WO2013160982A1 - Image generating apparatus - Google Patents

Image generating apparatus Download PDF

Info

Publication number
WO2013160982A1
WO2013160982A1 PCT/JP2012/060812 JP2012060812W WO2013160982A1 WO 2013160982 A1 WO2013160982 A1 WO 2013160982A1 JP 2012060812 W JP2012060812 W JP 2012060812W WO 2013160982 A1 WO2013160982 A1 WO 2013160982A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplitude
mirror
polarizer
image
unit
Prior art date
Application number
PCT/JP2012/060812
Other languages
French (fr)
Japanese (ja)
Inventor
義博 花田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/060812 priority Critical patent/WO2013160982A1/en
Publication of WO2013160982A1 publication Critical patent/WO2013160982A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/02Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen
    • G09G3/025Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen with scanning or deflecting the beams in two directions or dimensions

Definitions

  • the present invention relates to an image generation apparatus.
  • a method of displaying an image by a digital device for example, there is a method of displaying an image by irradiating a display target with laser light based on the image. Since the laser beam is excellent in directivity, it is clear, and since the laser beam has an ideal single wavelength spectrum distribution, an image excellent in color rendering can be displayed.
  • the laser light is irradiated onto an optical mirror, and the optical mirror is driven at high speed in a two-dimensional direction by a mirror driving device, thereby scanning the laser light on a display target.
  • a mirror driving device When displaying an image using laser light, the laser light is irradiated onto an optical mirror, and the optical mirror is driven at high speed in a two-dimensional direction by a mirror driving device, thereby scanning the laser light on a display target.
  • the optical mirror As an example of the optical mirror at this time, there is a MEMS (Micro-Electro-Mechanical Systems) mirror using semiconductor technology.
  • MEMS Micro-Electro-Mechanical Systems
  • a digital device equipped with an image display function can be downsized and improved in performance. It becomes possible.
  • Patent Document 1 shown below discloses a technique for changing the size of an image without using an optical zoom lens.
  • Patent Document 1 an image signal of an image to be displayed is stored in a frame memory in units of frames, and a dot clock having a clock cycle corresponding to the pixel position of the image is generated, so that each dot clock is stored in the frame memory.
  • an object of the present invention is to provide an image generation apparatus that can change an image display form with an easy configuration.
  • the invention of claim 1 is directed to a polarizer that polarizes a light beam emitted from a light source by driving in a two-dimensional direction, and the driving by adjusting a driving amount of the polarizer.
  • Polarization range changing means for changing the polarization range of the luminous flux polarized according to the amount.
  • FIG. 4 is a drive waveform diagram showing a vibration state in the main scanning direction when a mirror is driven in the polarizer shown in FIG. 1.
  • FIG. 6 is a drive waveform diagram showing a vibration state in the sub-scanning direction when a mirror is driven in the polarizer shown in FIG. 1.
  • the figure which shows the detailed structure of the mirror drive control part shown in FIG. The figure which shows the circuit structure of the absolute value detection part, peak hold part, and LPF part which comprise the main scanning amplitude detection part shown in FIG.
  • FIG. 1 is a configuration diagram showing a detailed configuration of an image generation apparatus according to an embodiment of the present invention.
  • the image generation apparatus controls a polarizer 100 configured by a reflector (hereinafter simply referred to as “mirror”) and a driving device that drives the mirror, and driving performed by the driving device in the polarizer 100.
  • a mirror driving control unit 101 for detecting the amplitude of the mirror in the main scanning direction based on the driving position of the polarizer 100 in the main scanning direction, and a driving position of the polarizer 100 in the sub scanning direction.
  • a sub-scanning amplitude detection unit 103 that detects the amplitude of the mirror in the sub-scanning direction
  • a video processing unit 104 that processes an image based on the image data instructed to be displayed as a video
  • a light beam hereinafter, referred to as an image
  • a laser light driving unit 105 that performs processing for driving a light source that emits light, and laser light irradiation
  • That the laser light source 106 is a light source constituted by including the collimator lens 107 for diffusing converging a laser beam as a cylindrical parallel light in a predetermined range.
  • the polarizer 100 includes a mirror that reflects (emits) laser light emitted from the laser light source 106 via the collimator lens 107 and a drive device that drives the mirror.
  • the polarizer 100 scans the display object (screen) by projecting an image by a pixel composed of a rectangle (rectangle) whose inner angles are all right angles, such as a rectangle and a square, by polarizing the laser beam. As a scanning form at this time, there is a Lissajous scan for drawing a Lissajous figure.
  • the mirror is formed by a gimbal structure having an outer frame portion and a rectangular reflecting portion having a fixed area, and the outer frame portion and the reflecting portion can be rotated by a spring which is an elastic member. It is supported by.
  • the outer frame portion is supported by a spring that rotates about the main scanning direction (horizontal direction) as the central axis
  • the reflecting portion is the central axis about the sub-scanning direction (vertical direction) orthogonal to the main scanning direction. Is supported by a rotating spring.
  • the outer frame portion and the reflecting portion are driven by rotating the spring along the central axis, and the polarizer 100 is made up of a mirror (more specifically, a reflecting portion). ) Can be reflected (emitted) within a predetermined range.
  • This mirror is driven by a drive device, and the drive device generates an electrostatic force by applying a voltage to the mirror (generating a potential difference) to drive the mirror to vibrate slightly.
  • the present invention is not limited to the slight vibration of the mirror caused by such a piezoelectric effect, and may be configured to cause the fine vibration caused by an electromagnetic force generated by using a coil or the like.
  • the polarizer 100 also includes a sensor (position sensor) that detects the amount of displacement of the mirror, and this position sensor detects the amount of displacement of the mirror driven by the driving device.
  • a sensor position sensor
  • a driving waveform representing a vibration state in the main scanning direction when the mirror is slightly vibrated by the driving device is shown in FIG. 2
  • a driving waveform representing the vibration state in the sub scanning direction is shown in FIG. 3 shows.
  • FIG. 2 is a diagram showing a drive waveform representing a vibration state in the main scanning direction when the mirror is driven in the polarizer 100 shown in FIG.
  • FIG. 2 shows a vibration state in the main scanning direction
  • the vibration state shown in FIG. 2 is an example of a drive waveform that periodically changes, and is a sine having the following (formula). It is a wave.
  • a ⁇ sin ⁇ xt (formula)
  • ⁇ x indicates the driving angular frequency in the main scanning direction
  • t indicates the elapsed time
  • a indicates the amplitude that is the maximum deviation from the central axis of the driving waveform. This shows the swing angle magnification.
  • obtained by the above (expression) by giving these variables indicates an angle (a swing angle) that is swung when the mirror is swung in the main scanning direction.
  • FIG. 2 shows three sine waves as examples of the vibration state in the main scanning direction of the mirror indicated by the sine waves.
  • Each of the sine waves indicating these three vibration states shows an example in which the vibration angular frequency and time are the same (that is, the period is the same), and only the amplitude indicating the swing angle magnification in the main scanning direction is different.
  • the first sine wave has a swing angle magnification indicated by amplitude “1”
  • the second sine wave has a swing angle magnification indicated by amplitude larger than the amplitude “1” of the first sine wave.
  • the third sine wave has a small amplitude “0.8”
  • the swing angle magnification indicated by the amplitude is an amplitude “1.2” larger than the amplitude “1” of the first sine wave.
  • the swing angle “ ⁇ ” in the main scanning direction output by these sine waves is the sine wave.
  • This is proportional to the swing angle magnification “a” which is the amplitude. That is, when the amplitude (the swing angle magnification “a”) is changed, the mirror swing angle “ ⁇ ” is changed in proportion.
  • the swing angle magnification when the amplitude of the swing angle magnification is amplified from “1” to “1.2”, the swing angle is also increased from “1” to “1.2” in proportion to the image size.
  • the amplitude of the swing angle magnification is reduced from “1” to “0.8”, the swing angle is also changed from “1” to “1.2”.
  • the image size is also reduced to 0.8 times.
  • changing the swing angle indicates that the range irradiated by the mirror is changed, and the image that is visually recognized when the amplitude of the swing angle magnification is amplified.
  • the angle is widened, and when the amplitude of the swing angle magnification is reduced, the view angle to be viewed is narrowed.
  • a light beam irradiation time (in other words, an image display time for displaying an image) for irradiating a laser beam to a mirror driven with a swing angle in a vibration state as shown in FIG. 2 is set in advance. Is in a fixed state.
  • the light beam irradiation time for irradiating the laser beam at this time can be determined by the size of the effective area of the display target that displays the image based on the image data. For example, the blanking period during which the image is not displayed is the laser. When the irradiation time is 10% (10 percent) before and after the irradiation time, the other effective period excluding the blanking period is the irradiation time.
  • the laser beam is not irradiated on the mirror until the time of (twentieth) has elapsed (until t is changed from “0” to “T1”), which is 10% of the first half of the irradiation time that is the blanking period. Is in a state.
  • the period from “T1” (1/20) to “T2” (9/20) after the blanking period has elapsed is an effective period, which is an irradiation time irradiated with laser light. Since the period from “T2” (9/20) to “T3” (10/20) is the blanking period of 10% of the latter half of the irradiation time in the half cycle, the laser beam is irradiated onto the mirror. Not in a state.
  • T3 (10/20) to “T4” (11/20) is a blanking period that is the first 10% of the irradiation time in the other half cycle
  • the laser beam is applied to the mirror. Not in a state.
  • the period from “T4” (11/20) to “T5” (19/20) after the blanking period has elapsed is an effective period, which is an irradiation time irradiated with laser light.
  • FIG. 3 is a diagram showing a drive waveform representing a vibration state in the sub-scanning direction when the mirror is driven in the polarizer 100 shown in FIG.
  • the vibration state in the sub-scanning direction is represented by a saw waveform.
  • the three sawtooth waveforms are also shown in an example in which all three waveforms have the same period and differ only in the amplitude indicating the swing angle magnification in the sub-scanning direction.
  • the swing angle magnification indicated by the amplitude is “1”
  • the amplitude “0.8” smaller than the amplitude “1” of the first sawtooth waveform.
  • the third sawtooth waveform has an amplitude “1.2” whose amplitude is larger than the amplitude “1” of the first sawtooth waveform.
  • the swing angle in the sub-scanning direction output by these saw waveforms is the amplitude of the saw waveform. It is proportional to the swing angle magnification. That is, when the amplitude is changed, the swing angle of the mirror is changed in proportion.
  • a light beam irradiation time (in other words, an image display time for displaying an image) for irradiating a laser beam to a mirror driven with a swing angle in a vibration state as shown in FIG. 3 is preset. Is in a fixed state.
  • T6 to T7 is the first half blanking period in the half cycle
  • T7 to T8 is the irradiation time
  • T8 to T9 is the second blanking period in the half cycle. is there.
  • the laser beam is not irradiated to the mirror, and in the irradiation time, the laser beam is irradiated to the mirror.
  • the polarizer 100 reflects the laser beam to a predetermined range by driving the outer frame portion and the reflecting portion, and therefore the irradiation time of the laser beam in the half cycle shown in FIG.
  • the irradiation time of the laser beam in the half cycle shown shows the same time.
  • waveforms shown in FIGS. 2 and 3 are merely examples of vibration states when driving the mirror in the polarizer 100, and are not limited to these waveforms. Good.
  • the polarizer 100 that vibrates as described above detects the main scanning position and the sub-scanning position of the mirror when the mirror is driven by the driving device using the position sensor.
  • the position sensor outputs the main scanning position corresponding to the detected swing angle in the main scanning direction to the main scanning amplitude detection unit 102 and the mirror drive control unit 101, and outputs the sub scanning position corresponding to the swing angle in the sub scanning direction.
  • the data is output to the scanning amplitude detector 103.
  • the position information of the main scanning position and the sub-scanning position at this time is expressed by the mirror amplitude signal.
  • the mirror drive controller 101 shown in FIG. 1 drives the mirror by controlling the drive device of the polarizer 100.
  • the mirror drive control unit 101 at this time performs drive control for each dimension by outputting the mirror drive signal in the main scanning direction and the mirror drive signal in the sub-scanning direction to the drive device of the polarizer 100.
  • the mirror drive control unit 101 has a storage area (a “target amplitude signal storage unit” to be described later) configured by a ROM (Read Only Memory) or the like, and the mirror of the polarizer 100 reflects in this storage area.
  • a storage area a “target amplitude signal storage unit” to be described later
  • ROM Read Only Memory
  • This information is specified by an input source that inputs image data to the video processing unit 104, and the display size of an image to be displayed by a target amplitude information calculation unit (not shown) of the mirror drive control unit 101. Is calculated based on
  • the mirror drive control unit 101 Based on information stored in this storage area (a “target amplitude signal storage unit” to be described later), the mirror drive control unit 101 changes the vibration state. For example, in the examples shown in FIGS. ) And the image of the designated display size is scanned by the polarizer 100 and displayed.
  • the vibration state using information based on the difference between the target display size and the current display size of the image displayed before displaying the image at the target display size. May be changed.
  • the detailed configuration of the mirror drive control unit 101 is shown in FIG. 4 and will be described later.
  • the main scanning amplitude detection unit 102 shown in FIG. 1 includes an absolute value detection unit 102a, a peak hold unit 102b, and an LPF unit 102c.
  • the main scanning amplitude output from the position sensor of the polarizer 100 is provided.
  • the amplitude is detected from a waveform representing the main scanning position in time series.
  • the amplitude at this time represents the swing angle of the mirror as described above, and this swing angle is obtained when the mirror is driven with a drive amount based on the drive signal in the main scanning direction output from the mirror drive control unit 101. This corresponds to the amount of displacement of the mirror.
  • the sub-scanning amplitude detection unit 103 includes an absolute value detection unit 103a, a peak hold unit 103b, and an LPF unit 103c.
  • the amplitude is detected from a waveform representing the sub-scanning position in time series.
  • This amplitude similarly represents the mirror swing angle as described above, and this swing angle is obtained when the mirror is driven with a drive amount based on the drive signal in the sub-scanning direction output from the mirror drive control unit 101. This corresponds to the amount of displacement of the mirror.
  • the absolute value detection unit 102a, the peak hold unit 102b, and the LPF unit 102c constituting the main scanning amplitude detection unit 102 are configured by a circuit as shown in FIG. 5, and FIG.
  • the signal information output when processing is performed by the absolute value detection unit 102a, the peak hold unit 102b, and the LPF unit 102c configured by such a circuit is shown.
  • the absolute value detection unit 102a shown in FIG. 1 and the absolute value detection circuit shown in FIG. 5 are amplitude signals indicating the amount of displacement output from the position sensor of the polarizer 100, and are amplitude signals having the waveform of point a shown in FIG. Is received, the process of detecting the absolute value of the amplitude signal is performed.
  • the amplitude signal generated by this absolute value detection processing is an amplitude signal having a point b waveform shown in FIG. 6, and the amplitude signal having the point b waveform is input to the peak hold unit 102b.
  • This point b waveform is a mountain-shaped waveform.
  • the peak hold unit 102b shown in FIG. 1 and the peak hold circuit shown in FIG. 5 are obtained from the waveform of the point b in FIG. 6 output from the absolute value detection unit 102a shown in FIG. 1 and the absolute value detection circuit shown in FIG.
  • the peak hold process is performed by receiving the amplitude signal.
  • This peak hold process is a process that continues to hold an amplitude signal composed of an arbitrary value (for example, a voltage value) by suppressing a drop in the voltage value indicated by the amplitude signal output by the absolute value detection process.
  • the amplitude signal generated by the peak hold process is an amplitude signal having a point c waveform shown in FIG. 6, and the amplitude signal having the point c waveform is input to the LPF unit 102c.
  • This point c waveform is a waveform proportional to the voltage at point b.
  • the LPF unit 102c and the LPF circuit shown in FIG. 5 receive the amplitude signal composed of the point c waveform of FIG. 6 output from the peak hold unit 102b shown in FIG. 1 and the peak hold circuit shown in FIG. Process.
  • This filtering process is a process of eliminating (cutting) an amplitude signal having a predetermined frequency or higher.
  • an HPF high pass filter
  • an LPF low pass filter
  • HPF may cut the amplitude signal above and below the predetermined frequency simultaneously. May be.
  • This filtering process is particularly effective when a constant value is continuously held by the peak hold process, and the value indicated by the amplitude signal generated by the peak hold process is constant. It is not always necessary to perform this filtering process.
  • the amplitude signal generated by the above filtering process is an amplitude signal having a point d waveform shown in FIG. 6, and the main scanning amplitude detection unit 102 sends the point d waveform amplitude signal to the mirror drive control unit 101. Send it out.
  • the waveform at the point d is amplitude information in the main scanning direction (hereinafter also referred to as “main scanning amplitude information”) indicating the voltage value of the displacement amount of the mirror output from the polarizer 100. That is, the main scanning amplitude information is input from the main scanning amplitude detection unit 102 to the mirror drive control unit 101.
  • the absolute value detection unit 103a, the peak hold unit 103b, and the LPF unit 103c constituting the sub-scanning amplitude detection unit 103 can also be configured by a circuit as shown in FIG.
  • the mirror of the polarizer 100 is driven in the sub-scanning direction (vertical direction) by a sawtooth waveform as shown in FIG.
  • the point a waveform shown in FIG. 6 is a sawtooth waveform.
  • the waveform of the sawtooth waveform point a waveform output from the absolute value detector 103a is the same waveform as the point a waveform. This indicates that the waveform does not change before and after detecting the absolute value because the input point a waveform is constituted by a positive number. Therefore, the sub-scanning amplitude detection unit 103 is not provided with the absolute value detection unit 103a, the peak hold unit 103b, and the LPF unit 103c as shown in the sub-scanning amplitude detection unit 103 of FIG. May be configured by the peak hold unit 103b and the LPF unit 103c.
  • the peak hold unit 103b Upon receiving this, the peak hold unit 103b performs a peak hold process on the point b waveform (point a waveform).
  • the peak hold unit 103b outputs the amplitude signal subjected to the peak hold process to the LPF unit 103c, and the LPF unit 103c performs a filtering process on the amplitude waveform subjected to the peak hold process.
  • the sub-scanning amplitude detection unit 103 sends the scanning amplitude information in the sub-scanning direction (hereinafter referred to as “sub-scanning amplitude information”) to the mirror drive control unit 101. That is, the sub-scanning amplitude information is input from the sub-scanning amplitude detection unit 103 to the mirror drive control unit 101.
  • the amplitude information at the target display size of the image to be displayed on the display target the input scanning amplitude information
  • a drive signal indicating a drive amount for driving the mirror of the polarizer 100 is generated and sent to the polarizer 100 with an amplitude (a swing angle) corrected (added or subtracted) by the difference amount.
  • the mirror drive control unit 101 also sends to the video processing unit 104 synchronization signals in the main scanning direction and the sub-scanning direction that are generated based on the generated drive signal.
  • the mirror drive control unit 101 includes a target amplitude information storage unit 101a, an A / D converter 101b, a difference detection unit 101c, a swing angle adjustment calculation unit 101d, a drive signal generation unit 101e, a comparator 101f, and a synchronization signal generation unit 101g. It is comprised and comprises.
  • the comparator 101f When the comparator 101f receives the mirror amplitude signal representing the main scanning position corresponding to the swing angle in the main scanning direction detected by the position sensor of the polarizer 100, the comparator 101f detects the amplitude based on the predesignated information. Predetermined amplitude information is generated from the signal.
  • the comparator 101f changes the detection state of the amplitude signal before and after the intersection with the time axis as shown in FIG. 8B. Generate amplitude information.
  • the comparator 101f When the comparator 101f generates the amplitude information, the comparator 101f sends the amplitude information to the synchronization signal generation unit 101g.
  • the A / D converter 101b receives the scanning amplitude information input from the main scanning amplitude detection unit 102 and the sub-scanning amplitude detection unit 103 shown in FIG. 1, the A / D converter 101b receives the received scanning amplitude information. Convert from analog signal to digital signal.
  • the scanning amplitude information received by the A / D converter 101b at this time is a voltage value based on the amount of displacement detected by the position sensor of the polarizer 100.
  • the A / D converter 101b sends scan amplitude information including the converted digital signal to the difference detection unit 101c.
  • the difference detection unit 101c when the difference detection unit 101c receives the scanning amplitude information transmitted from the A / D converter 101b, the difference detection unit 101c converts the target amplitude information, which is necessary for displaying an image and is information about the target amplitude, to the target amplitude. Read from the information storage unit 101a.
  • the target amplitude information stored in the target amplitude information storage unit 101a is a voltage value necessary for driving the mirror of the polarizer 100.
  • the difference detection unit 101c uses the read target amplitude information and the scanning amplitude information received from the A / D converter 101b to detect an amplitude difference amount in these pieces of information. That is, the difference amount between these voltage values is detected.
  • the difference detection unit 101c that has detected the difference amount in this way sends the detected difference amount to the swing angle adjustment calculation unit 101d.
  • the swing angle adjustment calculation unit 101d from which the difference amount is sent from the difference detection unit 101c performs calculation processing for calculating the amplitude amount for adjusting the swing angle of the mirror according to the difference amount. In other words, the amount of amplitude for driving the mirror is calculated by this calculation process.
  • the swing angle adjustment calculation unit 101d sends information about the calculated swing angle to the drive signal generation unit 101e.
  • the drive signal generation unit 101e the drive amount for driving the mirror, which is necessary for adjusting the mirror swing angle to the transmitted swing angle, is specified based on the transmitted swing angle information. A drive signal is generated.
  • the drive signal in the main scanning direction and the sub scanning direction generated by performing arithmetic processing for adjusting the swing angle based on the scanning amplitude information in the main scanning direction and the scanning amplitude information in the sub scanning direction.
  • the drive signal is sent to the polarizer 100.
  • the driving device of the polarizer 100 drives the spring supporting the outer frame portion of the mirror based on the driving signal based on the driving signal in the main scanning direction.
  • the drive device for the polarizer 100 drives the spring that supports the reflecting portion of the mirror that constitutes the polarizer 100 based on the drive signal in the sub-scanning direction. That is, the polarizer 100 drives the main scanning direction and the sub-scanning direction with a driving amount specified by the driving signal from the driving signal generation unit 101e.
  • the main scanning direction of the polarizer 100 in the present embodiment is driven by a driving waveform consisting of a sine wave as shown in FIG. 2, and therefore, the main scanning direction is particularly driven by resonance.
  • the drive signal generation unit 101e sends the generated drive signal in the sub-scanning direction to the synchronization signal generation unit 101g.
  • the synchronization signal generation unit 101g receives the sub-scanning drive signal sent from the drive signal generation unit 101e, and generates a synchronization signal in the sub-scanning direction (hereinafter referred to as “sub-scanning synchronization signal”) based on the sub-scanning drive signal. At the same time, a synchronization signal in the main scanning direction (hereinafter referred to as “main scanning synchronization signal”) is generated based on the amplitude information received from the comparator 101f.
  • main scanning synchronization signal a synchronization signal in the main scanning direction
  • the synchronization signal generation unit 101g receives amplitude information in the main scanning direction as shown in FIG. 8B from the comparator 101f, thereby generating a main scanning synchronization signal having the same signal format as the amplitude information.
  • a main scanning synchronization signal as shown in FIG. 8C may be generated.
  • the main scanning synchronization signal shown in FIG. 8C is a signal in which a point that intersects the time axis in the amplitude signal in the main scanning direction as shown in FIG. 8A input to the comparator 101f is designated as a synchronization timing. is there.
  • the synchronization signal generation unit 101g generates a sub-scanning synchronization signal as shown in FIG. 9B when a sub-scanning drive signal as shown in FIG. 9A is input from the drive signal generation unit 101e. To do.
  • the sub-scanning synchronization signal shown in FIG. 9B is a signal that designates a point in contact with the time axis as a synchronization timing with respect to the sawtooth waveform sub-scanning drive signal.
  • the synchronization signal generation unit 101g sends the generated main scanning synchronization signal and sub-scanning synchronization signal to the video processing unit 104 shown in FIG.
  • the video processing unit 104 shown in FIG. 1 to which the main scanning synchronization signal and the sub-scanning synchronization signal have been sent from the mirror drive control unit 101 in this way processes an image as a video for each pixel information of the input image data ( Tone correction).
  • the video processing unit 104 outputs image information in the image to the laser beam driving unit 105 at a synchronization timing based on these synchronization signals.
  • the laser light driving unit 105 generates a signal (for example, light intensity, gradation signal, etc.) related to the laser light emitted from the laser light source 106 and instructs the laser light source 106 to irradiate the laser light.
  • a signal for example, light intensity, gradation signal, etc.
  • a laser light source unit is constituted by the laser light source 106 and the collimator lens 107, and the laser light source 106 is composed of RGB (Red, Green, Blue) primary colors based on information on the laser light instructed from the laser light driving unit 105. It is a light source that generates laser light of at least one of the three colors of laser light.
  • the collimator lens 107 is an optical element that refracts the laser light emitted from the laser light source 106 and converts it into parallel light that is substantially parallel to the optical axis. )) Is irradiated with a laser beam (light beam).
  • the collimator lens 107 can be moved on the optical axis by a stepping motor in response to an instruction from a control device (not shown) that controls the laser light source unit.
  • the collimator lens 107 is moved by the stepping motor.
  • Enlargement / reduction processing is performed to enlarge or reduce the range irradiated with laser light (hereinafter referred to as “irradiation spot diameter”) by moving on the optical axis.
  • the collimator lens 107 is moved by the stepping motor.
  • the present invention is not limited to this.
  • the diameter of the irradiation spot of the laser beam may be enlarged or reduced using an aperture.
  • the display size of the image can be reduced compared to the image before being reduced by narrowing the irradiation spot diameter.
  • the parallel light emitted by the collimator lens 107 is cylindrical, and by reducing the irradiation spot diameter, the circular range (circular area) irradiated by the cylindrical shape is reduced, and the irradiation spot diameter is enlarged.
  • the circular range (circular area) irradiated by the cylindrical shape increases.
  • the image becomes smaller than the image before the reduction, and if the irradiation range is enlarged by increasing the irradiation spot diameter, the image is not enlarged. It becomes larger than the image.
  • FIG. 7 is a diagram showing the light intensity distribution of the laser light source irradiated on the polarizer 100 from the laser light source unit including the laser light source 106 and the collimator lens 107 shown in FIG.
  • FIG. 7 is a cross-sectional view of laser light when the vertical axis indicates the intensity (light intensity) of the laser light and the horizontal axis indicates the state of the laser light distributed in the sub-scanning direction.
  • the cross-sectional view of the laser beam shown in FIG. 7 is represented by a right and left symmetrical normal curve.
  • FIG. 7 further shows an irradiation spot corresponding to the light intensity of each laser beam. Since this irradiation spot is irradiated by the collimator lens 107 shown in FIG. 1 with cylindrical parallel light, the irradiation spot of the laser beam irradiated on the mirror of the polarizer 100 can be represented by a circle.
  • the light intensity of each laser beam can be changed by moving the collimator lens 107 on the optical axis, and the irradiation spot diameter is changed accordingly.
  • the light intensity at this time is set to an intensity at which the visibility of the image can be ensured when the light is displayed (displayed) by the mirror of the polarizer 100 being emitted (reflected).
  • the light intensity is set to prevent the occurrence of a striped pattern in the image and ensure visibility.
  • the light intensity at which the normal distribution of the other laser light (adjacent laser light) intersects at half the light intensity of the laser light emitted from the collimator lens 107 is set.
  • the second embodiment is another example of the first embodiment described above.
  • FIG. 10 is a configuration diagram showing a detailed configuration of the image generation device according to the embodiment of the present invention, and is a diagram similar to the configuration diagram of the image generation device shown in FIG.
  • the image forming apparatus shown in FIG. 1 described in the first embodiment shows an example in which a display target (screen) for displaying an image is a pixel formed of a rectangle (rectangle) whose inner angles are all right angles, such as a rectangle or a square.
  • the configuration of the image generation apparatus shown in FIG. 10 shows a configuration that is particularly useful when the display target pixels for displaying an image are the same in all four sides and are rectangular (square) whose inner angles are all right angles. ing.
  • the image generation apparatus includes a polarizer 100 including a mirror and a driving device that drives the mirror, a mirror drive control unit 101 that controls driving performed by the driving device in the polarizer 100, and the polarizer 100.
  • a main scanning amplitude detecting unit 102 for detecting the amplitude of the mirror in the main scanning direction based on the driving position in the main scanning direction, a video processing unit 104 for processing an image based on the image data instructed to be displayed, and an image
  • a laser light driving unit 105 that performs processing for driving a light source of laser light used for projection, a laser light source 106 that is a light source for irradiating the laser light, and the laser light is diffused and converged as cylindrical parallel light within a predetermined range.
  • a collimator lens 107 is provided.
  • the polarizer 100 includes a mirror that reflects (emits) laser light emitted from the laser light source 106 via the collimator lens 107, and a drive device that drives the mirror. In both cases, a laser beam is scanned onto a display target (screen) on which an image is projected by rectangular (square) pixels having the same inner angles.
  • the mirror is driven in the two-dimensional direction by driving the mirror in the main scanning direction in the vibration state as shown in FIG. 2 and in the sub-scanning direction in the vibration state as shown in FIG. Driven.
  • the waveforms shown in FIGS. 2 and 3 are merely examples of vibration states when the mirrors in the polarizer 100 are driven, and are not limited to these waveforms. Good.
  • the driving device further detects a vibration signal indicating a voltage value corresponding to a swing angle in the main scanning direction of each mirror and a vibration signal indicating a voltage value corresponding to the swing angle in the sub-scanning direction when the mirror is driven. is doing.
  • This driving device outputs an amplitude signal indicating a voltage value corresponding to the detected swing angle in the main scanning direction to the main scanning amplitude detection unit 102.
  • the pixel to be displayed is a square
  • the irradiation spot diameter of the circular laser beam by the cylindrical parallel light is changed by the amplitude signal in the main scanning direction.
  • the mirror drive control unit 101 is configured as shown in FIG. 4 and drives the mirror by controlling the drive device of the polarizer 100. At this time, the mirror drive control unit 101 outputs the mirror drive signal in the main scanning direction and the mirror drive signal in the sub-scanning direction to the drive device of the polarizer 100 to drive and control each dimension. .
  • the main scanning amplitude detection unit 102 shown in FIG. 1 includes an absolute value detection unit 102a, a peak hold unit 102b, and an LPF unit 102c, in the main scanning direction output from the driving device of the polarizer 100.
  • An amplitude signal indicating a voltage value corresponding to the swing angle is received, and the amplitude of the amplitude signal is detected.
  • the amplitude at this time represents the swing angle of the mirror as described above, and this swing angle is the amount of voltage applied to obtain the drive amount based on the drive signal in the main scanning direction output from the mirror drive control unit 101.
  • detecting the amplitude of the amplitude signal by the main scanning amplitude detector 102 means measuring the applied voltage amount.
  • the absolute value detection unit 102a, the peak hold unit 102b, and the LPF unit 102c constituting the main scanning amplitude detection unit 102 are configured by a circuit as shown in FIG. 5, and FIG.
  • the signal information output when processing is performed by the absolute value detection unit 102a, the peak hold unit 102b, and the LPF unit 102c configured by such a circuit is shown.
  • the absolute value detection unit 102a performs processing for detecting the absolute value of the amplitude signal indicating the voltage value corresponding to the swing angle output from the driving device of the polarizer 100. Further, the peak hold unit 102b performs a peak hold process that suppresses the voltage drop stored in the capacitor by further power storage on the amplitude signal having the waveform at the point b in FIG. 6 output from the absolute value detection circuit. Further, the LPF unit 102c performs a filtering process to eliminate (cut) an amplitude signal having a predetermined frequency or higher with respect to the amplitude signal having the waveform at the point c in FIG. Output the waveform as shown.
  • This waveform at the point d is scanning amplitude information in the main scanning direction representing a voltage value proportional to the maximum amplitude of an amplitude signal indicating the voltage value of the driving force for driving the mirror.
  • the mirror drive control unit 101 shown in FIG. 10 has the configuration shown in FIG. 4, and drives the mirror of the polarizer 100 using the scanning amplitude information in the main scanning direction.
  • the mirror drive control unit 101 according to the first exemplary embodiment performs arithmetic processing for adjusting the swing angle based on the scanning amplitude information in the main scanning direction and the scanning amplitude information in the sub-scanning direction, thereby driving the driving signal in the main scanning direction. (Main scanning drive signal) and a sub scanning direction driving signal (sub scanning driving signal) are generated.
  • the main scanning direction scanning amplitude signal received from the main scanning amplitude detection unit 102 is used as a source.
  • the main scanning drive signal and the sub-scanning drive signal are generated.
  • the mirror drive control unit 101 also generates a synchronization signal in the sub-scanning direction based on the sub-scanning drive signal, and performs main scanning based on the amplitude information based on the amplitude signal in the main scanning direction detected by the mirror position sensor. A direction synchronization signal is generated.
  • the mirror drive control unit 101 sends the generated synchronization signal to the video processing unit 104.
  • the video processing unit 104 shown in FIG. 1 to which the main scanning synchronization signal and the sub-scanning synchronization signal have been sent from the mirror drive control unit 101 in this way processes an image as a video for each pixel information of the input image data ( Tone correction).
  • the video processing unit 104 outputs image information in the image to the laser beam driving unit 105 at a synchronization timing based on these synchronization signals.
  • the laser light driving unit 105 generates a signal (for example, light intensity, gradation signal, etc.) related to the laser light emitted from the laser light source 106 and instructs the laser light source 106 to irradiate the laser light.
  • a signal for example, light intensity, gradation signal, etc.
  • a laser light source unit is constituted by the laser light source 106 and the collimator lens 107, and the laser light source 106 generates a laser beam of at least one color out of three colors of laser light composed of RGB (Red, Green, Blue) primary colors. It is.
  • the collimator lens 107 is an optical element that refracts the laser light emitted from the laser light source 106 and converts it into parallel light that is substantially parallel to the optical axis. )) Is irradiated with a laser beam (light beam).
  • the collimator lens 107 can be moved on the optical axis by a stepping motor in response to an instruction from a control device (not shown) that controls the laser light source unit.
  • the collimator lens 107 is moved by the stepping motor.
  • Enlargement / reduction processing is performed to enlarge or reduce the range irradiated with laser light (hereinafter referred to as “irradiation spot diameter”) by moving on the optical axis.
  • irradiation spot diameter the range irradiated with laser light
  • the irradiation spot diameter of the laser beam may be enlarged or reduced using an aperture.
  • the parallel light emitted by the collimator lens 107 is cylindrical, and by reducing the irradiation spot diameter, the circular range (circular area) irradiated by the cylindrical shape is reduced, and the irradiation spot diameter is enlarged.
  • the circular range (circular area) irradiated by the cylindrical shape increases.
  • the image becomes smaller than the image before the reduction, and if the irradiation range is enlarged by increasing the irradiation spot diameter, the image is not enlarged. It becomes larger than the image.

Abstract

Provided is an image generating apparatus wherein image display mode can be changed with a simple configuration. A luminous flux generated on the basis of image data is radiated from a light source by driving an optical mirror in the two-dimensional directions, i.e., the main scan direction and the sub-scan direction. At that time, the polarization range of the luminous flux to be polarized corresponding to an optical mirror drive quantity is changed by adjusting optical mirror drive power in the main scan direction or the sub-scan direction.

Description

画像生成装置Image generation device
 本発明は、画像生成装置に関する。 The present invention relates to an image generation apparatus.
 ディジタル機器が画像を表示する方法として、例えば、その画像に基づくレーザ光を表示対象へと照射することによって表示させる方法がある。レーザ光は、指向性に優れているために鮮明、かつレーザ光が理想的な単一波長スペクトル分布であるために演色性に優れた画像を表示することができる。 As a method of displaying an image by a digital device, for example, there is a method of displaying an image by irradiating a display target with laser light based on the image. Since the laser beam is excellent in directivity, it is clear, and since the laser beam has an ideal single wavelength spectrum distribution, an image excellent in color rendering can be displayed.
 レーザ光を用いて画像を表示させるにあたり、そのレーザ光を光学ミラーへと照射して、この光学ミラーがミラー駆動装置によって2次元方向に高速駆動されることで表示対象にそのレーザ光を走査するものがある。 When displaying an image using laser light, the laser light is irradiated onto an optical mirror, and the optical mirror is driven at high speed in a two-dimensional direction by a mirror driving device, thereby scanning the laser light on a display target. There is something.
 このときの光学ミラーの一例として、半導体技術を用いたMEMS(Micro Electro Mechanical Systems)ミラーがあり、このMEMSミラーを用いることによって画像表示の機能を搭載するディジタル機器の小型化や高性能化などが可能となる。 As an example of the optical mirror at this time, there is a MEMS (Micro-Electro-Mechanical Systems) mirror using semiconductor technology. By using this MEMS mirror, a digital device equipped with an image display function can be downsized and improved in performance. It becomes possible.
 このように、表示対象に表示させる画像はその用途や役割に応じて表示形態を変更することが望まれる場合があり、例えば、画像の拡大および縮小を行うことが必要となる。 As described above, it may be desired to change the display form of the image to be displayed on the display target in accordance with its use and role. For example, it is necessary to enlarge and reduce the image.
 以下に示す特許文献1では、光学的なズームレンズを用いずに画像のサイズを変更する技術が開示されている。 Patent Document 1 shown below discloses a technique for changing the size of an image without using an optical zoom lens.
 この特許文献1では、表示させる画像の画像信号をフレーム単位でフレームメモリに記憶しておき、その画像の画素位置に対応したクロック周期のドットクロックを生成することによってこのドットクロック毎にフレームメモリに記憶した画像信号を画素単位で読み出して各色(R、G、B)の画像信号を生成して出力する技術であって、生成したドットクロックの周期によって光束の出射タイミングを変更して画像サイズを変更している。 In Patent Document 1, an image signal of an image to be displayed is stored in a frame memory in units of frames, and a dot clock having a clock cycle corresponding to the pixel position of the image is generated, so that each dot clock is stored in the frame memory. A technique for reading out stored image signals in units of pixels and generating and outputting image signals of each color (R, G, B), and changing the light beam emission timing according to the generated dot clock cycle to change the image size. It has changed.
特開2008-197205号公報JP 2008-197205 A
 表示する画像を拡大および縮小する際に、光学ミラーを駆動させるクロック周期を変更することを必要とするような技術においては、クロック周期を変更させるためのクロックの発振周波数を制御する必要があり、この制御処理を行うための装置(例えば、回路)が必要となる。 In a technique that requires changing the clock period for driving the optical mirror when enlarging and reducing the image to be displayed, it is necessary to control the oscillation frequency of the clock for changing the clock period. An apparatus (for example, a circuit) for performing this control process is required.
 また、各画素(ピクセル)において狭い範囲で描画するような場合には高速にピクセルクロックの制御を行うことが必要となるとともに、これに応じて高速でピクセル毎の画像データ(ピクセルデータ)を出力する必要も生じることとなる。 In addition, when drawing in a narrow range in each pixel (pixel), it is necessary to control the pixel clock at high speed, and output image data (pixel data) for each pixel at high speed accordingly. It becomes necessary to do.
 そこで、本発明は、上記に示すような問題を鑑み、画像の表示形態を容易な構成で変更できるようにした画像生成装置を提供することを目的とする。 Therefore, in view of the problems as described above, an object of the present invention is to provide an image generation apparatus that can change an image display form with an easy configuration.
 上記目的を達成するため、請求項1の発明は、二次元方向に駆動することによって光源から照射された光束を偏光する偏光器と、前記偏光器における駆動の駆動量を調整することにより当該駆動量に応じて偏光される前記光束の偏光範囲を変更する偏光範囲変更手段とを具備する。 In order to achieve the above object, the invention of claim 1 is directed to a polarizer that polarizes a light beam emitted from a light source by driving in a two-dimensional direction, and the driving by adjusting a driving amount of the polarizer. Polarization range changing means for changing the polarization range of the luminous flux polarized according to the amount.
本発明の実施の形態における画像生成装置の詳細な構成を示す構成図。The block diagram which shows the detailed structure of the image generation apparatus in embodiment of this invention. 図1に示す偏光器においてミラーを駆動させたときの主走査方向における振動状態を表す駆動波形の図。FIG. 4 is a drive waveform diagram showing a vibration state in the main scanning direction when a mirror is driven in the polarizer shown in FIG. 1. 図1に示す偏光器においてミラーを駆動させたときの副走査方向における振動状態を表す駆動波形の図。FIG. 6 is a drive waveform diagram showing a vibration state in the sub-scanning direction when a mirror is driven in the polarizer shown in FIG. 1. 図1に示すミラー駆動制御部の詳細な構成を示す図。The figure which shows the detailed structure of the mirror drive control part shown in FIG. 図1に示す主走査振幅検出部を構成する絶対値検出部およびピークホールド部およびLPF部の回路構成を示す図。The figure which shows the circuit structure of the absolute value detection part, peak hold part, and LPF part which comprise the main scanning amplitude detection part shown in FIG. 図5に示すような主走査振幅検出部の回路構成によって出力される振幅信号の状態を示す図。The figure which shows the state of the amplitude signal output by the circuit structure of the main scanning amplitude detection part as shown in FIG. レーザ光の光強度を示す図。The figure which shows the light intensity of a laser beam. 主走査方向の振幅信号に対する同期信号の生成過程を示す図。The figure which shows the production | generation process of the synchronizing signal with respect to the amplitude signal of a main scanning direction. 副走査方向の振幅信号に対する同期信号の生成過程を示す図。The figure which shows the production | generation process of the synchronizing signal with respect to the amplitude signal of a subscanning direction. 本発明の実施の形態における画像生成装置の詳細な構成を示す構成図の他の例。The other example of the block diagram which shows the detailed structure of the image generation apparatus in embodiment of this invention. 本発明の実施の形態における画像生成装置の詳細な構成を示す構成図の他の例。The other example of the block diagram which shows the detailed structure of the image generation apparatus in embodiment of this invention.
 以下、本発明に係わる画像生成装置の一実施例を添付図面を参照して詳細に説明する。 Hereinafter, an embodiment of an image generation apparatus according to the present invention will be described in detail with reference to the accompanying drawings.
 図1は、本発明の実施の形態における画像生成装置の詳細な構成を示す構成図である。 FIG. 1 is a configuration diagram showing a detailed configuration of an image generation apparatus according to an embodiment of the present invention.
 図1において、画像生成装置は、反射板(以下、単に「ミラー」と称する)およびそのミラーを駆動する駆動装置によって構成される偏光器100と、偏光器100における駆動装置によって行われる駆動を制御するミラー駆動制御部101と、偏光器100における主走査方向の駆動位置に基づいてミラーの主走査方向における振幅を検出する主走査振幅検出部102と、偏光器100における副走査方向の駆動位置に基づいてミラーの副走査方向における振幅を検出する副走査振幅検出部103と、表示指示された画像データに基づく画像を映像として処理する映像処理部104と、画像を映し出すために用いられる光束(以下、「レーザ光」と称する)を出射する光源を駆動する処理を行うレーザ光駆動部105と、レーザ光を照射する光源であるレーザ光源106と、レーザ光を所定範囲に円筒状の平行光として拡散収束するコリメータレンズ107を具備して構成される。 In FIG. 1, the image generation apparatus controls a polarizer 100 configured by a reflector (hereinafter simply referred to as “mirror”) and a driving device that drives the mirror, and driving performed by the driving device in the polarizer 100. A mirror driving control unit 101 for detecting the amplitude of the mirror in the main scanning direction based on the driving position of the polarizer 100 in the main scanning direction, and a driving position of the polarizer 100 in the sub scanning direction. A sub-scanning amplitude detection unit 103 that detects the amplitude of the mirror in the sub-scanning direction, a video processing unit 104 that processes an image based on the image data instructed to be displayed as a video, and a light beam (hereinafter, referred to as an image). , Referred to as “laser light”), a laser light driving unit 105 that performs processing for driving a light source that emits light, and laser light irradiation That the laser light source 106 is a light source constituted by including the collimator lens 107 for diffusing converging a laser beam as a cylindrical parallel light in a predetermined range.
 偏光器100は、上記に示すように、コリメータレンズ107を介してレーザ光源106から照射されたレーザ光を反射(出射)するミラーとこのミラーを駆動する駆動装置とによって構成されている。 As described above, the polarizer 100 includes a mirror that reflects (emits) laser light emitted from the laser light source 106 via the collimator lens 107 and a drive device that drives the mirror.
 この偏光器100は、長方形や正方形等の内角がすべて直角となる矩形(四角形)からなる画素によって画像を映し出す表示対象(画面)にレーザ光を偏光することによって走査するものである。このときの走査形態として、リサージュ図形を描画するリサージュ走査がある。 The polarizer 100 scans the display object (screen) by projecting an image by a pixel composed of a rectangle (rectangle) whose inner angles are all right angles, such as a rectangle and a square, by polarizing the laser beam. As a scanning form at this time, there is a Lissajous scan for drawing a Lissajous figure.
 さらに、このミラーは、外枠部と一定サイズの面積を有する矩形の反射部とを有したジンバル構造によって形成されており、外枠部および反射部は弾性部材であるバネによって回動可能な状態で支持されている。具体的には、外枠部は、主走査方向(水平方向)を中心軸として回動するバネによって支持されており、反射部は主走査方向と直交する副走査方向(垂直方向)を中心軸として回動するバネによって支持されている。 Further, the mirror is formed by a gimbal structure having an outer frame portion and a rectangular reflecting portion having a fixed area, and the outer frame portion and the reflecting portion can be rotated by a spring which is an elastic member. It is supported by. Specifically, the outer frame portion is supported by a spring that rotates about the main scanning direction (horizontal direction) as the central axis, and the reflecting portion is the central axis about the sub-scanning direction (vertical direction) orthogonal to the main scanning direction. Is supported by a rotating spring.
 これらのバネの復元力を利用することによって中心軸に沿ってそのバネを回動させることにより、外枠部と反射部とを駆動させ、偏光器100は、ミラー(より具体的には反射部)に照射されたレーザ光を所定の範囲に反射(出射)することが可能となる。 By utilizing the restoring force of these springs, the outer frame portion and the reflecting portion are driven by rotating the spring along the central axis, and the polarizer 100 is made up of a mirror (more specifically, a reflecting portion). ) Can be reflected (emitted) within a predetermined range.
 このミラーは、駆動装置によって駆動されるものであって、駆動装置は、ミラーとの間に電圧を印加させる(電位差を生じさせる)ことによって静電力を発生させてそのミラーを微振動させる駆動を行う。もちろん、このような圧電効果に起因させてミラーを微振動させることに限定されるものではなく、コイル等を用いることによって生じる電磁力に起因させて微振動させるような構成としてもよい。 This mirror is driven by a drive device, and the drive device generates an electrostatic force by applying a voltage to the mirror (generating a potential difference) to drive the mirror to vibrate slightly. Do. Of course, the present invention is not limited to the slight vibration of the mirror caused by such a piezoelectric effect, and may be configured to cause the fine vibration caused by an electromagnetic force generated by using a coil or the like.
 また、偏光器100は、ミラーの変位量を検出するセンサ(位置センサ)を備えており、この位置センサは、駆動装置によって駆動したミラーの変位量を検出する。 The polarizer 100 also includes a sensor (position sensor) that detects the amount of displacement of the mirror, and this position sensor detects the amount of displacement of the mirror driven by the driving device.
 このような構成からなる偏光器100では、駆動装置によってミラーを微振動させたときの主走査方向における振動状態を表す駆動波形を図2に示し、副走査方向における振動状態を表す駆動波形を図3に示している。 In the polarizer 100 having such a configuration, a driving waveform representing a vibration state in the main scanning direction when the mirror is slightly vibrated by the driving device is shown in FIG. 2, and a driving waveform representing the vibration state in the sub scanning direction is shown in FIG. 3 shows.
 図2は、図1に示す偏光器100においてミラーを駆動させたときの主走査方向における振動状態を表す駆動波形を示した図である。 FIG. 2 is a diagram showing a drive waveform representing a vibration state in the main scanning direction when the mirror is driven in the polarizer 100 shown in FIG.
 図2では、主走査方向の振動状態を表したものであって、この図2に示す振動状態は、周期的に変化する駆動波形の一例であって以下に示すような(式)からなる正弦波である。
   θ = a・sinωxt ・・・ (式)
FIG. 2 shows a vibration state in the main scanning direction, and the vibration state shown in FIG. 2 is an example of a drive waveform that periodically changes, and is a sine having the following (formula). It is a wave.
θ = a · sinωxt (formula)
 このときの「ωx」は、主走査方向における駆動角周波数を示しており、「t」は、経過時間を示しており、「a」は、駆動波形の中心軸からの最大偏差である振幅からなる振り角倍率を示している。 In this case, “ωx” indicates the driving angular frequency in the main scanning direction, “t” indicates the elapsed time, and “a” indicates the amplitude that is the maximum deviation from the central axis of the driving waveform. This shows the swing angle magnification.
 そして、これらの変数を与えることによって上記の(式)により求められる「θ」は、ミラーが主走査方向に振られる際に振られる角度(振り角)を示している。 Further, “θ” obtained by the above (expression) by giving these variables indicates an angle (a swing angle) that is swung when the mirror is swung in the main scanning direction.
 また、図2には、正弦波によって示されるミラーの主走査方向における振動状態の例として、3つの正弦波を示している。 FIG. 2 shows three sine waves as examples of the vibration state in the main scanning direction of the mirror indicated by the sine waves.
 これら3つの振動状態を示す正弦波それぞれは、振動角周波数および時間が同一(すなわち、周期が同一)であって、主走査方向における振り角倍率を示す振幅のみが異なる例を示している。 Each of the sine waves indicating these three vibration states shows an example in which the vibration angular frequency and time are the same (that is, the period is the same), and only the amplitude indicating the swing angle magnification in the main scanning direction is different.
 1つ目の正弦波は振幅により示される振り角倍率が「1」であって、2つ目の正弦波は振幅により示される振り角倍率が1つ目の正弦波の振幅「1」よりも小さい振幅「0.8」であって、3つ目の正弦波は振幅により示される振り角倍率が1つ目の正弦波の振幅「1」よりも大きい振幅「1.2」である。 The first sine wave has a swing angle magnification indicated by amplitude “1”, and the second sine wave has a swing angle magnification indicated by amplitude larger than the amplitude “1” of the first sine wave. The third sine wave has a small amplitude “0.8”, and the swing angle magnification indicated by the amplitude is an amplitude “1.2” larger than the amplitude “1” of the first sine wave.
 このように、1つの正弦波に対して異なる振幅(振り角倍率)を設定した正弦波を作成することによって、これらの正弦波によって出力される主走査方向における振り角「θ」は正弦波の振幅である振り角倍率「a」に比例することとなる。すなわち、振幅(振り角倍率「a」)を変更すると、ミラーの振り角「θ」が比例して変更される。 In this manner, by creating sine waves having different amplitudes (swing angle magnifications) for one sine wave, the swing angle “θ” in the main scanning direction output by these sine waves is the sine wave. This is proportional to the swing angle magnification “a” which is the amplitude. That is, when the amplitude (the swing angle magnification “a”) is changed, the mirror swing angle “θ” is changed in proportion.
 例えば、振り角倍率の振幅が「1」から「1.2」へと増幅された場合には、振り角も「1」から「1.2」へと比例して増加することによって画像サイズも「1.2倍」へと拡大された状態となり、反対に、振り角倍率の振幅が「1」から「0.8」へと減幅された場合には、振り角も「1」から「0.8」へと比例して減少することによって画像サイズも「0.8倍」へと縮小された状態となる。 For example, when the amplitude of the swing angle magnification is amplified from “1” to “1.2”, the swing angle is also increased from “1” to “1.2” in proportion to the image size. On the contrary, when the amplitude of the swing angle magnification is reduced from “1” to “0.8”, the swing angle is also changed from “1” to “1.2”. By decreasing in proportion to 0.8, the image size is also reduced to 0.8 times.
 このようにして振り角が変更されることは、言い換えれば、ミラーによって照射される範囲が変更されることを示すものであって、振り角倍率の振幅が増幅された場合には視認される画角が広がることとなり、振り角倍率の振幅が減幅された場合には視認される画角が狭まることとなる。 In other words, changing the swing angle indicates that the range irradiated by the mirror is changed, and the image that is visually recognized when the amplitude of the swing angle magnification is amplified. The angle is widened, and when the amplitude of the swing angle magnification is reduced, the view angle to be viewed is narrowed.
 さらに、この偏光器100には、図2に示すような振動状態の振り角で駆動するミラーへとレーザ光を照射する光束照射時間(言い換えれば、画像を表示させる画像表示時間)が予め設定されている(固定された状態にある)。 Further, in this polarizer 100, a light beam irradiation time (in other words, an image display time for displaying an image) for irradiating a laser beam to a mirror driven with a swing angle in a vibration state as shown in FIG. 2 is set in advance. Is in a fixed state.
 このときのレーザ光を照射する光束照射時間は、画像データに基づく画像を映し出す表示対象の有効エリアのサイズによって決定することができるものであって、例えば、画像を映し出さないブランキング期間が、レーザ光が照射される照射時間の前後それぞれ1割(10パーセント)である場合、このブランキング期間を除いた他の有効期間が照射時間となる。 The light beam irradiation time for irradiating the laser beam at this time can be determined by the size of the effective area of the display target that displays the image based on the image data. For example, the blanking period during which the image is not displayed is the laser. When the irradiation time is 10% (10 percent) before and after the irradiation time, the other effective period excluding the blanking period is the irradiation time.
 図2に示す例では、1周期の時間「t」を単位時間の「1」とし、この1周期における単位時間を20等分する。そして、ミラーの振動状態を示す正弦波における振幅の絶対値が最大となる時間をレーザ光の照射を開始することが可能な時間(t=0)とすると、20等分したうちの1つ分(20分の1)の時間が経過するまで(tが「0」から「T1」となるまで)はブランキング期間である照射時間の前半10パーセントであることから、レーザ光をミラーに照射しない状態にある。 In the example shown in FIG. 2, the time “t” of one cycle is set to “1” of the unit time, and the unit time in this one cycle is divided into 20 equal parts. Then, if the time when the absolute value of the amplitude in the sine wave indicating the vibration state of the mirror is the maximum is the time when the laser beam irradiation can be started (t = 0), it is one of 20 equal parts. The laser beam is not irradiated on the mirror until the time of (twentieth) has elapsed (until t is changed from “0” to “T1”), which is 10% of the first half of the irradiation time that is the blanking period. Is in a state.
 また、このブランキング期間を経過後の「T1」(20分の1)から「T2」(20分の9)までの期間は有効期間であってレーザ光によって照射される照射時間である。そして、「T2」(20分の9)から「T3」(20分の10)までの期間は、半周期における照射時間の後半10パーセントのブランキング期間であることから、レーザ光をミラーに照射しない状態にある。 Also, the period from “T1” (1/20) to “T2” (9/20) after the blanking period has elapsed is an effective period, which is an irradiation time irradiated with laser light. Since the period from “T2” (9/20) to “T3” (10/20) is the blanking period of 10% of the latter half of the irradiation time in the half cycle, the laser beam is irradiated onto the mirror. Not in a state.
 さらに、「T3」(20分の10)から「T4」(20分の11)までは他の半周期における照射時間の前半10パーセントであるブランキング期間であることから、レーザ光をミラーに照射しない状態にある。 Furthermore, since “T3” (10/20) to “T4” (11/20) is a blanking period that is the first 10% of the irradiation time in the other half cycle, the laser beam is applied to the mirror. Not in a state.
 また、このブランキング期間を経過後の「T4」(20分の11)から「T5」(20分の19)までの期間は有効期間であってレーザ光によって照射される照射時間である。 In addition, the period from “T4” (11/20) to “T5” (19/20) after the blanking period has elapsed is an effective period, which is an irradiation time irradiated with laser light.
 そして、「T5」(20分の19)から1周期を20等分した最後の1つ分(20分の20)となるまでの期間(tが「0」となるまでの期間)は他の半周期における照射時間の後半10パーセントのブランキング期間であることから、レーザ光をミラーに照射しない状態にある。 The period from “T5” (19/20) to the last one (20/20) of one cycle divided into 20 (period until t becomes “0”) Since the blanking period is 10% of the latter half of the irradiation time in the half cycle, the laser beam is not irradiated onto the mirror.
 図3は、図1に示す偏光器100においてミラーを駆動させたときの副走査方向における振動状態を表す駆動波形を示した図である。 FIG. 3 is a diagram showing a drive waveform representing a vibration state in the sub-scanning direction when the mirror is driven in the polarizer 100 shown in FIG.
 図3において、副走査方向の振動状態を鋸波形によって表したものである。 In FIG. 3, the vibration state in the sub-scanning direction is represented by a saw waveform.
 図2に示す主走査方向の振動状態と同様に、ミラーの副走査方向における振動状態の例として3つの波形を示している。 Similarly to the vibration state in the main scanning direction shown in FIG. 2, three waveforms are shown as examples of the vibration state in the sub-scanning direction of the mirror.
 この3つの鋸形状からなる波形についても、3つの波形とも同一周期であって、副走査方向における振り角倍率を示す振幅のみが異なる例を示している。 The three sawtooth waveforms are also shown in an example in which all three waveforms have the same period and differ only in the amplitude indicating the swing angle magnification in the sub-scanning direction.
 1つ目の鋸波形は振幅により示される振り角倍率が「1」であって、2つ目の鋸波形は振幅が1つ目の鋸波形の振幅「1」よりも小さい振幅「0.8」であって、3つ目の鋸波形は振幅が1つ目の鋸波形の振幅「1」よりも大きい振幅「1.2」である。 In the first sawtooth waveform, the swing angle magnification indicated by the amplitude is “1”, and in the second sawtooth waveform, the amplitude “0.8” smaller than the amplitude “1” of the first sawtooth waveform. The third sawtooth waveform has an amplitude “1.2” whose amplitude is larger than the amplitude “1” of the first sawtooth waveform.
 このように、1つの鋸波形に対して異なる振幅(振り角倍率)を設定した鋸波形を作成することによって、これらの鋸波形によって出力される副走査方向における振り角は鋸波形の振幅である振り角倍率に比例することとなる。すなわち、振幅を変更すると、ミラーの振り角が比例して変更される。 In this way, by creating saw waveforms having different amplitudes (swing angle magnifications) for one saw waveform, the swing angle in the sub-scanning direction output by these saw waveforms is the amplitude of the saw waveform. It is proportional to the swing angle magnification. That is, when the amplitude is changed, the swing angle of the mirror is changed in proportion.
 また、この偏光器100には、図3に示すような振動状態の振り角で駆動するミラーへとレーザ光を照射する光束照射時間(言い換えれば、画像を表示させる画像表示時間)が予め設定されている(固定された状態にある)。図3に示す例ではT6からT7までが半周期における前半のブランキング期間であって、T7からT8までの期間が照射時間であって、T8からT9までが半周期における後半のブランキング期間である。 Further, in this polarizer 100, a light beam irradiation time (in other words, an image display time for displaying an image) for irradiating a laser beam to a mirror driven with a swing angle in a vibration state as shown in FIG. 3 is preset. Is in a fixed state. In the example shown in FIG. 3, T6 to T7 is the first half blanking period in the half cycle, T7 to T8 is the irradiation time, and T8 to T9 is the second blanking period in the half cycle. is there.
 このブランキング期間ではレーザ光がミラーに照射されない状態を示し、照射時間ではレーザ光がミラーに照射される状態を示している。 In this blanking period, the laser beam is not irradiated to the mirror, and in the irradiation time, the laser beam is irradiated to the mirror.
 なお、偏光器100は、外枠部と反射部とが駆動することによってレーザ光を所定の範囲に反射させるものであることから、図2に示す半周期におけるレーザ光の照射時間と図3に示す半周期におけるレーザ光の照射時間とは同一の時間を示しているものである。 Note that the polarizer 100 reflects the laser beam to a predetermined range by driving the outer frame portion and the reflecting portion, and therefore the irradiation time of the laser beam in the half cycle shown in FIG. The irradiation time of the laser beam in the half cycle shown shows the same time.
 また、図2および図3に示す波形は偏光器100におけるミラーを駆動させるときの振動状態の一例を示すものに過ぎず、これらの波形に限定されることなく、任意の波形による振動状態としてもよい。 Moreover, the waveforms shown in FIGS. 2 and 3 are merely examples of vibration states when driving the mirror in the polarizer 100, and are not limited to these waveforms. Good.
 以上に示すような振動を行う偏光器100は、駆動装置によってミラーを駆動させたときのミラーの主走査位置および副走査位置を位置センサで検出する。 The polarizer 100 that vibrates as described above detects the main scanning position and the sub-scanning position of the mirror when the mirror is driven by the driving device using the position sensor.
 位置センサは、検出した主走査方向における振り角に対応する主走査位置を主走査振幅検出部102およびミラー駆動制御部101へと出力し、副走査方向における振り角に対応する副走査位置を副走査振幅検出部103へと出力する。このときの主走査位置および副走査位置の位置情報は、ミラーの振幅信号によって表される。 The position sensor outputs the main scanning position corresponding to the detected swing angle in the main scanning direction to the main scanning amplitude detection unit 102 and the mirror drive control unit 101, and outputs the sub scanning position corresponding to the swing angle in the sub scanning direction. The data is output to the scanning amplitude detector 103. The position information of the main scanning position and the sub-scanning position at this time is expressed by the mirror amplitude signal.
 次に、図1に示すミラー駆動制御部101は、偏光器100の駆動装置を制御することによってミラーを駆動させる。このときのミラー駆動制御部101は、主走査方向におけるミラーの駆動信号と、副走査方向におけるミラーの駆動信号とを偏光器100の駆動装置に出力することによって次元ごとに駆動制御を行う。 Next, the mirror drive controller 101 shown in FIG. 1 drives the mirror by controlling the drive device of the polarizer 100. The mirror drive control unit 101 at this time performs drive control for each dimension by outputting the mirror drive signal in the main scanning direction and the mirror drive signal in the sub-scanning direction to the drive device of the polarizer 100.
 このミラー駆動制御部101は、ROM(Read Only Memory)などによって構成される記憶領域(後述する「目標振幅信号記憶部」)を有しており、この記憶領域では、偏光器100のミラーが反射して表示する画像データに基づく画像の表示サイズ(目標表示サイズ)に応じた情報であって、ミラーの振り角を変更する元となる情報を記憶している。 The mirror drive control unit 101 has a storage area (a “target amplitude signal storage unit” to be described later) configured by a ROM (Read Only Memory) or the like, and the mirror of the polarizer 100 reflects in this storage area. Thus, information according to the display size (target display size) of the image based on the image data to be displayed and information that changes the mirror swing angle is stored.
 この情報は、映像処理部104に画像データを入力する入力元などによって指定されたものであるほか、ミラー駆動制御部101の目標振幅情報算出部(図示せず)で、表示させる画像の表示サイズを元に算出したものである。 This information is specified by an input source that inputs image data to the video processing unit 104, and the display size of an image to be displayed by a target amplitude information calculation unit (not shown) of the mirror drive control unit 101. Is calculated based on
 この記憶領域(後述する「目標振幅信号記憶部」)に記憶する情報を元に、ミラー駆動制御部101は、振動状態を変更し、例えば図2および図3に示す例では振幅(振り角倍率)を変更し、指定された表示サイズの画像を偏光器100によって走査させて表示させる。 Based on information stored in this storage area (a “target amplitude signal storage unit” to be described later), the mirror drive control unit 101 changes the vibration state. For example, in the examples shown in FIGS. ) And the image of the designated display size is scanned by the polarizer 100 and displayed.
 もちろん、これに限定されることなく、後述するように目標表示サイズと、その目標表示サイズで画像を表示する前に表示している画像の現表示サイズとの差分に基づく情報を用いて振動状態を変更するようにしてもよい。 Of course, without being limited to this, as described later, the vibration state using information based on the difference between the target display size and the current display size of the image displayed before displaying the image at the target display size. May be changed.
 このミラー駆動制御部101の詳細な構成を図4に示し、後述する。 The detailed configuration of the mirror drive control unit 101 is shown in FIG. 4 and will be described later.
 続いて、図1に示す主走査振幅検出部102は、絶対値検出部102a、ピークホールド部102b、LPF部102cを具備して構成されており、偏光器100の位置センサから出力される主走査方向におけるミラーの主走査位置を受け付けると、その主走査位置を時系列に表した波形から振幅を検出する。 Subsequently, the main scanning amplitude detection unit 102 shown in FIG. 1 includes an absolute value detection unit 102a, a peak hold unit 102b, and an LPF unit 102c. The main scanning amplitude output from the position sensor of the polarizer 100 is provided. When the main scanning position of the mirror in the direction is received, the amplitude is detected from a waveform representing the main scanning position in time series.
 このときの振幅は、上述するようにミラーの振り角を表しており、この振り角は、ミラー駆動制御部101から出力された主走査方向の駆動信号に基づく駆動量でミラーを駆動させたときのミラーの変位量に相当する。 The amplitude at this time represents the swing angle of the mirror as described above, and this swing angle is obtained when the mirror is driven with a drive amount based on the drive signal in the main scanning direction output from the mirror drive control unit 101. This corresponds to the amount of displacement of the mirror.
 また、副走査振幅検出部103は、主走査振幅検出部102と同様に、絶対値検出部103a、ピークホールド部103b、LPF部103cを具備して構成されており、偏光器100の位置センサから出力される副走査方向におけるミラーの副走査位置を受け付けると、その副走査位置を時系列に表した波形から振幅を検出する。 Similarly to the main scanning amplitude detection unit 102, the sub-scanning amplitude detection unit 103 includes an absolute value detection unit 103a, a peak hold unit 103b, and an LPF unit 103c. When the output sub-scanning position of the mirror in the sub-scanning direction is received, the amplitude is detected from a waveform representing the sub-scanning position in time series.
 この振幅についても同様に、上述するようにミラーの振り角を表しており、この振り角はミラー駆動制御部101から出力された副走査方向の駆動信号に基づく駆動量でミラーを駆動させたときのミラーの変位量に相当する。 This amplitude similarly represents the mirror swing angle as described above, and this swing angle is obtained when the mirror is driven with a drive amount based on the drive signal in the sub-scanning direction output from the mirror drive control unit 101. This corresponds to the amount of displacement of the mirror.
 主走査振幅検出部102を構成する絶対値検出部102a、ピークホールド部102b、LPF部102cは、図5に示すような回路によって構成されるものであって、図6には、図5に示すような回路によって構成される絶対値検出部102a、ピークホールド部102b、LPF部102cによって処理が行われたときに出力される信号情報を示している。 The absolute value detection unit 102a, the peak hold unit 102b, and the LPF unit 102c constituting the main scanning amplitude detection unit 102 are configured by a circuit as shown in FIG. 5, and FIG. The signal information output when processing is performed by the absolute value detection unit 102a, the peak hold unit 102b, and the LPF unit 102c configured by such a circuit is shown.
 図1に示す絶対値検出部102aおよび図5に示す絶対値検出回路は、偏光器100の位置センサから出力される変位量を示す振幅信号である、図6に示す地点a波形からなる振幅信号を受け付けることによって、その振幅信号の絶対値を検出する処理を行う。 The absolute value detection unit 102a shown in FIG. 1 and the absolute value detection circuit shown in FIG. 5 are amplitude signals indicating the amount of displacement output from the position sensor of the polarizer 100, and are amplitude signals having the waveform of point a shown in FIG. Is received, the process of detecting the absolute value of the amplitude signal is performed.
 この絶対値の検出処理によって生成される振幅信号は、図6に示す地点b波形からなる振幅信号であって、この地点b波形の振幅信号がピークホールド部102bに入力される。この地点b波形は山形状の波形である。 The amplitude signal generated by this absolute value detection processing is an amplitude signal having a point b waveform shown in FIG. 6, and the amplitude signal having the point b waveform is input to the peak hold unit 102b. This point b waveform is a mountain-shaped waveform.
 次に、図1に示すピークホールド部102bおよび図5に示すピークホールド回路は、図1に示す絶対値検出部102aおよび図5に示す絶対値検出回路から出力される図6の地点b波形からなる振幅信号を受け付けることによって、ピークホールド処理を行う。このピークホールド処理は、絶対値の検出処理によって出力された振幅信号によって示される電圧値の降下を抑制することによって任意の値(例えば、電圧値)からなる振幅信号を保持し続ける処理である。 Next, the peak hold unit 102b shown in FIG. 1 and the peak hold circuit shown in FIG. 5 are obtained from the waveform of the point b in FIG. 6 output from the absolute value detection unit 102a shown in FIG. 1 and the absolute value detection circuit shown in FIG. The peak hold process is performed by receiving the amplitude signal. This peak hold process is a process that continues to hold an amplitude signal composed of an arbitrary value (for example, a voltage value) by suppressing a drop in the voltage value indicated by the amplitude signal output by the absolute value detection process.
 このピークホールド処理によって生成される振幅信号は図6に示す地点c波形からなる振幅信号であって、この地点c波形の振幅信号がLPF部102cに入力される。この地点c波形は地点bの電圧に比例する波形である。 The amplitude signal generated by the peak hold process is an amplitude signal having a point c waveform shown in FIG. 6, and the amplitude signal having the point c waveform is input to the LPF unit 102c. This point c waveform is a waveform proportional to the voltage at point b.
 そして、LPF部102cおよび図5に示すLPF回路は、図1に示すピークホールド部102bおよび図5に示すピークホールド回路から出力される図6の地点c波形からなる振幅信号を受け付けることによって、フィルタリング処理を行う。このフィルタリング処理は、所定周波数以上の振幅信号を排除(カット)する処理である。もちろん、HPF(ハイパスフィルター)によって所定周波数以下の振幅信号をカットする処理を行ってもよいし、LPF(ローパスフィルター)およびHPFによって所定周波数以上および所定周波数以下の振幅信号を同時にカットする処理を行ってもよい。 The LPF unit 102c and the LPF circuit shown in FIG. 5 receive the amplitude signal composed of the point c waveform of FIG. 6 output from the peak hold unit 102b shown in FIG. 1 and the peak hold circuit shown in FIG. Process. This filtering process is a process of eliminating (cutting) an amplitude signal having a predetermined frequency or higher. Of course, an HPF (high pass filter) may cut the amplitude signal below a predetermined frequency, or an LPF (low pass filter) and HPF may cut the amplitude signal above and below the predetermined frequency simultaneously. May be.
 なお、このフィルタリング処理は、ピークホールド処理によって一定幅の値を保持し続けているような場合に特に有効な処理であって、ピークホールド処理によって生成される振幅信号により示される値が一定であれば必ずしもこのフィルタリング処理を行うことを要するものではない。 This filtering process is particularly effective when a constant value is continuously held by the peak hold process, and the value indicated by the amplitude signal generated by the peak hold process is constant. It is not always necessary to perform this filtering process.
 以上のフィルタリング処理によって生成される振幅信号は、図6に示す地点d波形からなる振幅信号であって、主走査振幅検出部102は、この地点d波形の振幅信号をミラー駆動制御部101へと送出する。この地点d波形は、偏光器100から出力される、ミラーの変位量の電圧値を示す主走査方向の振幅情報(以下、「主走査振幅情報」ともいう)である。すなわち、主走査振幅検出部102からミラー駆動制御部101に対してこの主走査振幅情報が入力されることとなる。 The amplitude signal generated by the above filtering process is an amplitude signal having a point d waveform shown in FIG. 6, and the main scanning amplitude detection unit 102 sends the point d waveform amplitude signal to the mirror drive control unit 101. Send it out. The waveform at the point d is amplitude information in the main scanning direction (hereinafter also referred to as “main scanning amplitude information”) indicating the voltage value of the displacement amount of the mirror output from the polarizer 100. That is, the main scanning amplitude information is input from the main scanning amplitude detection unit 102 to the mirror drive control unit 101.
 また、副走査振幅検出部103を構成する絶対値検出部103a、ピークホールド部103b、LPF部103cについても、図5に示すような回路によって構成することができる。 Also, the absolute value detection unit 103a, the peak hold unit 103b, and the LPF unit 103c constituting the sub-scanning amplitude detection unit 103 can also be configured by a circuit as shown in FIG.
 この副走査振幅検出部103によって検出される振幅信号として絶対値検出部103aでは、偏光器100のミラーが副走査方向(垂直方向)に図3に示すような鋸波形によって駆動することから、図示してはいないが、図6において示す地点a波形が鋸波形となる。 In the absolute value detection unit 103a as an amplitude signal detected by the sub-scanning amplitude detection unit 103, the mirror of the polarizer 100 is driven in the sub-scanning direction (vertical direction) by a sawtooth waveform as shown in FIG. Although not shown, the point a waveform shown in FIG. 6 is a sawtooth waveform.
 また、この鋸波形の地点a波形が絶対値検出部103aから出力される波形は、地点a波形と同一の波形である。これは、入力される地点a波形が正数によって構成されることから絶対値を検出する前後で波形が変わらないことを示している。このことから、図1の副走査振幅検出部103に示すような絶対値検出部103a、ピークホールド部103b、LPF部103cを有した構成ではなく、図11に示すように副走査振幅検出部103がピークホールド部103b、LPF部103cによって構成されたものであってもよい。 The waveform of the sawtooth waveform point a waveform output from the absolute value detector 103a is the same waveform as the point a waveform. This indicates that the waveform does not change before and after detecting the absolute value because the input point a waveform is constituted by a positive number. Therefore, the sub-scanning amplitude detection unit 103 is not provided with the absolute value detection unit 103a, the peak hold unit 103b, and the LPF unit 103c as shown in the sub-scanning amplitude detection unit 103 of FIG. May be configured by the peak hold unit 103b and the LPF unit 103c.
 これを受け付けたピークホールド部103bは、この地点b波形(地点a波形)に対してピークホールド処理を行う。 Upon receiving this, the peak hold unit 103b performs a peak hold process on the point b waveform (point a waveform).
 そして、ピークホールド部103bは、ピークホールド処理を行った振幅信号をLPF部103cへと出力し、LPF部103cは、ピークホールド処理が行われた振幅波形に対してフィルタリング処理を行う。 The peak hold unit 103b outputs the amplitude signal subjected to the peak hold process to the LPF unit 103c, and the LPF unit 103c performs a filtering process on the amplitude waveform subjected to the peak hold process.
 これにより、副走査振幅検出部103は、副走査方向における走査振幅の情報(以下、「副走査振幅情報」という)をミラー駆動制御部101へと送出する。すなわち、副走査振幅検出部103からミラー駆動制御部101に対してこの副走査振幅情報が入力されることとなる。 Thereby, the sub-scanning amplitude detection unit 103 sends the scanning amplitude information in the sub-scanning direction (hereinafter referred to as “sub-scanning amplitude information”) to the mirror drive control unit 101. That is, the sub-scanning amplitude information is input from the sub-scanning amplitude detection unit 103 to the mirror drive control unit 101.
 このようにして、主走査振幅情報および副走査振幅情報の走査振幅情報が入力されたミラー駆動制御部101では、表示対象に表示する画像の目標表示サイズにおける振幅情報と入力された走査振幅情報との差分によって、その差分量だけ補正した(加減算した)振幅(振り角)にて偏光器100のミラーを駆動する駆動量を示す駆動信号を生成して偏光器100へと送出する。 In this way, in the mirror drive control unit 101 to which the scanning amplitude information of the main scanning amplitude information and the sub-scanning amplitude information is input, the amplitude information at the target display size of the image to be displayed on the display target, the input scanning amplitude information, and A drive signal indicating a drive amount for driving the mirror of the polarizer 100 is generated and sent to the polarizer 100 with an amplitude (a swing angle) corrected (added or subtracted) by the difference amount.
 また、このミラー駆動制御部101は、生成した駆動信号に基づいて生成される主走査方向および副走査方向における同期信号を映像処理部104へと送出する。 The mirror drive control unit 101 also sends to the video processing unit 104 synchronization signals in the main scanning direction and the sub-scanning direction that are generated based on the generated drive signal.
 以下では、ミラー駆動制御部101における詳細な構成を図4を用いて説明する。 Hereinafter, a detailed configuration of the mirror drive control unit 101 will be described with reference to FIG.
 図4において、ミラー駆動制御部101は、目標振幅情報記憶部101a、A/Dコンバータ101b、差分検出部101c、振り角調整演算部101d、駆動信号生成部101e、コンパレータ101f、同期信号生成部101gを具備して構成される。 In FIG. 4, the mirror drive control unit 101 includes a target amplitude information storage unit 101a, an A / D converter 101b, a difference detection unit 101c, a swing angle adjustment calculation unit 101d, a drive signal generation unit 101e, a comparator 101f, and a synchronization signal generation unit 101g. It is comprised and comprises.
 偏光器100の位置センサによって検出した主走査方向における振り角に対応する主走査位置を表すミラーの振幅信号をコンパレータ101fにて受信すると、コンパレータ101fは、あらかじめ指定された情報に基づいて、その振幅信号から所定の振幅情報を生成する。 When the comparator 101f receives the mirror amplitude signal representing the main scanning position corresponding to the swing angle in the main scanning direction detected by the position sensor of the polarizer 100, the comparator 101f detects the amplitude based on the predesignated information. Predetermined amplitude information is generated from the signal.
 例えば、図8(a)に示すようなミラーの振幅信号が入力されると、コンパレータ101fは、時間軸との交差点の前後で振幅信号の検出状態を変更した図8(b)に示すような振幅情報を生成する。 For example, when the mirror amplitude signal as shown in FIG. 8A is input, the comparator 101f changes the detection state of the amplitude signal before and after the intersection with the time axis as shown in FIG. 8B. Generate amplitude information.
 コンパレータ101fは、振幅情報を生成すると、同期信号生成部101gへとその振幅情報を送出する。 When the comparator 101f generates the amplitude information, the comparator 101f sends the amplitude information to the synchronization signal generation unit 101g.
 続いて、図1に示す主走査振幅検出部102および副走査振幅検出部103から入力された走査振幅情報をA/Dコンバータ101bで受け付けると、A/Dコンバータ101bは、受け付けた走査振幅情報をアナログ信号からディジタル信号へと変換する。このときのA/Dコンバータ101bで受け付けた走査振幅情報は、偏光器100の位置センサによって検出した変位量に基づく電圧値である。 Subsequently, when the A / D converter 101b receives the scanning amplitude information input from the main scanning amplitude detection unit 102 and the sub-scanning amplitude detection unit 103 shown in FIG. 1, the A / D converter 101b receives the received scanning amplitude information. Convert from analog signal to digital signal. The scanning amplitude information received by the A / D converter 101b at this time is a voltage value based on the amount of displacement detected by the position sensor of the polarizer 100.
 次に、このA/Dコンバータ101bは、変換後のディジタル信号からなる走査振幅情報を差分検出部101cへと送出する。 Next, the A / D converter 101b sends scan amplitude information including the converted digital signal to the difference detection unit 101c.
 これにより、差分検出部101cは、A/Dコンバータ101bから送出されてきた走査振幅情報を受け付けると、画像を表示するために必要であって目標とする振幅の情報である目標振幅情報を目標振幅情報記憶部101aから読み出す。この目標振幅情報記憶部101aで記憶している目標振幅情報は、偏光器100のミラーを駆動するために必要な電圧値である。 Thus, when the difference detection unit 101c receives the scanning amplitude information transmitted from the A / D converter 101b, the difference detection unit 101c converts the target amplitude information, which is necessary for displaying an image and is information about the target amplitude, to the target amplitude. Read from the information storage unit 101a. The target amplitude information stored in the target amplitude information storage unit 101a is a voltage value necessary for driving the mirror of the polarizer 100.
 そして、差分検出部101cは、読み出した目標振幅情報とA/Dコンバータ101bから受け付けた走査振幅情報とを用いて、これらの情報における振幅の差分量を検出する。すなわち、これらの電圧値の差分量を検出する。 Then, the difference detection unit 101c uses the read target amplitude information and the scanning amplitude information received from the A / D converter 101b to detect an amplitude difference amount in these pieces of information. That is, the difference amount between these voltage values is detected.
 このようにして差分量を検出した差分検出部101cでは、検出した差分量を振り角調整演算部101dへと送出する。 The difference detection unit 101c that has detected the difference amount in this way sends the detected difference amount to the swing angle adjustment calculation unit 101d.
 差分検出部101cから差分量が送出されてきた振り角調整演算部101dでは、その差分量に応じてミラーの振り角を調整するための振幅量を演算する演算処理を行う。すなわち、この演算処理によって、ミラーを駆動する振幅量が演算されることとなる。 The swing angle adjustment calculation unit 101d from which the difference amount is sent from the difference detection unit 101c performs calculation processing for calculating the amplitude amount for adjusting the swing angle of the mirror according to the difference amount. In other words, the amount of amplitude for driving the mirror is calculated by this calculation process.
 振り角調整演算部101dにおける演算処理によって、調整後の振り角(振幅)を演算すると、振り角調整演算部101dは、駆動信号生成部101eに対して演算した振り角に関する情報を送出する。この駆動信号生成部101eでは、その送出されてきた振り角に関する情報を元に、ミラーの振り角をその送出されてきた振り角に調整するために必要な、ミラーを駆動する駆動量を指定した駆動信号を生成する。 When the adjusted swing angle (amplitude) is calculated by the calculation processing in the swing angle adjustment calculation unit 101d, the swing angle adjustment calculation unit 101d sends information about the calculated swing angle to the drive signal generation unit 101e. In this drive signal generation unit 101e, the drive amount for driving the mirror, which is necessary for adjusting the mirror swing angle to the transmitted swing angle, is specified based on the transmitted swing angle information. A drive signal is generated.
 この駆動信号生成部101eでは、主走査方向の走査振幅情報と副走査方向の走査振幅情報とを元に振り角を調整する演算処理を行うことによって生成した主走査方向の駆動信号および副走査方向の駆動信号を偏光器100へと送出する。これによって、偏光器100の駆動装置は、その駆動信号に基づいてミラーにおける外枠部を支持するバネを主走査方向の駆動信号に基づいて駆動させる。 In the drive signal generation unit 101e, the drive signal in the main scanning direction and the sub scanning direction generated by performing arithmetic processing for adjusting the swing angle based on the scanning amplitude information in the main scanning direction and the scanning amplitude information in the sub scanning direction. The drive signal is sent to the polarizer 100. Thereby, the driving device of the polarizer 100 drives the spring supporting the outer frame portion of the mirror based on the driving signal based on the driving signal in the main scanning direction.
 また、偏光器100の駆動装置は、その偏光器100を構成するミラーにおける反射部を支持するバネを副走査方向の駆動信号に基づいて駆動させる。つまり、偏光器100は、駆動信号生成部101eからの駆動信号によって指定された駆動量で主走査方向および副走査方向を駆動させる。 Also, the drive device for the polarizer 100 drives the spring that supports the reflecting portion of the mirror that constitutes the polarizer 100 based on the drive signal in the sub-scanning direction. That is, the polarizer 100 drives the main scanning direction and the sub-scanning direction with a driving amount specified by the driving signal from the driving signal generation unit 101e.
 なお、本実施の形態における偏光器100の主走査方向については図2に示すような正弦波からなる駆動波形によって駆動させていることから、主走査方向は、特に、共振駆動を行っている。 Note that the main scanning direction of the polarizer 100 in the present embodiment is driven by a driving waveform consisting of a sine wave as shown in FIG. 2, and therefore, the main scanning direction is particularly driven by resonance.
 また、駆動信号生成部101eでは、生成した副走査方向の駆動信号を同期信号生成部101gへと送出する。 Also, the drive signal generation unit 101e sends the generated drive signal in the sub-scanning direction to the synchronization signal generation unit 101g.
 同期信号生成部101gは、駆動信号生成部101eから送出された副走査駆動信号を受信し、この副走査駆動信号に基づいて副走査方向の同期信号(以下、「副走査同期信号」という)を生成するとともに、コンパレータ101fから受信した振幅情報に基づいて主走査方向の同期信号(以下、「主走査同期信号」という)を生成する。 The synchronization signal generation unit 101g receives the sub-scanning drive signal sent from the drive signal generation unit 101e, and generates a synchronization signal in the sub-scanning direction (hereinafter referred to as “sub-scanning synchronization signal”) based on the sub-scanning drive signal. At the same time, a synchronization signal in the main scanning direction (hereinafter referred to as “main scanning synchronization signal”) is generated based on the amplitude information received from the comparator 101f.
 同期信号生成部101gでは、図8(b)に示すような主走査方向の振幅情報がコンパレータ101fから入力されることによって、この振幅情報と同一の信号形式からなる主走査同期信号を生成するほか、図8(c)に示すような主走査同期信号を生成してもよい。 The synchronization signal generation unit 101g receives amplitude information in the main scanning direction as shown in FIG. 8B from the comparator 101f, thereby generating a main scanning synchronization signal having the same signal format as the amplitude information. A main scanning synchronization signal as shown in FIG. 8C may be generated.
 図8(c)に示す主走査同期信号は、コンパレータ101fに入力された図8(a)に示すような主走査方向の振幅信号において時間軸と交差する地点を同期のタイミングに指定した信号である。 The main scanning synchronization signal shown in FIG. 8C is a signal in which a point that intersects the time axis in the amplitude signal in the main scanning direction as shown in FIG. 8A input to the comparator 101f is designated as a synchronization timing. is there.
 また、同期信号生成部101gでは、図9(a)に示すような副走査駆動信号が駆動信号生成部101eから入力されることによって、図9(b)に示すような副走査同期信号を生成する。 Further, the synchronization signal generation unit 101g generates a sub-scanning synchronization signal as shown in FIG. 9B when a sub-scanning drive signal as shown in FIG. 9A is input from the drive signal generation unit 101e. To do.
 図9(b)に示す副走査同期信号は、鋸波形の副走査駆動信号に対して時間軸と接する地点を同期のタイミングに指定した信号である。 The sub-scanning synchronization signal shown in FIG. 9B is a signal that designates a point in contact with the time axis as a synchronization timing with respect to the sawtooth waveform sub-scanning drive signal.
 同期信号生成部101gでは、生成した主走査同期信号および副走査同期信号を図1に示す映像処理部104へと送出する。 The synchronization signal generation unit 101g sends the generated main scanning synchronization signal and sub-scanning synchronization signal to the video processing unit 104 shown in FIG.
 このようにしてミラー駆動制御部101から主走査同期信号および副走査同期信号が送出されてきた図1に示す映像処理部104では、入力された画像データの画素情報ごとに画像を映像として処理(階調補正等)する。 The video processing unit 104 shown in FIG. 1 to which the main scanning synchronization signal and the sub-scanning synchronization signal have been sent from the mirror drive control unit 101 in this way processes an image as a video for each pixel information of the input image data ( Tone correction).
 映像処理部104は、その画像における画像情報をこれらの同期信号に基づく同期タイミングでレーザ光駆動部105へと出力する。 The video processing unit 104 outputs image information in the image to the laser beam driving unit 105 at a synchronization timing based on these synchronization signals.
 これによって、レーザ光駆動部105は、レーザ光源106から照射するレーザ光に関する信号(例えば、光強度や階調信号等)を生成してレーザ光源106へとレーザ光の照射を指示する。 Thereby, the laser light driving unit 105 generates a signal (for example, light intensity, gradation signal, etc.) related to the laser light emitted from the laser light source 106 and instructs the laser light source 106 to irradiate the laser light.
 レーザ光源106およびコリメータレンズ107によってレーザ光源ユニットが構成され、このレーザ光源106は、レーザ光駆動部105から指示されたレーザ光に関する情報に基づいて、RGB(Red、Green、Blue)の原色からなる3色のレーザ光のうち少なくとも1色のレーザ光を発生する光源である。 A laser light source unit is constituted by the laser light source 106 and the collimator lens 107, and the laser light source 106 is composed of RGB (Red, Green, Blue) primary colors based on information on the laser light instructed from the laser light driving unit 105. It is a light source that generates laser light of at least one of the three colors of laser light.
 また、コリメータレンズ107は、レーザ光源106から照射されたレーザ光を屈折させて光軸と略平行する平行光に変換する光学素子であって、偏光器100のミラー(具体的には「反射部」)へとレーザ光(光束)を照射する。 The collimator lens 107 is an optical element that refracts the laser light emitted from the laser light source 106 and converts it into parallel light that is substantially parallel to the optical axis. )) Is irradiated with a laser beam (light beam).
 また、このコリメータレンズ107は、レーザ光源ユニットを制御する制御装置(図示せず)からの指示によりステッピングモータによって光軸上を可動させることができるものであって、このステッピングモータによりコリメータレンズ107を光軸上を可動することでレーザ光によって照射される範囲(以下、「照射スポット径」と称する)を拡大若しくは縮小する拡縮処理を行う。なお、上記に示す例では、ステッピングモータによってコリメータレンズ107を可動させているが、これに限定されることなく、例えば、アパーチャを用いてレーザ光の照射スポット径を拡縮するようにしてもよい。 The collimator lens 107 can be moved on the optical axis by a stepping motor in response to an instruction from a control device (not shown) that controls the laser light source unit. The collimator lens 107 is moved by the stepping motor. Enlargement / reduction processing is performed to enlarge or reduce the range irradiated with laser light (hereinafter referred to as “irradiation spot diameter”) by moving on the optical axis. In the example shown above, the collimator lens 107 is moved by the stepping motor. However, the present invention is not limited to this. For example, the diameter of the irradiation spot of the laser beam may be enlarged or reduced using an aperture.
 このアパーチャを用いると、照射スポット径を絞ることによって縮小する前の画像と比べて画像の表示サイズを小さくすることができる。 When this aperture is used, the display size of the image can be reduced compared to the image before being reduced by narrowing the irradiation spot diameter.
 このようにして、コリメータレンズ107を光軸上に可動させて照射スポット径を拡縮することによって、照射スポットに非点収差が生じてしまうことを抑制することができるようになる。 In this way, by causing the collimator lens 107 to move on the optical axis to expand and contract the irradiation spot diameter, it is possible to suppress the occurrence of astigmatism in the irradiation spot.
 このコリメータレンズ107によって照射される平行光は円筒状であって、照射スポット径を縮小することによって円筒状によって照射される円範囲(円面積)は小さくなり、また、照射スポット径を拡大することによって円筒状によって照射される円範囲(円面積)は大きくなる。 The parallel light emitted by the collimator lens 107 is cylindrical, and by reducing the irradiation spot diameter, the circular range (circular area) irradiated by the cylindrical shape is reduced, and the irradiation spot diameter is enlarged. The circular range (circular area) irradiated by the cylindrical shape increases.
 すなわち、照射スポット径を縮小することによって照射範囲を小さくすれば画像は縮小する前の画像に比べて小さくなり、また、照射スポット径を拡大することによって照射範囲を大きくすれば画像は拡大する前の画像に比べて大きくなる。 That is, if the irradiation range is reduced by reducing the irradiation spot diameter, the image becomes smaller than the image before the reduction, and if the irradiation range is enlarged by increasing the irradiation spot diameter, the image is not enlarged. It becomes larger than the image.
 図7は、図1に示すレーザ光源106およびコリメータレンズ107から構成されるレーザ光源ユニットから偏光器100に照射されるレーザ光源の光強度分布を示す図である。 FIG. 7 is a diagram showing the light intensity distribution of the laser light source irradiated on the polarizer 100 from the laser light source unit including the laser light source 106 and the collimator lens 107 shown in FIG.
 図7は、縦軸にレーザ光の強度(光強度)を示し、横軸に副走査方向に分布するレーザ光の状態を示したときのレーザ光の断面図である。この図7に示すレーザ光の断面図は、左右対称の正規曲線によって表されている。 FIG. 7 is a cross-sectional view of laser light when the vertical axis indicates the intensity (light intensity) of the laser light and the horizontal axis indicates the state of the laser light distributed in the sub-scanning direction. The cross-sectional view of the laser beam shown in FIG. 7 is represented by a right and left symmetrical normal curve.
 図7では、さらに、各レーザ光の光強度に対応する照射スポットを示している。この照射スポットは、図1に示すコリメータレンズ107によって円筒状の平行光によって照射されることから、偏光器100のミラーに照射されるレーザ光の照射スポットは円形で表すことができるものである。 FIG. 7 further shows an irradiation spot corresponding to the light intensity of each laser beam. Since this irradiation spot is irradiated by the collimator lens 107 shown in FIG. 1 with cylindrical parallel light, the irradiation spot of the laser beam irradiated on the mirror of the polarizer 100 can be represented by a circle.
 すなわち、コリメータレンズ107を光軸上に可動することによって各レーザ光の光強度を変更することができ、それに伴って、照射スポット径が変更される。 That is, the light intensity of each laser beam can be changed by moving the collimator lens 107 on the optical axis, and the irradiation spot diameter is changed accordingly.
 このときの光強度は、偏光器100のミラーが出射(反射)することによって表示対象に表示されたときに画像の視認性を確保できる強度とする。例えば、画像に縞模様が発生することを防止して視認性を確保する光強度とする。 The light intensity at this time is set to an intensity at which the visibility of the image can be ensured when the light is displayed (displayed) by the mirror of the polarizer 100 being emitted (reflected). For example, the light intensity is set to prevent the occurrence of a striped pattern in the image and ensure visibility.
 このときの光強度の一例として、コリメータレンズ107から照射されるレーザ光の光強度の半分で他のレーザ光(隣り合うレーザ光)の正規分布が交差する光強度を設定する。 As an example of the light intensity at this time, the light intensity at which the normal distribution of the other laser light (adjacent laser light) intersects at half the light intensity of the laser light emitted from the collimator lens 107 is set.
 本実施例2は、上記に示している実施例1における他の例である。 The second embodiment is another example of the first embodiment described above.
 図10は、本発明の実施の形態における画像生成装置の詳細な構成を示す構成図であって、図1に示す画像生成装置の構成図と類似する図である。 FIG. 10 is a configuration diagram showing a detailed configuration of the image generation device according to the embodiment of the present invention, and is a diagram similar to the configuration diagram of the image generation device shown in FIG.
 実施例1において説明した図1に示す画像形成装置は、画像を表示する表示対象(画面)が、長方形や正方形等の内角がすべて直角となる矩形(四角形)からなる画素の場合における例を示しているが、図10に示す画像生成装置の構成は、画像を表示する表示対象の画素が四辺とも同一であって内角が全て直角である矩形(正方形)である場合に特に有益な構成を示している。 The image forming apparatus shown in FIG. 1 described in the first embodiment shows an example in which a display target (screen) for displaying an image is a pixel formed of a rectangle (rectangle) whose inner angles are all right angles, such as a rectangle or a square. However, the configuration of the image generation apparatus shown in FIG. 10 shows a configuration that is particularly useful when the display target pixels for displaying an image are the same in all four sides and are rectangular (square) whose inner angles are all right angles. ing.
 以下では、図10における画像生成装置の構成と図1における画像生成装置の構成との違いを中心に説明する。このため、基本的には上記に示す実施例1の内容を全て強襲するものであって、同一の構成要素には実施例1で用いた識別番号を用いて説明する。 Hereinafter, the difference between the configuration of the image generation apparatus in FIG. 10 and the configuration of the image generation apparatus in FIG. For this reason, basically, the contents of the first embodiment described above are all attacked, and the same constituent elements will be described using the identification numbers used in the first embodiment.
 図10において、画像生成装置は、ミラーおよびそのミラーを駆動する駆動装置によって構成される偏光器100と、偏光器100における駆動装置によって行われる駆動を制御するミラー駆動制御部101と、偏光器100における主走査方向の駆動位置に基づいてミラーの主走査方向における振幅を検出する主走査振幅検出部102と、表示指示された画像データに基づく画像を映像として処理する映像処理部104と、画像を映し出すために用いられるレーザ光の光源を駆動する処理を行うレーザ光駆動部105と、レーザ光を照射する光源であるレーザ光源106と、レーザ光を所定範囲に円筒状の平行光として拡散収束するコリメータレンズ107を具備して構成される。 In FIG. 10, the image generation apparatus includes a polarizer 100 including a mirror and a driving device that drives the mirror, a mirror drive control unit 101 that controls driving performed by the driving device in the polarizer 100, and the polarizer 100. A main scanning amplitude detecting unit 102 for detecting the amplitude of the mirror in the main scanning direction based on the driving position in the main scanning direction, a video processing unit 104 for processing an image based on the image data instructed to be displayed, and an image A laser light driving unit 105 that performs processing for driving a light source of laser light used for projection, a laser light source 106 that is a light source for irradiating the laser light, and the laser light is diffused and converged as cylindrical parallel light within a predetermined range. A collimator lens 107 is provided.
 偏光器100は、上記に示すように、コリメータレンズ107を介してレーザ光源106から照射されたレーザ光を反射(出射)するミラーと、このミラーを駆動する駆動装置とによって構成されており、四辺とも同一であって内角が全て直角である矩形(正方形)の画素によって画像を映し出す表示対象(画面)にレーザ光を走査するものである。 As described above, the polarizer 100 includes a mirror that reflects (emits) laser light emitted from the laser light source 106 via the collimator lens 107, and a drive device that drives the mirror. In both cases, a laser beam is scanned onto a display target (screen) on which an image is projected by rectangular (square) pixels having the same inner angles.
 この偏光器100では、駆動装置によってミラーを主走査方向に図2に示すような振動状態で駆動させ、副走査方向に図3に示すような振動状態で駆動させることでミラーを二次元方向に駆動させている。もちろん、図2および図3に示す波形は偏光器100におけるミラーを駆動させるときの振動状態の一例を示すものに過ぎず、これらの波形に限定されることなく、任意の波形による振動状態としてもよい。 In this polarizer 100, the mirror is driven in the two-dimensional direction by driving the mirror in the main scanning direction in the vibration state as shown in FIG. 2 and in the sub-scanning direction in the vibration state as shown in FIG. Driven. Of course, the waveforms shown in FIGS. 2 and 3 are merely examples of vibration states when the mirrors in the polarizer 100 are driven, and are not limited to these waveforms. Good.
 この駆動装置は、さらに、ミラーを駆動させたときの各ミラーの主走査方向における振り角に対応する電圧値を示す振動信号および副走査方向における振り角に対応する電圧値を示す振動信号を検出している。この駆動装置は、検出した主走査方向における振り角に対応する電圧値を示す振幅信号を主走査振幅検出部102へと出力する。 The driving device further detects a vibration signal indicating a voltage value corresponding to a swing angle in the main scanning direction of each mirror and a vibration signal indicating a voltage value corresponding to the swing angle in the sub-scanning direction when the mirror is driven. is doing. This driving device outputs an amplitude signal indicating a voltage value corresponding to the detected swing angle in the main scanning direction to the main scanning amplitude detection unit 102.
 表示対象の画素が正方形であることから、円筒状の平行光による円形状のレーザ光の照射スポット径を主走査方向の振幅信号によって変更するものである。 Since the pixel to be displayed is a square, the irradiation spot diameter of the circular laser beam by the cylindrical parallel light is changed by the amplitude signal in the main scanning direction.
 次に、ミラー駆動制御部101は、図4に示すような構成からなり、偏光器100の駆動装置を制御することによってミラーを駆動させる。このときのミラー駆動制御部101は、主走査方向におけるミラーの駆動信号と、副走査方向におけるミラーの駆動信号とを偏光器100の駆動装置に出力することによって次元ごとに駆動制御して駆動させる。 Next, the mirror drive control unit 101 is configured as shown in FIG. 4 and drives the mirror by controlling the drive device of the polarizer 100. At this time, the mirror drive control unit 101 outputs the mirror drive signal in the main scanning direction and the mirror drive signal in the sub-scanning direction to the drive device of the polarizer 100 to drive and control each dimension. .
 続いて、図1に示す主走査振幅検出部102は、絶対値検出部102a、ピークホールド部102b、LPF部102cを具備して構成され、偏光器100の駆動装置から出力される主走査方向における振り角に対応する電圧値を示す振幅信号を受け付け、その振幅信号の振幅を検出する。 Subsequently, the main scanning amplitude detection unit 102 shown in FIG. 1 includes an absolute value detection unit 102a, a peak hold unit 102b, and an LPF unit 102c, in the main scanning direction output from the driving device of the polarizer 100. An amplitude signal indicating a voltage value corresponding to the swing angle is received, and the amplitude of the amplitude signal is detected.
 このときの振幅は上述するようにミラーの振り角を表しており、この振り角はミラー駆動制御部101から出力された主走査方向の駆動信号に基づく駆動量を得るために印加した電圧量に相当する。言い換えれば、主走査振幅検出部102によって振幅信号の振幅を検出することは、印加した電圧量を測定していることとなる。 The amplitude at this time represents the swing angle of the mirror as described above, and this swing angle is the amount of voltage applied to obtain the drive amount based on the drive signal in the main scanning direction output from the mirror drive control unit 101. Equivalent to. In other words, detecting the amplitude of the amplitude signal by the main scanning amplitude detector 102 means measuring the applied voltage amount.
 主走査振幅検出部102を構成する絶対値検出部102a、ピークホールド部102b、LPF部102cは、図5に示すような回路によって構成されるものであって、図6には、図5に示すような回路によって構成される絶対値検出部102a、ピークホールド部102b、LPF部102cによって処理が行われたときに出力される信号情報を示している。 The absolute value detection unit 102a, the peak hold unit 102b, and the LPF unit 102c constituting the main scanning amplitude detection unit 102 are configured by a circuit as shown in FIG. 5, and FIG. The signal information output when processing is performed by the absolute value detection unit 102a, the peak hold unit 102b, and the LPF unit 102c configured by such a circuit is shown.
 絶対値検出部102aは、偏光器100の駆動装置から出力される振り角に対応する電圧値を示す振幅信号の絶対値を検出する処理を行う。また、ピークホールド部102bは、絶対値検出回路から出力される図6の地点b波形からなる振幅信号に対して、コンデンサに蓄電した電圧降下をさらなる蓄電によって抑制するピークホールド処理を行う。さらに、LPF部102cは、ピークホールド部102b出力される図6の地点c波形からなる振幅信号に対して、所定周波数以上の振幅信号を排除(カット)するフィルタリング処理を行って、地点d波形に示すような波形を出力する。 The absolute value detection unit 102a performs processing for detecting the absolute value of the amplitude signal indicating the voltage value corresponding to the swing angle output from the driving device of the polarizer 100. Further, the peak hold unit 102b performs a peak hold process that suppresses the voltage drop stored in the capacitor by further power storage on the amplitude signal having the waveform at the point b in FIG. 6 output from the absolute value detection circuit. Further, the LPF unit 102c performs a filtering process to eliminate (cut) an amplitude signal having a predetermined frequency or higher with respect to the amplitude signal having the waveform at the point c in FIG. Output the waveform as shown.
 この地点d波形は、ミラーを駆動させる駆動力の電圧値を示す振幅信号の最大振幅に比例する電圧値を表す主走査方向における走査振幅情報である。 This waveform at the point d is scanning amplitude information in the main scanning direction representing a voltage value proportional to the maximum amplitude of an amplitude signal indicating the voltage value of the driving force for driving the mirror.
 図10に示すミラー駆動制御部101は、図4に示すような構成からなり、この主走査方向における走査振幅情報を用いて偏光器100のミラーを駆動する。なお、実施例1におけるミラー駆動制御部101では、主走査方向の走査振幅情報と副走査方向の走査振幅情報とを元に振り角を調整するための演算処理を行って主走査方向の駆動信号(主走査駆動信号)および副走査方向の駆動信号(副走査駆動信号)を生成しているが、本実施例2では、主走査振幅検出部102から受信した主走査方向の走査振幅信号を元に主走査駆動信号および副走査駆動信号を生成する。 The mirror drive control unit 101 shown in FIG. 10 has the configuration shown in FIG. 4, and drives the mirror of the polarizer 100 using the scanning amplitude information in the main scanning direction. The mirror drive control unit 101 according to the first exemplary embodiment performs arithmetic processing for adjusting the swing angle based on the scanning amplitude information in the main scanning direction and the scanning amplitude information in the sub-scanning direction, thereby driving the driving signal in the main scanning direction. (Main scanning drive signal) and a sub scanning direction driving signal (sub scanning driving signal) are generated. In the second embodiment, the main scanning direction scanning amplitude signal received from the main scanning amplitude detection unit 102 is used as a source. The main scanning drive signal and the sub-scanning drive signal are generated.
 また、このミラー駆動制御部101は、副走査駆動信号に基づいて副走査方向の同期信号を生成し、ミラーの位置センサで検出した主走査方向の振幅信号に基づいて振幅情報に基づいて主走査方向の同期信号を生成する。 The mirror drive control unit 101 also generates a synchronization signal in the sub-scanning direction based on the sub-scanning drive signal, and performs main scanning based on the amplitude information based on the amplitude signal in the main scanning direction detected by the mirror position sensor. A direction synchronization signal is generated.
 そして、ミラー駆動制御部101は、生成した同期信号を映像処理部104へと送出する。 Then, the mirror drive control unit 101 sends the generated synchronization signal to the video processing unit 104.
 このようにしてミラー駆動制御部101から主走査同期信号および副走査同期信号が送出されてきた図1に示す映像処理部104では、入力された画像データの画素情報ごとに画像を映像として処理(階調補正等)する。 The video processing unit 104 shown in FIG. 1 to which the main scanning synchronization signal and the sub-scanning synchronization signal have been sent from the mirror drive control unit 101 in this way processes an image as a video for each pixel information of the input image data ( Tone correction).
 映像処理部104は、その画像における画像情報をこれらの同期信号に基づく同期タイミングでレーザ光駆動部105へと出力する。 The video processing unit 104 outputs image information in the image to the laser beam driving unit 105 at a synchronization timing based on these synchronization signals.
 これによって、レーザ光駆動部105は、レーザ光源106から照射するレーザ光に関する信号(例えば、光強度や階調信号等)を生成してレーザ光源106へとレーザ光の照射を指示する。 Thereby, the laser light driving unit 105 generates a signal (for example, light intensity, gradation signal, etc.) related to the laser light emitted from the laser light source 106 and instructs the laser light source 106 to irradiate the laser light.
 レーザ光源106およびコリメータレンズ107によってレーザ光源ユニットが構成され、このレーザ光源106は、RGB(Red、Green、Blue)の原色からなる3色のレーザ光のうち少なくとも1色のレーザ光を発生する光源である。また、コリメータレンズ107は、レーザ光源106から照射されたレーザ光を屈折させて光軸と略平行する平行光に変換する光学素子であって、偏光器100のミラー(具体的には「反射部」)へとレーザ光(光束)を照射する。 A laser light source unit is constituted by the laser light source 106 and the collimator lens 107, and the laser light source 106 generates a laser beam of at least one color out of three colors of laser light composed of RGB (Red, Green, Blue) primary colors. It is. The collimator lens 107 is an optical element that refracts the laser light emitted from the laser light source 106 and converts it into parallel light that is substantially parallel to the optical axis. )) Is irradiated with a laser beam (light beam).
 また、このコリメータレンズ107は、レーザ光源ユニットを制御する制御装置(図示せず)からの指示によりステッピングモータによって光軸上を可動させることができるものであって、このステッピングモータによりコリメータレンズ107を光軸上を可動することでレーザ光によって照射される範囲(以下、「照射スポット径」と称する)を拡大若しくは縮小する拡縮処理を行う。もちろん、アパーチャを用いてレーザ光の照射スポット径を拡縮するようにしてもよい。 The collimator lens 107 can be moved on the optical axis by a stepping motor in response to an instruction from a control device (not shown) that controls the laser light source unit. The collimator lens 107 is moved by the stepping motor. Enlargement / reduction processing is performed to enlarge or reduce the range irradiated with laser light (hereinafter referred to as “irradiation spot diameter”) by moving on the optical axis. Of course, the irradiation spot diameter of the laser beam may be enlarged or reduced using an aperture.
 このコリメータレンズ107によって照射される平行光は円筒状であって、照射スポット径を縮小することによって円筒状によって照射される円範囲(円面積)は小さくなり、また、照射スポット径を拡大することによって円筒状によって照射される円範囲(円面積)は大きくなる。 The parallel light emitted by the collimator lens 107 is cylindrical, and by reducing the irradiation spot diameter, the circular range (circular area) irradiated by the cylindrical shape is reduced, and the irradiation spot diameter is enlarged. The circular range (circular area) irradiated by the cylindrical shape increases.
 すなわち、照射スポット径を縮小することによって照射範囲を小さくすれば画像は縮小する前の画像に比べて小さくなり、また、照射スポット径を拡大することによって照射範囲を大きくすれば画像は拡大する前の画像に比べて大きくなる。 That is, if the irradiation range is reduced by reducing the irradiation spot diameter, the image becomes smaller than the image before the reduction, and if the irradiation range is enlarged by increasing the irradiation spot diameter, the image is not enlarged. It becomes larger than the image.
 以上に示す実施の形態は、本発明の実施の一形態であって、これらの実施例に限定することなく、その要旨を変更しない範囲内で適宜変形して実施できるものである。 The embodiment described above is an embodiment of the present invention, and is not limited to these examples, and can be appropriately modified and implemented without departing from the scope of the invention.
  100   偏光器
  101   ミラー駆動制御部
  101a  目標振幅情報記憶部
  101b  A/Dコンバータ
  101c  差分検出部
  101d  振り角調整演算部
  101e  駆動信号生成部
  101f  コンパレータ
  101g  同期信号生成部
  102   主走査振幅検出部
  102a  絶対値検出部
  102b  ピークホールド部
  102c  LPF部(ローパスフィルター部)
  103   副走査振幅検出部
  103a  絶対値検出部
  103b  ピークホールド部
  103c  LPF部(ローパスフィルター部)
  104   映像処理部
  105   レーザ光駆動部
  106   レーザ光源
  107   コリメータレンズ
 
DESCRIPTION OF SYMBOLS 100 Polarizer 101 Mirror drive control part 101a Target amplitude information storage part 101b A / D converter 101c Difference detection part 101d Swing angle adjustment calculation part 101e Drive signal generation part 101f Comparator 101g Synchronization signal generation part 102 Main scanning amplitude detection part 102a Absolute value Detection unit 102b Peak hold unit 102c LPF unit (low-pass filter unit)
103 Sub-scanning amplitude detection section 103a Absolute value detection section 103b Peak hold section 103c LPF section (low-pass filter section)
104 Image processing unit 105 Laser light driving unit 106 Laser light source 107 Collimator lens

Claims (6)

  1.  二次元方向に駆動することによって光源から照射された光束を偏光する偏光器と、
     前記偏光器における駆動の駆動量を調整することにより当該駆動量に応じて偏光される前記光束の偏光範囲を変更する偏光範囲変更手段と
     を具備する画像生成装置。
    A polarizer that polarizes a light beam emitted from a light source by driving in a two-dimensional direction;
    An image generation apparatus comprising: a polarization range changing unit configured to change a polarization range of the light beam polarized according to the drive amount by adjusting a drive amount of the polarizer.
  2.  前記偏光範囲変更手段は、
     前記二次元方向の少なくとも一方の方向の駆動量を前記偏光器による前記光束の偏光によって走査する画像の表示サイズに基づいて調整することにより、前記光束の偏光範囲を変更する請求項1記載の画像生成装置。
    The polarization range changing means is
    The image according to claim 1, wherein the polarization range of the light beam is changed by adjusting a driving amount in at least one of the two-dimensional directions based on a display size of an image scanned by the polarization of the light beam by the polarizer. Generator.
  3.  前記偏光範囲変更手段は、
     前記偏光器によって前記光束を偏光したときに表させる波形信号における中心軸からの最大偏差を画像の表示サイズに基づいて調整することによって、前記光束の偏光範囲を変更する請求項1記載の画像生成装置。
    The polarization range changing means is
    The image generation according to claim 1, wherein a polarization range of the light beam is changed by adjusting a maximum deviation from a central axis in a waveform signal expressed when the light beam is polarized by the polarizer, based on a display size of the image. apparatus.
  4.  前記偏光器による偏光によって前記偏光範囲に前記光束を走査した際の当該偏光器の変位量を検出する変位量検出手段と、
     前記変位量検出手段によって検出した変位量で前記偏光器を偏光させたときに要する電圧値を計測する電圧値計測手段と
     をさらに具備する請求項1記載の画像生成装置。
    A displacement amount detecting means for detecting a displacement amount of the polarizer when the light beam is scanned in the polarization range by polarization by the polarizer;
    The image generation apparatus according to claim 1, further comprising: a voltage value measurement unit that measures a voltage value required when the polarizer is polarized with the displacement detected by the displacement detection unit.
  5.  一定周期で駆動することにより前記光源から照射された光束の振動状態を表した波形信号から絶対値信号を検出する絶対値検出手段と、
     前記絶対値検出手段によって検出した絶対値信号における任意の値を保持する値保持手段と
     をさらに具備し、
     前記偏光範囲変更手段は、
     前記値保持手段によって保持する値を調整することによって前記光束の偏光範囲を変更する請求項1に記載の画像生成装置。
    Absolute value detection means for detecting an absolute value signal from a waveform signal representing a vibration state of a light beam emitted from the light source by being driven at a constant period;
    Further comprising value holding means for holding an arbitrary value in the absolute value signal detected by the absolute value detecting means,
    The polarization range changing means is
    The image generation apparatus according to claim 1, wherein a polarization range of the light beam is changed by adjusting a value held by the value holding unit.
  6.  前記光源から照射される光束の照射範囲を、前記走査範囲変更手段によって変更した当該光束の偏光範囲に応じて指定される照射範囲に拡縮する照射範囲拡縮手段
     をさらに具備する請求項1乃至5のいずれかに記載の画像生成装置。
     
    The irradiation range expansion / contraction means for expanding / contracting the irradiation range of the light beam emitted from the light source to an irradiation range specified according to the polarization range of the light beam changed by the scanning range changing unit. The image generation apparatus according to any one of the above.
PCT/JP2012/060812 2012-04-23 2012-04-23 Image generating apparatus WO2013160982A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/060812 WO2013160982A1 (en) 2012-04-23 2012-04-23 Image generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/060812 WO2013160982A1 (en) 2012-04-23 2012-04-23 Image generating apparatus

Publications (1)

Publication Number Publication Date
WO2013160982A1 true WO2013160982A1 (en) 2013-10-31

Family

ID=49482355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060812 WO2013160982A1 (en) 2012-04-23 2012-04-23 Image generating apparatus

Country Status (1)

Country Link
WO (1) WO2013160982A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05257075A (en) * 1991-12-27 1993-10-08 Jeol Ltd Resonance type optical scanner
JP2009193008A (en) * 2008-02-18 2009-08-27 Sharp Corp Image display device
JP2011221217A (en) * 2010-04-08 2011-11-04 Seiko Epson Corp Image-forming apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05257075A (en) * 1991-12-27 1993-10-08 Jeol Ltd Resonance type optical scanner
JP2009193008A (en) * 2008-02-18 2009-08-27 Sharp Corp Image display device
JP2011221217A (en) * 2010-04-08 2011-11-04 Seiko Epson Corp Image-forming apparatus

Similar Documents

Publication Publication Date Title
TWI477879B (en) Laser projector
US8848269B2 (en) Method for projecting an image
US9414032B2 (en) Video projection apparatus capable of operating at optimum resonant frequency and its controlling method
KR20130143599A (en) Image display device
JP2010261979A (en) Laser projector
US9800844B2 (en) Image projection apparatus
JP6118913B2 (en) Display device
EP2711916A1 (en) Trapezoidal distortion correction in a laser projection apparatus
WO2012011249A1 (en) Image display device
JP2009198988A (en) Image display device
JP2007121538A (en) Image display device
WO2014128864A1 (en) Two-dimensional optical scanning device
WO2016116963A1 (en) Optical scanning method and optical scanning device
JP5934481B2 (en) Optical scanning device
JP5402589B2 (en) Optical scanning device
JP2010230730A (en) Image forming apparatus
WO2013160982A1 (en) Image generating apparatus
TW200909975A (en) Device and method for compensating at least one non-linearity and laser projection system
JP5842388B2 (en) Electromagnetic wave scanning method, video projection device, and image acquisition device
JP5565270B2 (en) Scanning method, video projection device, and image acquisition device
JP7027689B2 (en) Light deflector and image projection device
JP2010230731A (en) Image forming apparatus
JP4735608B2 (en) Image display device
JP2006337922A (en) Display and method for display
JP2012145754A (en) Image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 12875285

Country of ref document: EP

Kind code of ref document: A1