WO2013159547A1 - 无线充电方法及装置 - Google Patents

无线充电方法及装置 Download PDF

Info

Publication number
WO2013159547A1
WO2013159547A1 PCT/CN2012/087056 CN2012087056W WO2013159547A1 WO 2013159547 A1 WO2013159547 A1 WO 2013159547A1 CN 2012087056 W CN2012087056 W CN 2012087056W WO 2013159547 A1 WO2013159547 A1 WO 2013159547A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
electrode
circuit
wireless charging
contact
Prior art date
Application number
PCT/CN2012/087056
Other languages
English (en)
French (fr)
Inventor
麦华彬
Original Assignee
深圳市非凡创新实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市非凡创新实业有限公司 filed Critical 深圳市非凡创新实业有限公司
Priority to US14/396,558 priority Critical patent/US20150108944A1/en
Publication of WO2013159547A1 publication Critical patent/WO2013159547A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection

Definitions

  • the present invention relates to a charging device, and more particularly to a wireless charging method and device.
  • the technical problem to be solved by the present invention is to provide a wireless charging method and apparatus which are convenient to use and versatile.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: constructing a wireless charging method, comprising the following steps:
  • the micro voltage is applied to the electrode to be in a state to be detected.
  • step S2 when the electrode contacts the conductive contact, the micro voltage on the electrode changes, thereby judging that the conductive contact is in contact.
  • the plurality of electrodes are;
  • the other electrodes are sequentially scanned with the electrode contacting the conductive contacts as a reference, and the electrodes short-circuited with the reference electrode are set to the same polarity, and The electrode that is not shorted to the electrode as the reference is set to the other polarity.
  • each of the electrodes is connected with a positive switch circuit and a negative switch circuit;
  • step S4 according to the polarity set in the step S3, the corresponding positive switch circuit or the negative switch circuit connected to the electrode is controlled to be turned on, and the power receiving device is connected to the power source.
  • the present invention also provides a wireless charging device comprising at least two electrodes disposed separately for contacting electrical contacts of a power receiving device, and all of the electrodes electrically connected to the electrodes and in contact with the conductive contacts
  • the power supply circuit that supplies the correlation of the electrodes.
  • the power supply circuit includes a detection circuit, a switch circuit, a control circuit, and a power supply circuit connected to the detection circuit, the switch circuit, and the control circuit;
  • the detecting circuit is electrically connected to each of the electrodes for detecting whether the electrode has a conductive contact and contacting it;
  • the switch circuit is electrically connected to each of the electrodes for turning on or off power supply of the electrodes;
  • the control circuit is connected to the detecting circuit and the switch circuit, and is configured to send a control signal to the switch circuit according to whether each of the electrodes detected by the detecting circuit has a conductive contact in contact with the switch circuit, and control each device The electrode is turned on or off from the power supply circuit.
  • the control circuit includes a detection setting module for scanning the other electrodes based on the one of the electrodes having the conductive contacts in contact, and is short with the reference electrode
  • the connected electrodes are set to the same polarity, and the other electrode that is not short-circuited with the reference electrode is set to another polarity;
  • a control module configured to output a switch control signal to the switch circuit according to the result set by the detection setting module.
  • the switching circuit includes a positive switching circuit and a negative switching circuit that are simultaneously connected to each of the electrodes;
  • the detecting circuit includes a plurality of detecting units, and each of the detecting units is electrically connected to one of the electrodes;
  • the positive switch circuit includes a plurality of positive switch units, and each of the positive switch units is electrically connected to one of the electrodes;
  • the negative switch circuit includes a plurality of negative switch units, and each of the negative switch units is electrically connected to one of the electrodes;
  • the control circuit controls the positive switch unit and the negative switch unit connected to the same electrode to be selectively turned on or off at the same time.
  • the electrode is integrated with the power supply circuit, or the electrode is disposed separately from the power supply circuit and is electrically connected by a wire or a contact.
  • the invention has the following beneficial effects: by detecting the state of the conductive contacts on the electrodes of the wireless charging device, whether the electrodes are energized, polarity, etc., can automatically match the correlation between the electrodes and the conductive contacts, so that the power receiving The device can be placed on the wireless charging device at will, and the power supply can be completed, which has the advantages of convenient use and good versatility.
  • a plurality of power receiving devices can be simultaneously placed on the wireless charging device, thereby realizing the function of simultaneously supplying power to the plurality of power receiving devices, thereby avoiding the trouble that the prior art requires the use of multiple power adapters.
  • FIG. 1 is a schematic diagram of an embodiment of a wireless charging device of the present invention
  • FIG. 2 is a schematic view showing the electrode of the wireless charging device of the present invention having a circular shape
  • FIG. 3 is a schematic view showing the electrode of the wireless charging device of the present invention being rectangular;
  • FIG. 4 is a schematic view showing that the electrodes of the wireless charging device of the present invention are circular and staggered;
  • Figure 5 is a schematic block diagram of a wireless charging device of the present invention.
  • Figure 6 is a schematic diagram of an embodiment of a power receiving device of the present invention.
  • Figure 7 is a schematic diagram showing a state in which the power receiving device of the present invention is placed on the wireless charging device
  • Figure 8 is a schematic view showing another state in which the power receiving device of the present invention is placed on the wireless charging device;
  • Figure 9 is a schematic view showing the operation of the power receiving device of the present invention.
  • FIG. 10 is a schematic view showing another embodiment of the wireless charging device of the present invention in which the electrodes are circular;
  • FIG 11 is a schematic view showing another embodiment of the wireless charging device of the present invention in which the electrodes are square.
  • an embodiment of the wireless charging device 100 of the present invention can be used to provide a power supply platform for the power receiving device to facilitate use of the power receiving device.
  • the wireless charging device 100 includes a support body 110 having a plurality of electrodes 111 disposed on a surface of the support body 110 and an insulating slit 112 between the electrodes 111 to separate the plurality of electrodes 111.
  • Each of the electrodes 111 can be respectively connected to a charging power source to be powered by the power source.
  • the support body 110 of the present embodiment is a flat body, and the shape and size of the flat body can be adjusted as needed.
  • the electrodes 111 are square and are arranged equidistantly on the support body 110 in a matrix form. It can be understood that the shape of the electrode 111 can also be set to other shapes as needed, such as a circular shape (as shown in FIG. 2), a rectangular shape (as shown in FIG. 3), a prismatic shape, a trapezoidal shape, an irregular shape, and the like.
  • the electrodes 111 are generally arranged in a regular equidistant manner. Of course, in some cases where special design is required, the electrodes 111 may also be arranged in an unequal or irregular arrangement. As shown in FIG. 4, it is a schematic diagram in which the electrodes 111 are arranged in a staggered manner.
  • the number of the electrodes 111 may be designed as needed, as long as two or more are included.
  • the support body 110 is an insulating flat body; the electrode 111 is directly attached to the surface of the support body 110, and the insulating slit 112 is naturally formed between the electrodes 111; of course, the support body 110 may be provided with a groove.
  • the card 111 is embedded and fixed to the support body 110. Further, an insulating paste or the like may be potted between the electrodes 111 to prevent shorting between the electrodes 111.
  • the electrode 111 of the wireless charging device 100 is connected to a power supply circuit that supplies power according to the correlation of all the electrodes in contact with the conductive contacts, and the power supply circuit can be directly disposed on the support body 110.
  • the power supply circuit can also be disposed in a separate outer casing, and then electrically connected to the electrode 111 through wires, wires, contacts, and the like.
  • the power supply circuit includes a detection circuit 120, a switch circuit 130, a control circuit 140, and a power supply circuit connected to the detection circuit 120, the switch circuit 130, and the control circuit 140 for supplying power.
  • the detecting circuit 120 is electrically connected to each of the electrodes 111 for detecting whether the electrode 111 has the conductive contact 151 in contact therewith.
  • a plurality of detecting units 121 each of which is electrically connected to one of the electrodes 111.
  • the micro voltage is applied to the electrode 111 through the detecting unit 121, so that each electrode 111 is in a state to be detected to detect whether the conductive contact 151 is in contact; and when the conductive contact 151 is in contact, a trigger signal is generated to the control circuit. 140, the judgment setting is made.
  • the switch circuit 130 is electrically connected to each of the electrodes 111 for turning on or off the power supply of the electrodes 111.
  • the switch circuit 130 includes a positive switch circuit and a negative switch circuit that are simultaneously connected to each of the electrodes 111.
  • the control circuit 140 selects the positive switch circuit or the negative switch circuit to operate, and turns on the corresponding electrode 111.
  • the positive switch circuit includes a plurality of positive switch units 131, each positive switch unit 131 is electrically connected to one electrode 111;
  • the negative switch circuit includes a plurality of negative switch units 132, and each negative switch unit 132 and one
  • the electrodes 111 are electrically connected.
  • Each of the electrodes 111 is connected to one positive switch unit 131 and one negative switch unit 132 one by one, thereby achieving arbitrary setting of the polarity of the electrode 111.
  • the control circuit 140 is connected to the detection circuit 120 and the switch circuit 130 for issuing a control signal to the switch circuit 130 according to whether each electrode 111 detected by the detection circuit 120 has a conductive contact 151 in contact with it, and controls each electrode 111 to The power circuit is turned on or off.
  • the control circuit 140 can be set to be turned on or off at the same time by controlling the positive switch unit 131 and the negative switch unit 132 connected to the same electrode 111, so that the polarity of the electrode 111 can be set.
  • the control circuit 140 includes a detection setting module 141 and a control module 142.
  • the detection setting module 141 is connected to the detection circuit 120 for scanning the other electrodes 111 based on the trigger signal input from the detection circuit 120, and using one of the electrodes 111 with the conductive contacts 151 in contact, and using the same as the reference.
  • the electrode 111 short-circuited by the electrode 111 is set to the same polarity, and the electrode 111 which is not further short-circuited to the electrode 111 as a reference is set to the other polarity.
  • the control module 142 is connected to the switch circuit 130 and the detection setting module 141. According to the result set by the detection setting module 141, the switch control signal is output to the switch circuit 130, and the switch circuit 130 controls the turn-on polarity of the corresponding electrode 111 or Disconnected, etc.
  • the polarity of the conductive contact that is in contact with the electrode can be detected by the detecting unit of the corresponding power supply circuit.
  • the polarity of the input end of the power module when it is detected as the positive pole, controls the corresponding positive switch unit to turn on the connection of the electrode and the positive output end of the power circuit; when it is detected that the negative pole is detected, the corresponding negative switch unit is turned on.
  • the power supply circuit may not detect the polarity of the conductive contact that is in contact with the electrode, and the control circuit arbitrarily designates the electrode to be connected to the positive output terminal or the negative output terminal of the power supply circuit, and detects the conductive contact between the power receiving device and the power receiving device.
  • the polarity of the contacted electrode ie the polarity of the output of the power supply circuit connected to the electrode
  • the two outputs of the power supply circuit are connected to the two inputs of the power module.
  • the wireless charging device 100 may further include a security protection circuit, an overcurrent protection circuit, and a power sensing circuit to ensure the security and stability of the wireless charging device 100.
  • the power receiving device 150 includes two conductive contacts 151 that are in contact with the electrodes 111 of the wireless charging device 100, and the power source is connected to provide power to the power receiving device 150.
  • the power receiving device 150 includes two conductive contacts 151 that are in contact with the electrodes 111 of the wireless charging device 100, and the power source is connected to provide power to the power receiving device 150.
  • more than two conductive contacts 151 can be provided as needed for ease of use.
  • the two conductive contacts 151 need to be used in conjunction with the electrode 111 of the wireless charging device 100.
  • the shortest distance D of the edge of the single conductive contact 151 is greater than the size X of the insulating gap 112 between the electrodes 111, thereby avoiding The conductive contact 151 entirely falls into the insulating slit 112, ensuring that the conductive contact 151 is always in conductive contact with the electrode 111 when the power receiving device 150 is placed on the support body 110.
  • the minimum distance C between the edges of the adjacent conductive contacts 151 is greater than the maximum distance L of the edges of the individual electrodes 111, thereby ensuring that the adjacent conductive contacts 151 are not in conductive contact with the same electrode 111 at the same time, that is, It is ensured that the adjacent two conductive contacts 151 are always in conductive contact with two different electrodes 111, thereby ensuring that the two electrodes 111 can be set with different polarities to form a power supply loop.
  • the power receiving device 150 further includes a power module coupled to the conductive contact 151, the power module including a toy, a gaming device, a mobile phone, a battery, a charger, a handheld device, a power tool, a power connector, a hot cup, a music player, One or more of a camera, a calculator, a remote controller, a video recorder, a video player, a fax machine, a PDA beauty device, an electric shaver, an electric toothbrush, a hair clipper, a television, and a refrigerator. Power is supplied to the power modules directly through the conductive contacts 151.
  • the power receiving device 150 can include a housing with a conductive contact 151 disposed on the back or other location of the housing, while an interface module electrically coupled to the conductive contacts 151 is disposed within the housing.
  • the housing matches the shape of the electronic device (eg, cell phone, PDA, tablet, etc.), and the interface module matches the charging interface of the electronic device.
  • the outer casing is sleeved on the periphery of the electronic device, and the interface module is inserted into the charging interface of the electronic device, so that the conductive contact 151 is used to access the power source, and the interface module is transmitted to the electronic device to supply power to the electronic device.
  • the wireless charging device 100 and the power receiving device 150 constitute a wireless charging system.
  • the power receiving device 150 is directly placed on the wireless charging device 100, and the two conductive contacts 151 of the power receiving device 150 and the wireless charging device are respectively At least two electrodes 111 of 100 are in conductive contact, and the power receiving device 150 is powered by the wireless charging device 100.
  • each of the detecting units 121 of the detecting circuit 120 is loaded with a micro voltage on its correspondingly connected electrode 111 such that each of the electrodes 111 is in a state to be detected.
  • the detecting electrode 111 is in contact with the conductive contact 151 of the power receiving device 150.
  • the micro voltage on the electrode 111 changes, thereby generating a trigger signal to be sent to the control circuit 140, and receiving by the control circuit 140, it can be determined whether the electrode 111 has the conductive contact 151. .
  • the detection setting module 141 of the control circuit 140 sequentially scans the other electrodes 111 based on the trigger signal of the detecting unit 121 with one of the electrodes 111 having the conductive contacts 151 in contact with each other.
  • the electrode 111 short-circuited by the reference electrode 111 is set to the same polarity, and the electrode 111 which is not further short-circuited to the electrode 111 as a reference is set to the other polarity. As shown in FIG. 7 and FIG.
  • FIG. 8 it is a schematic diagram of several cases in which the conductive contact 151 is in contact with the electrode 111.
  • the two electrodes 111 can be simply separated. It is set as one positive electrode and one negative electrode, as shown in FIG. 7; when the conductive contact 151 is in contact with the plurality of electrodes 111 at the same time, all the electrodes 111 that are simultaneously in contact can be set to the same polarity, and the plurality of electrodes 111 are simultaneously Power supply, as shown in Figure 8.
  • the power source corresponding to the polarity is turned on.
  • the control module 142 of the control circuit 140 transmits a corresponding control signal to the positive electrode during control.
  • the switch unit 131 and the negative switch unit 132 control the corresponding positive switch circuit or the negative switch circuit connected to the electrode 111 to be connected to realize the power supply circuit, and the power receiving device 150 is connected to the power source.
  • the electrode on the support body of the wireless charging device 200 includes a first electrode 211a and a second electrode 211b.
  • the second electrode 211b surrounds the periphery of the first electrode 211a, and has an insulating slit 212 between the first electrode 211a and the second electrode 211b.
  • the insulating gap 212 may be filled with an insulating material; of course, the supporting body may be left blank when it is made of an insulating material.
  • the first electrode 211a and the second electrode 211b adopt a regular shape, such as a circular shape (FIG. 10) or a square shape (FIG. 11).
  • a regular shape such as a circular shape (FIG. 10) or a square shape (FIG. 11).
  • other shapes such as an elliptical shape, a prismatic shape, and a trapezoidal shape may also be adopted. Irregular shapes, etc.
  • the distance between the insulating slits 212 between the first electrode 211a and the second electrode 211b is equal, thereby facilitating the random placement of the power receiving device.
  • the distance between the insulating slits 212 can also be adjusted to be unequal or arranged according to the need, and the distance of the conductive contacts of the power receiving device can be adjusted correspondingly.
  • a limiting flange 213 is further disposed on the periphery of the second electrode 211b, so that the power receiving device can be placed within a range defined by the limiting flange 213. Ensure conductive contact between the conductive contacts and the electrodes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种无线充电方法及装置。该无线充电装置(100)包括至少两个分开设置、用于供导电功率接收装置(150)的电触点接触的电极(111),以及与电极电连接、并根据有导电触点(151)接触的所有电极的关联性供电的供电电路。该方法包括以下步骤:S1:将无线充电装置的电极设置在检测状态;S2:检测电极是否有功率接收装置的导电触点接触;S3:判定有导电触点接触的所有电极的关联性,并分别该等电极的极性;S4:根据电极的极性,接通与极性相对应的电源。通过检测无线充电装置的电极上的导电触点的状态,来设定电极的是否通电、极性,可自动匹配电极与导电触点的关联性,使得功率接收装置可以随意放置在无线充电装置上,即可完成供电,具有使用方便、通用性好的优点。

Description

无线充电方法及装置 技术领域
本发明涉及充电装置,更具体地说,涉及一种无线充电方法及装置。
背景技术
随着科技的发展,越来越多的用电设备在人们的生活中使用。在使用该等用电设备时,通常是直接通过电源插头等,直接接入电源为用电设备供电,或者为用电设备的电池供电。然而随着用电设备的增多,电源插头也会随之增加。这样对使用者造成了使用上的不便。
另外,不同的用电设备通常使用不同的电源插口,需要配备不同电源插头的适配器,因而,使得使用者有很多电源适配器,不利于节能环保,造成极大的资源浪费。
另外,在需要进行多个用电设备同时充电时,要同时使用多个电源适配器,增加了插板的使用,而且电源适配器的连接线很容易发生缠绕,造成使用者的使用不便。
发明内容
本发明要解决的技术问题在于,提供一种使用方便、通用性好的无线充电方法及装置。
本发明解决其技术问题所采用的技术方案是:构造 一种无线充电方法,包括以下步骤:
S1 :将无线充电装置的电极设置在检测状态;
S2 :检测所述电极是否有功率接收装置的导电触点接触;
S3 :判定有导电触点接触的所有所述电极的关联性,并分别设定该等电极的极性;
S4 :根据所述电极的极性,接通与极性相对应的电源。
在本发明的无线充电方法中,在所述步骤S1中,通过在所述电极上加载微电压,使其处于待检测状态。
在本发明的无线充电方法中,在所述步骤S2中,当所述电极接触所述导电触点时,所述电极上的微电压产生变化,从而判断有导电触点接触。
在本发明的无线充电方法中,所述电极为多个;
在所述步骤S3中,以其中一个有导电触点接触的所述电极为基准,对其他电极进行依次扫描,将与该作为基准的电极短接的电极设定为同一极性,而将另外没有与作为基准的电极短接的电极设定为另一极性。
在本发明的无线充电方法中,每一所述电极连接有正极开关电路和负极开关电路;
在所述步骤S4中,根据步骤S3所设定的极性,控制与所述电极连接的对应的正极开关电路或负极开关电路接通,为所述功率接收装置接入电源。
本发明还提供一种无线充电装置,包括至少两个分开设置、用于供导功率接收装置的电触点接触的电极,以及与所述电极电连接、并根据有导电触点接触的所有所述电极的关联性供电的供电电路。
在本发明的无线充电装置中,所述供电电路包括检测电路、开关电路、控制电路以及与所述检测电路、开关电路、控制电路连接供电的电源电路;
所述检测电路与每一所述电极电连接,用于检测所述电极是否有导电触点与其接触;
所述开关电路与每一所述电极电连接,用于接通或断开所述电极的供电;
所述控制电路与所述检测电路、开关电路连接,用于根据所述检测电路检测到的每一所述电极是否有导电触点与其接触来发出控制信号至所述开关电路,控制每一所述电极与所述电源电路接通或断开。
在本发明的无线充电装置中,所述控制电路包括检测设定模块,用于以其中一个有导电触点接触的所述电极为基准,对其他电极进行扫描,将与该作为基准的电极短接的电极设定为同一极性,而将另外没有与作为基准的电极短接的电极设定为另一极性;
控制模块,用于根据所述检测设定模块设定的结果,输出开关控制信号至所述开关电路。
在本发明的无线充电装置中,所述开关电路包括与每一所述电极同时连接的正极开关电路以及负极开关电路;
所述检测电路包括多个检测单元,每一所述检测单元与一个所述电极对应电连接;
所述正极开关电路包括多个正极开关单元,每一所述正极开关单元与一个所述电极电连接;
所述负极开关电路包括多个负极开关单元,每一所述负极开关单元与一个所述电极电连接;
所述控制电路控制与同一所述电极连接的所述正极开关单元和负极开关单元择一接通或同时断开。
在本发明的无线充电装置中,所述电极与所述供电电路为一体式,或者,所述电极与所述供电电路分开设置,通过导线或触点导电连接。
实施本发明具有以下有益效果:通过检测无线充电装置的电极上的导电触点的状态,来设定电极的是否通电、极性等,可自动匹配电极与导电触点的关联性,使得功率接收装置可以随意放置在无线充电装置上,即可完成供电,具有使用方便、通用性好的优点。
另外,可以通过设置多个电极,多个功率接收装置可以同时放置在无线充电装置上,实现了为多个功率接收装置同时供电的功能,避免了现有技术需要使用多个电源适配器的麻烦。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明无线充电装置的一个实施例的示意图;
图2是本发明无线充电装置的电极为圆形的示意图;
图3是本发明无线充电装置的电极为长方形的示意图
图4是本发明无线充电装置的电极为圆形并错开排列的示意图;
图5是本发明无线充电装置的示意框图;
图6是本发明功率接收装置的一个实施例的示意图;
图7是本发明的功率接收装置放置在无线充电装置上的一种状态的示意图;
图8是本发明的功率接收装置放置在无线充电装置上的另一种状态的示意图;
图9是本发明的功率接收装置的工作过程示意图;
图10是本发明无线充电装置的另一实施例电极为圆形的示意图;
图11是本发明无线充电装置的另一实施例电极为方形的示意图。
具体实施方式
如图1~4所示,是本发明的无线充电装置100的一个实施例,可用于为功率接收装置提供供电平台,以方便功率接收装置的使用。
该无线充电装置100包括支撑主体110,在支撑主体110表面设有多个电极111,并且在电极111之间为绝缘缝隙112,从而将多个电极111分别隔开。每一电极111可分别连接至充电电源,以接入电源供电。
如图所示,本实施例的支撑主体110为平板状主体,该平板状主体的形状、尺寸可以根据需要进行调整。
该电极111为正方形,并且按矩阵形式等距排列在支撑主体110上。可以理解的,该电极111的形状还可以根据需要设置为其他形状,例如圆形(如图2所示)、长方形(如图3所示)、棱形、梯形、不规则形等。
为了方便电极111的布置,通常电极111之间采用规则的等距排列,当然,在一些需要特殊设计的场合,该等电极111也可以采用不等距或不规则排列方式排列。如图4所示,是电极111错开排列的示意图。
进一步的,电极111的数量可以根据是需要进行设计,只要包括两个以上即可。在本实施例中,该支撑主体110为绝缘平板状主体;电极111直接贴设在支撑主体110表面,电极111之间就自然形成绝缘缝隙112;当然,也可以在支撑主体110上设置凹槽、卡位等,将电极111嵌入固定在支撑主体110上。另外,还可以在电极111之间灌封绝缘胶等,防止电极111之间的短接。
如图5所示,该无线充电装置100的电极111连接至供电电路,该供电电路根据有导电触点接触的所有所述电极的关联性供电,而且,该供电电路可以直接设置在支撑主体110内,也可以将供电电路设置在一个独立的外壳内,再通过导线、排线、触点等方式与电极111导电连接。
该供电电路包括检测电路120、开关电路130、控制电路140以及与检测电路120、开关电路130、控制电路140连接供电的电源电路。
结合图5和图6所示,该检测电路120与每一电极111电连接,用于检测电极111是否有导电触点151与其接触。多个检测单元121,每一检测单元121与一个电极111对应电连接。通过该检测单元121在电极111上加载微电压,使得每个电极111都处于待检测状态,以检测是否有导电触点151接触;并在有导电触点151接触时,产生触发信号至控制电路140,进行判断设定。
该开关电路130与每一电极111电连接,用于接通或断开电极111的供电。在本实施例中,该开关电路130包括与每一电极111同时连接的正极开关电路以及负极开关电路,通过控制电路140来选择正极开关电路或负极开关电路工作,接通对应的电极111。
在本实施例中,该正极开关电路包括多个正极开关单元131,每一正极开关单元131与一个电极111电连接;负极开关电路包括多个负极开关单元132,每一负极开关单元132与一个电极111电连接。每一电极111一一对应连接有一个正极开关单元131和一个负极开关单元132,从而实现电极111的极性的任意设定。
该控制电路140与检测电路120、开关电路130连接,用于根据检测电路120检测到的每一电极111是否有导电触点151与其接触来发出控制信号至开关电路130,控制每一电极111与电源电路接通或断开。在本实施例中,控制电路140可以通过控制与同一电极111连接的正极开关单元131和负极开关单元132择一接通或同时断开,从而可以设定电极111的极性。
如图5所示,该控制电路140包括检测设定模块141以及控制模块142。该检测设定模块141与检测电路120连接,用于根据检测电路120输入的触发信号,以其中一个有导电触点151接触的电极111为基准,对其他电极111进行扫描,将与该作为基准的电极111短接的电极111设定为同一极性,而将另外没有与作为基准的电极111短接的电极111设定为另一极性。
该控制模块142与开关电路130、检测设定模块141连接,根据检测设定模块141设定的结果,输出开关控制信号至开关电路130,由开关电路130控制对应电极111的接通极性或断开等。
另外,需要说明的是,当电极与功率接收装置的导电触点接触后,可通过相应供电电路的检测单元检测与该电极所接触的导电触点的极性(即与该导电触点连接的功率模块的输入端的极性),当检测到是正极时,控制相应的正极开关单元接通该电极与电源电路正输出端的连接;当检测到是负极时,控制相应的负极开关单元接通该电极与电源电路负输出端的连接。当然,供电电路也可不检测与该电极所接触的导电触点的极性,控制电路任意指定该电极与电源电路的正输出端或负输出端连接,而在功率接收装置内检测与其导电触点接触的电极的极性(即与该电极连接的电源电路输出端的极性),并将电源电路两个输出端相应接到功率模块的两输入端。
进一步的,该无线充电装置100还可以包括安全保护电路、过流保护电路、以及功率感测电路等,以保证无线充电装置100工作的安全、稳定性。
如图6所示,是本发明的功率接收装置150的一个实施例的示意图,可与上述无线充电装置100配合使用。结合图7,该功率接收装置150包括两个导电触点151,可与无线充电装置100的电极111相接触,接入电源为功率接收装置150提供电源。当然,可以根据需要设置两个以上的导电触点151,以方便使用。
请参见图8,该两个导电触点151需要与无线充电装置100的电极111相配合使用,单个导电触点151的边缘最短距离D大于电极111之间的绝缘缝隙112的大小X,从而避免导电触点151整个落入绝缘缝隙112中,保证了在将功率接收装置150放置在支撑主体110上时,导电触点151始终与电极111导电接触。
同时,相邻的导电触点151边缘之间的最小距离C大于单个电极111的边缘的最大距离L,从而保证相邻的导电触点151不会同时与同一电极111导电接触,也就是说,保证了相邻的两个导电触点151始终与两个不同的电极111导电接触,从而保证了两个电极111可以设置不同的极性,形成供电回路。
该功率接收装置150还包括与导电触点151连接的功率模块,该功率模块包括玩具、游戏设备、手机、电池、充电器、手持设备、电动工具、功率连接器、电热杯、音乐播放器、照相机、计算器、遥控器、录像机、视频播放器、传真机、PDA美容设备、电动剃须刀、电动牙刷、电推剪、电视机、电冰箱中的一种或多种。通过导电触点151接入电源,直接为该等功率模块提供电源。
在另一种实施方式中,该功率接收装置150可以包括一外壳,导电触点151设置在外壳的背面或其他位置,同时,在该外壳内设置有与导电触点151电连接的接口模块。该外壳与电子设备(如手机、PDA、平板电脑等)的形状匹配,而接口模块与电子设备的充电接口匹配。将外壳套设在电子设备外围,并将接口模块插入到电子设备的充电接口,从而利用导电触点151接入电源,通过接口模块传送至电子设备,为电子设备供电。
上述无线充电装置100和功率接收装置150组成了无线充电系统,使用时,直接将功率接收装置150放置在无线充电装置100上,并且功率接收装置150的两个导电触点151分别与无线充电装置100的至少两个电极111导电接触,由无线充电装置100为功率接收装置150供电。
如图9所示,使用该无线充电系统进行无线充电时,首先,将无线充电装置100的电极111设置在检测状态。在本实施例中,通过检测电路120的每个检测单元121在其对应连接的电极111上加载微电压,使得每个电极111处于待检测状态。
然后,检测电极111是否有功率接收装置150的导电触点151接触。当电极111上有导电触点151接触时,电极111上的微电压产生变化,从而产生触发信号发送至控制电路140,由控制电路140接收,即可判断电极111是否有导电触点151接入。
然后,判定有导电触点151接触的所有电极111的关联性,并分别设定该等电极111的极性。在本实施例中,控制电路140的检测设定模块141根据检测单元121的触发信号,以其中一个有导电触点151接触的电极111为基准,对其他电极111进行依次扫描,将与该作为基准的电极111短接的电极111设定为同一极性,而将另外没有与作为基准的电极111短接的电极111设定为另一极性。如图7、8所示,是导电触点151与电极111的接触的几种情况的示意图,当两个导电触点151分别与两个电极111接触时,可以简单的将两个电极111分别设定为一个正极、一个负极,如图7所示;当导电触点151同时与多个电极111接触时,可以将同时接触的所有电极111设定为同一极性,通过多个电极111同时供电,如图8所示。
可以理解的,当多个功率接收装置150同时放置在无线充电装置100上时,同样可以执行上述操作,来设定极性,可以同时为多个功率接收装置150供电。
然后,根据电极111所设定的极性,接通与极性相对应的电源。在本实施例中,由于每一电极111连接有正极开关电路的正极开关单元131和负极开关电路的负极开关单元132,在控制时,由控制电路140的控制模块142发送对应的控制信号至正极开关单元131和负极开关单元132,控制与电极111连接的对应的正极开关电路或负极开关电路接通,即可实现供电回路,为功率接收装置150接入电源。
如图10、11所示,是本发明无线充电装置200的另一实施例的示意图。该无线充电装置200的支撑主体上的电极包括第一电极211a和第二电极211b。第二电极211b包围在第一电极211a外围,并且在第一电极211a和第二电极211b之间具有绝缘缝隙212。在绝缘缝隙212中可以填充绝缘材料;当然,该支撑主体采用绝缘材料制作时直接留空即可。
在本实施例中,该第一电极211a和第二电极211b采用规则形状,如圆形(图10)或方形(图11),当然也可以采用其他形状,如椭圆形、棱形、梯形、不规则形状等。
如图所示,第一电极211a和第二电极211b之间的绝缘缝隙212的距离相等,从而便于功率接收装置的随意放置。当然,绝缘缝隙212的距离也可以根据需要调整为不等或按规律排布,对应调整功率接收装置的导电触点的距离即可。
进一步的,为了放置功率接收装置超出无线充电装置200的电极供电范围,在第二电极211b的外围还设有限位凸缘213,使得功率接收装置可以放置在限位凸缘213限定的范围内,保证导电触点与电极之间的导电接触。
本实施例的其他结构、工作原理与上一实施例基本相同,故不赘述。
此外,本发明是通过实施例进行描述的,但本发明不局限于实施例。本领域技术人员知悉,在不脱离本发明的范围情况下,可以进行各种改变。

Claims (10)

  1. 一种无线充电方法,其特征在于,包括以下步骤:
    S1 :将无线充电装置的电极设置在检测状态;
    S2 :检测所述电极是否有功率接收装置的导电触点接触;
    S3 :判定有导电触点接触的所有所述电极的关联性,并分别设定该等电极的极性;
    S4 :根据所述电极的极性,接通与极性相对应的电源。
  2. 根据权利要求1所述的无线充电方法,其特征在于,在所述步骤S1中,通过在所述电极上加载微电压,使其处于待检测状态。
  3. 根据权利要求2所述的无线充电方法,其特征在于,在所述步骤S2中,当所述电极接触所述导电触点时,所述电极上的微电压产生变化,从而判断有导电触点接触。
  4. 根据权利要求1-3任一项所述的无线充电方法,其特征在于,所述电极为多个;
    在所述步骤S3中,以其中一个有导电触点接触的所述电极为基准,对其他电极进行依次扫描,将与该作为基准的电极短接的电极设定为同一极性,而将另外没有与作为基准的电极短接的电极设定为另一极性。
  5. 根据权利要求4所述的无线充电方法,其特征在于,每一所述电极连接有正极开关电路和负极开关电路;
    在所述步骤S4中,根据步骤S3所设定的极性,控制与所述电极连接的对应的正极开关电路或负极开关电路接通,为所述功率接收装置接入电源。
  6. 一种无线充电装置,其特征在于,包括至少两个分开设置、用于供导功率接收装置的电触点接触的电极,以及与所述电极电连接、并根据有导电触点接触的所有所述电极的关联性供电的供电电路。
  7. 根据权利要求6所述的无线充电装置,其特征在于,所述供电电路包括检测电路、开关电路、控制电路以及与所述检测电路、开关电路、控制电路连接供电的电源电路;
    所述检测电路与每一所述电极电连接,用于检测所述电极是否有导电触点与其接触;
    所述开关电路与每一所述电极电连接,用于接通或断开所述电极的供电;
    所述控制电路与所述检测电路、开关电路连接,用于根据所述检测电路检测到的每一所述电极是否有导电触点与其接触来发出控制信号至所述开关电路,控制每一所述电极与所述电源电路接通或断开。
  8. 根据权利要求7所述的无线充电装置,其特征在于,所述控制电路包括检测设定模块,用于以其中一个有导电触点接触的所述电极为基准,对其他电极进行扫描,将与该作为基准的电极短接的电极设定为同一极性,而将另外没有与作为基准的电极短接的电极设定为另一极性;
    控制模块,用于根据所述检测设定模块设定的结果,输出开关控制信号至所述开关电路。
  9. 根据权利要求7或8所述的无线充电装置,其特征在于,所述开关电路包括与每一所述电极同时连接的正极开关电路以及负极开关电路;
    所述检测电路包括多个检测单元,每一所述检测单元与一个所述电极对应电连接;
    所述正极开关电路包括多个正极开关单元,每一所述正极开关单元与一个所述电极电连接;
    所述负极开关电路包括多个负极开关单元,每一所述负极开关单元与一个所述电极电连接;
    所述控制电路控制与同一所述电极连接的所述正极开关单元和负极开关单元择一接通或同时断开。
  10. 根据权利要求6-8任一项所述的无线充电装置,其特征在于,所述电极与所述供电电路为一体式,或者,所述电极与所述供电电路分开设置,通过导线或触点导电连接。
PCT/CN2012/087056 2012-04-24 2012-12-20 无线充电方法及装置 WO2013159547A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/396,558 US20150108944A1 (en) 2012-04-24 2012-12-20 Wireless charging method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210123201.1 2012-04-24
CN201210123201.1A CN102638115B (zh) 2012-04-24 2012-04-24 无线充电方法及装置

Publications (1)

Publication Number Publication Date
WO2013159547A1 true WO2013159547A1 (zh) 2013-10-31

Family

ID=46622406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087056 WO2013159547A1 (zh) 2012-04-24 2012-12-20 无线充电方法及装置

Country Status (3)

Country Link
US (1) US20150108944A1 (zh)
CN (1) CN102638115B (zh)
WO (1) WO2013159547A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647015A (zh) * 2012-04-24 2012-08-22 深圳市非凡创新实业有限公司 无线充电装置、功率接收装置及无线平板充电系统
CN102638115B (zh) * 2012-04-24 2014-12-17 深圳市非凡创新实业有限公司 无线充电方法及装置
CN103199574B (zh) * 2012-12-27 2016-03-02 深圳市非凡创新实业有限公司 一种充电装置及系统
CN104113097A (zh) * 2013-04-18 2014-10-22 崔伟 充电装置
CN106208261B (zh) * 2016-08-31 2019-05-03 珠海金萝卜智动科技有限公司 一种机器人的充电方法、基座和系统
CN106685011B (zh) * 2017-03-01 2023-02-24 广东百事泰医疗器械股份有限公司 智能表面接触充电装置、系统及方法
CN111223414A (zh) * 2020-02-17 2020-06-02 深德彩光电(深圳)有限公司 一种可任意角度安装的显示模组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070002719A (ko) * 2005-06-30 2007-01-05 고재용 휴대기기용 충전기
CN201171161Y (zh) * 2008-01-17 2008-12-24 叶明祥 贴附式无线充电器
CN101938149A (zh) * 2009-06-29 2011-01-05 鸿富锦精密工业(深圳)有限公司 无线充电装置
US20120091989A1 (en) * 2010-10-15 2012-04-19 Sony Corporation Power feeding device, power feeding method, and power feeding system
CN102638115A (zh) * 2012-04-24 2012-08-15 深圳市非凡创新实业有限公司 无线充电方法及装置
CN102647015A (zh) * 2012-04-24 2012-08-22 深圳市非凡创新实业有限公司 无线充电装置、功率接收装置及无线平板充电系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5729115A (en) * 1996-06-11 1998-03-17 Ericsson Inc. Apparatus and method for identifying and charging batteries of different types
CN101150258A (zh) * 2006-09-18 2008-03-26 罗孔喜 充电器
US20110133691A1 (en) * 2007-11-20 2011-06-09 Nokia Corporation Wireless Galvanic Charging Device,Method of Operation Thereof and Mobile Electric Device to be Charged
US20090278494A1 (en) * 2008-03-03 2009-11-12 Mitch Randall Universal electrical interface for providing power to mobile devices
CN201584471U (zh) * 2009-11-05 2010-09-15 恩斯迈电子(深圳)有限公司 电子装置
CN201805257U (zh) * 2010-09-30 2011-04-20 广东国光电子有限公司 一种串联锂电池组充电均衡装置
CN201975844U (zh) * 2011-04-29 2011-09-14 彭玉平 一种无线充电器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070002719A (ko) * 2005-06-30 2007-01-05 고재용 휴대기기용 충전기
CN201171161Y (zh) * 2008-01-17 2008-12-24 叶明祥 贴附式无线充电器
CN101938149A (zh) * 2009-06-29 2011-01-05 鸿富锦精密工业(深圳)有限公司 无线充电装置
US20120091989A1 (en) * 2010-10-15 2012-04-19 Sony Corporation Power feeding device, power feeding method, and power feeding system
CN102638115A (zh) * 2012-04-24 2012-08-15 深圳市非凡创新实业有限公司 无线充电方法及装置
CN102647015A (zh) * 2012-04-24 2012-08-22 深圳市非凡创新实业有限公司 无线充电装置、功率接收装置及无线平板充电系统

Also Published As

Publication number Publication date
CN102638115A (zh) 2012-08-15
CN102638115B (zh) 2014-12-17
US20150108944A1 (en) 2015-04-23

Similar Documents

Publication Publication Date Title
WO2013159547A1 (zh) 无线充电方法及装置
WO2013159548A1 (zh) 无线充电装置、功率接收装置及无线平板充电系统
WO2016148470A1 (en) Method for generating load of wireless power receiver in wireless charging system and wireless power receiver
WO2014148863A1 (en) Wireless power transmitter, wireless power receiver, and control methods thereof
WO2014178660A1 (en) Wireless power transmitter, wireless power receiver and control method thereof
WO2019093845A1 (en) Device for adjusting path of power and method for operating the same
WO2010067927A1 (ko) 평면나선형 코어구조의 피티피에스 코어가 구비된 무접점전력충전스테이션, 무접점전력수신장치 및 그의 제어방법.
US20170331305A1 (en) Adapter, power supply device, and over-discharge protection method
WO2020171399A1 (en) Device and method for providing user interface according to wireless power-sharing
WO2022005262A1 (ko) 무선 전력 송신 장치 및 이를 이용한 전자 장치의 충전 상태 표시 방법
WO2021194140A1 (en) Device and method for wireless charging
WO2017018800A1 (en) Method for transmitting wireless power in wireless charging system including a wireless power transmitting unit and wireless power receiving unit
WO2022154391A1 (ko) 무선으로 전력을 송신하는 전자 장치와 무선으로 전력을 수신하는 무선 전력 수신 장치 및 그 동작 방법
WO2020091490A1 (ko) 외부 전자 장치로부터 전원을 공급받는 전자 장치 및 방법
GB2253312A (en) Battery powered apparatus incorporating charging controller
WO2021015493A1 (ko) 무선으로 전력을 수신하는 전자 장치와 그 동작 방법
WO2016072709A1 (ko) 무선 전력 전송 및 충전 시스템
WO2020209534A1 (ko) 전자 디바이스 및 그 제어 방법
WO2023038255A1 (ko) 전자 장치 및 이의 동작 방법
US20170222453A1 (en) Device, apparatus and method for supporting multi-battery quick charge
KR101549438B1 (ko) 휴대 단말기 무선충전장치
WO2019098595A1 (ko) 복수의 통신 인터페이스들을 지원하는 전자 장치
WO2021210855A1 (ko) 전자 장치 및 상기 전자 장치의 충전 상태 정보를 제공하는 방법
WO2016171459A1 (ko) 무선 전력 송신 장치 및 그 제어 방법
TWI812126B (zh) 可攜式電子裝置充斷電的方法及可攜式電子裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874958

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14396558

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/05/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12874958

Country of ref document: EP

Kind code of ref document: A1