WO2013161822A1 - Communication terminal and measurement method - Google Patents

Communication terminal and measurement method Download PDF

Info

Publication number
WO2013161822A1
WO2013161822A1 PCT/JP2013/061935 JP2013061935W WO2013161822A1 WO 2013161822 A1 WO2013161822 A1 WO 2013161822A1 JP 2013061935 W JP2013061935 W JP 2013061935W WO 2013161822 A1 WO2013161822 A1 WO 2013161822A1
Authority
WO
WIPO (PCT)
Prior art keywords
serving cell
measurement
cell
mobile station
carrier frequency
Prior art date
Application number
PCT/JP2013/061935
Other languages
French (fr)
Japanese (ja)
Inventor
昌 石原
武志 中森
Original Assignee
株式会社 エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 エヌ・ティ・ティ・ドコモ filed Critical 株式会社 エヌ・ティ・ティ・ドコモ
Publication of WO2013161822A1 publication Critical patent/WO2013161822A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to a communication terminal and a measurement method.
  • a mobile station or a user equipment continues communication by switching cells when moving from one cell to another cell. Is configured to do.
  • Cell switching is called movement control or mobility control, and is called “cell reselection” or “handover” depending on the mode of switching.
  • the mobile station UE moves to a neighboring cell, and the reception power or reception quality of the signal from the neighboring cell becomes stronger than the reception power or reception quality of the signal from the serving cell. In such a case, the mobile station UE performs cell reselection or handover for neighboring cells.
  • Cell selection is a process when the mobile station UE transitions from a serving cell to a neighboring cell in a standby state or an idle state.
  • “Handover” is a process when the mobile station UE transitions from a serving cell to a neighboring cell during communication, that is, in a connected state (connected state).
  • the mobile station UE needs to measure the reception power or reception quality of signals from the serving cell and the neighboring cells regardless of whether the mobile station UE is in a standby state or a connection state.
  • the received power of the signal from the neighboring cell or serving cell is, for example, the received power (RSRP: Reference Signal Received Power) of the downlink reference signal (Reference Signal: RS) transmitted from the neighboring cell or serving cell, or all downlink data.
  • RSRP Reference Signal Received Power
  • Reference Signal Reference Signal
  • a received signal strength indicator Receiveived Signal Strength Indicator: RSSI
  • the RSSI is an overall reception level observed in the mobile station UE, and is a reception level that includes not only the power of the desired signal from the own cell but also all of thermal noise, interference power from other cells, and the like.
  • the reception quality may be expressed by, for example, RSRQ (Reference Signal Received Quality) which is a ratio or a relative ratio between RSRP and RSSI.
  • RSRQ Reference Signal Received Quality
  • RSRP, RSRQ, and the like are described in Non-Patent Document 1.
  • the reference signal is a known signal that is known in advance between the transmitter and the receiver, and may be referred to as a reference signal, a pilot signal, a training signal, or the like.
  • Received power and received quality are important parameters that serve as a basis for determining whether or not the mobile station UE should change cells, and thus need to be measured accurately.
  • the mobile station UE cannot accurately measure the reception power and reception quality of the serving cell or neighboring cells. For example, assume that the measured value is determined to be higher or lower than the actual value. In this case, the mobile station UE that should originally be in the area following the current serving cell transitions to a neighboring cell wastefully, or conversely, the mobile station UE that should move to the neighboring cell improperly tries to stay in the serving cell. It will be. As a result, there is a concern that service quality deteriorates for the user of the mobile station UE.
  • the mobile station UE determines whether the mobile station UE is in or out of range based on the reception power and reception quality of the serving cell in addition to the measurement for celery selection. Is also going. For example, the mobile station UE compares the reception power and reception quality of the signal from the serving cell with a predetermined threshold, and if the reception power and reception quality of the signal from the serving cell are below the predetermined threshold, the mobile station UE is out of service In other cases, it is determined that the user is in the area.
  • the predetermined threshold value used for the out-of-service area determination may be notified to the mobile station UE by signaling from the network (that is, the radio base station eNB).
  • a predetermined threshold used for out-of-service area determination is called “Qrxlevmin” or “Qqualmin”.
  • the mobile station UE determines that the mobile station UE is out of the service area even though it is within the service area, the mobile station UE originally exists in an area where the mobile communication service can be provided. The mobile station UE cannot receive the mobile communication service. Conversely, when the mobile station UE determines that the mobile station UE is within the range even though it is out of the range, for example, it is determined that the mobile station UE is within the range even though the radio quality is originally so bad that communication is not established. Suppose. In this case, since the user apparatus cannot recognize being out of the service area, in addition to trying to receive the communication signal wastefully, there is a concern that the user cannot recognize that the user apparatus is out of service area. Therefore, from the viewpoint of accurately determining the out-of-service area and the in-service area, it is necessary to accurately measure the received power and the received quality.
  • the measurement of received power and quality in the mobile station UE is not strictly defined in the standard specifications.
  • the bandwidth for measurement and the measurement interval (measurement period and interval) are as follows: It is implementation dependent.
  • W-CDMA Wideband Code Division Multiple Access
  • HSDPA High Speed Downlink Packet Access
  • RS Reference Signal
  • the mobile station UE measures received power and reception quality using the reference signal arranged in this way, but the mobile station UE can measure the bandwidth to be measured, the measurement interval, etc. within a range that satisfies a certain measurement accuracy. Can be set arbitrarily.
  • 3GPP TS36.214 V10.1.0 3GPP TS 36.211 V10.3.0
  • 3GPP TS36.101 V10.4.0
  • 3GPP TS36.104 V10.4.0
  • 3GPP TS36.213 V10.3.0
  • the mobile station residing in the serving cell In a communication environment where a system band of a carrier frequency different from the carrier frequency of the serving cell is used in the neighboring cell, the mobile station residing in the serving cell accurately considers the amount of interference from the neighboring cell and accurately determines the reception quality, etc. It is desirable to be able to measure.
  • a communication terminal that communicates with a radio base station, A first carrier frequency in a serving cell in which any one of a plurality of predetermined system bandwidths is used and a second carrier in a neighboring cell in which any of the plurality of predetermined system bandwidths are used
  • An information acquisition unit for acquiring frequency information indicating a frequency from the radio base station; The first radio quality for the serving cell and the second radio quality for the neighboring cell are measured, and the difference between the first measurement value of the first radio quality and the second measurement value of the second radio quality.
  • Measuring unit for obtaining When the first carrier frequency in the serving cell and the second carrier frequency in each of the neighboring cells satisfy a predetermined relationship and the difference is greater than or equal to a predetermined value, the first carrier frequency is set to be small.
  • a communication terminal having a correction unit that corrects the first measurement value of radio quality.
  • a measurement method performed by a communication terminal communicating with a radio base station A first carrier frequency in a serving cell in which any one of a plurality of predetermined system bandwidths is used and a second carrier in a neighboring cell in which any of the plurality of predetermined system bandwidths are used Obtaining frequency information indicating a frequency from the radio base station; The first radio quality for the serving cell and the second radio quality for the neighboring cell are measured, and the difference between the first measurement value of the first radio quality and the second measurement value of the second radio quality.
  • the mobile station located in the serving cell appropriately considers the amount of interference from the neighboring cell.
  • the reception quality can be accurately measured.
  • 1 is an overall view of a mobile communication system according to an embodiment of the present invention.
  • FIG. 1 shows various system bandwidths that can be used in the LTE scheme. As shown, there are various system bandwidths depending on the capabilities of the base station and the user equipment. Specifically, a variable system bandwidth of 6 to 100 resource blocks (1.4 to 20 MHz) can be used. For example, a system bandwidth of 6 resource blocks is used in a mobile communication system with LTE, and a system bandwidth of 15, 25, 50, 75, or 100 resource blocks is used in another mobile communication system of LTE. Good.
  • a resource block (RB) is one transmission unit in the frequency direction, and the frequency bandwidth of one resource block is 180 kHz (refer to Non-Patent Documents 3 and 4 for this point). Note that the system bandwidth may also be referred to as a channel bandwidth (Channel Bandwidth).
  • the downlink reference signal RS used by the mobile station UE for measurement is regularly distributed in both the frequency axis direction and the time axis direction. Yes. As long as a certain measurement accuracy is satisfied, the mobile station UE can arbitrarily set a measurement band, a measurement bandwidth, a measurement period, and the like.
  • the mobile station UE is configured to measure radio quality using only a signal having a predetermined bandwidth (narrower than the system bandwidth) centered on the carrier frequency, thereby reducing the processing load. And can promote battery saving effect.
  • a synchronization channel (SCH) and a physical broadcast channel (PBCH) are transmitted using 6 resource blocks at the center of each variable stem band from 1.4 MHz to 20 MHz. .
  • the mobile station UE can receive the synchronization channel SCH and the broadcast channel PBCH by receiving signals for the central 6 resource blocks as shown in FIG. 2 regardless of the system bandwidth. Received power and reception quality can be measured.
  • the radio quality greatly fluctuates within the range of the system bandwidth, that is, in an environment where the radio quality varies depending on the frequency band
  • the measurement bandwidth is limited to the central 6 resource blocks, other cells
  • the amount of interference from the camera cannot be measured properly.
  • the mobile station UE cannot appropriately measure the radio quality, resulting in degradation of measurement accuracy.
  • the system bandwidth of cell 1 is 20 MHz
  • the system bandwidth of cells 2 and 3 is 10 MHz
  • the center frequency of the system band of each cell is in the positional relationship shown in the figure.
  • the center frequencies f 1 -f 3 of the system bands used in the cells 1-3 are different from each other, and two 10 MHz system bandwidths are included in the 20 MHz system bandwidth of the cell 1, Each of the two corresponds to cell 2 and cell 3.
  • the system bandwidth of the cell 1 is 10 MHz
  • the system bandwidth of the cells 2 and 3 is 10 MHz
  • the center frequency of the system band of each cell has a positional relationship as shown in the figure. ing.
  • the center frequencies f 1 -f 3 of the system band used in each of the cells 1-3 are different from each other, and two 5 MHz system bandwidths are included in the 10 MHz system bandwidth of the cell 1, Each of the two corresponds to cell 2 and cell 3.
  • one system band includes the entire other system band, but more generally, one system band includes a part of the other system band. Or may not be included at all.
  • the mobile station UE needs to measure not only the reception power RSRP of the reference signal from the serving cell 1 but also the power from the neighboring cells 2 and 3 (interference power when viewed from the serving cell 1).
  • FIG. 5 specifically shows the system band of the cell 1-3 for the example shown in FIG.
  • the system bandwidth of the cell 1 is 10 MHz, but the bandwidth that actually includes the communication signal is 9 MHz.
  • the system bandwidth of the cells 2 and 3 is 5 MHz, but the bandwidth in which the communication signal is actually included is 4.5 MHz.
  • the mobile station UE needs to measure not only the received power RSRP of the reference signal from the serving cell 1 but also the power from the neighboring cells 2 and 3 (interference power when viewed from the serving cell 1) in order to measure the total received power RSSI. is there.
  • the signal from the cell 2 is expected to be quite weak in the vicinity of the frequency f 1 .
  • the reception quality RSRQ for the cell 1 in the vicinity of the frequency f 1 shows a considerably good quality.
  • communication is performed in the serving cell 1, communication is performed not only in the vicinity of the frequency f 1 but also over the entire bandwidth of 9 MHz.
  • the frequencies f 2 and f 3, etc. the signals from the cells 2 and 3 are received fairly strongly, and the reception quality in the serving cell 1 becomes worse than the value near the frequency f 1. .
  • a mobile station and a mobile station that compare measured values using the total received power RSSI of each of the serving cell and neighboring cells and determine whether to correct the measured value according to the comparison result
  • a communication method is provided. By correcting the measurement value according to the comparison result, it is possible to provide a mobile station and a mobile communication method that can reduce processing load and power consumption while preventing deterioration in measurement accuracy.
  • a mobile station includes a measurement unit that measures radio quality of a serving cell and a neighboring cell, a carrier frequency management unit that manages a positional relationship between carrier frequencies of the serving cell and the neighboring cell, and information on the carrier frequency management unit.
  • a measurement comparison unit that compares measurement results obtained by the measurement unit and a correction unit that determines whether or not the measurement value needs to be corrected according to the comparison result and corrects the measurement value that needs correction are provided.
  • the measurement result is corrected according to the positional relationship of the carrier frequency of the serving cell and the neighboring cells and the comparison result of the measured value in an environment where the radio quality over the system bandwidth varies depending on the frequency band.
  • FIG. 6 schematically shows a mobile communication system according to an embodiment of the present invention.
  • the mobile communication system is an LTE mobile communication system, but any suitable mobile communication system capable of using various system bandwidths may be used.
  • LTE advanced (LTE-Advanced) mobile communication system may be used.
  • the radio access scheme in the illustrated mobile communication system is an Orthogonal Frequency Division Multiplexing (OFDM) scheme for the downlink, and a single-carrier frequency division multiple access (Single-Carrier Frequency Division Multiplexing). : SC-FDMA) system.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single-carrier frequency division multiple access
  • the mobile station UE is typically a mobile phone, but may be another device.
  • the mobile station UE is a user device, an information terminal, a high-performance mobile phone, a smartphone, a tablet computer, a personal digital assistant (PDA), a portable personal computer, a palmtop computer, a laptop computer, etc. It is not limited.
  • PDA personal digital assistant
  • the radio base station eNB exchanges various signals with the mobile station UE.
  • the radio base station eNB in the downlink, a physical broadcast channel PBCH, a synchronization channel SCH, a reference signal RS, a physical downlink control channel (Physical Downlink Channel: PDCCH), a physical downlink shared channel (Physical Downlink Shared Channel: PDSCH) and the like are transmitted to the mobile station UE.
  • a physical broadcast channel PBCH Physical Broadband channel
  • a synchronization channel SCH a reference signal RS
  • a physical downlink control channel Physical Downlink Channel
  • PDSCH Physical Downlink shared channel
  • a demodulation reference signal (DM-RS), a quality measurement reference signal (Sound Reference Reference Signal: SRS), a physical uplink control channel (Physical Uplink Channel: PUCCH), A physical uplink shared channel (Physical Uplink Shared Channel: PUSCH) or the like is transmitted to the radio base station eNB.
  • DM-RS demodulation reference signal
  • SRS quality measurement reference signal
  • PUCCH Physical Uplink Control channel
  • PUCCH Physical Uplink Control channel
  • PUSCH Physical Uplink shared channel
  • FIG. 7 shows a functional block diagram of the mobile station UE.
  • FIG. 7 exemplifies a part particularly related to the present embodiment among various functional units or processing units provided in the mobile station.
  • the illustrated mobile station UE includes a parameter acquisition unit 11, a carrier frequency management unit 12, a measurement unit 13, a measurement comparison unit 14, a measurement result correction unit 15, a filtering unit 16, a determination unit 17, and a notification unit. 18.
  • the parameter acquisition unit 11 acquires a parameter related to cell switching (specifically, a parameter related to mobility control) from the radio base station eNB.
  • the parameters related to mobility control include “EARFCN” indicating the carrier frequency of the neighboring cell, “Qrxlevmin” which is a predetermined threshold value used for the in-range / out-of-range determination.
  • the parameters related to mobility control may include parameters “Qhyst”, “Qoffset”, “Trselection”, and the like that represent threshold values used for determination of celery selection.
  • the parameters related to mobility control may include “Time-to-trigger”, which is a parameter related to handover control, hysteresis, offset, filter coefficient, and the like.
  • “Qhyst” is a positive offset given to the radio quality of the serving cell in the determination of celery selection
  • “Qoffset” is a negative offset given to the radio quality of the serving cell in the determination of celery selection. It is.
  • “Treleselection” is a time-direction hysteresis used in the determination of celery selection, and is a parameter equivalent to “Time-to-trigger” in handover. The filter coefficient is notified to the filtering unit 16.
  • the carrier frequency management unit 12 stores the positional relationship of each carrier frequency in the frequency domain, and measures each carrier frequency according to the positional relationship.
  • the measurement result comparison unit 14 is instructed to compare the results.
  • the positional relationship of each carrier frequency in the frequency domain may indicate whether or not each carrier frequency is included in the same band based on “EARFCN” indicating the carrier frequency, for example.
  • the determination of whether or not they are included in the same band may be made based on, for example, the degree of difference between carrier frequencies.
  • “EARFCN” may be expressed by an absolute value that uniquely indicates the carrier frequency of each cell.
  • the frequency to be compared may be the carrier frequency of the serving cell or the carrier frequency of the neighboring cells. Further, it may be determined whether or not the carrier frequency of the neighboring cell exists in the system band of the serving cell, and whether or not the carrier frequency of the neighboring cell exists in a certain frequency range from the end of the system band of the serving cell. May be determined.
  • the measurement unit 13 measures the received power, radio quality, or reception quality in the serving cell and surrounding cells of the mobile station UE.
  • the radio quality may be measured, for example, based on received power of signals (for example, reference signal RS) received from the serving cell and the neighboring cells of the mobile station UE. More specifically, the received power RSRP and the total received power RSSI of the reference signal may be measured, and the radio quality may be measured from their relative ratio RSRQ.
  • the RSSI is an overall reception level observed in the mobile station UE, and is a reception level that includes not only the power of the desired signal from the own cell but also all of thermal noise, interference power from other cells, and the like.
  • the measurement unit 13 may measure the radio quality at an appropriate time interval.
  • the time interval (that is, the measurement interval) may be a long time such as 200 ms, or may be a short time such as 1 ms as long as the measurement accuracy can be maintained.
  • the measurement unit 13 may measure the radio quality at every intermittent reception (DRX) cycle.
  • the measurement unit 13 measures wireless quality over a predetermined frequency range.
  • the radio quality may be measured within a range of 6 resource blocks near the center frequency.
  • the range of 6 resource blocks is merely an example, and any appropriate value that is equal to or less than the system bandwidth may be used.
  • the radio quality or the reception quality is expressed by the received power RSRP of the reference signal or the relative ratio RSRQ between the RSRP and the total received power RSSI, but this is not essential to the present invention.
  • the wireless quality SIR (Signal to Interference Ratio), CQI (Channel Quality Indicator), or the like may be used instead of RSRP or RSRQ.
  • the CQI is downlink radio quality information, and is specifically described in Non-Patent Document 5.
  • the measurement unit 13 notifies the filtering unit 16 and the measurement result comparison unit 14 of the measurement results of the radio quality in the serving cell and surrounding cells of the mobile station UE.
  • the measurement result comparison unit 14 compares the measurement value, which is the measurement result from the measurement unit 13, based on an instruction from the carrier frequency management unit 12, and notifies the measurement result correction unit 15 of the comparison result.
  • the total received power RSSI may be used as a measurement result used for measurement value comparison.
  • the information notified to the measurement result correction unit 15 may be a difference in RSSI of each cell.
  • the measurement result correction unit 15 corrects the measurement value notified from the measurement unit 13 based on the information from the measurement result comparison unit 14. For example, it may be determined whether or not correction is performed depending on whether or not the difference between the measurement results notified from the measurement result comparison unit 14 exceeds a predetermined value. When the correction is performed, the measurement result correction unit 15 may perform the correction by adding the difference notified from the measurement result comparison unit 14 to the measurement value. Further, filtering according to the difference may be performed by the filtering unit 16.
  • the serving cell is cell x
  • the neighboring cell is cell y
  • the measured value before correction of RSSI for the serving cell is D x-1
  • the measured value after correction is D x
  • the measured value of RSSI for the neighboring cell is D y.
  • D x may be corrected according to the following equation.
  • D x D x-1 + d ⁇ k (1)
  • d D y ⁇ D x ⁇ 1 (2) 0 ⁇ k ⁇ 1 (3)
  • d shows the difference of the measured value of RSSI with respect to a serving cell.
  • k is a filter coefficient taking a value from 0 to 1.
  • the filter coefficient k is a parameter that determines how much the measurement difference d contributes to the corrected measurement value Dx.
  • the above mathematical formula is merely an example, and any appropriate correction that reduces the difference between the measurement values for the serving cell and the neighboring cells may be performed.
  • the filtering unit 16 receives, from the measurement unit 13 or the measurement result correction unit 15, radio frequency measurement values in the serving cell and neighboring cells of the mobile station UE. Receive them and use them for filtering or averaging.
  • the index of the measurement timing at a certain time is “n”
  • the measurement result after filtering is “F n ”
  • the filter coefficient is “k”
  • the measurement result after filtering at the measurement timing of the previous time point is It is assumed that “F n-1 ” and the measurement result in the measurement unit 13 is “M n ”. In this case, filtering is performed so that the following relationship is established.
  • the determination unit 17 receives the measurement result before filtering from the measurement unit 13 in addition to receiving the measurement result after filtering by the filtering unit 16.
  • the determination unit 17 determines whether or not the mobile station UE is in the area (or whether it is out of the area) using the measurement result of the radio quality measured by the measurement unit 13. For example, in the standby state (Idle state), the determination unit 17 may receive the measurement result directly from the measurement unit 13 instead of the above-described filtering unit 16 and perform the in-range / out-of-range determination.
  • the determination unit 17 also determines whether or not to perform cell reselection or handover using the measurement result of the radio quality measured by the measurement unit 13. For example, the determination unit 17 may determine that cell reselection or handover should be performed when a predetermined condition is satisfied for a predetermined period or longer.
  • the condition for determination may be expressed by the following mathematical formula.
  • the predetermined period may be referred to as “Treletion”.
  • the determination unit 17 determines whether or not the measurement result after filtering received from the filtering unit 16 should be notified. For example, the determination unit 17 may determine that the above measurement result should be notified when a predetermined condition is satisfied for a predetermined period or longer.
  • the predetermined condition may be expressed by the following mathematical formula.
  • the predetermined period may be referred to as “Time-to-trigger”.
  • the notification unit 18 When the determination unit 17 determines that the measurement result should be transmitted, the notification unit 18 notifies the radio base station eNB of the measurement result. Specifically, the notification unit 18 notifies the radio base station eNB of the measurement result via the physical uplink shared channel PUSCH. Note that the report of the measurement result may be referred to as a measurement report (Measurement Report).
  • FIG. 8 shows an example of a radio quality measurement procedure performed in the mobile station UE according to the embodiment of the present invention.
  • step S100 the mobile station UE measures the radio quality. As described above, the mobile station UE measures the radio quality for each of the serving cell and the neighboring cells.
  • step S101 the mobile station UE confirms the frequency positions of the carrier frequencies of the serving cell and the neighboring cells, and determines whether the carrier frequencies of the serving cell and the neighboring cells are located in the same band. If it is located in the same band, the flow proceeds to step S102.
  • step S102 the mobile station UE determines whether or not there is a difference of a certain value or more between the RSSI of the serving cell and the RSSI of the neighboring cell. If there is a difference greater than or equal to a certain value, the flow proceeds to step S103.
  • step S103 the mobile station UE corrects the RSSI of the serving cell and the RSSI of the neighboring cells.
  • step S104 the mobile station UE filters the measurement result, and the flow for measuring the quality ends.
  • step S101 determines whether the carrier frequencies of the serving cell and the neighboring cells are not located in the same band. If it is determined in step S101 that the carrier frequencies of the serving cell and the neighboring cells are not located in the same band, the flow proceeds to step S104, and the measurement result is filtered. In step S102, if the difference between the RSSI of the serving cell and the RSSI of the neighboring cell is less than a certain value, the flow proceeds to step S104, and in this case, no correction is performed.
  • step S101 the mobile station UE determines whether or not the bands of the serving cell and the neighboring cells are in the same band based on the positional relationship of the carrier frequencies f 1 -f 3 . In the case of the current example, since the carrier frequencies f 1 -f 3 are in the same band, the flow proceeds to step S102.
  • the mobile station UE compares RSSI (RSSI 1 ) for the serving cell 1 with RSSI (RSSI 2 and RSSI 3 ) for the neighboring cells 2 and 3 .
  • the RSSI for the serving cell 1 is measured in the vicinity of the center frequency or the carrier frequency f 1 (for example, within a frequency range of 6 resource blocks). Since the vicinity of the carrier frequency f 1 is at the end of the system band of the cells 2 and 3, the signals from the cells 2 and 3 are very weak, and most of the RSSI 1 is attributed to the signal from the cell 1. On the other hand, since the vicinity of the carrier frequency f 2 is in the system band of the cell 1, it is expected that the RSSI 2 includes not only the signal from the cell 2 but also the signal from the cell 1. Similarly, since the vicinity of the carrier frequency f 3 is in the system band of the cell 1, it is expected that the RSSI 3 includes not only the signal from the cell 3 but also the signal from the cell 1.
  • RSSI 1 including only the signal from cell 1 is expected to be significantly different from RSSI 2 including the signal from both cell 1 and cell 2. It is also expected that RSSI 1 including only the signal from cell 1 is significantly different from RSSI 3 including signals from both cell 1 and cell 3. For this reason, the flow proceeds from step S102 to step S103.
  • the mobile station UE corrects the RSSI (RSSI 1 ) for the serving cell according to, for example, the above formulas (1) to (3).
  • FIG. 9 shows a procedure for determining whether the mobile station UE is in or out of range.
  • step S201 the mobile station UE measures the received power of the signal from the serving cell. This received power is obtained by measuring according to the procedure shown in FIG. 8, being corrected as necessary, and filtered.
  • step S202 the mobile station UE determines whether or not the received power of the signal from the serving cell is below a predetermined threshold S.
  • step S203 the mobile station UE determines whether the number of times that the received power of the signal from the serving cell is lower than the predetermined threshold S exceeds the predetermined number N. Determine whether or not. The mobile station UE counts the number of received powers below or above the predetermined threshold.
  • step S204 the mobile station UE determines whether the received power of the signals from the serving cell and the neighboring cells is below a predetermined threshold S for a certain period (for example, 10 seconds). Determine whether or not.
  • step S205 If no cell exceeding the predetermined threshold S is detected, it is determined in step S205 that the mobile station UE is out of range, and if a cell exceeding the predetermined threshold S is detected, the mobile station UE is determined to be within range.
  • FIG. 10 shows an example of a procedure for performing celery selection in the mobile station UE.
  • step S301 the mobile station UE measures received power of signals from the serving cell and neighboring cells. This received power is also determined by being measured according to the procedure shown in FIG. 8, corrected as necessary, and filtered.
  • step S302 the mobile station UE determines whether or not the following mathematical formula is satisfied for the received power of signals from neighboring cells. (Received power of signal from neighboring cell) + (Qhyst)> (Received power of signal from serving cell) (8)
  • the mobile station UE performs celery selection so that it may be located in the applicable surrounding cell.
  • FIG. 11 shows an example of a procedure for causing the mobile station UE to perform a handover.
  • step S401 the mobile station UE measures received power of signals from the serving cell and the neighboring cells. This received power is also determined by being measured according to the procedure shown in FIG. 8, corrected as necessary, and filtered.
  • step S402 the mobile station UE determines whether or not the following formula is satisfied for the received power of signals from neighboring cells. (Received power of signal from neighboring cells) + (Hysteresis)> (Received power of signal from serving cell) (9)
  • the mobile station UE notifies the event for reporting the above-mentioned measurement result to a network. In the case of the LTE system, this event is called “event A3”.
  • the values calculated by the following formulas (10) and (11) are used for the received power (radio quality) F n of the signal.
  • the higher layer notifies the mobile station UE to perform the filtering process (L3 Filtering) shown in Equation (10) for the measurement value of the physical layer.
  • Equation (10) The value of the filter coefficient “k” in Expression (11) is notified in advance from the radio base station eNB to the mobile station UE.
  • n is an index that specifies the measurement timing
  • F n is the measurement result after filtering
  • F n ⁇ 1 is the measurement timing at the previous time point.
  • M n is a measurement result in the measurement unit.
  • step S403 when the network receives the report of the event A3, the network determines that the mobile station UE that has made the report should be handed over to the cell indicated by the event A3.
  • a criterion for one type of radio quality is used.
  • criteria for a plurality of types of radio quality may be used.
  • the mobile station UE can appropriately measure the radio quality even when the interference from other cells is different depending on the frequency band in the system band. It becomes.
  • the mobile station UE reports an appropriate measurement result to the network at an appropriate timing, it is possible to continue communication without causing communication interruption, and to suppress the load on the network and the current consumption of the mobile station UE, Furthermore, user convenience can be improved.
  • the mobile station UE is a mobile station UE that communicates with a radio base station eNB, and includes a measurement unit 13 that measures radio quality of a serving cell and neighboring cells in the mobile station UE, and carrier frequency management that manages a carrier frequency.
  • the measurement result comparison unit 14 that compares the measurement result notified from the measurement unit 13 based on the information from the unit 11, the information from the carrier frequency management unit 11, and the measurement result is corrected based on the information from the measurement result comparison unit
  • the measurement result correction unit 15 uses the carrier frequency acquired from the parameter acquisition unit 12, and the measurement result correction unit 15 uses the carrier frequency acquired from the parameter acquisition unit 12 based on the information notified by the measurement result comparison unit 14. The measurement result is corrected.
  • the mobile station UE may further include a determination unit 17 that determines whether the mobile station UE is within the service area or out of service area using the measurement result of the radio quality measured by the measurement unit 13.
  • the mobile station UE may further include a determination unit 17 that determines whether or not to perform cell reselection using the measurement result of the radio quality measured by the measurement unit 13.
  • a filtering unit 16 that filters the measurement result of the radio quality measured by the measurement unit 13, and a determination that determines whether or not the filtered measurement result should be notified A part 17 may be further provided.
  • the mobile communication method has a step of measuring the radio quality of the serving cell and the neighboring cell in the mobile station, and the measurement result obtained by the step is based on the carrier frequency and the measurement result of the serving cell and the neighboring cell. , Correct the measurement results.
  • the operations of the radio base station eNB and the mobile station UE described above may be realized by hardware, may be realized by a software module executed by a processor, or may be realized by a combination of both.
  • Software modules include RAM (Random Access Memory), flash memory, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electronically Erasable and Programmable ROM, CD, ROM, CD, ROM, etc. It may be provided on any arbitrary storage medium.
  • Such a storage medium is connected to the processor so that the processor can read and write information from and to the storage medium.
  • the storage medium may be integrated in the processor.
  • the storage medium and the processor may be provided in an application specific integrated circuit (ASIC).
  • the ASIC may be provided in the radio base station eNB and the mobile station UE.
  • the storage medium and the processor may be provided in the radio base station eNB and the mobile station UE as discrete components.
  • the communication terminal and the measurement method have been described by way of examples.
  • the present invention is not limited to the above examples, and various modifications and improvements can be made within the scope of the present invention.
  • the present invention may be applied to any appropriate mobile communication system that performs communication using any of a plurality of system bandwidths.
  • specific numerical examples have been described in order to facilitate understanding of the invention, these numerical values are merely examples and any appropriate values may be used unless otherwise specified.
  • specific mathematical formulas have been used to facilitate understanding of the invention, these mathematical formulas are merely examples unless otherwise specified, and other mathematical formulas that yield similar results may be used. Good.
  • the classification of items in the above description is not essential to the present invention, and the items described in two or more items may be used in combination as necessary, or the items described in one item may be used in different items. It may be applied to the matters described in (if not inconsistent).
  • the boundaries between functional units or processing units in the functional block diagram do not necessarily correspond to physical component boundaries.
  • the operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components.
  • a mobile station that communicates with a radio base station, Comprising a parameter acquisition unit configured to acquire the carrier frequency of the serving cell and neighboring cells from the radio base station; Comprising a measurement unit configured to measure the radio quality of a serving cell and a neighboring cell in the mobile station; A carrier frequency management unit for managing the carrier frequency acquired by the parameter acquisition unit; Based on the instruction to the carrier frequency management unit, comprising a measurement result comparison unit that compares the measurement result notified from the measurement unit, Based on the information from the measurement result comparison unit, comprising a measurement result correction unit for correcting the measurement result notified from the measurement unit, The mobile station characterized in that the measurement result correction unit is configured to correct a measurement result according to the carrier frequency and a measurement result comparison result.
  • attachment 2 The mobile station according to attachment 1, further comprising a determination unit configured to determine whether the mobile station is within or out of service using the wireless quality measurement result measured by the measurement unit. May be.

Abstract

In the present invention, a communication terminal has: an information acquisition unit which acquires, from a wireless base station, frequency information indicating carrier frequencies in a serving cell that uses any among a predetermined plurality of system bandwidth capacities and each of neighboring cells that use any among the predetermined plurality of system bandwidth capacities; a measurement unit which measures a first radio quality with respect to the serving cell and a second radio quality with respect to the neighboring cells so as to obtain a difference in measurement values between the first and second radio qualities; and a correction unit which, if the carrier frequencies in the serving cell and each of the surrounding cells satisfy a predetermined relationship and the difference is greater than or equal to a predetermined value, corrects the measurement value of the first radio quality so as to reduce the difference.

Description

通信端末及び測定方法Communication terminal and measurement method
 本発明は通信端末及び測定方法に関連する。 The present invention relates to a communication terminal and a measurement method.
 (1)複数のセルが設けられている移動通信システムの場合、移動局又はユーザ装置(User Equipment:UE)は、1つのセルから他のセルに移動する際に、セルを切り替えて通信を継続するように構成されている。セルの切り替えは、移動制御又はMobility制御と呼ばれ、切り替えの形態に応じて「セルリセレクション」又は「ハンドオーバ」と呼ばれている。例えば、移動局UEが周辺セルに移動し、周辺セルからの信号の受信電力または受信品質が、サービングセル(Serving Cell)からの信号の受信電力または受信品質よりも強くなったとする。このような場合に、移動局UEは周辺セルに対してセルリセレクション又はハンドオーバを行う。「セルセレクション」は、待ち受け状態又はアイドル(Idle)状態において移動局UEがサービングセルから周辺セルに遷移する際の処理である。「ハンドオーバ」は、通信中において、すなわちコネクション状態(Connected状態)において、移動局UEがサービングセルから周辺セルに遷移する際の処理である。 (1) In the case of a mobile communication system provided with a plurality of cells, a mobile station or a user equipment (User Equipment: UE) continues communication by switching cells when moving from one cell to another cell. Is configured to do. Cell switching is called movement control or mobility control, and is called “cell reselection” or “handover” depending on the mode of switching. For example, it is assumed that the mobile station UE moves to a neighboring cell, and the reception power or reception quality of the signal from the neighboring cell becomes stronger than the reception power or reception quality of the signal from the serving cell. In such a case, the mobile station UE performs cell reselection or handover for neighboring cells. “Cell selection” is a process when the mobile station UE transitions from a serving cell to a neighboring cell in a standby state or an idle state. “Handover” is a process when the mobile station UE transitions from a serving cell to a neighboring cell during communication, that is, in a connected state (connected state).
 (2)移動局UEは、待ち受け状態であってもコネクション状態であっても、サービングセル及び周辺セルからの信号の受信電力または受信品質を測定する必要がある。周辺セル又はサービングセルからの信号の受信電力は、例えば、周辺セル又はサービングセルから送信される下りリンクの参照信号(Reference Signal:RS)の受信電力(RSRP:Reference Signal Received Power)や、下りリンクの全受信電力である受信信号強度インジケータ(Received Signal Strength Indicator:RSSI)等であってもよい。RSSIは、移動局UEにおいて観測される全体の受信レベルであり、自セルからの希望信号の電力だけでなく、熱雑音や他セルからの干渉電力等の全てを含む受信レベルである。受信品質は、例えば、RSRPとRSSIとの割合又は相対比であるRSRQ(Reference Signal Received Quality)により表現されてもよい。RSRP及びRSRQ等については、非特許文献1に記載されている。なお、参照信号は、送信機と受信機の間で予め既知である既知信号であり、リファレンス信号、パイロット信号、トレーニング信号等と言及されてもよい。 (2) The mobile station UE needs to measure the reception power or reception quality of signals from the serving cell and the neighboring cells regardless of whether the mobile station UE is in a standby state or a connection state. The received power of the signal from the neighboring cell or serving cell is, for example, the received power (RSRP: Reference Signal Received Power) of the downlink reference signal (Reference Signal: RS) transmitted from the neighboring cell or serving cell, or all downlink data. A received signal strength indicator (Received Signal Strength Indicator: RSSI) that is received power may be used. The RSSI is an overall reception level observed in the mobile station UE, and is a reception level that includes not only the power of the desired signal from the own cell but also all of thermal noise, interference power from other cells, and the like. The reception quality may be expressed by, for example, RSRQ (Reference Signal Received Quality) which is a ratio or a relative ratio between RSRP and RSSI. RSRP, RSRQ, and the like are described in Non-Patent Document 1. The reference signal is a known signal that is known in advance between the transmitter and the receiver, and may be referred to as a reference signal, a pilot signal, a training signal, or the like.
 (3)受信電力や受信品質は移動局UEがセルを遷移すべきか否かを決める基礎となる重要なパラメータであるので、正確に測定される必要がある。仮に、移動局UEが、サービングセル又は周辺セルの受信電力や受信品質を正確に測定できなかったとする。例えば測定値が実際よりも高く又は低く判定したとする。この場合、本来は、現状のサービングセルに引き続き在圏すべき移動局UEが無駄に周辺セルに遷移したり、逆に、周辺セルに移動すべき移動局UEが不適切にサービングセルに留まろうとすることになる。その結果、移動局UEのユーザに対してサービス品質が劣化してしまうことが懸念される。 (3) Received power and received quality are important parameters that serve as a basis for determining whether or not the mobile station UE should change cells, and thus need to be measured accurately. Suppose that the mobile station UE cannot accurately measure the reception power and reception quality of the serving cell or neighboring cells. For example, assume that the measured value is determined to be higher or lower than the actual value. In this case, the mobile station UE that should originally be in the area following the current serving cell transitions to a neighboring cell wastefully, or conversely, the mobile station UE that should move to the neighboring cell improperly tries to stay in the serving cell. It will be. As a result, there is a concern that service quality deteriorates for the user of the mobile station UE.
 (4)また、移動局UEは、待ち受け状態において、セルリセレクションのための測定に加えて、サービングセルの受信電力や受信品質に基づいて、移動局UEが圏内であるか又は圏外であるかの判定も行っている。例えば、移動局UEは、サービングセルからの信号の受信電力や受信品質と所定の閾値とを比較し、サービングセルからの信号の受信電力や受信品質が所定の閾値以下である場合には圏外であると判定し、それ以外の場合には圏内であると判定する。圏外圏内判定に使用される所定の閾値は、ネットワーク(すなわち、無線基地局eNB)からのシグナリングによって移動局UEに通知されてもよい。一例として、ロングタームエボリューション(Long Term Evolution:LTE)方式の移動通信システムの場合、圏外圏内判定に使用される所定の閾値は、「Qrxlevmin」や「Qqualmin」と呼ばれる。 (4) In addition, in the standby state, the mobile station UE determines whether the mobile station UE is in or out of range based on the reception power and reception quality of the serving cell in addition to the measurement for celery selection. Is also going. For example, the mobile station UE compares the reception power and reception quality of the signal from the serving cell with a predetermined threshold, and if the reception power and reception quality of the signal from the serving cell are below the predetermined threshold, the mobile station UE is out of service In other cases, it is determined that the user is in the area. The predetermined threshold value used for the out-of-service area determination may be notified to the mobile station UE by signaling from the network (that is, the radio base station eNB). As an example, in the case of a long term evolution (LTE) mobile communication system, a predetermined threshold used for out-of-service area determination is called “Qrxlevmin” or “Qqualmin”.
 (5)移動局UEが、圏内であるにも関わらず圏外であると判定した場合、本来、移動通信サービスの提供を受けることが可能なエリアに移動局UEが存在しているにもかかわらず、その移動局UEは移動通信サービスの提供を受けることができなくなってしまう。逆に、移動局UEが、圏外であるにも関わらず圏内であると判定した場合、例えば、本来、通信が成立しないほど無線品質が悪かった場合であるにも関わらず圏内であると判定されたとする。この場合、ユーザ装置は圏外にいることを認識できないため、通信信号を無駄に受信しようとしてしまうことに加えて、圏外であることをユーザが認識できないことも懸念される。従って、圏外及び圏内の判定を正確に行う観点からも、受信電力や受信品質の測定は正確に行われる必要がある。 (5) When the mobile station UE determines that the mobile station UE is out of the service area even though it is within the service area, the mobile station UE originally exists in an area where the mobile communication service can be provided. The mobile station UE cannot receive the mobile communication service. Conversely, when the mobile station UE determines that the mobile station UE is within the range even though it is out of the range, for example, it is determined that the mobile station UE is within the range even though the radio quality is originally so bad that communication is not established. Suppose. In this case, since the user apparatus cannot recognize being out of the service area, in addition to trying to receive the communication signal wastefully, there is a concern that the user cannot recognize that the user apparatus is out of service area. Therefore, from the viewpoint of accurately determining the out-of-service area and the in-service area, it is necessary to accurately measure the received power and the received quality.
 (6)ところで、移動局UEにおける受信電力や品質の測定については、標準仕様において厳密な規定があるわけではなく、例えば測定を行う帯域幅や測定区間(測定する期間や間隔)等については、実装依存となっている。一例として、LTE方式の移動通信システムを考察する。LTE方式は、ワイドバンド符号分割多重接続(Wideband Code Division Multiple Access:W-CDMA)方式や、高速ダウンリンクパケットアクセス(High Speed Downlink Packet Access:HSDPA)方式の後継である。LTE方式の場合、移動局UEが測定に用いる下りリンクの参照信号は、周波数軸方向にも時間軸方向にも規則的に2次元的に分散して配置されている。リファレンス信号(Reference Signal:RS)の配置の仕方については、非特許文献2に記載されている。このように配置されたリファレンス信号を用いて移動局UEは受信電力や受信品質を測定するが、移動局UEは、ある一定の測定精度を満たす範囲内において、測定対象の帯域幅や測定区間等を任意に設定することができる。 (6) By the way, the measurement of received power and quality in the mobile station UE is not strictly defined in the standard specifications. For example, the bandwidth for measurement and the measurement interval (measurement period and interval) are as follows: It is implementation dependent. As an example, consider an LTE mobile communication system. The LTE system is a successor of the wideband code division multiple access (Wideband Code Division Multiple Access: W-CDMA) system and the high speed downlink packet access (High Speed Downlink Packet Access: HSDPA) system. In the case of the LTE scheme, downlink reference signals used for measurement by the mobile station UE are regularly and two-dimensionally distributed in both the frequency axis direction and the time axis direction. Non-patent document 2 describes the arrangement of reference signals (Reference Signal: RS). The mobile station UE measures received power and reception quality using the reference signal arranged in this way, but the mobile station UE can measure the bandwidth to be measured, the measurement interval, etc. within a range that satisfies a certain measurement accuracy. Can be set arbitrarily.
 サービングセルのキャリア周波数とは異なるキャリア周波数のシステム帯域が周辺セルで使用される通信環境において、サービングセルに在圏する移動局が、周辺セルからの干渉量を適切に考慮して受信品質等を正確に測定できるようにすることが望ましい。 In a communication environment where a system band of a carrier frequency different from the carrier frequency of the serving cell is used in the neighboring cell, the mobile station residing in the serving cell accurately considers the amount of interference from the neighboring cell and accurately determines the reception quality, etc. It is desirable to be able to measure.
 本発明の一実施形態によると、
 無線基地局と通信する通信端末であって、
 所定の複数のシステム帯域幅の内の何れかが使用されているサービングセルにおける第1のキャリア周波数及び該所定の複数のシステム帯域幅の内の何れかが使用されている周辺セルにおける第2のキャリア周波数を示す周波数情報を前記無線基地局から取得する情報取得部と、
 前記サービングセルに対する第1の無線品質及び前記周辺セルに対する第2の無線品質を測定し、前記第1の無線品質の第1の測定値と前記第2の無線品質の第2の測定値との差分を求める測定部と、
 前記サービングセルにおける第1のキャリア周波数及び前記周辺セル各々における第2のキャリア周波数が所定の関係を満たし、かつ前記差分が所定値以上であった場合に、該差分が小さくなるように前記第1の無線品質の第1の測定値を補正する補正部と
 を有する、通信端末が提供される。
According to one embodiment of the present invention,
A communication terminal that communicates with a radio base station,
A first carrier frequency in a serving cell in which any one of a plurality of predetermined system bandwidths is used and a second carrier in a neighboring cell in which any of the plurality of predetermined system bandwidths are used An information acquisition unit for acquiring frequency information indicating a frequency from the radio base station;
The first radio quality for the serving cell and the second radio quality for the neighboring cell are measured, and the difference between the first measurement value of the first radio quality and the second measurement value of the second radio quality. Measuring unit for obtaining
When the first carrier frequency in the serving cell and the second carrier frequency in each of the neighboring cells satisfy a predetermined relationship and the difference is greater than or equal to a predetermined value, the first carrier frequency is set to be small. There is provided a communication terminal having a correction unit that corrects the first measurement value of radio quality.
 また、本発明の別の実施形態によると、
 無線基地局と通信する通信端末が行う測定方法であって、
 所定の複数のシステム帯域幅の内の何れかが使用されているサービングセルにおける第1のキャリア周波数及び該所定の複数のシステム帯域幅の内の何れかが使用されている周辺セルにおける第2のキャリア周波数を示す周波数情報を前記無線基地局から取得するステップと、
 前記サービングセルに対する第1の無線品質及び前記周辺セルに対する第2の無線品質を測定し、前記第1の無線品質の第1の測定値と前記第2の無線品質の第2の測定値との差分を求めるステップと、
 前記サービングセルにおける前記第1のキャリア周波数及び前記周辺セルにおける第2のキャリア周波数が所定の関係を満たし、かつ前記差分が所定値以上であった場合に、該差分が小さくなるように前記第1の無線品質の第1の測定値を補正するステップと
 を有する、測定方法が提供される。
According to another embodiment of the present invention,
A measurement method performed by a communication terminal communicating with a radio base station,
A first carrier frequency in a serving cell in which any one of a plurality of predetermined system bandwidths is used and a second carrier in a neighboring cell in which any of the plurality of predetermined system bandwidths are used Obtaining frequency information indicating a frequency from the radio base station;
The first radio quality for the serving cell and the second radio quality for the neighboring cell are measured, and the difference between the first measurement value of the first radio quality and the second measurement value of the second radio quality. A step of seeking
When the first carrier frequency in the serving cell and the second carrier frequency in the neighboring cell satisfy a predetermined relationship and the difference is equal to or greater than a predetermined value, the first carrier frequency is set to be small. Correcting a first measurement of radio quality is provided.
 本発明によれば、サービングセルのキャリア周波数とは異なるキャリア周波数のシステム帯域が周辺セルで使用される通信環境において、サービングセルに在圏する移動局が、周辺セルからの干渉量を適切に考慮して受信品質等を正確に測定することができる。 According to the present invention, in a communication environment where a system band having a carrier frequency different from the carrier frequency of the serving cell is used in the neighboring cell, the mobile station located in the serving cell appropriately considers the amount of interference from the neighboring cell. The reception quality can be accurately measured.
可変システム帯域幅の具体例を示す図。The figure which shows the specific example of a variable system bandwidth. ユーザ装置が測定する帯域を示す図。The figure which shows the zone | band which a user apparatus measures. 異なるシステム帯域幅のセル間の周波数関係を示す図。The figure which shows the frequency relationship between the cells of a different system bandwidth. 異なるシステム帯域幅のセル間の周波数関係を示す図。The figure which shows the frequency relationship between the cells of a different system bandwidth. 異なるシステム帯域幅のセル間の信号関係を示す図。The figure which shows the signal relationship between the cells of a different system bandwidth. 本発明の実施形態による移動通信システムの全体図。1 is an overall view of a mobile communication system according to an embodiment of the present invention. 本発明の実施形態による移動局の機能ブロック図。The functional block diagram of the mobile station by embodiment of this invention. 本発明の実施形態による移動局の動作例を示すフローチャート。The flowchart which shows the operation example of the mobile station by embodiment of this invention. 圏外圏内判定を行う移動局の動作例を示すフローチャート。The flowchart which shows the operation example of the mobile station which performs non-service area determination. セルリセレクションを行う移動局の動作例を示すフローチャート。The flowchart which shows the operation example of the mobile station which performs celery selection. ハンドオーバを行う移動局の動作例を示すフローチャート。The flowchart which shows the operation example of the mobile station which performs a hand-over.
 図1は、LTE方式において使用可能な様々なシステム帯域幅を示す。図示されているように、基地局及びユーザ装置の能力に応じて広狭様々なシステム帯域幅が存在する。具体的には、6~100リソースブロックまで(1.4~20MHz)の可変システム帯域幅が使用可能である。例えば、LTE方式のある移動通信システムでは6リソースブロックのシステム帯域幅が用いられ、LTE方式の別の移動通信システムでは15、25、50、75又は100リソースブロックのシステム帯域幅が用いられてもよい。なお、リソースブロック(Resource Block:RB)とは、周波数方向の1送信単位であり、1リソースブロックの周波数帯域幅は180kHzである(この点については、非特許文献3、4参照)。なお、システム帯域幅は、チャネル帯域幅(ChannelBandwidth)とも呼ばれてもよい。 FIG. 1 shows various system bandwidths that can be used in the LTE scheme. As shown, there are various system bandwidths depending on the capabilities of the base station and the user equipment. Specifically, a variable system bandwidth of 6 to 100 resource blocks (1.4 to 20 MHz) can be used. For example, a system bandwidth of 6 resource blocks is used in a mobile communication system with LTE, and a system bandwidth of 15, 25, 50, 75, or 100 resource blocks is used in another mobile communication system of LTE. Good. A resource block (RB) is one transmission unit in the frequency direction, and the frequency bandwidth of one resource block is 180 kHz (refer to Non-Patent Documents 3 and 4 for this point). Note that the system bandwidth may also be referred to as a channel bandwidth (Channel Bandwidth).
 上述したように、LTE方式の移動通信システムにおいては、移動局UEが測定に用いる下りリンクの参照信号であるRSは、周波数軸方向にも時間軸方向にも規則的に分散して配置されている。そして、ある一定の測定精度を満たす限り、移動局UEは測定帯域、測定帯域幅及び測定期間等を任意に設定することができる。 As described above, in the LTE mobile communication system, the downlink reference signal RS used by the mobile station UE for measurement is regularly distributed in both the frequency axis direction and the time axis direction. Yes. As long as a certain measurement accuracy is satisfied, the mobile station UE can arbitrarily set a measurement band, a measurement bandwidth, a measurement period, and the like.
 一般に、測定帯域幅が広ければ広いほど、また、測定期間が長ければ長いほど、測定精度は、向上する傾向にあるが、処理負荷及び電力の消費量も多く必要になってしまう。更に、無線品質に応じて測定精度の向上にも限界がある。そこで、できるだけ狭い帯域幅及び短い時間区間において、サービングセル及び周辺セルにおける無線品質の測定を行うように工夫することが望ましい。例えば、移動局UEは、キャリア周波数を中心とする所定の帯域幅(システム帯域幅より狭い)の信号のみを用いて、無線品質の測定を行うように構成され、これにより、処理負荷の低減効果やバッテリーセービング効果を促すことができる。 Generally, as the measurement bandwidth is wider and the measurement period is longer, the measurement accuracy tends to be improved, but more processing load and power are required. Furthermore, there is a limit to the improvement of measurement accuracy according to the radio quality. Therefore, it is desirable to devise so as to measure the radio quality in the serving cell and neighboring cells in the narrowest bandwidth and in the short time interval. For example, the mobile station UE is configured to measure radio quality using only a signal having a predetermined bandwidth (narrower than the system bandwidth) centered on the carrier frequency, thereby reducing the processing load. And can promote battery saving effect.
 具体的には、1.4MHzから20MHzまでの可変のステム帯域各々の中心の6リソースブロックを用いて、同期チャネル(Synchronization Channel:SCH)及び物理報知チャネル(Physical Broadcast Channel:PBCH)が送信される。このようにすることで、どのシステム帯域幅であっても、図2に示すような中心の6リソースブロック分の信号を受信することで、移動局UEは同期チャネルSCH及び報知チャネルPBCHを受信でき、受信電力や受信品質を測定することができる。 Specifically, a synchronization channel (SCH) and a physical broadcast channel (PBCH) are transmitted using 6 resource blocks at the center of each variable stem band from 1.4 MHz to 20 MHz. . In this way, the mobile station UE can receive the synchronization channel SCH and the broadcast channel PBCH by receiving signals for the central 6 resource blocks as shown in FIG. 2 regardless of the system bandwidth. Received power and reception quality can be measured.
 しかしながら、システム帯域幅の範囲内で無線品質が大きく変動している場合、すなわち無線品質が周波数帯域により異なる環境の場合、測定帯域幅を、中心の6リソースブロックに限定してしまうと、他セルからの干渉量を適切に測定できなくなってしまう。その結果、移動局UEは無線品質を適切に測定できず、測定精度の劣化を招いてしまう。例えば、図3に示すように、セル1のシステム帯域幅は20MHzであり、セル2、3のシステム帯域幅は10MHzであり、各セルのシステム帯域の中心周波数が、図のような位置関係になっているとする。この場合、セル1-3各々で使用されているシステム帯域の中心周波数f-fは互いに異なり、セル1の20MHzのシステム帯域幅の中に10MHzのシステム帯域幅が2つ含まれ、それら2つ各々はセル2及びセル3に対応する。図4に示す例の場合、セル1のシステム帯域幅は10MHzであり、セル2、3のシステム帯域幅は10MHzであり、各セルのシステム帯域の中心周波数は、図のような位置関係になっている。この場合、セル1-3各々で使用されているシステム帯域の中心周波数f-fは互いに異なり、セル1の10MHzのシステム帯域幅の中に5MHzのシステム帯域幅が2つ含まれ、それら2つ各々はセル2及びセル3に対応する。図3、4に示す例では、一方のシステム帯域の中に他方のシステム帯域の全部が含まれているが、より一般的には一方のシステム帯域の中に他方のシステム帯域の一部分が含まれていてもよいし、全く含まれていなくてもよい。 However, when the radio quality greatly fluctuates within the range of the system bandwidth, that is, in an environment where the radio quality varies depending on the frequency band, if the measurement bandwidth is limited to the central 6 resource blocks, other cells The amount of interference from the camera cannot be measured properly. As a result, the mobile station UE cannot appropriately measure the radio quality, resulting in degradation of measurement accuracy. For example, as shown in FIG. 3, the system bandwidth of cell 1 is 20 MHz, the system bandwidth of cells 2 and 3 is 10 MHz, and the center frequency of the system band of each cell is in the positional relationship shown in the figure. Suppose that In this case, the center frequencies f 1 -f 3 of the system bands used in the cells 1-3 are different from each other, and two 10 MHz system bandwidths are included in the 20 MHz system bandwidth of the cell 1, Each of the two corresponds to cell 2 and cell 3. In the case of the example shown in FIG. 4, the system bandwidth of the cell 1 is 10 MHz, the system bandwidth of the cells 2 and 3 is 10 MHz, and the center frequency of the system band of each cell has a positional relationship as shown in the figure. ing. In this case, the center frequencies f 1 -f 3 of the system band used in each of the cells 1-3 are different from each other, and two 5 MHz system bandwidths are included in the 10 MHz system bandwidth of the cell 1, Each of the two corresponds to cell 2 and cell 3. In the example shown in FIGS. 3 and 4, one system band includes the entire other system band, but more generally, one system band includes a part of the other system band. Or may not be included at all.
 図3、4に示す例におけるセル1がサービングセルであり、セル2、3が周辺セルであったとする。この場合、サービングセルの中心の特定帯域幅(具体的には、fを中心とする6リソースブロック分の周波数)で測定が実施される。測定の対象が受信品質であったとする。上述したように、受信品質RSRQは、参照信号の受信電力RSRPと全受信電力RSSIとの比率である(RSRQ=RSRP/RSSI)。この場合、移動局UEは、サービングセル1からの参照信号の受信電力RSRPだけでなく、周辺セル2、3からの電力(サービングセル1から見ると干渉電力)も測定する必要がある。しかしながら周波数f付近において、セル2、3から到来する信号の電力は、周波数f、fにおける電力よりもかなり低い。このため、周波数f付近で測定した受信品質は見かけ上良く見えるが、これは、他のキャリア周波数f、fに起因する干渉を正確に反映していないからである。このことを図5を参照しながら説明する。 Assume that cell 1 in the example shown in FIGS. 3 and 4 is a serving cell, and cells 2 and 3 are neighboring cells. In this case (specifically, f 1 6 resource blocks of frequencies centered at) a particular bandwidth of the center of the serving cell measured by carried out. Assume that the measurement target is reception quality. As described above, the reception quality RSRQ is a ratio between the reception power RSRP of the reference signal and the total reception power RSSI (RSRQ = RSRP / RSSI). In this case, the mobile station UE needs to measure not only the reception power RSRP of the reference signal from the serving cell 1 but also the power from the neighboring cells 2 and 3 (interference power when viewed from the serving cell 1). However, near the frequency f 1 , the power of signals coming from the cells 2 and 3 is much lower than the power at the frequencies f 2 and f 3 . For this reason, the reception quality measured in the vicinity of the frequency f 1 looks good, but this is because the interference due to the other carrier frequencies f 2 and f 3 is not accurately reflected. This will be described with reference to FIG.
 図5は図4に示す例について、セル1-3のシステム帯域を具体的に示す。セル1のシステム帯域幅は10MHzであるが、実際に通信信号が含まれる帯域幅は9MHzである。同様に、セル2、3のシステム帯域幅は5MHzであるが、実際に通信信号が含まれる帯域幅は4.5MHzである。移動局UEは、サービングセル1からの参照信号の受信電力RSRPだけでなく、総受信電力RSSIを測定するために周辺セル2、3からの電力(サービングセル1から見ると干渉電力)も測定する必要がある。しかしながら、周波数f付近はセル2にとってはシステム帯域の境界であるので、周波数f付近においてセル2からの信号はかなり弱いことが予想される。同様に、周波数f付近はセル3にとってもシステム帯域の境界であるので、周波数f付近においてセル3からの信号もかなり弱いことが予想される。その結果、周波数f付近を対象としたセル1に対する受信品質RSRQはかなり良い品質を示すことになる。しかしながら、サービングセル1において通信を行う場合、周波数f付近だけでなく、9MHzの帯域幅全体にわたって通信が行われる。周波数f付近以外の周波数、例えば、周波数f、f等においては、セル2、3からの信号がかなり強く受信され、サービングセル1における受信品質は、周波数f付近の値よりも悪くなる。このように、測定を行う周波数に依存して受信品質が異なる場合に、中心周波数f付近の受信品質が見かけ上良いことに基づいてセル遷移の要否や圏外圏内の判定を行うと、セル遷移の要否や圏外圏内の判定を必ずしも適切に判断できないことが懸念される。 FIG. 5 specifically shows the system band of the cell 1-3 for the example shown in FIG. The system bandwidth of the cell 1 is 10 MHz, but the bandwidth that actually includes the communication signal is 9 MHz. Similarly, the system bandwidth of the cells 2 and 3 is 5 MHz, but the bandwidth in which the communication signal is actually included is 4.5 MHz. The mobile station UE needs to measure not only the received power RSRP of the reference signal from the serving cell 1 but also the power from the neighboring cells 2 and 3 (interference power when viewed from the serving cell 1) in order to measure the total received power RSSI. is there. However, since the vicinity of the frequency f 1 is the boundary of the system band for the cell 2, the signal from the cell 2 is expected to be quite weak in the vicinity of the frequency f 1 . Similarly, since the vicinity of the frequency f 1 is the boundary of the system band for the cell 3 as well, the signal from the cell 3 is expected to be considerably weak in the vicinity of the frequency f 1 . As a result, the reception quality RSRQ for the cell 1 in the vicinity of the frequency f 1 shows a considerably good quality. However, when communication is performed in the serving cell 1, communication is performed not only in the vicinity of the frequency f 1 but also over the entire bandwidth of 9 MHz. At frequencies other than the vicinity of the frequency f 1 , for example, the frequencies f 2 and f 3, etc., the signals from the cells 2 and 3 are received fairly strongly, and the reception quality in the serving cell 1 becomes worse than the value near the frequency f 1. . Thus, when the reception quality depending on the frequency at which the measurements are different, when it is determined necessity or out of service within the cell transition based on the apparent reception quality in the vicinity of the center frequency f 1 good, cell transition There is a concern that it is not always possible to properly determine whether it is necessary or not and whether the area is outside the service area.
 本発明の一実施形態によれば、サービングセル及び周辺セル各々の全受信電力RSSIを用いて測定値の比較を行い、比較結果に応じて測定値を補正するか否かを決定する移動局及び移動通信方法が提供される。比較結果に応じて測定値を補正することで、測定精度の劣化を防止しつつ、処理負荷や消費電力の低減を可能とする移動局及び移動通信方法を提供することができる。 According to an embodiment of the present invention, a mobile station and a mobile station that compare measured values using the total received power RSSI of each of the serving cell and neighboring cells and determine whether to correct the measured value according to the comparison result A communication method is provided. By correcting the measurement value according to the comparison result, it is possible to provide a mobile station and a mobile communication method that can reduce processing load and power consumption while preventing deterioration in measurement accuracy.
 本発明の実施形態による移動局は、サービングセル及び周辺セルの無線品質を測定する測定部と、サービングセル及び周辺セルのキャリア周波数の位置関係を管理するキャリア周波数管理部と、キャリア周波数管理部の情報をもとに、測定部による測定結果を比較する測定比較部と、比較結果に応じて測定値の補正の要否を判断し、補正を要する測定値に補正を実施する補正部とを具備する。 A mobile station according to an embodiment of the present invention includes a measurement unit that measures radio quality of a serving cell and a neighboring cell, a carrier frequency management unit that manages a positional relationship between carrier frequencies of the serving cell and the neighboring cell, and information on the carrier frequency management unit. A measurement comparison unit that compares measurement results obtained by the measurement unit and a correction unit that determines whether or not the measurement value needs to be corrected according to the comparison result and corrects the measurement value that needs correction are provided.
 本発明の実施形態による移動局が行う測定方法は、サービングセル及び周辺セルの無線品質を測定する工程と、測定値を比較し、サービングセル及び周辺セルのキャリア周波数の位置関係及び測定値の比較結果に応じて、測定値を補正する工程を有する。 The measurement method performed by the mobile station according to the embodiment of the present invention compares the measurement value with the step of measuring the radio quality of the serving cell and the neighboring cell, and compares the measurement result with the positional relationship of the carrier frequency of the serving cell and the neighboring cell. Accordingly, there is a step of correcting the measurement value.
 本発明によれば、システム帯域幅にわたる無線品質が、周波数帯により異なる環境において、サービングセル及び周辺セルのキャリア周波数の位置関係及び測定値の比較結果に応じて、測定結果を補正する。これにより、測定対象の帯域幅を拡大することなく中心の特定帯域幅(例えば、6リソースブロック)に限定して測定が行われたとしても、他セルからの干渉を適切に考慮して受信品質を測定し、測定精度を一定以上に保ちつつ、処理負荷や消費電力を低減させることができる。 According to the present invention, the measurement result is corrected according to the positional relationship of the carrier frequency of the serving cell and the neighboring cells and the comparison result of the measured value in an environment where the radio quality over the system bandwidth varies depending on the frequency band. As a result, even if the measurement is limited to the center specific bandwidth (for example, 6 resource blocks) without expanding the bandwidth to be measured, the reception quality is appropriately considered in consideration of interference from other cells. And the processing load and power consumption can be reduced while maintaining the measurement accuracy above a certain level.
 添付図面を参照しながら以下の観点から実施形態を説明する。図中、同様な要素には同じ参照番号又は参照符号が付されている。 Embodiments will be described from the following viewpoints with reference to the accompanying drawings. In the figures, similar elements are given the same reference numbers or reference signs.
 1.移動通信システム
 2.移動局
 3.受信品質を測定する動作例
 4.受信品質に基づいて圏外圏内を判定する動作例
 5.受信品質に基づいてセルリセレクションを行う動作例
 6.受信品質に基づいてハンドオーバを行う動作例
 7.実施形態による作用効果
 これらの項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。
1. 1. Mobile communication system 2. Mobile station 3. Example of operation for measuring reception quality 4. Example of operation for determining out-of-service area based on reception quality 5. Example of operation for performing cell reselection based on reception quality 6. Operation example for performing handover based on reception quality Effects of Embodiments The classification of these items is not essential to the present invention, and the items described in two or more items may be used in combination as necessary. It may apply to matters described in other items (unless inconsistent).
 <1.移動通信システム>
 図6は本発明の実施形態による移動通信システムを概略的に示す。一例として、移動通信システムは、LTE方式の移動通信システムであるが、様々なシステム帯域幅を使用することが可能な適切な如何なる移動通信システムが使用されてもよい。例えば、LTEアドバンスト(LTE-Advanced)方式の移動通信システムが使用されてもよい。図示の移動通信システムにおける無線アクセス方式は、下りリンクについては直交周波数分割多重接続(Orthogonal Frequency Division Multiplexing:OFDM)方式であり、上りリンクについてはシングルキャリア周波数分割多重接続(Single-Carrier Frequency Division Multiple Access:SC-FDMA)方式である。
<1. Mobile communication system>
FIG. 6 schematically shows a mobile communication system according to an embodiment of the present invention. As an example, the mobile communication system is an LTE mobile communication system, but any suitable mobile communication system capable of using various system bandwidths may be used. For example, an LTE advanced (LTE-Advanced) mobile communication system may be used. The radio access scheme in the illustrated mobile communication system is an Orthogonal Frequency Division Multiplexing (OFDM) scheme for the downlink, and a single-carrier frequency division multiple access (Single-Carrier Frequency Division Multiplexing). : SC-FDMA) system.
 移動局UEは、典型的には携帯電話であるが、他の装置でもよい。例えば、移動局UEは、ユーザ装置、情報端末、高機能携帯電話、スマートフォン、タブレット型コンピュータ、パーソナルディジタルアシスタント(PDA)、携帯用パーソナルコンピュータ、パームトップコンピュータ、ラップトップコンピュータ等であるが、これらに限定されない。 The mobile station UE is typically a mobile phone, but may be another device. For example, the mobile station UE is a user device, an information terminal, a high-performance mobile phone, a smartphone, a tablet computer, a personal digital assistant (PDA), a portable personal computer, a palmtop computer, a laptop computer, etc. It is not limited.
 図示の移動通信システムにおいて、無線基地局eNBは様々な信号を移動局UEとやり取りする。例えば、無線基地局eNBは、下りリンクにおいて、物理報知チャネルPBCH、同期チャネルSCH、リファレンス信号RS、物理下りリンク制御チャネル(Physical Downlink Control Channel:PDCCH)、物理下りリンク共有チャネル(Physical Downlink Shared Channel:PDSCH)等を移動局UEに送信する。 In the illustrated mobile communication system, the radio base station eNB exchanges various signals with the mobile station UE. For example, the radio base station eNB, in the downlink, a physical broadcast channel PBCH, a synchronization channel SCH, a reference signal RS, a physical downlink control channel (Physical Downlink Channel: PDCCH), a physical downlink shared channel (Physical Downlink Shared Channel: PDSCH) and the like are transmitted to the mobile station UE.
 一方、移動局UEは、上りリンクにおいて、復調用の参照信号(DM-RS)、品質測定用の参照信号(Soundig Reference Signal:SRS)、物理上りリンク制御チャネル(Physical Uplink Control Channel:PUCCH)、物理上りリンク共有チャネル(Physical Uplink Shared Channel:PUSCH)等を無線基地局eNBに送信する。 On the other hand, the mobile station UE, in the uplink, a demodulation reference signal (DM-RS), a quality measurement reference signal (Sound Reference Reference Signal: SRS), a physical uplink control channel (Physical Uplink Channel: PUCCH), A physical uplink shared channel (Physical Uplink Shared Channel: PUSCH) or the like is transmitted to the radio base station eNB.
 <2.移動局>
 図7は移動局UEの機能ブロック図を示す。図7は、移動局に備わる様々な機能部又は処理部のうち、本実施形態に特に関連するものを例示している。図示の移動局UEは、パラメータ取得部11と、キャリア周波数管理部12と、測定部13と、測定比較部14と、測定結果補正部15と、フィルタリング部16と、判定部17と、通知部18とを具備している。
<2. Mobile station>
FIG. 7 shows a functional block diagram of the mobile station UE. FIG. 7 exemplifies a part particularly related to the present embodiment among various functional units or processing units provided in the mobile station. The illustrated mobile station UE includes a parameter acquisition unit 11, a carrier frequency management unit 12, a measurement unit 13, a measurement comparison unit 14, a measurement result correction unit 15, a filtering unit 16, a determination unit 17, and a notification unit. 18.
 パラメータ取得部11は、無線基地局eNBから、セルの切り替えに関するパラメータ(具体的には、Mobility制御に関するパラメータ)を取得する。例えば、Mobility制御に関するパラメータには、周辺セルのキャリア周波数を示す「EARFCN」や、圏内/圏外判定に用いられる所定の閾値である「Qrxlevmin」等が含まれる。また、Mobility制御に関するパラメータには、セルリセレクションの判定に使用される閾値を表すパラメータ「Qhyst」、「Qoffset」及び「Treselection」等が含まれていてもよい。更に、Mobility制御に関するパラメータには、ハンドオーバ制御に関わるパラメータである「Time-to-trigger」、ヒステリシス、オフセット及びフィルタ係数等が含まれていてもよい。ここで、「Qhyst」は、セルリセレクションの判定の際に、サービングセルの無線品質に与えるプラスのオフセットであり、「Qoffset」は、セルリセレクションの判定の際に、サービングセルの無線品質に与えるマイナスのオフセットである。また、「Treselection」は、セルリセレクションの判定の際に用いられる時間方向のヒステリシスであり、ハンドオーバにおける「Time-to-trigger」に相当するパラメータである。上述のフィルタ係数はフィルタリング部16に通知される。 The parameter acquisition unit 11 acquires a parameter related to cell switching (specifically, a parameter related to mobility control) from the radio base station eNB. For example, the parameters related to mobility control include “EARFCN” indicating the carrier frequency of the neighboring cell, “Qrxlevmin” which is a predetermined threshold value used for the in-range / out-of-range determination. In addition, the parameters related to mobility control may include parameters “Qhyst”, “Qoffset”, “Trselection”, and the like that represent threshold values used for determination of celery selection. Furthermore, the parameters related to mobility control may include “Time-to-trigger”, which is a parameter related to handover control, hysteresis, offset, filter coefficient, and the like. Here, “Qhyst” is a positive offset given to the radio quality of the serving cell in the determination of celery selection, and “Qoffset” is a negative offset given to the radio quality of the serving cell in the determination of celery selection. It is. Further, “Treleselection” is a time-direction hysteresis used in the determination of celery selection, and is a parameter equivalent to “Time-to-trigger” in handover. The filter coefficient is notified to the filtering unit 16.
 キャリア周波数管理部12は、パラメータ取得部11から通知されたキャリア周波数に基づいて、各キャリア周波数の周波数領域における位置関係を記憶することに加えて、その位置関係に応じて、各キャリア周波数の測定結果を比較するように測定結果比較部14に指示する。各キャリア周波数の周波数領域における位置関係は、例えば、キャリア周波数を示す「EARFCN」に基づいて、各キャリア周波数が同じバンド内に含まれているか否かを示してもよい。同じバンド内に含まれているか否かの判定は、例えば、キャリア周波数間の差分の程度により判定されてもよい。「EARFCN」は、各セルのキャリア周波数を一意に示す絶対値で表現されてもよい。更に、複数のキャリア周波数が同じバンド内に含まれているか否かを判定する際、比較対象の周波数は、サービングセルのキャリア周波数でもいいし、周辺セルのキャリア周波数でもよい。また、周辺セルのキャリア周波数がサービングセルのシステム帯域内に存在するか否かが判定されてもよいし、周辺セルのキャリア周波数がサービングセルのシステム帯域の端から一定の周波数範囲に存在するか否かが判定されてもよい。 Based on the carrier frequency notified from the parameter acquisition unit 11, the carrier frequency management unit 12 stores the positional relationship of each carrier frequency in the frequency domain, and measures each carrier frequency according to the positional relationship. The measurement result comparison unit 14 is instructed to compare the results. The positional relationship of each carrier frequency in the frequency domain may indicate whether or not each carrier frequency is included in the same band based on “EARFCN” indicating the carrier frequency, for example. The determination of whether or not they are included in the same band may be made based on, for example, the degree of difference between carrier frequencies. “EARFCN” may be expressed by an absolute value that uniquely indicates the carrier frequency of each cell. Further, when determining whether or not a plurality of carrier frequencies are included in the same band, the frequency to be compared may be the carrier frequency of the serving cell or the carrier frequency of the neighboring cells. Further, it may be determined whether or not the carrier frequency of the neighboring cell exists in the system band of the serving cell, and whether or not the carrier frequency of the neighboring cell exists in a certain frequency range from the end of the system band of the serving cell. May be determined.
 測定部13は、移動局UEのサービングセル及び周辺セルにおける受信電力、無線品質又は受信品質を測定する。無線品質は、例えば、移動局UEのサービングセル及び周辺セルから受信した信号(例えば、参照信号RS等)の受信電力により測定されてもよい。より具体的には、参照信号の受信電力RSRP及び総受信電力RSSIが測定され、それらの相対的な比率RSRQから無線品質が測定されてもよい。RSSIは、移動局UEにおいて観測される全体の受信レベルであり、自セルからの希望信号の電力だけでなく、熱雑音や他セルからの干渉電力等の全てを含む受信レベルである。測定部13は、適切な時間間隔で無線品質の測定を行ってもよい。時間間隔(すなわち、測定間隔)は例えば200msのように長期間でもよいし、あるいは測定精度を保つことができるのであれば、1msのように短時間でもよい。更に、測定部13は、間欠受信(Discontinuous Reception:DRX)周期ごとに、無線品質を測定してもよい。測定部13は、所定の周波数範囲にわたって無線品質の測定を行う。例えば、中心周波数付近の6リソースブロック分の範囲内で無線品質の測定が行われてもよい。6リソースブロック分の範囲は単なる一例に過ぎず、システム帯域幅以下の適切な任意の値が使用されてもよい。 The measurement unit 13 measures the received power, radio quality, or reception quality in the serving cell and surrounding cells of the mobile station UE. The radio quality may be measured, for example, based on received power of signals (for example, reference signal RS) received from the serving cell and the neighboring cells of the mobile station UE. More specifically, the received power RSRP and the total received power RSSI of the reference signal may be measured, and the radio quality may be measured from their relative ratio RSRQ. The RSSI is an overall reception level observed in the mobile station UE, and is a reception level that includes not only the power of the desired signal from the own cell but also all of thermal noise, interference power from other cells, and the like. The measurement unit 13 may measure the radio quality at an appropriate time interval. The time interval (that is, the measurement interval) may be a long time such as 200 ms, or may be a short time such as 1 ms as long as the measurement accuracy can be maintained. Further, the measurement unit 13 may measure the radio quality at every intermittent reception (DRX) cycle. The measurement unit 13 measures wireless quality over a predetermined frequency range. For example, the radio quality may be measured within a range of 6 resource blocks near the center frequency. The range of 6 resource blocks is merely an example, and any appropriate value that is equal to or less than the system bandwidth may be used.
 上記の説明において無線品質又は受信品質は、参照信号の受信電力RSRPや、RSRPと総受信電力RSSIとの相対的な比率RSRQにより表現されたが、このことは本発明に必須ではない。無線品質は、RSRPやRSRQの代わりに、SIR(Signal to Interference Ratio)や、CQI(Channel Quality Indicator)等が用いられてもよい。CQIは、下りリンクの無線品質情報であり、具体的には非特許文献5に記載されている。 In the above description, the radio quality or the reception quality is expressed by the received power RSRP of the reference signal or the relative ratio RSRQ between the RSRP and the total received power RSSI, but this is not essential to the present invention. As the wireless quality, SIR (Signal to Interference Ratio), CQI (Channel Quality Indicator), or the like may be used instead of RSRP or RSRQ. The CQI is downlink radio quality information, and is specifically described in Non-Patent Document 5.
 測定部13は、移動局UEのサービングセル及び周辺セルにおける無線品質の測定結果を、フィルタリング部16及び、測定結果比較部14に通知する。 The measurement unit 13 notifies the filtering unit 16 and the measurement result comparison unit 14 of the measurement results of the radio quality in the serving cell and surrounding cells of the mobile station UE.
 測定結果比較部14は、測定部13からの測定結果である測定値を、キャリア周波数管理部12からの指示に基づいて比較し、その比較結果を測定結果補正部15に通知する。例えば、測定値の比較に用いる測定結果としては、全受信電力RSSIが使用されてもよい。測定結果補正部15に通知する情報は、各々のセルのRSSIの差分であってもよい。 The measurement result comparison unit 14 compares the measurement value, which is the measurement result from the measurement unit 13, based on an instruction from the carrier frequency management unit 12, and notifies the measurement result correction unit 15 of the comparison result. For example, the total received power RSSI may be used as a measurement result used for measurement value comparison. The information notified to the measurement result correction unit 15 may be a difference in RSSI of each cell.
 測定結果補正部15は、測定結果比較部14からの情報に基づいて、測定部13から通知された測定値を補正する。例えば、測定結果比較部14からの通知された測定結果の差分が、所定値を超えるか否かによって補正が行われるか否かが決定されてもよい。補正が行われる場合、測定結果補正部15は、測定結果比較部14から通知された差分を、測定値に加算することで補正を行ってもよい。更に、その差分に応じたフィルタリングがフィルタリング部16で行われてもよい。 The measurement result correction unit 15 corrects the measurement value notified from the measurement unit 13 based on the information from the measurement result comparison unit 14. For example, it may be determined whether or not correction is performed depending on whether or not the difference between the measurement results notified from the measurement result comparison unit 14 exceeds a predetermined value. When the correction is performed, the measurement result correction unit 15 may perform the correction by adding the difference notified from the measurement result comparison unit 14 to the measurement value. Further, filtering according to the difference may be performed by the filtering unit 16.
 例えば、サービングセルをセルxとし、周辺セルをセルyとし、サービングセルに対するRSSIの補正前の測定値をDx-1及び補正後の測定値をDとし、周辺セルに対するRSSIの測定値をDyとする。この場合、次式に従ってDに対する補正が行われてもよい。 For example, the serving cell is cell x, the neighboring cell is cell y, the measured value before correction of RSSI for the serving cell is D x-1 , the measured value after correction is D x, and the measured value of RSSI for the neighboring cell is D y. And In this case, D x may be corrected according to the following equation.
 D=Dx-1+d・k・・・(1)
 d=D-Dx-1  ・・・(2)
 0≦k≦1    ・・・(3)
ここで、dは、サービングセルに対するRSSIの測定値の差分を示す。kは0から1までの値を取るフィルタ係数である。フィルタ係数kは測定差分dが補正後の測定値Dxにどの程度寄与するかを決めるパラメータである。上記の数式は単なる一例に過ぎず、サービングセル及び周辺セルに対する測定値同士の差分が小さくなるようにする適切な如何なる補正が行われてもよい。
D x = D x-1 + d · k (1)
d = D y −D x−1 (2)
0 ≦ k ≦ 1 (3)
Here, d shows the difference of the measured value of RSSI with respect to a serving cell. k is a filter coefficient taking a value from 0 to 1. The filter coefficient k is a parameter that determines how much the measurement difference d contributes to the corrected measurement value Dx. The above mathematical formula is merely an example, and any appropriate correction that reduces the difference between the measurement values for the serving cell and the neighboring cells may be performed.
 フィルタリング部16は、パラメータ取得部11からフィルタ係数k(所定係数)を受け取ることに加えて、測定部13又は測定結果補正部15から、移動局UEのサービングセル及び周辺セルにおける無線品質の測定値を受け取り、それらを用いてフィルタリング又は平均化を行う。例えば、ある時点の測定タイミングのインデックスを「n」とし、フィルタリング後の測定結果を「F」とし、フィルタ係数を「k」とし、1つ前の時点の測定タイミングにおけるフィルタリング後の測定結果を「Fn-1」とし、測定部13における測定結果を「M」とする。この場合、フィルタリングは次の関係が成立するように行われる。 In addition to receiving the filter coefficient k (predetermined coefficient) from the parameter acquisition unit 11, the filtering unit 16 receives, from the measurement unit 13 or the measurement result correction unit 15, radio frequency measurement values in the serving cell and neighboring cells of the mobile station UE. Receive them and use them for filtering or averaging. For example, the index of the measurement timing at a certain time is “n”, the measurement result after filtering is “F n ”, the filter coefficient is “k”, and the measurement result after filtering at the measurement timing of the previous time point is It is assumed that “F n-1 ” and the measurement result in the measurement unit 13 is “M n ”. In this case, filtering is performed so that the following relationship is established.
 F=(1-a)・Fn-1+a・M ・・・(4)
 a=(1/2)(k/4)  ・・・(5)
aは忘却係数を表す。なお、フィルタリング後の測定結果「F」を算出する際に、フィルタ係数「a」を調整することによって、測定部13における最新の測定結果「M」及び過去のフィルタリング後の測定結果「Fn-1」の寄与率が調整される。
F n = (1−a) · F n−1 + a · M n (4)
a = (1/2) (k / 4) (5)
a represents a forgetting factor. In addition, when calculating the measurement result “F n ” after filtering, by adjusting the filter coefficient “a”, the latest measurement result “M n ” in the measuring unit 13 and the past measurement result “F n ” “F” are adjusted. The contribution ratio of “ n−1 ” is adjusted.
 判定部17は、フィルタリング部16によるフィルタリング後の測定結果を受信することに加えて、測定部13からフィルタリング前の測定結果も受信している。判定部17は、測定部13によって測定された無線品質の測定結果を用いて、移動局UEが圏内に在圏しているか否か(又は圏外であるか否か)を判定する。例えば、待ち受け時(Idle状態)において、判定部17は、上述のフィルタリング部16からではなく、直接、測定部13から測定結果を受信して、圏内/圏外判定を行ってもよい。 The determination unit 17 receives the measurement result before filtering from the measurement unit 13 in addition to receiving the measurement result after filtering by the filtering unit 16. The determination unit 17 determines whether or not the mobile station UE is in the area (or whether it is out of the area) using the measurement result of the radio quality measured by the measurement unit 13. For example, in the standby state (Idle state), the determination unit 17 may receive the measurement result directly from the measurement unit 13 instead of the above-described filtering unit 16 and perform the in-range / out-of-range determination.
 判定部17は、測定部13によって測定された無線品質の測定結果を用いて、セルリセレクション又はハンドオーバを行うべきか否かも判定する。例えば、判定部17は、所定期間以上継続して所定条件が満たされている場合に、セルリセレクション又はハンドオーバを行うべきであると判定してもよい。判定の条件は以下の数式により表現されてもよい。なお、所定期間は、「Treselection」と呼ばれてもよい。 The determination unit 17 also determines whether or not to perform cell reselection or handover using the measurement result of the radio quality measured by the measurement unit 13. For example, the determination unit 17 may determine that cell reselection or handover should be performed when a predetermined condition is satisfied for a predetermined period or longer. The condition for determination may be expressed by the following mathematical formula. The predetermined period may be referred to as “Treletion”.
 (周辺セルからの信号の受信電力)+(Qhyst)>(サービングセルからの信号の受信電力) ・・・(6)
 判定部17は、上述のフィルタリング部16から受信したフィルタリング後の測定結果を通知すべきであるか否かを判定する。例えば、判定部17は、所定期間以上長く継続して所定条件が満たされている場合に、上述の測定結果を通知すべきであると判定してもよい。所定条件は以下の数式により表現されてもよい。なお、所定期間は、「Time-to-trigger」と呼ばれてもよい。
(Received power of signal from neighboring cells) + (Qhyst)> (Received power of signal from serving cell) (6)
The determination unit 17 determines whether or not the measurement result after filtering received from the filtering unit 16 should be notified. For example, the determination unit 17 may determine that the above measurement result should be notified when a predetermined condition is satisfied for a predetermined period or longer. The predetermined condition may be expressed by the following mathematical formula. The predetermined period may be referred to as “Time-to-trigger”.
 (周辺セルからの信号の受信電力)+(ヒステリシス)>(サービングセルからの信号の受信電力) ・・・(7)
 通知部18は、判定部17によって測定結果を送信すべきであると判定された場合、その測定結果を無線基地局eNBに通知する。具体的には、通知部18は、物理上りリンク共有チャネルPUSCHを介して、測定結果を無線基地局eNBに対して通知する。なお、測定結果の報告は、メジャーメントレポート(Measurement Report)と呼ばれてもよい。
(Received power of signal from neighboring cells) + (Hysteresis)> (Received power of signal from serving cell) (7)
When the determination unit 17 determines that the measurement result should be transmitted, the notification unit 18 notifies the radio base station eNB of the measurement result. Specifically, the notification unit 18 notifies the radio base station eNB of the measurement result via the physical uplink shared channel PUSCH. Note that the report of the measurement result may be referred to as a measurement report (Measurement Report).
 <3.受信品質を測定する動作例>
 図8乃至図11を参照しながら、本発明の実施形態による移動局UEの動作例を説明する。図8は本発明の実施形態による移動局UEにおいて行われる無線品質の測定手順の一例を示す。
<3. Example of operation for measuring reception quality>
An operation example of the mobile station UE according to the embodiment of the present invention will be described with reference to FIGS. FIG. 8 shows an example of a radio quality measurement procedure performed in the mobile station UE according to the embodiment of the present invention.
 ステップS100において、移動局UEは無線品質を測定する。上述したように、移動局UEは、サービングセル及び周辺セル各々に対する無線品質を測定する。 In step S100, the mobile station UE measures the radio quality. As described above, the mobile station UE measures the radio quality for each of the serving cell and the neighboring cells.
 ステップS101において、移動局UEは、サービングセル及び周辺セルのキャリア周波数の周波数位置を確認し、サービングセルと周辺セルのキャリア周波数が同じバンド内に位置するか否かを判定する。同じバンド内に位置していた場合、フローはステップS102に進む。 In step S101, the mobile station UE confirms the frequency positions of the carrier frequencies of the serving cell and the neighboring cells, and determines whether the carrier frequencies of the serving cell and the neighboring cells are located in the same band. If it is located in the same band, the flow proceeds to step S102.
 ステップS102において、移動局UEは、サービングセルのRSSIと周辺セルのRSSIとの間に一定値以上の差分があるか否かを判定する。一定値以上の差分があった場合、フローはステップS103に進む。 In step S102, the mobile station UE determines whether or not there is a difference of a certain value or more between the RSSI of the serving cell and the RSSI of the neighboring cell. If there is a difference greater than or equal to a certain value, the flow proceeds to step S103.
 ステップS103において、移動局UEは、サービングセルのRSSI及び周辺セルのRSSIを補正する。 In step S103, the mobile station UE corrects the RSSI of the serving cell and the RSSI of the neighboring cells.
 ステップS104において、移動局UEは、測定結果をフィルタリングし、品質を測定するフローは終了する。 In step S104, the mobile station UE filters the measurement result, and the flow for measuring the quality ends.
 一方、ステップS101において、サービングセル及び周辺セルのキャリア周波数が同じバンド内に位置しないと判定された場合、フローはステップS104に進み、測定結果がフィルタリングされる。また、ステップS102において、サービングセルのRSSIと周辺セルのRSSIとの間の差分が一定値未満であった場合、フローはステップS104に進み、この場合、補正は行われない。 On the other hand, if it is determined in step S101 that the carrier frequencies of the serving cell and the neighboring cells are not located in the same band, the flow proceeds to step S104, and the measurement result is filtered. In step S102, if the difference between the RSSI of the serving cell and the RSSI of the neighboring cell is less than a certain value, the flow proceeds to step S104, and in this case, no correction is performed.
 例えば、移動局UEが、図3に示すようなセル1に在圏し、セル1がサービングセルであるとする。この場合、周辺セルはセル2、3である。この移動局UEは、ステップS101において、キャリア周波数f-fの位置関係に基づいて、サービングセル及び周辺セルの帯域が同じバンド内に或るか否かを判定する。目下の例の場合、キャリア周波数f-fは同じバンド内にあるので、フローはステップS102に進む。移動局UEは、サービングセル1に対するRSSI(RSSI)と周辺セル2、3に対するRSSI(RSSI及びRSSI)とを比較する。サービングセル1に対するRSSIは、中心周波数又はキャリア周波数fの近辺(例えば、6リソースブロック分の周波数範囲内)で測定される。キャリア周波数f付近は、セル2、3のシステム帯域の端にあるので、セル2、3からの信号はかなり弱く、RSSIの内ほとんどがセル1からの信号に起因している。これに対して、キャリア周波数f付近は、セル1のシステム帯域内にあるので、RSSIはセル2からの信号だけでなく、セル1からの信号もかなり含んでいることが予想される。同様に、キャリア周波数f付近は、セル1のシステム帯域内にあるので、RSSIはセル3からの信号だけでなく、セル1からの信号もかなり含んでいることが予想される。従って、セル1からの信号しか含まないRSSIは、セル1及びセル2双方からの信号を含むRSSIと大きく異なることが予想される。また、セル1からの信号しか含まないRSSIは、セル1及びセル3双方からの信号を含むRSSIと大きく異なることも予想される。このため、フローはステップS102からステップS103に進む。そして、ステップS103において、移動局UEは、例えば上記の数式(1)-(3)に従ってサービングセルに対するRSSI(RSSI)を補正する。サービングセル1に対する補正後のRSSIは、RSSI+k・dとなり(0≦k≦1)、d=RSSI-RSSI(又はd=RSSI-RSSIで)ある。すなわち、サービングセル1に対する総受信電力RSSIは、増えるように補正され、その結果、サービングセル1に対する受信品質RSRQ(=RSRP/RSSI)は低くなるように補正される。このように、キャリア周波数f付近では見えていないセル2、3からの干渉の影響を、サービングセル1に対する受信品質に適切に反映させることができる。 For example, it is assumed that the mobile station UE is in a cell 1 as shown in FIG. 3 and the cell 1 is a serving cell. In this case, the peripheral cells are cells 2 and 3. In step S101, the mobile station UE determines whether or not the bands of the serving cell and the neighboring cells are in the same band based on the positional relationship of the carrier frequencies f 1 -f 3 . In the case of the current example, since the carrier frequencies f 1 -f 3 are in the same band, the flow proceeds to step S102. The mobile station UE compares RSSI (RSSI 1 ) for the serving cell 1 with RSSI (RSSI 2 and RSSI 3 ) for the neighboring cells 2 and 3 . The RSSI for the serving cell 1 is measured in the vicinity of the center frequency or the carrier frequency f 1 (for example, within a frequency range of 6 resource blocks). Since the vicinity of the carrier frequency f 1 is at the end of the system band of the cells 2 and 3, the signals from the cells 2 and 3 are very weak, and most of the RSSI 1 is attributed to the signal from the cell 1. On the other hand, since the vicinity of the carrier frequency f 2 is in the system band of the cell 1, it is expected that the RSSI 2 includes not only the signal from the cell 2 but also the signal from the cell 1. Similarly, since the vicinity of the carrier frequency f 3 is in the system band of the cell 1, it is expected that the RSSI 3 includes not only the signal from the cell 3 but also the signal from the cell 1. Therefore, RSSI 1 including only the signal from cell 1 is expected to be significantly different from RSSI 2 including the signal from both cell 1 and cell 2. It is also expected that RSSI 1 including only the signal from cell 1 is significantly different from RSSI 3 including signals from both cell 1 and cell 3. For this reason, the flow proceeds from step S102 to step S103. In step S103, the mobile station UE corrects the RSSI (RSSI 1 ) for the serving cell according to, for example, the above formulas (1) to (3). The corrected RSSI for the serving cell 1 is RSSI 1 + k · d (0 ≦ k ≦ 1), and d = RSSI 2 −RSSI 1 (or d = RSSI 3 −RSSI 1 ). That is, the total received power RSSI for the serving cell 1 is corrected to increase, and as a result, the reception quality RSRQ (= RSRP / RSSI) for the serving cell 1 is corrected to be low. In this way, the influence of interference from the cells 2 and 3 that cannot be seen in the vicinity of the carrier frequency f 1 can be appropriately reflected in the reception quality for the serving cell 1.
 <4.受信品質に基づいて圏外圏内を判定する動作例>
 図9は、移動局UEが圏内であるか又は圏外であるかを判定する手順を示す。
<4. Example of operation for determining out-of-service area based on reception quality>
FIG. 9 shows a procedure for determining whether the mobile station UE is in or out of range.
 ステップS201において、移動局UEは、サービングセルからの信号の受信電力を測定する。この受信電力は、図8に示す手順に従って測定され、必要に応じて補正され、そしてフィルタリングされることによって求められる。 In step S201, the mobile station UE measures the received power of the signal from the serving cell. This received power is obtained by measuring according to the procedure shown in FIG. 8, being corrected as necessary, and filtered.
 ステップS202において、移動局UEは、サービングセルからの信号の受信電力が所定閾値Sを下回っているか否かを判定する。 In step S202, the mobile station UE determines whether or not the received power of the signal from the serving cell is below a predetermined threshold S.
 サービングセルからの信号の受信電力が所定閾値Sを下回っていた場合、ステップS203において、移動局UEは、サービングセルからの信号の受信電力が所定閾値Sを下回った回数が所定の回数Nを上回っているか否かを判定する。移動局UEは受信電力が所定閾値を下回った数や上回った数をカウントしている。 If the received power of the signal from the serving cell is less than the predetermined threshold S, in step S203, the mobile station UE determines whether the number of times that the received power of the signal from the serving cell is lower than the predetermined threshold S exceeds the predetermined number N. Determine whether or not. The mobile station UE counts the number of received powers below or above the predetermined threshold.
 カウントした回数が回数Nを上回っていた場合、ステップS204において、移動局UEは、一定期間(例えば、10秒間)の間、サービングセル及び周辺セルからの信号の受信電力が所定閾値Sを下回っているか否かを判定する。 If the counted number exceeds the number N, in step S204, the mobile station UE determines whether the received power of the signals from the serving cell and the neighboring cells is below a predetermined threshold S for a certain period (for example, 10 seconds). Determine whether or not.
 所定閾値Sを上回るセルを検出しなかった場合、ステップS205において、移動局UEは圏外であると判定し、所定閾値Sを上回るセルを検出した場合、移動局UEは圏内であると判定する。 If no cell exceeding the predetermined threshold S is detected, it is determined in step S205 that the mobile station UE is out of range, and if a cell exceeding the predetermined threshold S is detected, the mobile station UE is determined to be within range.
 <5.受信品質に基づいてセルリセレクションを行う動作例>
 図10は、移動局UEにおいてセルリセレクションを行う手順の一例を示す。
<5. Example of celery selection based on received quality>
FIG. 10 shows an example of a procedure for performing celery selection in the mobile station UE.
 ステップS301において、移動局UEは、サービングセル及び周辺セルからの信号の受信電力を測定する。この受信電力も、図8に示す手順に従って測定され、必要に応じて補正され、そしてフィルタリングされることによって求められる。 In step S301, the mobile station UE measures received power of signals from the serving cell and neighboring cells. This received power is also determined by being measured according to the procedure shown in FIG. 8, corrected as necessary, and filtered.
 ステップS302において、移動局UEは、周辺セルからの信号の受信電力について、以下の数式が満たされているか否かについて判定する。
(周辺セルからの信号の受信電力)+(Qhyst)>(サービングセルからの信号の受信電力)・・・(8)
 数式(8)が満たされていると判定された場合、ステップS303において、移動局UEは、該当する周辺セルへ在圏するようにセルリセレクションを行う。
In step S302, the mobile station UE determines whether or not the following mathematical formula is satisfied for the received power of signals from neighboring cells.
(Received power of signal from neighboring cell) + (Qhyst)> (Received power of signal from serving cell) (8)
When it determines with Formula (8) being satisfy | filled, in step S303, the mobile station UE performs celery selection so that it may be located in the applicable surrounding cell.
 <6.受信品質に基づいてハンドオーバを行う動作例>
 図11は、移動局UEにハンドオーバを行わせる手順の一例を示す。
<6. Example of operation for performing handover based on reception quality>
FIG. 11 shows an example of a procedure for causing the mobile station UE to perform a handover.
 ステップS401において、移動局UEは、サービングセル及び周辺セルからの信号の受信電力を測定する。この受信電力も、図8に示す手順に従って測定され、必要に応じて補正され、そしてフィルタリングされることによって求められる。 In step S401, the mobile station UE measures received power of signals from the serving cell and the neighboring cells. This received power is also determined by being measured according to the procedure shown in FIG. 8, corrected as necessary, and filtered.
 ステップS402において、移動局UEは、周辺セルからの信号の受信電力について、以下の数式が満たされているか否かを判定する。
(周辺セルからの信号の受信電力)+(ヒステリシス)>(サービングセルからの信号の受信電力)・・・(9)
 数式(9)が満たされていると判定された場合、移動局UEは、上述の測定結果を報告するためのイベントを、ネットワークに通知する。LTE方式の場合、このイベントは「イベント(Event)A3」と呼ばれる。
In step S402, the mobile station UE determines whether or not the following formula is satisfied for the received power of signals from neighboring cells.
(Received power of signal from neighboring cells) + (Hysteresis)> (Received power of signal from serving cell) (9)
When it determines with Formula (9) being satisfy | filled, the mobile station UE notifies the event for reporting the above-mentioned measurement result to a network. In the case of the LTE system, this event is called “event A3”.
 ここで、以下の数式(10)及び(11)によって算出された値が、信号の受信電力(無線品質)Fに使用されるものとする。具体的には、上位レイヤは、移動局UEが物理レイヤによる測定値に対して数式(10)に示すフィルタリング処理(L3 Filtering)を行うように通知する。 Here, it is assumed that the values calculated by the following formulas (10) and (11) are used for the received power (radio quality) F n of the signal. Specifically, the higher layer notifies the mobile station UE to perform the filtering process (L3 Filtering) shown in Equation (10) for the measurement value of the physical layer.
 F=(1-a)・Fn-1+a・M・・・(10)
 a=1/2(k/4)・・・(11)
数式(11)におけるフィルタ係数「k」の値は、無線基地局eNBから移動局UEに対して事前に通知されている。数式(10)において、「n」は、測定タイミングを指定するインデックスであり、「F」は、フィルタリング後の測定結果であり、「Fn-1」は、1つ前の時点の測定タイミングにおけるフィルタリング後の測定結果であり、「M」は、測定部における測定結果である。
F n = (1−a) · F n−1 + a · M n (10)
a = 1/2 (k / 4) (11)
The value of the filter coefficient “k” in Expression (11) is notified in advance from the radio base station eNB to the mobile station UE. In Equation (10), “n” is an index that specifies the measurement timing, “F n ” is the measurement result after filtering, and “F n−1 ” is the measurement timing at the previous time point. And “M n ” is a measurement result in the measurement unit.
 ステップS403において、ネットワークは、イベントA3の報告を受信すると、その報告を行った移動局UEが、イベントA3で示されているセルにハンドオーバすべきであることを決定する。 In step S403, when the network receives the report of the event A3, the network determines that the mobile station UE that has made the report should be handed over to the cell indicated by the event A3.
 なお、上述の実施形態に係る移動通信システムでは、1種類の無線品質に対する判定基準が用いられたが、複数種類の無線品質に対する判定基準が用いられてもよい。 Note that, in the mobile communication system according to the above-described embodiment, a criterion for one type of radio quality is used. However, criteria for a plurality of types of radio quality may be used.
 <7.実施形態による作用効果>
 本発明の実施形態による移動通信システムによれば、移動局UEは、システム帯域内において他セルからの干渉が周波数帯域により差分がある場合であっても、無線品質を適切に測定することが可能となる。移動局UEが適切なタイミングでネットワークに対して適切な測定結果を報告することによって、通信断を起こすことなく通信を継続することができ、ネットワークにおける負荷や、移動局UEの消費電流の抑制、更にはユーザの利便性を向上させることができる。
<7. Effect by Embodiment>
According to the mobile communication system according to the embodiment of the present invention, the mobile station UE can appropriately measure the radio quality even when the interference from other cells is different depending on the frequency band in the system band. It becomes. When the mobile station UE reports an appropriate measurement result to the network at an appropriate timing, it is possible to continue communication without causing communication interruption, and to suppress the load on the network and the current consumption of the mobile station UE, Furthermore, user convenience can be improved.
 以上に述べた本実施形態の特徴は、以下のように表現されていてもよい。 The features of the present embodiment described above may be expressed as follows.
 本実施形態による移動局UEは、無線基地局eNBと通信する移動局UEであって、移動局UEにおけるサービングセル及び周辺セルの無線品質を測定する測定部13と、キャリア周波数を管理するキャリア周波数管理部11と、前記キャリア周波数管理部11からの情報に基づき前記測定部13から通知された測定結果を比較する測定結果比較部14と、前記測定結果比較部からの情報に基づき測定結果を補正する測定結果補正部15とを具備し、測定結果補正部15は、パラメータ取得部12から取得したキャリア周波数を用いて、測定結果比較部14によって通知された情報に基づき、測定結果補正部15にて、測定結果の補正を実施するように構成されている。 The mobile station UE according to the present embodiment is a mobile station UE that communicates with a radio base station eNB, and includes a measurement unit 13 that measures radio quality of a serving cell and neighboring cells in the mobile station UE, and carrier frequency management that manages a carrier frequency. The measurement result comparison unit 14 that compares the measurement result notified from the measurement unit 13 based on the information from the unit 11, the information from the carrier frequency management unit 11, and the measurement result is corrected based on the information from the measurement result comparison unit The measurement result correction unit 15 uses the carrier frequency acquired from the parameter acquisition unit 12, and the measurement result correction unit 15 uses the carrier frequency acquired from the parameter acquisition unit 12 based on the information notified by the measurement result comparison unit 14. The measurement result is corrected.
 上記移動局UEにおいて、測定部13によって測定された無線品質の測定結果を用いて、圏内であるか或いは圏外であるかを判定する判定部17が、更に備わっていてもよい。 The mobile station UE may further include a determination unit 17 that determines whether the mobile station UE is within the service area or out of service area using the measurement result of the radio quality measured by the measurement unit 13.
 上記移動局UEにおいて、測定部13によって測定された無線品質の測定結果を用いて、セルリセレクションを行うべきか否かを判定する判定部17が、更に備わっていてもよい。 The mobile station UE may further include a determination unit 17 that determines whether or not to perform cell reselection using the measurement result of the radio quality measured by the measurement unit 13.
 上記移動局UEにおいて、所定係数を用いて、測定部13によって測定された無線品質の測定結果をフィルタリングするフィルタリング部16と、フィルタリングされた測定結果を通知すべきであるか否かを判定する判定部17とが、更に備わっていてもよい。 In the mobile station UE, using a predetermined coefficient, a filtering unit 16 that filters the measurement result of the radio quality measured by the measurement unit 13, and a determination that determines whether or not the filtered measurement result should be notified A part 17 may be further provided.
 本実施形態による移動通信方法は、移動局におけるサービングセル及び周辺セルの無線品質を測定する工程を有し、前記工程により求められた測定結果を、サービングセル及び周辺セルのキャリア周波数及び測定結果に基づいて、測定結果を補正する。 The mobile communication method according to the present embodiment has a step of measuring the radio quality of the serving cell and the neighboring cell in the mobile station, and the measurement result obtained by the step is based on the carrier frequency and the measurement result of the serving cell and the neighboring cell. , Correct the measurement results.
 上述の無線基地局eNB及び移動局UEの動作は、ハードウェアによって実現されてもよいし、プロセッサによって実行されるソフトウェアモジュールによって実現されてもよいし、両者の組み合わせによって実現されてもよい。ソフトウェアモジュールは、RAM(Random Access Memory)、フラッシュメモリ、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electronically Erasable and Programmable ROM)、レジスタ、ハードディスク、リムーバブルディスク、CD-ROM等のような任意の記憶媒体に設けられてもよい。そのような記憶媒体は、プロセッサが記憶媒体に情報を読み書きできるように、プロセッサに接続されている。また、記憶媒体は、プロセッサに集積されていてもよい。更に、記憶媒体及びプロセッサは、特定用途向け集積回路(ASIC))内に設けられていてもよい。ASICは、無線基地局eNB及び移動局UE内に設けられていてもよい。記憶媒体及びプロセッサは、ディスクリートコンポーネントとして無線基地局eNB及び移動局UE内に設けられていてもよい。 The operations of the radio base station eNB and the mobile station UE described above may be realized by hardware, may be realized by a software module executed by a processor, or may be realized by a combination of both. Software modules include RAM (Random Access Memory), flash memory, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electronically Erasable and Programmable ROM, CD, ROM, CD, ROM, etc. It may be provided on any arbitrary storage medium. Such a storage medium is connected to the processor so that the processor can read and write information from and to the storage medium. The storage medium may be integrated in the processor. Further, the storage medium and the processor may be provided in an application specific integrated circuit (ASIC). The ASIC may be provided in the radio base station eNB and the mobile station UE. The storage medium and the processor may be provided in the radio base station eNB and the mobile station UE as discrete components.
 以上、通信端末及び測定方法を実施例により説明したが、本発明は上記実施例に限定されるものではなく、本発明の範囲内で種々の変形及び改良が可能である。例えば、本発明は、複数のシステム帯域幅の内の何れかを用いて通信を行う適切な如何なる移動通信システムに適用されてもよい。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。また、発明の理解を促すため具体的な数式を用いて説明がなされたが、特に断りのない限り、それらの数式は単なる一例に過ぎず、同様な結果をもたらす他の数式が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。 As described above, the communication terminal and the measurement method have been described by way of examples. However, the present invention is not limited to the above examples, and various modifications and improvements can be made within the scope of the present invention. For example, the present invention may be applied to any appropriate mobile communication system that performs communication using any of a plurality of system bandwidths. Although specific numerical examples have been described in order to facilitate understanding of the invention, these numerical values are merely examples and any appropriate values may be used unless otherwise specified. In addition, although specific mathematical formulas have been used to facilitate understanding of the invention, these mathematical formulas are merely examples unless otherwise specified, and other mathematical formulas that yield similar results may be used. Good. The classification of items in the above description is not essential to the present invention, and the items described in two or more items may be used in combination as necessary, or the items described in one item may be used in different items. It may be applied to the matters described in (if not inconsistent). The boundaries between functional units or processing units in the functional block diagram do not necessarily correspond to physical component boundaries. The operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components.
 以下、本発明の具体的な実施形態を例示的に列挙する。 Hereinafter, specific embodiments of the present invention are listed as examples.
 (付記項1)
 無線基地局と通信する移動局であって、
 前記無線基地局からサービングセル及び周辺セルのキャリア周波数を取得するように構成されているパラメータ取得部を具備し、
 前記移動局におけるサービングセル及び周辺セルの無線品質を測定するように構成されている測定部を具備し、
 前記パラメータ取得部により取得されたキャリア周波数を管理するキャリア周波数管理部を具備し、
 前記キャリア周波数管理部に指示に基づき、前記測定部より通知された測定結果を比較する測定結果比較部を具備し、
 前記測定結果比較部からの情報に基づき、前記測定部より通知された測定結果を補正する測定結果補正部を具備し、
 前記測定結果補正部は、前記キャリア周波数と測定結果比較結果に応じて、測定結果を補正するように構成されていることを特徴とする移動局。
(Additional item 1)
A mobile station that communicates with a radio base station,
Comprising a parameter acquisition unit configured to acquire the carrier frequency of the serving cell and neighboring cells from the radio base station;
Comprising a measurement unit configured to measure the radio quality of a serving cell and a neighboring cell in the mobile station;
A carrier frequency management unit for managing the carrier frequency acquired by the parameter acquisition unit;
Based on the instruction to the carrier frequency management unit, comprising a measurement result comparison unit that compares the measurement result notified from the measurement unit,
Based on the information from the measurement result comparison unit, comprising a measurement result correction unit for correcting the measurement result notified from the measurement unit,
The mobile station characterized in that the measurement result correction unit is configured to correct a measurement result according to the carrier frequency and a measurement result comparison result.
 (付記項2)
 付記項1に記載の移動局は、前記測定部によって測定された前記無線品質の測定結果を用いて、圏内であるか或いは圏外であるかについて判定するように構成されている判定部を更に具備してもよい。
(Appendix 2)
The mobile station according to attachment 1, further comprising a determination unit configured to determine whether the mobile station is within or out of service using the wireless quality measurement result measured by the measurement unit. May be.
 (付記項3)
 付記項1に記載の移動局は、前記測定部によって測定された前記無線品質の測定結果を用いて、セルリセレクションを行うべきか否かについて判定するように構成されている判定部を更に具備してもよい。
(Additional Item 3)
The mobile station according to attachment 1, further comprising a determination unit configured to determine whether or not to perform cell reselection using the measurement result of the radio quality measured by the measurement unit. May be.
 (付記項4)
 付記項1に記載の移動局は、所定係数を用いて、前記測定部によって測定された前記無線品質の測定結果をフィルタリングするように構成されているフィルタリング部と、
 フィルタリングされた前記測定結果を通知すべきであるか否かについて判定するように構成されている判定部とを更に具備してもよい。
(Appendix 4)
The mobile station according to attachment 1, wherein a filtering unit configured to filter the measurement result of the radio quality measured by the measurement unit using a predetermined coefficient;
And a determination unit configured to determine whether or not the filtered measurement result should be notified.
 (付記項5)
 移動局における無線基地局からサービングセル及び周辺セルのキャリア周波数を取得する工程を有し、サービングセル及び周辺セルの無線品質を測定する工程を有し、前記キャリア周波数を管理する工程と前記工程により求められた測定結果を比較する工程とを有し、
 前記工程において、測定結果の比較結果に応じて、測定結果を補正することを特徴とする移動通信方法。
(Appendix 5)
A step of obtaining the carrier frequency of the serving cell and the neighboring cell from the radio base station in the mobile station, the step of measuring the radio quality of the serving cell and the neighboring cell, the step of managing the carrier frequency and the step And comparing the measured results.
The mobile communication method according to claim 1, wherein the measurement result is corrected according to the comparison result of the measurement result.
 本国際特許出願は2012年4月25日に出願した日本国特許出願第2012-100065号に基づきその優先権を主張するものであり、日本国特許出願第2012-100065号の全内容を本願に援用する。 This international patent application claims priority based on Japanese Patent Application No. 2012-100065 filed on April 25, 2012. The entire contents of Japanese Patent Application No. 2012-100065 are incorporated herein by reference. Incorporate.
 11 パラメータ取得部
 12 キャリア周波数管理部
 13 測定部
 14 測定比較部
 15 測定結果補正部
 16 フィルタリング部
 17 判定部
 18 通知部
DESCRIPTION OF SYMBOLS 11 Parameter acquisition part 12 Carrier frequency management part 13 Measurement part 14 Measurement comparison part 15 Measurement result correction | amendment part 16 Filtering part 17 Determination part 18 Notification part

Claims (6)

  1.  無線基地局と通信する通信端末であって、
     所定の複数のシステム帯域幅の内の何れかが使用されているサービングセルにおける第1のキャリア周波数及び該所定の複数のシステム帯域幅の内の何れかが使用されている周辺セルにおける第2のキャリア周波数を示す周波数情報を前記無線基地局から取得する情報取得部と、
     前記サービングセルに対する第1の無線品質及び前記周辺セルに対する第2の無線品質を測定し、前記第1の無線品質の第1の測定値と前記第2の無線品質の第2の測定値との差分を求める測定部と、
     前記サービングセルにおける第1のキャリア周波数及び前記周辺セルにおける第2のキャリア周波数が所定の関係を満たし、かつ前記差分が所定値以上であった場合に、該差分が小さくなるように前記第1の無線品質の第1の測定値を補正する補正部と
     を有する、通信端末。
    A communication terminal that communicates with a radio base station,
    A first carrier frequency in a serving cell in which any one of a plurality of predetermined system bandwidths is used and a second carrier in a neighboring cell in which any of the plurality of predetermined system bandwidths are used An information acquisition unit for acquiring frequency information indicating a frequency from the radio base station;
    The first radio quality for the serving cell and the second radio quality for the neighboring cell are measured, and the difference between the first measurement value of the first radio quality and the second measurement value of the second radio quality. Measuring unit for obtaining
    When the first carrier frequency in the serving cell and the second carrier frequency in the neighboring cell satisfy a predetermined relationship and the difference is equal to or greater than a predetermined value, the first radio is set so that the difference becomes small. A correction unit that corrects the first measurement value of quality.
  2.  前記補正部により補正された前記第1の無線品質の第1の測定値を平均化するフィルタリング部を更に有する請求項1記載の通信端末。 The communication terminal according to claim 1, further comprising a filtering unit that averages the first measurement value of the first wireless quality corrected by the correction unit.
  3.  前記フィルタリング部により平均化された前記第1の測定値を用いて、当該通信端末が通信システムの圏内又は圏外に存在することを判定する判定部を更に有する、請求項2記載の通信端末。 The communication terminal according to claim 2, further comprising a determination unit that determines that the communication terminal exists within or outside the communication system using the first measurement value averaged by the filtering unit.
  4.  前記フィルタリング部により平均化された測定値を用いて、当該通信端末が在圏セルを変更すべきか否かを判定する判定部を更に有する、請求項2に記載の通信端末。 The communication terminal according to claim 2, further comprising a determination unit that determines whether or not the communication terminal should change a serving cell using the measurement value averaged by the filtering unit.
  5.  前記測定部は、前記サービングセルにおける前記第1のキャリア周波数を含む第1の帯域幅において前記第1の無線品質を測定し、かつ前記周辺セルにおける前記第2のキャリア周波数を含む第2の帯域幅において前記第2の無線品質を測定する、請求項1に記載の通信端末。 The measurement unit measures the first radio quality in a first bandwidth including the first carrier frequency in the serving cell and includes a second bandwidth including the second carrier frequency in the neighboring cell. The communication terminal according to claim 1, wherein the second radio quality is measured.
  6.  無線基地局と通信する通信端末が行う測定方法であって、
     所定の複数のシステム帯域幅の内の何れかが使用されているサービングセルにおける第1のキャリア周波数及び該所定の複数のシステム帯域幅の内の何れかが使用されている周辺セルにおける第2のキャリア周波数を示す周波数情報を前記無線基地局から取得するステップと、
     前記サービングセルに対する第1の無線品質及び前記周辺セルに対する第2の無線品質を測定し、前記第1の無線品質の第1の測定値と前記第2の無線品質の第2の測定値との差分を求めるステップと、
     前記サービングセルにおける前記第1のキャリア周波数及び前記周辺セルにおける前記第2のキャリア周波数が所定の関係を満たし、かつ前記差分が所定値以上であった場合に、該差分が小さくなるように前記第1の無線品質の第1の測定値を補正するステップと
     を有する、測定方法。
    A measurement method performed by a communication terminal communicating with a radio base station,
    A first carrier frequency in a serving cell in which any one of a plurality of predetermined system bandwidths is used and a second carrier in a neighboring cell in which any of the plurality of predetermined system bandwidths are used Obtaining frequency information indicating a frequency from the radio base station;
    The first radio quality for the serving cell and the second radio quality for the neighboring cell are measured, and the difference between the first measurement value of the first radio quality and the second measurement value of the second radio quality. A step of seeking
    When the first carrier frequency in the serving cell and the second carrier frequency in the neighboring cell satisfy a predetermined relationship and the difference is equal to or larger than a predetermined value, the first carrier frequency is set to be small. Correcting the first measurement value of the radio quality of the method.
PCT/JP2013/061935 2012-04-25 2013-04-23 Communication terminal and measurement method WO2013161822A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012100065A JP6073569B2 (en) 2012-04-25 2012-04-25 Communication terminal and measurement method
JP2012-100065 2012-04-25

Publications (1)

Publication Number Publication Date
WO2013161822A1 true WO2013161822A1 (en) 2013-10-31

Family

ID=49483131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061935 WO2013161822A1 (en) 2012-04-25 2013-04-23 Communication terminal and measurement method

Country Status (2)

Country Link
JP (1) JP6073569B2 (en)
WO (1) WO2013161822A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5962266B2 (en) * 2012-07-05 2016-08-03 富士通株式会社 Reception quality measuring method and mobile terminal apparatus
JP6482179B2 (en) * 2014-03-20 2019-03-13 株式会社Nttドコモ User equipment and base station
WO2020039515A1 (en) * 2018-08-22 2020-02-27 株式会社Nttドコモ User device and base station device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531092A (en) * 2007-06-15 2010-09-16 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Reading system information of neighboring cells
JP2011019074A (en) * 2009-07-08 2011-01-27 Sharp Corp Communication system, mobile station device, and base station device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531092A (en) * 2007-06-15 2010-09-16 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Reading system information of neighboring cells
JP2011019074A (en) * 2009-07-08 2011-01-27 Sharp Corp Communication system, mobile station device, and base station device

Also Published As

Publication number Publication date
JP2013229735A (en) 2013-11-07
JP6073569B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
US10499267B2 (en) Configuration of mobility management measurement method
JP5756129B2 (en) User device and measurement method
US9294714B2 (en) User equipment and methods for adapting system parameters based on extended paging cycles
JP4620157B2 (en) Mobile station and mobile communication method
US11764849B2 (en) Cell quality derivation based on filtered beam measurements
US10716040B2 (en) Wireless device and method for triggering cell reselection
US9456392B2 (en) Mobile station and communication method
JP6073569B2 (en) Communication terminal and measurement method
WO2011093453A1 (en) Mobile station and mobile communication method
US8996006B2 (en) Mobile station, radio base station, mobile communication system, and mobile communication method
JP2011019287A (en) Mobile station and mobile communication method
JP2013085304A (en) Mobile station, radio base station, mobile communication system and mobile communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13780874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13780874

Country of ref document: EP

Kind code of ref document: A1