WO2013159660A1 - 重新建立连接的方法及系统 - Google Patents

重新建立连接的方法及系统 Download PDF

Info

Publication number
WO2013159660A1
WO2013159660A1 PCT/CN2013/074215 CN2013074215W WO2013159660A1 WO 2013159660 A1 WO2013159660 A1 WO 2013159660A1 CN 2013074215 W CN2013074215 W CN 2013074215W WO 2013159660 A1 WO2013159660 A1 WO 2013159660A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
connection
security
message
target
Prior art date
Application number
PCT/CN2013/074215
Other languages
English (en)
French (fr)
Inventor
张�荣
孙伟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013159660A1 publication Critical patent/WO2013159660A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0079Transmission or use of information for re-establishing the radio link in case of hand-off failure or rejection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment

Definitions

  • a mobile device (User Equipment, UE for short) triggers a handover, and the handover type may be a radio access type (Radio Access Type, RAT for short) or an inter-RAT. Switch.
  • the UE may have a handover failure for various reasons during the handover process. After the handover fails, the UE re-establishes a Radio Resource Control (RRC) connection.
  • RRC Radio Resource Control
  • the UE may choose to re-establish the RRC connection at the source station or perform the RRC connection at the source station. RRC connection.
  • the UE after the UE side fails in the handover process, the UE will roll back to the configuration of the source station. If the UE decides to initiate the RRC re-establishment at the target station, the target station receives the RRC connection re-establishment completion message of the UE.
  • the UE uses the security parameters of the source station (complete protection and encryption algorithm), if the source and destination security parameters (integrity protection) Inconsistent with the encryption protection algorithm parameter), the security check of the RRC connection re-establishment complete message of the target station will not pass, and the RRC re-establishment request of the UE is rejected, resulting in failure to re-establish the connection.
  • an effective solution has not yet been proposed.
  • a method and system for re-establishing a connection are provided in the embodiment of the present invention, because the security parameters of the source station and the target station are inconsistent, and the security of the connection re-establishment is not passed. At least solve the above problem.
  • a method for re-establishing a connection including: after a failure of a user equipment (UE) to switch from a first base station to a second base station, the second base station receives a connection weight from the UE Establishing a completion message; the second base station performs the first security detection on the received connection re-establishment completion message; in the case that the first security detection fails, the second base station uses the security parameters of the first base station to perform the security detection again on the connection re-establishment completion message. After the security detection is passed again, the connection between the second base station and the UE is established.
  • UE user equipment
  • the method further includes: the second base station sending reconfiguration information to the UE, where the reconfiguration information is used to configure security parameters of the second base station to Said UE; the second base station performs security detection on the message from the UE according to the security parameter of the second base station.
  • the first base station performs the first security detection on the received connection re-establishment completion message
  • the second base station performs the first security detection on the connection re-establishment completion message by using the security parameter of the second base station.
  • the method further includes: the second base station receiving the handover request message from the first base station, where the handover request message carries the security parameter of the first base station.
  • the above security parameters include: integrity protection and encryption algorithm parameters.
  • the above method is applied to one of the following handover procedures: an X2 handover procedure, an S1 handover procedure, and a radio access type inter-RAT handover procedure.
  • a system for reestablishing a connection including: a first base station and a second base station, where the second base station includes: a receiving module, configured to be switched by a first base station at a user equipment (UE) After the failure of the second base station, receiving a connection re-establishment completion message from the UE; the detecting module is configured to perform the first security detection on the received connection re-establishment completion message, and use the first in the case that the first security detection fails The security parameter of the base station performs security detection again on the connection re-establishment completion message; the connection establishment module is configured to establish a connection between the second base station and the UE after the security detection is passed again.
  • UE user equipment
  • the foregoing second base station further includes: a sending module, configured to send reconfiguration information to the UE, where the reconfiguration information is used to configure a security parameter of the second base station to the UE; And being configured to perform security detection on the message from the UE according to the security parameter of the second base station.
  • the receiving module is further configured to receive a handover request message from the first base station, where the handover request message carries a security parameter of the first base station.
  • the above security parameters include: integrity protection and encryption algorithm parameters.
  • the above system is applied to one of the following handover procedures: an X2 handover procedure, an S1 handover procedure, and a radio access type inter-RAT handover procedure.
  • the connection re-establishment completion message when the first re-establishment of the connection re-establishment completion message fails after the UE fails to switch from the first base station to the second base station, the connection re-establishment completion message is detected again by using the security parameter of the first base station.
  • Technical means solving the related technology, because the security parameters of the source station and the target station are inconsistent The resulting re-establishment of the connection re-establishment message does not pass the security check, thereby improving the success rate of the UE re-establishing the connection.
  • FIG. 1 is a flow chart of a method for re-establishing a connection according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of a system for re-establishing a connection according to an embodiment of the present invention
  • FIG. 3 is a block diagram of a preferred embodiment according to the present invention. A schematic diagram of the structure of the re-established connected system.
  • Step S102 After a UE fails to switch from a first base station to a second base station, the second base station receives the
  • connection re-establishment completion message of the UE is sent; in step S104, the second base station performs the first security detection on the received connection re-establishment completion message; Step S106, in the case that the first security detection fails, the second base station uses the first The security parameter of the base station performs security detection again on the connection re-establishment completion message. Step S108, after the security detection is passed again, establish a connection between the second base station and the UE. After the first security detection fails, the connection re-establishment completion message is performed again by using the security parameter of the first base station, because the first security check fails to be performed after the UE fails to switch from the first base station to the second base station.
  • the technical means of detecting therefore, can solve the problem that the security check of the connection re-establishment completion message is not passed due to the inconsistency of the security parameters of the source station and the target station, thereby improving the success rate of the UE re-establishing the connection.
  • the following processing may be further included:
  • the UE sends reconfiguration information, where the reconfiguration information is used to configure the security parameters of the second base station to the UE; the second base station performs security detection on the message from the UE according to the security parameters of the second base station.
  • the second base station performs the first security detection on the received connection re-establishment completion message, including: the second base station performs the first security detection on the connection re-establishment completion message by using the security parameter of the second base station.
  • the second base station may obtain the security parameters of the first base station in multiple manners, for example, may be configured in the second base station in advance.
  • the method may also be obtained by: Before switching to the second base station, the second base station receives the handover request message from the first base station, where the handover request message carries the security parameter of the first base station.
  • the types of security parameters described above may include, but are not limited to: integrity protection and encryption algorithm parameters.
  • the above method for reestablishing the connection may be applied to one of the following handover procedures: an X2 handover procedure, an S1 handover procedure, and a radio access type inter-RAT handover procedure.
  • a system for re-establishing a connection is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments.
  • the descriptions of the modules are omitted.
  • the term "module" may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and conceivable.
  • 2 is a block diagram showing the structure of a system for re-establishing a connection according to an embodiment of the present invention.
  • the system includes: a first base station 20 and a second base station 22, wherein the second base station 22 includes: a receiving module 220, connected to the detecting module 222, configured to switch from the first base station to the first station at the UE 24.
  • the second base station fails, receiving a connection re-establishment completion message from the UE; the detecting module 222 is connected to the connection establishing module 224, configured to perform the first security detection on the received connection re-establishment complete message, and is not in the first security check.
  • the connection re-establishment completion message is again used for security detection using the security parameters of the first base station 20;
  • the connection establishment module 224 is configured to establish a connection between the second base station 22 and the UE 24 after the security detection is passed again.
  • the foregoing second base station 22 may further include: a sending module 226, configured to send reconfiguration information to the UE 24, where the reconfiguration information is used to configure the security parameter of the second base station 22 to UE 24;
  • the foregoing detecting module 222 is further configured to perform security detection on the message from the UE according to the security parameter of the second base station.
  • the receiving module 220 is further configured to receive a handover request message from the first base station 20, where the handover request message carries the security parameter of the first base station 20.
  • the above security parameters include: integrity protection and encryption algorithm parameters.
  • the above system can be applied to one of the following handover procedures: an X2 handover procedure, an S1 handover procedure, and a radio access type inter-RAT handover procedure. It should be noted that the "first" and “second" in the above embodiments are only convenient for description, and distinguishing the base stations does not constitute a limitation on the base station.
  • the first base station may be represented as a source base station (or a source station), and the second base station may be represented as a target base station (or a target station) in a specific implementation.
  • the target station after receiving the RRC re-establishment completion message of the UE, the target station first uses the integrity protection and encryption algorithm of the target station for security and encryption detection. If the detection is successful, the UEC is RRC heavy.
  • Embodiment 1 This embodiment describes an example of re-establishing a flow on the target station side occurring during the X2 handover process.
  • Step 1 The UE reports the measurement result through a MEASUREMENT REPORT message.
  • the second step the source base station (eNodeB) decides to initiate a handover, and sends a handover request (HANDOVER REQUEST) message to the target eNodeB, where the message carries the UE's integrity algorithm and encryption algorithm parameters at the source station.
  • Step 3 The target eNodeB allocates the radio resource successfully and sends a handover request response (HANDOVER REQUEST ACKNOWLEDGE) message to the source eNodeB.
  • Step 4 The source station sends an RRC reconfiguration (CONNECTION RECONFIGURATION) message to
  • the UE carries the radio resource configured by the target eNodeB to the UE.
  • Step 5 After receiving the RRC reconfiguration (PDU) message, the UE performs the reconfiguration action. If the reconfiguration fails due to various reasons, the UE rolls back to the source eNodeB configuration data, and the UE decides to initiate the RRC reestablishment at the target station. process.
  • Step 6 The UE sends an RRC Connection Reestablishment Request (CONNECTION REESTABLISHMENT REQUEST) message to the target eNodeB.
  • Step 7 The target eNodeB station sends an RRC Connection Reestablishment (CONNECTION REESTABLISHMENT) message to the UE.
  • Step 8 The UE sends an RRC connection re-establishment (CONNECTION REESTABLISHMENT)
  • Step 9 The target eNodeB needs to perform encryption and integrity detection on the RRC connection re-establishment (CONNECTION REESTABLISHMENT COMPLETE) message.
  • the target station first uses the target's guarantee and encryption algorithm to detect.
  • Step 10 The target eNodeB sends an RRC Connection Reconfiguration ( CONNECTION RECONFIGURATION) message to the UE, and configures the UE and the encryption algorithm of the target eNodeB.
  • RRC Connection Reconfiguration CONNECTION RECONFIGURATION
  • Step 1 After receiving the RRC CONNECTION RECONFIGURATION message, the UE receives the new completion and encryption algorithm configuration, and sends a CONNECTION RECONFIGURATION COMPLETE to the target eNodeB station, to the UE and the target station. Subsequent messages use the target station integrity algorithm and encryption algorithm.
  • Embodiment 2 This embodiment is described by taking the process of re-establishing the target eNodeB in the S1 handover process as an example. In this embodiment, the mobility management entity (Mobile Management Entity, MME for short) is unchanged. The details are as follows: Step 1: The UE reports the measurement result through a MEASUREMENT REPORT message.
  • MME Mobile Management Entity
  • the second step the source eNodeB base station needs to initiate a handover, and sends a HANDOVER REQUIRED message to the source MME, where the message carries the UE's integrity algorithm and encryption algorithm parameters at the source station.
  • Step 3 The source MME sends a handover request (HANDOVER REQUEST) message to the target eNodeB.
  • Step 4 The target eNodeB allocates the radio resource successfully and sends a handover request (HANDOVER REQUEST) ACKNOWLEDGE message to the source eNodeB.
  • Step 5 The source MME sends a HANDOVER COMMAND message to the source eNodeB.
  • Step 6 The source eNodeB sends an RRC connection reconfiguration (CONNECTION RECONFIGURATION) message to the UE, where the message carries the radio resource configured by the target eNodeB to the UE.
  • Step 7 After receiving the RRC CONNECTION RECONFIGURATION message, the UE performs a reconfiguration action. If the reconfiguration fails due to various reasons, the UE rolls back to the source eNodeB configuration data, and the UE decides to initiate the RRC at the target station. The establishment process.
  • Step 8 The UE sends an RRC Connection Reestablishment Request (CONNECTION REESTABLISHMENT REQUEST) message to the target eNodeB.
  • Step 9 The target eNodeB sends an RRC Connection Reestablishment (CONNECTION REESTABLISHMENT) message to the UE.
  • Step 10 The UE sends a RRC Connection Reestablishment Complete (CO NECTIO REESTABLISHMENTCOMPLETE) message to the target eNodeB, and the UE sends an RRC CONNECTA REE STABLISHMENT COMPLETE message using the source station's integrity and encryption algorithm.
  • Step 10 Target eNodeB needs to re-establish RRC connection ( CONNECTION
  • the COMPLETE message is used for encryption and guarantee algorithm detection.
  • the target station first uses the target's guarantee and encryption algorithm to detect. If the test fails, it indicates that the UE uses the source eNodeB's guarantee and encryption algorithm, then the target eNodeB.
  • the UE brought by the source station uses the security and encryption algorithm process security detection used by the source eNodeB, and the detection succeeds, and the RRC re-establishment of the UE on the target eNodeB side is successful.
  • Step 12 The target eNodeB sends an RRC reconfiguration (CONNECTION RECONFIGURATION) message to the UE, and configures the UE and the encryption algorithm of the target eNodeB.
  • Step 13 After receiving the RRC Reconfiguration (U.S. CONNECTION RECONFIGURATION) message, the UE receives a new security and encryption algorithm configuration, and sends a CONNECTION RECONFIGURATION COMPLETE to the target eNodeB station, to the UE and the target station. Subsequent messages use the target station integrity algorithm and encryption algorithm.
  • the third embodiment is described by taking the process of re-establishing the target eNodeB in the S1 handover (MME change) process as an example. The details are as follows: Step 1: The UE reports the measurement result through a MEASUREMENT REPORT message.
  • the second step the source eNodeB base station needs to initiate a handover, and sends a handover request (HANDOVER REQUIRED) message to the source MME, where the message carries the UE's integrity algorithm and encryption algorithm parameters at the source station.
  • Step 3 The source MME sends a FORWARD RELOCATION REQUEST message to the target MME.
  • Step 4 The target MME sends a handover request (HANDOVER REQUEST) message to the target eNodeB.
  • Step 5 The target eNodeB allocates the radio resource successfully and sends a handover request response (HANDOVER REQUEST ACKNOWLEDGE) message to the target MME.
  • Step 6 The target MME sends a FORWARD RELOCATION RESPONSE message to the source MME.
  • Step 7 The source MME sends a HANDOVER COMMAND message to the source eNodeB.
  • Step 8 The source eNodeB sends an RRC connection reconfiguration (CONNECTION RECONFIGURATION) message to the UE, where the message carries the radio resource configured by the target eNodeB to the UE.
  • Step 9 After receiving the RRC CONNECTION RECONFIGURATION message, the UE performs a reconfiguration action. If the reconfiguration fails due to various reasons, the UE rolls back to the source eNodeB configuration data, and the UE decides to initiate the RRC at the target station. The establishment process.
  • Step 10 The UE sends a CONNECTION REESTABLISHMENT REQUEST message to the target eNodeB.
  • Step 12 The UE sends an RRC Connection Reestablishment Complete (CO NECTIO REESTABLISHMENTCOMPLETE) message to the target eNodeB, and the UE sends an RRC Connection Reestablishment Complete (CONNECTION REESTABLISHMENT COMPLETE) message using the source station's completion and encryption algorithm.
  • CO NECTIO REESTABLISHMENTCOMPLETE CO NECTIO REESTABLISHMENTCOMPLETE
  • CONNECTION REESTABLISHMENT COMPLETE RRC Connection Reestablishment Complete
  • Step 13 The target eNodeB needs to perform encryption and integrity detection on the RRC connection re-establishment (CONNECTION REESTABLISHMENT COMPLETE) message, and the target station first uses the target's guarantee and encryption algorithm to detect, and if the detection fails, indicates that the UE uses
  • the source eNodeB is the completion and encryption algorithm of the source eNodeB, and the target eNodeB uses the security and encryption algorithm process security detection used by the source eNodeB by the UE brought by the source station in the second step, and the detection passes, and the UE reestablishes the RRC on the target eNodeB side. success.
  • Step 14 The target eNodeB sends an RRC Connection Reconfiguration ( CONNECTION RECONFIGURATION) message to the UE, and configures the UE and the encryption algorithm of the target eNodeB.
  • Step 15 After receiving the RRC connection reconfiguration (CONNECTION RECONFIGURATION) message, the UE receives a new completion and encryption algorithm configuration, and sends a RRC connection reconfiguration completion (CONNECTION RECONFIGURATION COMPLETE) to the target eNodeB station, to the UE and the target.
  • the subsequent messages of the station use the target station guarantee algorithm and the encryption algorithm.
  • Embodiment 4 This embodiment re-establishes the target in the process of inter-RAT handover from the terrestrial radio access network (Evolved UMTS, referred to as E-UTRAN) to the UMTS Terrestrial Radio Access Network (UTRAN).
  • the RNC process is described as an example. The details are as follows: Step 1: The UE reports the measurement result through a MEASUREMENT REPORT message.
  • the second step the source eNodeB base station needs to initiate a handover, and sends a handover request (HANDOVER REQUIRED) message to the source MME, where the message carries the UE's integrity algorithm and encryption algorithm parameters at the source station.
  • HANDOVER REQUIRED handover request
  • Step 3 The source MME sends a FORWARD RELOCATION REQUEST message to the target SGSN.
  • Step 4 The Serving GPRS Supporting Node (SGSN) sends a Reconfiguration Request (RELOCATION REQUEST) message to the target RNC.
  • Step 5 The target RNC allocates the radio resource successfully and sends a RELOCATION REQUEST ACKNOWLEDGE message to the target SGSN.
  • Step 6 The target SGSN sends a FORWARD RELOCATION RESPONSE message to the source MME.
  • Step 7 The source MME handover command (HANDOVER COMMAND) message is sent to the source eNodeB.
  • Step 8 The source eNodeB sends a RRC PDU (Responsive CONNECTION RECONFIGURATION) message to the UE, where the message carries the radio resource configured by the target eNodeB to the UE.
  • Step 9 After receiving the RRC reconfiguration (PDU) message, the UE performs a reconfiguration action. If the reconfiguration fails due to various reasons, the UE rolls back to the source eNodeB configuration data, and the UE decides to initiate the RRC reestablishment at the target station. process.
  • Step 10 The UE sends a CONNECTION REESTABLISHMENT REQUEST message to the target RNC.
  • Step 1 The target RNC sends an RRC CONNECTOR REESTABLISHMENT message to the UE.
  • Step 12 The UE sends an RRC connection re-establishment completed.
  • Step 13 The target RNC needs to perform encryption and integrity detection on the RRC connection reestablishment (CONNECTION REESTABLISHMENT COMPLETE) message.
  • the target station first uses the target's guarantee and encryption algorithm to detect. If the detection fails, it indicates that the UE is using The source and the eNodeB are authenticated and encrypted.
  • the target RNC uses the security and encryption algorithm used by the source eNodeB in the second step to perform security detection.
  • Step 14 The target RNC sends an RRC CONNECTION RECONFIGURATION message to the UE, and configures the target RNC's guarantee and encryption algorithm to the UE.
  • Step 15 After receiving the RRC Reconfiguration (U.S. CONNECTION RECONFIGURATION) message, the UE receives the new completion and encryption algorithm configuration, and sends the RRC connection reconfiguration complete. ( CO NECTIO RECO FIGURATIONCOMPLETE ) to the target RNC station, up to this UE and P target
  • Step 1 The UE reports the measurement result to the source through the MEASUREMENT REPORT message.
  • the second step the source RNC decides to initiate a handover, and sends a RELOCATION REQUIRED message to the source SGSN, where the message carries the UE's integrity algorithm and encryption algorithm parameters at the source station.
  • Step 3 The source SGSN sends a FORWARD RELOCATION REQUEST message to the target MME.
  • the target MME sends a handover request (HANDOVER REQUEST) message to the target eNodeB.
  • the target eNodeB allocates the radio resource successfully and sends a handover request response (HANDOVER REQUEST ACKNOWLEDGE) message to the target MME.
  • the target MME sends a FORWARD RESPONSE message to the source SGSN.
  • Step 7 The source SGSN sends a reconfiguration command RELOCATION COMMAND message to the source RNC.
  • Step 8: The source RNC sends a RRC PDU (Responsive CONNECTION RECONFIGURATION) message to the UE, where the message carries the radio resource configured by the target eNodeB to the UE.
  • RRC PDU Response CONNECTION RECONFIGURATION
  • Step 10 The UE sends an RRC RESToring Request (CONNECTION REESTABLISHMENT REQUEST) message to the target eNodeB.
  • the target eNodeB sends an RRC Connection Reestablishment (CONNECTION REESTABLISHMENT) message to the UE.
  • Step 12 The UE sends a CONNECTION REESTABLISHMENT COMPLETE message to the target eNodeB, and the UE sends an RRC Connection Reestablishment Complete (CO NECTIO REESTABLISHMENTCOMPLETE) message using the source RNC's guarantee and encryption algorithm.
  • Step 13 The target eNodeB needs to re-establish the RRC connection (CONNECTION)
  • the message is encrypted and the integrity algorithm is detected.
  • the target station first uses the target's integrity and encryption algorithm to detect. If the detection fails, indicating that the UE is using the source RNC's guarantee and encryption algorithm, the target eNodeB uses the second.
  • the UE brought by the source station in the step source station uses the security and encryption algorithm process security detection used by the source eNodeB, and the detection succeeds, and the RRC re-establishment of the UE on the target eNodeB side is successful.
  • Step 14 The target eNodeB sends an RRC RESPON (CONNECTION RECONFIGURATION) message to the UE, and configures the target eNodeB's guarantee and encryption algorithm to the UE.
  • Step 15 After receiving the RRC Reconfiguration (U.S. CONNECTION RECONFIGURATION) message, the UE receives a new security and encryption algorithm configuration, and sends a CONNECTION RECONFIGURATION COMPLETE to the target eNodeB station, and the UE and the target eNodeB follow.
  • the message uses the target station integrity algorithm and encryption algorithm.
  • a software is also provided for performing the technical solutions described in the above embodiments and preferred embodiments.
  • a storage medium is provided, the software being stored, including but not limited to: an optical disk, a floppy disk, a hard disk, a rewritable memory, and the like.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种重新建立连接的方法及系统,其中,上述方法包括:在UE由第一基站切换到第二基站失败后,第二基站接收来自于UE的连接重建立完成消息;第二基站对接收的连接重建立完成消息进行首次安全检测;在首次安全检测未通过的情况下,第二基站使用第一基站的安全参数对连接重建立完成消息再次进行安全检测;再次安全检测通过后,建立第二基站和所述UE的连接。采用本发明提供的上述技术方案,解决了相关技术中,由于源站和目标站的安全参数不一致而导致的对连接重建立完成消息安全检测不通过等问题,从而提高了UE重建立连接的成功率。

Description

重新建立连接的方法及系统 技术领域 本发明涉及通信领域, 具体而言, 涉及一种重新建立连接的方法及系统。 背景技术 在无线移动通信系统中, 移动中的用户设备 (User Equipment, 简称为 UE) 会触 发切换, 切换类型可以是无线接入类型 (Radio Access Type, 简称为 RAT) 内切换也 可以是 RAT 间切换。 UE在切换过程中由于各种原因会存在切换失败, 切换失败后 UE会重新建立无线资源控制 (Radio Resource Control, 简称为 RRC) 连接, UE会选 择在源站重新建立 RRC连接或者在目标站进行 RRC连接。 在相关技术中, 切换过程中 UE侧失败后 UE将会回滚到源站的配置, 此时如果 UE决策在目标站发起 RRC重建立,目标站在接收到 UE的 RRC连接重建立完成消息, 并对该消息进行安全检测(例如完整性检测和加密性检测), 此时 UE使用的是源站的 安全参数(完整保护和加密算法), 如果源站和目标站的安全参数(完整性保护和加密 保护算法参数)不一致,将会导致目标站对 RRC连接重建立完成消息的安全检测不通 过, 因此拒绝了 UE的 RRC重建立请求, 导致重建立连接的失败。 针对相关技术中的上述问题, 目前尚未提出有效的解决方案。 发明内容 针对相关技术中, 由于源站和目标站的安全参数不一致而导致的对连接重建立完 成消息安全检测不通过等问题,本发明实施例提供了一种重新建立连接的方法及系统, 以至少解决上述问题。 根据本发明的一个实施例, 提供了一种重新建立连接的方法, 包括: 在用户设备 (UE) 由第一基站切换到第二基站失败后, 第二基站接收来自于所述 UE的连接重建 立完成消息; 第二基站对接收的连接重建立完成消息进行首次安全检测; 在首次安全 检测未通过的情况下, 第二基站使用第一基站的安全参数对连接重建立完成消息再次 进行安全检测; 再次安全检测通过后, 建立第二基站和所述 UE的连接。 建立所述第二基站和所述 UE的连接之后, 还包括: 第二基站向所述 UE发送重 配信息, 其中, 所述重配信息用于将所述第二基站的安全参数配置给所述 UE; 第二基 站根据所述第二基站的安全参数对来自于所述 UE的消息进行安全检测。 第二基站对接收的所述连接重建立完成消息进行首次安全检测, 包括: 第二基站 利用所述第二基站的安全参数对所述连接重建立完成消息进行首次安全检测。 在 UE由第一基站切换到第二基站之前, 还包括: 第二基站接收来自于所述第一 基站的切换请求消息, 其中, 所述切换请求消息携带有所述第一基站的安全参数。 上述安全参数包括: 完整性保护和加密算法参数。 上述方法应用于以下之一切换过程: X2切换过程、 S1 切换过程、 无线接入类型 RAT间切换过程。 根据本发明的另一实施例, 提供了一种重新建立连接的系统, 包括: 第一基站和 第二基站, 第二基站包括: 接收模块, 设置为在用户设备 (UE) 由第一基站切换到第 二基站失败后, 接收来自于 UE的连接重建立完成消息; 检测模块, 设置为对接收的 连接重建立完成消息进行首次安全检测, 以及在首次安全检测未通过的情况下, 使用 第一基站的安全参数对连接重建立完成消息再次进行安全检测; 连接建立模块, 设置 为在再次安全检测通过后, 建立第二基站和 UE的连接。 上述第二基站还包括: 发送模块, 设置为向所述 UE发送重配信息, 其中, 所述 重配信息用于将所述第二基站的安全参数配置给所述 UE; 上述检测模块, 还设置为根据所述第二基站的安全参数对来自于所述 UE的消息 进行安全检测。 上述接收模块, 还设置为接收来自于所述第一基站的切换请求消息, 其中, 所述 切换请求消息携带有所述第一基站的安全参数。 上述安全参数包括: 完整性保护和加密算法参数。 上述系统应用于以下之一切换过程: X2切换过程、 S1 切换过程、 无线接入类型 RAT间切换过程。 通过本发明, 采用在 UE由第一基站切换到第二基站失败后, 对连接重建立完成 消息首次安全检测不通的情况下, 利用第一基站的安全参数对连接重建立完成消息再 次进行检测的技术手段, 解决了相关技术中, 由于源站和目标站的安全参数不一致而 导致的对连接重建立完成消息安全检测不通过等问题, 从而提高了 UE重建立连接的 成功率。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1为根据本发明实施例的重新建立连接的方法的流程图; 图 2为根据本发明实施例的重新建立连接的系统的结构框图; 图 3为根据本发明优选实施例的重新建立连接的系统的结构示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 图 1为根据本发明实施例的重新建立连接的方法的流程图。 如图 1所示, 该方法 包括: 步骤 S102, 在 UE由第一基站切换到第二基站失败后, 第二基站接收来自于所述
UE的连接重建立完成消息; 步骤 S104, 第二基站对接收的连接重建立完成消息进行首次安全检测; 步骤 S106, 在首次安全检测未通过的情况下, 所述第二基站使用所述第一基站的 安全参数对所述连接重建立完成消息再次进行安全检测; 步骤 S108, 再次安全检测通过后, 建立所述第二基站和所述 UE的连接。 通过上述处理过程, 由于在 UE由第一基站切换到第二基站失败后, 对连接重建 立完成消息首次安全检测不通的情况下, 利用了第一基站的安全参数对连接重建立完 成消息再次进行检测的技术手段, 因此, 可以解决由于源站和目标站的安全参数不一 致而导致的对连接重建立完成消息安全检测不通过等问题, 从而提高了 UE重建立连 接的成功率。 为了使 UE和第二基站在建立连接后, 提高后续消息交互的效率, 在步骤 S108之 后, 即建立所述第二基站和所述 UE的连接之后, 还可以包括以下处理过程: 第二基 站向所述 UE发送重配信息, 其中, 重配信息用于将第二基站的安全参数配置给 UE; 第二基站根据第二基站的安全参数对来自于 UE的消息进行安全检测。 在步骤 S104中,第二基站对接收的连接重建立完成消息进行首次安全检测,包括: 第二基站利用第二基站的安全参数对连接重建立完成消息进行首次安全检测。 上述第二基站获取第一基站的安全参数的方式有多种, 例如可以预先在第二基站 中配置, 在本发明的一个优选实施方式中, 还可以通过以下方式获取: 在 UE由第一 基站切换到第二基站之前, 第二基站接收来自于第一基站的切换请求消息, 其中, 该 切换请求消息携带有第一基站的安全参数。 上述安全参数的类型可以包括但不限于: 完整性保护和加密算法参数。 上述重新建立连接的方法可以应用于以下之一切换过程: X2切换过程、 S1 切换 过程、 无线接入类型 RAT间切换过程。 在本实施例中还提供了一种重新建立连接的系统, 用于实现上述实施例及优选实 施方式, 已经进行过说明的不再赘述, 下面对该装置中涉及到模块进行说明。 如以下 所使用的, 术语 "模块"可以实现预定功能的软件和 /或硬件的组合。 尽管以下实施例 所描述的装置较佳地以软件来实现, 但是硬件, 或者软件和硬件的组合的实现也是可 能并被构想的。 图 2为根据本发明实施例的重新建立连接的系统的结构框图。 如图 2 所示, 该系统包括: 第一基站 20和第二基站 22, 其中, 第二基站 22包括: 接收模块 220,连接至检测模块 222,设置为在 UE 24由第一基站切换到第二基站 失败后, 接收来自于所述 UE的连接重建立完成消息; 检测模块 222,连接至连接建立模块 224, 设置为对接收的连接重建立完成消息进 行首次安全检测, 以及在首次安全检测未通过的情况下, 使用第一基站 20的安全参数 对连接重建立完成消息再次进行安全检测; 连接建立模块 224, 设置为在再次安全检测通过后, 建立第二基站 22和 UE 24的 连接。 优选地, 如图 3所示, 上述第二基站 22还可以包括: 发送模块 226, 设置为向 UE 24发送重配信息,其中,该重配信息用于将第二基站 22的安全参数配置给 UE 24; 上述检测模块 222,还设置为根据第二基站的安全参数对来自于所述 UE的消息进行安 全检测。 上述接收模块 220, 还设置为接收来自于第一基站 20的切换请求消息, 其中, 该 切换请求消息携带有第一基站 20的安全参数。 上述安全参数包括: 完整性保护和加密算法参数。 上述系统可以应用于以下之一切换过程: X2切换过程、 S1 切换过程、 无线接入 类型 RAT间切换过程。 需要说明的是上述实施例中的 "第一" "第二"仅为叙述方便, 对基站进行区分, 并不构成对基站的限制。 并且, 上述实施例中第一基站在具体实施时可以表现为源基 站 (或称为源站), 第二基站在具体实施时可以表现为目标基站 (或称为目标站)。 为了更好地理解上述实施例, 以下结合具体实施例详细说明。 以下实施例的主要 思想在于, 当目标站接收到 UE的 RRC重建立完成消息后, 首先使用目标站的完整性 保护和加密算法进行完保和加密检测, 如果检测成功, 则 UEC此次 RRC重建立成功; 如果检测不成功, 目标站使用源站的完保和加密算法对 RRC重配完成消息进行检测, 之后目标站发起 RRC 重配流程, 将目标站的完保算法和加密算法等安全参数配置给 UE , 利用该重配流程完成对 UE的配置后, UE和目标站开始使用目标站配置的完保 和加密算法。通过这样的方式提高了切换失败时 UE在目标站进行 RRC重建立的成功 率。 实施例一 本实施例以 X2切换过程中发生的重建立在目标站侧的流程为例进行说明。 具体 方案如下: 第一步: UE通过测量报告 (MEASUREMENT REPORT) 消息上报测量结果。 第二步: 源基站 (eNodeB)决策需要发起切换, 发送切换请求 (HANDOVER REQUEST) 消息到目标 eNodeB, 该消息中携带了 UE在源站的完保算法和加密算法 参数。 第三步: 目标 eNodeB 分配无线资源成功并发送切换请求响应 (HANDOVER REQUEST ACKNOWLEDGE ) 消息给源 eNodeB。 第四步: 源站发送 RRC 重配置 (CONNECTION RECONFIGURATION) 消息到
UE, 消息中携带了目标 eNodeB配置给 UE的无线资源。 第五步: UE接收到 RRC 重配置(CONNECTION RECONFIGURATION )消息后, 进行重配动作, 由于各种原因导致重配失败, UE 回滚到源 eNodeB 配置数据, 同时 UE决策在目标站发起 RRC重建立过程。 第六步: UE 发送 RRC 连接重建请求 (CONNECTION REESTABLISHMENT REQUEST ) 消息到目标 eNodeB。 第 七步 : 目 标 eNodeB 站 发送 RRC 连接 重建 ( CONNECTION REESTABLISHMENT ) 消息到 UE。 第八步: UE发送 RRC连接重建立完成 (CONNECTION REESTABLISHMENT)
COMPLETE) 消息到目标 eNodeB, UE发送 RRC连接重建立完成 (CONNECTION REESTABLISHMENT COMPLETE) 消息使用的是源站的完保和加密算法。 第九步: 目标 eNodeB 需要对 RRC 连接重建立完成 ( CONNECTION REESTABLISHMENT COMPLETE) 消息进行加密和完保算法检测, 目标站首先使用 目标的完保和加密算法进行检测, 如果检测失败, 表示 UE使用的是源 eNodeB的完 保和加密算法, 则目标 eNodeB使用第二步中源站带过来的 UE在源 eNodeB使用的 完保和加密算法进程安全检测,检测通过, UE在目标 eNodeB侧的 RRC重建立成功。 第 十 步 : 目 标 eNodeB 发送 RRC 连接 重配置 ( CONNECTION RECONFIGURATION) 消息到 UE, 将目标 eNodeB的完保和加密算法配置给 UE。 第 ^一步: UE接收到 RRC连接重配置 (CONNECTION RECONFIGURATION) 消息后,接收新的完保和加密算法配置,并发送 RRC 连接重配置完成(CONNECTION RECONFIGURATION COMPLETE)到目标 eNodeB站,至此 UE和目标站后续的消息 使用目标站完保算法和加密算法。 实施例二 本实施例以 S1切换流程中重建立到目标 eNodeB流程为例进行说明,在本实施例 中, 移动性管理实体 (Mobile Management Entity, 简称 MME) 不变。 具体如下: 第一步: UE通过测量报告 (MEASUREMENT REPORT) 消息上报测量结果。 第二步: 源 eNodeB基站决策需要发起切换, 发送 HANDOVER REQUIRED消息 到源 MME, 该消息中携带了 UE在源站的完保算法和加密算法参数。 第三步: 源 MME发送切换请求(HANDOVER REQUEST) 消息给目标 eNodeB。 第四步: 目标 eNodeB 分配无线资源成功并发送切换请求 (HANDOVER REQUEST) ACKNOWLEDGE消息给源 eNodeB。 第五步: 源 MME发送 HANDOVER COMMAND消息给源 eNodeB。 第六步:源 eNodeB发送 RRC连接重配置(CONNECTION RECONFIGURATION ) 消息到 UE, 消息中携带了目标 eNodeB配置给 UE的无线资源。 第七步: UE接收到 RRC连接重配置 (CONNECTION RECONFIGURATION) 消 息后, 进行重配动作, 由于各种原因导致重配失败, UE回滚到源 eNodeB配置数据, 同时 UE决策在目标站发起 RRC重建立过程。 第八步: UE 发送 RRC 连接重建请求 (CONNECTION REESTABLISHMENT REQUEST ) 消息到目标 eNodeB。 第九步: 目标 eNodeB发送 RRC连接重建(CONNECTION REESTABLISHMENT) 消息到 UE。 第 十 步 : UE 发 送 RRC 连 接 重 建 立 完 成 ( CO NECTIO REESTABLISHMENTCOMPLETE ) 消息到目标 eNodeB, UE 发送 RRC连接重建立完成 (CONNECTION REESTABLISHMENT COMPLETE) 消息使用 的是源站的完保和加密算法。 第 步: 目 标 eNodeB 需要对 RRC 连接重建 ( CONNECTION
REESTABLISHMENT) 完成 (COMPLETE) 消息进行加密和完保算法检测, 目标站 首先使用目标的完保和加密算法进行检测,如果检测失败,表示 UE使用的是源 eNodeB 的完保和加密算法,则目标 eNodeB使用第二步中源站带过来的 UE在源 eNodeB使用 的完保和加密算法进程安全检测, 检测通过, UE在目标 eNodeB侧的 RRC重建立成 功。 第十二步:目标 eNodeB发送 RRC 重配置( CONNECTION RECONFIGURATION ) 消息到 UE, 将目标 eNodeB的完保和加密算法配置给 UE。 第十三步: UE接收到 RRC 重配置(CONNECTION RECONFIGURATION)消息 后, 接收新的完保和加密算法配置, 并发送 RRC 连接重配置完成 (CONNECTION RECONFIGURATION COMPLETE)到目标 eNodeB站,至此 UE和目标站后续的消息 使用目标站完保算法和加密算法。 实施例三 本实施例以 S1切换 (MME改变)流程中重建立到目标 eNodeB流程为例进行说明。 具体如下: 第一步: UE通过测量报告 (MEASUREMENT REPORT) 消息上报测量结果。 第二步: 源 eNodeB 基站决策需要发起切换, 发送切换请求 (HANDOVER REQUIRED)消息到源 MME, 该消息中携带了 UE在源站的完保算法和加密算法参数。 第三步: 源 MME发送前向重配置请求 (FORWARD RELOCATION REQUEST) 消息给目标 MME。 第四步: 目标 MME发送切换请求( HANDOVER REQUEST )消息给目标 eNodeB。 第五步: 目标 eNodeB 分配无线资源成功并发送切换请求响应 (HANDOVER REQUEST ACKNOWLEDGE) 消息给目标 MME。 第六步:目标 MME发送前向重配置响应(FORWARD RELOCATION RESPONSE) 消息给源 MME。 第七步: 源 MME发送切换命令 (HANDOVER COMMAND) 消息给源 eNodeB。 第八步:源 eNodeB发送 RRC 连接重配置( CONNECTION RECONFIGURATION ) 消息到 UE, 消息中携带了目标 eNodeB配置给 UE的无线资源。 第九步: UE接收到 RRC 连接重配置(CONNECTION RECONFIGURATION)消 息后, 进行重配动作, 由于各种原因导致重配失败, UE回滚到源 eNodeB配置数据, 同时 UE决策在目标站发起 RRC重建立过程。 第十步: UE 发送 RRC 连接重建请求 (CONNECTION REESTABLISHMENT REQUEST) 消息到目标 eNodeB。 第 步 : 目 标 eNodeB 发送 RRC 连接 重建 ( CONNECTION
REESTABLISHMENT ) 消息到 UE。 第 十 二 步 : UE 发 送 RRC 连 接 重 建 立 完 成 ( CO NECTIO REESTABLISHMENTCOMPLETE ) 消息到目标 eNodeB, UE 发送 RRC连接重建立完成 (CONNECTION REESTABLISHMENT COMPLETE) 消息使用 的是源站的完保和加密算法。 第十三步: 目标 eNodeB 需要对 RRC 连接重建立完成 (CONNECTION REESTABLISHMENT COMPLETE) 消息进行加密和完保算法检测, 目标站首先使用 目标的完保和加密算法进行检测, 如果检测失败, 表示 UE使用的是源 eNodeB的完 保和加密算法, 则目标 eNodeB使用第二步中源站带过来的 UE在源 eNodeB使用的 完保和加密算法进程安全检测,检测通过, UE在目标 eNodeB侧的 RRC重建立成功。 第十 四步: 目 标 eNodeB 发送 RRC 连接重配置 ( CONNECTION RECONFIGURATION) 消息到 UE, 将目标 eNodeB的完保和加密算法配置给 UE。 第十五步: UE接收到 RRC 连接重配置 (CONNECTION RECONFIGURATION) 消息后,接收新的完保和加密算法配置,并发送 RRC 连接重配置完成(CONNECTION RECONFIGURATION COMPLETE)到目标 eNodeB站,至此 UE和目标站后续的消息 使用目标站完保算法和加密算法。 实施例四 本实施例以 RAT间从陆地无线接入网 (Evolved UMTS, 简称为 E-UTRAN)切换 到 UMTS陆地无线接入网 (UMTS Terrestrial Radio Access Network, 简称为 UTRAN) 流程中重建立到目标 RNC流程为例进行说。 具体如下: 第一步: UE通过测量报告 (MEASUREMENT REPORT) 消息上报测量结果。 第二步: 源 eNodeB 基站决策需要发起切换, 发送切换请求 (HANDOVER REQUIRED)消息到源 MME, 该消息中携带了 UE在源站的完保算法和加密算法参数。 第三步: 源 MME发送前向重配置请求 (FORWARD RELOCATION REQUEST) 消息给目标 SGSN。 第四步: 目标服务 GPRS支持节点(Serving GPRS Supporting Node,简称为 SGSN) 发送重配置请求 (RELOCATION REQUEST) 消息给目标 RNC。 第五步: 目标 RNC 分配无线资源成功并发送重配置请求响应 (RELOCATION REQUEST ACKNOWLEDGE ) 消息给目标 SGSN。 第六步:目标 SGSN发送前向重配置响应(FORWARD RELOCATION RESPONSE) 消息给源 MME。 第七步: 源 MME 切换命令 (HANDOVER COMMAND) 消息给源 eNodeB。 第八步: 源 eNodeB发送 RRC 重配置 (CONNECTION RECONFIGURATION) 消息到 UE, 消息中携带了目标 eNodeB配置给 UE的无线资源。 第九步: UE接收到 RRC 重配置(CONNECTION RECONFIGURATION )消息后, 进行重配动作, 由于各种原因导致重配失败, UE 回滚到源 eNodeB 配置数据, 同时 UE决策在目标站发起 RRC重建立过程。 第十步: UE 发送 RRC 连接重建请求 (CONNECTION REESTABLISHMENT REQUEST) 消息到目标 RNC。 第 ^一步: 目标 RNC发送 RRC连接重建(CONNECTION REESTABLISHMENT ) 消息到 UE。 第 十 二 步 : UE 发 送 RRC 连 接 重 建 立 完 成
( CO NECTIO REESTABLISHMENTCOMPLETE)消息到目标 RNC, UE发送 RRC 连接重建立完成 (CO NECTIO REESTABLISHMENTCOMPLETE) 消息使用的是源 站的完保和加密算法。 第十三步: 目标 RNC 需要对 RRC 连接重建完成 ( CONNECTION REESTABLISHMENT COMPLETE) 消息进行加密和完保算法检测, 目标站首先使用 目标的完保和加密算法进行检测, 如果检测失败, 表示 UE使用的是源 eNodeB的完 保和加密算法, 则目标 RNC使用第二步中源站带过来的 UE在源 eNodeB使用的完保 和加密算法进程安全检测, 检测通过, UE在目标 eNodeB侧的 RRC重建立成功。 第十四步: 目标 RNC发送 RRC 重配置 (CONNECTION RECONFIGURATION) 消息到 UE, 将目标 RNC的完保和加密算法配置给 UE。 第十五步: UE接收到 RRC 重配置(CONNECTION RECONFIGURATION)消息 后, 接收新的完保和加密算法配置, 并发送 RRC 连接重配置完成 ( CO NECTIO RECO FIGURATIONCOMPLETE )到目标 RNC站,至此 UE禾 P目标
RNC后续的消息使用目标站完保算法和加密算法。 实施例五 本实施例以 RAT间从 UTRAN切换到 EUTRAN流程中重建立到目标 eNodeB流 程为例进行说明, 具体如下: 第一步: UE通过测量报告 (MEASUREMENT REPORT) 消息上报测量结果到源
第二步: 源 RNC决策需要发起切换, 发送重配置 (RELOCATION REQUIRED) 消息到源 SGSN, 该消息中携带了 UE在源站的完保算法和加密算法参数。 第三步: 源 SGSN发送前向重配置请求 (FORWARD RELOCATION REQUEST) 消息给目标 MME。 第四步:目标 MME发送 切换请求(HANDOVER REQUEST)消息给目标 eNodeB。 第五步: 目标 eNodeB 分配无线资源成功并发送切换请求响应 (HANDOVER REQUEST ACKNOWLEDGE ) 消息给目标 MME。 第六步: 目标 MME发送前向响应 (FORWARD RESPONSE) 消息给源 SGSN。 第七步: 源 SGSN发送重配置命令 RELOCATION COMMAND消息给源 RNC。 第八步: 源 RNC发送 RRC 重配置(CONNECTION RECONFIGURATION)消息 到 UE, 消息中携带了目标 eNodeB配置给 UE的无线资源。 第九步: UE接收到 RRC 重配置(CONNECTION RECONFIGURATION )消息后, 进行重配动作, 由于各种原因导致重配失败, UE回滚到源 RNC配置数据, 同时 UE 决策在目标站发起 RRC重建立过程。 第十步: UE 发送 RRC 重建请求 ( CONNECTION REESTABLISHMENT REQUEST ) 消息到目标 eNodeB。 第 步 : 目 标 eNodeB 发送 RRC 连接 重建 ( CONNECTION REESTABLISHMENT ) 消息到 UE。 第十二步: UE发送 RRC连接重建立完成 ( CONNECTION REESTABLISHMENT COMPLETE ) 消息到 目 标 eNodeB , UE 发送 RRC 连接重建立完成 ( CO NECTIO REESTABLISHMENTCOMPLETE ) 消息使用的是源 RNC 的完保和 加密算法。 第十三步: 目标 eNodeB 需要对 RRC 连接重建立完成 (CONNECTION
REESTABLISHMENT COMPLETE) 消息进行加密和完保算法检测, 目标站首先使用 目标的完保和加密算法进行检测, 如果检测失败, 表示 UE使用的是源 RNC的完保和 加密算法, 则目标 eNodeB使用第二步中源站带过来的 UE在源 eNodeB使用的完保 和加密算法进程安全检测, 检测通过, UE在目标 eNodeB侧的 RRC重建立成功。 第十四步:目标 eNodeB发送 RRC 重配置( CONNECTION RECONFIGURATION ) 消息到 UE, 将目标 eNodeB的完保和加密算法配置给 UE。 第十五步: UE接收到 RRC 重配置(CONNECTION RECONFIGURATION)消息 后, 接收新的完保和加密算法配置, 并发送 RRC 连接重配置 (CONNECTION RECONFIGURATION COMPLETE)到目标 eNodeB站, 至此 UE和目标 eNodeB后续 的消息使用目标站完保算法和加密算法。 在另外一个实施例中, 还提供了一种软件, 该软件用于执行上述实施例及优选实 施方式中描述的技术方案。 在另外一个实施例中, 还提供了一种存储介质, 该存储介质中存储有上述软件, 该存储介质包括但不限于: 光盘、 软盘、 硬盘、 可擦写存储器等。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人 员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何 修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种重新建立连接的方法, 包括:
在用户设备 UE由第一基站切换到第二基站失败后, 第二基站接收来自于 所述 UE的连接重建立完成消息; 所述第二基站对接收的所述连接重建立完成消息进行首次安全检测; 在首次安全检测未通过的情况下, 所述第二基站使用所述第一基站的安全 参数对所述连接重建立完成消息再次进行安全检测;
再次安全检测通过后, 建立所述第二基站和所述 UE的连接。
2. 根据权利要求 1所述的方法, 其中, 建立所述第二基站和所述 UE的连接之后, 还包括:
所述第二基站向所述 UE发送重配信息, 其中, 所述重配信息用于将所述 第二基站的安全参数配置给所述 UE;
所述第二基站根据所述第二基站的安全参数对来自于所述 UE的消息进行 安全检测。
3. 根据权利要求 1所述的方法, 其中, 所述第二基站对接收的所述连接重建立完 成消息进行首次安全检测, 包括:
所述第二基站利用所述第二基站的安全参数对所述连接重建立完成消息进 行首次安全检测。
4. 根据权利要求 1所述的方法, 其中, 在 UE由第一基站切换到第二基站之前, 还包括:
所述第二基站接收来自于所述第一基站的切换请求消息, 其中, 所述切换 请求消息携带有所述第一基站的安全参数。
5. 根据权利要求 1所述的方法, 其中, 所述安全参数包括: 完整性保护和加密算 法参数。
6. 根据权利要求 1至 5任一项所述的方法, 其中, 所述方法应用于以下之一切换 过程:
X2切换过程、 S1切换过程、 无线接入类型 RAT间切换过程。
7. 一种重新建立连接的系统, 包括: 第一基站和第二基站, 所述第二基站包括: 接收模块, 设置为在用户设备 UE由第一基站切换到第二基站失败后, 接 收来自于所述 UE的连接重建立完成消息; 检测模块, 设置为对接收的所述连接重建立完成消息进行首次安全检测, 以及在首次安全检测未通过的情况下, 使用所述第一基站的安全参数对所述连 接重建立完成消息再次进行安全检测;
连接建立模块, 设置为在再次安全检测通过后, 建立所述第二基站和所述 UE的连接。
8. 根据权利要求 7所述的系统, 其中,
所述第二基站还包括: 发送模块, 设置为向所述 UE发送重配信息, 其中, 所述重配信息设置为将所述第二基站的安全参数配置给所述 UE; 所述检测模块, 还设置为根据所述第二基站的安全参数对来自于所述 UE 的消息进行安全检测。
9. 根据权利要求 7所述的系统, 其中, 所述接收模块, 还设置为接收来自于所述 第一基站的切换请求消息, 其中, 所述切换请求消息携带有所述第一基站的安 全参数。
10. 根据权利要求 7所述的系统, 其中, 所述安全参数包括: 完整性保护和加密算 法参数。
11. 根据权利要求 7-10任一项所述的系统, 其中, 所述系统应用于以下之一切换过 程:
X2切换过程、 S1切换过程、 无线接入类型 RAT间切换过程。
PCT/CN2013/074215 2012-04-24 2013-04-15 重新建立连接的方法及系统 WO2013159660A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210122631.1 2012-04-24
CN201210122631.1A CN103379663B (zh) 2012-04-24 2012-04-24 重新建立连接的方法及系统

Publications (1)

Publication Number Publication Date
WO2013159660A1 true WO2013159660A1 (zh) 2013-10-31

Family

ID=49464083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074215 WO2013159660A1 (zh) 2012-04-24 2013-04-15 重新建立连接的方法及系统

Country Status (2)

Country Link
CN (1) CN103379663B (zh)
WO (1) WO2013159660A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9467926B2 (en) * 2014-04-28 2016-10-11 Intel IP Corporation Apparatus, method, and system of establishing a connection between a cellular node and a core network
CN110290541A (zh) * 2018-03-19 2019-09-27 维沃移动通信有限公司 配置方法和设备
CN110351805A (zh) 2018-04-04 2019-10-18 维沃移动通信有限公司 一种连接重建方法及相关设备
CN110830988B (zh) * 2018-08-08 2023-08-15 维沃移动通信有限公司 一种安全更新方法、网络设备及终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101742577A (zh) * 2008-11-20 2010-06-16 大唐移动通信设备有限公司 一种验证用户设备标志符的方法和基站
CN102083063A (zh) * 2009-11-30 2011-06-01 大唐移动通信设备有限公司 一种确定as密钥的方法、系统和设备
CN102238542A (zh) * 2010-04-20 2011-11-09 中兴通讯股份有限公司 一种中继节点下用户设备的rrc重建方法和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8275377B2 (en) * 2006-04-20 2012-09-25 Qualcomm Incorporated Wireless handoffs between multiple networks
CN102223632B (zh) * 2010-04-15 2015-12-16 中兴通讯股份有限公司 一种接入层安全算法同步方法和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101742577A (zh) * 2008-11-20 2010-06-16 大唐移动通信设备有限公司 一种验证用户设备标志符的方法和基站
CN102083063A (zh) * 2009-11-30 2011-06-01 大唐移动通信设备有限公司 一种确定as密钥的方法、系统和设备
CN102238542A (zh) * 2010-04-20 2011-11-09 中兴通讯股份有限公司 一种中继节点下用户设备的rrc重建方法和系统

Also Published As

Publication number Publication date
CN103379663A (zh) 2013-10-30
CN103379663B (zh) 2017-02-08

Similar Documents

Publication Publication Date Title
CN109479336B (zh) 用于连接管理的系统和方法
JP5142417B2 (ja) リンク障害復旧のためのハンドオーバー方法とこの方法を具現するための無線機器及び基地局
WO2018059299A1 (zh) 小区切换的方法、装置及系统和计算机存储介质
US20220386191A1 (en) Conditional full configuration and conditional delta configuration
WO2009155835A1 (zh) 密钥衍生方法、设备及系统
EP3827640B1 (en) Fast mcg failure recovery with secondary node change
US20230045700A1 (en) Conditional Configuration in a Distributed Base Station
CN103546989B (zh) 一种建立无线资源控制连接的方法与设备
US20220124568A1 (en) Managing mcg fast recovery
EP4094537A1 (en) Managing conditional configuration when a secondary cell is unavailable
WO2012059013A1 (zh) 一种长期演进系统中rlf指示消息的处理方法和设备
US8995664B2 (en) Security in wireless communication system and device
WO2012031507A1 (zh) 数据传输通道迁移方法及系统
WO2013159660A1 (zh) 重新建立连接的方法及系统
WO2018082623A1 (zh) 一种连接重建立方法及装置、电子设备、计算机存储介质
WO2014206179A1 (zh) 一种实现自动邻区关系建立的方法、终端、基站及系统、存储介质
WO2013152709A1 (zh) 无线链路的重建方法及装置
JP5856022B2 (ja) 移動通信方法及び移動局
CN114557033A (zh) 用于处理无线资源控制非激活状态的系统和方法
US20240073771A1 (en) Managing ue configurations when a conditional procedure fails
CN108307539B (zh) 链路重建方法、第一基站、第二基站、用户设备及装置
CN106686673B (zh) 一种ue切换过程中sn倒换失败的处理方法及装置
US20230171655A1 (en) Method Network Optimization in Handover Failure Scenarios
US20240114586A1 (en) Handling communication errors during early data communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13782537

Country of ref document: EP

Kind code of ref document: A1