WO2013159440A1 - 一种基于热管的乏燃料池非能动余热导出系统 - Google Patents

一种基于热管的乏燃料池非能动余热导出系统 Download PDF

Info

Publication number
WO2013159440A1
WO2013159440A1 PCT/CN2012/077200 CN2012077200W WO2013159440A1 WO 2013159440 A1 WO2013159440 A1 WO 2013159440A1 CN 2012077200 W CN2012077200 W CN 2012077200W WO 2013159440 A1 WO2013159440 A1 WO 2013159440A1
Authority
WO
WIPO (PCT)
Prior art keywords
spent fuel
heat pipes
fuel pool
end heat
pipe
Prior art date
Application number
PCT/CN2012/077200
Other languages
English (en)
French (fr)
Inventor
郑明光
叶成
董宪康
顾国兴
严锦泉
王勇
陈煜�
苏夏
陈瑜
沈六华
朱丽兵
施伟
孙贺
Original Assignee
上海核工程研究设计院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海核工程研究设计院 filed Critical 上海核工程研究设计院
Priority to US14/130,169 priority Critical patent/US9568252B2/en
Priority to GB1323146.9A priority patent/GB2515849B8/en
Publication of WO2013159440A1 publication Critical patent/WO2013159440A1/zh
Priority to ZA2014/00117A priority patent/ZA201400117B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/02Details of handling arrangements
    • G21C19/06Magazines for holding fuel elements or control elements
    • G21C19/07Storage racks; Storage pools
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/02Details of handling arrangements
    • G21C19/08Means for heating fuel elements before introduction into the core; Means for heating or cooling fuel elements after removal from the core
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/24Promoting flow of the coolant
    • G21C15/257Promoting flow of the coolant using heat-pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention belongs to the technical field of nuclear power station safety, and relates to a passive cooling system for deriving waste heat of a spent fuel pool of a nuclear power plant by using a low temperature difference and high efficiency of the heat pipe.
  • the safety of nuclear power plants is an important part of the design and operation of nuclear power plants. Following the nuclear accident at Sanli Island and the Chernobyl nuclear accident, the accident at the Fukushima nuclear power plant once again sounded the alarm for the development of nuclear power in the world.
  • China's third-generation reactor AP1000 introduced from the United States adopts the idea of passive safety system. It relies on natural forces such as gravity, temperature difference and compressed gas expansion to drive the safety system. It does not need to rely on pumps, AC power and 1E-class emergency diesel generator sets. In the 72 hours after a serious accident, the safety of the nuclear power plant can be guaranteed without relying on external operations.
  • the AP1000's passive safety system design is an innovative design. However, after 72 hours of severe accidents, the heat is continuously released from the spent fuel pool and containment components. The uninterrupted passive residual heat removal of such components is a challenge to ensure the long-term safety of nuclear power plants.
  • the waste heat of the spent fuel pool is mainly derived from the waste heat pump waste heat extraction system. Under the action of the pump, the water is pumped out of the spent fuel pool and then reaches the external heat exchanger, where it is cooled by the cooling water to discharge Heat.
  • This method relies on a power-driven pump and requires continuous supply of cooling water, which is poorly reliable in severe accidents.
  • the object of the present invention is to overcome the shortcomings of the prior art and provide a heat pipe-based spent fuel pool passive cooling system, which adopts a separate heat pipe technology to realize the low temperature difference and high efficiency to derive the waste heat of the spent fuel pool, which is driven by the natural circulation only.
  • the system without external driving force, has the advantage of reliable operation.
  • a technical solution for achieving the object of the present invention a heat pipe-based spent fuel pool passive residual heat removal system, wherein a spent fuel assembly is disposed in a spent fuel pool; and a plurality of blocks are arranged around the spent fuel pool a partition, and a plurality of partitions having a height lower than a height of the spent fuel pool; a plurality of partition holes are formed in a lower portion of each partition;
  • the evaporation end heat pipes Arranging a plurality of evaporation end heat pipes between the outer side of the partition and the inner wall of the spent fuel pool, the evaporation end heat pipes are divided into groups; the top outlets of each set of evaporation end heat pipes extend out of the spent fuel pool and connect the inlets of one riser pipe,
  • the outlet connection of the riser pipe includes a top inlet of a set of condensing end heat pipes of the plurality of condensing end heat pipes, and the bottom outlet of the set of condensing end heat pipes is connected to the inlet of the down pipe, the outlet of the down pipe extending downward into the spent fuel pool a bottom inlet connecting a set of evaporation end heat pipes;
  • the working medium flows through the heat pipe of the evaporation end, the riser pipe, the heat pipe of the condensation end and the down pipe, and then returns to the heat pipe of the evaporation end to form a closed heat removal lead circuit; each heat pipe of the condensation end is arranged in the lower part of the chimney; each group of condensation The height of the end heat pipes is higher than the height of each set of heat pipes at the evaporation end.
  • a heat pipe-based spent fuel pool passive residual heat removal system wherein each of the outlet end heat pipes included in each of the evaporation end heat pipes is collected in the same connection box, and the outlet of the connection box is connected all the way up.
  • the inlet of the tube; the inlets of all the evaporation end heat pipes included in each set of evaporation end heat pipes are collected in the same connection box, and the inlet of the connection box is connected to the outlet of one down pipe.
  • the heat pipe-based spent fuel pool passive residual heat removal system as described above, wherein the inlets of all the condensation end heat pipes included in each set of condensation end heat pipes are collected in the same connection box, and the inlet of the connection box is connected all the way up.
  • a heat pipe based spent fuel pool passive residual heat removal system as described above, wherein the working medium is water, methanol, ethanol, acetone or ammonia.
  • a heat pipe based spent fuel pool passive residual heat removal system has a plurality of partitions having a height of 1/3 to 4/5 of the height of the spent fuel pool.
  • the invention has the following effects: a heat pipe-based spent fuel pool passive cooling system according to the present invention, which adopts a heat pipe to cool a spent fuel pool, and a heat pipe working medium phase change heat realizes low temperature difference and high heat exchange, depending on density difference Natural circulation drive system, and using chimney to provide air cooling source, fundamentally It eliminates the dependence on power supply and operators, and achieves long-term passive high-efficiency heat exchange cooling of spent fuel pools with high reliability.
  • FIG. 1 is a schematic view showing the structure of a heat pipe-based spent fuel pool passive residual heat removal system according to the present invention
  • Figure 2 is a cross-sectional view of the arrangement of the heat pipe at the evaporation end in the spent fuel pool.
  • a heat pipe based spent fuel pool passive residual heat removal system mainly comprises a spent fuel pool 3 , a spent fuel assembly 1 , a partition 6 , an evaporation end heat pipe 4 , and a condensation end heat pipe 7 . , drop tube 5, junction box 9 and chimney 8.
  • the spent fuel assembly 1 is disposed in the spent fuel pool 3.
  • Two block partitions 6 are arranged four weeks in the spent fuel pool 3, and the height of each partition 6 is 1/3 to 4/5 of the height of the spent fuel pool 3 (for example, 1/3 or 4/5).
  • a plurality of baffle holes 2 are formed in the lower portion of each of the partitions 6 to provide a passage for the flow of water.
  • a plurality of evaporation end heat pipes 4 are arranged in three layers, and the evaporation end heat pipes 4 are divided into several groups; the top outlets of each set of evaporation end heat pipes extend out of the spent fuel pool 3 and connected to the inlet of the riser pipe 10, the outlet of the riser pipe 10 is connected to the top inlet of a set of condensing end heat pipes including a plurality of condensing end heat pipes 7, and the bottom outlet of the set of condensing end heat pipes is connected to the inlet of the down pipe 5
  • the outlet of the downcomer 5 extends downwardly into the spent fuel pool 3 and connects to the bottom inlet of a set of evaporator end heat pipes.
  • Each set of condensing end heat pipes is disposed in a lower portion of the chimney 8; the height of each set of condensing end heat pipes is higher than the height of each set of evaporating end heat pipes.
  • Each set of condensing end heat pipes is disposed in the lower portion of the chimney 8, and air can freely pass through the chimney from the lower portion of the chimney 8.
  • the chimney can also be referred to as an air cooling tower.
  • the working medium flows through the evaporation end heat pipe 4, the riser pipe 10, the condensation end heat pipe 7 and the down pipe 5 in turn, and then returns to the evaporation end heat pipe 4 to form a closed heat removal lead circuit.
  • the working medium is water, methanol, ethanol, acetone or ammonia
  • the outlets of all the evaporation end heat pipes 4 included in each of the above-mentioned evaporation end heat pipes may be collected in the same connection box 9, the outlet of the connection box 9 is connected to the inlet of one of the riser pipes 10; and all the evaporation end heat pipes 4 included in the set of evaporation end heat pipes
  • the inlets can be housed in the same junction box, the inlet of which is connected to the outlet of the downcomer 5 .
  • the inlets of all the condensing end heat pipes 7 included in each of the above-mentioned condensing end heat pipes may be collected in the same connecting box, the inlet of the connecting box is connected to the outlet of one rising pipe 10; and each condensing end heat pipe included in each set of condensing end heat pipes
  • the outlets of 7 can be housed in the same junction box, the outlet of which is connected to the inlet of one downcomer 5.
  • the number of the plurality of evaporation end heat pipes 4 or the plurality of condensation end heat pipes 7 may be 500-2000, and the heat generated by the plurality of evaporation end heat pipes 4 and the plurality of condensations are determined according to the power of the spent fuel decay heat.
  • the heat of the end heat pipe 7 in the air in the chimney is equal, which satisfies the requirement of spent fuel cooling.
  • the working principle of a heat pipe-based spent fuel pool passive residual heat removal system is: dividing the inside of the spent fuel pool 3 into two inner and outer regions through the partition plate 6.
  • the water in the inner zone first obtains the residual heat released by the spent fuel assembly 1, the temperature rises, moves upwards, and enters the outer region of the spent fuel pool from above the partition 6.
  • the evaporation end heat pipe 4 is disposed in an outer region, and the water in the outer region is cooled, flows downward, and enters the inner region through the baffle hole 2, so that the inner and outer regions form a natural circulation together, and the heat released from the spent fuel is brought to the evaporation end.
  • Heat pipe 4 is dividing the inside of the spent fuel pool 3 into two inner and outer regions through the partition plate 6.
  • the working medium in the heat pipe 4 of the evaporation end absorbs heat and then evaporates and moves upward into the riser pipe 10, and then reaches the heat pipe 7 of the condensation end by the riser pipe 10, and the working medium is cooled and condensed by the air in the chimney 8 to be converted into a liquid state, and the liquid medium working medium density Large, under the action of gravity, is returned to the evaporation end heat pipe 4 through the downcomer 5 to form a waste heat derivation circuit. Through this cycle, heat is transferred to the air in the chimney 8, which is heated upwards to form convection, and ambient air continues into the chimney 8 from the bottom. The heat from the spent fuel pool is ultimately transferred to the ambient air.
  • the invention adopts the heat pipe technology to cool the spent fuel pool, and the heat pipe working medium changes the temperature of the low temperature phase difference.
  • the heat pipe working medium changes the temperature of the low temperature phase difference.
  • the dependence on the power supply and the operator is fundamentally eliminated, and the long-term passive high-efficiency heat exchange cooling of the spent fuel pool is realized, which has high reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

一种基于热管的乏燃料池非动能余热导出系统,其在乏燃料池(3)内的四周布置若干块隔板(6),且隔板(6)的高度均低于乏燃料池(3)的高度;在隔板(6)的外侧与乏燃料池(3)内壁之间布置多根蒸发端热管(4),这些蒸发端热管(4)被分成若干组;每组蒸发端热管(4)的顶端出口延伸出乏燃料池(3)并且连接一路上升管(10)的入口,该路上升管(10)的出口连接包括多根冷凝端热管的一组冷凝端热管(7)的顶部入口,该组冷凝端热管(7)的底部出口连接一路下降管(5)的入口,该路下降管(5)的出口向下延伸至乏燃料池(3)内、连接一组蒸发端热管(4)的底部入口。本发明采用热管冷却乏燃料池,热管工作介质相变换热实现低温差高效换热,依靠密度差自然循环驱动,从根本上消除对电源和人员的依赖,实现乏燃料池长期非能动高效换热冷却。

Description

一种基于热管的乏燃料池非能动余热导出系统 技术领域
本发明属于核电站安全技术领域, 涉及一种利用热管低温差高效率导出 核电站乏燃料池余热的非能动冷却系统。
背景技术
核电站的安全性是核电站设计运行的重要组成部分。 继三里岛核事故和 切尔诺贝利核事故后, 福岛核电站事故再次给世界的核电发展敲响警钟。 我 国从美国引进的第三代反应堆 AP1000采用了非能动安全系统思路, 依靠重 力、 温差和压縮气体膨胀等自然力来驱动安全系统, 不需要依赖泵、 交流电 源和 1E级应急柴油发电机组等, 在发生严重事故后 72小时内可不依赖外界 操作而保证核电站的安全。 AP1000 的非能动安全系统设计是一种创新型设 计。然而严重事故 72小时后,乏燃料池和安全壳等部件内仍然持续不断地释 放热量, 此类部件的不间断非能动余热排出是保障核电站长期安全面临的挑 战。
目前乏燃料池的余热导出主要是通过乏燃料池余热导出系统实现, 在泵 的作用下, 水由乏燃料池抽出后到达外置换热器, 在此换热器中被冷却水冷 却, 从而排出热量。 该种方法依赖电源驱动泵, 且需要持续地提供冷却水源, 严重事故下该冷却系统可靠性差。
发明内容
本发明的目的在于克服现有技术的缺点, 提供一种基于热管的乏燃料池 非能动冷却系统, 其采用分离式热管技术, 实现低温差高效率的导出乏燃料 池余热, 仅靠自然循环驱动系统, 无需外界驱动力, 具有运行可靠的优点。
实现本发明目的技术方案: 一种基于热管的乏燃料池非能动余热导出系 统, 其中乏燃料组件设置在乏燃料池内; 其在乏燃料池内的四周布置若干块 隔板, 且若干块隔板的高度均低于乏燃料池的高度; 在每块隔板的下部开设 多个隔板孔;
在隔板的外侧与乏燃料池内壁之间布置多根蒸发端热管, 这些蒸发端热 管被分成若干组; 每组蒸发端热管的顶端出口延伸出乏燃料池并且连接一路 上升管的入口, 该路上升管的出口连接包括多根冷凝端热管的一组冷凝端热 管的顶部入口, 该组冷凝端热管的底部出口连接一路下降管的入口, 该路下 降管的出口向下延伸至乏燃料池内、 连接一组蒸发端热管的底部入口;
工作介质依次流经蒸发端热管、 上升管、 冷凝端热管和下降管, 再返回 蒸发端热管, 形成闭合余热导出回路; 所述的每组冷凝端热管均设置在烟囱 的下部内; 每组冷凝端热管的高度均高于每组蒸发端热管的高度。
如上所述的一种基于热管的乏燃料池非能动余热导出系统, 其所述的每 组蒸发端热管包括的所有蒸发端热管的出口汇集在同一连接箱内, 该连接箱 的出口连通一路上升管的入口; 所述的每组蒸发端热管包括的所有蒸发端热 管的入口汇集在同一连接箱内, 该连接箱的入口连通一路下降管的出口。
如上所述的一种基于热管的乏燃料池非能动余热导出系统, 其所述的每 组冷凝端热管包括的所有冷凝端热管的入口汇集在同一连接箱内, 该连接箱 的入口连通一路上升管的出口; 所述的每组冷凝端热管包括的所有冷凝端热 管的出口汇集在同一连接箱内, 该连接箱的出口连通一路下降管的入口。
如上所述的一种基于热管的乏燃料池非能动余热导出系统, 其所述的多 根蒸发端热管以 2~4层的形式布置在隔板的外侧与乏燃料池内壁之间。
如上所述的一种基于热管的乏燃料池非能动余热导出系统, 其所述的工 作介质为水、 甲醇、 乙醇、 丙酮或氨水。
如上所述的一种基于热管的乏燃料池非能动余热导出系统, 其若干块隔 板的高度为乏燃料池的高度的 1/3~4/5。
本发明的效果在于: 本发明所述的一种基于热管的乏燃料池非能动冷却 系统, 其采用了热管冷却乏燃料池, 热管工作介质相变换热实现低温差高效 换热, 依靠密度差自然循环驱动系统, 且采用烟囱提供空气冷源, 从根本上 消除了对电源和操作人员的依赖, 实现了乏燃料池的长期非能动高效换热冷 却, 具有很高的可靠性。
附图说明
图 1是本发明所述的一种基于热管的乏燃料池非能动余热导出系统结构 示意图;
图 2是蒸发端热管在乏燃料池内的布置截面图。
图中: 1. 乏燃料组件; 2. 隔板孔; 3. 乏燃料池; 4.蒸发端热管; 5. 下 降管; 6. 隔板; 7.冷凝端热管; 8. 烟¾ ; 9. 连接箱; 10. 上升管。
具体实 ¾ ¾r式
下面结合附图和具体实施例对本发明所述的一种基于热管的乏燃料池非 能动余热导出系统作进一歩描述。
如图 1所示, 本发明所述的一种基于热管的乏燃料池非能动余热导出系 统, 主要包括乏燃料池 3、 乏燃料组件 1、 隔板 6、 蒸发端热管 4、 冷凝端热 管 7、 下降管 5、 连接箱 9和烟囱 8。
如图 2所示, 乏燃料组件 1设置在乏燃料池 3内。 在乏燃料池 3内的四 周布置两块块隔板 6, 每块隔板 6的高度为乏燃料池 3的高度的 1/3~4/5 (例 如: 1/3或 4/5)。 同时在每块隔板 6的下部开设若干个隔板孔 2, 作为水的流 动提供通道。
在两块隔板 6的外侧与乏燃料池 3内壁之间、 分三层布置多根蒸发端热 管 4, 这些蒸发端热管 4分成若干组; 每组蒸发端热管的顶端出口延伸出乏 燃料池 3并且连接一路上升管 10的入口, 该路上升管 10的出口连接包括多 根冷凝端热管 7的一组冷凝端热管的顶部入口, 该组冷凝端热管的底部出口 连接一路下降管 5的入口, 该路下降管 5的出口向下延伸至乏燃料池 3内、 连接一组蒸发端热管的底部入口。 所述的每组冷凝端热管均设置在烟囱 8的 下部内; 每组冷凝端热管的高度均高于每组蒸发端热管的高度。
每组冷凝端热管布置于烟囱 8的下部内, 空气可以从烟囱 8的下部自由 地通过烟囱。 所述的烟囱也可以称为空冷塔。 工作介质依次流经蒸发端热管 4、 上升管 10、 冷凝端热管 7和下降管 5, 再返回蒸发端热管 4, 形成闭合余热导出回路。 所述的工作介质为水、 甲醇、 乙醇、 丙酮或氨水
上述每组蒸发端热管包括的所有蒸发端热管 4的出口可以汇集在同一连 接箱 9内, 该连接箱 9的出口连通一路上升管 10的入口; 该组蒸发端热管包 括的所有蒸发端热管 4的入口可以汇集在同一连接箱内, 该连接箱的入口连 通一路下降管 5的出口。
上述每组冷凝端热管包括的所有冷凝端热管 7的入口可以汇集在同一连 接箱内, 该连接箱的入口连通一路上升管 10的出口; 所述的每组冷凝端热管 包括的所有冷凝端热管 7的出口可以汇集在同一连接箱内, 该连接箱的出口 连通一路下降管 5的入口。
上述多根蒸发端热管 4或多根冷凝端热管 7的数量可在 500-2000根,根 据乏燃料衰变热的功率确定, 使多根蒸发端热管 4携带的乏燃料产生的热量 与多根冷凝端热管 7在烟囱内空气冷却携带的热量相等, 满足乏燃料冷却的 要求。
本发明所述的一种基于热管的乏燃料池非能动余热导出系统的工作原理 是: 通过隔板 6将乏燃料池 3内部分为内外两个区域。 内部区域的水首先获 得乏燃料组件 1释放的余热, 温度升高, 向上运动, 从隔板 6上方进入乏燃 料池外部区域。 而蒸发端热管 4布置于外部区域, 该外部区域的水被冷却, 向下流动, 并通过隔板孔 2进入内部区域, 这样内外区域一起形成自然循环, 将乏燃料释放的热量带到蒸发端热管 4。 蒸发端热管 4 内的工作介质吸收热 量后蒸发向上运动汇聚进入上升管 10, 然后由上升管 10到达冷凝端热管 7, 工作介质被烟囱 8中的空气冷却凝结转换为液态, 液相工作介质密度大, 在 重力的作用下, 通过下降管 5 回流到蒸发端热管 4, 构成余热导出回路。 通 过这个循环, 热量传递到烟囱 8中的空气, 空气受热向上运行, 形成对流, 常温空气从底部持续进入烟囱 8。 乏燃料池的热量最终传递到环境空气中。
本发明采用了热管技术冷却乏燃料池, 热管工作介质低温差相变换热, 依靠密度差自然循环驱动, 且采用烟囱提供空气冷源, 从根本上消除了对电 源和操作人员的依赖, 实现了乏燃料池的长期非能动高效换热冷却, 具有很 高的可靠性。

Claims

权 利 要 求 书
1. 一种基于热管的乏燃料池非能动余热导出系统, 其中乏燃料组件(1 ) 设置在乏燃料池(3) 内, 其特征在于: 在乏燃料池 (3) 内的四周布置若干 块隔板 (6), 且若干块隔板(6) 的高度均低于乏燃料池 (3) 的高度; 在每 块隔板 (6) 的下部开设多个隔板孔 (2);
在隔板(6) 的外侧与乏燃料池(3) 内壁之间布置多根蒸发端热管 (4), 这些蒸发端热管(4)分成若干组; 每组蒸发端热管的顶端出口延伸出乏燃料 池 (3) 并且连接一路上升管 (10) 的入口, 该路上升管 (10) 的出口连接包 括多根冷凝端热管(7) 的一组冷凝端热管的顶部入口, 该组冷凝端热管的底 部出口连接一路下降管 (5) 的入口, 该路下降管 (5) 的出口向下延伸至乏 燃料池 (3) 内、 连接一组蒸发端热管的底部入口;
工作介质依次流经蒸发端热管 (4)、 上升管 (10)、 冷凝端热管 (7) 和 下降管 (5), 再返回蒸发端热管 (4), 形成闭合余热导出回路; 所述的每组 冷凝端热管均设置在烟肉 (8) 的下部内; 每组冷凝端热管的高度均高于每组 蒸发端热管的高度。
2. 根据权利要求 1 所述的一种基于热管的乏燃料池非能动余热导出系 统, 其特征在于: 所述的每组蒸发端热管包括的所有蒸发端热管(4) 的出口 汇集在同一连接箱 (9) 内, 该连接箱 (9) 的出口连通一路上升管 (10) 的 入口; 所述的每组蒸发端热管包括的所有蒸发端热管(4)的入口汇集在同一 连接箱内, 该连接箱的入口连通一路下降管 (5) 的出口。
3. 根据权利要求 1 所述的一种基于热管的乏燃料池非能动余热导出系 统, 其特征在于: 所述的每组冷凝端热管包括的所有冷凝端热管(7) 的入口 汇集在同一连接箱内, 该连接箱的入口连通一路上升管 (10) 的出口; 所述 的每组冷凝端热管包括的所有冷凝端热管 (7) 的出口汇集在同一连接箱内, 该连接箱的出口连通一路下降管 (5) 的入口。
4. 根据权利要求 1 所述的一种基于热管的乏燃料池非能动余热导出系 统,其特征在于:所述的多根蒸发端热管(4)以 2~4层的形式布置在隔板(6) 的外侧与乏燃料池 ( 3) 内壁之间。
5. 根据权利要求 1 所述的一种基于热管的乏燃料池非能动余热导出系 统, 其特征在于: 所述的工作介质为水、 甲醇、 乙醇、 丙酮或氨水。
6. 根据权利要求 1 所述的一种基于热管的乏燃料池非能动余热导出系 统, 其特征在于: 若干块隔板(6) 的高度为乏燃料池(3)的高度的 1/3~4/5。
PCT/CN2012/077200 2012-04-27 2012-06-20 一种基于热管的乏燃料池非能动余热导出系统 WO2013159440A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/130,169 US9568252B2 (en) 2012-04-27 2012-06-20 Heat pipe based passive residual heat removal system for spent fuel pool
GB1323146.9A GB2515849B8 (en) 2012-04-27 2012-06-20 Heat pipe based passive residual heat removal system for spent fuel pool
ZA2014/00117A ZA201400117B (en) 2012-04-27 2014-01-07 Heat pipe based passive residual heat removal system for spent fuel pool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012101273596A CN103377732A (zh) 2012-04-27 2012-04-27 一种基于热管的乏燃料池非能动余热导出系统
CN201210127359.6 2012-04-27

Publications (1)

Publication Number Publication Date
WO2013159440A1 true WO2013159440A1 (zh) 2013-10-31

Family

ID=49462729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/077200 WO2013159440A1 (zh) 2012-04-27 2012-06-20 一种基于热管的乏燃料池非能动余热导出系统

Country Status (5)

Country Link
US (1) US9568252B2 (zh)
CN (1) CN103377732A (zh)
GB (1) GB2515849B8 (zh)
WO (1) WO2013159440A1 (zh)
ZA (1) ZA201400117B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102982852A (zh) * 2011-09-07 2013-03-20 葛永乐 用于核电站乏燃料池的热管散热器
CN103761994A (zh) * 2014-01-03 2014-04-30 上海交通大学 基于水冷热管的乏燃料池非能动余热导出系统
CN104051032B (zh) * 2014-06-13 2017-01-04 长江勘测规划设计研究有限责任公司 地下核电站乏燃料池非能动持续冷却系统
US11532405B2 (en) 2015-08-13 2022-12-20 P&T Global Solutions, Llc Passively cooled ion exchange column
KR101703710B1 (ko) 2015-11-18 2017-02-23 (주)이엔이티 히트파이프를 이용한 사용후 핵연료 피동 냉각시스템
CN105788674A (zh) * 2016-03-10 2016-07-20 西安交通大学 一种基于高温热管的熔盐堆新型非能动余热排出系统
CN107293341B (zh) * 2016-04-12 2023-11-03 国家电投集团科学技术研究院有限公司 池式反应堆
CN106653106A (zh) * 2017-01-19 2017-05-10 华南理工大学 一种核电站乏燃料水池多级长距离非能动热管冷却系统
US11270802B1 (en) * 2017-12-07 2022-03-08 Triad National Security, Llc Creep and cascade failure mitigation in heat pipe reactors
CN108225071A (zh) * 2018-02-13 2018-06-29 山东大学 一种连通管管径变化的重力热管
CN108847292A (zh) * 2018-07-23 2018-11-20 上海核工程研究设计院有限公司 一种用于乏燃料池非能动冷却的插入式热管蒸发段换热器
CN112309593A (zh) * 2019-08-01 2021-02-02 北京化工大学 一种乏燃料水池非能动余热导出热管换热系统
CN111403059A (zh) * 2020-03-23 2020-07-10 西安交通大学 一种多用途双模式核反应堆电源
CN112611247A (zh) * 2020-11-27 2021-04-06 中国核电工程有限公司 一种乏燃料水池非能动余热导出热管换热器
CN113437328B (zh) * 2021-05-25 2023-03-14 中国舰船研究设计中心 一种潜用多模块燃料电池热管理系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3517632A1 (de) * 1985-05-15 1986-11-20 INTERATOM GmbH, 5060 Bergisch Gladbach Kernenergieanlage mit notnachwaermeabfuhr durch luftkuehlung
US20050220256A1 (en) * 2004-03-18 2005-10-06 Singh Krishna P Systems and methods for storing spent nuclear fuel having a low heat load
CN1305076C (zh) * 2002-01-23 2007-03-14 法国原子能委员会 长期存放发射高热流的制品的装置
CN101740147A (zh) * 2009-12-17 2010-06-16 清华大学 一种核电站乏燃料的干式竖井贮存系统及其贮存方法
CN101958155A (zh) * 2009-07-13 2011-01-26 中国核电工程有限公司 一种乏燃料贮存格架
CN202178067U (zh) * 2011-07-29 2012-03-28 上海核工程研究设计院 改进型重水堆乏燃料干式贮存模块

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2823376B1 (de) * 1978-05-29 1979-09-13 Kraftwerk Union Ag Lager fuer Kernreaktorbrennelemente
DE3002641A1 (de) * 1980-01-25 1981-07-30 Brown, Boveri & Cie Ag, 6800 Mannheim Kerntechnische anlage
JPH02223896A (ja) * 1989-02-27 1990-09-06 Toshiba Corp 使用済燃料プール冷却装置
JPH06294891A (ja) * 1993-04-09 1994-10-21 Ishikawajima Harima Heavy Ind Co Ltd 使用済燃料の貯蔵施設
FR2791805B1 (fr) * 1999-03-30 2001-08-03 Commissariat Energie Atomique Installation d'entreposage de tres longue duree de produits calorifiques tels que des dechets nucleaires
CN100335846C (zh) 2000-04-12 2007-09-05 叶声羽 煤气灶热水罐
KR100951398B1 (ko) * 2008-03-25 2010-04-08 한국원자력연구원 히트 파이프 열교환기를 구비한 잔열제거 계통
CN101710494B (zh) * 2009-11-17 2012-02-08 华北电力大学 一种非能动排热的核电站严重事故缓解装置
DE102010035955A1 (de) * 2010-08-31 2012-03-01 Westinghouse Electric Germany Gmbh Brennelementlagerbecken mit Kühlsystem

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3517632A1 (de) * 1985-05-15 1986-11-20 INTERATOM GmbH, 5060 Bergisch Gladbach Kernenergieanlage mit notnachwaermeabfuhr durch luftkuehlung
CN1305076C (zh) * 2002-01-23 2007-03-14 法国原子能委员会 长期存放发射高热流的制品的装置
US20050220256A1 (en) * 2004-03-18 2005-10-06 Singh Krishna P Systems and methods for storing spent nuclear fuel having a low heat load
CN101958155A (zh) * 2009-07-13 2011-01-26 中国核电工程有限公司 一种乏燃料贮存格架
CN101740147A (zh) * 2009-12-17 2010-06-16 清华大学 一种核电站乏燃料的干式竖井贮存系统及其贮存方法
CN202178067U (zh) * 2011-07-29 2012-03-28 上海核工程研究设计院 改进型重水堆乏燃料干式贮存模块

Also Published As

Publication number Publication date
US20150060018A1 (en) 2015-03-05
CN103377732A (zh) 2013-10-30
ZA201400117B (en) 2017-08-30
GB2515849A (en) 2015-01-07
GB201323146D0 (en) 2014-02-12
GB2515849B (en) 2017-03-08
GB2515849B8 (en) 2017-07-12
US9568252B2 (en) 2017-02-14
GB2515849A8 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
WO2013159440A1 (zh) 一种基于热管的乏燃料池非能动余热导出系统
WO2016015474A1 (zh) 非能动混凝土安全壳冷却系统
CN201946323U (zh) 一种用于核电站的应急给水系统
CN102522127B (zh) 非能动安全壳热量导出系统
CN102956275A (zh) 具有紧凑的非能动安全系统的压水反应堆
CN103377728B (zh) 一种水淹式安全壳完全非能动余热导出系统
WO2016015475A1 (zh) 混凝土安全壳非动能冷却系统
KR101436497B1 (ko) 나선형 소듐대-소듐 열교환기를 이용하여 자연순환 냉각 성능을 강화한 소듐냉각 원자로의 완전 피동형 잔열제거 시스템
CN113035387B (zh) 一种高效运行的pcs长期冷却水箱
CN202855318U (zh) 一种用于核电站的非能动启动冷却系统及核电站系统
CN103956193A (zh) 一种非能动安全壳热量导出系统
CN204029396U (zh) 非能动混凝土安全壳冷却系统
CN104285259A (zh) 用于核电厂的非能动安全壳空气冷却
CN105788674A (zh) 一种基于高温热管的熔盐堆新型非能动余热排出系统
CN205656860U (zh) 低温核供热堆堆芯余热非能动排出系统
CN102000460A (zh) 汽水分离器
CN103761994A (zh) 基于水冷热管的乏燃料池非能动余热导出系统
CN209857708U (zh) 用于乏燃料池的非能动旗型热管交换器及乏燃料池装置
CN205230605U (zh) 核电站非能动安全壳冷却系统
CN107663474A (zh) 生物柴油精馏系统及工艺
CN102434874B (zh) 核电卧式高压给水加热器及加热方法
CN103377734A (zh) 一种带有分离式空气冷却热阱的下沉式安全壳
CN201897210U (zh) 核电200mw机组正置立式u形管高压加热器
CN113035388A (zh) 一种简洁高效的pcs长期冷却水箱
CN202598943U (zh) 蒸汽凝结水余热回收系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1323146

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20120620

WWE Wipo information: entry into national phase

Ref document number: 1323146.9

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14130169

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12875025

Country of ref document: EP

Kind code of ref document: A1