WO2013159653A1 - 蒸汽动力循环发电系统 - Google Patents

蒸汽动力循环发电系统 Download PDF

Info

Publication number
WO2013159653A1
WO2013159653A1 PCT/CN2013/074155 CN2013074155W WO2013159653A1 WO 2013159653 A1 WO2013159653 A1 WO 2013159653A1 CN 2013074155 W CN2013074155 W CN 2013074155W WO 2013159653 A1 WO2013159653 A1 WO 2013159653A1
Authority
WO
WIPO (PCT)
Prior art keywords
control valve
valve
tube
sub
heat exchanger
Prior art date
Application number
PCT/CN2013/074155
Other languages
English (en)
French (fr)
Inventor
安瑞生
安丰恺
Original Assignee
An Ruisheng
An Fengkai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by An Ruisheng, An Fengkai filed Critical An Ruisheng
Publication of WO2013159653A1 publication Critical patent/WO2013159653A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/003Devices for producing mechanical power from solar energy having a Rankine cycle
    • F03G6/005Binary cycle plants where the fluid from the solar collector heats the working fluid via a heat exchanger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention relates to a power generation system, and more particularly to a steam power cycle power generation system.
  • the thermal power generation system not only consumes a large amount of coal resources, but also causes serious environmental pollution problems.
  • the low-temperature heating energy refers to the waste heat in the factories and mines, the heat of burning the crop straws in the vast rural and remote areas, and the waste heat of the central heating of the urban residential quarters. Since the total amount of solar energy and low-temperature heating energy is large and is wasted due to the inability to utilize, there is an urgent need to develop a small-scale power generation system that can fully utilize solar energy and low-temperature heating energy.
  • the object of the present invention is to provide a steam power cycle power generation system, which is a small power generation system that can use solar energy and low temperature heating energy as a heat source to heat a low temperature working medium to generate steam to drive a gas turbine and a generator set to generate electricity. Problems with technology.
  • a steam power cycle power generation system including a booster, a total control valve, a first heat exchanger and a second heat exchanger, and the booster is composed of a hollow piston, a casing, and a
  • the two telescopic tubes, the first telescopic tube, the first heat exchanger and the second heat exchanger are connected; one side of each of the hollow pistons is provided with an air chamber, the two air chambers are blocked, the hollow piston is installed in the shell, and the hollow piston is shelled
  • the inner cavity of the body is divided into a first cavity and a second cavity; a first telescopic tube is installed in the first cavity, and a second telescopic tube is installed in the second cavity; the inner end of the second telescopic tube and the first telescopic tube are combined with the hollow piston
  • the inner end of the second telescopic tube communicates with an air chamber of the hollow piston, the inner end of the first telescopic tube communicates with another air chamber of the hollow
  • a third heat exchanger is installed on the two low-temperature gas pipelines of the gas turbine and the generator set, and the shell and the two heat exchangers are respectively installed.
  • the low temperature gas pipelines are connected; the coils of the third heat exchanger are respectively connected with the two liquid supply pipelines of the liquid storage tank; the gas discharged by the gas turbine and the generator set and the liquid delivered by the liquid storage tank are in the third heat exchanger Internal heat exchange.
  • the main control valve is a three-position four-way valve, and the b end of the main control valve communicates with the first sub-control valve through the first gas transmission line, and the d end of the main control valve passes through the second gas transmission line and the second sub-control valve In the same way, the a-end and the c-end of the main control valve are respectively communicated with the evaporator through the first gas supply line.
  • the first sub-control valve and the second sub-control valve are both two-position six-way valves, and the first exhaust valve and the second exhaust valve are both two-position four-way valves, and the first regulating valve and the second regulating valve are both It is a two-position four-way valve.
  • a first voltage regulator package is connected in series with the connection line between the first exhaust valve and the Rankor tube; and a second voltage regulator package is connected in series with the connection line between the second exhaust valve and the Rankor tube.
  • a first travel switch is disposed in the first cavity, and a second travel switch is installed in the second cavity; when the hollow piston moves to the limit position of the first cavity or the second cavity, the first travel switch or the second travel switch can be activated .
  • the positive effect of the invention is that it uses solar energy and low-temperature heating energy as a heat source to heat the low-temperature working medium, and uses the energy converted from the evaporation and condensation of the low-temperature working medium to drive the gas turbine and the generator set to generate electricity, which ensures the technical level.
  • Evaporation utilizes a low-grade heat source, and the condensation is mechanically separated by a Rankine tube. It is not limited by geographical areas, but also saves a lot of coal resources, avoids environmental pollution, and can truly achieve green and environmentally friendly power generation.
  • the invention also has the advantages of low cost, convenient installation and handling.
  • FIG. 1 is a schematic front view of a steam power cycle power generation system according to the present invention
  • FIG. 2 is a partial enlarged structural view of FIG. 1
  • FIG. 3 is a partial enlarged structural view of FIG.
  • the steam power cycle power generation system of the present invention comprises a booster, a master control valve 4, a first heat exchanger 19 and a second heat exchanger 20.
  • the booster is composed of a hollow piston 5, a casing 6, a second telescopic pipe 7, a first telescopic pipe 8, a first heat exchanger 19, and a second heat exchanger 20.
  • An air chamber is disposed on each side of the hollow piston 5, and the two air chambers are blocked.
  • the hollow piston 5 is mounted in the housing 6, and the hollow piston 5 can move along the housing 6.
  • the hollow piston 5 divides the inner cavity of the housing 6 into a first chamber 43 and a second chamber 44.
  • a first telescopic tube 8 is mounted in the first cavity 43, and a second telescopic tube 7 is mounted in the second cavity 44.
  • the inner ends of the second telescopic tube 7 and the first telescopic tube 8 are connected to the hollow piston 5, and the inner end of the second telescopic tube 7 communicates with an air chamber of the hollow piston 5, and the inner end of the first telescopic tube 8 and the hollow piston 5
  • the other air chamber communicates; the outer ends of the second telescopic tube 7 and the first telescopic tube 8 respectively pass out of the housing 6.
  • a second composite pipe 39 is mounted at one end of the casing 6, and the first composite pipe 38 is installed at the other end of the casing 6.
  • the first composite pipe 38 communicates with the first cavity 43, and the second composite pipe 39 communicates with the second cavity 44.
  • the coil of the first heat exchanger 19 communicates with the inner tube of the first composite tube 38 through the fifth one-way valve 34.
  • the coil of the second heat exchanger 20 passes through the first tube.
  • the six check valve 37 is in communication with the inner tube of the second composite pipe 39.
  • the outer circumference of the casing 6 is provided with a first water jacket 9, a second water jacket 10 and a third water jacket 11, and the second water jacket 10 and the third water jacket 11 are respectively located in the first water jacket 9 side.
  • the main control valve 4 is connected to the evaporator 1 through the first air supply line of the evaporator 1.
  • the main control valve 4 is connected to the first telescopic tube 8 through the first sub-control valve 12 and the first supercharger 33 through the first air supply pipe.
  • the main control valve 4 is connected to the second telescopic tube 7 through the second sub-control valve 14 and the second supercharger 40 through the second air delivery pipe.
  • the air return ports of the first supercharger 33 and the second supercharger 40 are each connected to the liquid storage tank 24 through a pipe.
  • the second telescopic tube 7 communicates with the Rank tube 16 through the second exhaust valve 15 and the second pressure control valve 49 through the pipeline; the first telescopic tube 8 passes through the first exhaust valve 13 and the first pressure control valve 48 is connected to the Rank tube 16.
  • the first pressure control valve 48 and the second pressure control valve 49 can control the pipeline. When the pressure in the pipeline exceeds the set values of the first pressure control valve 48 and the second pressure control valve 49, the first pressure control valve 48 and the first The second pressure control valve 49 can be opened to make the pipeline unblocked.
  • the exhaust port of the Rank tube 16 is connected to the ejector 22, and the drain port of the Rank tube 16 is connected to the reservoir 24.
  • the ejector 22 is connected to the gas turbine and the generator set 23. As shown in FIG.
  • the gas turbine and the generator set 23 are respectively connected to the first sub-control valve 12 and the second sub-control valve 14 through two rows of low-temperature gas lines.
  • the first sub-control valve 12 is connected to the outer tube of the first composite tube 38; as shown in FIG. 3, the second sub-control valve 14 is connected to the outer tube of the second supercharger 40.
  • the liquid storage tank 24 is connected to the evaporator 1 through a liquid replacement line, and the heating coil 2 is installed in the evaporator 1.
  • the liquid storage tank 24 is connected to the first regulating valve 28 via the first sub-control valve 12 via the first liquid supply line, and the first regulating valve 28 passes through the first capillary tube and the first composite tube 38.
  • the inner tube is connected, the first regulating valve 28 is connected to the first accumulator 26 via the first one-way valve 30 through the first liquid storage line, and the first accumulator 26 passes through the second one-way through the first liquid-filling line.
  • the valve 31 and the first regulating valve 28 are connected to the first heat exchanger 19. As shown in FIG. 2, the first heat exchanger 19 is connected to the inner tube of the first composite pipe 38 via the fifth check valve 34.
  • the liquid storage tank 24 is connected to the second regulating valve 29 via the second sub-control valve 14 via the second supply line, as shown in Figure 3, the second regulating valve 29 is passed through the second liquid storage.
  • the pipeline is connected to the second accumulator 27 via the fourth one-way valve 42, the second regulator valve 29 is connected to the inner tube of the second composite pipe 39 via the second capillary tube, and the second accumulator 27 is passed through the third check valve.
  • 41 and the second regulator valve 29 are connected to the second heat exchanger 20, and the second heat exchanger 20 is connected to the inner tube of the second composite pipe 39 via the sixth check valve 37. As shown in FIG.
  • the main control valve 4 can switch between supplying air to the first sub-control valve 12 and supplying and disconnecting the second sub-control valve 14; the evaporator 1 passes through the second air supply line and The ejector 22 is connected.
  • the spraying device 3 is installed in the evaporator 1.
  • the heating coil 2 and the first water jacket 9 are connected to the water tank of the solar water heater through a pipeline, so that the hot water in the water tank enters the heating coil 2 and the first water jacket 9 to release heat, and promotes the gas for the working fluid.
  • the turbine and generator set 23 provide power for heating.
  • the hot water in the heating coil 2 can also be supplied by other low temperature heating energy.
  • the working process of the power generation system includes four basic working steps, and the four working steps are sequentially cycled to form the entire working process.
  • the first working step the main control valve 4 turns on the first gas transmission line and the evaporator 1, and the second gas supply line is disconnected; the second sub-control valve 14 is in the off state, blocking the second liquid supply line, a pipeline between the gas turbine and the generator set 23 and the second sub-control valve 14 and a second gas transmission pipeline; the second exhaust valve 15 is in an on state, and the second telescopic tube 7 and the Ranke tube 16 can be connected The road, and the pipeline between the second chamber 44 and the Rank tube 16 are turned on; the second regulating valve 29 cuts off the passage of the second liquid storage line, the second capillary line and the second branch control valve 14, respectively.
  • the first sub-control valve 12 is in a conducting state, the first liquid supply pipeline, the gas turbine and the pipeline between the generator set 23 and the first sub-control valve 12, and the first gas transmission pipeline are unblocked;
  • the first exhaust valve 13 is in an open state, and can block the pipeline between the first telescopic tube 8 and the Rank tube 16, and the pipeline between the first chamber 43 and the Rank tube 16;
  • the first regulating valve 28 leads respectively
  • the first liquid storage line is cut through the passage of the first liquid storage line, the first capillary line and the first sub-control valve 12.
  • the heating coil 2 heats the low temperature working medium in the evaporator 1 to be vaporized into a high temperature gas.
  • the high temperature gas enters the ejector 22 through the second gas supply line; the other line enters the main control valve 4 along the first gas supply line, and the evaporator 1 supplies gas to the first sub-control valve 12 through the first gas supply line, and the high temperature
  • the gas enters the first supercharger 33 via the main control valve 4 and the first sub-control valve 12, is pressurized by the first supercharger 33, enters the first telescopic tube 8, and pushes the hollow piston 5 to the right.
  • the second heat exchanger 20, the first water jacket 9 and the third water jacket 11 all pass into the solar heated hot water; the first heat exchanger 19 and the second water jacket 10 stop the hot water input so that the first chamber 43 Cooling and depressurizing, it is convenient for the gas turbine and the generator set 23 to exhaust inward; meanwhile, the gas in the second telescopic tube 7 enters the Ranke tube 16 through the second exhaust valve 15 and the second pressure control valve 49, via Ranke
  • the high temperature gaseous working medium enters the ejector 22, and the low temperature condensed liquid working medium enters the liquid storage tank 24; the ejector 22 sprays the collected high temperature gas into the gas turbine and the generator set 23 to drive the gas turbine And the generator set 23 generates electricity.
  • the gaseous working fluid after being cooled down by the gas turbine and the generator set 23 is discharged into the first cavity 43 through the outer tubes of the first sub-control valve 12 and the first composite pipe 38;
  • the gas enters the Rankor tube 16 through the outer tube of the second composite pipe 39, the second exhaust valve 15 and the second pressure control valve 49 to perform hot and cold separation, and then the gaseous working medium enters the ejector 22, and the working fluid enters the storage.
  • Liquid tank 24 Liquid tank 24.
  • the liquid working medium in the liquid storage tank 24 enters the first regulating valve 28 via the first sub-control valve 12 along the first liquid supply line.
  • a small portion of the working fluid is separated from the first capillary tube and enters the first cavity 43 through the inner tube of the first composite tube 38 to reduce the temperature and pressure in the first chamber 43 to facilitate the gas turbine and the generator set 23 .
  • the first chamber 43 is exhausted; at the same time, most of the working fluid is separated by the first regulating valve 28 along the first liquid storage line and enters the first energy storage device 26 through the first one-way valve 30 for storage.
  • the working fluid runs synchronously according to the above three aspects. When the hollow piston 5 is moved to the right to the set position and then stopped, the entire system performs the second working step.
  • the second working step the second sub-control valve 14, the second exhaust valve 15 and the second regulating valve 29 are in the working state of the first link.
  • the main control valve 4 is in an open state, and the first gas supply line and the second gas supply line are both disconnected from the evaporator 1;
  • the first sub-control valve 12 is in an open state, blocking the first liquid supply line and the gas turbine And a pipeline between the generator set 23 and the first sub-control valve 12, and the first gas transmission pipeline;
  • the first exhaust valve 13 is in an on state, and the pipeline between the first telescopic pipe 8 and the Ranke pipe 16 can be And the pipeline between the first chamber 43 and the Ranke tube 16 is turned on;
  • the first regulating valve 28 respectively cuts off the passage of the first liquid storage pipeline, the first capillary passage and the first sub-control valve 12, and turns on the first charging
  • the liquid pipeline starts to inject hot water into the second water jacket 10 and the first heat exchanger 19; the hot water supply state of the second heat exchanger 20, the first water jacket 9 and the
  • the first accumulator 26 is stored in the liquid working medium and is rapidly charged into the first chamber 43 along the first liquid filling line via the second check valve 31, the fifth check valve 34 and the first heat exchanger 19. .
  • the time controller can be set.
  • the main control valve 4 acts to enter the third working step; the first mass flow meter 46 can also be installed on the first liquid filling pipeline, and the second A second mass flow meter 47 can be installed on the liquid filling pipeline.
  • the main control valve 4 acts to enter the third work. Link.
  • the third working step the first sub-control valve 12, the first exhaust valve 13 and the first regulating valve 28 keep the working state of the second link unchanged; the main control valve 4 turns on the second gas transmission line and the evaporator 1
  • the first gas transmission line is disconnected;
  • the second sub-control valve 14 is in an on state, so that the second liquid supply line, the gas turbine and the pipeline between the generator set 23 and the second sub-control valve 14 and the second output
  • the gas line is turned on;
  • the second exhaust valve 15 is in an open state, and the pipeline between the second telescopic tube 7 and the Rank tube 16 and the pipeline between the second chamber 44 and the Rank tube 16 are blocked;
  • the regulating valve 29 respectively turns on the second liquid storage line, the second capillary line and the second branch control valve 14 to open the second liquid filling line.
  • the high temperature gas in the evaporator 1 enters the main control valve 4 along the first gas supply line, and the evaporator 1 supplies the second sub control valve 14 through the second gas supply line, and the high temperature gas passes through the main control valve 4 and the first
  • the second sub-control valve 14 enters the second supercharger 40, is boosted by the second supercharger 40, and enters the second telescopic tube 7 to push the hollow piston 5 to the left.
  • the first water jacket 9 and the second The water jacket 10 and the first heat exchanger 19 have the same hot water supply state; the second heat exchanger 20 and the third water jacket 11 both stop supplying hot water; meanwhile, the gas in the first telescopic tube 8 passes through the first row.
  • the gas valve 13 and the first pressure control valve 48 enter the Ranke tube 16, and after the cold and hot separation of the Rankor tube 16, the high temperature gaseous working medium enters the ejector 22, and the condensed liquid working medium enters the liquid storage tank 24;
  • the emitter 22 injects the collected high temperature gas into the gas turbine and the generator set 23 to drive the gas turbine and the generator set 23 to generate electricity.
  • the gaseous working medium after being cooled down by the gas turbine and the generator set 23 is discharged into the second chamber 44 through the outer tubes of the second sub-control valve 14 and the second composite tube 39;
  • the gas enters the Rankor tube 16 through the outer tube of the first composite pipe 38, the first exhaust valve 13 and the first pressure control valve 48 in sequence to perform cold and heat separation, and then the gaseous working medium enters the ejector 22, and the liquid working medium enters the storage.
  • Liquid tank 24 Liquid tank 24.
  • the liquid working medium in the liquid storage tank 24 enters the second regulating valve 29 via the second sub-control valve 14 along the second liquid supply line.
  • a small portion of the working fluid is separated by the second regulating valve 29 along the second capillary tube and into the second cavity 44 through the inner tube of the second composite tube 39, so that the temperature in the second chamber 44 is lowered and lowered, which is convenient for the gas turbine and the generator set 23
  • the second chamber 44 is exhausted; at the same time, most of the working fluid is separated by the second regulating valve 29 along the second liquid storage line and enters the second energy storage device 27 through the fourth one-way valve 42 for storage.
  • the working fluid runs synchronously according to the above three aspects.
  • the main control valve 4 is in an open state, and the first gas supply line and the second gas supply line are both disconnected from the evaporator 1;
  • the first sub-control valve 12 is in an open state, blocking the first liquid supply line and the gas turbine And a pipeline between the generator set 23 and the first sub-control valve 12, and the first gas transmission pipeline;
  • the first exhaust valve 13 is in an on state, and the pipeline between the first telescopic pipe 8 and the Ranke pipe 16 can be And the pipeline between the first chamber 43 and the Ranke tube 16 is turned on;
  • the first regulating valve 28 respectively cuts off the passage of the first liquid storage pipeline, the first capillary passage and the first sub-control valve 12, and turns on the first charging
  • the liquid pipeline starts to inject cold water into the second water jacket 10, the third water jacket 11, the first heat exchanger 19, and the second heat exchanger 20 to discharge the hot water.
  • the second accumulator 27 is stored in the liquid working medium and is charged into the second chamber 44 along the second liquid filling line via the third check valve 41, the sixth check valve 37, and the second heat exchanger 20.
  • the main control valve 4 acts to re-enter the first working link.
  • the gaseous working medium flowing through the first supercharger 33 and the second supercharger 40 a small portion of which is returned to the return port of the first supercharger 33 and the second supercharger 40 Inside the liquid tank 24. Since the first supercharger 33 and the second supercharger 40 return the gaseous working medium of the liquid storage tank 24 to have a higher temperature and pressure, the first supercharger 33 and the second supercharger 40 are returned to the pipeline.
  • Loads such as an airflow accelerator, a Rankor tube, and an air motor can be installed to cool the refluxed gaseous working fluid and then return to the liquid storage tank 24.
  • the seventh check valve 32 is installed on the line between the Ranker tube 16 and the ejector 22, and the eighth check valve 45 is installed on the liquid supply line of the liquid storage tank 24 and the evaporator 1.
  • a circulation pump 25 can be installed on the liquid supply line of the liquid storage tank 24.
  • a third heat exchanger 21 is installed on the two low-temperature gas pipelines of the gas turbine and the generator set 23, and the casing of the third heat exchanger 21 is connected to the two low-temperature gas pipelines;
  • the coils of the three heat exchangers 21 are respectively connected to the two liquid supply lines of the liquid storage tank 24; the gas discharged from the gas turbine and the generator set 23 and the liquid delivered by the liquid storage tank 24 are exchanged in the third heat exchanger 21
  • the heat reduces the temperature of the gaseous working fluid discharged from the gas turbine and the generator set 23 to be more favorable for discharge into the first cavity 43 or the second cavity 44, thereby improving the working efficiency of the entire system.
  • the total control valve 4 is a three-position four-way valve, and the b-end of the main control valve 4 communicates with the first sub-control valve 12 through the first gas transmission line, and the d-end of the main control valve 4 passes through
  • the second gas transmission line is in communication with the second sub-control valve 14, and the a-end and the c-end of the main control valve 4 are respectively communicated with the evaporator 1 through the first gas supply line.
  • the total control valve 4 when the total control valve 4 is in the A state, the system is the first working link, the two ends of the ab are turned on, and the two ends of the cd are disconnected; when the main control valve 4 is in the B state, the system is the second working link.
  • Both ends of ab and cd are disconnected; when the total control valve 4 is in the C state, the system is the third working link, both ends of the ab are disconnected, and both ends of the cd are turned on; the total control valve 4 is switched from the C state to the B state. When the system is the fourth working link, both ends of ab and cd are disconnected.
  • the first sub-control valve 12 and the second sub-control valve 14 are both two-position six-way valves, and the first exhaust valve 13 and the second exhaust valve 15 are both four.
  • the valve, the first regulator valve 28 and the second regulator valve 29 are both two-position four-way valves.
  • the first liquid supply line communicates with the a end of the first regulating valve 28 via the a end and the b end of the first sub-control valve 12, and the first gas supply line passes through the e of the first sub-control valve 12.
  • the end and the f end are connected to the first supercharger 33, and a row of low temperature gas lines of the gas turbine and the generator set 23 are connected to the outer tube of the first composite pipe 38 via the c-end and the d-end of the first sub-control valve 12. .
  • the first telescopic tube 8 is connected to the c-end of the first exhaust valve 13, and the outer tube of the first composite tube 38 is in communication with the b-end of the first exhaust valve 13.
  • the b-end of the first regulator valve 28 is connected to the first reservoir line.
  • the first accumulator 26 communicates with the first heat exchanger 19 via the first and second ends of the first regulator valve 28 through the first liquid-filling line.
  • the second liquid supply line communicates with the a end of the second regulating valve 29 via the a end and the b end of the second sub-control valve 14.
  • the second gas transmission line is connected to the second supercharger 40 via the f-end and the e-end of the second sub-control valve 14, and the other low-temperature gas line of the gas turbine and the generator set 23 is passed through the second sub-control valve 14d.
  • the c-end is connected to the outer tube of the second composite pipe 39.
  • the second telescopic tube 7 is connected to the c-end of the second exhaust valve 15, and the outer tube of the second composite tube 39 is in communication with the b-end of the second exhaust valve 15.
  • the b-end of the second regulator valve 29 is connected to the second reservoir line.
  • the second accumulator 27 communicates with the second heat exchanger 20 via the second and second ends of the second regulator valve 29 through the second liquid-filling line.
  • the main control valve 4, the first sub-control valve 12, the first exhaust valve 13 and the first regulating valve 28 are all in the A state, the second sub-control valve 14, the second exhaust valve 15 and the Both regulator valves 29 are in the B state.
  • the main control valve 4, the first sub-control valve 12, the first exhaust valve 13, the first regulating valve 28, the second sub-control valve 14, the second exhaust valve 15, and the second regulating valve 29 Both are in the B state.
  • the main control valve 4 is in the C state, and the first sub-control valve 12, the first exhaust valve 13 and the first regulating valve 28 are both in the B state, the second sub-control valve 14 and the second exhaust valve. Both 15 and the second regulating valve 29 are in the A state.
  • a first voltage regulator package 17 is connected in series with the connection line between the first exhaust valve 13 and the Rankor tube 16; a second voltage regulator package is connected in series with the connection line between the second exhaust valve 15 and the Rankor tube 16 18.
  • the first chamber 43 is provided with a first stroke switch 35
  • the second chamber 44 is provided with a second stroke switch 36; as shown in FIG.
  • the first stroke switch 35 or the second stroke switch 36 can be activated.
  • the master control valve 4 is switched to the B state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种蒸汽动力循环发电系统,包括升压机,升压机由空心活塞、壳体、两根伸缩管和两个换热器连接构成;壳体内安装空心活塞,空心活塞将壳体的内腔分为两个腔;两个腔内各安装一根伸缩管;两伸缩管的内端共同与空心活塞连接;两伸缩管的外端分别穿出壳体外;壳体的两端各安装一根复合管;第一换热器的盘管通过第五单向阀与第一复合管的内管相通,第二换热器的盘管通过第六单向阀与第二复合管的内管相通;总控阀通过蒸发器的第一供气管路与蒸发器连接;总控阀通过第一输气管依次经第一分控阀、第一增压器与第一伸缩管连接,总控阀通过第二输气管依次经第二分控阀、第二增压器与第二伸缩管连接。

Description

蒸汽动力循环发电系统 技术领域
   本发明涉及一种发电系统,确切地说是一种蒸汽动力循环发电系统。
背景技术
  现有的主要发电系统中,风力发电系统或水力发电系统都受地域限制,难以大范围推广;而火力发电系统,不仅会消耗大量的煤炭资源,更会带来严重的环境污染问题。目前,还没有一种能利用太阳能和低温加热能作为热源加热低温工质,以产生蒸汽推动气轮机和发电机组发电的系统。所述低温加热能是指厂矿企业中的余热、广大农村和边远地区燃烧农作物秸秆的热量,以及城镇居民小区集中供热的余热。由于太阳能和低温加热能的总量大,且因无法利用而白白浪费,因此,目前急需研发一种可充分利用太阳能和低温加热能的小型发电系统。
发明内容
   本发明的目的,是提供一种蒸汽动力循环发电系统,它是可利用太阳能和低温加热能作为热源加热低温工质,以产生蒸汽推动气轮机及发电机组发电的小型发电系统,可解决现有技术存在的问题。
   本发明的目的是通过以下技术方案实现的:蒸汽动力循环发电系统,包括升压机、总控阀、第一换热器和第二换热器,升压机由空心活塞、壳体、第二伸缩管、第一伸缩管、第一换热器和第二换热器连接构成;空心活塞的两侧各设有一个气腔,两气腔不通,壳体内安装空心活塞,空心活塞将壳体的内腔分为第一腔和第二腔;第一腔内安装第一伸缩管,第二腔内安装第二伸缩管;第二伸缩管和第一伸缩管的内端共同与空心活塞连接;第二伸缩管内端与空心活塞的一个气腔相通,第一伸缩管的内端与空心活塞的另一个气腔相通;第二伸缩管和第一伸缩管的外端分别穿出壳体外;壳体的一端安装第二复合管,壳体的另一端安装第一复合管;第一复合管与第一腔相通,第二复合管与第二腔相通;第一换热器的盘管通过第五单向阀与第一复合管的内管相通,第二换热器的盘管通过第六单向阀与第二复合管的内管相通;壳体的外周设有第一水套,第二水套和第三水套,第二水套和第三水套分别位于第一水套两侧;总控阀通过蒸发器的第一供气管路与蒸发器连接;总控阀通过第一输气管依次经第一分控阀、第一增压器与第一伸缩管连接,总控阀通过第二输气管依次经第二分控阀、第二增压器与第二伸缩管连接;第一增压器和第二增压器的回气口各通过一根管路与储液罐连接,第二伸缩管通过管路经第二排气阀和第二压控阀与兰克管相通;第一伸缩管通管路经第一排气阀和第一压控阀与兰克管连接;兰克管的排气口与引射器连接,兰克管的排液口与储液罐连接;引射器与气轮机及发电机组连接,气轮机及发电机组通过两根排低温气管路分别与第一分控阀和第二分控阀连接;第一分控阀与第一复合管的外管连接,第二分控阀与第二增压器的外管连接;储液罐通过补液管路与蒸发器连接,蒸发器内安装加热盘管;储液罐通过第一供液管路经第一分控阀与第一调节阀连接,第一调节阀通过第一毛细管与第一复合管的内管连接,第一调节阀通过第一储液管路经第一单向阀与第一储能器连接,第一储能器通过第一充液管路经第二单向阀和第一调节阀与第一换热器连接,第一换热器经第五单向阀与第一复合管内管连接;储液罐通过第二供液管路经第二分控阀与第二调节阀连接,第二调节阀通过第二储液管路经第四单向阀与第二储能器连接,第二调节阀通过第二毛细管与第二复合管的内管连接,第二储能器通过第三单向阀和第二调节阀与第二换热器连接,第二换热器经第六单向阀与第二复合管的内管连接;总控阀能在对第一分控阀供气、对第二分控阀供气和断开三种状态间切换;蒸发器通过第二供气管路与引射器连接。
   为进一步实现本发明的目的,还可以采用以下技术方案实现:所述气轮机及发电机组的两根排低温气管路上共同安装一个第三换热器,第三换热器的壳体与两根排低温气管路相通;第三换热器的盘管分别与储液罐的两条供液管路连接相通;气轮机及发电机组排出的气体与储液罐输送的液体在第三换热器内换热。所述总控阀是三位四通阀,总控阀的b端通过第一输气管路与第一分控阀相通,总控阀的d端通过第二输气管路与第二分控阀相通,总控阀的a端和c端分别通过第一供气管路与蒸发器相通。所述第一分控阀和第二分控阀均是二位六通阀,第一排气阀和第二排气阀均是二位四通阀,第一调节阀和第二调节阀均是两位四通阀。所述第一排气阀与兰克管间的连接管路上串联第一稳压包;所述第二排气阀与兰克管间的连接管路上串联第二稳压包。所述第一腔内设有第一行程开关,第二腔内安装第二行程开关;空心活塞移至第一腔或第二腔的极限位置时,能触动第一行程开关或第二行程开关。
   本发明的积极效果在于:它以太阳能和低温加热能作为热源加热低温工质,并利用低温工质的蒸发和冷凝所转化出的能量推动气轮机及发电机组运转发电,从技术层面上确保了蒸发利用低品位热源,冷凝采用兰克管机械分离的方法。既不受地域的局限,又可节省大量的煤炭资源,避免环境污染,可真正实现绿色环保发电。本发明还具有造价低、安装和操控方便的优点。
附图说明
   图1是本发明所述的蒸汽动力循环发电系统的主视结构示意图;图2是图1的I局部放大结构示意图;图3是图1的II局部放大结构示意图。
   附图标记:1蒸发器 2加热盘管 3喷淋装置 4总控阀 5空心活塞 6壳体 7第二伸缩管 8第一伸缩管 9第一水套 10第二水套 11第三水套 12第一分控阀 13第一排气阀 14第二分控阀 15第二排气阀 16兰克管 17第一稳压包 18第二稳压包 19第一换热器 20第二换热器 21第三换热器 22引射器 23气轮机及发电机组 24储液罐 25循环泵 26第一储能器 27第二储能器 28第一调节阀 29第二调节阀 30第一单向阀 31第二单向阀 32第七单向阀 33第一增压器 34第五单向阀 35第一行程开关 36第二行程开关 37第六单向阀 38第一复合管 39第二复合管 40第二增压器 41第三单向阀 42第四单向阀 43第一腔 44第二腔 45第八单向阀 46第一质量流量计 47第二质量流量计 48第一压控阀 49第二压控阀。
具体实施方式
   本发明所述的蒸汽动力循环发电系统,包括升压机、总控阀4、第一换热器19和第二换热器20。如图1所示,升压机由空心活塞5、壳体6、第二伸缩管7、第一伸缩管8、第一换热器19和第二换热器20连接构成。空心活塞5的两侧各设有一个气腔,两气腔不通,壳体6内安装空心活塞5,空心活塞5能沿壳体6移动。空心活塞5将壳体6的内腔分为第一腔43和第二腔44。第一腔43内安装第一伸缩管8,第二腔44内安装第二伸缩管7。第二伸缩管7和第一伸缩管8的内端共同与空心活塞5连接,第二伸缩管7内端与空心活塞5的一个气腔相通,第一伸缩管8的内端与空心活塞5的另一个气腔相通;第二伸缩管7和第一伸缩管8的外端分别穿出壳体6外。壳体6的一端安装第二复合管39,壳体6的另一端安装第一复合管38;第一复合管38与第一腔43相通,第二复合管39与第二腔44相通。如图2所示,第一换热器19的盘管通过第五单向阀34与第一复合管38的内管相通,如图3所示,第二换热器20的盘管通过第六单向阀37与第二复合管39的内管相通。如图1所示,壳体6的外周设有第一水套9,第二水套10和第三水套11,第二水套10和第三水套11分别位于第一水套9两侧。总控阀4通过蒸发器1的第一供气管路与蒸发器1连接。如图1和图2所示,总控阀4通过第一输气管依次经第一分控阀12、第一增压器33与第一伸缩管8连接。如图1和图3所示,总控阀4通过第二输气管依次经第二分控阀14、第二增压器40与第二伸缩管7连接。如图1所示,第一增压器33和第二增压器40的回气口各通过一根管路与储液罐24连接。第二伸缩管7通过管路经第二排气阀15和第二压控阀49与兰克管16相通;第一伸缩管8通管路经第一排气阀13和第一压控阀48与兰克管16连接。第一压控阀48和第二压控阀49可控制管路,当管内的压力超过第一压控阀48和第二压控阀49的设定值时,第一压控阀48和第二压控阀49才可打开使管路畅通。兰克管16的排气口与引射器22连接,兰克管16的排液口与储液罐24连接。引射器22与气轮机及发电机组23连接。如图1、图2和图3所示,气轮机及发电机组23通过两根排低温气管路分别与第一分控阀12和第二分控阀14连接。如图2所示,第一分控阀12与第一复合管38的外管连接;如图3所示,第二分控阀14与第二增压器40的外管连接。如图1所示,储液罐24通过补液管路与蒸发器1连接,蒸发器1内安装加热盘管2。如图1和2所示,储液罐24通过第一供液管路经第一分控阀12与第一调节阀28连接,第一调节阀28通过第一毛细管与第一复合管38的内管连接,第一调节阀28通过第一储液管路经第一单向阀30与第一储能器26连接,第一储能器26通过第一充液管路经第二单向阀31和第一调节阀28与第一换热器19连接。如图2所示,第一换热器19经第五单向阀34与第一复合管38内管连接。如图1和3所示,储液罐24通过第二供液管路经第二分控阀14与第二调节阀29连接,如图3所示,第二调节阀29通过第二储液管路经第四单向阀42与第二储能器27连接,第二调节阀29通过第二毛细管与第二复合管39的内管连接,第二储能器27通过第三单向阀41和第二调节阀29与第二换热器20连接,第二换热器20经第六单向阀37与第二复合管39的内管连接。如图1所示,总控阀4能在对第一分控阀12供气、对第二分控阀14供气和断开三种状态间切换;蒸发器1通过第二供气管路与引射器22连接。为增大储液罐24经补液管路补入蒸发器1内的液态工质的受热面积,以便提高工质气化的效率,蒸发器1内安装喷淋装置3。
   工作时,将加热盘管2和第一水套9与太阳能热水器的水箱通过管路连接,使水箱内的热水进入加热盘管2和第一水套9内放热,为工质推动气轮机及发电机组23发电提供动力供热。加热盘管2内的热水也可由其他低温加热能提供。
   所述发电系统的工作过程包括四个基本的工作环节,四个工作环节依次循环往复构成整个工作过程。下面以图1所示为初始状态描述工作过程:
   第一工作环节:总控阀4使第一输气管路与蒸发器1导通,第二输气管路断开;第二分控阀14处于断开状态,阻断第二供液管路、气轮机及发电机组23与第二分控阀14间的管路,以及第二输气管路;第二排气阀15处于导通状态,可使第二伸缩管7与兰克管16间管路,以及第二腔44与兰克管16间的管路导通;第二调节阀29分别切断第二储液管路、第二毛细管路与第二分控阀14的通路,导通第二充液管路;第一分控阀12导通状态,第一供液管路、气轮机及发电机组23与第一分控阀12间的管路,以及第一输气管路均畅通;第一排气阀13处于断开状态,可阻断第一伸缩管8与兰克管16间管路,以及第一腔43与兰克管16间的管路;第一调节阀28分别导通第一储液管路、第一毛细管路与第一分控阀12的通路,切断第一充液管路。
   一方面,加热盘管2加热蒸发器1内的低温工质,使其气化为高温气体。高温气体一路经第二供气管路进入引射器22内;另一路沿第一供气管路进入总控阀4,蒸发器1通第一输气管路对第一分控阀12供气,高温气体经总控阀4和第一分控阀12进入第一增压器33,经第一增压器33升压后进入第一伸缩管8,推动空心活塞5向右移动,此过程中,第二换热器20、第一水套9和第三水套11均通入太阳能加热的热水;第一换热器19和第二水套10内停止热水输入,以便第一腔43降温降压,方便气轮机及发电机组23向内排气;同时,第二伸缩管7内的气体经第二排气阀15和第二压控阀49进入兰克管16内,经兰克管16冷热分离后,高温气态工质进入引射器22,低温冷凝的液态工质进入储液罐24;引射器22将收集的高温气体喷入气轮机及发电机组23,推动气轮机及发电机组23发电。另一方面,经气轮机及发电机组23降压降温后的气态工质,经第一分控阀12和第一复合管38的外管排入第一腔43内;第二腔44内的气体依次经第二复合管39的外管、第二排气阀15和第二压控阀49进入兰克管16进行冷热分离,之后气态工质进入引射器22,工质液体进入储液罐24。第三方面,储液罐24内的液态工质沿第一供液管路,经第一分控阀12进入第一调节阀28。由第一调节阀28处分出少部分工质沿第一毛细管并经第一复合管38内管进入第一腔43内,以使第一腔43内降温降压,便于气轮机及发电机组23向第一腔43内排气;同时由第一调节阀28处分出大部分工质沿第一储液管路并经第一单向阀30进入第一储能器26内储存。工质按上述三方面同步运行。当空心活塞5向右移动至设定位置后停止,整个系统进行第二工作环节。
   第二工作环节:第二分控阀14、第二排气阀15和第二调节阀29处于第一环节的工作状态。总控阀4处于断开状态,第一输气管路和第二输气管路均与蒸发器1断开;第一分控阀12处于断开状态,阻断第一供液管路、气轮机及发电机组23与第一分控阀12间的管路,以及第一输气管路;第一排气阀13处于导通状态,可使第一伸缩管8与兰克管16间管路,以及第一腔43与兰克管16间的管路导通;第一调节阀28分别切断第一储液管路、第一毛细管路与第一分控阀12的通路,导通第一充液管路;开始向第二水套10和第一换热器19内注入热水;第二换热器20、第一水套9和第三水套11的供热水状态不变。第一储能器26内储存在液态工质,会沿第一充液管路经第二单向阀31、第五单向阀34和第一换热器19快速充入第一腔43内。可设置时间控制器,当第二工作环节运行达到设定时间时,总控阀4动作,进入第三工作环节;也可在第一充液管路上可安装第一质量流量计46,第二充液管路上可安装第二质量流量计47,当第一质量流量计46或第二质量流量计47测得液态工质的流量达到设定值时,总控阀4动作,进入第三工作环节。
   第三工作环节:第一分控阀12、第一排气阀13和第一调节阀28保持第二环节的工作状态不变;总控阀4使第二输气管路与蒸发器1导通,第一输气管路断开;第二分控阀14处于导通状态,使第二供液管路、气轮机及发电机组23与第二分控阀14间的管路,以及第二输气管路导通;第二排气阀15处于断开状态,可阻断第二伸缩管7与兰克管16间管路,以及第二腔44与兰克管16间的管路;第二调节阀29分别使第二储液管路、第二毛细管路与第二分控阀14的管路导通,断开第二充液管路。
   一方面,蒸发器1内的高温气体沿第一供气管路进入总控阀4,蒸发器1通过第二输气管路对第二分控阀14供气,高温气体经总控阀4和第二分控阀14进入第二增压器40,经第二增压器40升压后进入第二伸缩管7,推动空心活塞5向左移动,此过程中,第一水套9、第二水套10、第一换热器19的供热水状态不变;第二换热器20和第三水套11都停供热水;同时,第一伸缩管8内的气体经第一排气阀13和第一压控阀48进入兰克管16内,经兰克管16冷热分离后,高温气态工质进入引射器22,冷凝后的液态工质进入储液罐24;引射器22将收集的高温气体喷入气轮机及发电机组23,推动气轮机及发电机组23发电。另一方面,经气轮机及发电机组23降压降温后的气态工质,经第二分控阀14和第二复合管39的外管排入第二腔44内;第一腔43内的气体依次经第一复合管38的外管、第一排气阀13和第一压控阀48进入兰克管16进行冷热分离,之后气态工质进入引射器22,液态工质进入储液罐24。第三方面,储液罐24内的液态工质沿第二供液管路,经第二分控阀14进入第二调节阀29。由第二调节阀29处分出少部分工质沿第二毛细管并经第二复合管39内管进入第二腔44内,以使第二腔44内降温降压,便于气轮机及发电机组23向第二腔44内排气;同时由第二调节阀29处分出大部分工质沿第二储液管路并经第四单向阀42进入第二储能器27内储存。工质按上述三方面同步运行。当空心活塞5向左移动至设定位置后停止时,总控阀4动作,系统进行第四工作环节。
   第四工作环节:第二分控阀14、第二排气阀15和第二调节阀29处于第一环节的工作状态。总控阀4处于断开状态,第一输气管路和第二输气管路均与蒸发器1断开;第一分控阀12处于断开状态,阻断第一供液管路、气轮机及发电机组23与第一分控阀12间的管路,以及第一输气管路;第一排气阀13处于导通状态,可使第一伸缩管8与兰克管16间管路,以及第一腔43与兰克管16间的管路导通;第一调节阀28分别切断第一储液管路、第一毛细管路与第一分控阀12的通路,导通第一充液管路;开始向第二水套10、第三水套11、第一换热器19和第二换热器20内注入冷水,排出热水。第二储能器27内储存在液态工质,会沿第二充液管路经第三单向阀41、第六单向阀37和第二换热器20充入第二腔44内。当第四工作环节运行达到设定时间时,或当第二质量流量计47测得液态工质的流量达到设定值时,总控阀4动作,重新进入第一工作环节。
   系统的整个工作过程中,流经第一增压器33和第二增压器40的气态工质,其中少部分由第一增压器33和第二增压器40的回气口流回储液罐24内。由于第一增压器33和第二增压器40回流储液罐24的气态工质具有较高的温度和压力,因此,第一增压器33和第二增压器40回流的管路上可安装气流加速器、兰克管和气马达等负载,使回流的气态工质做功降温后再回流至储液罐24内。
   为防止工质逆向流动,兰克管16与引射器22间的管路上安装第七单向阀32,储液罐24与蒸发器1的补液管路上安装第八单向阀45。为更利于储液罐24内的液态工质排出,储液罐24供液管路上可安装循环泵25。
   如图1所示,所述气轮机及发电机组23的两根排低温气管路上共同安装一个第三换热器21,第三换热器21的壳体与两根排低温气管路相通;第三换热器21的盘管分别与储液罐24的两条供液管路连接相通;气轮机及发电机组23排出的气体与储液罐24输送的液体在第三换热器21内换热,使气轮机及发电机组23排出的气态工质降压降温,以更有利于排入第一腔43或第二腔44内,从而,提高整个系统的工作效率。
   如图1所示,所述总控阀4是三位四通阀,总控阀4的b端通过第一输气管路与第一分控阀12相通,总控阀4的d端通过第二输气管路与第二分控阀14相通,总控阀4的a端和c端分别通过第一供气管路与蒸发器1相通。如图1所示,总控阀4为A状态时,系统为第一工作环节,ab两端导通,cd两端断开;总控阀4为B状态时,系统为第二工作环节,ab两端及cd两端均断开;总控阀4为C状态时,系统为第三工作环节,ab两端断开,cd两端导通;总控阀4由C状态切换为B状态时,系统为第四工作环节,ab两端及cd两端均断开。
   如图2和图3所示,所述第一分控阀12和第二分控阀14均是二位六通阀,第一排气阀13和第二排气阀15均是二位四通阀,第一调节阀28和第二调节阀29均是两位四通阀。如图2所示,第一供液管路经第一分控阀12的a端和b端与第一调节阀28的a端相通,第一输气管路经第一分控阀12的e端和f端与第一增压器33连接相通,气轮机及发电机组23的一根排低温气管路经第一分控阀12的c端和d端与第一复合管38的外管连接。第一伸缩管8与第一排气阀13的c端连接,第一复合管38的外管与第一排气阀13的b端相通。第一调节阀28的b端与第一储液管路连接。第一储能器26通过第一充液管路经第一调节阀28的d端和c端与第一换热器19相通。
   如图3所示,第二供液管路经第二分控阀14的a端和b端与第二调节阀29的a端相通。第二输气管路经第二分控阀14的f端和e端与第二增压器40连接相通,气轮机及发电机组23的另一根排低温气管路经第二分控阀14d端和c端与第二复合管39的外管连接。第二伸缩管7与第二排气阀15的c端连接,第二复合管39的外管与第二排气阀15的b端相通。第二调节阀29的b端与第二储液管路连接。第二储能器27通过第二充液管路经第二调节阀29的d端和c端与第二换热器20相通。
   第一工作环节中,总控阀4、第一分控阀12、第一排气阀13和第一调节阀28均处于A状态,第二分控阀14、第二排气阀15和第二调节阀29均处于B状态。第二工作环节中,总控阀4、第一分控阀12、第一排气阀13、第一调节阀28、第二分控阀14、第二排气阀15和第二调节阀29均处于B状态。第三工作环节中,总控阀4处于C状态,第一分控阀12、第一排气阀13和第一调节阀28均处于B状态,第二分控阀14、第二排气阀15和第二调节阀29均处于A状态。
   为确保进入兰克管16内的气压稳定。所述第一排气阀13与兰克管16间的连接管路上串联第一稳压包17;所述第二排气阀15与兰克管16间的连接管路上串联第二稳压包18。
   为实现自动控制总控阀4切换状态,如图2所示,所述第一腔43内设有第一行程开关35,第二腔44内安装第二行程开关36;如图3所示,空心活塞5移至第一腔43或第二腔44的极限位置时,能触动第一行程开关35或第二行程开关36。无论空心活塞5触动第一行程开关35还是第二行程开关36,总控阀4会切换为B状态。
本发明所述的技术方案并不限制于本发明所述的实施例的范围内。本发明未详尽描述的技术内容均为公知技术。

Claims (6)

  1.    蒸汽动力循环发电系统,其特征在于:包括升压机、总控阀(4)、第一换热器(19)和第二换热器(20),升压机由空心活塞(5)、壳体(6)、第二伸缩管(7)、第一伸缩管(8)、第一换热器(19)和第二换热器(20)连接构成;空心活塞(5)的两侧各设有一个气腔,两气腔不通,壳体(6)内安装空心活塞(5),空心活塞(5)将壳体(6)的内腔分为第一腔(43)和第二腔(44);第一腔(43)内安装第一伸缩管(8),第二腔(44)内安装第二伸缩管(7);第二伸缩管(7)和第一伸缩管(8)的内端共同与空心活塞(5)连接;第二伸缩管(7)内端与空心活塞(5)的一个气腔相通,第一伸缩管(8)的内端与空心活塞(5)的另一个气腔相通;第二伸缩管(7)和第一伸缩管(8)的外端分别穿出壳体(6)外;壳体(6)的一端安装第二复合管(39),壳体(6)的另一端安装第一复合管(38);第一复合管(38)与第一腔(43)相通,第二复合管(39)与第二腔(44)相通;第一换热器(19)的盘管通过第五单向阀(34)与第一复合管(38)的内管相通,第二换热器(20)的盘管通过第六单向阀(37)与第二复合管(39)的内管相通;壳体(6)的外周设有第一水套(9),第二水套(10)和第三水套(11),第二水套(10)和第三水套(11)分别位于第一水套(9)两侧;总控阀(4)通过蒸发器(1)的第一供气管路与蒸发器(1)连接;总控阀(4)通过第一输气管依次经第一分控阀(12)、第一增压器(33)与第一伸缩管(8)连接,总控阀(4)通过第二输气管依次经第二分控阀(14)、第二增压器(40)与第二伸缩管(7)连接;第一增压器(33)和第二增压器(40)的回气口各通过一根管路与储液罐(24)连接,第二伸缩管(7)通过管路经第二排气阀(15)和第二压控阀(49)与兰克管(16)相通;第一伸缩管(8)通管路经第一排气阀(13)和第一压控阀(48)与兰克管(16)连接;兰克管(16)的排气口与引射器(22)连接,兰克管(16)的排液口与储液罐(24)连接;引射器(22)与气轮机及发电机组(23)连接,气轮机及发电机组(23)通过两根排低温气管路分别与第一分控阀(12)和第二分控阀(14)连接;第一分控阀(12)与第一复合管(38)的外管连接,第二分控阀(14)与第二增压器(40)的外管连接;储液罐(24)通过补液管路与蒸发器(1)连接,蒸发器(1)内安装加热盘管(2);储液罐(24)通过第一供液管路经第一分控阀(12)与第一调节阀(28)连接,第一调节阀(28)通过第一毛细管与第一复合管(38)的内管连接,第一调节阀(28)通过第一储液管路经第一单向阀(30)与第一储能器(26)连接,第一储能器(26)通过第一充液管路经第二单向阀(31)和第一调节阀(28)与第一换热器(19)连接,第一换热器(19)经第五单向阀(34)与第一复合管(38)内管连接;储液罐(24)通过第二供液管路经第二分控阀(14)与第二调节阀(29)连接,第二调节阀(29)通过第二储液管路经第四单向阀(42)与第二储能器(27)连接,第二调节阀(29)通过第二毛细管与第二复合管(39)的内管连接,第二储能器(27)通过第三单向阀(41)和第二调节阀(29)与第二换热器(20)连接,第二换热器(20)经第六单向阀(37)与第二复合管(39)的内管连接;总控阀(4)能在对第一分控阀(12)供气、对第二分控阀(14)供气和断开三种状态间切换;蒸发器(1)通过第二供气管路与引射器(22)连接。
  2. 根据权利要求1所述的蒸汽动力循环发电系统,其特征在于:所述气轮机及发电机组(23)的两根排低温气管路上共同安装一个第三换热器(21),第三换热器(21)的壳体与两根排低温气管路相通;第三换热器(21)的盘管分别与储液罐(24)的两条供液管路连接相通;气轮机及发电机组(23)排出的气体与储液罐(24)输送的液体在第三换热器(21)内换热。
  3. 根据权利要求1所述的蒸汽动力循环发电系统,其特征在于:所述总控阀(4)是三位四通阀,总控阀(4)的b端通过第一输气管路与第一分控阀(12)相通,总控阀(4)的d端通过第二输气管路与第二分控阀(14)相通,总控阀(4)的a端和c端分别通过第一供气管路与蒸发器(1)相通。
  4.    根据权利要求1所述的蒸汽动力循环发电系统,其特征在于:所述第一分控阀(12)和第二分控阀(14)均是二位六通阀,第一排气阀(13)和第二排气阀(15)均是二位四通阀,第一调节阀(28)和第二调节阀(29)均是两位四通阀。
  5. 根据权利要求1所述的蒸汽动力循环发电系统,其特征在于:所述第一排气阀(13)与兰克管(16)间的连接管路上串联第一稳压包(17);所述第二排气阀(15)与兰克管(16)间的连接管路上串联第二稳压包(18)。
  6.    根据权利要求1所述的蒸汽动力循环发电系统,其特征在于:所述第一腔(43)内设有第一行程开关(35),第二腔(44)内安装第二行程开关(36);空心活塞(5)移至第一腔(43)或第二腔(44)的极限位置时,能触动第一行程开关(35)或第二行程开关(36)。
PCT/CN2013/074155 2012-04-23 2013-04-12 蒸汽动力循环发电系统 WO2013159653A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201220173429.7 2012-04-23
CN 201220173429 CN202560491U (zh) 2012-04-23 2012-04-23 蒸汽动力循环发电系统

Publications (1)

Publication Number Publication Date
WO2013159653A1 true WO2013159653A1 (zh) 2013-10-31

Family

ID=47210154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074155 WO2013159653A1 (zh) 2012-04-23 2013-04-12 蒸汽动力循环发电系统

Country Status (2)

Country Link
CN (1) CN202560491U (zh)
WO (1) WO2013159653A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102852740B (zh) * 2012-04-23 2014-08-20 安瑞生 蒸汽动力循环发电系统
CN202560491U (zh) * 2012-04-23 2012-11-28 安瑞生 蒸汽动力循环发电系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026509A1 (es) * 1998-11-03 2000-05-11 Francisco Moreno Meco Motor de fluidos con bajo punto de evaporacion
CN101614139A (zh) * 2009-07-31 2009-12-30 王世英 多循环发电热力系统
CN101676525A (zh) * 2008-09-17 2010-03-24 北京丸石有机肥有限公司 低温气体能量转换方法及其装置
EP2360376A1 (en) * 2008-07-10 2011-08-24 Chung Ho Chang A device producing energy through the temperature difference of fluids
CN202560491U (zh) * 2012-04-23 2012-11-28 安瑞生 蒸汽动力循环发电系统
CN102852740A (zh) * 2012-04-23 2013-01-02 安瑞生 蒸汽动力循环发电系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026509A1 (es) * 1998-11-03 2000-05-11 Francisco Moreno Meco Motor de fluidos con bajo punto de evaporacion
EP2360376A1 (en) * 2008-07-10 2011-08-24 Chung Ho Chang A device producing energy through the temperature difference of fluids
CN101676525A (zh) * 2008-09-17 2010-03-24 北京丸石有机肥有限公司 低温气体能量转换方法及其装置
CN101614139A (zh) * 2009-07-31 2009-12-30 王世英 多循环发电热力系统
CN202560491U (zh) * 2012-04-23 2012-11-28 安瑞生 蒸汽动力循环发电系统
CN102852740A (zh) * 2012-04-23 2013-01-02 安瑞生 蒸汽动力循环发电系统

Also Published As

Publication number Publication date
CN202560491U (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
CN110469835B (zh) 基于吸收式热泵和蓄热设备的热电解耦系统及运行方法
CN108224535B (zh) 一种火电厂热电联产与压缩空气储能互补集成系统
CN107514667A (zh) 采用电动热泵实现热电厂跨季节蓄热放热的集中供热系统
CN112762424B (zh) 一种基于储热和压缩式热泵相结合的太阳能热电解耦系统及其运行方法
CN203549973U (zh) 热源再利用集成换热机组
CN107461954B (zh) 一种太阳能光伏冷热电联供的复合能源系统
CN114592932A (zh) 一种冷、热、电三联产压缩空气储能系统及其控制方法
CN202073603U (zh) 一种压缩空气储能系统
CN210050873U (zh) 一种梯级蓄热式太阳能与地源热泵复合供暖系统
CN203068701U (zh) 多功能单效氨水吸收式太阳能空调装置
WO2013159653A1 (zh) 蒸汽动力循环发电系统
CN114294847A (zh) 浅层地埋管与中深层地埋管耦合冷热源系统及其控温方法
CN213480347U (zh) 一种太阳能跨季节储热供热系统
CN203584697U (zh) 模块式太阳能光热梯级利用系统
CN111811206A (zh) 一种燃气冷热电三联供分布式能源系统
CN102852740B (zh) 蒸汽动力循环发电系统
CN204574604U (zh) 一种生物质驱动的新型有机郎肯循环冷热电三联供系统
CN207513691U (zh) 一种太阳能与压缩空气耦合储能的chp集成装置
WO2013166900A1 (zh) 蒸汽动力循环吸、压、胀、排驱动装置
CN212619658U (zh) 一种燃气冷热电三联供分布式能源系统
CN201476652U (zh) 蓄热式双向换热器
CN209840233U (zh) 空冷高背压机组利用低位能供热制冷联合系统
CN210399124U (zh) 一种主被动式能源与相变蓄能耦合供能系统
CN103697523A (zh) 热泵型增热换热机组
CN113062846A (zh) 多源紧凑型蓄热式压缩空气储能综合利用系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/03/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13781165

Country of ref document: EP

Kind code of ref document: A1