し、ステップB16にて、候補建築物オブジェクトのうち最も高い容積率消化率のものを最終の建築物オブジェクトとして選択する。この処理技法によって、未消化の容積率を低減することで、敷地をより有効活用することが可能となる。また、このようにして生成した建築物オブジェクトについては、概算建築費用を求めたり、収支計算をしたりすることが可能である(後で詳細に述べる)。 FIG. 10 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG. This process is executed as an option after automatically generating candidate building objects once in the process of FIG. As shown in the figure, in step B11, it is determined whether the volume ratio digestion rate of the generated candidate building object is smaller than a predetermined threshold value (for example, 70%) stored in the storage unit. If the digestibility is not smaller than the threshold value, it is considered that automatic design that fully utilizes the site has been completed, and the processing is finished. If the digestibility is lower than the threshold, it is considered that automatic design that fully utilizes the site has not been made, and the process proceeds to step B12. In Step B12, candidate building objects are generated by changing the generation start point and / or the generation direction. At this time, as long as the building coverage ratio and the floor area allow, one or a plurality of sub-hierarchy blocks connected to the generated hierarchy block are added, the layers are stacked, and candidate building objects are generated. Next, in step B13, the volume ratio digestibility of the candidate building object is calculated. In step B14, the candidate building object is stored in the storage unit. Next, in step B15, it is determined whether or not an executable change pattern remains. Alternatively, it is reasonable to abort the processing at a predetermined time (for example, 5 minutes). If it is determined that an executable change pattern remains, the process returns to step B12, and B12-14 is repeated until the condition of step B15 is not met. Finally, when the determination condition of step B15 is not satisfied, the processing loop is exited, and in step B16, the candidate with the highest volume ratio digestibility is selected as the final building object. By this processing technique, it becomes possible to use the site more effectively by reducing the undigested volume ratio. Further, for the building object generated in this way, it is possible to calculate an approximate construction cost or calculate a balance (described in detail later).
 図11は、図1に示した自動CAD設計システムで実行される処理と並行して実行される処理を示すフローチャートである。図に示すように、ステップK11にて、記憶部が、部屋ユニットの玄関から通路ユニットを経た避難階段ユニットまでの距離(例えば、30m以内、40m以内、準耐火のホテルでは50m以内など)、または、建築物の条件に応じて規定される避難階段ユニットの個数(ホテルは2個以上、共同住宅の5階以上は2個以上など)を規定する避難経路設定情報を含む単体規定情報をさらに格納する。次にステップK12は、自動設計部が、図2の処理で自動設計された建築物の各部屋ユニットの各玄関から避難経路である避難階段ユニット(非常階段)までの距離が前記避難経路設定情報で規定された距離を満たすように、および/または、建築物の条件に応じて規定される避難階段ユニットの個数を満たすように、前記建築物に少なくとも1つの非常階段ユニットを配置する。 FIG. 11 is a flowchart showing a process executed in parallel with the process executed in the automatic CAD design system shown in FIG. As shown in the figure, in step K11, the storage unit has a distance from the entrance of the room unit to the escape stair unit through the passage unit (for example, within 30m, within 40m, within 50m at the semi-fire resistant hotel), or In addition, single provisional information including evacuation route setting information that prescribes the number of evacuation staircase units prescribed according to building conditions (two or more for hotels, two or more for apartments on the 5th floor or more, etc.) To do. Next, in step K12, the distance from the entrance of each room unit of the building automatically designed by the process of FIG. 2 to the evacuation stair unit (emergency stairs) that is the evacuation route is determined by the automatic design unit. At least one emergency stair unit is arranged in the building so as to satisfy the distance defined in (1) and / or to satisfy the number of evacuation stair units defined in accordance with the building conditions.
 図12は、個別ユニットの平面的な成長を説明するための模式図である。図に示すように、道路RD40に接する敷地SITE40に対しては、本システムは、与えられた条件(ここでは、建築物タイプ)に基づき、個別ユニットとしてバルコニーと、個別ユニットUI40(部屋ユニット)とを抽出する。バルコニーは敷地の道路側に配置され、その辺の端部から他端部まで伸ばされバルコニーBLKN40として配置される。そして、バルコニーBLKN40の長手方向の敷地内側の一辺の端部に個別ユニットUI40が配置され、所定の自動設計ルール(例えば、敷地または建築可能空間において個別ユニットの複製を最大限繰り返すなど)に基づき、複製される。そして、個別ユニットUI40、UI40-1、UI40-2、UI40-3、UI40-4のバルコニーの側とは反対側に、廊下ユニットCLD40が自動配置される。個別ユニットUI40、UI40-1、UI40-2、UI40-3、UI40-4の各玄関から廊下CLD40を経た避難経路を集団規定情報の該当するルールに従って設定し、個別ユニット情報UIから、対応する非常階段ユニットを抽出する。そして、避難経路の基準を満たす位置および数の非常階段EMRS40を廊下CLD40に接続するように自動配置する。このようにして、階層ブロックBLK40が自動設計される。この階層ブロックBLK40を垂直方向に積み重ねて、建築可能空間或いは容積率の制限値の範囲内で自動設計される。ここでは、非常階段(避難経路)が考慮され、かつ、部屋割りが済んだ概略のCAD図面を描画することが可能であり、さらに、各個別ユニットの単価を積算して概算コストを求めることも可能である。もちろん、総建築坪数を求めて坪単価などでの概算見積りも可能である。なお、非常階段やエレベータの数やその位置は、そのエレベータや非常階段が直通でアクセスする最上階の階層ブロック(設計対象の建築物が斜線規制などで階段状の建築物である場合は、建築物自体の最上階ではないこともある)の構成によって、階段やエレベータの位置をシフトしたり、増減したりする必要がある場合があり、本システムは、自動設計した後で最終的にエレベータや避難階段の位置や数が集団規定などの法規制に準拠しているか否かを最終チェックし、準拠していない場合は、準拠するようにエレベータや避難階段の位置をシフトしたり、増減したりする機能を有する。或いは、一旦、自動設計した後で、本システムが、当該敷地に適用される集団規定などの法規制に準拠するように、非難階段やエレベータだけを自動設計で追加・設定してもよい。これは、他の実施態様でも同様である。 FIG. 12 is a schematic diagram for explaining planar growth of individual units. As shown in the figure, for the site SITE 40 in contact with the road RD 40, the present system is based on given conditions (in this case, the building type), and includes a balcony and an individual unit UI 40 (room unit) as individual units. To extract. A balcony is arrange | positioned at the road side of a site, is extended from the edge part of the side to the other end part, and is arrange | positioned as balcony BLKN40. And individual unit UI40 is arrange | positioned at the edge part of the one side inside the site | part of the longitudinal direction of balcony BLKN40, and based on a predetermined automatic design rule (for example, repeating duplication of an individual unit in a site or a building space) Duplicated. Then, the corridor unit CLD40 is automatically arranged on the opposite side of the individual unit UI40, UI40-1, UI40-2, UI40-3, UI40-4 from the balcony side. Set the evacuation route from the entrance of each individual unit UI40, UI40-1, UI40-2, UI40-3, UI40-4 through the corridor CLD40 according to the corresponding rule of the group definition information, and from the individual unit information UI, the corresponding emergency Extract stair units. And the position and number of emergency staircases EMRS40 satisfying the standard of the evacuation route are automatically arranged so as to be connected to the corridor CLD40. In this way, the hierarchical block BLK40 is automatically designed. The hierarchical blocks BLK40 are stacked in the vertical direction, and are automatically designed within the limits of the building space or the volume ratio. Here, it is possible to draw a rough CAD drawing considering the emergency staircase (evacuation route) and dividing the room, and also to calculate the approximate cost by adding the unit price of each individual unit Is possible. Of course, it is possible to estimate the total number of floors of the building and estimate it by unit price. The number and location of emergency staircases and elevators is the top floor block that the elevators and emergency staircases directly access (if the building to be designed is a staircase structure due to diagonal restrictions, etc. Depending on the configuration of the object itself (which may not be the top floor of the object itself), it may be necessary to shift or increase or decrease the position of stairs or elevators. A final check is made to determine whether the position and number of evacuation stairs comply with legal regulations such as group regulations. If not, the position of elevators and evacuation stairs can be shifted or increased or decreased to comply. It has the function to do. Alternatively, after automatic design, only the blame stairs and elevators may be added and set by automatic design so that the system complies with laws and regulations such as group regulations applied to the site. The same applies to other embodiments.
 図13は、個別ユニットの平面的な成長を説明するための模式図である。図に示すように、道路RD50に接する敷地SITE50に対しては、本システムは、与えられた条件(ここでは、建築物タイプ)に基づき、個別ユニットとしてバルコニーと、個別ユニットUI50とを抽出する。バルコニーは敷地の道路側に配置され、その辺の端部から他端部まで伸ばされバルコニーBLKN50として配置される。そして、バルコニーBLKN50の長手方向の敷地内側の一辺の端部に個別ユニットUI50が配置され、所定の自動設計ルール(例えば、敷地または建築可能空間において個別ユニットの複製を最大限繰り返すなど)に基づき、複製される。そして、個別ユニットUI50、UI50-1、UI50-2、UI50-3、UI50-4のバルコニーの側とは反対側に、廊下ユニットCLD50が自動配置される。個別ユニットUI50、UI50-1、UI50-2、UI50-3、UI50-4の各玄関から廊下CLD50を経た避難経路を集団規定情報の該当するルールに従って設定し、個別ユニット情報UIから、対応する非常階段ユニットを抽出する。そして、避難経路の基準を満たす位置および数の非常階段EMRS50を廊下CLD50に接続するように自動配置する。この例では、容積率、商業地域などの情報から想定階数がエレベータ必須の階数であるため、エレベータユニットが個別ユニットとして抽出され、同じにようにエレベータELV50を廊下CLD50に接続するように自動配置する。 FIG. 13 is a schematic diagram for explaining planar growth of individual units. As shown in the figure, for the site SITE 50 that is in contact with the road RD 50, the present system extracts a balcony and an individual unit UI 50 as individual units based on given conditions (here, building type). A balcony is arrange | positioned at the road side of a site, is extended from the edge part of the side to the other end part, and is arrange | positioned as balcony BLKN50. And individual unit UI50 is arrange | positioned at the edge part of the one side inside the site | part of the longitudinal direction of balcony BLKN50, and based on a predetermined automatic design rule (For example, duplication of an individual unit is repeated in the site or a building space) Duplicated. The corridor unit CLD50 is automatically arranged on the side opposite to the balcony side of the individual units UI50, UI50-1, UI50-2, UI50-3, and UI50-4. Set the evacuation route from the entrance of each individual unit UI50, UI50-1, UI50-2, UI50-3, UI50-4 through the corridor CLD50 according to the corresponding rule of the group regulation information, and from the individual unit information UI, the corresponding emergency Extract stair units. And the position and number of emergency staircases EMRS50 satisfying the standard of the evacuation route are automatically arranged so as to be connected to the hallway CLD50. In this example, since the assumed floor is an elevator-required floor from information such as the floor area ratio and the commercial area, the elevator unit is extracted as an individual unit, and the elevator ELV 50 is automatically arranged to be connected to the corridor CLD 50 in the same manner. .
 このようにして、階層ブロックBLK50が自動設計される。この階層ブロックBLK50を垂直方向に積み重ねて、建築可能空間或いは容積率の制限値の範囲内で自動設計される。ここでは、非常階段(避難経路)が考慮され、エレベータが設置され、かつ、部屋割りが済んだ概略のCAD図面を描画することが可能であり、さらに、各個別ユニットの単価を積算して概算コストを求めることも可能である。もちろん、総建築坪数を求めて坪単価などでの概算見積りも可能である。この例では、エレベータ、非常階段なども考慮した相当信頼性の高い建築見積り費用を求めることが可能である。なお、図示していないが、地下の階層ブロックを自動設計で構築することが可能であり、その場合には、地下用の費用や特別加算費用を記憶部に格納しておき概算費用を算出することが可能である。 In this way, the hierarchical block BLK50 is automatically designed. The hierarchical blocks BLK50 are stacked in the vertical direction, and are automatically designed within the range of the building space or the volume ratio limit value. Here, it is possible to draw a rough CAD drawing considering the emergency staircase (evacuation route), installing an elevator, and dividing the room. It is also possible to determine the cost. Of course, it is possible to estimate the total number of floors of the building and estimate it by unit price. In this example, it is possible to obtain a highly reliable construction estimation cost considering an elevator, an emergency staircase, and the like. Although not shown, it is possible to build underground hierarchical blocks by automatic design. In that case, store the underground costs and special additional costs in the storage unit and calculate the approximate cost It is possible.
 図14は、個別ユニットの平面的な成長を説明するための模式図である。図に示すように、道路RD60に接する敷地SITE60に対しては、本システムは、与えられた条件(ここでは、建築物タイプ)に基づき、個別ユニットとしてバルコニーと、個別ユニットUI60とを抽出する。なお、この例では、敷地SITE60は、これまでの敷地よりも面積が広いので、より多くの個別ユニットが配置される。バルコニーは敷地の道路側に配置され、その辺の端部から他端部まで伸ばされバルコニーBLKN60として配置される。そして、バルコニーBLKN60の長手方向の敷地内側の一辺の端部に個別ユニットUI60が配置され、所定の自動設計ルール(例えば、敷地または建築可能空間において個別ユニットの複製を最大限まで繰り返すなど)に基づき、複製される。そして、個別ユニットUI60、UI60-1、UI60-2、UI60-3、UI60-4、UI60-5、UI60-6、UI60-7、UI60-8のバルコニーの側とは反対側に、廊下ユニットCLD60が自動配置される。個別ユニットUI60、UI60-1、UI60-2、UI60-3、UI60-4、UI60-5、UI60-6、UI60-7、UI60-8の各玄関から廊下CLD60を経た避難経路を集団規定情報の該当するルールに従って設定し、個別ユニット情報UIから、対応する非常階段ユニットを抽出する。そして、避難経路の基準を満たす位置および数である2個の非常階段EMRS60、EMRS60-1を廊下CLD60に接続するように自動配置する。この例では、容積率、商業地域などの情報から想定階数がエレベータ必須の階数であるため、エレベータユニットが個別ユニットとして抽出され、同じにようにエレベータELV60を廊下CLD60に接続するように自動配置する。 FIG. 14 is a schematic diagram for explaining planar growth of individual units. As shown in the figure, for the site SITE 60 in contact with the road RD 60, the present system extracts a balcony and an individual unit UI 60 as individual units based on given conditions (here, building type). In this example, the site SITE 60 has a larger area than the conventional site, so that more individual units are arranged. A balcony is arrange | positioned at the road side of a site, is extended from the edge part of the side to the other end part, and is arrange | positioned as balcony BLKN60. And individual unit UI60 is arrange | positioned at the edge part of one side inside the site | part of the longitudinal direction of balcony BLKN60, and based on a predetermined automatic design rule (For example, duplication of an individual unit is repeated to the maximum in a site or a building space) , Replicated. The hallway unit CLD60 is disposed on the opposite side of the individual unit UI60, UI60-1, UI60-2, UI60-3, UI60-4, UI60-5, UI60-6, UI60-7, UI60-8 from the balcony side. Are automatically arranged. The evacuation routes from the entrances of the individual units UI60, UI60-1, UI60-2, UI60-3, UI60-3, UI60-4, UI60-5, UI60-6, UI60-7, UI60-8 through the corridor CLD60 Set according to the corresponding rule, and extract the corresponding emergency stair unit from the individual unit information UI. Then, two emergency staircases EMRS60 and EMRS60-1 which are positions and numbers satisfying the evacuation route standard are automatically arranged so as to be connected to the corridor CLD60. In this example, since the assumed floor is an elevator-required floor from information such as the floor area ratio and the commercial area, the elevator unit is extracted as an individual unit, and the elevator ELV 60 is automatically arranged to be connected to the corridor CLD 60 in the same manner. .
 このようにして、階層ブロックBLK60が自動設計される。この階層ブロックBLK60を垂直方向に積み重ねて、建築可能空間或いは容積率の制限値の範囲内で自動設計される。ここでは、非常階段(避難経路)が考慮され、エレベータが設置され、かつ、部屋割りが済んだ概略のCAD図面を描画することが可能であり、さらに、各個別ユニットの単価を積算して概算コストを求めることも可能である。もちろん、総建築坪数を求めて坪単価などでの概算見積りも可能である。この例では、エレベータ、非常階段なども考慮した相当信頼性の高い建築見積り費用を求めることが可能である。 In this way, the hierarchical block BLK60 is automatically designed. The hierarchical blocks BLK60 are stacked in the vertical direction, and are automatically designed within the limits of the building space or the volume ratio. Here, it is possible to draw a rough CAD drawing considering the emergency staircase (evacuation route), installing an elevator, and dividing the room. It is also possible to determine the cost. Of course, it is possible to estimate the total number of floors of the building and estimate it by unit price. In this example, it is possible to obtain a highly reliable construction estimation cost considering an elevator, an emergency staircase, and the like.
 本システムは、与えられた条件(ここでは、建築物タイプ)に基づき、個別ユニットを抽出するが、これには、部屋タイプの指定が最も好適である。例えば、1K(66畳1間にキッチン1つ)、2Kなどである。或いは、間口8m、間口6m奥行10mなどの指定でもよい。さらには、ユニットバスのタイプやキッチンタイプ、廊下、洋室、和室などのタイプ指定も可能である。本システムは、上記のような条件に応じた建築物を自動設計することが可能である。 This system extracts individual units based on given conditions (in this case, building type). For this, the designation of the room type is most suitable. For example, 1K (one kitchen between 66 tatami mats), 2K, etc. Alternatively, the frontage 8m, the frontage 6m, and the depth 10m may be specified. Furthermore, it is possible to specify types such as unit bath type, kitchen type, corridor, western-style room, and Japanese-style room. This system can automatically design buildings according to the above conditions.
 図15は、個別ユニットの平面的な成長を説明するための模式図である。図に示すように、道路RD70に接する敷地SITE70に対しては、本システムは、与えられた条件(ここでは、建築物タイプ)に基づき、個別ユニットとしてバルコニーと、個別ユニットUI70とを抽出する。なお、この例では、敷地SITE70は、図7と同様に敷地面積が広いので、より多くの個別ユニットが配置される。バルコニーは敷地の道路側に配置され、その辺の端部から他端部まで伸ばされバルコニーBLKN70として配置される。この例では、図面の左側が接道面なので、この面にバルコニーが配置されるが、本システムは、このように接道面に応じて、バルコニー(開口部)を自動配置することが可能である。そして、バルコニーBLKN70の長手方向の敷地内側の一辺の端部に個別ユニットUI70が配置され、所定の自動設計ルール(例えば、敷地または建築可能空間において個別ユニットの複製を最大限まで繰り返すなど)に基づき、複製される。そして、個別ユニットUI70、UI70-1、UI70-2、UI70-3、UI70-4、UI70-5、UI70-6、UI70-7のバルコニーの側とは反対側に、廊下ユニットCLD70が自動配置される。個別ユニットUI70、UI70-1、UI70-2、UI70-3、UI70-4、UI70-5、UI70-6、UI70-7の各玄関から廊下CLD70を経た避難経路を集団規定情報の該当するルールに従って設定し、個別ユニット情報UIから、対応する非常階段ユニットを抽出する。そして、避難経路の基準を満たす位置および数である2個の非常階段EMRS70、EMRS70-1を廊下CLD70に接続するように自動配置する。この例では、容積率、商業地域などの情報から想定階数がエレベータ必須の階数であるため、エレベータユニットが個別ユニットとして抽出され、同じにようにエレベータELV70を廊下CLD70に接続するように自動配置する。即ち、本システムでは、法令に基づきエレベータの設置が必要否かを自動判定して、それを反映した自動設計を実施することが可能である。 FIG. 15 is a schematic diagram for explaining planar growth of individual units. As shown in the figure, for the site SITE 70 that is in contact with the road RD 70, the present system extracts a balcony and an individual unit UI 70 as individual units based on given conditions (here, building type). In this example, the site SITE 70 has a large site area in the same manner as in FIG. 7, and thus more individual units are arranged. A balcony is arrange | positioned at the road side of a site, is extended from the edge part of the side to the other end part, and is arrange | positioned as balcony BLKN70. In this example, since the left side of the drawing is a tangential surface, a balcony is arranged on this surface, but this system can automatically arrange balconies (openings) according to the tangential surface in this way. is there. And individual unit UI70 is arrange | positioned at the edge part of one side inside the site | part of the longitudinal direction of balcony BLKN70, and based on a predetermined automatic design rule (For example, duplication of an individual unit is repeated to the maximum in a site or a building space) , Replicated. The corridor unit CLD70 is automatically arranged on the opposite side of the individual unit UI70, UI70-1, UI70-2, UI70-3, UI70-4, UI70-5, UI70-6, UI70-7 from the balcony side. The The individual unit UI70, UI70-1, UI70-2, UI70-3, UI70-4, UI70-5, UI70-6, UI70-7, the evacuation route through the corridor CLD70 according to the corresponding rule of the group provision information Set and extract the corresponding emergency stair unit from the individual unit information UI. Then, the two emergency staircases EMRS70 and EMRS70-1 that meet the evacuation route criteria and the number are automatically arranged so as to be connected to the corridor CLD70. In this example, since the assumed floor is an elevator-required floor from information such as the floor area ratio and the commercial area, the elevator unit is extracted as an individual unit, and the elevator ELV 70 is automatically arranged to be connected to the corridor CLD 70 in the same manner. . That is, in this system, it is possible to automatically determine whether or not an elevator installation is necessary based on laws and regulations, and to implement automatic design reflecting that.
 この例では、個別ユニットとして、さらに、玄関ホールENT70が抽出され、接道面に配置される。玄関ホールENT70と、廊下CLD70とを接続する廊下CLD70-1も抽出され、配置される。 In this example, the entrance hall ENT70 is further extracted as an individual unit and arranged on the road surface. Corridor CLD 70-1 connecting entrance hall ENT70 and corridor CLD 70 is also extracted and arranged.
 このようにして、階層ブロックBLK70が自動設計される。この階層ブロックBLK70をそのまま成長させると、2階や3階に玄関ホールが配置されることになり、不都合である。そこで、本システムは、1階の階層ブロックと、2階以降の階層ブロック、或いは、地下の階層ブロックを別に自動設計で求めることが可能である。 In this way, the hierarchical block BLK 70 is automatically designed. If this hierarchical block BLK70 is grown as it is, entrance halls will be arranged on the second and third floors, which is inconvenient. In view of this, the present system can automatically obtain a hierarchical block on the first floor and a hierarchical block on the second floor or later or an underground hierarchical block separately.
 図16は、1階の階層ブロックと2階の階層ブロックとをそれぞれ説明する模式図である。図に示すように、階層ブロックBLK70は、図15と同じものである。階層ブロックBLK71は、自動設計部AUDにより、2階およびそれより上の階では不要となる玄関ホールENT70、廊下CLD70-1を、それぞれバルコニーBLKN71、個別ユニットUI71で置換されたものである。自動設計部AUDは、階層ブロックBLK71を3階、4階と、順次、垂直方向に積み重ねて、建築可能空間或いは容積率の制限値の範囲内で自動設計する。このように、本システムでは、1階と、2階以降の階とで別個に自動設計を行うことが可能であるため、より、精度の高い自動設計を実施できる。もちろん、図示していないが、同様の技法を用いて、地下階層も自動構築可能である。よって、この例では、階別の構成の相違を考慮した相当信頼性の高い建築見積り費用を求めることが可能である。 FIG. 16 is a schematic diagram for explaining the hierarchical block on the first floor and the hierarchical block on the second floor. As shown in the figure, the hierarchical block BLK 70 is the same as FIG. The hierarchical block BLK71 is obtained by replacing the entrance hall ENT70 and the hallway CLD70-1 that are not required on the second floor and higher floors with the balcony BLKN71 and the individual unit UI71, respectively, by the automatic design unit AUD. The automatic design unit AUD stacks the hierarchical blocks BLK71 in the vertical direction in the 3rd and 4th floors, and automatically designs them within the range of the limit of the building space or the volume ratio. As described above, in the present system, it is possible to perform automatic design separately on the first floor and the second and subsequent floors, so that it is possible to perform automatic design with higher accuracy. Of course, although not shown, the underground level can be automatically constructed using the same technique. Therefore, in this example, it is possible to obtain a construction estimation cost with considerably high reliability in consideration of the difference in the structure of each floor.
 図17は、1階の階層ブロック(店舗)と2階の階層ブロックとをそれぞれ説明する模式図である。図16と同じ敷地に、一階に店舗を設ける条件を建築物タイプとして指定した場合に自動設計される様子を説明したものである。図17における2階以上の階層ブロックBKL71-Sは、図16のそれである階層ブロックBKL71と同じである。1階の階層ブロックは、個別ユニットとして店舗ユニットが条件に応じて抽出され、店舗ユニットSHP1、2,3として自動配置される。玄関や廊下ユニットの抽出および配置は図16と同様である。即ち、階層ブロックBLK71-Sは、自動設計部AUDにより、2階およびそれより上の階では不要となる玄関ホールENT70、廊下CLD70-1を、それぞれバルコニーBLKN71、個別ユニットUI71で置換されたものである。自動設計部AUDは、階層ブロックBLK71-Sを3階、4階と、順次、垂直方向に積み重ねて、建築可能空間或いは容積率の制限値の範囲内で自動設計する。このように、本システムでは、1階を店舗と、2階以降の階とで別個に自動設計を行うことが可能であるため、より、精度の高い自動設計を実施できる。或いは、1-2階、地下と1階、地下と1,2階を店舗などと自由自在に自動設計することも可能である。よって、この例では、特に都市部での典型的なマンション形態である、1階に店舗を設けた階別の構成の相違を考慮した相当信頼性の高い建築見積り費用を求めることが可能である。 FIG. 17 is a schematic diagram for explaining a hierarchical block (store) on the first floor and a hierarchical block on the second floor. FIG. 17 illustrates a state in which an automatic design is performed when a condition for providing a store on the first floor is designated as a building type on the same site as FIG. 16. The hierarchical block BKL71-S of the second and higher floors in FIG. 17 is the same as the hierarchical block BKL71 that is that of FIG. In the hierarchical block on the first floor, store units are extracted as individual units according to conditions, and are automatically arranged as store units SHP1, 2, and 3. The extraction and arrangement of the entrance and hallway units are the same as in FIG. That is, the hierarchical block BLK71-S is obtained by replacing the entrance hall ENT70 and the corridor CLD70-1 that are not required on the second floor and higher floors with the balcony BLKN71 and the individual unit UI71, respectively, by the automatic design unit AUD. is there. The automatic design unit AUD stacks the hierarchical blocks BLK71-S in the vertical direction in the third and fourth floors, and automatically designs them within the range of the limit of the building space or the floor area ratio. As described above, in the present system, since the first floor can be automatically designed separately for the store and the second and subsequent floors, more accurate automatic design can be performed. Alternatively, the 1-2 floor, the basement and the first floor, and the basement and the first and second floors can be automatically designed freely as a store. Therefore, in this example, it is possible to obtain a highly reliable construction estimation cost that takes into account the difference in the structure of each floor with a store on the first floor, which is a typical apartment form particularly in urban areas. .
 図18は、図1に示した自動CAD設計システムで実行される処理の一例を示すフローチャートである。本願発明者らは、実際に自動設計した場合、敷地面積の大小に応じて、自動設計の手法を選択すると同じ敷地の容積率を効率よく使って、より延床面積が広い建築物を自動設計することが可能であることを見出した。まず、前提として、記憶部120が、個別ユニットが、中廊下ユニット(例えば、中廊下の寸法情報など)と、部屋ユニット(例えば、1K、2LDK,3LDKなどの個別住居、十坪事務所、20坪事務所など)と、バルコニーユニット(例えば、バルコニーの寸法情報など)と、部屋ユニット(例えば、1K、2LDK,3LDKなどの個別住居、十坪事務所、20坪事務所など)とを含む。そして、図に示すように、ステップS21にて、自動設計部AUDが、敷地情報で規定される敷地の面積が、閾値(記憶部に格納されている所定の数値、例えば300平方メートル)より小さいいか否かを判定する。ステップS21の判定条件を満たす場合は、ステップS22にて、自動設計部AUDが、敷地の形状(または建築物存在可能空間)に基づき建築物外周形状を作成し、建築物の平面的な重心を求める。次にステップS23にて、その重心を通るように中廊下ユニットを配置し、個別の住居や事務所となる個別ユニット(部屋ユニット)を中廊下ユニットの長手方向の両辺の少なくとも一部に沿って順次配置して建築物を自動設計する。ステップS21の判定条件を満たさない場合は、ステップS24にて、自動設計部AUDが、図1に示すような通常に自動設計処理を行う。即ち、敷地情報で規定される敷地の面積が、所定の数値以上のときは、敷地の少なくとも一辺(好適には接道辺、或いは、南向きの一辺)に沿ってバルコニーユニットを配置し、前記部屋ユニットを前記バルコニーユニットの長手方向の敷地内側の一辺の少なくとも一部に沿って順次配置して建築物を自動設計する。 FIG. 18 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG. The inventors of the present application automatically design a building with a larger total floor area by efficiently using the floor area ratio of the same site when an automatic design method is selected according to the size of the site area when actually designing automatically. Found that it is possible to do. First, as a premise, the storage unit 120 includes individual units such as a central corridor unit (for example, dimension information of the central corridor) and a room unit (for example, an individual residence such as 1K, 2LDK, and 3LDK, Totsubo office, 20 Tsubo office, etc.), balcony units (e.g., balcony dimension information), and room units (e.g., individual residences such as 1K, 2LDK, 3LDK, Totsubo office, 20 tsubo office, etc.). Then, as shown in the figure, in step S21, the automatic design unit AUD determines whether the area of the site specified by the site information is smaller than a threshold (a predetermined numerical value stored in the storage unit, for example, 300 square meters). Determine whether or not. When the determination condition of step S21 is satisfied, in step S22, the automatic design unit AUD creates a building outer peripheral shape based on the shape of the site (or space where the building can exist), and calculates the planar center of gravity of the building. Ask. Next, in step S23, the central corridor unit is arranged so as to pass through the center of gravity, and the individual unit (room unit) serving as an individual residence or office is arranged along at least a part of both sides in the longitudinal direction of the central corridor unit. Arrange sequentially and automatically design buildings. If the determination condition in step S21 is not satisfied, in step S24, the automatic design unit AUD normally performs automatic design processing as shown in FIG. That is, when the area of the site stipulated by the site information is equal to or greater than a predetermined value, a balcony unit is arranged along at least one side of the site (preferably a side of a roadway or a side facing south), The building unit is automatically designed by sequentially arranging the room units along at least a part of one side inside the site in the longitudinal direction of the balcony unit.
 図19は、図18の処理で敷地面積が小さいと判定された場合の処理による個別ユニットの平面的な成長を説明するための模式図である。図に示すように、敷地SITE80に対して、図18の処理によって、ステップS22およびそれ以降の処理に進む。本システムは、まず、重心を通る中廊下ユニットINCLD80を設定する。そして、与えられた条件(建築物タイプ)に基づき、個別ユニットとして、一戸の事務所または住居となり、成長可能(複製可能、連結可能)な属性を持たせた部屋ユニットである個別ユニットUI80を抽出する。個別ユニットUI80に基づき、中廊下ユニットINCLD80の長手方向の北側の一辺の端部に個別ユニットUI80-Nが配置され、所定の自動設計ルール(例えば、敷地または建築可能空間において個別ユニットの複製を最大限繰り返すなど)に応じて、複製される。そして、個別ユニットUI80-N1、中廊下ユニットINCLD80-N2~N7が自動設計で配置される。同様に、個別ユニットUI80に基づき、中廊下ユニットINCLD80の長手方向の南側(図面下側)の一辺の端部に個別ユニットUI80-Sが配置され、所定の自動設計ルール(例えば、敷地または建築可能空間において個別ユニットの複製を最大限繰り返すなど)に応じて、複製される。そして、個別ユニットUI80-S1、中廊下ユニットINCLD80-S2~S7が自動設計で配置される。このようにして、階層ブロックBLK80が自動設計される。この階層ブロックBLK80を垂直方向に積み重ねて、建築可能空間或いは容積率の制限値の範囲内で自動設計される。この例では、非常階段(避難経路)、エレベータ、機械室などは考慮されていないが、部屋割りが済んだ概略のCAD図面を描画することが可能であり、さらに、各個別ユニットの単価を積算して概算コストを求めることも可能である。もちろん、総建築坪数を求めて坪単価などでの概算見積りも可能である。このようないわゆる狭小敷地には、本処理のような中廊下ユニットを配した方が、通常の自動設計(片廊下タイプ)よりも容積率を効率良く消化した延床面積が広いアパート、事務所ビル、マンションなどを自動設計することが可能である。ちなみに、本発明者らは、この手法で自動設計した場合の建築物の収支シミュレーションにて、収益性が高くなること、即ち、事業実行可能性(事業採算性)が高まることを確認している。 FIG. 19 is a schematic diagram for explaining planar growth of individual units by the process when it is determined that the site area is small in the process of FIG. As shown in the figure, for the site SITE 80, the process of FIG. 18 proceeds to step S22 and subsequent processes. In this system, first, a corridor unit INCLD80 passing through the center of gravity is set. Based on the given conditions (building type), the individual unit UI80, which is a room unit with an attribute of being able to grow (duplicatable or connectable), is extracted as an individual unit as an individual unit. To do. Based on the individual unit UI80, the individual unit UI80-N is arranged at the end of one side in the longitudinal direction of the inner corridor unit INCLD80, and the predetermined automatic design rule (for example, maximizing the duplication of the individual unit in the site or the building space) Duplicated according to the number of repetitions). The individual unit UI80-N1 and the corridor units INCLD80-N2 to N7 are arranged by automatic design. Similarly, based on the individual unit UI80, the individual unit UI80-S is arranged at the end of one side in the longitudinal direction (lower side of the drawing) of the inner corridor unit INCLD80, and a predetermined automatic design rule (for example, site or construction is possible) And so on. The individual units UI80-S1 and the corridor units INCLD80-S2 to S7 are arranged by automatic design. In this way, the hierarchical block BLK80 is automatically designed. The hierarchical blocks BLK80 are stacked in the vertical direction, and are automatically designed within the range of the limit value of the building space or the volume ratio. In this example, emergency staircases (evacuation routes), elevators, machine rooms, etc. are not taken into consideration, but it is possible to draw a rough CAD drawing with room allocation, and to calculate the unit price of each individual unit It is also possible to obtain an approximate cost. Of course, it is possible to estimate the total number of floors of the building and estimate it by unit price. An apartment or office with a large total floor area that is more efficient than the usual automatic design (single corridor type) on the so-called narrow site where a central corridor unit like this processing is arranged. Buildings, condominiums, etc. can be designed automatically. By the way, the present inventors have confirmed that the profitability is increased, that is, the business feasibility (business profitability) is increased in the balance simulation of the building when automatically designed by this method. .
 図20は、敷地面積が小さい場合に効率良く自動設計する別ロジックによる個別ユニットの平面的な成長を説明するための模式図である。図に示すように、敷地SITE80-Mに対して、まず、敷地の重心(或いは、想定建物の輪郭を求めその重心を求めてもよい)を求める。そして、重心に中央廊下CTRを設置する。そして、与えられた条件(建築物タイプ)に基づき、個別ユニットとして、一戸の事務所または住居となる伸縮自在かつ接続自在な個別ユニットUI80-FX1を抽出する。中央廊下CTRの一辺にそれぞれ個別ユニットUI80-FX1-3を配置し、それら個別ユニットを建築可能空間一杯に伸ばす。そして、中央廊下CTRにはエレベータEVと非常階段STPを抽出して配置する。このようにして、階層ブロック80-Mを自動設計することが可能となる。ちなみに本発明者らは、この処理ロジックが都市部の狭小敷地には、非常に効率よく機能し、容積率を効率よく消化することを確認している。 FIG. 20 is a schematic diagram for explaining planar growth of individual units by another logic that efficiently and automatically designs when the site area is small. As shown in the figure, for the site SITE 80-M, first, the center of gravity of the site (or the contour of the assumed building may be obtained and the center of gravity may be obtained). A central corridor CTR is installed at the center of gravity. Then, based on the given conditions (building type), the individual units UI80-FX1 that are extendable and connectable to be a single office or residence are extracted as individual units. The individual units UI80-FX1-3 are arranged on each side of the central corridor CTR, and the individual units are extended to the full building space. The elevator EV and emergency staircase STP are extracted and arranged in the central corridor CTR. In this way, the hierarchical block 80-M can be automatically designed. Incidentally, the present inventors have confirmed that this processing logic functions very efficiently in a small area in an urban area and efficiently digests the floor area ratio.
 図21は、図1に示した自動CAD設計システムで実行される処理の概要を示す模式図である。日本の都市計画によれば、地域によって接道条件によって12m未満の道路に接道している場合に用途地域が住居地区であれば、容積率低減係数と道路幅員の積によって、実際の容積率の数値よりも低い数値に低減される。この例では、同じ敷地面積、敷地形状の敷地であっても接道条件によって異なる建築物が自動設計される様子を説明する。図に示すように、本システムは、同じ敷地形状、敷地面積であるが、条件の異なる道路に接する敷地SITE90-Wおよび敷地SITE90-Nを示す敷地情報を取得する。記憶部の集団規定情報GRIから、敷地SITE90-Wに対応する集団規定情報として「容積率:400%」、「建蔽率:80%」、「容積率低減係数:適用なし」が抽出される。敷地SITE90-Wは、12mの道路幅員の広い道路RD90-Wに接道しているため、都市計画による容積率低減係数の適用がない。よって、実質容積率は、そのままの数値である400%である。 FIG. 21 is a schematic diagram showing an outline of processing executed by the automatic CAD design system shown in FIG. According to the Japanese city plan, if the area of use is a residential area when the road is less than 12m depending on the roadway conditions, the actual floor area ratio is calculated by multiplying the floor area ratio reduction coefficient and the road width. It is reduced to a value lower than the value of. In this example, a state will be described in which different buildings are automatically designed according to the contact condition even if the site has the same site area and site shape. As shown in the figure, the present system acquires site information indicating the site SITE 90-W and the site SITE 90-N that have the same site shape and site area but are in contact with roads with different conditions. From the group definition information GRI in the storage unit, “volume ratio: 400%”, “building coverage ratio: 80%”, and “volume ratio reduction coefficient: not applicable” are extracted as the group definition information corresponding to the site SITE90-W. The site SITE90-W is connected to the wide road RD90-W with a road width of 12 m, so there is no application of the floor area ratio reduction factor by city planning. Therefore, the real volume ratio is 400%, which is a numerical value as it is.
 同様に、記憶部の集団規定情報GRIから、敷地SITE90-Nに対応する集団規定情報として「容積率:400%」、「建蔽率:80%」、「容積率低減係数:0.4」が抽出される。敷地SITE90-Nは、4mの道路幅員の狭い道路RD90-Nに接道しているため、都市計画による容積率低減係数の0.4が適用される。よって、実質容積率は、接道する前面道路幅4m×係数0.4=200%の数値となる。本システムは、敷地情報に含まれる地理的情報、住居表示、或いは地番に基づき、このように実質容積率まで自動的に求めて、これを利用した自動設計が可能である。このように、多くの自治体では、容積率低減係数の適用が義務化されているため、本システムのように実質的な容積率を自動的に算出して自動設計に適用することは、事業採算性を考慮するためには、非常に重要なことである。 Similarly, “volume ratio: 400%”, “building coverage ratio: 80%”, and “floor ratio reduction coefficient: 0.4” are extracted as group definition information corresponding to the site SITE90-N from the group definition information GRI in the storage unit. Is done. Since the site SITE90-N is connected to a narrow road RD90-N with a road width of 4 m, a floor area ratio reduction factor of 0.4 based on city planning is applied. Therefore, the real volume ratio is a numerical value of the front road width 4 m × the coefficient 0.4 = 200% that is close to the road. The present system can automatically obtain the real floor area ratio based on the geographical information, the housing display, or the lot number included in the site information, and can perform automatic design using this. As described above, since many local governments are obligated to apply the floor area ratio reduction factor, it is not possible to automatically calculate the actual floor area ratio and apply it to automatic design as in this system. It is very important to consider sex.
 敷地SITE90-Wおよび敷地SITE90-Nには、適用される集団規定の相違によって、それぞれ、建築物OBJ90-Wおよび建築物OBJ90-Nが自動設計で求められる。この例では、自動設計により、広い道路に接する敷地SITE90-Wには、4階建ての建築物OBJ90-Wが自動構築され、狭い道路に接する敷地SITE90-Nには、2階建ての建築物OBJ90-Nが自動構築される。このようにして自動設計された各建築物の建築費用を算出して、最終的な事業成功可能性をそれぞれ判断することが可能である。従って、本システムによれば、複数の敷地に対する事業を比較検討することが可能である。 For the site SITE90-W and site SITE90-N, the building OBJ90-W and the building OBJ90-N are required by automatic design, respectively, depending on the difference in the applicable group regulations. In this example, a four-story building OBJ90-W is automatically constructed on the site SITE90-W that touches a wide road by automatic design, and a two-story building on the site SITE90-N that touches a narrow road. OBJ90-N is automatically constructed. It is possible to determine the final business success possibility by calculating the construction cost of each building automatically designed in this way. Therefore, according to this system, it is possible to compare and examine projects for a plurality of sites.
 図22は、図1に示した自動CAD設計システムで実行される処理の概要を示す模式図である。日本の都市計画によれば、地域によって用途地域が区分されており、商業地区、住居地区の条件によって、大幅に異なる容積率が設定される。この例では、同じ敷地面積、敷地形状の敷地であっても、用途地域の条件および接道条件によって異なる建築物が自動設計される様子を説明する。図に示すように、本システムは、同じ敷地形状、敷地面積であるが、条件の異なる道路に接し、用途の異なる地区の敷地SITE100-Lおよび敷地SITE100-Cを示す敷地情報を取得する。記憶部の集団規定情報GRIから、住居地区の敷地SITE100-Lに対応する集団規定情報として「容積率:400%」、「建蔽率:80%」、「容積率低減係数:0.4」が抽出される。この地区は、住居系地区であるため、容積率は低目の400%が設定される。敷地SITE1000-Wは、8mの道路幅員の道路RD100-Lに接道しているため、都市計画による容積率低減係数の適用がある。実質容積率は、接道する前面道路幅8m×係数0.4=320%の数値となる。 FIG. 22 is a schematic diagram showing an outline of processing executed by the automatic CAD design system shown in FIG. According to the Japanese city plan, the use area is divided according to the area, and a significantly different floor area ratio is set depending on the conditions of the commercial district and the residential district. In this example, a state will be described in which different buildings are automatically designed according to the conditions of the use area and the access road conditions even if the sites have the same site area and site shape. As shown in the figure, this system acquires site information indicating the site SITE 100-L and the site SITE 100-C of the districts that are in the same site shape and site area but are in contact with roads with different conditions and have different uses. From the group provision information GRI in the storage unit, “floor ratio: 400%”, “building ratio: 80%”, and “floor ratio reduction coefficient: 0.4” are extracted as group provision information corresponding to the site SITE100-L in the residential area. Is done. Since this district is a residential district, the floor area ratio is set to the lower 400%. Since the site SITE1000-W is connected to the road RD100-L with a road width of 8 m, there is an application of the floor area ratio reduction factor by city planning. The real volume ratio is a numerical value of the width of the front road 8 m × the coefficient 0.4 = 320%.
 同様に、記憶部の集団規定情報GRIから、商業地区の敷地SITE100-Cに対応する集団規定情報として「容積率:800%」、「建蔽率:80%」、「容積率低減係数:0.6」が抽出される。敷地SITE100-Cは、5mの道路幅員の狭い道路RD100-Cに接道しているため、都市計画による容積率低減係数の0.6が適用される。よって、実質容積率は、接道する前面道路幅8m×係数0.6=480%の数値となる。本システムは、敷地情報に含まれる地理的情報、住居表示、或いは地番に基づき、このように実質容積率まで自動的に求めて、これを利用した自動設計が可能である。 Similarly, from the group definition information GRI of the storage unit, as the group definition information corresponding to the site SITE100-C in the commercial district, “floor ratio: 800%”, “building coverage ratio: 80%”, “floor ratio reduction coefficient: 0.6 Is extracted. Since the site SITE100-C is connected to a narrow road RD100-C with a road width of 5 m, a floor area ratio reduction factor of 0.6 according to the city plan is applied. Therefore, the real volume ratio is a numerical value of the width of the front road 8 m × the coefficient 0.6 = 480%. The present system can automatically obtain the real floor area ratio based on the geographical information, the housing display, or the lot number included in the site information, and can perform automatic design using this.
 敷地SITE100-Lおよび敷地SITE100-Cには、適用される集団規定の相違によって、それぞれ、建築物OBJ100-Lおよび築物OBJ100-Cが自動設計で求められる。この例では、自動設計により、広い道路に接した住居地区の敷地SITE100-Lには、3階建ての建築物OBJ100-Lが自動構築され、狭い道路に接した商業地区の敷地SITE100-Cには、5階建ての建築物OBJ100-Cが自動構築される。このようにして自動設計された各建築物の建築費用を算出して、最終的な事業成功可能性をそれぞれ判断することが可能である。従って、本システムによれば、複数の敷地に対する事業を比較検討することが可能である。このように、本システムは、本来であれば建築士や設計技術者などが敷地状況や接道状況、条例、法令などを勘案して設計しなければ把握することが困難であった最終建築物を自動設計することが可能となる。 In the site SITE100-L and site SITE100-C, the building OBJ100-L and the building OBJ100-C are required by automatic design, respectively, depending on the difference in the applicable group regulations. In this example, a three-story building OBJ100-L is automatically built on the site SITE100-L in the residential area in contact with a wide road by automatic design, and the site SITE100-C in a commercial area in contact with a narrow road. The five-story building OBJ100-C is automatically constructed. It is possible to determine the final business success possibility by calculating the construction cost of each building automatically designed in this way. Therefore, according to this system, it is possible to compare and examine projects for a plurality of sites. In this way, this system was originally a final building that was difficult to grasp unless architects or design engineers designed it in consideration of site conditions, roadway conditions, ordinances, laws and regulations. Can be automatically designed.
 図23は、図1に示した自動CAD設計システムで実行される処理の一例を示すフローチャートである。この例では、建築物タイプ情報としては、記憶部に格納されたデフォルト値(例えば、2LDKタイプなど)が使用される。図に示すように、ステップS31にて、取得部ACQが、敷地を規定する敷地情報を取得する。次に、ステップS32にて、少なくとも容積率を含む集団規定情報および個別ユニット情報を格納する。この格納ステップは、予め一回実施しておけば省略することが可能である。ステップS33にて、抽出部EXTは、取得した敷地情報に基づき、該敷地情報で規定される敷地に適用される集団規定情報を抽出する。また、デフォルト値に対応して建築物タイプ情報として2LDKタイプの個別ユニットが抽出され、後続の処理で使用される。その後、ステップS34にて、抽出した集団規定情報を参照して、敷地上に複数の個別ユニットを含む1階部分の階層ブロックを自動設計する。最後に、ステップS35にて、取得した敷地情報に基づき、抽出した集団規定情報(建蔽率、容積率、斜線規制、高さ制限、日影規制など)を参照してその集団規定情報の制限内において、複数の個別ユニットを含む階層ブロックを積み上げて、建築物を自動設計する。 FIG. 23 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG. In this example, as the building type information, a default value (for example, 2LDK type) stored in the storage unit is used. As shown in the figure, in step S31, the acquisition unit ACQ acquires site information that defines the site. Next, in step S32, group definition information and individual unit information including at least the volume ratio are stored. This storage step can be omitted if it is performed once in advance. In step S33, based on the acquired site information, the extraction unit EXT extracts group definition information applied to the site specified by the site information. In addition, a 2LDK type individual unit is extracted as building type information corresponding to the default value and used in subsequent processing. Thereafter, in step S34, referring to the extracted group definition information, a hierarchical block of the first floor portion including a plurality of individual units on the site is automatically designed. Finally, in step S35, based on the acquired site information, with reference to the extracted group definition information (building ratio, floor area ratio, oblique line regulation, height restriction, shadow restriction, etc.), within the restrictions of the group provision information The building is automatically designed by stacking hierarchical blocks including a plurality of individual units.
 図24は、図1に示した自動CAD設計システムで実行される処理の一例を示すフローチャートである。この例では、集団規定情報は、ユーザにより入力されたものが使用される。図に示すように、ステップS41にて、取得部ACQが、敷地を規定する敷地情報、建築物タイプ情報(建築物に対する諸情報、玄関間口、事務所タイプ、住居タイプ、2LDKなどの住居タイプ種別、風呂付、ユニットバス付き、トイレタイプなど)、およびユーザにより指定された集団規定情報を取得する。次に、ステップS42にて、個別ユニット情報を格納する。この格納ステップは、予め一回実施しておけば省略することが可能である。ステップS43にて、抽出部EXT(或いは、自動設計部AUD)は、取得した建築物タイプ情報に基づき、記憶部に格納された個別ユニットから対応する個別ユニット情報を抽出する。その後、ステップS44にて、取得された集団規定情報を参照して、敷地上に複数の個別ユニットを含む1階部分の階層ブロックを自動設計する。最後に、ステップS35にて、取得した敷地情報に基づき、取得(指定)された集団規定情報(建蔽率、容積率、斜線規制、高さ制限、日影規制など)を参照してその集団規定情報の制限内において、複数の個別ユニットを含む階層ブロックを積み上げて、建築物を自動設計する。集団規定情報の制限内に建築物を収容するためには、様々な方法がある。集団規定情報により建築可能空間を求めて、そこに収容するように自動設計したり、自動設計した後で、建築可能空間からはみ出した部分に相当する個別ユニットを削除するなどである。或いは、商業地区などで斜線規制がない場合は、建蔽率と容積率の限界まで自動設計をしてもよい。 FIG. 24 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG. In this example, group input information used by the user is used. As shown in the figure, in step S41, the acquisition unit ACQ determines the site information that prescribes the site, the building type information (information on the building, front door, office type, housing type, 2LDK, etc. , With bath, with unit bath, toilet type, etc.) and group specified information specified by the user. Next, individual unit information is stored in step S42. This storage step can be omitted if it is performed once in advance. In step S43, the extraction unit EXT (or the automatic design unit AUD) extracts the corresponding individual unit information from the individual units stored in the storage unit based on the acquired building type information. Thereafter, in step S44, referring to the acquired group definition information, a hierarchical block of the first floor portion including a plurality of individual units on the site is automatically designed. Finally, in step S35, based on the acquired site information, the group definition information obtained (designated) with reference to the group definition information (building ratio, floor area ratio, oblique line regulation, height restriction, shadow regulation, etc.) Within the limits, hierarchical blocks including a plurality of individual units are stacked to automatically design a building. There are various ways to accommodate a building within the limits of group stipulation information. For example, the building-definable space is obtained from the group regulation information and automatically designed to be accommodated therein, or after the automatic design, the individual unit corresponding to the portion protruding from the building-able space is deleted. Alternatively, if there is no oblique line regulation in a commercial district, automatic design may be performed up to the limits of the building coverage ratio and the floor area ratio.
 図25は、本発明の一実施態様による自動CAD設計システムの概要を示すブロック図である。図に示すように、自動CAD設計システム200(ACDS)は、制御部(CPU、プロセッサ)210、記憶部220、入力部IN、出力部OUT、通信部COM、および、表示部DISを有する。制御部210は、敷地を規定する敷地情報(面積、形状、方位、接道状況、角地情報、地理的情報など)、および、建築物タイプ情報(例えば、ワンルームマンションタイプ、1Kタイプ、2LDKタイプ、事務所タイプ、ホールタイプ、店舗タイプ、ホテルタイプ、上記タイプを複数含む複合タイプなど)を取得する取得部ACQを有する。記憶部220は、少なくとも容積率を含む集団規定情報GRI、および、各建築物タイプ情報に関連付けられた少なくとも1つの個別ユニットを規定する個別ユニット情報UI(例えば、1K、2LDK、会議室、事務所、応接室、機械室、エレベータ、エレベータ室、下水ユニット、駐車設備ユニット、駐輪施設ユニット、階段、屋根、屋上、床面、基礎などのユニットタイプ)を格納する。 FIG. 25 is a block diagram showing an outline of an automatic CAD design system according to an embodiment of the present invention. As shown in the figure, the automatic CAD design system 200 (ACDS) includes a control unit (CPU, processor) 210, a storage unit 220, an input unit IN, an output unit OUT, a communication unit COM, and a display unit DIS. The control unit 210 includes site information that defines the site (area, shape, direction, roadway status, corner information, geographical information, etc.), and building type information (for example, one-room apartment type, 1K type, 2LDK type, Office type, hall type, store type, hotel type, composite type including a plurality of the above types, etc.). The storage unit 220 includes group definition information GRI including at least a floor area ratio, and individual unit information UI (eg, 1K, 2LDK, meeting room, office) that defines at least one individual unit associated with each building type information. , Reception rooms, machine rooms, elevators, elevator rooms, sewage units, parking equipment units, bicycle parking facility units, staircases, roofs, rooftops, floors, foundations and other unit types).
 制御部210は、抽出部EXT、空間計算部SPC、および自動設計部AUDをさらに有する。抽出部EXTは、取得した敷地情報に基づき、該敷地情報で規定される敷地に適用される集団規定情報を抽出する。空間計算部SPCは、取得した敷地情報に基づき、抽出した集団規定情報(建蔽率、容積率、斜線規制、高さ制限、日影規制など)を参照して、敷地上に建築可能な建築物の存在可能空間を求める。自動設計部AUDは、取得した建築物タイプ情報に基づき、抽出した集団規定情報の少なくとも一部を参照して、複数の個別ユニットを含む建築物を存在可能空間内で自動設計する。 The control unit 210 further includes an extraction unit EXT, a space calculation unit SPC, and an automatic design unit AUD. Based on the acquired site information, the extraction unit EXT extracts group specification information applied to the site specified by the site information. Based on the acquired site information, the space calculation unit SPC refers to the extracted group provision information (building coverage ratio, floor area ratio, oblique line regulation, height restriction, shadow restriction, etc.) of building that can be built on the site. Find possible space. Based on the acquired building type information, the automatic design unit AUD automatically designs a building including a plurality of individual units in the possible existence space with reference to at least a part of the extracted group definition information.
 取得部ACQは、通信部COM、ネットワークNETを介して、住所、緯度経度、地域名などの地理的な検索キーに基づき地理的情報を提供する地理的情報サーバGISから、地理的情報(例えば、敷地形状、接道情報、または隣接地情報を含む)を取得すること、および、取得した地理的情報を記憶部220に格納したり、格納済みの情報を更新したりすることが可能である。また、取得部ACQは、通信部COM、ネットワークNETを介して、建築制限情報サーバCLSから、最新の集団規定情報や単体情報などを取得して、抽出部EXTの抽出処理に利用したり、記憶部220の情報を更新したりすることが可能である。 The acquisition unit ACQ receives geographical information (for example, from a geographical information server GIS that provides geographical information based on a geographical search key such as an address, latitude / longitude, and region name via the communication unit COM and the network NET. (Including site shape, roadway information, or adjacent site information), and the acquired geographical information can be stored in the storage unit 220, or the stored information can be updated. In addition, the acquisition unit ACQ acquires the latest group definition information, single unit information, and the like from the building restriction information server CLS via the communication unit COM and the network NET, and uses them for the extraction processing of the extraction unit EXT, or stores them. It is possible to update the information of the unit 220.
 この実施態様では、制御部210は、見積算出部ESTをさらに有する。また、記憶部220が、個別ユニット情報に規定された個別ユニット毎のユニット単価情報、および、建築単価情報(基礎工事の坪単価情報、3階建ての基本坪単価情報、5階建ての坪単価情報など)を含む単価情報UPをさらに格納する。見積算出部ESTは、複数の個別ユニットを含む建築物を前記存在可能空間内で自動設計された建築物に含まれる個別ユニットに基づき、該建築物の建築費用を計算する。 In this embodiment, the control unit 210 further includes an estimate calculation unit EST. In addition, the storage unit 220 includes unit unit price information for each individual unit specified in the individual unit information and building unit price information (basic unit price information for basic construction, three-story basic unit price information, and five-story unit price. Unit price information UP including information etc. is further stored. The estimate calculation unit EST calculates the construction cost of the building based on the individual unit included in the building that is automatically designed in the existing space for the building including a plurality of individual units.
 また、記憶部220は、コストが異なる複数の建築グレードを規定する建築グレード情報GIをさらに格納する。単価情報UPは、建築グレード別に規定された個別ユニット毎のユニット単価情報、および、建築単価情報をさらに格納する。入力部(入力受付部)INは、マウスMUSやキーボードKBDを介した複数の建築グレードから選択される1つの建築グレードの入力を受け付ける。複数の建築グレードは、グレード情報GIから読み出された幾つかの候補(例えば、高級施工、通常施工、安価版、外装タイル仕上げ、RC構造、鉄骨構造、基礎杭耐震強化版、断熱素材強化版などの選択肢)を表示部DISに表示し、これら候補グレードからユーザによって少なくとも1つの建築グレードが選択される。見積算出部ESTが、受け付けた建築グレードの入力に基づいて自動設計された建築物に含まれる個別ユニットに基づき、単価情報UPを参照して、該建築物の建築費用を計算する。 Further, the storage unit 220 further stores architectural grade information GI that defines a plurality of architectural grades having different costs. The unit price information UP further stores unit unit price information for each individual unit specified for each building grade and building unit price information. The input unit (input receiving unit) IN receives an input of one building grade selected from a plurality of building grades via the mouse MUS and the keyboard KBD. Several architectural grades are several candidates read from the grade information GI (for example, high-grade construction, normal construction, low cost version, exterior tile finish, RC structure, steel structure, foundation pile seismic strengthening version, insulation material strengthening version Are displayed on the display unit DIS, and at least one building grade is selected by the user from these candidate grades. The estimate calculation unit EST calculates the building cost of the building with reference to the unit price information UP based on the individual unit included in the building automatically designed based on the received building grade input.
 また、記憶部220の単価情報UPが、個別ユニット情報に規定された個別ユニット毎、および/または、地域毎の賃貸標準単価情報をさらに含む。さらには、賃貸標準単価情報は、地域毎の空室率、部屋タイプ別(即ち、個別ユニット別)の空室率、地域毎かつ、部屋タイプ別の空室率((即ち、A地区の2Kタイプの部屋は空室率20%、B地区の10坪オフィスタイプでは空室率7%など)を規定した空室率情報を含む。取得部ACQが、建設費用の頭金と、融資金利と、地域或いは住所の少なくとも一部をさらに取得する。見積算出部ESTが、計算された建築費用と、取得された頭金と融資金利とに基づき、前記建築物に含まれる個別ユニットの少なくとも1つを、前記取得された地域或いは住所の少なくとも一部に基づき求めた賃貸標準単価情報で規定される賃料で賃した場合の時系列の収支計画を計算する(最終的には収支表として出力する)。また、上述した空室率情報をさらに利用すれば、地域と部屋タイプによる空室率を考慮したより精度の高い収支計画を計算することが可能となる。 Further, the unit price information UP of the storage unit 220 further includes rental standard unit price information for each individual unit and / or for each region specified in the individual unit information. Furthermore, the rental standard unit price information includes the vacancy rate for each region, the vacancy rate for each room type (ie, for each individual unit), the vacancy rate for each region and for each room type (ie, 2K for A district) The room type includes vacancy rate information that stipulates the vacancy rate 20%, the vacancy rate 7% for the 10 tsubos office type in the B area, etc. Further, at least a part of the area or address is acquired, and the estimate calculation unit EST obtains at least one of the individual units included in the building based on the calculated construction cost, the acquired down payment and the loan interest rate, Calculate a time-series balance plan when renting at the rent specified by the rental standard unit price information obtained based on at least a part of the acquired area or address (and finally outputting as a balance sheet). , Vacancy rate information mentioned above By using the et al., It is possible to calculate the high income and expenditure plan of accuracy than in consideration of the vacancy rates by region and room type.
 記憶部220が、収支計画による賃貸事業の事業採算性を評価するためのフィジビリティルールを規定するフィジビリティルール情報FRIをさらに格納する。フィジビリティルールは、例えば、融資金額が建設費用に占める割合、融資金利、投資効率(投資に対するリターンの比率)などに対して数値、評価指数、評価ポイント、評価グレード、評価指数や評価ポイントの指数や数値による事業成功可能性(フィジブイリティ)の評価値などを設定したものである。そして、見積算出部ESTが、フィジビリティルール情報FRIに基づき計算された収支計画の事業採算性を評価する。例えば、融資金額が建設費用に占める割合、融資金利、投資効率(投資に対するリターンの比率)などに対して評価ポイントが70点のときは、事業の成功可能性80%(事業失敗リスクが20%)という形式でリスク評価することが可能となる。 The storage unit 220 further stores feasibility rule information FRI that defines a feasibility rule for evaluating the business profitability of a rental business based on a revenue and expenditure plan. Feasibility rules include, for example, numerical values, evaluation indices, evaluation points, evaluation grades, evaluation indices and evaluation point indices for the ratio of loan amount to construction cost, loan interest rate, investment efficiency (ratio of return on investment), etc. This is a set of numerical evaluation values for business feasibility. Then, the estimate calculation unit EST evaluates the business profitability of the balance plan calculated based on the feasibility rule information FRI. For example, if the evaluation points are 70 points for the ratio of loan amount to construction cost, loan interest rate, investment efficiency (ratio of return on investment), etc., the probability of business success is 80% (the risk of business failure is 20%) Risk assessment in the form of).
 また、記憶部220が、複数の個別ユニットを含む建築物の1階分の複数のパターン化CAD情報PCIをさらに格納する。入力部INが、複数のパターン化CAD情報PCIから選択される1つのパターン化CAD情報の指定を受け付け、自動設計部AUDが、受け付けたパターン化CAD情報に基づき、抽出した集団規定情報の少なくとも一部を参照して、パターン化CAD情報の少なくとも一部を含む階層を順次積み上げて建築物を前記存在可能空間内で自動設計する。或いは、自動設計部AUDは、容積率の限界まで階層を順次積み上げて建築物を構築した後で、建築物が存在可能空間内に収容されているか検査し、はみ出した部分がある場合は、当該部分に対応する個別ユニットを削除して、自動設計することも可能である。 Further, the storage unit 220 further stores a plurality of patterned CAD information PCI for the first floor of a building including a plurality of individual units. The input unit IN receives designation of one piece of patterned CAD information selected from the plurality of pieces of patterned CAD information PCI, and the automatic design unit AUD receives at least one of the group definition information extracted based on the received patterned CAD information. With reference to the section, a hierarchy including at least a part of the patterned CAD information is sequentially stacked to automatically design a building in the existence space. Alternatively, the automatic design unit AUD inspects whether the building is accommodated in the space where the building can exist after building the building by sequentially stacking the hierarchy up to the limit of the floor area, and if there is an overhanging part, It is also possible to automatically design by deleting individual units corresponding to the part.
 本システムで自動設計された建築物は、3次元CADデータであるため、立体プリンタ3DPに出力して立体模型として成型することが可能である。建築物の3次元CADデータが、フルカラーである場合は、立体プリンタ3DPでフルカラーの立体模型を得ることが可能である。 Since the building automatically designed by this system is 3D CAD data, it can be output to the 3D printer 3DP and molded as a 3D model. When the three-dimensional CAD data of the building is full color, it is possible to obtain a full color three-dimensional model with the three-dimensional printer 3DP.
 図26は、図25に示した自動CAD設計システムで実行される処理の一例を示すフローチャートである。この例では、本システムで自動設計された建築物の見積を算出する。図に示すように、ステップS51では、記憶部220が、個別ユニット情報に規定された個別ユニット毎のユニット単価情報、および、建築単価情報(基礎工事の坪単価情報、3階建ての基本坪単価情報、5階建ての坪単価情報など)を含む単価情報UPをさらに格納する。次にステップS52にて、見積算出部ESTは、複数の個別ユニットを含む建築物を前記存在可能空間内で自動設計された建築物に含まれる個別ユニットに基づき、該建築物の建築費用を計算する。なお、建築費用には、当該建築物の建物工事費、それに付随する設備工事費、共通費などの諸費用を含ませることが好適である。 FIG. 26 is a flowchart showing an example of processing executed by the automatic CAD design system shown in FIG. In this example, the estimate of the building automatically designed by this system is calculated. As shown in the figure, in step S51, the storage unit 220 has unit unit price information for each individual unit specified in the individual unit information and building unit price information (basic unit price information for basic construction, three-story basic unit price. Unit price information UP including information, 5-story unit price information, etc.) is further stored. Next, in step S52, the estimate calculation unit EST calculates the building cost of the building based on the individual unit included in the building that is automatically designed in the existing space for the building including a plurality of individual units. To do. In addition, it is preferable to include various expenses such as a building construction cost of the building, an accompanying equipment construction cost, and a common cost in the construction cost.
 また、記憶部220は、コストが異なる複数の建築グレードを規定する建築グレード情報GIをさらに格納する。単価情報UPは、建築グレード別に規定された個別ユニット毎のユニット単価情報、および、建築単価情報をさらに格納する。入力部(入力受付部)INは、マウスMUSやキーボードKBDを介した複数の建築グレードから選択される1つの建築グレードの入力を受け付ける。複数の建築グレードは、グレード情報GIから読み出された幾つかの候補(例えば、高級施工、通常施工、安価版、外装タイル仕上げ、RC構造、鉄骨構造、基礎杭耐震強化版、断熱素材強化版などの選択肢)を表示部DISに表示し、これら候補グレードからユーザによって少なくとも1つの建築グレードが選択される。見積算出部ESTが、受け付けた建築グレードの入力に基づいて自動設計された建築物に含まれる個別ユニットに基づき、単価情報UPを参照して、該建築物の建築費用を計算する。選択された建築グレードに基づき、個別ユニットを当該建築グレードに対応するものに置換、追加、削除した形式で建築物を再び自動設計してもよいが、建築費用だけを再計算してもよい。 Further, the storage unit 220 further stores architectural grade information GI that defines a plurality of architectural grades having different costs. The unit price information UP further stores unit unit price information for each individual unit specified for each building grade and building unit price information. The input unit (input receiving unit) IN receives an input of one building grade selected from a plurality of building grades via the mouse MUS and the keyboard KBD. Several architectural grades are several candidates read from the grade information GI (for example, high-grade construction, normal construction, low cost version, exterior tile finish, RC structure, steel structure, foundation pile seismic strengthening version, insulation material strengthening version Are displayed on the display unit DIS, and at least one building grade is selected by the user from these candidate grades. The estimate calculation unit EST calculates the building cost of the building with reference to the unit price information UP based on the individual unit included in the building automatically designed based on the received building grade input. Based on the selected building grade, the building may be automatically redesigned in the form of replacing, adding, or deleting individual units corresponding to the building grade, but only the building cost may be recalculated.
 図27は、複数の個別ユニットを含む建築物の1階分の複数のパターン化CAD情報PCIを示す説明図である。図に示すように、階段室STRを含む階段室型のテンプレートTP1、片廊下型のテンプレートTP2、中廊下型のテンプレートTP3、ツインドール型のテンプレートTP4、コア型(中央階段型)のテンプレートTP5、ボイド型(中央空地型)のテンプレートTP6などを含む。ユーザは、これらのテンプレートから敷地形状や条件に適したものを選択して、手動で3DCAD図面上の敷地に配置するか、システムで自動配置を行う。その後は、本システムが、自動設計で階層積み上げ、容積率、建蔽率などの集団規定、避難経路などの単体規定を自動検査して警告或いは自動的に規定に反する部分のCADオブジェクトを削除したり、縮小させたりして規定を満たすような自動設計やユーザによる手動編集を行い、概算費用見積りなどの後続処理を行う。即ち、このようなテンプレートの使用によって、1階層目だけをユーザに選択させてその後の処理はシステム側で行う部分的な自動設計処理の実行が可能となる。作図の便宜上、バルコニーなどは図示していないが、バルコニーや居室内の玄関、建具、ユニットバス、トイレ、キッチンなどのCADデータ(オブジェクト)をテンプレートに含ませることが好適である。 FIG. 27 is an explanatory diagram showing a plurality of patterned CAD information PCI for the first floor of a building including a plurality of individual units. As shown in the figure, a staircase type template TP1 including a staircase STR, a one-way corridor type template TP2, a middle corridor type template TP3, a twin doll type template TP4, a core type (central staircase type) template TP5, A void type (central open space type) template TP6 and the like are included. The user selects a template suitable for the site shape and conditions from these templates, and manually places it on the site on the 3D CAD drawing, or performs automatic placement by the system. After that, this system automatically checks the stacking, layering ratio, building ratio such as occupancy ratio, etc., single rules such as evacuation routes, etc., and automatically deletes warnings or parts of CAD objects that violate the rules automatically. Automatic design to meet the regulations by reducing the size, manual editing by the user, and subsequent processing such as approximate cost estimation. That is, by using such a template, it is possible to allow the user to select only the first layer and execute a partial automatic design process that is performed on the system side after that. For convenience of drawing, a balcony or the like is not shown, but it is preferable to include CAD data (objects) such as a balcony, an entrance in a living room, a fitting, a unit bath, a toilet, and a kitchen in a template.
 図28は、与えられる情報や条件に応じて建築物が自動設計されることを説明するための説明図である。図に示すように、敷地SITE200の上には、テンプレートから選択された、或いは、諸条件から自動設計された、1階層分のブロック、BLK200が配置される。建築物OBJ200-1は、建築可能空間PV-aの範囲内においてブロックBLK200、ブロックBLK200-2、ブロックBLK200-3と三階建てのものが自動設計で構築されたものである。他方、建築物OBJ200は、北側隣接地NNに対する斜線NTLで切り取られた、建築可能空間PV-bの範囲内においてブロックの北側が斜線NTLに切り取られた三階建てのものが自動設計で構築されたものである。このように、本システムは、与えられた敷地の条件によって、その敷地に適合した建築物を自動構築することが可能である。 FIG. 28 is an explanatory diagram for explaining that a building is automatically designed according to given information and conditions. As shown in the figure, on the site SITE 200, a block for one layer, BLK 200, selected from a template or automatically designed from various conditions is arranged. The building OBJ200-1 is constructed by automatic design of the block BLK200, the block BLK200-2, and the block BLK200-3 and the three-story building within the range of the building space PV-a. On the other hand, the building OBJ200 is a three-story building in which the north side of the block is cut out with a slanted line NTL in the range of the building space PV-b cut out with a slanted line NTL with respect to the north side adjacent land NN. It is a thing. As described above, the present system can automatically construct a building suitable for the site according to the given site conditions.
 図29は、与えられた情報や条件に応じて付随施設を含む建築物が自動設計されることを説明するための説明図である。図に示すように、敷地SITE210の上には、テンプレートから選択された、或いは、敷地情報、選択された建築物タイプや集団規定情報などの諸条件から自動設計された、1階層分のブロック、BLK210が配置される。建築物OBJ210は、建築可能空間PV-cの範囲内においてブロックを積み立てて三階建てのものが自動設計で構築されたものである。この実施態様では、付随施設も自動設計で付加される。即ち、本システムの自動設計部AUDは、敷地SITE210で建築物が設置されていない空き領域に立体駐車場PK210、駐輪施設PK210-Cを自動配置する。ちなみに、自治体などでは、集団規定として、条件に応じた所定数の駐車場や駐輪施設の設置を義務付ける場合があり、本システムは、そのような規定に応じて、記憶部に格納された個別ユニットである立体駐車場ユニットや駐輪ユニットから適正なものを抽出して、敷地内の空き領域に自動配置して、集団規定に準拠した建築物OBJ210-1として自動設計することが可能である。また、一定の駐車場や駐輪場の設置に際しては、容積率の緩和や建蔽率の緩和がある場合があるが、本システムは、そのような緩和法令を適用した自動設計を行うことが可能である。図示しないが、駐輪施設や駐車場などは、道路へのアクセスのための敷地内通路ユニットを個別ユニットから抽出して、簡易舗装した舗装通路ユニットを敷地内にさらに配置することが好適である。このような付随施設の個別ユニットとしては、汚水処理施設、上水施設(ポンプ、タンクなど)、配電室、電気室、防災施設、エレベータ室、機械室など多様なものがある。 FIG. 29 is an explanatory diagram for explaining that a building including an accompanying facility is automatically designed according to given information and conditions. As shown in the figure, on the site SITE 210, a block for one layer selected from a template or automatically designed from various conditions such as site information, selected building type and group definition information, BLK 210 is arranged. The building OBJ 210 is a three-story building constructed by automatic design by building up blocks in the range of the building space PV-c. In this embodiment, accompanying facilities are also added by automatic design. That is, the automatic design unit AUD of this system automatically arranges the multistory parking lot PK210 and the bicycle parking facility PK210-C in an empty area where no buildings are installed in the site SITE210. By the way, local governments, etc. may require the installation of a predetermined number of parking lots and bicycle parking facilities according to the conditions as a group rule, and this system uses individual storage stored in the storage unit according to such rules. It is possible to automatically design a building OBJ210-1 that complies with the group regulations by extracting appropriate ones from the three-dimensional parking lot unit and the bicycle parking unit, and automatically arranging them in the vacant area in the site. . In addition, when installing certain parking lots or bicycle parking lots, there are cases where there is a reduction in floor area ratio or a reduction in occupancy ratio, but this system can perform automatic design that applies such relaxation laws. Although not shown, it is preferable for bicycle parking facilities and parking lots to extract the passage unit in the site for access to the road from the individual unit, and further arrange the paved passage unit that is simply paved in the site. . The individual units of such ancillary facilities include various types such as sewage treatment facilities, water supply facilities (pumps, tanks, etc.), distribution rooms, electrical rooms, disaster prevention facilities, elevator rooms, and machine rooms.
 図30は、斜線規制、建蔽率、セットバック、高さ制限などの規制をクリアしているかをチェックするために建築物オブジェクト(個別ユニット)を拡大または厚さを増す処理を説明する模式図である。まず、敷地SITE230-1に設定された建築可能空間PV-aに収容できる建築物オブジェクトOBJ230-1が自動設計で求められる。ここで、CADのオブジェクトにもよるが、壁芯で規定された個別ユニットや建築物オブジェクトの場合には、実際の建築物よりも壁厚の分だけ小さな寸法となってしまう。その場合には、斜線規制、建蔽率、セットバック、高さ制限などの規制に違反して実際の建築可能空間からはみ出してしまう恐れがある。本システムは、そのような壁芯で規定されたCADオブジェクトであっても、図30のように、建築物オブジェクトOBJ230-1を壁厚に相当する分(例えば、外壁を30mm、屋上部分を50mmなどを建物種別やグレード、個別ユニットの種類などに応じて任意に設定可能である)だけ拡大して、建築物オブジェクトOBJ230-2とすることによって、斜線規制などをクリアしているか否か、即ち、建築可能空間PV-aに入っているのか、はみ出していないのかを正確にチェックすることが可能である。或いは、建築物オブジェクトOBJ230-1の外側の部分にだけ、壁厚に相当するスライス層オブジェクトOBJ230-SLを追加して、建築物オブジェクトOBJ230-3とすることによって、斜線規制などをクリアしているか否かを正確にチェックすることが可能である。 FIG. 30 is a schematic diagram for explaining a process of enlarging the building object (individual unit) or increasing the thickness in order to check whether the regulations such as the oblique line regulation, the building coverage ratio, the setback, and the height restriction are cleared. . First, a building object OBJ230-1 that can be accommodated in a buildable space PV-a set in the site SITE230-1 is required by automatic design. Here, although depending on the CAD object, in the case of an individual unit or a building object defined by the wall core, the size is smaller than the actual building by the wall thickness. In such a case, there is a risk of spilling out of the actual building space in violation of regulations such as oblique line regulation, building coverage ratio, setback, and height restriction. In this system, even for a CAD object defined by such a wall core, as shown in FIG. 30, the building object OBJ230-1 is equivalent to the wall thickness (for example, the outer wall is 30 mm and the roof portion is 50 mm). Etc. can be arbitrarily set according to the type of building, grade, type of individual unit, etc.) to make it a building object OBJ230-2. It is possible to accurately check whether the building space PV-a is entered or not protruding. Or, by adding the slice layer object OBJ230-SL corresponding to the wall thickness only to the outer part of the building object OBJ230-1, to make the building object OBJ230-3, the diagonal line regulation etc. are cleared? It is possible to accurately check whether or not.
 図31は、地盤調査に応じた仮想支持層への杭を自動設計する様子を示す模式図である。3階以上の鉄筋コンクリートや鉄骨などの重量が重いビルでは、N値が50以上の5メートル以上の支持層に対して杭を打つことが望ましい。本システムは、このような杭のオブジェクトを自動設計で構築してその建築コストまでを含めた形で建築費用を求めることが可能である。図に示すように、敷地SITE240に設定された建築可能空間PV-cに収容できる建築物オブジェクトOBJ240が自動設計で求められる。ここで、本システムは、建築物オブジェクトOBJ240の重量や構造種別などにより、支持層への杭が必要な建築物であるか否かを自動判定する。例えば、重量xxトン以上、或いは、鉄筋コンクリート3階以上は、杭が必要であるといった基準で判定する。支持層への杭打ちが必要であると判定された場合は、敷地情報から当該地区或いは近隣地区の地盤データを外部サーバや記憶部で検索して、対応する地盤データ(或いはボーリングデータ)を取得する。そして、図に示すように、地盤データに基づき、敷地の下部(即ち、建築物オブジェクトの下部)に仮想支持層SPT240を構築する。仮想支持層は5メートル以上の厚さでN値50以上のものが望ましい。本システムは、仮想支持層SPT240に打ち込まれるべき建築物オブジェクトOBJ240を支持する杭PIN240を所定の基準(杭のピッチ、1メートルおきなど)で自動設計する。このような杭の工事費用は、総建築費用の1-2割を占めることもあるため、当該敷地の当該建物を建てた場合に必要な杭費用を総建築費用に含めることが可能になることはとても重要である。また、耐震性能を向上させるために、杭のピッチを狭くしたり杭を太くしたり材質を強度の高いものに変えたりすることも可能である。 FIG. 31 is a schematic diagram showing a state in which piles are automatically designed on the virtual support layer according to the ground survey. In heavy buildings such as reinforced concrete and steel frames on the third floor or higher, it is desirable to hit a pile against a support layer of 5 meters or more with an N value of 50 or more. This system can construct such pile objects by automatic design and calculate the construction cost including the construction cost. As shown in the figure, the building object OBJ 240 that can be accommodated in the building space PV-c set in the site SITE 240 is required by automatic design. Here, the present system automatically determines whether or not the building requires a pile on the support layer, based on the weight of the building object OBJ240, the structure type, and the like. For example, the weight xx tons or more, or the reinforced concrete 3rd floor or more is determined based on the criteria that a pile is necessary. If it is determined that stakeout to the support layer is necessary, the ground data of the relevant area or neighboring area is searched from the site information with an external server or storage unit, and the corresponding ground data (or bowling data) is acquired. To do. Then, as shown in the figure, based on the ground data, a virtual support layer SPT 240 is constructed at the lower part of the site (that is, the lower part of the building object). The virtual support layer preferably has a thickness of 5 meters or more and an N value of 50 or more. This system automatically designs the pile PIN 240 that supports the building object OBJ 240 to be driven into the virtual support layer SPT 240 based on a predetermined standard (pile pitch, every other meter, etc.). The construction cost of such piles may account for 20% to 20% of the total construction cost, so it is possible to include the necessary pile cost in the total construction cost when the building on the site is built Is very important. In order to improve the earthquake resistance, it is also possible to narrow the pile pitch, thicken the pile, or change the material to one having high strength.
 図32は、自動CAD設計システムで実行される処理の一例を示すフローチャートである。木造家屋などの軽量建築物で杭の必要性が乏しい場合には杭工事は必須ではないが、鉄筋コンクリートで8階などのような重量が重い建築物の場合には、一定の固さを持つ支持層への杭工事は必須であり、その建築費用も大きい。本システムは、このような杭打ち費用も当該敷地の地盤や当該建物に対応したものを自動設計可能である。図に示すように、ステップS61にて、取得部ACQが、敷地を規定する敷地情報(住所などの地理的情報)に基づき、対応する地盤データを外部サーバや記憶部から取得する。ステップS62では、対応する地盤データやボーリングデータに基づき敷地の下部に仮想支持層を設定する。例えば、近隣地区で支持層が地下10メートルにある場合には、地下10メートルに仮想支持層を設定する。この仮想支持層は、取得できた地盤データが近いほど信頼度が増す。ステップS63では、当該建築物を仮想支持層で支持するのに必要な杭(個別ユニット)を求め、求めた杭を建築物のCADのオブジェクトの付属物として追加する。必要な杭の数や杭のピッチ、杭の太さなどは、想定される耐震性能や自動設計で求めた建築物オブジェクトの重量や構造などをファクターとして、所定の基準(記憶部に格納される)に応じて自動で求めることが可能である。最後にステップS64では、自動設計された建築物に含まれる「杭」を含む個別ユニットに基づき、建築物の建築費用を計算する。例えば、杭の長さ(建築物から支持層に3m埋め込む長さなど)、杭の長さあたりの単価、杭の長さあたりの工事単価、杭の長さ別の工事単価などの表があれば、自動設計で求めた杭の本数、長さ(場合によって杭のグレード、材質)に基づき、これら表を参照することによって、相当に正確な杭工事費用を見積もることが可能である。 FIG. 32 is a flowchart showing an example of processing executed in the automatic CAD design system. Pile work is not necessary when the need for piles is scarce in a light building such as a wooden house, but in the case of heavy buildings such as reinforced concrete such as the 8th floor, it has a certain level of support. Pile work on the strata is essential and the construction cost is high. This system can automatically design such pile driving costs corresponding to the ground of the site and the building. As shown in the figure, in step S61, the acquisition unit ACQ acquires corresponding ground data from an external server or storage unit based on site information (geographic information such as an address) that defines the site. In step S62, a virtual support layer is set at the lower part of the site based on the corresponding ground data and boring data. For example, when the support layer is 10 meters underground in the neighborhood, the virtual support layer is set to 10 meters underground. The virtual support layer has higher reliability as the acquired ground data is closer. In step S63, a pile (individual unit) necessary to support the building with the virtual support layer is obtained, and the obtained pile is added as an appendage of the CAD object of the building. The required number of piles, pile pitch, pile thickness, etc. are stored in a predetermined standard (stored in the storage unit) based on factors such as the expected earthquake resistance and the weight and structure of building objects obtained by automatic design. ) Automatically. Finally, in step S64, the construction cost of the building is calculated based on the individual unit including the “pile” included in the automatically designed building. For example, there is a table of pile length (such as the length of 3m embedded in the support layer from the building), unit price per pile length, construction unit price per pile length, construction unit price per pile length, etc. For example, based on the number and length of piles obtained by automatic design (in some cases, grades and materials of piles), it is possible to estimate considerably accurate pile construction costs by referring to these tables.
 また、本システムによれば、敷地の入力から建築可能空間に収まる建築物を自動設計し、その概算費用を求めて、収支計画、事業計画書までを生成することが可能である。 In addition, according to this system, it is possible to automatically design a building that fits in a building space from the input of the site, obtain an approximate cost, and generate a balance plan and a business plan.
 また、本システムによれば、電子地図をトレースすることによって敷地情報を入力して、その後、居住タイプ(建築物タイプ情報)を決定することによって、建物ブロック(1階層分のブロック)を自動生成することが可能である。例えば、電子地図の所望の領域をトレース(指定)することによって、計画敷地図を得ます。この計画敷地図が本システムへの入力データとなる。この計画敷地図を敷地情報として利用して、ワンルームタイプやファミリータイプなどの居住タイプが指定されると、本システムによって、建物ブロックが自動生成され、概算の床面積、戸数などが判明し、これらによって概算見積が行われる。 In addition, according to this system, building blocks (blocks for one layer) are automatically generated by entering site information by tracing an electronic map and then determining a residence type (building type information). Is possible. For example, a planned site map is obtained by tracing (designating) a desired area of an electronic map. This planned site map becomes the input data to this system. When a residential type such as a studio type or family type is specified using this planned site map as site information, this system automatically creates building blocks, reveals the approximate floor area, number of houses, etc. A rough estimate is made.
 即ち、本システムによれば、電子地図をトレースすることによって敷地情報を入力して、その後、居住タイプ(建築物タイプ情報)を決定することによって、建物ブロック(1階層分のブロック)を自動生成することが可能である。敷地が異なる用途地域にまたがっている場合は、敷地内で容積率や建蔽率が異なる。このような場合でも、本システムは、1つの建築物に異なる集団規定である容積率や建蔽率に対応した建築物を自動生成することが可能である。 That is, according to this system, site information is input by tracing an electronic map, and then a building block (block for one layer) is automatically generated by determining a residence type (building type information). Is possible. When the site is spread over different use areas, the floor area ratio and the building coverage ratio are different within the site. Even in such a case, the present system can automatically generate a building corresponding to a volume ratio and a building coverage ratio which are different group regulations for one building.
 図33は、本システムのスクリーンインターフェイスを説明するための概略図である。図に示すように、本システムによれば、諸条件として居住タイプなどを指定することによって、建物ブロック(1階層分のブロック)を自動生成して、それを積み上げることによって建築物を自動設計することが可能である。 FIG. 33 is a schematic diagram for explaining the screen interface of this system. As shown in the figure, according to this system, building blocks (blocks for one layer) are automatically generated by designating a residence type as various conditions, and a building is automatically designed by stacking them. It is possible.
 図34、図35は、本システムのスクリーンインターフェイスを説明するための概略図である。図に示すように、本システムによれば、パターン化された建物タイプ(建物テンプレート)を指定して、それを敷地に配置して建物ブロック(1階層分のブロック)として積み上げることによって建築物を自動設計することが可能である。 34 and 35 are schematic diagrams for explaining the screen interface of this system. As shown in the figure, according to this system, a building is designated by specifying a patterned building type (building template), placing it on the site, and stacking it as building blocks (blocks for one layer). Automatic design is possible.
 図36は、本システムのスクリーンインターフェイスを説明するための概略図である。図に示すように、本システムは、自動設計で構築した建築物を編集することが可能である。編集によって、未消化の容積率を有効活用したり、高さ制限が許容するまで階高を高くしたりすることが可能である。 FIG. 36 is a schematic diagram for explaining the screen interface of this system. As shown in the figure, this system can edit a building constructed by automatic design. By editing, it is possible to effectively utilize the undigested volume ratio or increase the floor height until the height restriction allows.
 図37は、本システムのスクリーンインターフェイスを説明するための概略図である。図に示すように、本システムによれば、自動設計した建築物の概算費用見積り、融資計画、予算計画、賃貸計画、収支計画を含む事業計画書を生成すること可能である。賃貸計画では、敷地情報の住所などから当該地区の当該物件、当該グレード、当該間取りに対応した賃貸収入を抽出して、その賃貸収入データを利用することが可能である。 FIG. 37 is a schematic diagram for explaining the screen interface of this system. As shown in the figure, according to the present system, it is possible to generate a business plan including an estimated cost estimate for an automatically designed building, a loan plan, a budget plan, a rental plan, and a balance plan. In the rental plan, it is possible to extract the rental income corresponding to the property, the grade, and the floor plan from the address of the site information and use the rental income data.
 本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各部、各ステップなどに含まれる処理や機能などは論理的に矛盾しないように再配置可能であり、複数の手段/部やステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。或いは、本発明による装置、方法、プログラムなどの一部の構成要素、機能、処理、ステップなどを遠隔地のサーバなどに配置することも可能であることに注意されたい。また、提示した諸図面は作図の便宜上、縦横の寸法や斜視図の角度などで不正確なものがあることに留意されたい。 Although the present invention has been described based on the drawings and examples, it should be noted that those skilled in the art can easily make various changes and modifications based on the present disclosure. Therefore, it should be noted that these variations and modifications are included in the scope of the present invention. For example, the processes and functions included in each unit and each step can be rearranged so as not to be logically contradictory, and a plurality of means / units and steps may be combined or divided into one. Is possible. Alternatively, it should be noted that some components, functions, processes, steps, etc. of the apparatus, method, program, etc. according to the present invention can be located in a remote server or the like. In addition, it should be noted that some of the presented drawings are inaccurate in terms of vertical and horizontal dimensions and perspective view angles for the convenience of drawing.

Claims (25)

  1.  自動CAD設計システムであって、
     敷地を規定する敷地情報、および、建築物タイプ情報を取得する取得部と、
     少なくとも容積率を含む集団規定情報、および、各建築物タイプ情報に関連付けられた少なくとも1つの個別ユニットを規定する個別ユニット情報を格納する記憶部と、
     前記取得した敷地情報に基づき、該敷地情報で規定される敷地に適用される集団規定情報を抽出する抽出部と、
     前記取得した敷地情報に基づき、抽出した集団規定情報を参照して、前記敷地上に建築可能な建築物の存在可能空間を求める空間計算部と、
     前記取得した建築物タイプ情報に基づき、抽出した集団規定情報の少なくとも一部を参照して、複数の個別ユニットを含む建築物を前記存在可能空間内で自動設計する自動設計部と、
    を有することを特徴とする自動CAD設計システム。
    An automatic CAD design system,
    An acquisition unit that acquires site information defining the site and building type information;
    A storage unit that stores group definition information including at least a floor area ratio, and individual unit information that defines at least one individual unit associated with each building type information;
    Based on the acquired site information, an extraction unit that extracts group specification information applied to the site specified by the site information;
    Based on the acquired site information, referring to the extracted group provision information, a space calculation unit for obtaining a possible space of a building that can be built on the site, and
    Based on the acquired building type information, referring to at least a part of the extracted group definition information, an automatic design unit that automatically designs a building including a plurality of individual units in the existing space,
    An automatic CAD design system characterized by comprising:
  2.  請求項1に記載自動CAD設計システムにおいて、
     前記敷地情報が、前記敷地の地理的情報、および/または、前記敷地の接道情報を含み、
     前記抽出部が、
    前記取得した、前記敷地の地理的情報、および/または、前記敷地の接道情報を含む敷地情報に基づき、該敷地情報で規定される敷地に適用される集団規定情報を抽出する、
    ことを特徴とする自動CAD設計システム。
    The automatic CAD design system according to claim 1,
    The site information includes geographical information of the site and / or road access information of the site,
    The extraction unit is
    Based on the acquired geographical information of the site and / or site information including the road access information of the site, the group specification information applied to the site specified by the site information is extracted.
    An automatic CAD design system characterized by this.
  3.  請求項1に記載の自動CAD設計システムにおいて、
     前記個別ユニットが、
    中廊下ユニットと、少なくとも1つの部屋を含む部屋ユニットとを含み、
     前記自動設計部は、
    前記敷地情報で規定される敷地の面積が、所定の数値未満のときは、
    敷地の形状に基づき建築物外周形状を作成し、建築物の平面的な重心を求め、該重心を通るように前記中廊下ユニットを配置し、前記部屋ユニットを前記中廊下ユニットの長手方向の両辺の少なくとも一部に沿って順次配置して建築物を自動設計する、
    ことを特徴とする自動CAD設計システム。
    The automatic CAD design system according to claim 1,
    The individual unit is
    A central corridor unit and a room unit including at least one room,
    The automatic design unit
    When the area of the site specified by the site information is less than a predetermined value,
    A building outer peripheral shape is created based on the shape of the site, a planar center of gravity of the building is obtained, the central corridor unit is disposed so as to pass through the center of gravity, and the room unit is disposed on both sides in the longitudinal direction of the central corridor unit. Automatically design buildings by sequentially arranging them along at least a part of
    An automatic CAD design system characterized by this.
  4.  請求項1に記載の自動CAD設計システムにおいて、
     前記個別ユニットが、
    バルコニーユニットと、部屋ユニットとを含み、
     前記自動設計部は、
    前記敷地情報で規定される敷地の面積が、所定の数値以上のときは、敷地の少なくとも一辺に沿って前記バルコニーユニットを配置し、前記部屋ユニットを前記バルコニーユニットの長手方向の敷地内側の一辺の少なくとも一部に沿って順次配置して建築物を自動設計する、
    ことを特徴とする自動CAD設計システム。
    The automatic CAD design system according to claim 1,
    The individual unit is
    Including a balcony unit and a room unit,
    The automatic design unit
    When the area of the site stipulated by the site information is equal to or greater than a predetermined value, the balcony unit is arranged along at least one side of the site, and the room unit is placed on one side inside the site in the longitudinal direction of the balcony unit. Automatically design buildings by sequentially arranging them along at least a part
    An automatic CAD design system characterized by this.
  5.  請求項1に記載の自動CAD設計システムにおいて、
     前記取得部が、
    前記敷地情報に規定される敷地の地理的情報に基づき、外部のサーバから該敷地に適用される集団規定情報をさらに取得し、
     前記抽出部が、
    前記取得した集団規定情報を、該敷地に適用される集団規定情報として抽出する、
    ことを特徴とする自動CAD設計システム。
    The automatic CAD design system according to claim 1,
    The acquisition unit
    Based on the geographical information of the site specified in the site information, further obtaining group specification information applied to the site from an external server,
    The extraction unit is
    Extracting the acquired group definition information as group definition information applied to the site;
    An automatic CAD design system characterized by this.
  6.  請求項1に記載の自動CAD設計システムにおいて、
     前記個別ユニットが、
    避難階段ユニットと、少なくとも1つの部屋と玄関を含む部屋ユニットと、部屋ユニットの玄関と別の部屋ユニットの玄関とを接続する通路ユニットとを含み、
     前記記憶部が、
    部屋ユニットの玄関から通路ユニットを経た避難階段ユニットまでの距離、または、建築物の条件に応じて規定される避難階段ユニットの個数を規定する避難経路設定情報を含む単体規定情報をさらに格納し、
     前記自動設計部が、
    自動設計された建築物の各部屋ユニットの各玄関から避難経路である避難階段ユニットまでの距離が前記避難経路設定情報で規定された距離を満たすように、および/または、建築物の条件に応じて規定される避難階段ユニットの個数を満たすように、前記建築物に少なくとも1つの非常階段ユニットを配置する、
    ことを特徴とする自動CAD設計システム。
    The automatic CAD design system according to claim 1,
    The individual unit is
    An evacuation staircase unit, a room unit including at least one room and an entrance, and a passage unit connecting the entrance of the room unit and the entrance of another room unit,
    The storage unit
    It further stores single provisional information including evacuation route setting information that defines the distance from the entrance of the room unit to the evacuation staircase unit through the passage unit or the number of evacuation staircase units that are defined according to the building conditions,
    The automatic design unit
    The distance from each entrance of each room unit of the automatically designed building to the evacuation stair unit that is the evacuation route satisfies the distance specified in the evacuation route setting information and / or according to the condition of the building Arranging at least one emergency stair unit in the building so as to satisfy the number of escape stair units specified
    An automatic CAD design system characterized by this.
  7.  請求項1に記載の自動CAD設計システムにおいて、
     前記記憶部が、
    複数の個別ユニットを含む建築物の1階分の複数のパターン化CAD情報をさらに格納し、
     前記自動CAD設計システムが、
    前記複数のパターン化CAD情報から選択される1つのパターン化CAD情報の指定を受け付ける第一の入力受付部をさらに有し、
     前記自動設計部が、
    前記受け付けたパターン化CAD情報に基づき、抽出した集団規定情報の少なくとも一部を参照して、前記パターン化CAD情報の少なくとも一部を含む階層を順次積み上げて建築物を前記存在可能空間内で自動設計する、
    ことを特徴とする自動CAD設計システム。
    The automatic CAD design system according to claim 1,
    The storage unit
    Further storing a plurality of patterned CAD information for the first floor of a building including a plurality of individual units,
    The automatic CAD design system is
    A first input receiving unit that receives designation of one piece of patterned CAD information selected from the plurality of pieces of patterned CAD information;
    The automatic design unit
    Based on the received patterned CAD information, referring to at least a part of the extracted group definition information, a hierarchy including at least a part of the patterned CAD information is sequentially stacked to automatically build a building in the existence space. design,
    An automatic CAD design system characterized by this.
  8.  請求項1に記載の自動CAD設計システムにおいて、
     前記記憶部が、
    個別ユニット情報に規定された個別ユニット毎のユニット単価情報、および/または、建築単価情報をさらに格納し、
     前記自動CAD設計システムが、
    複数の個別ユニットを含む建築物を前記存在可能空間内で自動設計された建築物に含まれる個別ユニットに基づき、前記ユニット単価情報、および/または、前記建築単価情報を参照して、該建築物の建築費用を計算する見積算出部をさらに有する、
    ことを特徴とする自動CAD設計システム。
    The automatic CAD design system according to claim 1,
    The storage unit
    Further storing unit unit price information and / or building unit price information for each individual unit specified in the individual unit information,
    The automatic CAD design system is
    A building including a plurality of individual units is referred to the unit unit price information and / or the building unit price information based on the individual unit included in the building that is automatically designed in the existing space, and the building An estimate calculation unit for calculating the construction cost of
    An automatic CAD design system characterized by this.
  9.  請求項8に記載の自動CAD設計システムにおいて、
     前記記憶部が、
    コストおよび/または仕様が異なる複数の建築グレードを規定する建築グレード情報、前記建築グレード別に規定された個別ユニット毎のユニット単価情報、および/または、建築単価情報をさらに格納し、
     前記自動CAD設計システムが、
     前記複数の建築グレードから選択される1つの建築グレードの入力を受け付ける第二の入力受付部をさらに有し、
     前記自動設計部が、
    受け付けた建築グレードの入力に基づき、自動設計された建築物に含まれる個別ユニットに基づき、該建築物の建築費用を計算する、
    ことを特徴とする自動CAD設計システム。
    The automatic CAD design system according to claim 8,
    The storage unit
    Further storing building grade information defining a plurality of building grades having different costs and / or specifications, unit unit price information for each individual unit defined by the building grade, and / or building unit price information;
    The automatic CAD design system is
    A second input receiving unit that receives an input of one building grade selected from the plurality of building grades;
    The automatic design unit
    Calculate the building cost of the building based on the individual units included in the automatically designed building based on the accepted building grade input.
    An automatic CAD design system characterized by this.
  10.  請求項8に記載の自動CAD設計システムにおいて、
     前記記憶部が、
    コストおよび/または仕様が異なる複数の建築グレードを規定する建築グレード情報と、
    前記建築グレード別に規定された個別ユニット毎のユニット単価情報、および/または、建築単価情報をさらに格納し
     前記自動CAD設計システムが、
     前記複数の建築グレードから選択される1つの建築グレードの入力を受け付ける第二の入力受付部をさらに有し、
     前記自動設計部が、
    受け付けた建築グレードの入力に基づき、建築物の自動設計を実行し、該建築物に含まれる個別ユニットに基づき、該建築物の建築費用を計算する、
    ことを特徴とする自動CAD設計システム。
    The automatic CAD design system according to claim 8,
    The storage unit
    Building grade information defining multiple building grades with different costs and / or specifications;
    Unit unit price information for each individual unit specified for each building grade and / or building unit price information is further stored, and the automatic CAD design system includes:
    A second input receiving unit that receives an input of one building grade selected from the plurality of building grades;
    The automatic design unit
    Based on the accepted building grade input, execute the automatic design of the building, and calculate the building cost of the building based on the individual units included in the building.
    An automatic CAD design system characterized by this.
  11.  請求項9に記載の自動CAD設計システムにおいて、
     前記記憶部が、
    個別ユニット情報に規定された個別ユニット毎、および/または、地域毎の賃貸標準単価情報をさらに格納し、
     前記取得部が、
    建設費用の頭金と、融資金利と、地域或いは住所の少なくとも一部をさらに取得し、
     前記見積算出部が、
    計算された建築費用と、取得された頭金と融資金利とに基づき、前記建築物に含まれる個別ユニットの少なくとも1つを、前記取得された地域或いは住所の少なくとも一部に基づき求めた賃貸標準単価情報で規定される賃料で賃した場合の時系列の収支計画を計算する、
    ことを特徴とする自動CAD設計システム。
    The automatic CAD design system according to claim 9,
    The storage unit
    Further store rental unit price information for each individual unit and / or region specified in the individual unit information,
    The acquisition unit
    Get additional down payment for construction costs, loan interest rates and at least part of the region or address,
    The estimate calculation unit
    Rent standard unit price for which at least one of the individual units included in the building is determined based on at least a part of the acquired area or address based on the calculated construction cost, the acquired down payment and the loan interest rate. Calculate a time series balance plan for renting at the rent specified in the information,
    An automatic CAD design system characterized by this.
  12.  請求項11に記載の自動CAD設計システムにおいて、
     前記記憶部が、
    収支計画による賃貸事業の事業採算性を評価するためのフィジビリティルールを規定するフィジビリティルール情報をさらに格納し、
     前記見積算出部が、
    前記フィジビリティルール情報に基づき前記見積算出部により計算された収支計画の事業採算性を評価する、
    ことを特徴とする自動CAD設計システム。
    The automatic CAD design system according to claim 11,
    The storage unit
    Stores feasibility rule information that defines feasibility rules for evaluating the profitability of rental business based on income and expenditure plans,
    The estimate calculation unit
    Evaluating the business profitability of the income and expenditure plan calculated by the estimate calculation unit based on the feasibility rule information,
    An automatic CAD design system characterized by this.
  13.  コンピュータを請求項1に記載の自動CAD設計システムとして機能させる自動CAD設計プログラムを格納したコンピュータ可読な記憶媒体。 A computer-readable storage medium storing an automatic CAD design program that causes a computer to function as the automatic CAD design system according to claim 1.
  14.  コンピュータを用いた自動CAD設計方法であって、
     敷地を規定する敷地情報、および、建築物タイプ情報を取得する取得ステップと、
     少なくとも容積率を含む集団規定情報、および、各建築物タイプ情報に関連付けられた少なくとも1つの個別ユニットを規定する個別ユニット情報を格納する格納ステップと、
     前記取得した敷地情報に基づき、該敷地情報で規定される敷地に適用される集団規定情報を抽出する抽出ステップと、
     前記取得した敷地情報に基づき、抽出した集団規定情報を参照して、前記敷地上に建築可能な建築物の存在可能空間を求める空間計算ステップと、
     前記取得した建築物タイプ情報に基づき、抽出した集団規定情報の少なくとも一部を参照して、複数の個別ユニットを含む建築物を前記存在可能空間内で自動設計する自動設計ステップと、
    を有することを特徴とする自動CAD設計方法。
    An automatic CAD design method using a computer,
    An acquisition step for acquiring site information that defines the site and building type information;
    A storage step of storing group definition information including at least a floor area ratio, and individual unit information defining at least one individual unit associated with each building type information;
    Based on the acquired site information, an extraction step for extracting group definition information applied to the site specified by the site information;
    Based on the acquired site information, referring to the extracted group provision information, a space calculation step for obtaining a possible space of a building that can be built on the site; and
    Based on the acquired building type information, referring to at least a part of the extracted group definition information, an automatic design step of automatically designing a building including a plurality of individual units in the existence space;
    An automatic CAD design method characterized by comprising:
  15.  請求項14に記載自動CAD設計方法において、
     前記敷地情報が、前記敷地の地理的情報、および/または、前記敷地の接道情報を含み、
     前記抽出ステップが、
    前記取得した、前記敷地の地理的情報、および/または、前記敷地の接道情報を含む敷地情報に基づき、該敷地情報で規定される敷地に適用される集団規定情報を抽出する、
    ことを特徴とする自動CAD設計方法。
    The automatic CAD design method according to claim 14,
    The site information includes geographical information of the site and / or road access information of the site,
    The extraction step comprises:
    Based on the acquired geographical information of the site and / or site information including the road access information of the site, the group specification information applied to the site specified by the site information is extracted.
    An automatic CAD design method characterized by the above.
  16.  請求項14に記載の自動CAD設計方法において、
     前記個別ユニットが、
    中廊下ユニットと、少なくとも1つの部屋を含む部屋ユニットとを含み、
     前記自動設計ステップは、
    前記敷地情報で規定される敷地の面積が、所定の数値未満のときは、敷地の形状に基づき建築物外周形状を作成し、建築物の平面的な重心を求め、該重心を通るように前記中廊下ユニットを配置し、前記部屋ユニットを前記中廊下ユニットの長手方向の両辺の少なくとも一部に沿って順次配置して建築物を自動設計する、
    ことを特徴とする自動CAD設計方法。
    The automatic CAD design method according to claim 14,
    The individual unit is
    A central corridor unit and a room unit including at least one room,
    The automatic design step includes
    When the area of the site stipulated by the site information is less than a predetermined value, create a building outer peripheral shape based on the shape of the site, obtain a planar center of gravity of the building, and pass through the center of gravity. An interior corridor unit is disposed, and the room unit is sequentially disposed along at least a part of both sides in the longitudinal direction of the interior corridor unit to automatically design a building.
    An automatic CAD design method characterized by the above.
  17.  請求項14に記載の自動CAD設計方法において、
     前記個別ユニットが、
    バルコニーユニットと、部屋ユニットとを含み、
     前記自動設計ステップは、
    前記敷地情報で規定される敷地の面積が、所定の数値以上のときは、敷地の少なくとも一辺に沿って前記バルコニーユニットを配置し、前記部屋ユニットを前記バルコニーユニットの長手方向の敷地内側の一辺の少なくとも一部に沿って順次配置して建築物を自動設計する、
    ことを特徴とする自動CAD設計方法。
    The automatic CAD design method according to claim 14,
    The individual unit is
    Including a balcony unit and a room unit,
    The automatic design step includes
    When the area of the site stipulated by the site information is equal to or greater than a predetermined value, the balcony unit is arranged along at least one side of the site, and the room unit is placed on one side inside the site in the longitudinal direction of the balcony unit. Automatically design buildings by sequentially arranging them along at least a part
    An automatic CAD design method characterized by the above.
  18.  請求項14に記載の自動CAD設計方法において、
     前記取得ステップが、
    前記敷地情報に規定される敷地の地理的情報に基づき、外部のサーバから該敷地に適用される集団規定情報をさらに取得し、
     前記抽出ステップが、
    前記取得した集団規定情報を、該敷地に適用される集団規定情報として抽出する、
    ことを特徴とする自動CAD設計方法。
    The automatic CAD design method according to claim 14,
    The obtaining step comprises
    Based on the geographical information of the site specified in the site information, further obtaining group specification information applied to the site from an external server,
    The extraction step comprises:
    Extracting the acquired group definition information as group definition information applied to the site;
    An automatic CAD design method characterized by the above.
  19.  請求項14に記載の自動CAD設計方法において、
     前記個別ユニットが、
    避難階段ユニットと、少なくとも1つの部屋と玄関を含む部屋ユニットと、部屋ユニットの玄関と別の部屋ユニットの玄関とを接続する通路ユニットとを含み、
     前記格納ステップが、
    部屋ユニットの玄関から通路ユニットを経た避難階段ユニットまでの距離、または、建築物の条件に応じて規定される避難階段ユニットの個数を規定する避難経路設定情報を含む単体規定情報をさらに格納し、
     前記自動設計ステップが、
    自動設計された建築物の各部屋ユニットの各玄関から避難経路である避難階段ユニットまでの距離が前記避難経路設定情報で規定された距離を満たすように、および/または、建築物の条件に応じて規定される避難階段ユニットの個数を満たすように、前記建築物に少なくとも1つの非常階段ユニットを配置する、
    ことを特徴とする自動CAD設計方法。
    The automatic CAD design method according to claim 14,
    The individual unit is
    An evacuation staircase unit, a room unit including at least one room and an entrance, and a passage unit connecting the entrance of the room unit and the entrance of another room unit,
    The storing step includes
    It further stores single provisional information including evacuation route setting information that defines the distance from the entrance of the room unit to the evacuation staircase unit through the passage unit or the number of evacuation staircase units that are defined according to the building conditions,
    The automatic design step includes
    The distance from each entrance of each room unit of the automatically designed building to the evacuation stair unit that is the evacuation route satisfies the distance specified in the evacuation route setting information and / or according to the condition of the building Arranging at least one emergency stair unit in the building so as to satisfy the number of escape stair units specified
    An automatic CAD design method characterized by the above.
  20.  請求項14に記載の自動CAD設計方法において、
     前記格納ステップが、
    複数の個別ユニットを含む建築物の1階分の複数のパターン化CAD情報をさらに格納し、
     前記自動CAD設計方法が、
    前記複数のパターン化CAD情報から選択される1つのパターン化CAD情報の指定を受け付ける第一の入力受付ステップをさらに有し、
     前記自動設計ステップが、
    前記受け付けたパターン化CAD情報に基づき、抽出した集団規定情報の少なくとも一部を参照して、前記パターン化CAD情報の少なくとも一部を含む階層を順次積み上げて建築物を前記存在可能空間内で自動設計する、
    ことを特徴とする自動CAD設計方法。
    The automatic CAD design method according to claim 14,
    The storing step includes
    Further storing a plurality of patterned CAD information for the first floor of a building including a plurality of individual units,
    The automatic CAD design method comprises:
    A first input receiving step of receiving designation of one piece of patterned CAD information selected from the plurality of pieces of patterned CAD information;
    The automatic design step comprises
    Based on the received patterned CAD information, referring to at least a part of the extracted group definition information, a hierarchy including at least a part of the patterned CAD information is sequentially stacked to automatically build a building in the existence space. design,
    An automatic CAD design method characterized by the above.
  21.  請求項14に記載の自動CAD設計方法において、
     前記格納ステップが、
    個別ユニット情報に規定された個別ユニット毎のユニット単価情報、および/または、建築単価情報をさらに格納し、
     前記自動CAD設計方法が、
    複数の個別ユニットを含む建築物を前記存在可能空間内で自動設計された建築物に含まれる個別ユニットに基づき、前記ユニット単価情報、および/または、前記建築単価情報を参照して、該建築物の建築費用を計算する見積算出ステップをさらに有する、
    ことを特徴とする自動CAD設計方法。
    The automatic CAD design method according to claim 14,
    The storing step includes
    Further storing unit unit price information and / or building unit price information for each individual unit specified in the individual unit information,
    The automatic CAD design method comprises:
    A building including a plurality of individual units is referred to the unit unit price information and / or the building unit price information based on the individual unit included in the building that is automatically designed in the existing space, and the building An estimate calculating step for calculating the construction cost of
    An automatic CAD design method characterized by the above.
  22.  請求項21に記載の自動CAD設計方法において、
     前記格納ステップが、コストおよび/または仕様が異なる複数の建築グレードを規定する建築グレード情報、前記建築グレード別に規定された個別ユニット毎のユニット単価情報、および/または、建築単価情報をさらに格納し、
     前記自動CAD設計方法が、
     前記複数の建築グレードから選択される1つの建築グレードの入力を受け付ける第二の入力受付ステップをさらに有し、
     前記自動設計ステップが、
    受け付けた建築グレードの入力に基づき、自動設計された建築物に含まれる個別ユニットに基づき、該建築物の建築費用を計算する、
    ことを特徴とする自動CAD設計方法。
    The automatic CAD design method according to claim 21,
    The storing step further stores building grade information defining a plurality of building grades having different costs and / or specifications, unit unit price information for each individual unit specified for each building grade, and / or building unit price information,
    The automatic CAD design method comprises:
    A second input receiving step of receiving an input of one building grade selected from the plurality of building grades;
    The automatic design step comprises
    Calculate the building cost of the building based on the individual units included in the automatically designed building based on the accepted building grade input.
    An automatic CAD design method characterized by the above.
  23.  請求項21に記載の自動CAD設計方法において、
     前記格納ステップが、
    コストおよび/または仕様が異なる複数の建築グレードを規定する建築グレード情報、前記建築グレード別に規定された個別ユニット毎のユニット単価情報、および/または、建築単価情報をさらに格納し、
     前記自動CAD設計方法が、
     前記複数の建築グレードから選択される1つの建築グレードの入力を受け付ける第二の入力受付ステップをさらに有し、
     前記自動設計ステップが、
    受け付けた建築グレードの入力に基づき、建築物の自動設計を実行し、該建築物に含まれる個別ユニットに基づき、該建築物の建築費用を計算する、
    ことを特徴とする自動CAD設計方法。
    The automatic CAD design method according to claim 21,
    The storing step includes
    Further storing building grade information defining a plurality of building grades having different costs and / or specifications, unit unit price information for each individual unit defined by the building grade, and / or building unit price information;
    The automatic CAD design method comprises:
    A second input receiving step of receiving an input of one building grade selected from the plurality of building grades;
    The automatic design step includes
    Based on the accepted building grade input, execute the automatic design of the building, and calculate the building cost of the building based on the individual units included in the building.
    An automatic CAD design method characterized by the above.
  24.  請求項22に記載の自動CAD設計方法において、
     前記格納ステップが、
    個別ユニット情報に規定された個別ユニット毎、および/または、地域毎の賃貸標準単価情報をさらに格納し、
     前記取得ステップが、
    建設費用の頭金と、融資金利と、地域或いは住所の少なくとも一部をさらに取得し、
     前記見積算出ステップが、
    計算された建築費用と、取得された頭金と融資金利とに基づき、前記建築物に含まれる個別ユニットの少なくとも1つを、前記取得された地域或いは住所の少なくとも一部に基づき求めた賃貸標準単価情報で規定される賃料で賃した場合の時系列の収支計画を計算する、
    ことを特徴とする自動CAD設計方法。
    The automatic CAD design method according to claim 22,
    The storing step includes
    Further store rental unit price information for each individual unit and / or region specified in the individual unit information,
    The obtaining step comprises
    Get additional down payment for construction costs, loan interest rates and at least part of the region or address,
    The estimate calculation step includes:
    Rent standard unit price for which at least one of the individual units included in the building is determined based on at least a part of the acquired area or address based on the calculated construction cost, the acquired down payment and the loan interest rate. Calculate a time series balance plan for renting at the rent specified in the information,
    An automatic CAD design method characterized by the above.
  25.  請求項24に記載の自動CAD設計方法において、
     前記格納ステップが、
    収支計画による賃貸事業の事業採算性を評価するためのフィジビリティルールを規定するフィジビリティルール情報をさらに格納し、
     前記見積算出ステップが、
    前記フィジビリティルール情報に基づき前記見積算出部により計算された収支計画の事業採算性を評価する、
    ことを特徴とする自動CAD設計方法。
    The automatic CAD design method according to claim 24,
    The storing step includes
    Stores feasibility rule information that defines feasibility rules for evaluating the profitability of rental business based on income and expenditure plans,
    The estimate calculation step includes:
    Evaluating the business profitability of the income and expenditure plan calculated by the estimate calculation unit based on the feasibility rule information,
    An automatic CAD design method characterized by the above.
PCT/JP2013/061937 2012-04-24 2013-04-23 Automatic cad design system, automatic cad design method, and storage medium WO2013161824A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-099286 2012-04-24
JP2012099286A JP6084780B2 (en) 2012-04-24 2012-04-24 Automatic CAD design system, automatic CAD design method and automatic CAD design program

Publications (1)

Publication Number Publication Date
WO2013161824A1 true WO2013161824A1 (en) 2013-10-31

Family

ID=49483133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061937 WO2013161824A1 (en) 2012-04-24 2013-04-23 Automatic cad design system, automatic cad design method, and storage medium

Country Status (2)

Country Link
JP (1) JP6084780B2 (en)
WO (1) WO2013161824A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107092727A (en) * 2017-03-30 2017-08-25 南京师范大学 A kind of across the floor space extracting method of Indoor environment based on CAD diagram paper
CN110348292A (en) * 2019-05-28 2019-10-18 深圳市华阳国际工程设计股份有限公司 Automatic generation method, device and the storage device of evacuating width information
JP2021111024A (en) * 2020-01-07 2021-08-02 積水ハウス株式会社 Design support device, design support system and design support program
US11144681B2 (en) * 2017-11-10 2021-10-12 Autodesk, Inc. Generative design pipeline for urban and neighborhood planning
US11275871B2 (en) 2019-02-25 2022-03-15 Michael Tardie Systems and methods for modifying CAD files
US12008292B2 (en) 2018-11-08 2024-06-11 Autodesk, Inc. Techniques for automatically analyzing competing design objectives when generating designs for urban design projects

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6532191B2 (en) * 2014-03-31 2019-06-19 株式会社バンダイナムコエンターテインメント Program and server
JP6422335B2 (en) * 2014-12-24 2018-11-14 株式会社長谷工コーポレーション Block diagram creation system and method
KR20180057554A (en) * 2016-11-21 2018-05-30 주식회사 위메이드아이앤씨 System for architectural designing medical facility based on building information modeling using cloud computing and method thereof
JP6607245B2 (en) * 2017-11-20 2019-11-20 キヤノンマーケティングジャパン株式会社 Information processing apparatus, control method thereof, and program
KR101967729B1 (en) * 2018-10-08 2019-04-10 주식회사 텐일레븐 Floor plan generating method for buiding
KR102097370B1 (en) * 2019-10-15 2020-04-06 주식회사 텐일레븐 Design method for architecture
JP7337439B1 (en) 2022-05-10 2023-09-04 株式会社フクダ・アンド・パートナーズ Information processing system, information processing method and program
KR102651593B1 (en) * 2022-05-24 2024-03-26 주식회사 닥터빌드 Stand-alone building architectual design apparatus and method thereof
KR102650448B1 (en) * 2023-03-06 2024-03-22 (주)에스엠건축사사무소 A building design system that considers trend-reflected remodeling designs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001034645A (en) * 1999-07-16 2001-02-09 Nisseki House Industry Co Ltd Data management system for building
JP2005044157A (en) * 2003-07-23 2005-02-17 Ibiken Kk Estimate preparation support system for construction member and estimate preparation support program
WO2005020115A1 (en) * 2003-08-26 2005-03-03 Need Inc. Real estate sales/purchase system
JP2005209017A (en) * 2004-01-23 2005-08-04 Takenaka Komuten Co Ltd Building planning support system
JP2007310633A (en) * 2006-05-18 2007-11-29 Fukui Computer Kk Building case retrieval method
JP2011058275A (en) * 2009-09-10 2011-03-24 Toshiba It Service Kk Office disaster prevention check diagnosis system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001034645A (en) * 1999-07-16 2001-02-09 Nisseki House Industry Co Ltd Data management system for building
JP2005044157A (en) * 2003-07-23 2005-02-17 Ibiken Kk Estimate preparation support system for construction member and estimate preparation support program
WO2005020115A1 (en) * 2003-08-26 2005-03-03 Need Inc. Real estate sales/purchase system
JP2005209017A (en) * 2004-01-23 2005-08-04 Takenaka Komuten Co Ltd Building planning support system
JP2007310633A (en) * 2006-05-18 2007-11-29 Fukui Computer Kk Building case retrieval method
JP2011058275A (en) * 2009-09-10 2011-03-24 Toshiba It Service Kk Office disaster prevention check diagnosis system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107092727A (en) * 2017-03-30 2017-08-25 南京师范大学 A kind of across the floor space extracting method of Indoor environment based on CAD diagram paper
US11144681B2 (en) * 2017-11-10 2021-10-12 Autodesk, Inc. Generative design pipeline for urban and neighborhood planning
US11157662B2 (en) 2017-11-10 2021-10-26 Autodesk, Inc. Techniques for automatically generating designs having characteristic topologies for urban design projects
US11222146B2 (en) 2017-11-10 2022-01-11 Autodesk, Inc. Techniques for automatically generating designs having characteristic topologies for urban design projects
US11275872B2 (en) 2017-11-10 2022-03-15 Autodesk, Inc. Techniques for automatically generating urban and neighborhood designs
US11922099B2 (en) 2017-11-10 2024-03-05 Autodesk, Inc. Techniques for automatically generating designs having characteristic topologies for urban design projects
US12008292B2 (en) 2018-11-08 2024-06-11 Autodesk, Inc. Techniques for automatically analyzing competing design objectives when generating designs for urban design projects
US11275871B2 (en) 2019-02-25 2022-03-15 Michael Tardie Systems and methods for modifying CAD files
CN110348292A (en) * 2019-05-28 2019-10-18 深圳市华阳国际工程设计股份有限公司 Automatic generation method, device and the storage device of evacuating width information
JP2021111024A (en) * 2020-01-07 2021-08-02 積水ハウス株式会社 Design support device, design support system and design support program
JP7358992B2 (en) 2020-01-07 2023-10-11 積水ハウス株式会社 Design support equipment, design support system, and design support program
US12008293B2 (en) 2021-11-19 2024-06-11 Autodesk, Inc. Techniques for automatically generating designs having characteristic topologies for urban design projects

Also Published As

Publication number Publication date
JP2013228825A (en) 2013-11-07
JP6084780B2 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6084780B2 (en) Automatic CAD design system, automatic CAD design method and automatic CAD design program
Baker et al. Decision-making for the demolition or adaptation of buildings
Rajabifard et al. A critical evaluation of 3D spatial information models for managing legal arrangements of multi-owned developments in Victoria, Australia
WO2014144730A1 (en) A system and a method for designing buildings
US20130179206A1 (en) System And Method For Multi-Verifiable, As-Built Construction Modeling
Jia et al. The construction of BIM application value system for residential buildings’ design stage in China based on traditional DBB mode
Isikdag et al. Semantically rich 3D building and cadastral models for valuation
AU2019210711A1 (en) Build planning and approval system, building permit application process system and digital interfaces therefor
Ying et al. Easement spatialization with two cases based on LADM and BIM
Lau et al. Quality of life in a “high-rise lawless slum”: A study of the “Kowloon Walled City”
Barnaś et al. Algorithm for the comprehensive thermal retrofit of housing stock aided by renewable energy supply: A sustainable case for Krakow
Barzegar et al. A framework for spatial analysis in 3D urban land administration–A case study for Victoria, Australia
Almashaqbeh et al. Multiobjective model for optimizing the planning of floor plans, finishing level, and transportation in modular construction
Nega et al. The use of CITYGML 3.0 in 3D cadastre system: the case of ADDIS ABABA CITY
Emamgholian et al. 3D Zoning: A missing piece to link planning regulations with 3D cadastre
Gotlib et al. Cartographical presentation of BIM models
Maleki et al. An Assessment of Sustainability for Residential Skyscrapers in Accordance with a Multicriteria Decision-Making Method: Nine Dubai Case Studies
Emamgholian et al. Modelling land-use regulation conflicts with 3d components to support issuing a building permit
CN114511281A (en) Design scheme auxiliary examination method and system based on CIM
Anagnos et al. Development of a concrete building inventory: Los Angeles case study for the analysis of collapse risk
Mehmood et al. 3D Spatial Analysis of Temporal Maintenance for Multi-use High-rise Buildings: Case Study
Erik SUSTAINABILITY IN THE PROCESS OF DEVELOPMENT PERMIT ACQUISITION (ARMENIA)
Mora Transforming Parking Garages Into Affordable Housing
Xu Planning in Advance for Rehabilitation and Restoration Using BIM and Seismic Simulation to Record and Analyze the Japanese House in Los Angeles
JP2006092069A (en) General budget estimate preparation system required for building construction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13782601

Country of ref document: EP

Kind code of ref document: A1