WO2013161087A1 - Metal melting furnace and method for generating molten metal in metal melting furnace - Google Patents

Metal melting furnace and method for generating molten metal in metal melting furnace Download PDF

Info

Publication number
WO2013161087A1
WO2013161087A1 PCT/JP2012/061495 JP2012061495W WO2013161087A1 WO 2013161087 A1 WO2013161087 A1 WO 2013161087A1 JP 2012061495 W JP2012061495 W JP 2012061495W WO 2013161087 A1 WO2013161087 A1 WO 2013161087A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
molten metal
metal
wall
melting furnace
Prior art date
Application number
PCT/JP2012/061495
Other languages
French (fr)
Japanese (ja)
Inventor
幹人 笹辺
村岡 正一
Original Assignee
有限会社ファインフォーミング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ファインフォーミング filed Critical 有限会社ファインフォーミング
Priority to PCT/JP2012/061495 priority Critical patent/WO2013161087A1/en
Priority to JP2014512281A priority patent/JP5933696B2/en
Publication of WO2013161087A1 publication Critical patent/WO2013161087A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/06Crucible or pot furnaces heated electrically, e.g. induction crucible furnaces with or without any other source of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/14Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/18Door frames; Doors, lids, removable covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D27/00Stirring devices for molten material

Definitions

  • the present invention relates to a metal melting furnace and a molten metal generation method in the metal melting furnace.
  • the metal melting furnace disclosed in Patent Document 1 is a hybrid type metal melting furnace that uses a gas burner with high thermal efficiency for melting metal and uses an electric heater to keep the molten metal produced by melting.
  • FIG. 11 is a diagram for explaining the metal melting furnace 900 disclosed in Patent Document 1.
  • a metal melting furnace 900 disclosed in Patent Document 1 (hereinafter sometimes simply referred to as “metal melting furnace 900”) was filed by the applicant of the present invention and is shown in FIG.
  • a molten metal heat retaining device 910 and a combustion device 930 are provided.
  • the molten metal heat retaining device 910 includes a crucible 911 and a crucible storage housing 912 that stores the crucible 911.
  • the crucible storage casing 912 has a double wall structure including a heat-resistant wall 913 made of a heat-resistant member and a heat-insulating wall 914 made of a heat-insulating member.
  • a plurality of belt-like heaters (referred to as electric heaters) 915 are provided on the inner wall surface of the heat-resistant wall 913 so as to go around the inner wall surface.
  • a lid 916 is provided at the upper end of the crucible housing 912 so as to surround the outer periphery of the end of the crucible 911 on the opening side.
  • the lid 916 has a function of maintaining the hermeticity of the thermal storage room 917. Providing such a lid 916 can enhance the heat retention effect of the thermal insulation chamber 917, and when the burner 934 of the combustion device 930 is operating, the combustion heat and combustion gas generated by the burner 934 are retained in the thermal insulation chamber 917. Can be prevented.
  • the combustion device 930 includes a combustion device housing 931 and a burner 934 provided at the upper end of the combustion device housing 931.
  • the combustion device 930 is detachable from the molten metal heat retaining device 910. .
  • the combustion apparatus housing 931 has a double wall structure including a heat resistant wall 932 made of a heat resistant member and a heat insulating wall 933 made of a heat insulating member.
  • a combustion chamber 935 is formed between the heat resistant wall 932 and the opening of the crucible 911.
  • the burner 934 melts the metal 950 to be melted such as aluminum put in the crucible 110 by direct fire, and takes in, for example, LPG (liquefied propane gas) from the fuel supply pipe 936 as fossil fuel and is necessary for combustion. Air is taken in from the air intake port 937 and a flame is fired from the nozzle 938.
  • LPG liquefied propane gas
  • a heat-resistant sealing material 940 made of a heat insulating material is provided between the combustion device casing 931 and the crucible storage casing 912.
  • the heat-resistant sealing material 940 is used for closely attaching the combustion device 930 to the lid 916 provided in the crucible housing 912 when the combustion device 930 is attached to the molten metal heat retention device 910. .
  • the sealing property of the combustion chamber 935 of the combustion device 930 can be improved. Thereby, since the combustion heat of the burner 934 can be prevented from escaping to the outside, the thermal efficiency when melting the metal 950 to be melted can be increased. In addition, the effect of preventing the combustion heat and combustion gas of the burner 934 from flowing into the thermal storage room 917 can be further enhanced.
  • the metal melting furnace 900 configured in this way is a hybrid type metal melting furnace using a burner 934 with high thermal efficiency for melting the melted metal 950 and using an electric heater 915 for keeping the generated molten metal warm. Therefore, compared with a metal melting furnace that uses only a gas burner to perform melting and heat retention, the carbon dioxide emission can be greatly reduced.
  • the metal melting furnace 900 is a so-called crucible melting furnace using a “crucible”. Unlike a continuous melting furnace, a crucible melting furnace is one in which a metal to be melted is placed in a crucible and the crucible is heated to generate a molten metal. For this reason, although it is not suitable for mass production like a continuous melting furnace, it can appropriately perform impurity removal work by an impurity removing device or the like, and is a metal melting furnace suitable for high-quality, high-mix, low-volume production.
  • the metal melting furnace 900 is characterized by higher melting efficiency than a metal melting furnace using only gas. That is, in a metal melting furnace using only gas, in the initial stage of melting when melting the melted metal 950, the flame of the gas enters the gaps between the melted metals 950, and the melted metal 950 is efficiently melted. However, when the melting progresses and the molten metal is generated, the gas flame hits only the surface of the molten metal, and there is a problem that heat is hardly transmitted to the inside of the crucible 911. is there.
  • the metal melting furnace 900 has high melting efficiency because the crucible 911 is heated by the electric heater 915. This is because the electric heater 915 has not only a function of keeping the molten metal at a constant temperature but also a function of speeding up melting. Further, by using the electric heater 915 as a heat source for keeping the crucible 911, it is possible to control the temperature with high accuracy and to maintain the temperature of the molten metal appropriately.
  • the metal melting furnace 900 has excellent characteristics, but can be made a more excellent metal melting furnace by further improvement.
  • the metal melting furnace 900 is roughly divided into two structures, a molten metal heat retaining device 910 having a crucible 911 and a combustion device 930 having a burner 934, and these molten metal heat retaining devices 910.
  • the combustion device 930 can be divided, and the melted metal 950 in the crucible 911 is melted in a state where the combustion device 930 is placed on the molten metal heat retaining device 910.
  • the weight of the combustion device 930 is also added to the crucible 911.
  • the crucible 911 may be damaged. That is, the crucible 911 is generally a so-called grilled product obtained by compressing and firing graphite, and thus is easily damaged, and preferably has a structure in which a large weight is not directly applied to the crucible 911.
  • the combustion device 930 is a portion exposed to a high temperature, and thus the combustion device 930 has a sufficient heat-resistant structure.
  • the metal to be melted 950 before melting is also used in the combustion device 930.
  • the flame of the burner 934 directly hits the upper end portion (the portion protruding from the crucible 911).
  • the area around the nozzle 938 of the burner 934 is particularly likely to be a high temperature, and is easily damaged by heat. If the damage has progressed, partial repair may be required.
  • the molten metal heat retaining device 910 and the combustion device 930 can be divided, but the combustion device 930 is a single structure. For this reason, even if a very narrow range of the combustion apparatus 930 is damaged by heat, the entire combustion apparatus 930 may be removed and repaired, or the entire combustion apparatus 930 may have to be recreated depending on the situation. If the entire combustion device 930 is remade, it takes a lot of days and costs, and during that time, the operation may be stopped.
  • the metal melting furnace 900 is composed of two components, that is, the molten metal heat retaining device 910 having the crucible 911 and the combustion device 930 having the burner 934, in the melting preparation step at the time of melting.
  • the metal 950 to be melted is stored in the crucible 911 with the combustion device 930 removed from the molten metal heat retaining device 910.
  • the molten metal 950 is generally stored so as to protrude from the upper opening of the crucible 911. It is. At this time, protrusion of the melted metal 950 in the vertical direction (direction along the z-axis) is allowed to some extent, but the protrusion in the horizontal direction (direction along the xy plane) is largely restricted.
  • the operation of storing the metal 950 to be melted in the crucible 911 always takes into account that “the metal 950 to be melted is stored in the crucible 911 so that the combustion device 930 can be placed on the molten metal heat retaining device 910”.
  • the metal 950 needs to be stored in the crucible 911. For this reason, the workability at the time of accommodating the to-be-dissolved metal 950 is bad, and there exists a subject that the accommodation amount of the to-be-dissolved metal 950 must be made small rather than the capacity
  • the present invention aims to provide a metal melting furnace and a method for generating a molten metal in the metal melting furnace that can improve maintenance efficiency and extend the life, improve melting efficiency and improve molten metal productivity. To do.
  • a metal melting furnace is a metal melting furnace provided with a crucible for holding a molten metal charged and holding a molten metal in which the molten metal is melted in a state of being kept warm.
  • a first furnace wall in the shape of a bottomed container having a height; and a heater provided on an inner wall surface of the first furnace wall to keep the molten metal warm, the crucible being an opening-side outer wall surface of the crucible
  • a crucible fixing ring for fixing the crucible by supporting an inner wall surface of the second furnace wall in a press-contact state along an outer periphery of an outer wall surface on the opening side of the crucible, and the crucible fixing Ring-shaped first that can be detachably mounted on the ring
  • An auxiliary ring having a furnace wall, the inner diameter of the third furnace wall being the same as or slightly larger than the outer diameter of the opening side end of the crucible, and detachably mounted on the auxiliary ring;
  • a fourth furnace wall having a height lower than the height of the first furnace wall in the vertical direction and having a predetermined space in the center, and a melting target provided in the space and charged into the crucible
  • a combustion device having a burner for melting the metal with an open flame.
  • the metal melting furnace of the present invention has a four-layer structure in which each structure of a molten metal heat retaining device, a crucible fixing ring, an auxiliary ring, and a combustion device is stacked, and each of these structures can be separated. It has become.
  • the metal melting furnace of the present invention has a more fragmented structure as compared to the metal melting furnace 900 disclosed in Patent Document 1. For this reason, it is possible to facilitate repair or replacement work when it is necessary to repair or replace a certain structure among these structures.
  • the 1st furnace wall, the 2nd furnace wall, the 3rd furnace wall, and the 4th furnace wall are each formed with the heat-resistant and heat insulating member (refer to embodiment mentioned later for details).
  • the periphery of the combustion apparatus is exposed to high temperatures, and is easily damaged by heat.
  • the portion that is easily exposed to a high temperature has two structures, a combustion device and an auxiliary ring, which can be divided individually. For this reason, when damage due to heat progresses and repair or replacement becomes necessary, only the structure that needs repair or replacement can be taken out and repaired or replaced. For example, when the auxiliary ring is damaged, only the auxiliary ring needs to be repaired or replaced, so that maintainability can be improved.
  • the metal melting furnace of the present invention is a hybrid type metal melting furnace. For this reason, according to the metal melting furnace of the present invention, when the metal to be melted is melted, the metal to be melted is melted by an open flame with a burner, and the temperature of the molten metal generated by the melting is kept by a heater. it can. In addition, since the heater has not only a function of keeping the molten metal warm, but also a function of accelerating melting, it is possible to reduce carbon dioxide emissions while enabling efficient molten metal generation.
  • the combustion chamber and the storage chamber are not the same, and each is an independent space, so that the heater is not exposed to the combustion heat or combustion gas of the burner, and the combustion heat or combustion Deterioration of the heater due to gas can be prevented, and the effect that the life of the heater can be extended is also obtained.
  • the inner diameter of the third furnace wall in the auxiliary ring is equal to or slightly larger than the outer diameter of the upper end portion on the opening side of the crucible.
  • the crucible can be prevented from being damaged due to a large weight being applied to the crucible, and the crucible can have a long life.
  • a predetermined gap is formed between the inner wall surface of the second furnace wall and the outer wall surface on the opening side of the crucible in the crucible fixing ring. It is preferable that a crucible fixing seal made of a heat-resistant member is embedded so as to go around the outer wall surface on the opening side of the crucible.
  • the outer wall surface on the opening side of the crucible is surely supported by the crucible fixing ring via the crucible fixing seal. For this reason, it is possible to prevent the combustion heat and combustion gas of the burner from entering the heat retaining chamber. As a result, the heater is not exposed to the combustion heat or combustion gas of the burner, the deterioration of the heater due to the combustion heat or combustion gas can be prevented, and the life of the heater can be extended.
  • the inner wall surface of the second furnace wall may be an inclined surface such that the gap becomes narrower from the upper surface to the lower surface of the second furnace wall. preferable.
  • the cross-sectional shape of the crucible fixing seal embedded in the gap formed between the crucible's opening-side outer wall surface is a “wedge shape” with a narrow lower portion.
  • a ring shape made of a heat-resistant member is provided between the lower surface of the second furnace wall in the crucible fixing ring and the upper surface of the first furnace wall in the molten metal heat retaining device. It is preferable that the molten metal heat insulation device seal is laid over the entire upper surface of the first furnace wall.
  • the crucible fixing ring and the molten metal heat-retaining device can be brought into close contact with each other, so that the hermeticity of the heat retention chamber can be increased. That is, when the crucible fixing ring is placed in a state where such a molten metal heat insulating device seal is laid on the upper surface of the first furnace wall, the molten metal heat insulating device seal is pressed by the weight of the crucible fixing ring.
  • the second furnace wall in the fixing ring and the upper surface of the first furnace wall in the molten metal heat retaining device are not mirror surfaces and have some “roughness” or some unevenness, these “roughness” and unevennesses
  • the crucible fixing ring and the molten metal heat retaining device can be brought into close contact with each other.
  • the first furnace wall is housed in a metal case, and when the first furnace wall is housed in the metal case, the upper end side of the metal case is A protruding wall is formed by slightly protruding from the upper surface of the first furnace wall, and the molten metal heat insulating device seal has an upper surface of the first electric furnace wall so that an outer periphery of the molten metal heat insulating device seal is along the protruding wall. It is preferable that it is laid.
  • the protruding wall of the metal case serves to guide the laying of the molten metal heat insulation device seal, and to prevent the positional deviation after the laying is performed.
  • a ring shape made of a heat resistant member is provided between the upper surface of the second furnace wall in the crucible fixing ring and the lower surface of the third furnace wall in the auxiliary ring. It is preferable that an auxiliary ring seal is laid, and the auxiliary ring seal is laid over the entire circumference of the upper surface of the second furnace wall.
  • the crucible fixing ring and the auxiliary ring can be brought into close contact with each other, so that the degree of sealing of the space (combustion chamber) surrounded by the auxiliary ring can be increased. Also in this case, when the auxiliary ring is placed with the auxiliary ring seal laid on the upper surface of the crucible fixing ring, the auxiliary ring seal is pressed by the weight of the auxiliary ring. Even if the lower surface of the ring is not a mirror surface and has some "roughness” or some unevenness, it absorbs these "roughness" and unevenness to bring the crucible fixing ring and auxiliary ring into close contact with each other. can do.
  • the outer diameter of the auxiliary ring seal is A ring-shaped auxiliary ring seal receiving plate having an opening having the same inner diameter is laid, and the auxiliary ring seal is laid on the edge of the opening of the auxiliary ring seal receiving plate.
  • An auxiliary ring seal guide wall is formed along an edge of the opening, the auxiliary ring seal guide wall having a height lower than a thickness dimension of the auxiliary ring seal, It is preferable that the auxiliary ring seal is laid on the upper surface of the second furnace wall of the crucible fixing ring so that the outer periphery of the auxiliary ring seal is along the inner periphery of the auxiliary ring seal guide wall.
  • the auxiliary ring seal receiving plate serves to guide the laying of the auxiliary ring seal and to prevent the positional deviation after laying. Positioning at the time of laying can be performed appropriately, and the auxiliary ring seal can be prevented from shifting in the horizontal direction on the crucible fixing ring.
  • a ring-shaped combustion made of a heat-resistant member is provided between the upper surface of the third furnace wall in the auxiliary ring and the lower surface of the fourth furnace wall in the combustion device. It is preferable that an apparatus seal is laid, and the combustion apparatus seal is laid over the entire circumference of the upper surface of the third furnace wall.
  • the auxiliary ring and the combustion device can be brought into close contact with each other, so that the degree of sealing of the space (combustion chamber) surrounded by the auxiliary ring can be increased. Also in this case, when the combustion device is placed with the combustion auxiliary ring seal laid on the upper surface of the auxiliary ring, the auxiliary ring seal is pressed by the weight of the combustion device. Even if there is some “roughness” or some unevenness on the bottom surface, the auxiliary ring and the combustion device can be brought into close contact with each other by absorbing these “roughness” and unevenness.
  • the outer diameter of the combustion device seal is equivalent to the space between the upper surface of the third furnace wall of the auxiliary ring and the lower surface of the fourth furnace wall of the combustion device.
  • a ring-shaped combustion device seal receiving plate having an opening having an inner diameter is laid, and an edge of the opening of the combustion device seal receiving plate is used to guide the laying of the combustion device seal.
  • a combustion device seal guide wall is formed along an edge of the opening, the combustion device seal guide wall has a height lower than a thickness dimension of the combustion device seal, and the combustion device seal It is preferable that the outer periphery of the combustion apparatus seal is laid on the upper surface of the third furnace wall so as to follow the inner periphery of the combustion apparatus seal guide wall.
  • the combustion device seal receiving plate serves to guide the laying of the combustion device seal and to prevent positional displacement after laying. Positioning at the time of laying can be performed appropriately, and the combustion apparatus seal can be prevented from shifting horizontally on the auxiliary ring.
  • the metal melting furnace of the present invention preferably includes a crucible upper temperature sensor for detecting the temperature of the opening-side outer wall surface of the crucible.
  • the temperature of the upper part (opening side outer wall surface) of the outer wall surface of the crucible can be measured.
  • the temperature of the upper molten metal in the crucible can be estimated based on the measurement result by the crucible upper temperature sensor, and based on the measurement result.
  • the heater and the like it is possible to appropriately manage the temperature of the molten metal.
  • the metal melting furnace of the present invention is characterized by having a crucible bottom temperature sensor for detecting the temperature of the bottom outer wall surface of the crucible.
  • the temperature of the molten metal inside the crucible is not directly measured, but the temperature of the molten metal in the lower part in the crucible can be estimated based on the measurement result by the temperature sensor at the bottom of the crucible. Based on the control of the heater or the like, the temperature management of the molten metal can be appropriately performed. In addition, based on the measurement result by the said crucible bottom part temperature sensor and the measurement result by the crucible top temperature sensor, temperature control etc. of a molten metal can be performed more appropriately by controlling a heater etc.
  • the metal melting furnace of the present invention preferably has a molten metal temperature sensor that detects the temperature of the molten metal held in the crucible.
  • the temperature of the molten metal held in the crucible can be directly measured, and the degree of melting of the metal to be melted in the crucible can be appropriately known based on the measurement result by the molten metal temperature sensor.
  • the heater is preferably an electric heater.
  • the electric heater when the molten metal is heated and kept warm, the electric heater does not become a direct emission source of carbon dioxide, which can greatly contribute to the reduction of carbon dioxide emission.
  • the electric heater since the electric heater is easy to control and can be finely adjusted, the temperature of the molten metal can be controlled with high accuracy when the molten metal is heated and kept warm.
  • the metal melting furnace of the present invention further includes an impurity removing device that can be immersed in the molten metal held in the crucible with at least the combustion device removed from the combustion device and the auxiliary ring. Is preferred.
  • impurities such as hydrogen gas contained in the molten metal in the crucible can be removed, and the molten metal can be made of high quality. Also, the impurity removal process can be repeated until the required quality standard is reached. Thereby, the impurity in a molten metal can be removed reliably.
  • the impurity removing device has a rotating body at the tip, and the rotating body rotates in the molten metal to generate an inert gas that is microbubbled.
  • a degassing device of the type is preferred.
  • This impurity removing device generates an inert gas that has been made into microbubbles in the molten metal while the rotating body rotates, and causes the impurities to adhere to the microbubbles and float.
  • impurities such as hydrogen gas can be efficiently removed, so that a high-quality molten metal can be generated.
  • a method for producing a molten metal in a metal melting furnace of the present invention is a method for producing a molten metal in a metal melting furnace using the metal melting furnace according to any one of [1] to [15], wherein the metal to be melted is used. Holding the molten metal to be charged into the crucible, the melting step of melting the molten metal by an open flame by the burner of the combustion device, and holding the molten metal inside the crucible at a predetermined temperature by the heater And a molten metal heat-retaining step.
  • the molten metal generation method in the metal melting furnace of the present invention is to perform molten metal generation using the metal melting furnace according to any one of [1] to [15].
  • the molten metal charging step, the melting step of attaching the combustion device to the molten metal heat retaining device to melt the molten metal, and the molten metal in the crucible were kept warm.
  • the molten metal heat retention process held in the state is performed in this order.
  • generation is enabled.
  • the metal melting furnace according to any one of [1] to [15] is used, the same effect as that of the metal melting furnace according to any one of [1] to [15] is obtained.
  • the molten metal is heated by the heater while melting the molten metal by an open flame with the burner. If the temperature of the predetermined portion of the crucible reaches the first set temperature, the process proceeds to the “melting / heating process using a burner / heater”, and the “melting / heating process using a burner / heater”. When the temperature of the predetermined portion of the crucible reaches a second set temperature higher than the first set temperature, it is preferable to shift from the “melting / heating process using a burner / heater together” to the molten metal heat retaining process.
  • impurities such as hydrogen gas contained in the molten metal can be removed, and the molten metal can be of high quality.
  • n is an integer of 2 or more preparations of molten metal heat retaining devices with a crucible fixing ring in a state where the crucible fixing ring is placed on the molten metal heat retaining device.
  • the first The auxiliary auxiliary ring and the combustion device are placed on the molten metal heat retaining device with the first crucible fixing ring among the molten metal heat retaining devices with the nth crucible fixing ring, and the molten metal heat retaining device with the first crucible fixing ring. It is preferable to perform the melted metal charging step, the melting step, and the molten metal heat retaining step in order to perform the molten metal heat retaining device with the nth crucible fixing ring in order.
  • FIG. 2 is a cross-sectional view taken along line AA of the metal melting furnace 10 in FIG. 1. It is a figure which expands and shows a part of crucible fixing ring 200 and the opening side upper end part of the crucible 110. FIG. It is a figure which takes out and shows auxiliary ring seal receiving plate 360. It is a figure shown in order to demonstrate each process of the molten metal production
  • Drawing 1 is a perspective view showing the appearance of the metal melting furnace concerning an embodiment.
  • the metal melting furnace 10 includes a molten metal heat retaining device 100, a crucible fixing ring 200, an auxiliary ring 300, a combustion device 400, and a rotary degassing device 500.
  • the “metal melting furnace 10” includes the molten metal heat retaining device 100, the crucible fixing ring 200, the auxiliary ring 300, the combustion device 400, and the rotary degassing device 500.
  • the four components of the molten metal heat retaining device 100 excluding the degassing device 500, the crucible fixing ring 200, the auxiliary ring 300, and the combustion device 400 are described, they are collectively described as the “melting furnace body 10A”.
  • FIG. 2 is a cross-sectional view taken along line AA of the melting furnace main body 10A in FIG.
  • the structure of the metal melting furnace 10 according to the embodiment will be described in detail with reference to FIGS.
  • the molten metal heat retaining device 100 includes a crucible 110, a first furnace wall 120 made of a heat-resistant and heat-insulating member, and a metal case 130 surrounding the first furnace wall 120.
  • the first furnace wall 120 has a bottomed container shape having a predetermined height in the vertical direction, and includes a heat resistant wall 121 and a heat insulating wall 122 provided outside the heat resistant wall 121.
  • the heat resistant wall 121 is made of a heat resistant member such as a heat resistant brick
  • the heat insulating wall 122 is made of a heat insulating member such as ceramic.
  • the crucible 110 is housed inside the first furnace wall 120 configured as described above, and a warming chamber 150 is formed between the inner wall surface of the first furnace wall 120, that is, the inner wall surface of the heat-resistant wall 121 and the crucible 110. Is done.
  • a crucible installation table 160 for placing the crucible 110 is provided at the center of the bottom surface of the inner wall surface of the heat-resistant wall 121.
  • the crucible 110 is a so-called ceramic product obtained by compressing and firing graphite.
  • the crucible 110 is installed on a crucible installation table 160 via a heat-resistant sheet 170 such as a ceramic blanket.
  • a temperature sensor (referred to as a crucible bottom temperature sensor) TS1 capable of measuring the temperature of the bottom outer wall surface of the crucible 110 is provided on the bottom outer wall surface of the crucible 110.
  • the crucible bottom temperature sensor TS1 is arranged along the bottom surface of the heat-resistant wall 121 from the outside of the molten metal heat retaining device 100, and then the middle portion is bent at an angle of 90 degrees so as to follow the side surface of the crucible installation table 160. After that, the tip portion is bent at an angle of 90 degrees, and the bent tip portion (referred to as the tip bent portion P1) is arranged along the upper surface of the crucible installation base 160. And the front end bending part P1 of the crucible bottom part temperature sensor TS1 is arrange
  • the bent end portion P1 of the crucible bottom temperature sensor TS1 is sandwiched between the outer wall surface on the lower surface side of the crucible 110 and the heat-resistant sheet 170, so that the bent end portion P1 is on the lower surface side of the crucible 110. It is in close contact with the outer wall surface, and the temperature of the outer wall surface on the lower surface side of the crucible 110 can be measured with high accuracy.
  • the surface formed by the upper surface of the heat-resistant wall 121 and the upper surface of the heat insulating wall 122 in the molten metal heat retaining device 100 (this surface may be referred to as the upper surface of the first furnace wall 120) is generally the same. Although it is a flat surface, there are some irregularities due to roughness of the heat-resistant wall 121 and the heat-insulating wall 122 instead of a mirror surface.
  • the crucible 110 has an opening-side end portion 110a of the crucible 110 in the vertical direction of the crucible fixing ring 200 with respect to the upper surface of the first furnace wall 120 so that the opening-side outer wall surface of the crucible 110 is exposed by a predetermined amount. It is installed in the molten metal heat retaining apparatus 100 in a state of projecting upward by an amount corresponding to the height (height along the z-axis) h1.
  • a belt-like heater (referred to as an electric heater) 180 is provided on the inner wall surface of the first furnace wall 120, that is, the inner wall surface of the heat-resistant wall 121, so as to make a round along the inner wall surface.
  • a plurality of electric heaters 180 are provided at predetermined intervals in the vertical direction on the inner wall surface of the heat-resistant wall 121 so that the entire crucible 110 can be uniformly heated and kept warm. In the metal melting furnace 10 according to the embodiment, four electric heaters 180 are provided.
  • the electric heater 180 heats and keeps the molten metal in the crucible 110 by radiant heat, it is said that thermal efficiency is provided as close as possible to the crucible 110 so that the crucible 110 and the electric heater 180 do not contact each other. This is preferable. However, when the crucible 110 is replaced, it is also necessary to provide an interval so that the crucible 110 does not contact the electric heater 180 when the crucible 110 is taken out from the molten metal heat insulating device 100.
  • the metal case 130 is formed of iron or the like, and the external shape is a bottomed cylindrical shape.
  • the metal case 130 is formed with a flange 131 protruding in the horizontal direction along the outer periphery of the metal case 130 at the upper end of the outer peripheral surface.
  • the guide part insertion hole (not shown) for inserting the guide pin GP is provided in the collar part 131, for example in four places at equal intervals.
  • hooks 133 used when the molten metal heat retaining device 100 is lifted by a crane or the like are provided at, for example, four locations at equal intervals.
  • a ring-shaped molten metal heat insulation device seal 190 is provided on the upper surface of the first furnace wall 120.
  • the molten metal heat insulating device seal 190 is used to bring the crucible fixing ring 200 and the molten metal heat insulating device 100 into close contact with each other when the crucible fixing ring 200 is placed on the molten metal heat insulating device 100. It is almost the same as the inner diameter of.
  • the material of the molten metal heat insulation device seal 190 is not particularly limited as long as it is a material excellent in heat resistance, airtightness and cushioning properties, but a ceramic rope or the like can be preferably used.
  • a step slightly lower than the thickness dimension of the molten metal heat insulation device seal 190 is provided between the upper end portion of the metal case 130 (the upper surface of the flange portion 131) and the upper surface of the first furnace wall 120.
  • the upper end portion of the metal case 130 becomes a protruding wall, so that the protruding wall serves to guide the laying of the molten metal heat insulation device seal and to prevent the positional deviation after laying. Eggplant.
  • the molten metal heat insulating device seal 190 depends on the weight of the crucible fixing ring 200. It will be in the pressed state. For this reason, the upper surface of the first furnace wall 120 (the upper surfaces of the heat-resistant wall 121 and the heat-insulating wall 122) and the lower surface of the crucible fixing ring 200 are not mirror surfaces, but have some “roughness” or some unevenness. Even if it is, these "roughness" and unevenness
  • the crucible fixing ring 200 has a ring shape in appearance and has an outer diameter that is the same as that of the molten metal heat insulating device 100, but is lower than the height of the first furnace wall 120 in the vertical direction. And both ends are openings.
  • the height in the vertical direction of the crucible fixing ring 200 (the height in the direction along the z axis) is “h1” as described above, which is from the first furnace wall 120 of the molten metal heat retaining device 100 to the crucible. This corresponds to the height at which 110 protrudes (see FIG. 2).
  • Such a crucible fixing ring 200 has a second furnace wall 210 made of a heat-resistant and heat-insulating member, and a crucible fixing ring metal frame 230 surrounding the second furnace wall 210.
  • the second furnace wall 210 includes a heat resistant wall 211 and a heat insulating wall 212 provided outside the heat resistant wall 211.
  • the heat resistant wall 211 is made of a heat resistant member such as a heat resistant brick
  • the heat insulating wall 212 is made of a heat insulating member such as ceramic.
  • a flange portion 231 (referred to as a lower end side flange portion 231) protruding in the horizontal direction is formed along the outer periphery of the crucible fixing ring metal frame 230
  • a flange portion 232 (referred to as an upper end side flange portion 232) that protrudes in the horizontal direction is formed along the outer periphery of the crucible fixing ring metal frame 230.
  • the lower end side flange portion 231 and the upper end side flange portion 232 are respectively provided with guide pin insertion holes (not shown) for inserting the guide pins GP, for example, at four locations at equal intervals. Further, on the outer peripheral surface of the crucible fixing ring metal frame 230, hooks 233 (see FIG. 1) used when the crucible fixing ring 200 is lifted by a crane or the like are provided at, for example, four locations at equal intervals.
  • the heat-resistant wall 211, the heat insulating wall 212, and the crucible fixing ring metal frame 230 protrude from the inner peripheral surface of the crucible fixing ring metal frame 230 toward the center direction (radial direction). They are connected by an iron rod (not shown).
  • the heat-resistant wall 211 and the heat insulating wall 212 of the crucible fixing ring 200 are respectively formed on the inner peripheral surface side of the crucible fixing ring metal frame 230 by molding.
  • a plurality of (for example, six) iron rods (referred to as anchor bolts) projecting in the center direction of the crucible fixing ring metal frame 230 are arranged on the inner peripheral surface of the crucible fixing ring metal frame 230. It fixes by welding for every predetermined space
  • the heat-resistant wall 211 and the heat-insulating wall 212 are respectively formed on the inner peripheral surface side of the crucible fixing ring metal frame 230 by mold molding.
  • the anchor bolts may be provided in a plurality of stages (for example, two stages) in the vertical direction (the height direction of the crucible fixing ring 200).
  • the crucible fixing ring 200 Since the crucible fixing ring 200 has such a structure, the heat-resistant wall 211 and the heat insulating wall 212 and the crucible fixing ring metal frame 230 are surely connected. For this reason, when a wire is hooked on the hook 233 of the crucible fixing ring metal frame 230 and lifted by a crane or the like, the entire crucible fixing ring 200 can be lifted.
  • a gap for filling the crucible fixing seal 250 (referred to as a seal embedding gap 260) is formed between the inner wall surface of the crucible fixing ring 200, that is, the inner wall surface of the heat-resistant wall 211, with the opening-side outer wall of the crucible 110.
  • the material of the crucible fixing seal 250 is not particularly limited as long as it is a material excellent in heat resistance, airtightness, and cushioning properties, but a ceramic rope or the like can be preferably used.
  • FIG. 3 is an enlarged view showing a part of the crucible fixing ring 200 and the upper end portion of the crucible 110.
  • the inner wall surface 211 a of the second furnace wall 210 in the crucible fixing ring 200 in the seal embedding gap 260 is the upper surface of the second furnace wall 210.
  • the inclined surface becomes narrower as it goes from the bottom to the bottom.
  • the inner wall surface 211a may be referred to as an “inclined surface 211a”.
  • the inclination angle (referred to as ⁇ 1) of the inclined surface 211a with respect to the z axis (vertical axis) is larger than the inclination angle (referred to as ⁇ 2) relative to the z axis (vertical axis) of the opening-side outer wall surface of the crucible 110. Yes.
  • the angle added to the angle ⁇ 2 is not limited to 5 degrees, and an optimal value can be set as appropriate.
  • the crucible fixing seal 250 embedded in the seal embedding gap 260 has a wedge-shaped cross section, so the crucible fixing seal 250 may be referred to as a “wedge-shaped seal 250”.
  • the crucible fixing ring 200 Since the crucible fixing ring 200 has such a structure, when the crucible fixing ring 200 is placed on the molten metal heat insulating device 100, the opening-side outer wall surface of the crucible 110 is placed on the outer periphery of the opening-side outer wall surface. Therefore, the crucible 110 can be securely fixed.
  • the crucible fixing ring 200 is provided with a temperature sensor TS2 (referred to as a crucible upper temperature sensor TS2) capable of measuring the temperature of the opening-side outer wall surface of the crucible 110.
  • the crucible upper part temperature sensor TS ⁇ b> 2 is disposed along the upper surface of the crucible fixing ring 200 from the outside of the crucible fixing ring 200, and the tip is bent at an angle along the opening-side outer wall surface of the crucible 110.
  • a portion bent at an angle along the opening-side outer wall surface of the crucible 110 is referred to as a “tip bent portion P2”. Further, the front end bent portion P2 of the crucible upper temperature sensor TS2 is sandwiched between the opening-side outer wall surface of the crucible 110 and the wedge-shaped seal 250, so the front-end bent portion P2 is the opening-side outer wall surface of the crucible 110.
  • the temperature of the outer wall surface on the opening side of the crucible 110 can be measured with high accuracy.
  • the auxiliary ring 300 is placed on the crucible fixing ring 200 configured as described above. At this time, an auxiliary ring seal 270 is laid between the crucible fixing ring 200 and the auxiliary ring 300.
  • the auxiliary ring 300 has a ring shape in appearance and has an outer diameter that is the same as that of the molten metal heat retaining device 100, but is lower than the height of the first furnace wall 120 in the vertical direction. And both ends are openings.
  • a crucible fixing ring 200 has a third furnace wall 310 made of a heat-resistant and heat-insulating member, and an auxiliary ring metal frame 330 surrounding the third furnace wall 310.
  • the third furnace wall 310 includes a heat resistant wall 311 and a heat insulating wall 312 provided outside the heat resistant wall 311.
  • the heat resistant wall 311 is made of a heat resistant member such as a heat resistant brick
  • the heat insulating wall 312 is made of a heat insulating member such as ceramic.
  • the inner diameter of the auxiliary ring 300 (the diameter D1 of the space surrounded by the heat-resistant wall 311) is the same as the outer diameter of the opening-side end 110a of the crucible 110 or is larger than the outer diameter of the opening-side end 110a of the crucible 110. It is set slightly larger.
  • the weight of the auxiliary ring 300 is not directly applied to the crucible 110.
  • the weight of the auxiliary ring 300 and the combustion device 400 is not directly applied to the crucible 110.
  • the crucible 110 is a so-called baked product obtained by compression-firing graphite and is easily damaged. For this reason, a structure in which a large weight is directly applied to the crucible 110 also damages the crucible 110.
  • the weight of the structure installed above the crucible 110 is the weight of the crucible 110. Therefore, the crucible 110 can be prevented from being damaged and the life of the crucible 110 can be extended.
  • a flange portion 331 (referred to as a lower end side flange portion 331) that protrudes in the horizontal direction is formed along the outer periphery of the auxiliary ring metal frame 330.
  • a flange portion 332 (referred to as an upper end side flange portion 332) that protrudes in the horizontal direction is formed along the outer periphery of the auxiliary ring metal frame 330.
  • guide pin insertion holes (not shown) for inserting the guide pins GP are respectively provided in the lower end side flange portion 331 and the upper end side flange portion 332, for example, at four locations at equal intervals.
  • hooks 333 (see FIG. 1) used when the auxiliary ring 300 is lifted by a crane or the like are provided at, for example, four locations at equal intervals.
  • the heat-resistant wall 311 and the heat insulating wall 312 of the auxiliary ring 300 and the auxiliary ring metal frame 330 are connected by the same structure as that of the crucible fixing ring 200. For this reason, also in the auxiliary ring 300, as in the crucible fixing ring 200, when the wire is hooked on the hook 333 of the auxiliary ring metal frame 330 and lifted by a crane or the like, the entire auxiliary ring 300 can be lifted.
  • the auxiliary ring 300 is provided with a temperature sensor insertion hole 340 into which a molten metal temperature sensor TS3 (see FIG. 6B) for measuring the temperature in the crucible 110 during the melting operation can be inserted.
  • the temperature sensor insertion hole 340 can be attached and detached with a plug 340a (see FIG. 6A) for closing the temperature sensor insertion hole 340. When the temperature measurement is not performed, the plug 340a is used. The temperature sensor insertion hole 340 is closed.
  • the auxiliary ring seal 270 is laid between the auxiliary ring 300 and the crucible fixing ring 200 as described above. Specifically, the auxiliary ring seal 270 is laid between the third furnace wall 310 in the auxiliary ring 300 and the second furnace wall 210 in the crucible fixing ring 200. At this time, the auxiliary ring seal 270 is positioned by an auxiliary ring seal receiving plate 360 made of metal (for example, iron).
  • FIG. 4 is a view showing the auxiliary ring seal receiving plate 360 taken out.
  • the auxiliary ring seal receiving plate 360 is a disk having the same diameter as the outer diameter including the flange portions 231 and 232 of the crucible fixing ring metal frame 230 or the flange portions 331 and 332 of the auxiliary ring metal frame 330.
  • An opening 361 having a shape that is sufficiently larger than the outer diameter of the opening-side end 110a of the crucible 110 (the inner diameter D1 of the auxiliary ring 300) is formed at the center.
  • the inner diameter of the auxiliary ring seal 270 is the same as the inner diameter D1 of the auxiliary ring 300.
  • an auxiliary ring seal guide wall 362 for guiding the laying of the auxiliary ring seal 270 is formed at the edge of the opening 361 along the edge of the opening.
  • the height h2 of the auxiliary ring seal guide wall 362 is lower than the thickness dimension t1 of the auxiliary ring seal.
  • the auxiliary ring seal 270 is laid on the upper surface of the second furnace wall 210 in the crucible fixing ring 200 so that the outer periphery of the auxiliary ring seal 270 is along the inner periphery of the auxiliary ring seal guide wall 362.
  • auxiliary ring seal receiving plate 360 is formed in the auxiliary ring seal receiving plate 360. These guide pin through holes 363 are the same as guide pin insertion holes (not shown) formed in the flange portions 231 and 232 of the crucible fixing ring metal frame 230 or the flange portions 331 and 332 of the auxiliary ring metal frame 330. Formed in position.
  • the auxiliary ring seal receiving plate 360 is installed between the crucible fixing ring 200 and the auxiliary ring 300.
  • Combustion device 400 is mounted on auxiliary ring 300, has a predetermined space at the center, and has a fourth furnace wall 410 made of a heat-resistant and heat-insulating member, and a combustion device that surrounds fourth furnace wall 410.
  • a metal frame 430 and a burner 440 provided in the space of the fourth furnace wall 410 are provided.
  • the hook 431 used when lifting up the combustion apparatus 400 with a crane etc. is provided in the outer peripheral surface of the combustion apparatus metal frame 430, for example in four places at equal intervals.
  • the fourth furnace wall 410 includes a heat resistant wall 411 and a heat insulating wall 412 provided outside the heat resistant wall 411.
  • the heat insulation wall 412 uses a member excellent in not only heat insulation but heat resistance.
  • the burner 440 dissolves the metal to be melted put in the crucible 110 by an open flame, takes in, for example, LPG (liquefied propane gas) from the fuel supply pipe 441 as fossil fuel, and air necessary for combustion into air. It takes in from the intake port 442 and fires a flame from the nozzle 443.
  • LPG liquefied propane gas
  • the burner 440 used in the metal melting furnace 10 according to the embodiment is a heat exchange type burner that preheats air taken in from the air intake port 442 with exhaust gas. For this reason, since the air which entered from the air intake port 442 is warmed by the exhaust gas, the combustion efficiency is good and the air intake port 442 and the exhaust port 444 can be made small.
  • the burner 440 is provided with a combustion control device (not shown) for controlling the combustion state.
  • This combustion control device adjusts the amount of air and the amount of combustion so as to achieve an optimal combustion state.
  • a combustion chamber 450 is formed by the space surrounded by the combustion device 400 and the heat-resistant wall 311 of the auxiliary ring 300.
  • the heat-resistant wall 411 and the heat insulating wall 412 in the combustion apparatus 400 and the combustion apparatus metal frame 430 are connected by a structure substantially similar to the crucible fixing ring 200 and the auxiliary ring 300. For this reason, in the combustion apparatus 400 as well as the crucible fixing ring 200 and the auxiliary ring 300, when the wire is hooked on the hook 431 of the combustion apparatus metal frame 430 and lifted by a crane or the like, the entire combustion apparatus 400 can be lifted. .
  • a combustion device seal 380 is laid between the combustion device 400 and the auxiliary ring 300. Specifically, the combustion device seal 380 is laid between the fourth furnace wall 410 in the combustion device 400 and the third furnace wall 310 in the auxiliary ring 300. At this time, the combustion device seal 380 is positioned by the combustion device seal receiving plate 460.
  • the combustion device seal seal receiving plate 460 has substantially the same configuration as the auxiliary ring seal receiving plate 360 shown in FIG.
  • the combustion device seal receiving plate 460 is different from the auxiliary ring seal receiving plate 360 in that the combustion device positioning protrusion 469 (for positioning the combustion device 400 when the combustion device 400 is placed on the auxiliary ring 300). (See FIG. 2).
  • the combustion apparatus positioning protrusion 469 is a ring-shaped protrusion that extends along the outer periphery of the lower end of the combustion apparatus metal frame 430 of the combustion apparatus 400. For this reason, when the combustion device 400 is placed on the auxiliary ring 300, the combustion device 400 is placed on the auxiliary ring 300 along the combustion device positioning protrusion 469 so that the combustion device 400 is placed on the auxiliary ring 300. 300 can be placed at an appropriate position.
  • the rotary degassing device 500 removes impurities such as hydrogen gas contained in the molten metal in the crucible 110 when the metal to be melted is melted to be in a molten metal state. It has a configuration having a disk-shaped rotating body 520 provided at the tip of the shaft 510.
  • the rotary degassing apparatus 500 configured as described above is installed so as to be able to move on the xy plane and in the vertical direction (direction along the z axis), for example. It can be immersed in the molten metal in the crucible 110.
  • the rotary body 520 can be immersed in the molten metal of the crucible 110 by lowering the rotary degassing device 500 after the combustion process 400 is finished and the auxiliary ring 300 is removed. Then, the rotating body 520 is rotated in a state where the rotating body 520 is immersed in the molten metal, and an inert gas such as argon gas and nitrogen gas microbubbled from the rotating body 520 can be generated in the molten metal. It is like that.
  • the metal melting furnace 10 includes the melting furnace main body 10A (the molten metal heat retaining device 100, the crucible fixing ring 200, the auxiliary ring 300, and the combustion device 400) and the rotary degassing device 500.
  • the melting furnace main body 10A has a four-layer structure in which four structures of a molten metal heat retaining device 100, a crucible fixing ring 200, an auxiliary ring 300, and a combustion device 400 are stacked. Each of these structures has a separable structure.
  • the melting furnace main body 10A in the metal melting furnace 10 has such a structure, it is necessary to repair or replace a certain structure among the structures constituting the melting furnace main body 10A. In such a case, only the structure to be repaired or replaced can be taken out and repaired or replaced. In this case, if the replacement of the individual structures is facilitated, it is not necessary to stop the operation for a long period of time, so that the production is not hindered.
  • the metal melting furnace 10 has a structure in which the melting furnace main body 10A is further subdivided as compared with the metal melting furnace 900 disclosed in Patent Document 1, so these structures are temporarily assumed. Repair or replacement work can be facilitated when it is necessary to repair or replace a certain structure of the body.
  • the periphery of the combustion device 400 is exposed to high temperatures, and is easily damaged by heat.
  • the portion that is easily exposed to a high temperature has two structures of the combustion device 400 and the auxiliary ring 300, and these can be divided individually. For this reason, when damage due to heat progresses and repair or replacement becomes necessary, only the structure that needs repair or replacement can be taken out and repaired or replaced. For example, when the auxiliary ring 300 is damaged, only the auxiliary ring 300 needs to be repaired or replaced, so that maintainability can be improved.
  • the molten metal in which the crucible 110 is accommodated first, the molten metal in which the crucible 110 is accommodated.
  • a ring-shaped molten metal heat insulation device seal 190 is laid on the upper surfaces of the heat resistant wall 121 and the heat insulation wall 122 (the upper surface of the first furnace wall 120) in the heat retention device 100.
  • the molten metal heat insulating device seal 190 is laid so that the outer peripheral surface thereof is along the inner surface of the metal case 130.
  • the crucible fixing ring 200 is placed in a state where the molten metal heat insulation device seal 190 is laid. At this time, each guide pin insertion hole (not shown) formed in the flange 131 of the metal case 130 and each guide pin insertion hole (not shown) formed in the lower end side flange 231 of the crucible fixing ring metal frame 230. The crucible fixing ring 200 is placed so as to match each other (not shown). Then, the guide pin GP is inserted into each guide pin insertion hole. Thereby, the crucible fixing ring 200 can be attached to the molten metal heat retaining device 100.
  • the molten metal heat insulating material laid between the first furnace wall 120 in the molten metal heat insulating device 100 and the second furnace wall 210 in the crucible fixing ring 200 is attached to the molten metal heat insulating device 100, the molten metal heat insulating material laid between the first furnace wall 120 in the molten metal heat insulating device 100 and the second furnace wall 210 in the crucible fixing ring 200.
  • the device seal 190 is pressed by the weight of the crucible fixing ring 200, and the molten metal heat retaining device 100 and the crucible fixing ring 200 are in close contact with each other.
  • a wedge seal 250 is embedded in the “sealing gap 260” formed between the outer wall surface on the opening side of the crucible 110 and the inner wall surface 211a (inclined surface 211a) of the heat-resistant wall 211 in the crucible fixing ring 200.
  • the upper end of the wedge-shaped seal 250 is made to protrude slightly upward from the upper surface of the crucible fixing ring 200.
  • the crucible 110 is securely fixed by the crucible fixing ring 200.
  • the wedge-shaped seal 250 is added with the weight of the auxiliary ring 300 and the combustion device 400, whereby the wedge-shaped seal 250 tries to move downward along the z-axis.
  • the force which presses the outer wall of the crucible 110 works. Thereby, the crucible 110 can be fixed reliably.
  • the auxiliary ring 300 is placed on the crucible fixing ring 200.
  • the auxiliary ring seal receiving plate 360 is placed on the upper surface of the second furnace wall 210 of the crucible fixing ring 200, and the auxiliary ring seal 270 is laid on the auxiliary ring seal receiving plate 360, and the auxiliary ring seal 270 is provided thereon.
  • the ring 300 is placed.
  • a guide pin insertion hole (not shown) formed in the upper end side flange 232 of the crucible fixing ring metal frame 230, a guide pin insertion hole 363 formed in the auxiliary ring seal receiving plate 360,
  • the seal receiving plate and the 360 auxiliary ring 300 are attached to the crucible fixing ring 200 so that the guide pin insertion holes (not shown) formed in the lower end side flange portion 331 of the auxiliary ring metal frame 330 are aligned with each other. Place. Then, the guide pin GP is inserted into each guide pin insertion hole. Thereby, the auxiliary ring 300 can be attached to the crucible fixing ring 200.
  • the auxiliary ring seal 270 is disposed so that the outer peripheral surface thereof is along the inner peripheral surface of the auxiliary ring seal guide wall 362 formed on the seal receiving plate 360. As a result, the auxiliary ring seal 270 is positioned by the auxiliary ring seal guide wall 362, so that a horizontal shift can be prevented.
  • the auxiliary ring 300 By attaching the auxiliary ring 300 to the crucible fixing ring 200 in this way, the auxiliary ring seal 270 laid between the auxiliary ring 300 and the crucible fixing ring 200 is pressed by the weight of the auxiliary ring 300.
  • the auxiliary ring 300 and the crucible fixing ring 200 are in close contact with each other.
  • the combustion device 400 is placed on the auxiliary ring 300.
  • the combustion apparatus seal receiving plate 460 is placed on the upper surface of the third furnace wall 310 in the auxiliary ring 300.
  • a guide pin insertion hole (not shown) formed in the upper end side flange 332 of the auxiliary ring metal frame 330 and a guide pin insertion hole (not shown) formed in the combustion device seal receiving plate 460. .)) Is placed on the auxiliary ring 300 so that they match each other.
  • the combustion device seal receiving plate 460 is attached to the upper surface of the auxiliary ring 300, the combustion device seal 380 is laid on the combustion device seal receiving plate 460.
  • the combustion device seal 380 is installed on the combustion device seal receiving plate 460 in the same manner as the auxiliary ring seal 270.
  • the combustion device 400 is placed on the combustion device seal receiving plate 460.
  • the combustion device 400 is placed on the seal receiving plate 460 using the combustion device positioning protrusion 469 provided on the combustion device seal receiving plate 460 as a guide.
  • the combustion device seal 380 laid between the combustion device 400 and the auxiliary ring 300 is pressed by the weight of the combustion device 400.
  • the combustion device 400 and the auxiliary ring 300 are in close contact with each other.
  • the melting furnace body 10A can be assembled by the procedure as described above (see FIGS. 1 and 2).
  • the melting furnace main body 10A assembled in this way is not easily displaced because most of the individual structures have a weight of 100 kg or more.
  • the degree of sealing between the combustion chamber 450 and the thermal storage room 150 can be increased. Thereby, the effect which prevents the combustion heat and combustion gas of the burner 440 from flowing into the thermal storage room 150 can be enhanced.
  • the combustion heat of the burner 440 reaches 1300 degreeC or more, the bad influence given to the electric heater 180 grade
  • a wedge-shaped seal 250 is embedded between the crucible fixing ring 200 and the crucible 110, the effect of preventing the combustion heat and combustion gas of the burner 440 from flowing into the thermal storage room 150 is further enhanced. be able to.
  • the wedge-shaped seal 250 is added with the weight of the auxiliary ring 300 and the combustion device 400, whereby the wedge-shaped seal 250 tries to move downward along the z-axis. Force to press the outer wall surface on the opening side of the crucible 110).
  • the hermeticity of the thermal storage room 150 becomes higher, and the effect of preventing the combustion heat and combustion gas of the burner 440 from flowing into the thermal storage room 150 can be further enhanced.
  • FIG. 5, FIG. 6 and FIG. 7 are diagrams for explaining each step of the molten metal production method when producing molten metal using the metal melting furnace 10 according to the embodiment.
  • FIGS. 5 (a) to 5 (c) are diagrams for explaining the melting preparation step in the molten metal production step.
  • FIG. 6A and FIG. 6B are diagrams for explaining the melting step and the molten metal heat retaining step in the molten metal generation step.
  • FIGS. 7A and 7B are views for explaining the impurity removal step in the molten metal generation step.
  • some of the reference numerals are omitted to simplify the drawings.
  • Dissolving preparation step First, as shown in FIG. 5 (a), and remove the combustion device 400, the state of the crucible fixing ring 200 to melt insulation device 100 and the auxiliary ring 300 is placed. At this time, the combustion device seal receiving plate 460 and the combustion device seal 380 are laid on the upper surface of the auxiliary ring 300. The combustion device seal 380 is preferably covered with a seal protective cover (not shown).
  • the metal 600 to be melted is put into the crucible 110.
  • the amount of the metal 600 to be melted introduced into the crucible 110 is determined in consideration of the capacity of the crucible 110.
  • a cast remaining material separated from an aluminum ingot and a cast product generated by the previous casting operation (a cast part corresponding to a pouring gate, a cast part corresponding to a runner, a cast part corresponding to a feeder) Etc.).
  • the metal 600 to be melted when the metal 600 to be melted is put into the crucible 110, the metal 600 to be melted put into the crucible 110 may be put into the crucible so as not to protrude above the auxiliary ring 300.
  • the combustion device 400 since the combustion device 400 is mounted on the auxiliary ring 300, the metal 600 to be melted introduced into the crucible 110 is located above the auxiliary ring 300. If it puts in a crucible so that it may not protrude, the combustion apparatus 400 can be mounted in the auxiliary
  • the metal 600 to be melted in the horizontal direction is restricted from the beginning by the auxiliary ring 300. Therefore, the metal 600 to be melted can be put into the crucible 110 without worrying that the metal 600 to be melted “extends” in the horizontal direction (the direction along the xy plane). For this reason, workability at the time of charging the metal 600 to be melted into the crucible 110 can be improved, and the amount of the metal 600 to be melted with respect to the capacity of the crucible 110 can be set to the maximum. Can fully utilize the capacity. Thereby, the productivity of the molten metal can be improved. Then, from the state of FIG. 5B, the seal protection cover (not shown) of the combustion device seal 380 is removed, and the combustion device 400 is placed on the auxiliary ring 300 (see FIG. 5C).
  • the electric heater 180 When melting is performed by the flame of the burner 440 in this way, the electric heater 180 is energized at a predetermined timing, and a melting / heating process in which combustion by the burner 440 and heating by the electric heater 180 are combined, that is, “burner heater” Perform combined melting and heating process.
  • the energization start timing for starting energization of the electric heater 180 affects fuel consumption and dissolution efficiency.
  • the metal 600 to be melted begins to melt, and the temperature of the bottom outer wall surface of the crucible 110 becomes 550 ° C. (the temperature measured by the crucible bottom temperature sensor TS1 is 550 ° C.). It has been found that it is preferable to set the time when the electric heater 180 is energized.
  • a “melting / heating process using the burner / heater” in which the burner 440 and the electric heater 180 are used together is performed, and the temperature measured by the crucible bottom temperature sensor TS 1
  • the operation of the burner 440 is temporarily stopped, the molten metal temperature sensor TS3 is inserted into the temperature sensor insertion hole 340 (see FIG. 6B), and the temperature in the crucible 110 is monitored, The melting state in the crucible 110 is monitored.
  • the melting efficiency by the flame from the burner 440 is high, but when the upper surface in the crucible 110 becomes liquefied, the liquefied metal (in this case, aluminum) is the surface. Therefore, it becomes difficult for the heat of combustion from the flame from the burner 440 to be transmitted to the inner part of the crucible 110 (the part where the melted metal 600 that is not liquefied remains exists). This is because much time and energy are required until the entire metal 600 to be melted in 110 is melted into a molten metal.
  • the operation of the burner 440 is stopped and heating is performed only by the electric heater 180.
  • the metal 600 to be melted can be efficiently melted to form the molten metal 700, and thereafter, the molten metal 700 can be maintained at a temperature suitable for the casting operation.
  • the temperature control by the electric heater 180 can be performed with high accuracy, the temperature of the molten metal 700 can be appropriately maintained at a temperature suitable for the casting operation.
  • Control of the electric heater 180 can be performed by an electric heater control unit (not shown). That is, the electric heater control unit controls the electric heater 180 based on the temperature of the molten metal 700 in the crucible 110 so that the temperature of the molten metal 700 is maintained at a predetermined temperature. Thereby, the molten metal 700 in the crucible 110 can always be maintained at a temperature suitable for the casting operation.
  • the rotating body 520 of the rotary degassing device 500 as the impurity removing device is immersed in the molten metal 700, Impurity removal work is performed.
  • the auxiliary ring seal 270 on the crucible fixing ring 200 is preferably covered with a seal protection cover (not shown).
  • the impurity removal operation is performed by immersing the rotating body 520 of the rotary degassing apparatus 500 in the molten metal 700 in the crucible 110 and rotating the rotating body 520 into argon gas that is microbubbled. By generating it, impurities such as hydrogen gas contained in the molten metal 700 are levitated and removed. By removing impurities in this way, the molten metal 700 in the crucible 110 becomes of high quality.
  • the impurity removal operation can be repeated until the required quality standard is reached.
  • the rotary degassing device 500 is removed and a temperature sensor TS4 for controlling the molten metal temperature is installed as shown in FIG. It puts in the molten metal 700, measures a molten metal temperature, and controls the electric heater 180 so that the molten metal 700 is maintained at a temperature suitable for casting based on the measurement result.
  • the temperature sensor TS4 for controlling the molten metal temperature may be the same as the molten metal temperature sensor TS3 used in FIG.
  • the auxiliary ring 300 does not exist, and the opening of the crucible 110 is flush with the upper surface of the crucible fixing ring 200.
  • the distance to the liquid surface is short from the upper surface of the crucible fixing ring 200. For this reason, the work of drawing out the molten metal 700 becomes easy, and the casting work can be performed efficiently.
  • FIG. 8 is a diagram for explaining the melting efficiency when the melting work of the metal 600 (to be aluminum) is actually performed using the metal melting furnace 10 according to the embodiment.
  • FIG. 8A is a diagram showing various conditions when the melting operation is performed
  • FIG. 8B is a diagram illustrating a metal melting furnace 10 (see FIG. 8A) based on the conditions shown in FIG. It is a figure which compares and compares the melting efficiency by a metal melting furnace of a hybrid type), and the melting efficiency by the metal melting furnace only of LPG gas.
  • FIG. 8 shows the melting efficiency when the metal melting furnace 10 according to the embodiment is used only for melting, and heat retention and the like use other crucibles.
  • the white square represents the melting efficiency of the metal melting furnace 10 according to the embodiment, and the thick solid line represents the melting efficiency of the LPG (Liquefied Petroleum Gas) only.
  • the horizontal axis indicates the day when the melting operation was performed (melting date), and the vertical axis indicates the melting efficiency (%) on each melting date (1 to 5 days). .
  • the melting efficiency in FIG. 8 (b) is assumed to be the ratio (%) of heat used to the theoretical melting heat of aluminum.
  • is the theoretical melting heat of aluminum
  • is the actual amount of gas used expressed as a value ⁇ converted to heat per 1 kg of aluminum
  • the actual amount of electricity used is expressed as a value ⁇ converted into heat per 1 kg of aluminum.
  • A1 (%) ⁇ / ( ⁇ + ⁇ ) ⁇ 100
  • A2 (%) ⁇ / ⁇ ⁇ 100 It is represented by
  • the melting efficiency of the LPG gas-only metal melting furnace is about 10% at most on the day of each melting operation.
  • the melting efficiency of the metal melting furnace (hybrid metal melting furnace) according to the embodiment is 25 to 30%, and it was found that a higher melting efficiency was obtained compared to a metal melting furnace only with LPG gas.
  • FIG. 9 is a diagram illustrating another example of a molten metal generation method in the metal melting furnace 10 according to the embodiment.
  • two molten metal heat retaining devices 100A with a crucible fixing ring (referred to as a molten metal heat retaining device with a crucible fixing ring) in a state where the crucible fixing ring 200 is installed in the molten metal heat retaining device 100 are used.
  • the molten metal heat retaining device 100B with the second crucible fixing ring), and one auxiliary ring 300 and one combustion device 400 are prepared, respectively.
  • the molten metal heat generating device 100B with two crucible fixing rings, one auxiliary ring 300, and one combustion device 400 are used to efficiently generate molten metal.
  • the molten metal generation procedure can be performed in the order of the steps shown in FIGS.
  • the molten metal is pumped out in the molten metal heat insulating device 100A with the first crucible fixing ring. It is to be noted that the pumping operation of the molten metal generally does not pump out all the molten metal contained in the crucible 110 but leaves about 1/3 of the total amount of the molten metal contained in the crucible 110.
  • the combustion device 400 and the auxiliary ring 300 are removed from the molten metal heat retaining device 100B with the second crucible fixing ring, and the removed combustion is performed.
  • the apparatus 400 and the auxiliary ring 300 are attached to the molten metal heat retaining apparatus 100A with the first crucible fixing ring.
  • the to-be-melted metal 600 is put into the molten metal heat retention apparatus 100A with the said 1st crucible fixing ring, and a molten metal is produced
  • the molten metal pumping operation is performed in the molten metal heat insulating device 100B with the second crucible fixing ring. Such an operation is sequentially repeated until a necessary amount of molten metal is generated.
  • a crucible type melting furnace such as the metal melting furnace 10 according to the embodiment is continuous as in the continuous melting furnace. Therefore, it is possible to perform an operation of generating a molten metal and an operation of pumping out the molten metal, and high productivity comparable to that of a continuous melting furnace can be obtained.
  • melting and pumping are alternately performed using two molten metal heat retaining devices with crucible fixing rings, but it is possible to use three or more molten metal heat retaining devices with crucible fixing rings.
  • the molten metal generating operation and the molten metal pumping operation can be performed more efficiently.
  • the temperature sensor insertion hole 340 for measuring the temperature of the molten metal in the melting step is provided in the auxiliary ring 300, but the structure is not limited to this. You may make it provide.
  • FIG. 10 is a view shown for explaining a modification of the installation location of the temperature sensor insertion hole 340 for measuring the temperature of the molten metal.
  • the temperature sensor insertion hole 340 can also measure the temperature of the molten metal in the melting step by providing it in the combustion apparatus 400. Whether to provide the auxiliary ring 300 or the combustion device 400 can be determined in consideration of workability and the like. Further, the temperature sensor insertion hole 340 may be provided in both the auxiliary ring 300 and the combustion device 400, and may be selectively used as appropriate. In this case, the sensor insertion hole is preferably closed with a plug to prevent heat from flowing out whenever it is not used.
  • the burner 440 is exemplified by a burner using LPG as fuel, but is not limited to LPG, and may be a burner using other fossil fuel. Further, the burner 440 is a heat exchange type burner, and by using such a heat exchange type burner, the combustion efficiency can be improved. However, the fuel supply amount and the air supply amount according to the melting state. By controlling this, it is possible to further improve the combustion efficiency, thereby further reducing fuel consumption.
  • an exhaust temperature sensor for measuring the exhaust temperature of the exhaust gas exhausted from the exhaust port 444 of the burner 440 is provided, and the exhaust temperature output from the exhaust gas temperature sensor is provided. Based on the information, a burner control mechanism for controlling the supply amount of fuel (LPG gas) supplied to the fuel supply pipe 441 and the intake amount of air taken in from the air intake port 442 is provided.
  • LPG gas supply amount of fuel supplied to the fuel supply pipe 441 and the intake amount of air taken in from the air intake port 442
  • the metal 600 to be melted is almost full in the crucible 110 and the combustion chamber 450.
  • the combustion gas with insufficient heat exchange with the metal 600 to be dissolved and the combustion air due to the increase in the pressure in the combustion chamber 450 is exhausted from the exhaust port 444 at a high temperature of about 1000 ° C.
  • the space of the combustion chamber 450 becomes wider, and the density of the combustion gas decreases, so that the temperature of the combustion gas decreases to about 600 ° C. and is exhausted from the exhaust port 444. .
  • the fuel supply amount and the air supply amount are controlled so as to reduce the fuel supply amount (LPG gas) supply amount and the air intake amount, thereby further improving the combustion efficiency. And by that. Fuel consumption can be further reduced.
  • Such control can be realized by controlling the supply amount of fuel (LPG gas) and the intake amount of air based on the exhaust gas temperature information output from the exhaust gas temperature sensor.
  • the electric heater 180 used in the molten metal heat insulating device 100 is exemplified by the case where the belt-shaped electric heater 180 that goes around the inner wall surface of the heat-resistant wall 121 is used.
  • an electric heater that covers the entire inner wall surface including the bottom surface of the heat-resistant wall 121 may be used.
  • the structure of the molten metal heat retaining device 100, the crucible fixing ring 200, the auxiliary ring 300, and the combustion device 400 is doubled by a heat-resistant wall made of a heat-resistant member and a heat-insulated wall made of a heat-insulating member.
  • a heat-resistant wall made of a heat-resistant member
  • a heat-insulated wall made of a heat-insulating member.

Abstract

This invention is provided with: a molten metal heat retention device (100) having a first furnace wall (120) and a heater (180) capable of causing the molten metal to retain heat, the molten metal heat retention device (100) capable of housing a crucible (110) so that the opening-side outer wall surface of the crucible (110) is exposed by a predetermined amount; a crucible-fixing ring (200) having a second furnace wall (210), the inner wall surface of the second furnace wall (210) supporting, when the crucible-fixing ring (200) is in a state of being placed on the molten metal heat retention device (100), the opening-side outer wall surface of the crucible (110) in a state of being pressed against the opening-side outer wall surface along the outer circumference thereof, whereby the crucible-fixing ring (200) fixes the crucible (110); an auxiliary ring (300) having a third furnace wall (310), the auxiliary ring (300) having an inner diameter such that the inner diameter of the third furnace wall (310) is equal to or slightly larger than the outer diameter of the opening-side upper end part of the crucible (110); and a combustion device (400) having a fourth furnace wall (410) and a burner (440) for melting in the crucible (110), using a direct flame, the metal to be melted, the burner (440) being provided in a space surrounded by the fourth furnace wall (410). It is thereby possible to improve ease of maintenance, increase the lifespan, improve melting efficiency, and improve productivity of the molten metal.

Description

金属溶解炉及び金属溶解炉における溶湯生成方法Metal melting furnace and molten metal generation method in metal melting furnace
 本発明は、金属溶解炉及び金属溶解炉における溶湯生成方法に関する。 The present invention relates to a metal melting furnace and a molten metal generation method in the metal melting furnace.
 地球温暖化防止の観点から二酸化炭素の排出削減を促進する技術は様々な分野で提案されている。金属を溶解して溶湯を生成する金属溶解炉においても、ガスなどの化石燃料の使用を極力抑えるために、電気エネルギーを併用するいわゆるハイブリッド型の金属溶解炉が存在する(例えば、特許文献1参照。)。 [Technology that promotes the reduction of carbon dioxide emissions from the viewpoint of preventing global warming has been proposed in various fields. Even in a metal melting furnace that melts a metal to produce a molten metal, there is a so-called hybrid type metal melting furnace that uses electric energy in order to suppress the use of fossil fuels such as gas as much as possible (see, for example, Patent Document 1). .)
 特許文献1に開示されている金属溶解炉は、金属の溶解には熱効率の高いガスバーナーを用い、溶解によって生成された溶湯の保温には電気ヒーターを用いるハイブリッド型の金属溶解炉である。 The metal melting furnace disclosed in Patent Document 1 is a hybrid type metal melting furnace that uses a gas burner with high thermal efficiency for melting metal and uses an electric heater to keep the molten metal produced by melting.
 図11は、特許文献1に開示されている金属溶解炉900を説明するために示す図である。特許文献1に開示されている金属溶解炉900(以下では、単に「金属溶解炉900」という場合もある。)は、本発明の出願人によって出願されたものであって、図11に示すように、溶湯保温装置910と、燃焼装置930とを有している。溶湯保温装置910は、坩堝911と、坩堝911を収納する坩堝収納筐体912とを有している。 FIG. 11 is a diagram for explaining the metal melting furnace 900 disclosed in Patent Document 1. A metal melting furnace 900 disclosed in Patent Document 1 (hereinafter sometimes simply referred to as “metal melting furnace 900”) was filed by the applicant of the present invention and is shown in FIG. In addition, a molten metal heat retaining device 910 and a combustion device 930 are provided. The molten metal heat retaining device 910 includes a crucible 911 and a crucible storage housing 912 that stores the crucible 911.
 坩堝収納筐体912は、耐熱性部材でなる耐熱壁913と断熱性部材でなる断熱壁914とによる2重壁構造となっている。また、耐熱壁913の内壁面には、当該内壁面を一周するように帯状のヒーター(電気ヒーターとする。)915が複数本設けられている。 The crucible storage casing 912 has a double wall structure including a heat-resistant wall 913 made of a heat-resistant member and a heat-insulating wall 914 made of a heat-insulating member. In addition, a plurality of belt-like heaters (referred to as electric heaters) 915 are provided on the inner wall surface of the heat-resistant wall 913 so as to go around the inner wall surface.
 また、坩堝収納筐体912の上端部には、蓋体916が、坩堝911における開口部側の端部の外周を取り囲むように設けられている。この蓋体916は、保温室917の密閉性を保持する機能を有する。このような蓋体916を設けることによって、保温室917の保温効果を高めることができるとともに、燃焼装置930のバーナー934が作動している際に、バーナー934による燃焼熱及び燃焼ガスが保温室917に流入するのを防止することができる。 In addition, a lid 916 is provided at the upper end of the crucible housing 912 so as to surround the outer periphery of the end of the crucible 911 on the opening side. The lid 916 has a function of maintaining the hermeticity of the thermal storage room 917. Providing such a lid 916 can enhance the heat retention effect of the thermal insulation chamber 917, and when the burner 934 of the combustion device 930 is operating, the combustion heat and combustion gas generated by the burner 934 are retained in the thermal insulation chamber 917. Can be prevented.
 燃焼装置930は、燃焼装置筐体931と、燃焼装置筐体931の上端部に設けられたバーナー934とを有し、当該燃焼装置930は、溶湯保温装置910に対して着脱自在となっている。 The combustion device 930 includes a combustion device housing 931 and a burner 934 provided at the upper end of the combustion device housing 931. The combustion device 930 is detachable from the molten metal heat retaining device 910. .
 燃焼装置筐体931は、耐熱性部材でなる耐熱壁932と断熱性部材でなる断熱壁933とによる2重壁構造を有している。そして、燃焼装置930が溶湯保温装置910に装着された状態(図11に示す状態)となると、耐熱壁932と坩堝911の開口部と間には燃焼室935が形成される。 The combustion apparatus housing 931 has a double wall structure including a heat resistant wall 932 made of a heat resistant member and a heat insulating wall 933 made of a heat insulating member. When the combustion device 930 is attached to the molten metal heat retention device 910 (the state shown in FIG. 11), a combustion chamber 935 is formed between the heat resistant wall 932 and the opening of the crucible 911.
 バーナー934は、坩堝110内に入れられたアルミニウムなどの被溶解金属950を直火で溶解するものであり、化石燃料として例えばLPG(液化プロパンガス)を燃料供給パイプ936から取り込むとともに燃焼に必要な空気を空気取り込み口937から取り込んでノズル938から火炎を発射する。 The burner 934 melts the metal 950 to be melted such as aluminum put in the crucible 110 by direct fire, and takes in, for example, LPG (liquefied propane gas) from the fuel supply pipe 936 as fossil fuel and is necessary for combustion. Air is taken in from the air intake port 937 and a flame is fired from the nozzle 938.
 また、燃焼装置筐体931と坩堝収納筐体912との間には断熱材でなる耐熱性シール材940が設けられる。この耐熱性シール材940は、燃焼装置930を溶湯保温装置910に装着した状態としたときに、燃焼装置930を坩堝収納筐体912に設けられている蓋体916に密着させるためのものである。 Also, a heat-resistant sealing material 940 made of a heat insulating material is provided between the combustion device casing 931 and the crucible storage casing 912. The heat-resistant sealing material 940 is used for closely attaching the combustion device 930 to the lid 916 provided in the crucible housing 912 when the combustion device 930 is attached to the molten metal heat retention device 910. .
 このような耐熱性シール材940を設けることによって、燃焼装置930の燃焼室935の密閉性を高めることができる。これにより、バーナー934の燃焼熱を外部に逃さないようにすることができるので、被溶解金属950を溶解する際の熱効率を高めることができる。また、バーナー934の燃焼熱及び燃焼ガスが保温室917に流入するのを防止する効果をより高めることができる。 By providing such a heat-resistant sealing material 940, the sealing property of the combustion chamber 935 of the combustion device 930 can be improved. Thereby, since the combustion heat of the burner 934 can be prevented from escaping to the outside, the thermal efficiency when melting the metal 950 to be melted can be increased. In addition, the effect of preventing the combustion heat and combustion gas of the burner 934 from flowing into the thermal storage room 917 can be further enhanced.
 このように構成された金属溶解炉900は、被溶解金属950の溶解には熱効率の高いバーナー934を用い、生成された溶湯の保温には電気ヒーター915を用いたハイブリッド型の金属溶解炉であるため、ガスバーナーだけを用いて溶解と保温とを行う金属溶解炉に比べれば二酸化炭素の排出量を大幅に削減することができる。また、金属溶解炉900は、「坩堝」を用いたいわゆる坩堝式溶解炉である。坩堝式溶解炉は、連続式溶解炉とは異なり、坩堝の中に被溶解金属を入れて、坩堝を加熱することによって溶湯を生成するものである。このため、連続式溶解炉のような大量生産向きではないが、不純物除去装置などによる不純物除去作業を適切に行うことができ、高品質、多品種、少量生産に適した金属溶解炉である。 The metal melting furnace 900 configured in this way is a hybrid type metal melting furnace using a burner 934 with high thermal efficiency for melting the melted metal 950 and using an electric heater 915 for keeping the generated molten metal warm. Therefore, compared with a metal melting furnace that uses only a gas burner to perform melting and heat retention, the carbon dioxide emission can be greatly reduced. The metal melting furnace 900 is a so-called crucible melting furnace using a “crucible”. Unlike a continuous melting furnace, a crucible melting furnace is one in which a metal to be melted is placed in a crucible and the crucible is heated to generate a molten metal. For this reason, although it is not suitable for mass production like a continuous melting furnace, it can appropriately perform impurity removal work by an impurity removing device or the like, and is a metal melting furnace suitable for high-quality, high-mix, low-volume production.
 また、金属溶解炉900は、ガスだけを用いた金属溶解炉に比べて、溶解効率が高いという特徴もある。すなわち、ガスだけを用いた金属溶解炉は、被溶解金属950を溶解する際の溶解初期においては、ガスの炎が各被溶解金属950の隙間に入り込んで行き、被溶解金属950は効率よく溶解して行くが、溶解が進んで溶湯が生成された状態となったときには、ガスの炎は溶湯の表面にしか当たらないこととなり、坩堝911の内部には熱が伝わりにくくなってしまうという課題がある。 Also, the metal melting furnace 900 is characterized by higher melting efficiency than a metal melting furnace using only gas. That is, in a metal melting furnace using only gas, in the initial stage of melting when melting the melted metal 950, the flame of the gas enters the gaps between the melted metals 950, and the melted metal 950 is efficiently melted. However, when the melting progresses and the molten metal is generated, the gas flame hits only the surface of the molten metal, and there is a problem that heat is hardly transmitted to the inside of the crucible 911. is there.
 これに対して、金属溶解炉900は、坩堝911を電気ヒーター915によって加熱しているため、溶解効率が高いものとなる。これは、電気ヒーター915が溶湯を一定温度に保持するという機能だけでなく、溶解を早める機能をも有しているからである。また、坩堝911を保温するための熱源として電気ヒーター915を用いることにより、高精度な温度制御が可能となり、溶湯の温度を常に適切に保持できるという効果がある。 In contrast, the metal melting furnace 900 has high melting efficiency because the crucible 911 is heated by the electric heater 915. This is because the electric heater 915 has not only a function of keeping the molten metal at a constant temperature but also a function of speeding up melting. Further, by using the electric heater 915 as a heat source for keeping the crucible 911, it is possible to control the temperature with high accuracy and to maintain the temperature of the molten metal appropriately.
特開2011-117640号公報JP 2011-117640 A
 上記したように、金属溶解炉900は、優れた特徴を有するものであるが、さらなる改善を行うことによって、より優れた金属溶解炉とすることができる。 As described above, the metal melting furnace 900 has excellent characteristics, but can be made a more excellent metal melting furnace by further improvement.
 例えば、金属溶解炉900は、図11に示すように、大きく分けると、坩堝911を有する溶湯保温装置910と、バーナー934を有する燃焼装置930との2つ構造体からなり、これら溶湯保温装置910と燃焼装置930とが分割可能となっており、溶湯保温装置910に燃焼装置930を載置した状態で、坩堝911内の被溶解金属950を溶解させる構造となっている。 For example, as shown in FIG. 11, the metal melting furnace 900 is roughly divided into two structures, a molten metal heat retaining device 910 having a crucible 911 and a combustion device 930 having a burner 934, and these molten metal heat retaining devices 910. And the combustion device 930 can be divided, and the melted metal 950 in the crucible 911 is melted in a state where the combustion device 930 is placed on the molten metal heat retaining device 910.
 また、このような構造の金属溶解炉900においては、燃焼装置930の重量が、坩堝911にも加わっている構造となっている。このような構造であると、坩堝911を損傷させてしまう場合もあり得る。すなわち、坩堝911は、黒鉛を圧縮焼成したいわゆる焼き物であるのが一般的であるため、損傷しやすいものであり、坩堝911に大きな重量が直接加わらないような構造とすることが好ましい。 In the metal melting furnace 900 having such a structure, the weight of the combustion device 930 is also added to the crucible 911. With such a structure, the crucible 911 may be damaged. That is, the crucible 911 is generally a so-called grilled product obtained by compressing and firing graphite, and thus is easily damaged, and preferably has a structure in which a large weight is not directly applied to the crucible 911.
 また、金属溶解炉900においては、燃焼装置930は高温にさらされる箇所であるため、当該燃焼装置930は十分な耐熱構造となっているが、燃焼装置930においても、溶解前の被溶解金属950の上端部(坩堝911からはみ出ている部分)には、バーナー934の炎が直接当たる。このため、燃焼装置930においてバーナー934のノズル938周辺は、特に高温となりやすく、熱による破損が進み易い個所であり、破損が進んだ状態となると、部分的に補修が必要となる場合もある。 Further, in the metal melting furnace 900, the combustion device 930 is a portion exposed to a high temperature, and thus the combustion device 930 has a sufficient heat-resistant structure. However, the metal to be melted 950 before melting is also used in the combustion device 930. The flame of the burner 934 directly hits the upper end portion (the portion protruding from the crucible 911). For this reason, in the combustion device 930, the area around the nozzle 938 of the burner 934 is particularly likely to be a high temperature, and is easily damaged by heat. If the damage has progressed, partial repair may be required.
 金属溶解炉900においては、溶湯保温装置910と燃焼装置930とは分割可能となっているが、燃焼装置930は1つの構造体である。このため、仮に、燃焼装置930のごく狭い範囲が熱によって破損した場合でも、燃焼装置930全体を取り外して補修したり、状況によっては、燃焼装置930全体を新規に作り直さなければならない場合もある。燃焼装置930全体を作り直すとなると、多くの日数や費用を要し、その間、操業停止となるといった事態にもなり兼ねない。 In the metal melting furnace 900, the molten metal heat retaining device 910 and the combustion device 930 can be divided, but the combustion device 930 is a single structure. For this reason, even if a very narrow range of the combustion apparatus 930 is damaged by heat, the entire combustion apparatus 930 may be removed and repaired, or the entire combustion apparatus 930 may have to be recreated depending on the situation. If the entire combustion device 930 is remade, it takes a lot of days and costs, and during that time, the operation may be stopped.
 また、金属溶解炉900が、上記したように、坩堝911を有する溶湯保温装置910とバーナー934を有する燃焼装置930との2つの構成要素からなっているため、溶解を行う際の溶解準備工程においては、燃焼装置930を溶湯保温装置910から取り外した状態として、坩堝911内に被溶解金属950を収納することとなる。 Further, as described above, since the metal melting furnace 900 is composed of two components, that is, the molten metal heat retaining device 910 having the crucible 911 and the combustion device 930 having the burner 934, in the melting preparation step at the time of melting. The metal 950 to be melted is stored in the crucible 911 with the combustion device 930 removed from the molten metal heat retaining device 910.
 このとき、溶湯の生産効率を高くするために、1回の溶解作業において、より多くの溶湯を生成しようとすると、被溶解金属950を坩堝911の上部開口部からはみ出るほど収納するのが一般的である。このとき、被溶解金属950の垂直方向(z軸に沿った方向)へのはみ出しは、ある程度許容されるが、水平方向(xy平面に沿った方向)へのはみ出しは大きく規制される。 At this time, in order to increase the production efficiency of the molten metal, in order to generate more molten metal in one melting operation, the molten metal 950 is generally stored so as to protrude from the upper opening of the crucible 911. It is. At this time, protrusion of the melted metal 950 in the vertical direction (direction along the z-axis) is allowed to some extent, but the protrusion in the horizontal direction (direction along the xy plane) is largely restricted.
 これは、坩堝911に被溶解金属950を収納した状態で、燃焼装置930を溶湯保温装置910に載置しようとする際に、仮に、被溶解金属950が坩堝911の開口部から水平方向(xy平面に沿った方向)に所定量以上、はみ出していると、はみ出している部分が邪魔となって、燃焼装置930を溶湯保温装置910に載置できなくなってしまうからである。 This is because when the metal 950 to be melted is stored in the crucible 911 and the combustion device 930 is placed on the molten metal heat retaining device 910, the metal to be melted 950 is placed in the horizontal direction (xy) from the opening of the crucible 911. This is because if the protrusion exceeds a predetermined amount in the direction along the plane), the protruding portion becomes an obstacle and the combustion device 930 cannot be placed on the molten metal heat retention device 910.
 したがって、被溶解金属950を坩堝911に収納する作業は、「燃焼装置930が溶湯保温装置910に載置できるように被溶解金属950を坩堝911に収納する」ということを常に念頭において、被溶解金属950を坩堝911に収納する必要がある。このため、被溶解金属950を収納する際の作業業性が悪く、結局は、被溶解金属950の収納量を坩堝911の容量に対して少なめにせざるを得ないといった課題がある。このため、坩堝911の容量を十分に生かすことできず、溶湯の生産性の低下につながってしまうこととなる。 Therefore, the operation of storing the metal 950 to be melted in the crucible 911 always takes into account that “the metal 950 to be melted is stored in the crucible 911 so that the combustion device 930 can be placed on the molten metal heat retaining device 910”. The metal 950 needs to be stored in the crucible 911. For this reason, the workability at the time of accommodating the to-be-dissolved metal 950 is bad, and there exists a subject that the accommodation amount of the to-be-dissolved metal 950 must be made small rather than the capacity | capacitance of the crucible 911 after all. For this reason, the capacity | capacitance of the crucible 911 cannot fully be utilized, but it will lead to the fall of productivity of a molten metal.
 そこで本発明は、メンテナンス性の向上及び高寿命化を図るとともに、溶解効率の向上と溶湯の生産性向上を図ることができる金属溶解炉及び金属溶解炉における溶湯生成方法を提供することを目的とする。 Therefore, the present invention aims to provide a metal melting furnace and a method for generating a molten metal in the metal melting furnace that can improve maintenance efficiency and extend the life, improve melting efficiency and improve molten metal productivity. To do.
 [1]本発明の金属溶解炉は、被溶解金属が投入されるとともに前記被溶解金属が溶解された溶湯を保温した状態で保持する坩堝を備える金属溶解炉であって、上下方向において所定の高さの有底容器状をなす第1炉壁と、当該第1炉壁の内壁面に設けられて前記溶湯を保温可能とするヒーターとを有し、前記坩堝を当該坩堝の開口側外壁面が前記第1炉壁の上面から所定量だけ露出するように収納する溶湯保温装置と、前記溶湯保温装置に着脱自在に載置可能なリング形状の第2炉壁を有し、前記溶湯保温装置に載置された状態においては、前記第2炉壁の内壁面が前記坩堝の開口側外壁面の外周に沿って圧接状態で支持することにより前記坩堝を固定する坩堝固定リングと、前記坩堝固定リングに着脱自在に載置可能なリング形状の第3炉壁を有し、当該第3炉壁の内径が前記坩堝の開口側端部の外径と同じかわずかに大きい内径を有する補助リングと、前記補助リングに着脱自在に載置可能であって、上下方向において前記第1炉壁の高さよりも低い高さを有し、中央部に所定の空間部を有する第4炉壁と、前記空間部に設けられて前記坩堝に投入された被溶解金属を直火で溶解するためのバーナーとを有する燃焼装置と、をさらに備えることを特徴とする。 [1] A metal melting furnace according to the present invention is a metal melting furnace provided with a crucible for holding a molten metal charged and holding a molten metal in which the molten metal is melted in a state of being kept warm. A first furnace wall in the shape of a bottomed container having a height; and a heater provided on an inner wall surface of the first furnace wall to keep the molten metal warm, the crucible being an opening-side outer wall surface of the crucible Has a molten metal heat retaining device that is stored so as to be exposed from the upper surface of the first furnace wall by a predetermined amount, and a ring-shaped second furnace wall that can be detachably mounted on the molten metal heat retaining device, and the molten metal heat retaining device. A crucible fixing ring for fixing the crucible by supporting an inner wall surface of the second furnace wall in a press-contact state along an outer periphery of an outer wall surface on the opening side of the crucible, and the crucible fixing Ring-shaped first that can be detachably mounted on the ring An auxiliary ring having a furnace wall, the inner diameter of the third furnace wall being the same as or slightly larger than the outer diameter of the opening side end of the crucible, and detachably mounted on the auxiliary ring; A fourth furnace wall having a height lower than the height of the first furnace wall in the vertical direction and having a predetermined space in the center, and a melting target provided in the space and charged into the crucible And a combustion device having a burner for melting the metal with an open flame.
 本発明の金属溶解炉は、溶湯保温装置、坩堝固定リング、補助リング及び燃焼装置の各構造体を積み重ねた4層構造となっており、かつ、これら各構造体は、それぞれが分離可能な構造となっている。このように、本発明の金属溶解炉は、特許文献1に開示されている金属溶解炉900に比べると、より細分化された構造となっている。このため、仮に、これらの構造体のうちの、ある構造体に補修又は交換する必要が生じた場合における補修又は交換作業をし易くすることができる。
 なお、第1炉壁、第2炉壁、第3炉壁及び第4炉壁はそれぞれ耐熱及び断熱性部材で形成されている(詳細は後述の実施形態参照。)。
The metal melting furnace of the present invention has a four-layer structure in which each structure of a molten metal heat retaining device, a crucible fixing ring, an auxiliary ring, and a combustion device is stacked, and each of these structures can be separated. It has become. Thus, the metal melting furnace of the present invention has a more fragmented structure as compared to the metal melting furnace 900 disclosed in Patent Document 1. For this reason, it is possible to facilitate repair or replacement work when it is necessary to repair or replace a certain structure among these structures.
In addition, the 1st furnace wall, the 2nd furnace wall, the 3rd furnace wall, and the 4th furnace wall are each formed with the heat-resistant and heat insulating member (refer to embodiment mentioned later for details).
 特に、この種の金属溶解炉においては、燃焼装置周辺は、高温に晒されるため、熱による破損が進み易い個所である。本発明の金属溶解炉においては、高温に晒され易い箇所は、燃焼装置と補助リングとの2つの構造体とし、これらを個々に分割可能となっている。このため、熱による破損が進んで、補修又は交換が必要となった場合、補修又は交換が必要な構造体のみを取り出して、補修又は交換を行うことができる。例えば、補助リングが損傷した場合には、補助リングのみを補修又は交換すればよいため、メンテナンス性を向上させることができる。 In particular, in this type of metal melting furnace, the periphery of the combustion apparatus is exposed to high temperatures, and is easily damaged by heat. In the metal melting furnace of the present invention, the portion that is easily exposed to a high temperature has two structures, a combustion device and an auxiliary ring, which can be divided individually. For this reason, when damage due to heat progresses and repair or replacement becomes necessary, only the structure that needs repair or replacement can be taken out and repaired or replaced. For example, when the auxiliary ring is damaged, only the auxiliary ring needs to be repaired or replaced, so that maintainability can be improved.
 このように、金属溶解炉を細分化することにより、個々の構造体の代わりを用意しておくことも比較的容易であり、それによって、長期間に渡って操業停止する必要がなくなるため、生産に支障をきたすことが無くなる。 In this way, by subdividing the metal melting furnace, it is relatively easy to prepare substitutes for individual structures, thereby eliminating the need to shut down the operation for a long period of time. Will not cause any trouble.
 また、本発明の金属溶解炉は、ハイブリッド型の金属溶解炉である。このため、本発明の金属溶解炉によれば、被溶解金属の溶解を行う際は、バーナーによる直火により被溶解金属の溶解を行い、溶解によって生成された溶湯の保温はヒーターによって行うことができる。また、ヒーターは溶湯を保温するという機能だけでなく、溶解を早める機能をも有しているため、効率のよい溶湯生成を可能としながらも二酸化炭素の排出削減が可能となる。 The metal melting furnace of the present invention is a hybrid type metal melting furnace. For this reason, according to the metal melting furnace of the present invention, when the metal to be melted is melted, the metal to be melted is melted by an open flame with a burner, and the temperature of the molten metal generated by the melting is kept by a heater. it can. In addition, since the heater has not only a function of keeping the molten metal warm, but also a function of accelerating melting, it is possible to reduce carbon dioxide emissions while enabling efficient molten metal generation.
 また、本発明の金属溶解炉は、燃焼室と保温室とが同じではなく、それぞれが独立した空間であるので、ヒーターがバーナーの燃焼熱や燃焼ガスに晒されることがなく、燃焼熱や燃焼ガスによるヒーターの劣化を防止することができ、ヒーターの長寿命化が可能となるといった効果も得られる。 Further, in the metal melting furnace of the present invention, the combustion chamber and the storage chamber are not the same, and each is an independent space, so that the heater is not exposed to the combustion heat or combustion gas of the burner, and the combustion heat or combustion Deterioration of the heater due to gas can be prevented, and the effect that the life of the heater can be extended is also obtained.
 また、本発明の金属溶解炉においては、補助リングにおける第3炉壁の内径は、坩堝の開口側上端部の外径と同じかわずかに大きい内径を有している。補助リングをこのような構造とすることにより、補助リングを坩堝固定リングに載置した状態としたときに、補助リングの重量が坩堝に加わることがなくなる。すなわち、坩堝固定リングは、坩堝の開口側外壁面を当該開口側外壁面の外周に沿って圧接状態で支持することによって前記坩堝を固定するものであるため、当該坩堝固定リングに補助リングを載置したとしても、補助リングの重量が坩堝に加わることがない。これによって、坩堝に大きな重量が加わることによる坩堝の損傷を防止することができ、坩堝を長寿命とすることができる。
 このように、本発明によれば、メンテナンス性の向上及び高寿命化を図るとともに、溶解効率の向上と溶湯の生産性向上を図ることができる金属溶解炉とすることができる。
In the metal melting furnace of the present invention, the inner diameter of the third furnace wall in the auxiliary ring is equal to or slightly larger than the outer diameter of the upper end portion on the opening side of the crucible. With the auxiliary ring having such a structure, the weight of the auxiliary ring is not applied to the crucible when the auxiliary ring is placed on the crucible fixing ring. That is, the crucible fixing ring fixes the crucible by supporting the crucible opening-side outer wall surface in a press-contact state along the outer periphery of the opening-side outer wall surface, and thus mounting the auxiliary ring on the crucible fixing ring. Even if it is placed, the weight of the auxiliary ring is not added to the crucible. As a result, the crucible can be prevented from being damaged due to a large weight being applied to the crucible, and the crucible can have a long life.
As described above, according to the present invention, it is possible to provide a metal melting furnace capable of improving maintainability and extending the life, improving melting efficiency and improving molten metal productivity.
 [2]本発明の金属溶解炉によれば、前記坩堝固定リングにおける第2炉壁の内壁面と前記坩堝の開口側外壁面との間には、所定の隙間が形成され、当該隙間には耐熱性部材でなる坩堝固定シールが前記坩堝の開口側外壁面を一周するように埋め込まれていることが好ましい。 [2] According to the metal melting furnace of the present invention, a predetermined gap is formed between the inner wall surface of the second furnace wall and the outer wall surface on the opening side of the crucible in the crucible fixing ring. It is preferable that a crucible fixing seal made of a heat-resistant member is embedded so as to go around the outer wall surface on the opening side of the crucible.
 このような構造となっているため、坩堝の開口側外壁面は、坩堝固定シールを介して坩堝固定リングにより確実に支持された状態となる。このため、保温室にバーナーの燃焼熱や燃焼ガスが入り込むのを防ぐことができる。それによって、ヒーターがバーナーの燃焼熱や燃焼ガスに晒されることがなくなり、燃焼熱や燃焼ガスによるヒーターの劣化を防止することができ、ヒーターの長寿命化が可能となる。 Because of such a structure, the outer wall surface on the opening side of the crucible is surely supported by the crucible fixing ring via the crucible fixing seal. For this reason, it is possible to prevent the combustion heat and combustion gas of the burner from entering the heat retaining chamber. As a result, the heater is not exposed to the combustion heat or combustion gas of the burner, the deterioration of the heater due to the combustion heat or combustion gas can be prevented, and the life of the heater can be extended.
 [3]本発明の金属溶解炉においては、記第2炉壁の内壁面は、前記隙間が当該第2炉壁の上面から下面に向かうにしたがって狭くなるような傾斜面となっていることが好ましい。 [3] In the metal melting furnace of the present invention, the inner wall surface of the second furnace wall may be an inclined surface such that the gap becomes narrower from the upper surface to the lower surface of the second furnace wall. preferable.
 このような構造となっているため、坩堝の開口側外壁面との間に形成される隙間に埋め込まれる坩堝固定シールの断面形状は、下部が狭小の「くさび型」となる。これにより、坩堝固定リングに載置される補助リング及び燃焼装置の重量によって、坩堝固定シールが下方向に移動しようとすることによる水平方向への押圧力(坩堝の開口側外壁面を押圧する力)が働くため、前記坩堝固定リングと坩堝との密着性をより高めることができる。それによって、保温室にバーナーの燃焼熱や燃焼ガスが入り込むのを防ぐ効果をより高めることができる。 Because of this structure, the cross-sectional shape of the crucible fixing seal embedded in the gap formed between the crucible's opening-side outer wall surface is a “wedge shape” with a narrow lower portion. As a result, due to the weight of the auxiliary ring and combustion device placed on the crucible fixing ring, the horizontal pressing force (the force pressing the crucible opening side outer wall surface) due to the downward movement of the crucible fixing seal. ) Works, the adhesion between the crucible fixing ring and the crucible can be further enhanced. As a result, the effect of preventing the burner's combustion heat and combustion gas from entering the heat retaining chamber can be further enhanced.
 [4]本発明の金属溶解炉においては、前記坩堝固定リングにおける前記第2炉壁の下面と前記溶湯保温装置における前記第1炉壁の上面との間には、耐熱性部材でなるリング形状の溶湯保温装置シールが敷設されており、当該溶湯保温装置シールは、前記第1炉壁の上面において当該上面の全周に渡って敷設されていることが好ましい。 [4] In the metal melting furnace of the present invention, a ring shape made of a heat-resistant member is provided between the lower surface of the second furnace wall in the crucible fixing ring and the upper surface of the first furnace wall in the molten metal heat retaining device. It is preferable that the molten metal heat insulation device seal is laid over the entire upper surface of the first furnace wall.
 このような構造とすることにより、坩堝固定リングと溶湯保温装置とを密着させることができるため、保温室の密閉度を高めることができる。すなわち、このような溶湯保温装置シールを第1炉壁の上面に敷設した状態で、坩堝固定リングを載置すると、溶湯保温装置シールは坩堝固定リングの重量によって押圧された状態となるため、坩堝固定リングにおける第2炉壁及び溶湯保温装置における第1炉壁の上面が鏡面ではなく多少の「ざらつき」を有したり、多少の凹凸を有したりしていても、これら「ざらつき」や凹凸を吸収して坩堝固定リングと溶湯保温装置とを密着状態とすることができる。 By adopting such a structure, the crucible fixing ring and the molten metal heat-retaining device can be brought into close contact with each other, so that the hermeticity of the heat retention chamber can be increased. That is, when the crucible fixing ring is placed in a state where such a molten metal heat insulating device seal is laid on the upper surface of the first furnace wall, the molten metal heat insulating device seal is pressed by the weight of the crucible fixing ring. Even if the second furnace wall in the fixing ring and the upper surface of the first furnace wall in the molten metal heat retaining device are not mirror surfaces and have some “roughness” or some unevenness, these “roughness” and unevennesses The crucible fixing ring and the molten metal heat retaining device can be brought into close contact with each other.
 [5]本発明の金属溶解炉においては、前記第1炉壁は、金属ケースに収納され、前記第1炉壁を前記金属ケースに収納した状態としたときに、当該金属ケースの上端辺が前記第1炉壁の上面よりもわずかに突出することによる突出壁が形成され、前記溶湯保温装置シールは、当該溶湯保温装置シールの外周が前記突出壁に沿うように前記第1炉壁の上面に敷設されていることが好ましい。 [5] In the metal melting furnace of the present invention, the first furnace wall is housed in a metal case, and when the first furnace wall is housed in the metal case, the upper end side of the metal case is A protruding wall is formed by slightly protruding from the upper surface of the first furnace wall, and the molten metal heat insulating device seal has an upper surface of the first electric furnace wall so that an outer periphery of the molten metal heat insulating device seal is along the protruding wall. It is preferable that it is laid.
 このような構造とすることにより、金属ケースの突出壁が溶湯保温装置シールの敷設をガイドする役目と、敷設したあとの位置ずれを防止する役目とをなすため、溶湯保温装置シールを敷設する際の位置決めを適切に行うことができるとともに、溶湯保温装置シールが第1炉壁上で水平方向にずれることを防止できる。すなわち、溶湯保温装置シールを第1炉壁の上面に敷設したときに、当該溶湯保温装置シールの外周面が金属ケースの突出壁における内周面に当接した状態となるため、溶湯保温装置シールは、水平方向への動きが規制され、それによって、溶湯保温装置シールが水平方向にずれないようにすることができる。 By adopting such a structure, the protruding wall of the metal case serves to guide the laying of the molten metal heat insulation device seal, and to prevent the positional deviation after the laying is performed. Can be appropriately performed, and the molten metal heat insulating device seal can be prevented from being displaced horizontally on the first furnace wall. That is, when the molten metal heat insulating device seal is laid on the upper surface of the first furnace wall, the outer peripheral surface of the molten metal heat insulating device seal is in contact with the inner peripheral surface of the protruding wall of the metal case. The movement in the horizontal direction is restricted, thereby preventing the molten metal heat insulating device seal from being displaced in the horizontal direction.
 [6]本発明の金属溶解炉においては、前記坩堝固定リングにおける前記第2炉壁の上面と前記補助リングにおける前記第3炉壁の下面との間には、耐熱性部材でなるリング形状の補助リングシールが敷設されており、当該補助リングシールは、前記第2炉壁の上面の全周に渡って敷設されていることが好ましい。 [6] In the metal melting furnace of the present invention, a ring shape made of a heat resistant member is provided between the upper surface of the second furnace wall in the crucible fixing ring and the lower surface of the third furnace wall in the auxiliary ring. It is preferable that an auxiliary ring seal is laid, and the auxiliary ring seal is laid over the entire circumference of the upper surface of the second furnace wall.
 このような構造とすることにより、坩堝固定リングと補助リングとを密着させることができるため、補助リングで囲まれる空間(燃焼室)の密閉度を高めることができる。この場合も、補助リングシールを坩堝固定リングの上面に敷設した状態で、補助リングを載置すると、補助リングシールは補助リングの重量によって押圧された状態となるため、坩堝固定リングの上面及び補助リングの下面が鏡面ではなく多少の「ざらつき」を有したり、多少の凹凸を有したりしていても、これら「ざらつき」や凹凸を吸収して坩堝固定リングと補助リングとを密着状態とすることができる。 By adopting such a structure, the crucible fixing ring and the auxiliary ring can be brought into close contact with each other, so that the degree of sealing of the space (combustion chamber) surrounded by the auxiliary ring can be increased. Also in this case, when the auxiliary ring is placed with the auxiliary ring seal laid on the upper surface of the crucible fixing ring, the auxiliary ring seal is pressed by the weight of the auxiliary ring. Even if the lower surface of the ring is not a mirror surface and has some "roughness" or some unevenness, it absorbs these "roughness" and unevenness to bring the crucible fixing ring and auxiliary ring into close contact with each other. can do.
 [7]本発明の金属溶解炉においては、前記坩堝固定リングにおける前記第2炉壁の上面と前記補助リングにおける前記第3炉壁の下面との間には、前記補助リングシールの外径と同等の内径を有する開口部が形成されたリング状の補助リングシール受け板が敷設されており、前記補助リングシール受け板の前記開口部の縁部には、前記補助リングシールの敷設をガイドするための補助リングシールガイド壁が前記開口部の縁部に沿うように形成され、当該補助リングシールガイド壁は、前記補助リングシールの厚み寸法よりも低い高さを有し、前記補助リングシールは、当該補助リングシールの外周が前記補助リングシールガイド壁の内周に沿うように前記坩堝固定リングにおける第2炉壁の上面に敷設されていることが好ましい。 [7] In the metal melting furnace of the present invention, between the upper surface of the second furnace wall of the crucible fixing ring and the lower surface of the third furnace wall of the auxiliary ring, the outer diameter of the auxiliary ring seal is A ring-shaped auxiliary ring seal receiving plate having an opening having the same inner diameter is laid, and the auxiliary ring seal is laid on the edge of the opening of the auxiliary ring seal receiving plate. An auxiliary ring seal guide wall is formed along an edge of the opening, the auxiliary ring seal guide wall having a height lower than a thickness dimension of the auxiliary ring seal, It is preferable that the auxiliary ring seal is laid on the upper surface of the second furnace wall of the crucible fixing ring so that the outer periphery of the auxiliary ring seal is along the inner periphery of the auxiliary ring seal guide wall.
 このような補助リングシール受け板を設けることにより、当該補助リングシール受け板が補助リングシールの敷設をガイドする役目と、敷設したあとの位置ずれを防止する役目とをなすため、補助リングシールを敷設する際の位置決めを適切に行うことができるとともに、補助リングシールが坩堝固定リング上で水平方向にずれることを防止できる。 By providing such an auxiliary ring seal receiving plate, the auxiliary ring seal receiving plate serves to guide the laying of the auxiliary ring seal and to prevent the positional deviation after laying. Positioning at the time of laying can be performed appropriately, and the auxiliary ring seal can be prevented from shifting in the horizontal direction on the crucible fixing ring.
 [8]本発明の金属溶解炉においては、前記補助リングにおける前記第3炉壁の上面と前記燃焼装置における前記第4炉壁の下面との間には、耐熱性部材でなるリング形状の燃焼装置シールが敷設されており、当該燃焼装置シールは、前記第3炉壁の上面の全周に渡って敷設されていることが好ましい。 [8] In the metal melting furnace of the present invention, a ring-shaped combustion made of a heat-resistant member is provided between the upper surface of the third furnace wall in the auxiliary ring and the lower surface of the fourth furnace wall in the combustion device. It is preferable that an apparatus seal is laid, and the combustion apparatus seal is laid over the entire circumference of the upper surface of the third furnace wall.
 このような構造とすることにより、補助リングと燃焼装置とを密着させることができるため、補助リングで囲まれる空間(燃焼室)の密閉度を高めることができる。この場合も、燃焼補助リングシールを補助リングの上面に敷設した状態で、燃焼装置を載置すると、補助リングシールは燃焼装置の重量によって押圧された状態となるため、補助リングの上面及び燃焼装置の下面に多少の「ざらつき」を有したり、多少の凹凸を有したりしていても、これら「ざらつき」や凹凸を吸収して補助リングと燃焼装置とを密着状態とすることができる。 By adopting such a structure, the auxiliary ring and the combustion device can be brought into close contact with each other, so that the degree of sealing of the space (combustion chamber) surrounded by the auxiliary ring can be increased. Also in this case, when the combustion device is placed with the combustion auxiliary ring seal laid on the upper surface of the auxiliary ring, the auxiliary ring seal is pressed by the weight of the combustion device. Even if there is some “roughness” or some unevenness on the bottom surface, the auxiliary ring and the combustion device can be brought into close contact with each other by absorbing these “roughness” and unevenness.
 [9]本発明の金属溶解炉においては、前記補助リングにおける第3炉壁の上面と前記燃焼装置における前記第4炉壁の下面との間には、前記燃焼装置シールの外径と同等の内径を有する開口部が形成されたリング状の燃焼装置シール受け板が敷設されており、前記燃焼装置シール受け板の前記開口部の縁部には、前記燃焼装置シールの敷設をガイドするための燃焼装置シールガイド壁が前記開口部の縁部に沿うように形成され、当該燃焼装置シールガイド壁は、前記燃焼装置シールの厚み寸法よりも低い高さを有し、前記燃焼装置シールは、当該燃焼装置シールの外周が前記燃焼装置シールガイド壁の内周に沿うように前記第3炉壁の上面に敷設されていることが好ましい。 [9] In the metal melting furnace of the present invention, the outer diameter of the combustion device seal is equivalent to the space between the upper surface of the third furnace wall of the auxiliary ring and the lower surface of the fourth furnace wall of the combustion device. A ring-shaped combustion device seal receiving plate having an opening having an inner diameter is laid, and an edge of the opening of the combustion device seal receiving plate is used to guide the laying of the combustion device seal. A combustion device seal guide wall is formed along an edge of the opening, the combustion device seal guide wall has a height lower than a thickness dimension of the combustion device seal, and the combustion device seal It is preferable that the outer periphery of the combustion apparatus seal is laid on the upper surface of the third furnace wall so as to follow the inner periphery of the combustion apparatus seal guide wall.
 このような燃焼装置シール受け板を設けることにより、当該燃焼装置シール受け板が燃焼装置シールの敷設をガイドする役目と、敷設したあとの位置ずれを防止する役目とをなすため、燃焼装置シールを敷設する際の位置決めを適切に行うことができるとともに、燃焼装置シールが補助リング上で水平方向にずれることを防止できる。 By providing such a combustion device seal receiving plate, the combustion device seal receiving plate serves to guide the laying of the combustion device seal and to prevent positional displacement after laying. Positioning at the time of laying can be performed appropriately, and the combustion apparatus seal can be prevented from shifting horizontally on the auxiliary ring.
 [10]本発明の金属溶解炉においては、前記坩堝の開口側外壁面の温度を検出する坩堝上部温度センサーを有することが好ましい。 [10] The metal melting furnace of the present invention preferably includes a crucible upper temperature sensor for detecting the temperature of the opening-side outer wall surface of the crucible.
 これにより、坩堝の外壁面における上部(開口側外壁面)の温度を測定することができる。この場合、坩堝の内部の溶湯の温度を直接計測するものではないが、当該坩堝上部温度センサーによる計測結果に基づいて坩堝内における上部の溶湯の温度を推測することができ、当該計測結果に基づいて、ヒーターなどの制御を行うことにより、溶湯の温度管理などを適切に行うことができる。 Thereby, the temperature of the upper part (opening side outer wall surface) of the outer wall surface of the crucible can be measured. In this case, although the temperature of the molten metal inside the crucible is not directly measured, the temperature of the upper molten metal in the crucible can be estimated based on the measurement result by the crucible upper temperature sensor, and based on the measurement result. In addition, by controlling the heater and the like, it is possible to appropriately manage the temperature of the molten metal.
 [11]本発明の金属溶解炉においては、前記坩堝の底部外壁面の温度を検出する坩堝底部温度センサーを有することを特徴とする金属溶解炉。 [11] The metal melting furnace of the present invention is characterized by having a crucible bottom temperature sensor for detecting the temperature of the bottom outer wall surface of the crucible.
 これにより、坩堝の底部外壁面の温度を測定することができる。この場合も、坩堝の内部の溶湯の温度を直接計測するものではないが、当該坩堝底部温度センサーによる計測結果に基づいて坩堝内における下部の溶湯の温度を推測することができ、当該計測結果に基づいて、ヒーターなどの制御を行うことにより、溶湯の温度管理などを適切に行うことができる。なお、当該坩堝底部温度センサーによる計測結果と坩堝上部温度センサーによる計測結果に基づいて、ヒーターなどの制御を行うことにより、溶湯の温度管理などをより適切に行うことができる。 This makes it possible to measure the temperature of the outer wall surface of the bottom of the crucible. Also in this case, the temperature of the molten metal inside the crucible is not directly measured, but the temperature of the molten metal in the lower part in the crucible can be estimated based on the measurement result by the temperature sensor at the bottom of the crucible. Based on the control of the heater or the like, the temperature management of the molten metal can be appropriately performed. In addition, based on the measurement result by the said crucible bottom part temperature sensor and the measurement result by the crucible top temperature sensor, temperature control etc. of a molten metal can be performed more appropriately by controlling a heater etc.
 [12]本発明の金属溶解炉においては、前記坩堝に保持されている溶湯の温度を検出する溶湯温度センサーを有することが好ましい。 [12] The metal melting furnace of the present invention preferably has a molten metal temperature sensor that detects the temperature of the molten metal held in the crucible.
 これにより、坩堝に保持されている溶湯の温度を直接計測することができ、当該溶湯温度センサーによる計測結果に基づいて、坩堝内の被溶解金属の溶解の度合いなどを適切に知ることができる。 Thereby, the temperature of the molten metal held in the crucible can be directly measured, and the degree of melting of the metal to be melted in the crucible can be appropriately known based on the measurement result by the molten metal temperature sensor.
 [13]本発明の金属溶解炉においては、前記ヒーターは、電気ヒーターであることが好ましい。 [13] In the metal melting furnace of the present invention, the heater is preferably an electric heater.
 ヒーターを電気ヒーターとすることにより、溶湯を加熱・保温する場合、電気ヒーターが二酸化炭素の直接の排出源とはならないため、二酸化炭素の排出削減に大きく寄与できる。また、電気ヒーターは制御が容易であり、かつ、微調整も可能であるため、溶湯の加熱・保温を行う際に、溶湯の温度制御を高精度に行うことができる。 By using an electric heater as the heater, when the molten metal is heated and kept warm, the electric heater does not become a direct emission source of carbon dioxide, which can greatly contribute to the reduction of carbon dioxide emission. In addition, since the electric heater is easy to control and can be finely adjusted, the temperature of the molten metal can be controlled with high accuracy when the molten metal is heated and kept warm.
 [14]本発明の金属溶解炉においては、前記燃焼装置及び前記補助リングのうちの少なくとも燃焼装置が取り外された状態で前記坩堝に保持されている溶湯に浸漬可能な不純物除去装置をさらに有することが好ましい。 [14] The metal melting furnace of the present invention further includes an impurity removing device that can be immersed in the molten metal held in the crucible with at least the combustion device removed from the combustion device and the auxiliary ring. Is preferred.
 このような不純物除去装置を設けることにより、坩堝内の溶湯に含まれる水素ガスなどの不純物を除去することができ、溶湯を高品質なものとすることができる。また、要求される品質基準に達するまで不純物除去処理を繰り返し行うこともできる。これにより、溶湯中の不純物を確実に除去することができる。 By providing such an impurity removing device, impurities such as hydrogen gas contained in the molten metal in the crucible can be removed, and the molten metal can be made of high quality. Also, the impurity removal process can be repeated until the required quality standard is reached. Thereby, the impurity in a molten metal can be removed reliably.
 [15]本発明の金属溶解炉においては、前記不純物除去装置は、先端部に回転体を有し、当該回転体が前記溶湯の中で回転しながらマイクロバブル化した不活性ガスを発生する回転式の脱ガス装置であることが好ましい。 [15] In the metal melting furnace of the present invention, the impurity removing device has a rotating body at the tip, and the rotating body rotates in the molten metal to generate an inert gas that is microbubbled. A degassing device of the type is preferred.
 この不純物除去装置は、回転体が回転しながらマイクロバブル化した不活性ガスを溶湯中に発生させて、不純物をマイクロバブルに付着させて浮上させるものである。このような不純物除去装置を用いることにより、水素ガスなどの不純物を効率的に除去することができるため、高品質な溶湯を生成することができる。 This impurity removing device generates an inert gas that has been made into microbubbles in the molten metal while the rotating body rotates, and causes the impurities to adhere to the microbubbles and float. By using such an impurity removing device, impurities such as hydrogen gas can be efficiently removed, so that a high-quality molten metal can be generated.
 [16]本発明の金属溶解炉における溶湯生成方法は、[1]~[15]のいずれかに記載の金属溶解炉を用いた金属溶解炉における溶湯生成方法であって、前記被溶解金属を前記坩堝に投入する被溶解金属投入工程と、前記燃焼装置のバーナーによって直火で前記被溶解金属を溶解させる溶解工程と、前記坩堝の内部における溶湯を前記ヒーターによって所定温度に保温した状態で保持する溶湯保温工程と、を有することを特徴とする。 [16] A method for producing a molten metal in a metal melting furnace of the present invention is a method for producing a molten metal in a metal melting furnace using the metal melting furnace according to any one of [1] to [15], wherein the metal to be melted is used. Holding the molten metal to be charged into the crucible, the melting step of melting the molten metal by an open flame by the burner of the combustion device, and holding the molten metal inside the crucible at a predetermined temperature by the heater And a molten metal heat-retaining step.
 このように、本発明の金属溶解炉における溶湯生成方法は、[1]~[15]のいずれかに記載の金属溶解炉を用いて溶湯生成を行うものである。このような金属溶解炉を用いて溶湯生成を行う際は、被溶解金属投入工程と、燃焼装置を溶湯保温装置に装着して被溶解金属を溶解させる溶解工程と、坩堝内における溶湯を保温した状態で保持する溶湯保温工程とをこの順序で行う。このような工程を行うによって、効率のよい溶湯生成を可能とする。また、[1]~[15]のいずれかに記載の金属溶解炉を用いているため、[1]~[15]のいずれかに記載の金属溶解炉が有する効果と同様の効果を有する。 As described above, the molten metal generation method in the metal melting furnace of the present invention is to perform molten metal generation using the metal melting furnace according to any one of [1] to [15]. When performing molten metal generation using such a metal melting furnace, the molten metal charging step, the melting step of attaching the combustion device to the molten metal heat retaining device to melt the molten metal, and the molten metal in the crucible were kept warm. The molten metal heat retention process held in the state is performed in this order. By performing such a process, efficient molten metal production | generation is enabled. In addition, since the metal melting furnace according to any one of [1] to [15] is used, the same effect as that of the metal melting furnace according to any one of [1] to [15] is obtained.
 [17]本発明の金属溶解炉における溶湯生成方法においては、前記溶解工程には、前記バーナーによって直火で前記被溶解金属を溶解させながら前記ヒーターによって加熱する「バーナー・ヒーター併用の溶解・加熱工程」が含まれ、前記坩堝の所定部分の温度が第1設定温度に達したら、前記「バーナー・ヒーター併用の溶解・加熱工程」に移行し、当該「バーナー・ヒーター併用の溶解・加熱工程」において前記坩堝の所定部分の温度が前記第1設定温度よりも高い第2設定温度に達すると、当該「バーナー・ヒーター併用の溶解・加熱工程」から前記溶湯保温工程に移行することが好ましい。 [17] In the molten metal production method in the metal melting furnace of the present invention, in the melting step, the molten metal is heated by the heater while melting the molten metal by an open flame with the burner. If the temperature of the predetermined portion of the crucible reaches the first set temperature, the process proceeds to the “melting / heating process using a burner / heater”, and the “melting / heating process using a burner / heater”. When the temperature of the predetermined portion of the crucible reaches a second set temperature higher than the first set temperature, it is preferable to shift from the “melting / heating process using a burner / heater together” to the molten metal heat retaining process.
 このような工程を行うことにより、被溶解金属を溶解させて溶湯するまでに必要な燃料消費量及び溶解時間を大幅に抑制することができる。 By performing such a process, it is possible to significantly suppress the fuel consumption and the melting time required for melting the metal to be melted and melting it.
 [18]本発明の金属溶解炉における溶湯生成方法においては、前記溶湯に含まれる不純物を除去する不純物除去工程をさらに有することが好ましい。 [18] In the molten metal production method in the metal melting furnace of the present invention, it is preferable to further include an impurity removal step of removing impurities contained in the molten metal.
 このような不純物除去工程を設けることにより、溶湯内に含まれる水素ガスなどの不純物を除去することができ、溶湯を高品質なものとすることができる。 By providing such an impurity removal step, impurities such as hydrogen gas contained in the molten metal can be removed, and the molten metal can be of high quality.
 [19]本発明の金属溶解炉における溶湯生成方法においては、前記溶湯保温装置に前記坩堝固定リングを載置した状態の坩堝固定リング付き溶湯保温装置をn(nは2以上の整数)台準備するとともに、前記補助リング及び燃焼装置をそれぞれ1台ずつ準備して、前記n台の坩堝固定リング付き溶湯保温装置を第1~第nの坩堝固定リング付き溶湯保温装置としたとき、前記第1~第nの坩堝固定リング付きの溶湯保温装置のうちの第1の坩堝固定リング付き溶湯保温装置に前記補助助リング及び燃焼装置を載置して、当該第1の坩堝固定リング付き溶湯保温装置において前記被溶解金属投入工程と、前記溶解工程と、前記溶湯保温工程とを行い、これを第nの坩堝固定リング付き溶湯保温装置まで順番に行ことが好ましい。 [19] In the molten metal production method in the metal melting furnace of the present invention, n (n is an integer of 2 or more) preparations of molten metal heat retaining devices with a crucible fixing ring in a state where the crucible fixing ring is placed on the molten metal heat retaining device. In addition, when each of the auxiliary ring and the combustion device is prepared, and the molten metal heat retaining devices with the n crucible fixing rings are used as the first to nth molten metal heat retaining devices, the first The auxiliary auxiliary ring and the combustion device are placed on the molten metal heat retaining device with the first crucible fixing ring among the molten metal heat retaining devices with the nth crucible fixing ring, and the molten metal heat retaining device with the first crucible fixing ring. It is preferable to perform the melted metal charging step, the melting step, and the molten metal heat retaining step in order to perform the molten metal heat retaining device with the nth crucible fixing ring in order.
 このようにすることにより、本発明のような坩堝式溶解炉においても、連続溶解炉と同様に連続的な溶湯の生成作業と溶湯の汲み出し作業とを行うことが可能となり、連続溶解炉と遜色のない高い生産性を得ることができる。 By doing so, even in the crucible melting furnace as in the present invention, it is possible to perform a continuous molten metal production operation and a molten metal pumping operation in the same manner as the continuous melting furnace. High productivity can be obtained.
実施形態に係る金属溶解炉10の外観を示す斜視図である。It is a perspective view showing the appearance of metal melting furnace 10 concerning an embodiment. 図1における金属溶解炉10のA-A線矢視断面図である。FIG. 2 is a cross-sectional view taken along line AA of the metal melting furnace 10 in FIG. 1. 坩堝固定リング200の一部と坩堝110の開口側上端部を拡大して示す図である。It is a figure which expands and shows a part of crucible fixing ring 200 and the opening side upper end part of the crucible 110. FIG. 補助リングシール受け板360を取り出して示す図である。It is a figure which takes out and shows auxiliary ring seal receiving plate 360. 実施形態に係る金属溶解炉10を用いて溶湯を生成する際の溶湯生成方法の各工程を説明するために示す図である。It is a figure shown in order to demonstrate each process of the molten metal production | generation method at the time of producing | generating a molten metal using the metal melting furnace 10 which concerns on embodiment. 実施形態に係る金属溶解炉10を用いて溶湯を生成する際の溶湯生成方法の各工程を説明するために示す図である。It is a figure shown in order to demonstrate each process of the molten metal production | generation method at the time of producing | generating a molten metal using the metal melting furnace 10 which concerns on embodiment. 実施形態に係る金属溶解炉10を用いて溶湯を生成する際の溶湯生成方法の各工程を説明するために示す図である。It is a figure shown in order to demonstrate each process of the molten metal production | generation method at the time of producing | generating a molten metal using the metal melting furnace 10 which concerns on embodiment. 実施形態に係る金属溶解炉10を用いて実際に被溶解金属600の溶解作業を行った場合の溶解効率を説明するために示す図である。It is a figure shown in order to demonstrate the melting efficiency at the time of actually melt | dissolving the to-be-melted metal 600 using the metal melting furnace 10 which concerns on embodiment. 実施形態に係る金属溶解炉10における溶湯生成方法の他の例を示す図である。It is a figure which shows the other example of the molten metal production | generation method in the metal melting furnace 10 which concerns on embodiment. 溶湯の温度測定を行うための温度センサー挿入孔340の設置箇所の変形例について説明するために示す図である。It is a figure shown in order to demonstrate the modification of the installation location of the temperature sensor insertion hole 340 for measuring the temperature of a molten metal. 特許文献1に開示されている金属溶解炉900を説明するために示す図である。It is a figure shown in order to demonstrate the metal melting furnace 900 currently disclosed by patent document 1. FIG.
 以下、本発明の実施形態について説明する。
 図1は、実施形態に係る金属溶解炉の外観を示す斜視図である。実施形態に係る金属溶解炉10は、溶湯保温装置100と、坩堝固定リング200と、補助リング300と、燃焼装置400と、回転脱ガス装置500とを有している。
Hereinafter, embodiments of the present invention will be described.
Drawing 1 is a perspective view showing the appearance of the metal melting furnace concerning an embodiment. The metal melting furnace 10 according to the embodiment includes a molten metal heat retaining device 100, a crucible fixing ring 200, an auxiliary ring 300, a combustion device 400, and a rotary degassing device 500.
 なお、実施形態に係る金属溶解炉10においては、溶湯保温装置100、坩堝固定リング200、補助リング300、燃焼装置400及び回転脱ガス装置500を含めて「金属溶解炉10」としているが、回転脱ガス装置500を除く溶湯保温装置100、坩堝固定リング200、補助リング300及び燃焼装置400の4つの構成要素について説明する場合には、これらをひとまとめとして「溶解炉本体10A」として説明する。 In the metal melting furnace 10 according to the embodiment, the “metal melting furnace 10” includes the molten metal heat retaining device 100, the crucible fixing ring 200, the auxiliary ring 300, the combustion device 400, and the rotary degassing device 500. When the four components of the molten metal heat retaining device 100 excluding the degassing device 500, the crucible fixing ring 200, the auxiliary ring 300, and the combustion device 400 are described, they are collectively described as the “melting furnace body 10A”.
 図2は、図1における溶解炉本体10AのA-A線矢視断面図である。図1及び図2 により実施形態に係る金属溶解炉10の構成を詳細に説明する。 FIG. 2 is a cross-sectional view taken along line AA of the melting furnace main body 10A in FIG. The structure of the metal melting furnace 10 according to the embodiment will be described in detail with reference to FIGS.
 溶湯保温装置100は、坩堝110と、耐熱及び断熱部材でなる第1炉壁120と、第1炉壁120を取り囲む金属ケース130とを有している。 The molten metal heat retaining device 100 includes a crucible 110, a first furnace wall 120 made of a heat-resistant and heat-insulating member, and a metal case 130 surrounding the first furnace wall 120.
 第1炉壁120は、上下方向において所定の高さを有する有底容器形状をなしており、耐熱壁121と当該耐熱壁121の外側に設けられている断熱壁122とからなる。耐熱壁121は、耐熱レンガなどの耐熱性部材でなり、断熱壁122は、セラミックなどの断熱性部材でなる。 The first furnace wall 120 has a bottomed container shape having a predetermined height in the vertical direction, and includes a heat resistant wall 121 and a heat insulating wall 122 provided outside the heat resistant wall 121. The heat resistant wall 121 is made of a heat resistant member such as a heat resistant brick, and the heat insulating wall 122 is made of a heat insulating member such as ceramic.
 このように構成された第1炉壁120の内部には、坩堝110が収納され、第1炉壁120の内壁面すなわち耐熱壁121の内壁面と坩堝110との間には保温室150が形成される。また、耐熱壁121の内壁面における底面中央部には坩堝110を載置するための坩堝設置台160が設けられている。 The crucible 110 is housed inside the first furnace wall 120 configured as described above, and a warming chamber 150 is formed between the inner wall surface of the first furnace wall 120, that is, the inner wall surface of the heat-resistant wall 121 and the crucible 110. Is done. In addition, a crucible installation table 160 for placing the crucible 110 is provided at the center of the bottom surface of the inner wall surface of the heat-resistant wall 121.
 坩堝110は黒鉛を圧縮焼成したいわゆる焼き物である。この坩堝110は坩堝設置台160にセラミックブランケットなどの耐熱性シート170を介して設置されている。また、坩堝110の底部外壁面には、坩堝110の底部外壁面の温度を測定可能な温度センサー(坩堝底部温度センサーという。)TS1が設けられている。 The crucible 110 is a so-called ceramic product obtained by compressing and firing graphite. The crucible 110 is installed on a crucible installation table 160 via a heat-resistant sheet 170 such as a ceramic blanket. A temperature sensor (referred to as a crucible bottom temperature sensor) TS1 capable of measuring the temperature of the bottom outer wall surface of the crucible 110 is provided on the bottom outer wall surface of the crucible 110.
 坩堝底部温度センサーTS1は、溶湯保温装置100の外部から耐熱壁121の底面に沿って配設されたのち、中途部が90度の角度で折り曲げられて、坩堝設置台160の側面に沿うように配設され、その後、先端部が90度の角度で折り曲げられて、当該折り曲げられた先端部(先端折り曲げ部P1という)が坩堝設置台160の上面に沿うように配置される。そして、坩堝底部温度センサーTS1の先端折り曲げ部P1は、耐熱性シート170と坩堝110の下面側外壁面との間に挟まれるように配設されている。なお、坩堝底部温度センサーTS1の先端折り曲げ部P1の折り曲げ長さは、数10mm程度としている。 The crucible bottom temperature sensor TS1 is arranged along the bottom surface of the heat-resistant wall 121 from the outside of the molten metal heat retaining device 100, and then the middle portion is bent at an angle of 90 degrees so as to follow the side surface of the crucible installation table 160. After that, the tip portion is bent at an angle of 90 degrees, and the bent tip portion (referred to as the tip bent portion P1) is arranged along the upper surface of the crucible installation base 160. And the front end bending part P1 of the crucible bottom part temperature sensor TS1 is arrange | positioned so that it may be pinched | interposed between the heat resistant sheet 170 and the lower surface side outer wall surface of the crucible 110. Note that the bending length of the tip bending portion P1 of the crucible bottom temperature sensor TS1 is about several tens of millimeters.
 このように、坩堝底部温度センサーTS1の先端折り曲げ部P1が、坩堝110の下面側外壁面と耐熱性シート170との間に挟まれた状態となるため、先端折り曲げ部P1は坩堝110の下面側外壁面に密着状態となり、坩堝110の下面側外壁面の温度を高精度に測定可能となる。 In this way, the bent end portion P1 of the crucible bottom temperature sensor TS1 is sandwiched between the outer wall surface on the lower surface side of the crucible 110 and the heat-resistant sheet 170, so that the bent end portion P1 is on the lower surface side of the crucible 110. It is in close contact with the outer wall surface, and the temperature of the outer wall surface on the lower surface side of the crucible 110 can be measured with high accuracy.
 ところで、溶湯保温装置100における耐熱壁121の上面と断熱壁122の上面とによって形成される面(この面のことを第1炉壁120の上面という場合もある。)は、全体的には同一平面となっているが、鏡面ではなく耐熱壁121及び断熱壁122のザラツキなどにより多少の凹凸も存在する。そして、坩堝110は、当該坩堝110の開口側外壁面が所定量だけ露出するように当該坩堝110の開口側端部110aが第1炉壁120の上面よりも、坩堝固定リング200の上下方向の高さ(z軸に沿った方向の高さ)h1に相当する分だけ上方に突出した状態で、溶湯保温装置100内に設置されている。 By the way, the surface formed by the upper surface of the heat-resistant wall 121 and the upper surface of the heat insulating wall 122 in the molten metal heat retaining device 100 (this surface may be referred to as the upper surface of the first furnace wall 120) is generally the same. Although it is a flat surface, there are some irregularities due to roughness of the heat-resistant wall 121 and the heat-insulating wall 122 instead of a mirror surface. The crucible 110 has an opening-side end portion 110a of the crucible 110 in the vertical direction of the crucible fixing ring 200 with respect to the upper surface of the first furnace wall 120 so that the opening-side outer wall surface of the crucible 110 is exposed by a predetermined amount. It is installed in the molten metal heat retaining apparatus 100 in a state of projecting upward by an amount corresponding to the height (height along the z-axis) h1.
 また、第1炉壁120の内壁面すなわち耐熱壁121の内壁面には、当該内壁面に沿って一周するように帯状のヒーター(電気ヒーターとする。)180が設けられている。この電気ヒーター180は、坩堝110全体を均等に加熱・保温できるように耐熱壁121の内壁面における上下方向に所定間隔を置いて複数本設けられている。実施形態に係る金属溶解炉10においては4本の電気ヒーター180が設けられている。 In addition, a belt-like heater (referred to as an electric heater) 180 is provided on the inner wall surface of the first furnace wall 120, that is, the inner wall surface of the heat-resistant wall 121, so as to make a round along the inner wall surface. A plurality of electric heaters 180 are provided at predetermined intervals in the vertical direction on the inner wall surface of the heat-resistant wall 121 so that the entire crucible 110 can be uniformly heated and kept warm. In the metal melting furnace 10 according to the embodiment, four electric heaters 180 are provided.
 電気ヒーター180は、輻射熱により坩堝110内の溶湯を加熱・保温するものであるため、坩堝110と電気ヒーター180とが接触しない程度に、限りなく坩堝110に接近した状態で設けられることが熱効率という点で好ましい。ただし、坩堝110の交換時などにおいて、坩堝110を溶湯保温装置100から取り出す際に坩堝110が電気ヒーター180に接触しない程度の間隔を設けることも必要である。 Since the electric heater 180 heats and keeps the molten metal in the crucible 110 by radiant heat, it is said that thermal efficiency is provided as close as possible to the crucible 110 so that the crucible 110 and the electric heater 180 do not contact each other. This is preferable. However, when the crucible 110 is replaced, it is also necessary to provide an interval so that the crucible 110 does not contact the electric heater 180 when the crucible 110 is taken out from the molten metal heat insulating device 100.
 金属ケース130は、鉄などによって形成されており、外観形状は有底円筒形状をなしている。この金属ケース130は、外周面の上端部に、水平方向に突出する鍔部131が当該金属ケース130の外周に沿って形成されている。また、鍔部131にはガイドピンGPを挿入するためのガイドピン挿入孔(図示せず。)が例えば4箇所に均等間隔で設けられている。 The metal case 130 is formed of iron or the like, and the external shape is a bottomed cylindrical shape. The metal case 130 is formed with a flange 131 protruding in the horizontal direction along the outer periphery of the metal case 130 at the upper end of the outer peripheral surface. Moreover, the guide part insertion hole (not shown) for inserting the guide pin GP is provided in the collar part 131, for example in four places at equal intervals.
 また、金属ケース130の外周面には、溶湯保温装置100をクレーンなどによって吊り上げる際に用いるフック133(図1参照。)が例えば4箇所に均等間隔で設けられている。 Further, on the outer peripheral surface of the metal case 130, hooks 133 (see FIG. 1) used when the molten metal heat retaining device 100 is lifted by a crane or the like are provided at, for example, four locations at equal intervals.
 また、第1炉壁120の上面には、リング状の溶湯保温装置シール190が設けられている。溶湯保温装置シール190は、坩堝固定リング200を溶湯保温装置100に載置したときに、坩堝固定リング200と溶湯保温装置100とを密着させるためのものであり、その外径は、金属ケース130の内径とほぼ同じとする。なお、溶湯保温装置シール190の材質は、耐熱性、気密性及びクッション性に優れた材質であれば特に限定されるものではないが、セラミックロープなどを好ましく用いることができる。 Further, a ring-shaped molten metal heat insulation device seal 190 is provided on the upper surface of the first furnace wall 120. The molten metal heat insulating device seal 190 is used to bring the crucible fixing ring 200 and the molten metal heat insulating device 100 into close contact with each other when the crucible fixing ring 200 is placed on the molten metal heat insulating device 100. It is almost the same as the inner diameter of. The material of the molten metal heat insulation device seal 190 is not particularly limited as long as it is a material excellent in heat resistance, airtightness and cushioning properties, but a ceramic rope or the like can be preferably used.
 また、金属ケース130の上端部(鍔部131の上面)と第1炉壁120の上面との間には、溶湯保温装置シール190の厚みの寸法よりもわずかに低い段差が設けられている。このような段差を設けることにより、金属ケース130の上端部が突出壁となるため、この突出壁が溶湯保温装置シールの敷設をガイドする役目と、敷設したあとの位置ずれを防止する役目とをなす。 Further, a step slightly lower than the thickness dimension of the molten metal heat insulation device seal 190 is provided between the upper end portion of the metal case 130 (the upper surface of the flange portion 131) and the upper surface of the first furnace wall 120. By providing such a step, the upper end portion of the metal case 130 becomes a protruding wall, so that the protruding wall serves to guide the laying of the molten metal heat insulation device seal and to prevent the positional deviation after laying. Eggplant.
 このような段差を設けることにより、溶湯保温装置シール190を敷設する際の位置決めを適切に行うことができるとともに、溶湯保温装置シール190が第1炉壁120上で水平方向にずれることを防止できる。すなわち、溶湯保温装置シール190を第1炉壁120の上面に敷設したときに、当該溶湯保温装置シール190の外周面が金属ケース130の突出壁における内周面に当接した状態となるため、溶湯保温装置シール190は、xy平面上での動きが規制され、それによって、溶湯保温装置シール190がxy平面上でずれないようにすることができる。 By providing such a step, it is possible to appropriately perform positioning when laying the molten metal heat insulation device seal 190, and it is possible to prevent the molten metal heat insulation device seal 190 from being displaced in the horizontal direction on the first furnace wall 120. . That is, when the molten metal heat insulating device seal 190 is laid on the upper surface of the first furnace wall 120, the outer peripheral surface of the molten metal heat insulating device seal 190 is in contact with the inner peripheral surface of the protruding wall of the metal case 130. The movement of the molten metal heat insulator seal 190 on the xy plane is restricted, so that the molten metal heat insulator seal 190 can be prevented from shifting on the xy plane.
 このように、溶湯保温装置シール190を第1炉壁120の上面に敷設した状態で、坩堝固定リング200を溶湯保温装置100に載置すると、溶湯保温装置シール190は坩堝固定リング200の重量によって押圧された状態となる。このため、第1炉壁120の上面(耐熱壁121及び断熱壁122の上面)及び坩堝固定リング200における下面がそれぞれ鏡面ではなく、多少の「ざらつき」を有したり、多少の凹凸を有したりしていても、これら「ざらつき」や凹凸を吸収して、溶湯保温装置100と坩堝固定リング200とを密着状態とすることができる。 As described above, when the crucible fixing ring 200 is placed on the molten metal heat retaining device 100 in a state where the molten metal heat insulating device seal 190 is laid on the upper surface of the first furnace wall 120, the molten metal heat insulating device seal 190 depends on the weight of the crucible fixing ring 200. It will be in the pressed state. For this reason, the upper surface of the first furnace wall 120 (the upper surfaces of the heat-resistant wall 121 and the heat-insulating wall 122) and the lower surface of the crucible fixing ring 200 are not mirror surfaces, but have some “roughness” or some unevenness. Even if it is, these "roughness" and unevenness | corrugation can be absorbed and the molten metal heat retention apparatus 100 and the crucible fixing ring 200 can be made into close_contact | adherence state.
 次に、坩堝固定リング200及び補助リング300について説明する。
 坩堝固定リング200は、外観的にはリング形状をなし、その外径は溶湯保温装置100と同じ外径を有しているが、上下方向においては第1炉壁120の高さよりも低い高さを有し、かつ、両端部が開口となっている。なお、坩堝固定リング200の上下方向の高さ(z軸に沿った方向の高さ)は、前述したように「h1」であり、これは、溶湯保温装置100の第1炉壁120から坩堝110が突出している高さに相当している(図2参照。)。
 このような坩堝固定リング200は、耐熱及び断熱部材でなる第2炉壁210と、第2炉壁210を取り囲む坩堝固定リング金属枠230とを有している。
Next, the crucible fixing ring 200 and the auxiliary ring 300 will be described.
The crucible fixing ring 200 has a ring shape in appearance and has an outer diameter that is the same as that of the molten metal heat insulating device 100, but is lower than the height of the first furnace wall 120 in the vertical direction. And both ends are openings. The height in the vertical direction of the crucible fixing ring 200 (the height in the direction along the z axis) is “h1” as described above, which is from the first furnace wall 120 of the molten metal heat retaining device 100 to the crucible. This corresponds to the height at which 110 protrudes (see FIG. 2).
Such a crucible fixing ring 200 has a second furnace wall 210 made of a heat-resistant and heat-insulating member, and a crucible fixing ring metal frame 230 surrounding the second furnace wall 210.
 第2炉壁210は、耐熱壁211と当該耐熱壁211の外側に設けられている断熱壁212とからなる。耐熱壁211は、耐熱レンガなどの耐熱性部材でなり、断熱壁212は、セラミックなどの断熱性部材でなる。 The second furnace wall 210 includes a heat resistant wall 211 and a heat insulating wall 212 provided outside the heat resistant wall 211. The heat resistant wall 211 is made of a heat resistant member such as a heat resistant brick, and the heat insulating wall 212 is made of a heat insulating member such as ceramic.
 坩堝固定リング金属枠230の外周面の下端部には、水平方向に突出する鍔部231(下端側鍔部231という)が坩堝固定リング金属枠230の外周に沿って形成されているとともに、坩堝固定リング金属枠230の外周面の上端部には、水平方向に突出する鍔部232(上端側鍔部232という)が坩堝固定リング金属枠230の外周に沿って形成されている。 At the lower end portion of the outer peripheral surface of the crucible fixing ring metal frame 230, a flange portion 231 (referred to as a lower end side flange portion 231) protruding in the horizontal direction is formed along the outer periphery of the crucible fixing ring metal frame 230, and At the upper end portion of the outer peripheral surface of the fixing ring metal frame 230, a flange portion 232 (referred to as an upper end side flange portion 232) that protrudes in the horizontal direction is formed along the outer periphery of the crucible fixing ring metal frame 230.
 これら下端側鍔部231及び上端側鍔部232にはそれぞれガイドピンGPを挿入するためのガイドピン挿入孔(図示せず。)が例えば4箇所に均等間隔でそれぞれ設けられている。また、坩堝固定リング金属枠230の外周面には、坩堝固定リング200をクレーンなどによって吊り上げる際に用いるフック233(図1参照。)が例えば4箇所に均等間隔で設けられている。 The lower end side flange portion 231 and the upper end side flange portion 232 are respectively provided with guide pin insertion holes (not shown) for inserting the guide pins GP, for example, at four locations at equal intervals. Further, on the outer peripheral surface of the crucible fixing ring metal frame 230, hooks 233 (see FIG. 1) used when the crucible fixing ring 200 is lifted by a crane or the like are provided at, for example, four locations at equal intervals.
 ところで、坩堝固定リング200においては、耐熱壁211及び断熱壁212と、坩堝固定リング金属枠230とは、坩堝固定リング金属枠230の内周面から中心方向(半径方向)に向かって突出している鉄製の棒(図示せず。)によって連結されている。 By the way, in the crucible fixing ring 200, the heat-resistant wall 211, the heat insulating wall 212, and the crucible fixing ring metal frame 230 protrude from the inner peripheral surface of the crucible fixing ring metal frame 230 toward the center direction (radial direction). They are connected by an iron rod (not shown).
 すなわち、坩堝固定リング200の耐熱壁211及び断熱壁212は、坩堝固定リング金属枠230の内周面の側にそれぞれ型枠成型によって形成されるものである。具体的には、坩堝固定リング金属枠230の内周面に、当該坩堝固定リング金属枠230の中心方向に突出している複数本(例えば6本)の鉄製の棒(アンカーボルトという。)を周方向に沿って所定間隔(例えば60度の角度)ごとに溶接によって固定しておく。 That is, the heat-resistant wall 211 and the heat insulating wall 212 of the crucible fixing ring 200 are respectively formed on the inner peripheral surface side of the crucible fixing ring metal frame 230 by molding. Specifically, a plurality of (for example, six) iron rods (referred to as anchor bolts) projecting in the center direction of the crucible fixing ring metal frame 230 are arranged on the inner peripheral surface of the crucible fixing ring metal frame 230. It fixes by welding for every predetermined space | interval (for example, 60 degree angle) along a direction.
 そして、このような坩堝固定リング金属枠230の内周面の側に、耐熱壁211及び断熱壁212をそれぞれ型枠成型によって形成する。なお、坩堝固定リング200の大きさや重量などによっては、アンカーボルトは垂直方向(坩堝固定リング200の高さ方向)において複数段(例えば2段)に設けるようにしてもよい。 And the heat-resistant wall 211 and the heat-insulating wall 212 are respectively formed on the inner peripheral surface side of the crucible fixing ring metal frame 230 by mold molding. Depending on the size and weight of the crucible fixing ring 200, the anchor bolts may be provided in a plurality of stages (for example, two stages) in the vertical direction (the height direction of the crucible fixing ring 200).
 坩堝固定リング200がこのような構造となっているため、耐熱壁211及び断熱壁212と坩堝固定リング金属枠230とは確実に連結された状態となる。このため、坩堝固定リング金属枠230のフック233にワイヤーを引っ掛けてクレーンなどで吊り上げた場合、坩堝固定リング200全体を吊り上げることができる。 Since the crucible fixing ring 200 has such a structure, the heat-resistant wall 211 and the heat insulating wall 212 and the crucible fixing ring metal frame 230 are surely connected. For this reason, when a wire is hooked on the hook 233 of the crucible fixing ring metal frame 230 and lifted by a crane or the like, the entire crucible fixing ring 200 can be lifted.
 また、坩堝固定リング200の内壁面すなわち耐熱壁211の内壁面は、坩堝110の開口側外壁との間に坩堝固定シール250を埋め込むための隙間(シール埋め込み用隙間260という。)が形成されている。なお、坩堝固定シール250の材質は、耐熱性、気密性及びクッション性に優れた材質であれば特に限定されるものではないが、セラミックロープなどを好ましく用いることができる。 In addition, a gap for filling the crucible fixing seal 250 (referred to as a seal embedding gap 260) is formed between the inner wall surface of the crucible fixing ring 200, that is, the inner wall surface of the heat-resistant wall 211, with the opening-side outer wall of the crucible 110. Yes. The material of the crucible fixing seal 250 is not particularly limited as long as it is a material excellent in heat resistance, airtightness, and cushioning properties, but a ceramic rope or the like can be preferably used.
 図3は、坩堝固定リング200の一部と坩堝110の上端部を拡大して示す図である。図3に示すように、シール埋め込み用隙間260における坩堝固定リング200における第2炉壁210の内壁面すなわち耐熱壁211の内壁面211aは、シール埋め込み用隙間260が当該第2炉壁210の上面から下面に向かうにしたがって狭くなるような傾斜面となっている。なお、以下、内壁面211aを「傾斜面211a」という場合もある。当該傾斜面211aのz軸(垂直軸)に対する傾斜角度(θ1とする。)は、坩堝110の開口側外壁面のz軸(垂直軸)に対する傾斜角度(θ2とする。)よりも大きな角度としている。 FIG. 3 is an enlarged view showing a part of the crucible fixing ring 200 and the upper end portion of the crucible 110. As shown in FIG. 3, the inner wall surface 211 a of the second furnace wall 210 in the crucible fixing ring 200 in the seal embedding gap 260, that is, the inner wall surface 211 a of the heat-resistant wall 211, the seal embedding gap 260 is the upper surface of the second furnace wall 210. The inclined surface becomes narrower as it goes from the bottom to the bottom. Hereinafter, the inner wall surface 211a may be referred to as an “inclined surface 211a”. The inclination angle (referred to as θ1) of the inclined surface 211a with respect to the z axis (vertical axis) is larger than the inclination angle (referred to as θ2) relative to the z axis (vertical axis) of the opening-side outer wall surface of the crucible 110. Yes.
 実施形態に係る金属溶解炉10においては、傾斜面211aの傾斜角度θ1は、坩堝110の開口側外壁面の傾斜角度θ2に5度を加えた傾斜角度(θ1=θ2+5度)としているが、傾斜角度θ2に加える角度は5度に限られるものではなく、適宜最適な値を設定することができる。 In the metal melting furnace 10 according to the embodiment, the inclination angle θ1 of the inclined surface 211a is an inclination angle obtained by adding 5 degrees to the inclination angle θ2 of the opening-side outer wall surface of the crucible 110 (θ1 = θ2 + 5 degrees). The angle added to the angle θ2 is not limited to 5 degrees, and an optimal value can be set as appropriate.
 なお、シール埋め込み用隙間260に埋め込まれる坩堝固定シール250は、図3に示すように、断面がくさび型となるため、坩堝固定シール250を「くさび型シール250」という場合もある。 Note that, as shown in FIG. 3, the crucible fixing seal 250 embedded in the seal embedding gap 260 has a wedge-shaped cross section, so the crucible fixing seal 250 may be referred to as a “wedge-shaped seal 250”.
 坩堝固定リング200がこのような構造となっているため、当該坩堝固定リング200が溶湯保温装置100に載置された状態においては、坩堝110の開口側外壁面を当該開口側外壁面の外周に沿って圧接状態で支持することとなり、それによって坩堝110を確実に固定することができる。 Since the crucible fixing ring 200 has such a structure, when the crucible fixing ring 200 is placed on the molten metal heat insulating device 100, the opening-side outer wall surface of the crucible 110 is placed on the outer periphery of the opening-side outer wall surface. Therefore, the crucible 110 can be securely fixed.
 図1に説明が戻る。坩堝固定リング200には、坩堝110の開口側外壁面の温度を測定可能な温度センサーTS2(坩堝上部温度センサーTS2という。)が設けられている。坩堝上部温度センサーTS2は、坩堝固定リング200の外部から坩堝固定リング200の上面に沿って配設され、先端部が坩堝110の開口側外壁面に沿うような角度で折り曲げられている。 The explanation returns to FIG. The crucible fixing ring 200 is provided with a temperature sensor TS2 (referred to as a crucible upper temperature sensor TS2) capable of measuring the temperature of the opening-side outer wall surface of the crucible 110. The crucible upper part temperature sensor TS <b> 2 is disposed along the upper surface of the crucible fixing ring 200 from the outside of the crucible fixing ring 200, and the tip is bent at an angle along the opening-side outer wall surface of the crucible 110.
 なお、坩堝上部温度センサーTS2において、坩堝110の開口側外壁面に沿うような角度で折り曲げられている部分を「先端折り曲げ部P2」という。また、坩堝上部温度センサーTS2の先端折り曲げ部P2は、坩堝110の開口側外壁面とくさび型シール250との間に挟まれた状態となるため、先端折り曲げ部P2は坩堝110の開口側外壁面に密着状態となり、坩堝110の開口側外壁面の温度を高精度に測定可能となる。 In the crucible upper temperature sensor TS2, a portion bent at an angle along the opening-side outer wall surface of the crucible 110 is referred to as a “tip bent portion P2”. Further, the front end bent portion P2 of the crucible upper temperature sensor TS2 is sandwiched between the opening-side outer wall surface of the crucible 110 and the wedge-shaped seal 250, so the front-end bent portion P2 is the opening-side outer wall surface of the crucible 110. The temperature of the outer wall surface on the opening side of the crucible 110 can be measured with high accuracy.
 このように構成された坩堝固定リング200には補助リング300が載置される。このとき、坩堝固定リング200と補助リング300との間には補助リングシール270が敷設されている。 The auxiliary ring 300 is placed on the crucible fixing ring 200 configured as described above. At this time, an auxiliary ring seal 270 is laid between the crucible fixing ring 200 and the auxiliary ring 300.
 補助リング300は、外観的にはリング形状をなし、その外径は溶湯保温装置100と同じ外径を有しているが、上下方向においては第1炉壁120の高さよりも低い高さを有し、かつ、両端部が開口となっている。
 このような坩堝固定リング200は、耐熱及び断熱部材でなる第3炉壁310と、第3炉壁310を取り囲む補助リング金属枠330とを有している。
The auxiliary ring 300 has a ring shape in appearance and has an outer diameter that is the same as that of the molten metal heat retaining device 100, but is lower than the height of the first furnace wall 120 in the vertical direction. And both ends are openings.
Such a crucible fixing ring 200 has a third furnace wall 310 made of a heat-resistant and heat-insulating member, and an auxiliary ring metal frame 330 surrounding the third furnace wall 310.
 第3炉壁310は、耐熱壁311と当該耐熱壁311の外側に設けられている断熱壁312とからなる。耐熱壁311は、耐熱レンガなどの耐熱性部材でなり、断熱壁312は、セラミックなどの断熱性部材でなる。 The third furnace wall 310 includes a heat resistant wall 311 and a heat insulating wall 312 provided outside the heat resistant wall 311. The heat resistant wall 311 is made of a heat resistant member such as a heat resistant brick, and the heat insulating wall 312 is made of a heat insulating member such as ceramic.
 また、補助リング300の内径(耐熱壁311で囲まれる空間部の径D1)は、坩堝110の開口側端部110aの外径と同じか、坩堝110の開口側端部110aの外径よりもわずかに大きく設定されている。このようにすることにより、当該補助リング300を坩堝固定リング200に載置した状態としたとき、補助リング300の重量が坩堝110に直接加わることがない。さらには、補助リング300に後述する燃焼装置400を載置した状態としたときにも、補助リング300及び燃焼装置400の重量が坩堝110に直接加わることがない。 Further, the inner diameter of the auxiliary ring 300 (the diameter D1 of the space surrounded by the heat-resistant wall 311) is the same as the outer diameter of the opening-side end 110a of the crucible 110 or is larger than the outer diameter of the opening-side end 110a of the crucible 110. It is set slightly larger. Thus, when the auxiliary ring 300 is placed on the crucible fixing ring 200, the weight of the auxiliary ring 300 is not directly applied to the crucible 110. Furthermore, even when a combustion device 400 described later is placed on the auxiliary ring 300, the weight of the auxiliary ring 300 and the combustion device 400 is not directly applied to the crucible 110.
 坩堝110は、上記したように、黒鉛を圧縮焼成したいわゆる焼き物であり、破損しやすいものである。このため、坩堝110に大きな重量が直接加わるような構造とすることは坩堝110を損傷させることにもなるが、上記したように、坩堝110よりも上方に設置される構造物の重量が坩堝110に対して直接加わらないような構造とすることによって坩堝110の損傷を防ぐことができ、坩堝110を長寿命化することができる。 As described above, the crucible 110 is a so-called baked product obtained by compression-firing graphite and is easily damaged. For this reason, a structure in which a large weight is directly applied to the crucible 110 also damages the crucible 110. However, as described above, the weight of the structure installed above the crucible 110 is the weight of the crucible 110. Therefore, the crucible 110 can be prevented from being damaged and the life of the crucible 110 can be extended.
 また、補助リング金属枠330の外周面の下端部には、水平方向に突出する鍔部331(下端側鍔部331という)が補助リング金属枠330の外周に沿って形成されているとともに、補助リング金属枠330の外周面の上端部には、水平方向に突出する鍔部332(上端側鍔部332という)が補助リング金属枠330の外周に沿って形成されている。また、下端側鍔部331及び上端側鍔部332にはそれぞれガイドピンGPを挿入するためのガイドピン挿入孔(図示せず。)が例えば4箇所に均等間隔でそれぞれ設けられている。また、補助リング金属枠330の外周面には、補助リング300をクレーンなどによって吊り上げる際に用いるフック333(図1参照。)が例えば4箇所に均等間隔で設けられている。 Further, at the lower end portion of the outer peripheral surface of the auxiliary ring metal frame 330, a flange portion 331 (referred to as a lower end side flange portion 331) that protrudes in the horizontal direction is formed along the outer periphery of the auxiliary ring metal frame 330. At the upper end portion of the outer peripheral surface of the ring metal frame 330, a flange portion 332 (referred to as an upper end side flange portion 332) that protrudes in the horizontal direction is formed along the outer periphery of the auxiliary ring metal frame 330. In addition, guide pin insertion holes (not shown) for inserting the guide pins GP are respectively provided in the lower end side flange portion 331 and the upper end side flange portion 332, for example, at four locations at equal intervals. Further, on the outer peripheral surface of the auxiliary ring metal frame 330, hooks 333 (see FIG. 1) used when the auxiliary ring 300 is lifted by a crane or the like are provided at, for example, four locations at equal intervals.
 なお、補助リング300の耐熱壁311及び断熱壁312と、補助リング金属枠330とは、坩堝固定リング200の場合と同様の構造によって連結されている。このため、補助リング300においても、坩堝固定リング200と同様に、補助リング金属枠330のフック333にワイヤーを引っ掛けてクレーンなどでも吊り上げた場合、補助リング300全体を吊り上げることができる。 The heat-resistant wall 311 and the heat insulating wall 312 of the auxiliary ring 300 and the auxiliary ring metal frame 330 are connected by the same structure as that of the crucible fixing ring 200. For this reason, also in the auxiliary ring 300, as in the crucible fixing ring 200, when the wire is hooked on the hook 333 of the auxiliary ring metal frame 330 and lifted by a crane or the like, the entire auxiliary ring 300 can be lifted.
 また、補助リング300には、溶解作業中における坩堝110内の温度を測定するための溶湯温度センサーTS3(図6(b)参照。)の挿入が可能な温度センサー挿入孔340が設けられている。この温度センサー挿入孔340は、温度センサー挿入孔340を塞ぐための栓340a(図6(a)参照。)の着脱が可能となっており、温度測定を行わない場合には、当該栓340aによって温度センサー挿入孔340を塞ぐようにする。 Further, the auxiliary ring 300 is provided with a temperature sensor insertion hole 340 into which a molten metal temperature sensor TS3 (see FIG. 6B) for measuring the temperature in the crucible 110 during the melting operation can be inserted. . The temperature sensor insertion hole 340 can be attached and detached with a plug 340a (see FIG. 6A) for closing the temperature sensor insertion hole 340. When the temperature measurement is not performed, the plug 340a is used. The temperature sensor insertion hole 340 is closed.
 また、補助リング300と坩堝固定リング200との間には上記したように補助リングシール270が敷設されている。なお、補助リングシール270は、具体的には、補助リング300における第3炉壁310と坩堝固定リング200における第2炉壁210との間に敷設されている。このとき、補助リングシール270は、金属(例えば鉄)製の補助リングシール受け板360によって位置決めされている。 Further, the auxiliary ring seal 270 is laid between the auxiliary ring 300 and the crucible fixing ring 200 as described above. Specifically, the auxiliary ring seal 270 is laid between the third furnace wall 310 in the auxiliary ring 300 and the second furnace wall 210 in the crucible fixing ring 200. At this time, the auxiliary ring seal 270 is positioned by an auxiliary ring seal receiving plate 360 made of metal (for example, iron).
 図4は、補助リングシール受け板360を取り出して示す図である。補助リングシール受け板360は、図4に示すように、坩堝固定リング金属枠230の鍔部231,232又は補助リング金属枠330の鍔部331,332を含めた外径と同じ径を有する円盤形状をなし、中央部には、坩堝110の開口側端部110aの外径(補助リング300の内径D1)よりも十分大きな径を有する開口部361が形成されている。なお、補助リングシール270の内径は、補助リング300の内径D1と同様の径を有している。 FIG. 4 is a view showing the auxiliary ring seal receiving plate 360 taken out. As shown in FIG. 4, the auxiliary ring seal receiving plate 360 is a disk having the same diameter as the outer diameter including the flange portions 231 and 232 of the crucible fixing ring metal frame 230 or the flange portions 331 and 332 of the auxiliary ring metal frame 330. An opening 361 having a shape that is sufficiently larger than the outer diameter of the opening-side end 110a of the crucible 110 (the inner diameter D1 of the auxiliary ring 300) is formed at the center. The inner diameter of the auxiliary ring seal 270 is the same as the inner diameter D1 of the auxiliary ring 300.
 そして、開口部361の縁部には、補助リングシール270の敷設をガイドするための補助リングシールガイド壁362が開口部の縁部に沿うように形成されている。この補助リングシールガイド壁362の高さh2は、補助リングシールの厚み寸法t1よりも低い高さを有している。そして、補助リングシール270は、当該補助リングシール270の外周が補助リングシールガイド壁362の内周に沿うように坩堝固定リング200における第2炉壁210の上面に敷設されている。 Further, an auxiliary ring seal guide wall 362 for guiding the laying of the auxiliary ring seal 270 is formed at the edge of the opening 361 along the edge of the opening. The height h2 of the auxiliary ring seal guide wall 362 is lower than the thickness dimension t1 of the auxiliary ring seal. The auxiliary ring seal 270 is laid on the upper surface of the second furnace wall 210 in the crucible fixing ring 200 so that the outer periphery of the auxiliary ring seal 270 is along the inner periphery of the auxiliary ring seal guide wall 362.
 また、補助リングシール受け板360には、4箇所のガイドピン通し孔363が形成されている。これら各ガイドピン通し孔363は、坩堝固定リング金属枠230の鍔部231,232又は補助リング金属枠330の鍔部331,332に形成されているガイドピン挿入孔(図示せず。)と同じ位置に形成されている。なお、補助リングシール受け板360は、坩堝固定リング200と補助リング300との間に設置される。 Further, four guide pin through holes 363 are formed in the auxiliary ring seal receiving plate 360. These guide pin through holes 363 are the same as guide pin insertion holes (not shown) formed in the flange portions 231 and 232 of the crucible fixing ring metal frame 230 or the flange portions 331 and 332 of the auxiliary ring metal frame 330. Formed in position. The auxiliary ring seal receiving plate 360 is installed between the crucible fixing ring 200 and the auxiliary ring 300.
 次に、燃焼装置400について説明する。燃焼装置400は、補助リング300に載置されるものであり、中央部に所定の空間部を有し、耐熱及び断熱部材でなる第4炉壁410と、第4炉壁410を取り囲む燃焼装置金属枠430と、第4炉壁410の空間部に設けられているバーナー440とを有している。なお、燃焼装置金属枠430の外周面には、燃焼装置400をクレーンなどによって吊り上げる際に用いるフック431が例えば4箇所に均等間隔で設けられている。 Next, the combustion apparatus 400 will be described. Combustion device 400 is mounted on auxiliary ring 300, has a predetermined space at the center, and has a fourth furnace wall 410 made of a heat-resistant and heat-insulating member, and a combustion device that surrounds fourth furnace wall 410. A metal frame 430 and a burner 440 provided in the space of the fourth furnace wall 410 are provided. In addition, the hook 431 used when lifting up the combustion apparatus 400 with a crane etc. is provided in the outer peripheral surface of the combustion apparatus metal frame 430, for example in four places at equal intervals.
 第4炉壁410は、耐熱壁411と当該耐熱壁411の外側に設けられている断熱壁412とからなる。なお、燃焼装置400は坩堝固定リング200及び補助リング300よりもさらに高温になるため、断熱壁412は、断熱性だけでなく耐熱性においても、より優れた部材を用いることが好ましい。 The fourth furnace wall 410 includes a heat resistant wall 411 and a heat insulating wall 412 provided outside the heat resistant wall 411. In addition, since the combustion apparatus 400 becomes higher temperature than the crucible fixing ring 200 and the auxiliary | assistant ring 300, it is preferable that the heat insulation wall 412 uses a member excellent in not only heat insulation but heat resistance.
 バーナー440は、坩堝110内に入れられた被溶解金属を直火で溶解するものであり、化石燃料として例えばLPG(液化プロパンガス)を燃料供給パイプ441から取り込むとともに、燃焼に必要な空気を空気取り込み口442から取り込んでノズル443から火炎を発射する。なお、実施形態に係る金属溶解炉10において用いるバーナー440は、空気取り込み口442から取り込まれる空気を排気ガスで予熱する熱交換型のバーナーであるとする。このため、空気取り込み口442から入った空気は、排気ガスによって暖められるので、燃焼効率がよく、空気取り込み口442及び排気口444を小さくすることができる。 The burner 440 dissolves the metal to be melted put in the crucible 110 by an open flame, takes in, for example, LPG (liquefied propane gas) from the fuel supply pipe 441 as fossil fuel, and air necessary for combustion into air. It takes in from the intake port 442 and fires a flame from the nozzle 443. Note that the burner 440 used in the metal melting furnace 10 according to the embodiment is a heat exchange type burner that preheats air taken in from the air intake port 442 with exhaust gas. For this reason, since the air which entered from the air intake port 442 is warmed by the exhaust gas, the combustion efficiency is good and the air intake port 442 and the exhaust port 444 can be made small.
 また、バーナー440には、燃焼状態を制御するための燃焼制御装置(図示せず。)が設けられている。この燃焼制御装置は、最適な燃焼状態となるように空気の量と燃焼の量とを調整するものである。なお、燃焼装置400と補助リング300の耐熱壁311で囲まれる空間とによって、燃焼室450が形成される。 Further, the burner 440 is provided with a combustion control device (not shown) for controlling the combustion state. This combustion control device adjusts the amount of air and the amount of combustion so as to achieve an optimal combustion state. A combustion chamber 450 is formed by the space surrounded by the combustion device 400 and the heat-resistant wall 311 of the auxiliary ring 300.
 なお、燃焼装置400における耐熱壁411及び断熱壁412と、燃焼装置金属枠430とは、坩堝固定リング200及び補助リング300とほぼ同様の構造によって連結されている。このため、燃焼装置400においても、坩堝固定リング200及び補助リング300と同様に、燃焼装置金属枠430のフック431にワイヤーを引っ掛けてクレーンなどで吊り上げた場合、燃焼装置400全体を吊り上げることができる。 In addition, the heat-resistant wall 411 and the heat insulating wall 412 in the combustion apparatus 400 and the combustion apparatus metal frame 430 are connected by a structure substantially similar to the crucible fixing ring 200 and the auxiliary ring 300. For this reason, in the combustion apparatus 400 as well as the crucible fixing ring 200 and the auxiliary ring 300, when the wire is hooked on the hook 431 of the combustion apparatus metal frame 430 and lifted by a crane or the like, the entire combustion apparatus 400 can be lifted. .
 また、燃焼装置400と補助リング300との間には燃焼装置シール380が敷設される。なお、燃焼装置シール380は、具体的には、燃焼装置400における第4炉壁410と補助リング300における第3炉壁310との間に敷設されている。このとき、燃焼装置シール380は、燃焼装置シール受け板460によって位置決めされている。 Further, a combustion device seal 380 is laid between the combustion device 400 and the auxiliary ring 300. Specifically, the combustion device seal 380 is laid between the fourth furnace wall 410 in the combustion device 400 and the third furnace wall 310 in the auxiliary ring 300. At this time, the combustion device seal 380 is positioned by the combustion device seal receiving plate 460.
 燃焼装置シールシール受け板460は、図4で示した補助リングシール受け板360とほぼ同様の構成となっているため、同一部分の説明は省略する。なお、燃焼装置シール受け板460が補助リングシール受け板360と異なるのは、燃焼装置400を補助リング300に載置する際に燃焼装置400の位置決めを行うための燃焼装置位置決め用突出部469(図2参照。)が設けられている点である。 The combustion device seal seal receiving plate 460 has substantially the same configuration as the auxiliary ring seal receiving plate 360 shown in FIG. The combustion device seal receiving plate 460 is different from the auxiliary ring seal receiving plate 360 in that the combustion device positioning protrusion 469 (for positioning the combustion device 400 when the combustion device 400 is placed on the auxiliary ring 300). (See FIG. 2).
 燃焼装置位置決め用突出部469は、燃焼装置400の燃焼装置金属枠430の下端部外周に沿うようなリング状の突出部である。このため、燃焼装置400を補助リング300に載置する際には、燃焼装置400を燃焼装置位置決め用突出部469に沿うように補助リング300上に載置することによって、燃焼装置400を補助リング300において適切な位置に載置することができる。 The combustion apparatus positioning protrusion 469 is a ring-shaped protrusion that extends along the outer periphery of the lower end of the combustion apparatus metal frame 430 of the combustion apparatus 400. For this reason, when the combustion device 400 is placed on the auxiliary ring 300, the combustion device 400 is placed on the auxiliary ring 300 along the combustion device positioning protrusion 469 so that the combustion device 400 is placed on the auxiliary ring 300. 300 can be placed at an appropriate position.
 次に、回転脱ガス装置500(図1参照。)について説明する。回転脱ガス装置500は、被溶解金属が溶解されて、溶湯の状態となった際に、坩堝110内の溶湯に含まれる水素ガスなどの不純物を除去するものであり、回転軸510と、回転軸510の先端部に設けられた円盤状の回転体520とを有する構成となっている。 Next, the rotary degassing apparatus 500 (see FIG. 1) will be described. The rotary degassing device 500 removes impurities such as hydrogen gas contained in the molten metal in the crucible 110 when the metal to be melted is melted to be in a molten metal state. It has a configuration having a disk-shaped rotating body 520 provided at the tip of the shaft 510.
 このように構成された回転脱ガス装置500は、例えば、xy平面上での移動と垂直方向(z軸に沿った方向)の移動が可能となるように設置されており、必要に応じて、坩堝110内の溶湯に浸漬できるようになっている。例えば、溶解工程が終了して燃焼装置400、補助リング300などを取り外した後に、回転脱ガス装置500を下降させることによって、回転体520を坩堝110の溶湯内に浸漬させことができる。そして、回転体520を溶湯の中に浸漬させた状態で回転体520を回転させて、回転体520からマイクロバブル化したアルゴンガスや窒素ガスなどの不活性ガスを溶湯中に発生させることができるようになっている。 The rotary degassing apparatus 500 configured as described above is installed so as to be able to move on the xy plane and in the vertical direction (direction along the z axis), for example. It can be immersed in the molten metal in the crucible 110. For example, the rotary body 520 can be immersed in the molten metal of the crucible 110 by lowering the rotary degassing device 500 after the combustion process 400 is finished and the auxiliary ring 300 is removed. Then, the rotating body 520 is rotated in a state where the rotating body 520 is immersed in the molten metal, and an inert gas such as argon gas and nitrogen gas microbubbled from the rotating body 520 can be generated in the molten metal. It is like that.
 実施形態に係る金属溶解炉10は、上記したように、溶解炉本体10A(溶湯保温装置100、坩堝固定リング200、補助リング300及び燃焼装置400)と、回転脱ガス装置500を有しており、溶解炉本体10Aは、溶湯保温装置100、坩堝固定リング200、補助リング300及び燃焼装置400の4つの構造体を積み重ねた4層構造となっている。そして、これら各構造体は、それぞれが分離可能な構造となっている。 As described above, the metal melting furnace 10 according to the embodiment includes the melting furnace main body 10A (the molten metal heat retaining device 100, the crucible fixing ring 200, the auxiliary ring 300, and the combustion device 400) and the rotary degassing device 500. The melting furnace main body 10A has a four-layer structure in which four structures of a molten metal heat retaining device 100, a crucible fixing ring 200, an auxiliary ring 300, and a combustion device 400 are stacked. Each of these structures has a separable structure.
 実施形態に係る金属溶解炉10における溶解炉本体10Aがこのような構造となっているため、仮に、溶解炉本体10Aを構成する構造体のうちの、ある構造体を補修又は交換する必要が生じた場合、補修又は交換すべき構造体のみを取り出して、補修又は交換作業を行うことができる。この場合、個々の構造体の代わりを容易しておけば、長期間に渡って操業停止する必要がなくなるため、生産に支障をきたすことが無くなる。 Since the melting furnace main body 10A in the metal melting furnace 10 according to the embodiment has such a structure, it is necessary to repair or replace a certain structure among the structures constituting the melting furnace main body 10A. In such a case, only the structure to be repaired or replaced can be taken out and repaired or replaced. In this case, if the replacement of the individual structures is facilitated, it is not necessary to stop the operation for a long period of time, so that the production is not hindered.
 すなわち、実施形態に係る金属溶解炉10は、特許文献1に開示されている金属溶解炉900に比べると、溶解炉本体10Aがより細分化された構造となっているため、仮に、これらの構造体のうちの、ある構造体に補修又は交換する必要が生じた場合における補修又は交換作業をし易くすることができる。 That is, the metal melting furnace 10 according to the embodiment has a structure in which the melting furnace main body 10A is further subdivided as compared with the metal melting furnace 900 disclosed in Patent Document 1, so these structures are temporarily assumed. Repair or replacement work can be facilitated when it is necessary to repair or replace a certain structure of the body.
 特に、この種の金属溶解炉においては、燃焼装置400の周辺は、高温に晒されるため、熱による破損が進み易い個所である。実施形態に係る金属溶解炉10においては、高温に晒され易い箇所は、燃焼装置400と補助リング300との2つの構造体とし、これらを個々に分割可能としている。このため、熱による破損が進んで、補修又は交換が必要となった場合、補修又は交換が必要な構造体のみを取り出して、補修又は交換を行うことができる。例えば、補助リング300が損傷した場合には、補助リング300のみを補修又は交換すればよいため、メンテナンス性を向上させることができる。 In particular, in this type of metal melting furnace, the periphery of the combustion device 400 is exposed to high temperatures, and is easily damaged by heat. In the metal melting furnace 10 according to the embodiment, the portion that is easily exposed to a high temperature has two structures of the combustion device 400 and the auxiliary ring 300, and these can be divided individually. For this reason, when damage due to heat progresses and repair or replacement becomes necessary, only the structure that needs repair or replacement can be taken out and repaired or replaced. For example, when the auxiliary ring 300 is damaged, only the auxiliary ring 300 needs to be repaired or replaced, so that maintainability can be improved.
 次に、実施形態に係る金属溶解炉10における溶解炉本体10Aの組み立て手順について説明する溶解炉本体10Aを図1及び図2に示すように組み立てる際は、まず、坩堝110が収納されている溶湯保温装置100における耐熱壁121及び断熱壁122の上面(第1炉壁120の上面)にリング状の溶湯保温装置シール190を敷設する。この溶湯保温装置シール190は、その外周面が金属ケース130の内側面に沿うように敷設する。これにより、溶湯保温装置シール190は、金属ケース130の内周面によって位置決めされるため、水平方向のずれを防止することができる。 Next, when assembling the melting furnace main body 10A described in FIG. 1 and FIG. 2 for explaining the assembling procedure of the melting furnace main body 10A in the metal melting furnace 10 according to the embodiment, first, the molten metal in which the crucible 110 is accommodated. A ring-shaped molten metal heat insulation device seal 190 is laid on the upper surfaces of the heat resistant wall 121 and the heat insulation wall 122 (the upper surface of the first furnace wall 120) in the heat retention device 100. The molten metal heat insulating device seal 190 is laid so that the outer peripheral surface thereof is along the inner surface of the metal case 130. Thereby, since the molten metal heat insulation apparatus seal | sticker 190 is positioned by the internal peripheral surface of the metal case 130, the horizontal shift | offset | difference can be prevented.
 このように、溶湯保温装置シール190が敷設された状態で、坩堝固定リング200を載置する。このとき、金属ケース130の鍔部131に形成されている各ガイドピン差し込み孔(図示せず。)と坩堝固定リング金属枠230の下端側鍔部231に形成されている各ガイドピン差し込み孔(図示せず。)とそれぞれが一致するように、坩堝固定リング200を載置する。そして、ガイドピンGPを各ガイドピン差し込み孔に挿し込む。これによって、坩堝固定リング200を溶湯保温装置100に取り付けることができる。 Thus, the crucible fixing ring 200 is placed in a state where the molten metal heat insulation device seal 190 is laid. At this time, each guide pin insertion hole (not shown) formed in the flange 131 of the metal case 130 and each guide pin insertion hole (not shown) formed in the lower end side flange 231 of the crucible fixing ring metal frame 230. The crucible fixing ring 200 is placed so as to match each other (not shown). Then, the guide pin GP is inserted into each guide pin insertion hole. Thereby, the crucible fixing ring 200 can be attached to the molten metal heat retaining device 100.
 このようにして、坩堝固定リング200を溶湯保温装置100に取り付けることにより、溶湯保温装置100における第1炉壁120と坩堝固定リング200における第2炉壁210との間に敷設されている溶湯保温装置シール190は、坩堝固定リング200の重量によって押圧された状態となり、溶湯保温装置100と坩堝固定リング200とが密着状態となる。 In this way, by attaching the crucible fixing ring 200 to the molten metal heat insulating device 100, the molten metal heat insulating material laid between the first furnace wall 120 in the molten metal heat insulating device 100 and the second furnace wall 210 in the crucible fixing ring 200. The device seal 190 is pressed by the weight of the crucible fixing ring 200, and the molten metal heat retaining device 100 and the crucible fixing ring 200 are in close contact with each other.
 そして、坩堝110の開口側外壁面と坩堝固定リング200における耐熱壁211の内壁面211a(傾斜面211a)との間に形成されている「シール埋め込み用隙間260」に、くさび型シール250を埋設する。このとき、くさび型シール250の上端を坩堝固定リング200の上面よりもわずかに上方に突出させた状態としておく。これよって、坩堝110は坩堝固定リング200によって確実に固定された状態となる。すなわち、くさび型シール250には、補助リング300及び燃焼装置400の重量が加わり、それによって、くさび型シール250がz軸に沿って下方向に移動しようとすることによる水平方向への押圧力(坩堝110の外壁を押圧する力)が働く。これにより、坩堝110を確実に固定することができる。 Then, a wedge seal 250 is embedded in the “sealing gap 260” formed between the outer wall surface on the opening side of the crucible 110 and the inner wall surface 211a (inclined surface 211a) of the heat-resistant wall 211 in the crucible fixing ring 200. To do. At this time, the upper end of the wedge-shaped seal 250 is made to protrude slightly upward from the upper surface of the crucible fixing ring 200. Accordingly, the crucible 110 is securely fixed by the crucible fixing ring 200. In other words, the wedge-shaped seal 250 is added with the weight of the auxiliary ring 300 and the combustion device 400, whereby the wedge-shaped seal 250 tries to move downward along the z-axis. The force which presses the outer wall of the crucible 110 works. Thereby, the crucible 110 can be fixed reliably.
 続いて、坩堝固定リング200に補助リング300を載置する。このとき、まずは、坩堝固定リング200における第2炉壁210の上面に補助リングシール受け板360を載置し、当該補助リングシール受け板360に補助リングシール270を敷設して、その上に補助リング300を載置する。このとき、坩堝固定リング金属枠230の上端側鍔部232に形成されているガイドピン差し込み孔(図示せず。)と、補助リングシール受け板360に形成されているガイドピン差し込み孔363と、補助リング金属枠330の下端側鍔部331に形成されている各ガイドピン差し込み孔(図示せず。)とがそれぞれ一致するように、シール受け板と360補助リング300とを坩堝固定リング200に載置する。そして、ガイドピンGPを各ガイドピン差し込み孔に挿し込む。これによって、補助リング300を坩堝固定リング200に取り付けることができる。 Subsequently, the auxiliary ring 300 is placed on the crucible fixing ring 200. At this time, first, the auxiliary ring seal receiving plate 360 is placed on the upper surface of the second furnace wall 210 of the crucible fixing ring 200, and the auxiliary ring seal 270 is laid on the auxiliary ring seal receiving plate 360, and the auxiliary ring seal 270 is provided thereon. The ring 300 is placed. At this time, a guide pin insertion hole (not shown) formed in the upper end side flange 232 of the crucible fixing ring metal frame 230, a guide pin insertion hole 363 formed in the auxiliary ring seal receiving plate 360, The seal receiving plate and the 360 auxiliary ring 300 are attached to the crucible fixing ring 200 so that the guide pin insertion holes (not shown) formed in the lower end side flange portion 331 of the auxiliary ring metal frame 330 are aligned with each other. Place. Then, the guide pin GP is inserted into each guide pin insertion hole. Thereby, the auxiliary ring 300 can be attached to the crucible fixing ring 200.
 なお、補助リングシール270は、その外周面がシール受け板360に形成されている補助リングシールガイド壁362の内周面に沿うように配設する。これによって、補助リングシール270は、補助リングシールガイド壁362によって位置決めされるため、水平方向のずれを防止することができる。 The auxiliary ring seal 270 is disposed so that the outer peripheral surface thereof is along the inner peripheral surface of the auxiliary ring seal guide wall 362 formed on the seal receiving plate 360. As a result, the auxiliary ring seal 270 is positioned by the auxiliary ring seal guide wall 362, so that a horizontal shift can be prevented.
 このようにして補助リング300を坩堝固定リング200に取り付けることにより、補助リング300と坩堝固定リング200との間に敷設されている補助リングシール270は、補助リング300の重量によって押圧された状態となり、補助リング300と坩堝固定リング200とが密着状態となる。 By attaching the auxiliary ring 300 to the crucible fixing ring 200 in this way, the auxiliary ring seal 270 laid between the auxiliary ring 300 and the crucible fixing ring 200 is pressed by the weight of the auxiliary ring 300. The auxiliary ring 300 and the crucible fixing ring 200 are in close contact with each other.
 続いて、燃焼装置400を補助リング300に載置する。このとき、まずは補助リング300における第3炉壁310の上面に燃焼装置シール受け板460を載置する。この場合、補助リング金属枠330の上端側鍔部332に形成されているガイドピン差し込み孔(図示せず。)と、燃焼装置シール受け板460に形成されているガイドピン差し込み孔(図示せず。)とがそれぞれ一致するように、補助リング300に燃焼装置シール受け板460を載置する。 Subsequently, the combustion device 400 is placed on the auxiliary ring 300. At this time, first, the combustion apparatus seal receiving plate 460 is placed on the upper surface of the third furnace wall 310 in the auxiliary ring 300. In this case, a guide pin insertion hole (not shown) formed in the upper end side flange 332 of the auxiliary ring metal frame 330 and a guide pin insertion hole (not shown) formed in the combustion device seal receiving plate 460. .)) Is placed on the auxiliary ring 300 so that they match each other.
 そして、ガイドピンを各ガイドピン差し込み孔に挿し込む。このように、燃焼装置シール受け板460を補助リング300の上面に取り付けたのち、当該燃焼装置シール受け板460に燃焼装置シール380を敷設する。燃焼装置シール380は、補助リングシール270と同様の敷設の仕方で燃焼装置シール受け板460に敷設する。 And then insert the guide pin into each guide pin insertion hole. As described above, after the combustion device seal receiving plate 460 is attached to the upper surface of the auxiliary ring 300, the combustion device seal 380 is laid on the combustion device seal receiving plate 460. The combustion device seal 380 is installed on the combustion device seal receiving plate 460 in the same manner as the auxiliary ring seal 270.
 このような状態において、燃焼装置400を当該燃焼装置シール受け板460に載置する。このとき、燃焼装置400は、燃焼装置シール受け板460に設けられている燃焼装置位置決め用突出部469をガイドとしてシール受け板460に載置する。このようにして燃焼装置400を補助リング300に載置することにより、燃焼装置400と補助リング300との間に敷設されている燃焼装置シール380は、燃焼装置400の重量によって押圧された状態となり、燃焼装置400と補助リング300とは密着状態となる。 In such a state, the combustion device 400 is placed on the combustion device seal receiving plate 460. At this time, the combustion device 400 is placed on the seal receiving plate 460 using the combustion device positioning protrusion 469 provided on the combustion device seal receiving plate 460 as a guide. By placing the combustion device 400 on the auxiliary ring 300 in this way, the combustion device seal 380 laid between the combustion device 400 and the auxiliary ring 300 is pressed by the weight of the combustion device 400. The combustion device 400 and the auxiliary ring 300 are in close contact with each other.
 以上説明したような手順によって、溶解炉本体10Aを組み立てることができる(図1及び図2参照。)。このようにして組み立てられた溶解炉本体10Aは、個々の構造体の殆どが100kg以上の重量を有しているため、容易に、位置ずれしたりすることはない。 The melting furnace body 10A can be assembled by the procedure as described above (see FIGS. 1 and 2). The melting furnace main body 10A assembled in this way is not easily displaced because most of the individual structures have a weight of 100 kg or more.
 また、このような重量を有しているため、各シール(溶湯保温装置シール190、補助リングシール270、燃焼装置シール380)には大きな押圧力が加わり、各構造体間は密着状態となる。このため、燃焼室450の溶解炉本体10A外部に対する密閉度を高くすることができるとともに、保温室150の溶解炉本体10A外部に対する密閉度を高くすることができる。これにより、バーナー440の燃焼熱及び電気ヒーターによる熱を外部に逃さないようにすることができるため、被溶解金属を溶解する際の熱効率及び溶湯を保温する際の保温力を高めることができる。 Moreover, since it has such a weight, a large pressing force is applied to each seal (the molten metal heat insulation device seal 190, the auxiliary ring seal 270, and the combustion device seal 380), and the structures are brought into close contact with each other. For this reason, while being able to make the sealing degree with respect to the melting furnace main body 10A exterior of the melting furnace main body 10A of the combustion chamber 450 high, the sealing degree with respect to the melting furnace main body 10A exterior of the thermal storage room 150 can be made high. Thereby, it is possible to prevent the combustion heat of the burner 440 and the heat from the electric heater from escaping to the outside, so that it is possible to increase the thermal efficiency when melting the metal to be melted and the heat retention power when warming the molten metal.
 また、燃焼室450と保温室150との間の密閉度も高くすることができる。これにより、バーナー440の燃焼熱及び燃焼ガスが保温室150に流入するのを防止する効果を高めることができる。なお、バーナー440の燃焼熱は1300℃以上にも達するため、そのような高熱が保温室に流入することを防止することにより、電気ヒーター180などに与える悪影響を抑制することができる。 Also, the degree of sealing between the combustion chamber 450 and the thermal storage room 150 can be increased. Thereby, the effect which prevents the combustion heat and combustion gas of the burner 440 from flowing into the thermal storage room 150 can be enhanced. In addition, since the combustion heat of the burner 440 reaches 1300 degreeC or more, the bad influence given to the electric heater 180 grade | etc., Can be suppressed by preventing such a high heat | fever flowing into a heat retention chamber.
 また、坩堝固定リング200と坩堝110との間には、くさび型シール250が埋設されているため、バーナー440の燃焼熱及び燃焼ガスが保温室150に流入するのを防止する効果を、より高めることができる。なお、くさび型シール250には、補助リング300及び燃焼装置400の重量が加わり、それによって、くさび型シール250がz軸に沿って下方向に移動しようとすることによる水平方向への押圧力(坩堝110の開口側外壁面を押圧する力)が働く。それによって、保温室150の密閉度はより高いものとなり、バーナー440の燃焼熱及び燃焼ガスが保温室150に流入するのを防止する効果をより高めることができる。 In addition, since a wedge-shaped seal 250 is embedded between the crucible fixing ring 200 and the crucible 110, the effect of preventing the combustion heat and combustion gas of the burner 440 from flowing into the thermal storage room 150 is further enhanced. be able to. Note that the wedge-shaped seal 250 is added with the weight of the auxiliary ring 300 and the combustion device 400, whereby the wedge-shaped seal 250 tries to move downward along the z-axis. Force to press the outer wall surface on the opening side of the crucible 110). As a result, the hermeticity of the thermal storage room 150 becomes higher, and the effect of preventing the combustion heat and combustion gas of the burner 440 from flowing into the thermal storage room 150 can be further enhanced.
 次に、実施形態に係る金属溶解炉10を用いて溶湯を生成する際の溶湯生成方法について説明する。 Next, a molten metal generation method when generating a molten metal using the metal melting furnace 10 according to the embodiment will be described.
 図5、図6及び図7は、実施形態に係る金属溶解炉10を用いて溶湯を生成する際の溶湯生成方法の各工程を説明するために示す図である。図5(a)~図5(c)は、溶湯生成工程における溶解準備工程を説明するために示す図である。また、図6(a)及び図6(b)は、溶湯生成工程における溶解工程及び溶湯保温工程を説明するために示す図である。また、図7(a)及び図7(b)は、溶湯生成工程における不純物除去工程を説明するために示す図である。なお、図5~図7においては、図面を簡素化するために、符号が一部省略されている。 FIG. 5, FIG. 6 and FIG. 7 are diagrams for explaining each step of the molten metal production method when producing molten metal using the metal melting furnace 10 according to the embodiment. FIGS. 5 (a) to 5 (c) are diagrams for explaining the melting preparation step in the molten metal production step. Moreover, FIG. 6A and FIG. 6B are diagrams for explaining the melting step and the molten metal heat retaining step in the molten metal generation step. FIGS. 7A and 7B are views for explaining the impurity removal step in the molten metal generation step. In FIGS. 5 to 7, some of the reference numerals are omitted to simplify the drawings.
 1.溶解準備工程
 まず、図5(a)に示すように、燃焼装置400を取り外して、溶湯保温装置100に坩堝固定リング200と補助リング300とが載置されている状態とする。このとき、補助リング300の上面には、燃焼装置シール受け板460と燃焼装置シール380が敷設されたままの状態となっている。なお、燃焼装置シール380にはシール保護カバー(図示せず。)で覆った状態としておくことが好ましい。
1. Dissolving preparation step First, as shown in FIG. 5 (a), and remove the combustion device 400, the state of the crucible fixing ring 200 to melt insulation device 100 and the auxiliary ring 300 is placed. At this time, the combustion device seal receiving plate 460 and the combustion device seal 380 are laid on the upper surface of the auxiliary ring 300. The combustion device seal 380 is preferably covered with a seal protective cover (not shown).
 このような状態で、図5(b)に示すように、被溶解金属600を坩堝110に投入する。坩堝110に投入する被溶解金属600の量は、坩堝110の容量を考慮して決める。被溶解金属600としては、アルミインゴットと前回の鋳造作業によって生成された鋳造製品から切り離された鋳造残材(湯口に対応する鋳造部分、湯道に対応する鋳造部分、押湯に対応する鋳造部分など)が含まれる。 In such a state, as shown in FIG. 5B, the metal 600 to be melted is put into the crucible 110. The amount of the metal 600 to be melted introduced into the crucible 110 is determined in consideration of the capacity of the crucible 110. As the metal 600 to be melted, a cast remaining material separated from an aluminum ingot and a cast product generated by the previous casting operation (a cast part corresponding to a pouring gate, a cast part corresponding to a runner, a cast part corresponding to a feeder) Etc.).
 なお、被溶解金属600を坩堝110に投入する際、坩堝110に投入した被溶解金属600が補助リング300よりも上方にはみ出さないように坩堝に投入すればよい。 It should be noted that when the metal 600 to be melted is put into the crucible 110, the metal 600 to be melted put into the crucible 110 may be put into the crucible so as not to protrude above the auxiliary ring 300.
 すなわち、実施形態に係る金属溶解炉10においては、補助リング300の上に燃焼装置400を載置する構造となっているため、坩堝110に投入した被溶解金属600が補助リング300よりも上方にはみ出さないように坩堝に投入すれば、燃焼装置400は補助リング300に載置することができる。 That is, in the metal melting furnace 10 according to the embodiment, since the combustion device 400 is mounted on the auxiliary ring 300, the metal 600 to be melted introduced into the crucible 110 is located above the auxiliary ring 300. If it puts in a crucible so that it may not protrude, the combustion apparatus 400 can be mounted in the auxiliary | assistant ring 300. FIG.
 換言すれば、実施形態に係る金属溶解炉10においては、補助リング300の存在により、被溶解金属600の水平方向(xy平面に沿った方向)へのはみ出しは補助リング300によって始めから規制されているため、被溶解金属600が水平方向(xy平面に沿った方向)に「はみ出す」ことを気に掛けることなく、被溶解金属600を坩堝110に投入できるということである。このため、被溶解金属600を坩堝110に投入する際の作業業性が高くすることができるとともに、坩堝110の容量に対する被溶解金属600の投入量を最大限に設定することができ、坩堝110の容量を十分に生かすことできる。これにより、溶湯の生産性を向上させることができる。
 そして、図5(b)の状態から、燃焼装置シール380のシール保護カバー(図示せず。)を外し、燃焼装置400を補助リング300に載置する(図5(c)参照。)。
In other words, in the metal melting furnace 10 according to the embodiment, due to the presence of the auxiliary ring 300, the protrusion of the metal 600 to be melted in the horizontal direction (the direction along the xy plane) is restricted from the beginning by the auxiliary ring 300. Therefore, the metal 600 to be melted can be put into the crucible 110 without worrying that the metal 600 to be melted “extends” in the horizontal direction (the direction along the xy plane). For this reason, workability at the time of charging the metal 600 to be melted into the crucible 110 can be improved, and the amount of the metal 600 to be melted with respect to the capacity of the crucible 110 can be set to the maximum. Can fully utilize the capacity. Thereby, the productivity of the molten metal can be improved.
Then, from the state of FIG. 5B, the seal protection cover (not shown) of the combustion device seal 380 is removed, and the combustion device 400 is placed on the auxiliary ring 300 (see FIG. 5C).
 2.溶解工程及び溶湯保温工程
 続いて、図6(a)に示すように、燃焼装置400のバーナー440から火炎445を被溶解金属600に当てて溶解を開始する。このとき、溶湯温度センサーTS3の挿入が可能な温度センサー挿入孔340を栓340aで塞ぐ。これは、燃焼装置400のバーナー440によって被溶解金属600を溶解させる際に、燃焼熱が外部に逃げないようにするためである。
2. Following dissolution step and molten metal incubating process, as shown in FIG. 6 (a), it starts to dissolve against the burner 440 of the combustion device 400 flame 445 to the molten metal 600. At this time, the temperature sensor insertion hole 340 into which the molten metal temperature sensor TS3 can be inserted is closed with the plug 340a. This is to prevent combustion heat from escaping to the outside when the metal 600 to be melted is melted by the burner 440 of the combustion apparatus 400.
 なお、被溶解金属600であるアルミニウムの酸化防止のため燃焼は還元炎で行い、燃焼室450内を酸欠状態とする。このとき、燃焼室450内に空気が侵入すると、アルミニウムは酸化して消耗するが、実施形態に係る金属溶解炉10においては、各部のシール(溶湯保温装置シール190、くさび型シール250、補助リングシール270、燃焼装置シール380)などが高いシール性を有し、燃焼室450の密閉性が保持されているため、アルミニウムが酸化して消耗することを抑制し、また、燃費の向上が図れる。特に、補助リングシール270及び燃焼装置シール380は、それぞれシール受け板360,460によって位置決めされていることにより、高い位置精度を有するため、高い密閉性を長期間保持できる。 In addition, in order to prevent oxidation of aluminum which is the metal 600 to be dissolved, combustion is performed with a reducing flame, and the inside of the combustion chamber 450 is in an oxygen deficient state. At this time, when air enters the combustion chamber 450, the aluminum is oxidized and consumed. However, in the metal melting furnace 10 according to the embodiment, the seals of each part (the molten metal heat insulation device seal 190, the wedge seal 250, the auxiliary ring). Since the seal 270, the combustion device seal 380) and the like have high sealing properties and the sealing property of the combustion chamber 450 is maintained, it is possible to suppress aluminum from being oxidized and consumed, and to improve fuel consumption. In particular, since the auxiliary ring seal 270 and the combustion device seal 380 are positioned by the seal receiving plates 360 and 460, respectively, since they have high positional accuracy, high sealing performance can be maintained for a long time.
 このようにしてバーナー440の炎により溶解を行っている際に、所定のタイミングで電気ヒーター180に通電させ、バーナー440による燃焼と電気ヒーター180による加熱を併用した溶解・加熱工程すなわち「バーナー・ヒーター併用の溶解・加熱工程」を行う。なお、電気ヒーター180に通電を開始させる通電開始タイミングは、燃費と溶解効率に影響を与える。本発明の発明者が行った実験によれば、被溶解金属600が溶解し始め、かつ、坩堝110の底部外壁面の温度が550℃(坩堝底部温度センサーTS1による計測温度が550℃)となった時点を電気ヒーター180の通電開始タイミングとすることが好ましいということがわかった。 When melting is performed by the flame of the burner 440 in this way, the electric heater 180 is energized at a predetermined timing, and a melting / heating process in which combustion by the burner 440 and heating by the electric heater 180 are combined, that is, “burner heater” Perform combined melting and heating process. Note that the energization start timing for starting energization of the electric heater 180 affects fuel consumption and dissolution efficiency. According to the experiments conducted by the inventors of the present invention, the metal 600 to be melted begins to melt, and the temperature of the bottom outer wall surface of the crucible 110 becomes 550 ° C. (the temperature measured by the crucible bottom temperature sensor TS1 is 550 ° C.). It has been found that it is preferable to set the time when the electric heater 180 is energized.
 そして、電気ヒーター180の通電を開始した時点から、しばらくの間、バーナー440と電気ヒーター180とを併用した「バーナー・ヒーター併用の溶解・加熱工程」を行い、坩堝底部温度センサーTS1による計測温度が630℃近傍を示したら、バーナー440の作動を一旦停止させ、溶湯温度センサーTS3を温度センサー挿入孔340に挿入して(図6(b)参照。)、坩堝110内の温度を監視するとともに、坩堝110内の溶解状況を監視する。 Then, for a while from the start of energization of the electric heater 180, a “melting / heating process using the burner / heater” in which the burner 440 and the electric heater 180 are used together is performed, and the temperature measured by the crucible bottom temperature sensor TS 1 When the temperature near 630 ° C. is indicated, the operation of the burner 440 is temporarily stopped, the molten metal temperature sensor TS3 is inserted into the temperature sensor insertion hole 340 (see FIG. 6B), and the temperature in the crucible 110 is monitored, The melting state in the crucible 110 is monitored.
 この時点においては、坩堝110内において、上部60%程度が液体の状態となっており、坩堝110内の下部は個体と液体とが混合している状態である。ここで、バーナー440の作動を停止させて、電気ヒーター180によって加熱して昇温させて、被溶解金属600を溶解させて溶湯の状態とする。その後、坩堝110内の溶湯が鋳造作業に適した温度を保持するように電気ヒーター180によって溶湯の保温を行う「溶湯保温工程」に移行する。 At this time, about 60% of the upper part is in a liquid state in the crucible 110, and the lower part in the crucible 110 is in a state where the solid and the liquid are mixed. Here, the operation of the burner 440 is stopped, the temperature is raised by heating with the electric heater 180, and the metal 600 to be melted is melted into a molten metal state. Thereafter, the process proceeds to a “molten heat retaining process” in which the molten metal in the crucible 110 is kept warm by the electric heater 180 so that the temperature is suitable for the casting operation.
 なお、坩堝110内の上部60%程度が液体の状態で、坩堝110内の下部は個体と液体とが混合している状態となったら、バーナー440の作動を停止させて電気ヒーター180によって加熱を行うのは、下記の理由からである。 When about 60% of the upper part in the crucible 110 is in a liquid state and the lower part in the crucible 110 is in a state where the solid and the liquid are mixed, the operation of the burner 440 is stopped and the electric heater 180 is heated. The reason for doing this is as follows.
 すなわち、被溶解金属600が固体の場合は、バーナー440からの炎による溶解効率は高いが、坩堝110内の上部表面が液体化した状態になると、液体化した金属(この場合、アルミニウム)が表面を覆うようになるため、バーナー440からの炎による燃焼熱が坩堝110内の奥の部分(液体化されていない個体のままの被溶解金属600が存在する部分)にまで伝わりにくくなって、坩堝110内の被溶解金属600全体が溶解して溶湯となるまでには、多くの時間とエネルギーが必要となるからである。 That is, when the metal 600 to be melted is solid, the melting efficiency by the flame from the burner 440 is high, but when the upper surface in the crucible 110 becomes liquefied, the liquefied metal (in this case, aluminum) is the surface. Therefore, it becomes difficult for the heat of combustion from the flame from the burner 440 to be transmitted to the inner part of the crucible 110 (the part where the melted metal 600 that is not liquefied remains exists). This is because much time and energy are required until the entire metal 600 to be melted in 110 is melted into a molten metal.
 そこで、坩堝110内の上部60%程度が液体状態となり、坩堝110内の下部は個体と液体とが混合している状態となったら、バーナー440の作動を停止して、電気ヒーター180のみで加熱して昇温させることにより、被溶解金属600を効率的に溶解させて溶湯700の状態にすることができ、その後も、溶湯700を鋳造作業に適した温度に保持することができる。なお、電気ヒーター180による保温は、温度制御を高精度に行うことができるため、溶湯700の温度を鋳造作業に適した温度に適切に保持することができる。 Therefore, when about 60% of the upper part in the crucible 110 is in a liquid state and the lower part in the crucible 110 is in a state where the solid and the liquid are mixed, the operation of the burner 440 is stopped and heating is performed only by the electric heater 180. By raising the temperature, the metal 600 to be melted can be efficiently melted to form the molten metal 700, and thereafter, the molten metal 700 can be maintained at a temperature suitable for the casting operation. In addition, since the temperature control by the electric heater 180 can be performed with high accuracy, the temperature of the molten metal 700 can be appropriately maintained at a temperature suitable for the casting operation.
 電気ヒーター180の制御は、電気ヒーター制御部(図示せず。)によって行うことができる。すなわち、電気ヒーター制御部は、坩堝110内の溶湯700の温度に基づいて溶湯700の温度が所定温度に保持されるように電気ヒーター180を制御する。これにより、坩堝110内の溶湯700を常に鋳造作業に適した温度に保持することができる。 Control of the electric heater 180 can be performed by an electric heater control unit (not shown). That is, the electric heater control unit controls the electric heater 180 based on the temperature of the molten metal 700 in the crucible 110 so that the temperature of the molten metal 700 is maintained at a predetermined temperature. Thereby, the molten metal 700 in the crucible 110 can always be maintained at a temperature suitable for the casting operation.
3.不純物除去工程
 坩堝110内の溶湯700が鋳造作業に適した温度となったら、燃焼装置400を取り外すととともに補助リング300を取り外す(図7(a)参照。)。燃焼装置400及び補助リング300の取り外しは、図示しないクレーンによって行う。なお、補助リング300を取り外す際には、ガイドピンGPを引き抜いた状態で行う。
3. Impurity removing step When the molten metal 700 in the crucible 110 reaches a temperature suitable for the casting operation, the combustion device 400 is removed and the auxiliary ring 300 is removed (see FIG. 7A). The combustion device 400 and the auxiliary ring 300 are removed by a crane (not shown). In addition, when removing the auxiliary | assistant ring 300, it carries out in the state which pulled out the guide pin GP.
 そして、図7(a)に示すように燃焼装置400及び補助リング300が取り外された状態となったら、不純物除去装置としての回転脱ガス装置500の回転体520を溶湯700内に浸漬させて、不純物除去作業を行う。このとき、坩堝固定リング200上の補助リングシール270にはシール保護カバー(図示せず。)で覆うことが好ましい。 Then, when the combustion device 400 and the auxiliary ring 300 are removed as shown in FIG. 7A, the rotating body 520 of the rotary degassing device 500 as the impurity removing device is immersed in the molten metal 700, Impurity removal work is performed. At this time, the auxiliary ring seal 270 on the crucible fixing ring 200 is preferably covered with a seal protection cover (not shown).
 不純物除去作業は、図7(b)に示すように、回転脱ガス装置500の回転体520を坩堝110内の溶湯700に浸漬させて、回転体520を回転させながらマイクロバブル化したアルゴンガスを発生させることによって溶湯700に含まれている水素ガスなどの不純物を浮上させて除去する。このようにして不純物が除去されることにより、坩堝110内の溶湯700は高品質なものとなる。このような不純物除去工程における不純物除去作業を行う際、要求される品質基準に達するまで、繰り返し不純物除去作業を行うことも可能である。 As shown in FIG. 7B, the impurity removal operation is performed by immersing the rotating body 520 of the rotary degassing apparatus 500 in the molten metal 700 in the crucible 110 and rotating the rotating body 520 into argon gas that is microbubbled. By generating it, impurities such as hydrogen gas contained in the molten metal 700 are levitated and removed. By removing impurities in this way, the molten metal 700 in the crucible 110 becomes of high quality. When performing the impurity removal operation in such an impurity removal step, the impurity removal operation can be repeated until the required quality standard is reached.
 このようにして、要求される品質基準に達した高品質な溶湯が生成されたら、図7(c)に示すように、回転脱ガス装置500を取り外して、溶湯温度制御用の温度センサーTS4を溶湯700内に入れて、溶湯温度を測定し、その測定結果に基づいて、溶湯700が鋳造に適した温度に保持されるよう電気ヒーター180を制御する。なお、溶湯温度制御用の温度センサーTS4は、図6(b)において用いた溶湯温度センサーTS3と同じものであってもよい。 In this way, when a high-quality molten metal that meets the required quality standards is generated, the rotary degassing device 500 is removed and a temperature sensor TS4 for controlling the molten metal temperature is installed as shown in FIG. It puts in the molten metal 700, measures a molten metal temperature, and controls the electric heater 180 so that the molten metal 700 is maintained at a temperature suitable for casting based on the measurement result. The temperature sensor TS4 for controlling the molten metal temperature may be the same as the molten metal temperature sensor TS3 used in FIG.
 なお、図7(c)の状態においては、補助リング300が存在せず、坩堝110の開口部が坩堝固定リング200の上面と同一平面となっているため、坩堝110内に存在する溶湯700の液面までの距離が坩堝固定リング200の上面から短い。このため、溶湯700の汲み出し作業が容易となり、鋳造作業を効率よく行うことができる。 In the state of FIG. 7C, the auxiliary ring 300 does not exist, and the opening of the crucible 110 is flush with the upper surface of the crucible fixing ring 200. The distance to the liquid surface is short from the upper surface of the crucible fixing ring 200. For this reason, the work of drawing out the molten metal 700 becomes easy, and the casting work can be performed efficiently.
 図8は、実施形態に係る金属溶解炉10を用いて実際に被溶解金属600(アルミニウムとする。)の溶解作業を行った場合の溶解効率を説明するために示す図である。図8(a)は溶解作業を行った際の各種条件を示す図であり、図8(b)は図8(a)に示すような条件に基づいて、実施形態に係る金属溶解炉10(ハイブリッド型の金属溶解炉)による溶解効率とLPGガスのみの金属溶解炉による溶解効率を比較して示す図である。また、図8は、実施形態に係る金属溶解炉10を溶解のみに使用し、保温などは他の坩堝を用いた場合の溶解効率を示している。 FIG. 8 is a diagram for explaining the melting efficiency when the melting work of the metal 600 (to be aluminum) is actually performed using the metal melting furnace 10 according to the embodiment. FIG. 8A is a diagram showing various conditions when the melting operation is performed, and FIG. 8B is a diagram illustrating a metal melting furnace 10 (see FIG. 8A) based on the conditions shown in FIG. It is a figure which compares and compares the melting efficiency by a metal melting furnace of a hybrid type), and the melting efficiency by the metal melting furnace only of LPG gas. FIG. 8 shows the melting efficiency when the metal melting furnace 10 according to the embodiment is used only for melting, and heat retention and the like use other crucibles.
 なお、図8(b)において、白抜きの四角形は、実施形態に係る金属溶解炉10による溶解効率を表しており、太い実線は、LPG(Liquefied Petroleum Gas)のみの金属溶解炉による溶解効率を示している。また、図8(b)において、横軸は溶解作業を行った日(溶解実施日)を示し、縦軸は各溶解実施日(1日~5日)における溶解効率(%)を示している。 In FIG. 8B, the white square represents the melting efficiency of the metal melting furnace 10 according to the embodiment, and the thick solid line represents the melting efficiency of the LPG (Liquefied Petroleum Gas) only. Show. In FIG. 8 (b), the horizontal axis indicates the day when the melting operation was performed (melting date), and the vertical axis indicates the melting efficiency (%) on each melting date (1 to 5 days). .
 また、図8(b)における溶解効率は、この場合、アルミニウムの理論溶解熱量に対する使用熱量比(%)であるとする。ここで、アルミニウムの理論溶解熱量をαとし、実際のガスの使用量をアルミニウム1Kg当たりに熱量換算した値βで表し、実際の電気の使用量をアルミニウム1Kg当たりに熱量換算した値γで表すとすれば、実施形態に係る金属溶解炉10による溶解効率(A1とする。)は、
 A1(%)=α/(β+γ)×100
で表わされ、LPGガスのみの金属溶解炉による溶解効率(A2とする。)は、
 A2(%)=α/β×100
で表わされる。
In this case, the melting efficiency in FIG. 8 (b) is assumed to be the ratio (%) of heat used to the theoretical melting heat of aluminum. Here, α is the theoretical melting heat of aluminum, α is the actual amount of gas used expressed as a value β converted to heat per 1 kg of aluminum, and the actual amount of electricity used is expressed as a value γ converted into heat per 1 kg of aluminum. Then, the melting efficiency (referred to as A1) by the metal melting furnace 10 according to the embodiment is as follows.
A1 (%) = α / (β + γ) × 100
The melting efficiency (referred to as A2) in a metal melting furnace using only LPG gas is
A2 (%) = α / β × 100
It is represented by
 なお、アルミニウムの理論溶解熱量αは、アルミニウムの重量が1Kgの場合、
 α=アルミニウム重量×比熱×(溶解作業温度-雰囲気温度)+アルミウイウム重量×溶解潜熱=271.6Kcal/Kg
と求められる。
The theoretical heat of fusion α of aluminum is 1 kg when the weight of aluminum is
α = aluminum weight × specific heat × (melting work temperature−atmosphere temperature) + aluminum weight × melting latent heat = 271.6 Kcal / Kg
Is required.
 図8(b)に示すように、LPGガスのみの金属溶解炉による溶解効率は、各溶解作業実施日において、せいぜい10数%程度である。一方、実施形態に係る金属溶解炉(ハイブリッド金属溶解炉)による溶解効率は、25~30数%となり、LPGガスのみの金属溶解炉に比べて高い溶解効率が得られることがわかった。 As shown in FIG. 8 (b), the melting efficiency of the LPG gas-only metal melting furnace is about 10% at most on the day of each melting operation. On the other hand, the melting efficiency of the metal melting furnace (hybrid metal melting furnace) according to the embodiment is 25 to 30%, and it was found that a higher melting efficiency was obtained compared to a metal melting furnace only with LPG gas.
 図9は、実施形態に係る金属溶解炉10における溶湯生成方法の他の例を示す図である。図9に示す溶湯生成方法は、溶湯保温装置100に坩堝固定リング200を設置した状態のもの(坩堝固定リング付きの溶湯保温装置という)を2台(第1坩堝固定リング付きの溶湯保温装置100A及び第2坩堝固定リング付きの溶湯保温装置100Bとする。)用意するとともに、補助リング300及び燃焼装置400をそれぞれ1台ずつ用意しておき、第1坩堝固定リング付きの溶湯保温装置100A及び第2坩堝固定リング付きの溶湯保温装置100Bと、1台の補助リング300及び1台の燃焼装置400とを用いて効率的に溶湯の生成を行うものである。 FIG. 9 is a diagram illustrating another example of a molten metal generation method in the metal melting furnace 10 according to the embodiment. In the molten metal production method shown in FIG. 9, two molten metal heat retaining devices 100A with a crucible fixing ring (referred to as a molten metal heat retaining device with a crucible fixing ring) in a state where the crucible fixing ring 200 is installed in the molten metal heat retaining device 100 are used. And the molten metal heat retaining device 100B with the second crucible fixing ring), and one auxiliary ring 300 and one combustion device 400 are prepared, respectively. The molten metal heat generating device 100B with two crucible fixing rings, one auxiliary ring 300, and one combustion device 400 are used to efficiently generate molten metal.
 図9において、第1坩堝固定リング付きの溶湯保温装置100Aにおいては、図5~図7で説明した手順によって、不純物の除去された高品質な溶湯700が生成されているものとする。なお、溶湯700の生成が終了した第1坩堝固定リング付きの溶湯保温装置100Aは、電気ヒーター180によって、坩堝110内の溶湯700は鋳造作業に適した温度に保持されており、溶湯700の汲み出し作業を行うことができる状態となっている。 In FIG. 9, in the molten metal heat retaining device 100A with the first crucible fixing ring, it is assumed that a high-quality molten metal 700 from which impurities are removed is generated by the procedure described in FIGS. In addition, in the molten metal heat retaining device 100A with the first crucible fixing ring after the generation of the molten metal 700 is completed, the molten metal 700 in the crucible 110 is maintained at a temperature suitable for casting work by the electric heater 180. It is in a state where work can be performed.
 このように、一方の溶湯保温装置(第1坩堝固定リング付きの溶湯保温装置100A)において溶湯の生成が終了したら、当該第1坩堝固定リング付きの溶湯保温装置100Aから取り外した補助リング300及び燃焼装置400を第2坩堝固定リング付きの溶湯保温装置100Bに取り付ける。そして、当該第2坩堝固定リング付きの溶湯保温装置100Bに被溶解金属600を入れて、当該第2坩堝固定リング付きの溶湯保温装置100Bにおいて溶湯の生成を行う。この場合の溶湯生成手順は、図5~図7に示す各工程の順で行うことができる。 As described above, when the generation of the molten metal is finished in one molten metal heat retaining device (the molten metal heat retaining device 100A with the first crucible fixing ring), the auxiliary ring 300 and the combustion removed from the molten metal heat retaining device 100A with the first crucible fixing ring. The apparatus 400 is attached to the molten metal heat retaining apparatus 100B with the second crucible fixing ring. And the to-be-melted metal 600 is put into the molten metal heat retention apparatus 100B with the said 2nd crucible fixing ring, and a molten metal is produced | generated in the molten metal heat retention apparatus 100B with the said 2nd crucible fixation ring. In this case, the molten metal generation procedure can be performed in the order of the steps shown in FIGS.
 なお、第2坩堝固定リング付きの溶湯保温装置100Bにおいて溶湯の生成を行っている間に、第1坩堝固定リング付きの溶湯保温装置100Aにおいては、溶湯の汲み出し作業を行う。なお、溶湯の汲み出し作業は、坩堝110に入っている溶湯すべてを汲み出すのではなく、坩堝110に入っている溶湯の全体量のうちの1/3程度を残すのが一般的である。 In addition, while the molten metal is generated in the molten metal heat retaining device 100B with the second crucible fixing ring, the molten metal is pumped out in the molten metal heat insulating device 100A with the first crucible fixing ring. It is to be noted that the pumping operation of the molten metal generally does not pump out all the molten metal contained in the crucible 110 but leaves about 1/3 of the total amount of the molten metal contained in the crucible 110.
 そして、第2坩堝固定リング付きの溶湯保温装置100Bにおいて溶湯の生成が終了すると、今度は、燃焼装置400及び補助リング300を第2坩堝固定リング付きの溶湯保温装置100Bから取り外して、取り外した燃焼装置400及び補助リング300を第1坩堝固定リング付きの溶湯保温装置100Aに取り付ける。そして、当該第1坩堝固定リング付きの溶湯保温装置100Aに被溶解金属600を入れて、当該第1坩堝固定リング付きの溶湯保温装置100Aにおいて溶湯の生成を行う。第1坩堝固定リング付きの溶湯保温装置100Aにおいて溶湯の生成を行っている間に、第2坩堝固定リング付きの溶湯保温装置100Bにおいては、溶湯の汲み出し作業を行う。このような操作を必要な量の溶湯が生成されるまで順次繰り返す。 When the generation of the molten metal is completed in the molten metal heat retaining device 100B with the second crucible fixing ring, the combustion device 400 and the auxiliary ring 300 are removed from the molten metal heat retaining device 100B with the second crucible fixing ring, and the removed combustion is performed. The apparatus 400 and the auxiliary ring 300 are attached to the molten metal heat retaining apparatus 100A with the first crucible fixing ring. And the to-be-melted metal 600 is put into the molten metal heat retention apparatus 100A with the said 1st crucible fixing ring, and a molten metal is produced | generated in the molten metal heat retention apparatus 100A with the said 1st crucible fixation ring. While the molten metal is generated in the molten metal heat retaining device 100A with the first crucible fixing ring, the molten metal pumping operation is performed in the molten metal heat insulating device 100B with the second crucible fixing ring. Such an operation is sequentially repeated until a necessary amount of molten metal is generated.
 図9に示すように、溶湯の生成作業と溶湯の汲み出し作業とを交互に行うことで、実施形態に係る金属溶解炉10のような坩堝式溶解炉においても、連続溶解炉と同様に連続的な溶湯の生成作業と溶湯の汲み出し作業とを行うことが可能となり、連続溶解炉と遜色のない高い生産性を得ることができる。 As shown in FIG. 9, by alternately performing a molten metal generating operation and a molten metal pumping operation, a crucible type melting furnace such as the metal melting furnace 10 according to the embodiment is continuous as in the continuous melting furnace. Therefore, it is possible to perform an operation of generating a molten metal and an operation of pumping out the molten metal, and high productivity comparable to that of a continuous melting furnace can be obtained.
 なお、図9においては、2台の坩堝固定リング付き溶湯保温装置を用いて溶解と汲み出しとを交互に行うようにしたが、坩堝固定リング付き溶湯保温装置を3台以上用いることも可能であり、坩堝固定リング付き溶湯保温装置を3台以上とすることにより、溶湯生成作業と溶湯の汲み出し作業とを、より効率的に行うことができる。 In FIG. 9, melting and pumping are alternately performed using two molten metal heat retaining devices with crucible fixing rings, but it is possible to use three or more molten metal heat retaining devices with crucible fixing rings. By using three or more molten metal heat retaining devices with crucible fixing rings, the molten metal generating operation and the molten metal pumping operation can be performed more efficiently.
 なお、本発明は上述の実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲で例えば下記に示すような変形実施も可能となる。 Note that the present invention is not limited to the above-described embodiment, and modifications such as those shown below can be made without departing from the gist of the present invention.
 (1)上記実施形態においては溶解工程における溶湯の温度測定を行うための温度センサー挿入孔340は、補助リング300に設けるような構造としたが、これに限られるものではなく、燃焼装置400に設けるようにしてもよい。 (1) In the above embodiment, the temperature sensor insertion hole 340 for measuring the temperature of the molten metal in the melting step is provided in the auxiliary ring 300, but the structure is not limited to this. You may make it provide.
 図10は、溶湯の温度測定を行うための温度センサー挿入孔340の設置箇所の変形例について説明するために示す図である。図10に示すように、温度センサー挿入孔340は、燃焼装置400に設けることによっても、溶解工程における溶湯の温度測定を行うことが可能である。なお、補助リング300に設けるか、燃焼装置400に設けるかは、作業性などを考慮して決めることが可能である。また、温度センサー挿入孔340を補助リング300と燃焼装置400との両方に設けておき、適宜選択的に用いるようにしてもよい。この場合、使用しない度センサー挿入孔には、熱の流出を防ぐために栓で塞ぐようにすることが好ましい。 FIG. 10 is a view shown for explaining a modification of the installation location of the temperature sensor insertion hole 340 for measuring the temperature of the molten metal. As shown in FIG. 10, the temperature sensor insertion hole 340 can also measure the temperature of the molten metal in the melting step by providing it in the combustion apparatus 400. Whether to provide the auxiliary ring 300 or the combustion device 400 can be determined in consideration of workability and the like. Further, the temperature sensor insertion hole 340 may be provided in both the auxiliary ring 300 and the combustion device 400, and may be selectively used as appropriate. In this case, the sensor insertion hole is preferably closed with a plug to prevent heat from flowing out whenever it is not used.
 (2)上記実施形態においては、バーナー440はLPGを燃料とするバーナーを例示したが、LPGに限られるものではなく、他の化石燃料を用いるバーナーであってもよい。また、バーナー440は熱交換型のバーナーとしており、このような熱交換型のバーナーとすることによって、燃焼効率の向上を可能としているが、溶解状況に応じて燃料の供給量及び空気の供給量を制御することにより、燃焼効率をより向上させることができ、それによって燃費をより削減することができる。 (2) In the above embodiment, the burner 440 is exemplified by a burner using LPG as fuel, but is not limited to LPG, and may be a burner using other fossil fuel. Further, the burner 440 is a heat exchange type burner, and by using such a heat exchange type burner, the combustion efficiency can be improved. However, the fuel supply amount and the air supply amount according to the melting state. By controlling this, it is possible to further improve the combustion efficiency, thereby further reducing fuel consumption.
 これを実現するためには、図示は省略するが、バーナー440の排気口444から排気される排気ガスの排気温度を測定する排気温度センサーを設けるとともに、当該排気ガス温度センサーから出力される排気温度情報に基づいて、燃料供給パイプ441に供給される燃料(LPGガス)の供給量及び空気取り込み口442から取り込まれる空気の取り込み量を制御するバーナー制御機構を設ける。このように、排気温度に基づいて燃料(LPGガス)の供給量及び空気取り込み量を制御することにより、燃焼効率をより向上させることができる。これは、排気温度と燃焼効率とが相関しているからである。 In order to realize this, although not shown, an exhaust temperature sensor for measuring the exhaust temperature of the exhaust gas exhausted from the exhaust port 444 of the burner 440 is provided, and the exhaust temperature output from the exhaust gas temperature sensor is provided. Based on the information, a burner control mechanism for controlling the supply amount of fuel (LPG gas) supplied to the fuel supply pipe 441 and the intake amount of air taken in from the air intake port 442 is provided. Thus, by controlling the supply amount of fuel (LPG gas) and the intake amount of air based on the exhaust temperature, the combustion efficiency can be further improved. This is because the exhaust gas temperature and the combustion efficiency are correlated.
 すなわち、溶解工程における溶解初期においては、図5(c)に示すように、被溶解金属600が坩堝110内及び燃焼室450にほぼ満杯の状態となっており、この状態では、高温の燃焼ガスの密度が高くなっており、燃焼室450内の圧力が上昇することによる被溶解金属600や燃焼空気への熱交換が不十分な燃焼ガスが1000℃程度の高温のまま排気口444から排気される。 That is, at the initial stage of melting in the melting step, as shown in FIG. 5 (c), the metal 600 to be melted is almost full in the crucible 110 and the combustion chamber 450. The combustion gas with insufficient heat exchange with the metal 600 to be dissolved and the combustion air due to the increase in the pressure in the combustion chamber 450 is exhausted from the exhaust port 444 at a high temperature of about 1000 ° C. The
 一方、被溶解金属600の溶解が進むと、燃焼室450の空間が広くるため、燃焼ガスの密度が下がることにより、燃焼ガスの温度が600℃程度に低下して排気口444から排気される。 On the other hand, as the melting of the metal 600 to be melted progresses, the space of the combustion chamber 450 becomes wider, and the density of the combustion gas decreases, so that the temperature of the combustion gas decreases to about 600 ° C. and is exhausted from the exhaust port 444. .
 このような観点から、溶解初期においては、燃料(LPGガス)の供給量及び空気取り込み量を削減するように燃料の供給量及び空気の供給量を制御することにより、燃焼効率をより向上させることができ、それによって。燃費をより削減することができる。このような制御は、排気ガス温度センサーから出力される排気温度情報に基づいて、燃料(LPGガス)の供給量及び空気取り込み量の制御を行うようにすることで実現可能である。 From this point of view, in the initial stage of dissolution, the fuel supply amount and the air supply amount are controlled so as to reduce the fuel supply amount (LPG gas) supply amount and the air intake amount, thereby further improving the combustion efficiency. And by that. Fuel consumption can be further reduced. Such control can be realized by controlling the supply amount of fuel (LPG gas) and the intake amount of air based on the exhaust gas temperature information output from the exhaust gas temperature sensor.
 (3)上記実施形態においては、溶湯保温装置100に用いる電気ヒーター180は、耐熱壁121の内壁面を一周するような帯状の電気ヒーター180を用いた場合を例示したが、電気ヒーター180は帯状であることに限られるものではなく、例えば、耐熱壁121の底面を含めた内壁面全体を覆うような電気ヒーターであってもよい。 (3) In the above embodiment, the electric heater 180 used in the molten metal heat insulating device 100 is exemplified by the case where the belt-shaped electric heater 180 that goes around the inner wall surface of the heat-resistant wall 121 is used. For example, an electric heater that covers the entire inner wall surface including the bottom surface of the heat-resistant wall 121 may be used.
 (4)上記実施形態においては、溶湯保温装置100、坩堝固定リング200、補助リング300及び燃焼装置400の構造は、それぞれ耐熱性部材でなる耐熱壁と断熱性部材でなる断熱壁とによる2重壁構造としたが、必ずしもこのような構造とすることに限られるものではなく、耐熱性及び断熱性が確保可能で、かつ、安全性及び耐久性が確保可能であれば、他の構造を有するものであってもよい。 (4) In the above-described embodiment, the structure of the molten metal heat retaining device 100, the crucible fixing ring 200, the auxiliary ring 300, and the combustion device 400 is doubled by a heat-resistant wall made of a heat-resistant member and a heat-insulated wall made of a heat-insulating member. Although it is a wall structure, it is not necessarily limited to such a structure, and has other structures as long as heat resistance and heat insulation can be secured, and safety and durability can be secured. It may be a thing.
 10・・・金属溶解炉、10A・・・溶解炉本体、100・・・溶湯保温装置、110・・・坩堝、110a・・・開口側端部、120・・・第1炉壁、121・・・耐熱壁、122・・・断熱壁、130・・・金属ケース、131・・・下端側鍔部、132・・・上端側鍔部、180・・・ヒーター(電気ヒーター)、190・・・溶湯保温装置シール、200・・・坩堝固定リング、210・・・第2炉壁、211a・・・傾斜面、230・・・坩堝固定リング金属枠、250・・・坩堝固定シール(くさび型シール)、260・・・隙間(シール埋め込み用隙間)、270・・・補助リングシール、300・・・補助リング、310・・・第3炉壁、330・・・補助リング金属枠、360・・・補助リングシール受け板、362・・・補助リングシールガイド壁、380・・・燃焼装置シール、400・・・燃焼装置、410・・・第4炉壁、430・・・燃焼装置金属枠、440・・・バーナー、500・・・回転脱ガス装置、600・・・被溶解金属、700・・・溶湯、TS1・・・坩堝底部温度センサー、TS2・・・坩堝上部温度センサー、TS3・・・溶湯温度センサー DESCRIPTION OF SYMBOLS 10 ... Metal melting furnace, 10A ... Melting furnace main body, 100 ... Molten metal heat retention apparatus, 110 ... Crucible, 110a ... Opening side edge part, 120 ... 1st furnace wall, 121. ..Heat resistant wall, 122... Heat insulation wall, 130... Metal case, 131... Lower end side flange, 132 ... upper end side flange, 180 .. heater (electric heater), 190. -Molten heat insulation device seal, 200 ... crucible fixing ring, 210 ... second furnace wall, 211a ... inclined surface, 230 ... crucible fixing ring metal frame, 250 ... crucible fixing seal (wedge type) Seal), 260 ... gap (clearance gap), 270 ... auxiliary ring seal, 300 ... auxiliary ring, 310 ... third furnace wall, 330 ... auxiliary ring metal frame, 360 ..Auxiliary ring seal receiving plate, 362 Auxiliary ring seal guide wall, 380 ... combustion device seal, 400 ... combustion device, 410 ... fourth furnace wall, 430 ... combustion device metal frame, 440 ... burner, 500 ... Rotating degassing apparatus, 600 ... metal to be melted, 700 ... molten metal, TS1 ... crucible bottom temperature sensor, TS2 ... crucible top temperature sensor, TS3 ... molten metal temperature sensor

Claims (19)

  1.  被溶解金属が投入されるとともに前記被溶解金属が溶解された溶湯を保温した状態で保持する坩堝を備える金属溶解炉であって、
     上下方向において所定の高さを有する有底容器形状をなす第1炉壁と、当該第1炉壁の内壁面に設けられて前記溶湯を保温可能とするヒーターとを有し、前記坩堝を当該坩堝の開口側外壁面が前記第1炉壁の上面から所定量だけ露出するように収納する溶湯保温装置と、
     前記溶湯保温装置に着脱自在に載置可能なリング形状の第2炉壁を有し、前記溶湯保温装置に載置された状態においては、前記第2炉壁の内壁面が前記坩堝の開口側外壁面の外周に沿って圧接状態で支持することにより前記坩堝を固定する坩堝固定リングと、
     前記坩堝固定リングに着脱自在に載置可能な第3炉壁を有し、当該第3炉壁の内径が前記坩堝の開口側端部の外径と同じかわずかに大きい内径を有する補助リングと、
     前記補助リングに着脱自在に載置可能であって、中央部に所定の空間部を有する第4炉壁と、前記空間部に設けられて前記坩堝に投入された被溶解金属を直火で溶解するためのバーナーとを有する燃焼装置と、
     をさらに備えることを特徴とする金属溶解炉。
    A metal melting furnace provided with a crucible that holds a molten metal in which the metal to be melted is charged and the melted metal is melted,
    A first furnace wall having a bottomed container shape having a predetermined height in the vertical direction, and a heater provided on an inner wall surface of the first furnace wall to keep the molten metal warm, A molten metal heat retaining device for storing the crucible opening side outer wall surface so as to be exposed by a predetermined amount from the upper surface of the first furnace wall;
    A ring-shaped second furnace wall that can be detachably mounted on the molten metal heat retaining device, and in a state of being mounted on the molten metal heat retaining device, the inner wall surface of the second furnace wall is the opening side of the crucible A crucible fixing ring for fixing the crucible by supporting it in a press-contact state along the outer periphery of the outer wall surface;
    An auxiliary ring having a third furnace wall that can be detachably mounted on the crucible fixing ring, the inner diameter of the third furnace wall being the same as or slightly larger than the outer diameter of the opening side end of the crucible; ,
    A fourth furnace wall that can be detachably mounted on the auxiliary ring and has a predetermined space in the center, and a metal to be melted that is provided in the space and placed in the crucible is melted by direct fire. A combustion device having a burner for
    A metal melting furnace further comprising:
  2.  請求項1に記載の金属溶解炉において、
     前記坩堝固定リングにおける第2炉壁の内壁面と前記坩堝の開口側外壁面との間には、所定の隙間が形成され、当該隙間には耐熱性部材でなる坩堝固定シールが前記坩堝の開口側外壁面を一周するように埋め込まれていることを特徴とする金属溶解炉。
    In the metal melting furnace according to claim 1,
    A predetermined gap is formed between the inner wall surface of the second furnace wall in the crucible fixing ring and the outer wall surface on the opening side of the crucible, and a crucible fixing seal made of a heat-resistant member is formed in the gap in the opening of the crucible. A metal melting furnace which is embedded so as to go around the side outer wall surface.
  3.  請求項2に記載の金属溶解炉において、
     前記第2炉壁の内壁面は、前記隙間が当該第2炉壁の上面から下面に向かうにしたがって狭くなるような傾斜面となっていることを特徴とする金属溶解炉。
    In the metal melting furnace according to claim 2,
    The metal melting furnace characterized in that the inner wall surface of the second furnace wall has an inclined surface such that the gap becomes narrower from the upper surface to the lower surface of the second furnace wall.
  4.  請求項1~3のいずれかに記載の金属溶解炉において、
     前記坩堝固定リングにおける前記第2炉壁の下面と前記溶湯保温装置における前記第1炉壁の上面との間には、耐熱性部材でなるリング形状の溶湯保温装置シールが敷設されており、当該溶湯保温装置シールは、前記第1炉壁の上面において当該上面の全周に渡って敷設されていることを特徴とする金属溶解炉。
    In the metal melting furnace according to any one of claims 1 to 3,
    Between the lower surface of the second furnace wall in the crucible fixing ring and the upper surface of the first furnace wall in the molten metal heat retaining device, a ring-shaped molten metal heat insulating device seal made of a heat-resistant member is laid, The molten metal heat-insulating device seal is laid on the upper surface of the first furnace wall over the entire circumference of the upper surface.
  5.  請求項4に記載の金属溶解炉において、
     前記第1炉壁は、金属ケースに収納され、
     前記第1炉壁を前記金属ケースに収納した状態としたときに、当該金属ケースの上端辺が前記第1炉壁の上面よりもわずかに突出することによる突出壁が形成され、
     前記溶湯保温装置シールは、当該溶湯保温装置シールの外周が前記突出壁に沿うように前記第1炉壁の上面に敷設されていることを特徴とする金属溶解炉。
    In the metal melting furnace according to claim 4,
    The first furnace wall is housed in a metal case;
    When the first furnace wall is housed in the metal case, a projecting wall is formed by slightly projecting the upper end side of the metal case from the upper surface of the first furnace wall,
    The metal melting furnace is characterized in that the molten metal heat insulating device seal is laid on the upper surface of the first furnace wall so that the outer periphery of the molten metal heat insulating device seal is along the protruding wall.
  6.  請求項1~5のいずれかに記載の金属溶解炉において、
     前記坩堝固定リングにおける前記第2炉壁の上面と前記補助リングにおける前記第3炉壁の下面との間には、耐熱性部材でなるリング形状の補助リングシールが敷設されており、当該補助リングシールは、前記第2炉壁の上面の全周に渡って敷設されていることを特徴とする金属溶解炉。
    In the metal melting furnace according to any one of claims 1 to 5,
    Between the upper surface of the second furnace wall in the crucible fixing ring and the lower surface of the third furnace wall in the auxiliary ring, a ring-shaped auxiliary ring seal made of a heat-resistant member is laid, and the auxiliary ring The metal melting furnace, wherein the seal is laid over the entire circumference of the upper surface of the second furnace wall.
  7.  請求項6に記載の金属溶解炉において、
     前記坩堝固定リングにおける前記第2炉壁の上面と前記補助リングにおける前記第3炉壁の下面との間には、前記補助リングシールの外径と同等の内径を有する開口部が形成されたリング状の補助リングシール受け板が敷設されており、
     前記補助リングシール受け板の前記開口部の縁部には、前記補助リングシールの敷設をガイドするための補助リングシールガイド壁が前記開口部の縁部に沿うように形成され、当該補助リングシールガイド壁は、前記補助リングシールの厚み寸法よりも低い高さを有し、
     前記補助リングシールは、当該補助リングシールの外周が前記補助リングシールガイド壁の内周に沿うように前記坩堝固定リングにおける第2炉壁の上面に敷設されていることを特徴とする金属溶解炉。
    The metal melting furnace according to claim 6,
    A ring in which an opening having an inner diameter equivalent to the outer diameter of the auxiliary ring seal is formed between the upper surface of the second furnace wall in the crucible fixing ring and the lower surface of the third furnace wall in the auxiliary ring. Shaped auxiliary ring seal backing plate is laid,
    An auxiliary ring seal guide wall for guiding the laying of the auxiliary ring seal is formed along the edge of the opening at the edge of the opening of the auxiliary ring seal receiving plate. The guide wall has a height lower than the thickness dimension of the auxiliary ring seal;
    The metal melting furnace, wherein the auxiliary ring seal is laid on the upper surface of the second furnace wall of the crucible fixing ring so that the outer periphery of the auxiliary ring seal is along the inner periphery of the auxiliary ring seal guide wall .
  8.  請求項1~7のいずれかに記載の金属溶解炉において、
     前記補助リングにおける前記第3炉壁の上面と前記燃焼装置における前記第4炉壁の下面との間には、耐熱性部材でなるリング形状の燃焼装置シールが敷設されており、当該燃焼装置シールは、前記第3炉壁の上面の全周に渡って敷設されていることを特徴とする金属溶解炉。
    In the metal melting furnace according to any one of claims 1 to 7,
    Between the upper surface of the third furnace wall in the auxiliary ring and the lower surface of the fourth furnace wall in the combustion device, a ring-shaped combustion device seal made of a heat-resistant member is laid, and the combustion device seal Is laid over the entire circumference of the upper surface of the third furnace wall.
  9.  請求項8に記載の金属溶解炉において、
     前記補助リングにおける第3炉壁の上面と前記燃焼装置における前記第4炉壁の下面との間には、前記燃焼装置シールの外径と同等の内径を有する開口部が形成されたリング状の燃焼装置シール受け板が敷設されており、
     前記燃焼装置シール受け板の前記開口部の縁部には、前記燃焼装置シールの敷設をガイドするための燃焼装置シールガイド壁が前記開口部の縁部に沿うように形成され、当該燃焼装置シールガイド壁は、前記燃焼装置シールの厚み寸法よりも低い高さを有し、
     前記燃焼装置シールは、当該燃焼装置シールの外周が前記燃焼装置シールガイド壁の内周に沿うように前記第3炉壁の上面に敷設されていることを特徴とする金属溶解炉。
    The metal melting furnace according to claim 8,
    Between the upper surface of the 3rd furnace wall in the said auxiliary ring, and the lower surface of the 4th furnace wall in the said combustion apparatus, the opening part which has an internal diameter equivalent to the outer diameter of the said combustion apparatus seal was formed. Combustion device seal backing plate is laid,
    A combustion device seal guide wall for guiding the laying of the combustion device seal is formed along the edge of the opening at the edge of the opening of the combustion device seal receiving plate. The guide wall has a height lower than the thickness dimension of the combustion device seal;
    The metal melting furnace, wherein the combustion device seal is laid on an upper surface of the third furnace wall so that an outer periphery of the combustion device seal is along an inner periphery of the combustion device seal guide wall.
  10.  請求項1~9のいずれかに記載の金属溶解炉において、
     前記坩堝の開口側外壁面の温度を検出する坩堝上部温度センサーを有することを特徴とする金属溶解炉。
    In the metal melting furnace according to any one of claims 1 to 9,
    A metal melting furnace comprising a crucible upper temperature sensor for detecting the temperature of the opening-side outer wall surface of the crucible.
  11.  請求項1~10のいずれかに記載の金属溶解炉において、
     前記坩堝の底部外壁面の温度を検出する坩堝底部温度センサーを有することを特徴とする金属溶解炉。
    In the metal melting furnace according to any one of claims 1 to 10,
    A metal melting furnace comprising a crucible bottom temperature sensor for detecting the temperature of the bottom outer wall surface of the crucible.
  12.  請求項1~11のいずれかに記載の金属溶解炉において、
     前記坩堝に保持されている溶湯の温度を検出する溶湯温度センサーを有することを特徴とする金属溶解炉。
    The metal melting furnace according to any one of claims 1 to 11,
    A metal melting furnace having a melt temperature sensor for detecting a temperature of a melt held in the crucible.
  13.  請求項1~12のいずれかに記載の金属溶解炉において、
     前記ヒーターは、電気ヒーターであることを特徴とする金属溶解炉。
    The metal melting furnace according to any one of claims 1 to 12,
    The metal melting furnace, wherein the heater is an electric heater.
  14.  請求項1~13のいずれかに記載の金属溶解炉において、
     前記燃焼装置及び前記補助リングのうちの少なくとも燃焼装置が取り外された状態で前記坩堝に保持されている溶湯に浸漬可能な不純物除去装置をさらに有することを特徴とする金属溶解炉。
    In the metal melting furnace according to any one of claims 1 to 13,
    A metal melting furnace, further comprising an impurity removing device that can be immersed in the molten metal held in the crucible with at least the combustion device of the combustion device and the auxiliary ring removed.
  15.  請求項14に記載の金属溶解炉において、
     前記不純物除去装置は、先端部に回転体を有し、当該回転体が前記溶湯の中で回転しながらマイクロバブル化した不活性ガスを発生する回転式の脱ガス装置であることを特徴とする金属溶解炉。
    The metal melting furnace according to claim 14,
    The impurity removing apparatus is a rotary degassing apparatus that has a rotating body at a tip portion and generates an inert gas that is microbubbled while the rotating body rotates in the molten metal. Metal melting furnace.
  16.  請求項1~15のいずれかに記載の金属溶解炉を用いた金属溶解炉における溶湯生成方法であって、
     前記被溶解金属を前記坩堝に投入する被溶解金属投入工程と、
     前記燃焼装置のバーナーによって直火で前記被溶解金属を溶解させる溶解工程と、
     前記坩堝に保持されている溶湯を前記ヒーターによって所定温度に保温した状態で保持する溶湯保温工程と、
     を有することを特徴とする金属溶解炉における溶湯生成方法。
    A method for producing a molten metal in a metal melting furnace using the metal melting furnace according to any one of claims 1 to 15,
    A molten metal charging step of charging the molten metal into the crucible;
    A melting step of dissolving the metal to be melted by a direct fire by a burner of the combustion device;
    A molten metal heat retaining step for retaining the molten metal held in the crucible at a predetermined temperature by the heater;
    A method for producing molten metal in a metal melting furnace, comprising:
  17.  請求項16に記載の金属溶解炉における溶湯生成方法において、
     前記溶解工程には、前記バーナーによって直火で前記被溶解金属を溶解させながら前記ヒーターによって加熱する「バーナー・ヒーター併用の溶解・加熱工程」が含まれ、
     前記坩堝の所定部分の温度が第1設定温度に達したら、前記「バーナー・ヒーター併用の溶解・加熱工程」に移行し、当該「バーナー・ヒーター併用の溶解・加熱工程」において前記坩堝の所定部分の温度が前記第1設定温度よりも高い第2設定温度に達すると、当該「バーナー・ヒーター併用の溶解・加熱工程」から前記溶湯保温工程に移行することを特徴とする金属溶解炉における溶湯生成方法。
    In the molten metal production | generation method in the metal melting furnace of Claim 16,
    The melting step includes a “dissolution / heating step in combination with a burner / heater” that is heated by the heater while dissolving the metal to be dissolved by an open flame with the burner,
    When the temperature of the predetermined part of the crucible reaches the first set temperature, the process proceeds to the “melting / heating process using a burner / heater together”, and the predetermined part of the crucible in the “melting / heating process using the burner / heater together”. When the temperature reaches a second set temperature higher than the first set temperature, the molten metal generation in the metal melting furnace is shifted from the “melting / heating process using both a burner and a heater” to the molten metal heat retaining process. Method.
  18.  請求項16又は17に記載の金属溶解炉における溶湯生成方法において、
     前記溶湯に含まれる不純物を除去する不純物除去工程をさらに有することを特徴とする金属溶解炉における溶湯生成方法。
    In the molten metal production | generation method in the metal melting furnace of Claim 16 or 17,
    The method for producing a molten metal in a metal melting furnace further comprising an impurity removing step of removing impurities contained in the molten metal.
  19.  請求項16~18のいずれかに記載の溶湯生成方法において、
     前記溶湯保温装置に前記坩堝固定リングを載置した状態の坩堝固定リング付き溶湯保温装置をn(nは2以上の整数)台準備するとともに、前記補助リング及び燃焼装置をそれぞれ1台ずつ準備して、
     前記n台の坩堝固定リング付き溶湯保温装置を第1~第nの坩堝固定リング付き溶湯保温装置としたとき、
     前記第1~第nの坩堝固定リング付きの溶湯保温装置のうちの第1の坩堝固定リング付き溶湯保温装置に前記補助助リング及び燃焼装置を載置して、当該第1の坩堝固定リング付き溶湯保温装置において前記被溶解金属投入工程と、前記溶解工程と、前記溶湯保温工程とを行い、これを第nの坩堝固定リング付き溶湯保温装置まで順番に行うことを特徴とする金属溶解炉における溶湯生成方法。
    The molten metal production method according to any one of claims 16 to 18,
    In addition to preparing n (n is an integer of 2 or more) molten metal heat retaining devices with crucible fixing rings in a state where the crucible fixing ring is placed on the molten metal heat retaining device, one auxiliary ring and one combustion device are prepared. And
    When the molten metal heat retaining device with the n crucible fixing rings is the first to nth molten metal heat retaining devices with the crucible fixing ring,
    The auxiliary auxiliary ring and the combustion device are mounted on the molten metal heat retaining device with the first crucible fixing ring among the molten metal heat retaining devices with the first to nth crucible fixing rings, and the first crucible fixing ring is attached. In the metal melting furnace characterized by performing the molten metal charging step, the melting step, and the molten metal warming step in the molten metal heat retaining device, and sequentially performing the molten metal warming device with the nth crucible fixing ring. Melt generation method.
PCT/JP2012/061495 2012-04-28 2012-04-28 Metal melting furnace and method for generating molten metal in metal melting furnace WO2013161087A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/061495 WO2013161087A1 (en) 2012-04-28 2012-04-28 Metal melting furnace and method for generating molten metal in metal melting furnace
JP2014512281A JP5933696B2 (en) 2012-04-28 2012-04-28 Metal melting furnace and molten metal generation method in metal melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/061495 WO2013161087A1 (en) 2012-04-28 2012-04-28 Metal melting furnace and method for generating molten metal in metal melting furnace

Publications (1)

Publication Number Publication Date
WO2013161087A1 true WO2013161087A1 (en) 2013-10-31

Family

ID=49482452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061495 WO2013161087A1 (en) 2012-04-28 2012-04-28 Metal melting furnace and method for generating molten metal in metal melting furnace

Country Status (2)

Country Link
JP (1) JP5933696B2 (en)
WO (1) WO2013161087A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107401919A (en) * 2017-08-22 2017-11-28 南通高新工业炉有限公司 A kind of Metal Melting holding furnace
JP2019070496A (en) * 2017-10-11 2019-05-09 東京瓦斯株式会社 Hybrid heating furnace
CN111883272A (en) * 2020-07-23 2020-11-03 上海核工程研究设计院有限公司 Online measuring device and method for density of ultra-high temperature melting working medium
CN113443824A (en) * 2021-06-21 2021-09-28 中国原子能科学研究院 Annealing device and melting system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113280629B (en) * 2021-05-24 2022-08-05 苏州厚发精线有限公司 Novel metal profiled bar multi-connection forming device and using method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194499U (en) * 1982-06-21 1983-12-24 松尾軽金属株式会社 Combination lid for crucible
JPS6013017A (en) * 1983-07-01 1985-01-23 Nippon Steel Corp Vacuum vessel for treatment of metal
JPS62233674A (en) * 1986-03-22 1987-10-14 ライボルト−ヘレ−ウス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Melting crucible consisting of mineral matter
JPH06251864A (en) * 1993-02-19 1994-09-09 Inductotherm Corp Heating device for induction ladle and vacuum furnace
JP2011117640A (en) * 2009-12-01 2011-06-16 Fine Forming:Kk Metal melting furnace and method for generating molten metal in the metal melting furnace

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843866U (en) * 1981-09-16 1983-03-24 大阪瓦斯株式会社 Nonferrous metal melting and holding furnace
JP3338145B2 (en) * 1993-10-14 2002-10-28 東京瓦斯株式会社 Nonferrous metal melting and holding furnace
JP2000035284A (en) * 1998-07-16 2000-02-02 Furness Kakoki Kk Heating furnace structure
DE10134286C1 (en) * 2001-08-03 2002-12-12 Ald Vacuum Techn Ag Device for distilling molten metal comprises a pot-like lower housing part for receiving a melt crucible and an upper housing part connected to the lower housing part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194499U (en) * 1982-06-21 1983-12-24 松尾軽金属株式会社 Combination lid for crucible
JPS6013017A (en) * 1983-07-01 1985-01-23 Nippon Steel Corp Vacuum vessel for treatment of metal
JPS62233674A (en) * 1986-03-22 1987-10-14 ライボルト−ヘレ−ウス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Melting crucible consisting of mineral matter
JPH06251864A (en) * 1993-02-19 1994-09-09 Inductotherm Corp Heating device for induction ladle and vacuum furnace
JP2011117640A (en) * 2009-12-01 2011-06-16 Fine Forming:Kk Metal melting furnace and method for generating molten metal in the metal melting furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107401919A (en) * 2017-08-22 2017-11-28 南通高新工业炉有限公司 A kind of Metal Melting holding furnace
CN107401919B (en) * 2017-08-22 2019-08-09 南通高新工业炉有限公司 A kind of Metal Melting holding furnace
JP2019070496A (en) * 2017-10-11 2019-05-09 東京瓦斯株式会社 Hybrid heating furnace
CN111883272A (en) * 2020-07-23 2020-11-03 上海核工程研究设计院有限公司 Online measuring device and method for density of ultra-high temperature melting working medium
CN113443824A (en) * 2021-06-21 2021-09-28 中国原子能科学研究院 Annealing device and melting system

Also Published As

Publication number Publication date
JPWO2013161087A1 (en) 2015-12-21
JP5933696B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP5933696B2 (en) Metal melting furnace and molten metal generation method in metal melting furnace
US6404799B1 (en) Water-cooling panel for furnace wall and furnace cover of arc furnace
KR20090007361A (en) Heating device for preheating a liquid-metal transfer container
BRPI1010990B1 (en) furnace, refractory installation method, and refractory block
JP5624836B2 (en) Ladle preheater
CN106440823A (en) Chute structure used for copper rod production and copper rod manufacturing method
JP2011117640A (en) Metal melting furnace and method for generating molten metal in the metal melting furnace
JPS5850288B2 (en) Blast furnace wall repair method
KR20160114891A (en) Tun dish cover structure
JP5065108B2 (en) heating furnace
CN106232265A (en) Casting ladle heater
CN214537355U (en) High-efficient smelting furnace is used in auto-parts casting
CN102052834A (en) Improvement structure of regenerative fuel gas aluminum melting furnace
CN201195767Y (en) Polysilicon ingot furnace
CN201647806U (en) Muffle pipe rotating hanging tool
CN201569284U (en) Electric heating metal melting furnace
KR100925167B1 (en) Melting and Holding furnace
KR102231026B1 (en) Cover apparatus for a melt metallurgic furnace
CN110319691A (en) A kind of gas heating metal nitride synthesis device
CN202317002U (en) Submerged water gap baking device for continuous casting
JP3148001U (en) Electric furnace
CN201506765U (en) Furnace door on clean type coke furnace
JP5251182B2 (en) Separation furnace bottom connection seal structure
CN210817438U (en) Quick baking equipment of ladle
CN202099364U (en) Chute heating device used for zinc ingot pre-melting kettle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014512281

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12874955

Country of ref document: EP

Kind code of ref document: A1