WO2013159364A1 - Method for repairing and decoding air interface voice frame, and signal source side information acquisition method and device - Google Patents
Method for repairing and decoding air interface voice frame, and signal source side information acquisition method and device Download PDFInfo
- Publication number
- WO2013159364A1 WO2013159364A1 PCT/CN2012/074930 CN2012074930W WO2013159364A1 WO 2013159364 A1 WO2013159364 A1 WO 2013159364A1 CN 2012074930 W CN2012074930 W CN 2012074930W WO 2013159364 A1 WO2013159364 A1 WO 2013159364A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parameter
- frame
- parameter set
- transition probability
- parameters
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/09—Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/37—Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
- H03M13/45—Soft decoding, i.e. using symbol reliability information
- H03M13/451—Soft decoding, i.e. using symbol reliability information using a set of candidate code words, e.g. ordered statistics decoding [OSD]
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/37—Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
- H03M13/45—Soft decoding, i.e. using symbol reliability information
- H03M13/458—Soft decoding, i.e. using symbol reliability information by updating bit probabilities or hard decisions in an iterative fashion for convergence to a final decoding result
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/63—Joint error correction and other techniques
- H03M13/6312—Error control coding in combination with data compression
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/65—Purpose and implementation aspects
- H03M13/6522—Intended application, e.g. transmission or communication standard
- H03M13/6525—3GPP LTE including E-UTRA
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/65—Purpose and implementation aspects
- H03M13/6522—Intended application, e.g. transmission or communication standard
- H03M13/6536—GSM GPRS
Definitions
- Air interface voice frame repair decoding method for example, Air interface voice frame repair decoding method, source side information acquisition method and device
- the present invention relates to the field of communications, and in particular, to an air interface voice frame repair decoding method, a source side information acquiring method, and a device.
- the source is Decoding uses the correlation between adjacent frames to error conceal the wrong frame.
- the error concealment processing can replace or extrapolate the information of the bad frame with the good frame of the previous frame or several frames, the subjective feeling of the degraded speech file after the error concealment is still significantly lower than that of the original speech file. , can not meet the user's requirements for multimedia quality, especially the high fidelity demand for voice.
- the prior art has proposed some solutions for repairing air interface voice frames, but its improvement on voice quality is limited.
- the air interface speech frame repair and decoding method in the prior art has limited performance improvement on the bit error rate and the frame error rate, and the subjective quality of the speech is not ideal, and there is room for improvement.
- Embodiments of the present invention provide an air interface voice frame repair decoding method, a source side information acquiring method, and a device, which can improve the bit error rate and the frame error rate performance, thereby effectively improving the subjective quality of the voice.
- the embodiment of the present invention adopts the following technical solutions:
- an air interface voice frame repair and decoding method including:
- a method for acquiring source side information including:
- an air interface voice frame repair decoding apparatus including:
- An obtaining module configured to acquire a parameter composed of decoding bits
- a decoding module configured to perform parameter reliability calculation on the parameter acquired by the obtaining module, obtain soft information corresponding to the parameter, and obtain a parameter set that is corrected by using the soft information
- a verification module configured to perform a first cyclic redundancy check on the modified parameter set obtained by the decoding module
- a bit flipping module configured to: if the first cyclic redundancy check fails of the check module, after determining that the parameter set meets a preset rule, perform a bit that meets a bit flip rule in the parameter set Flip, get the set of parameters after flipping;
- a verification module configured to perform a second cyclic redundancy check on the inverted parameter set obtained by the bit flip module; If the second cyclic redundancy check of the verification module is successful, the virtual source decoder saves, and the first output module outputs the inverted parameter set.
- a source side information acquiring device including:
- An obtaining module configured to obtain an initial parameter transition probability according to the mean initialization or the training corpus
- a calculation module configured to calculate a target parameter transition probability according to the initial parameter transition probability, and update the target parameter transition probability calculated by the current frame to the parameter transition probability of the next frame in real time, so that the air interface voice frame is repaired
- the decoding device performs the parameter reliability of the parameter according to the parameter transition probability obtained in real time in each frame.
- the parameter with higher error probability that is, the parameter with lower absolute value of the soft information can be flipped, the pass rate of the CRC check is improved, the bit error rate and the frame error rate performance are improved, and the subjective quality of the voice is improved.
- FIG. 1 is a schematic flow chart of a method for repairing and decoding an air interface voice frame according to an embodiment of the present invention
- FIG. 2 is a flowchart of another air interface voice frame repair and decoding method according to an embodiment of the present invention.
- FIG. 3 is a schematic flowchart of still another method for repairing and decoding an air interface voice frame according to an embodiment of the present invention
- FIG. 4 is a schematic diagram of BER performance simulation of SBSD and ISCD algorithms after BF flipping according to an embodiment of the present invention
- FIG. 5 is a schematic diagram of FER performance simulation after BF flipping of SBSD and ISCD algorithms according to an embodiment of the present invention
- FIG. 6 is a schematic diagram of MOS performance simulation of ISCD performing BF inversion and not performing BF flipping according to an embodiment of the present invention
- FIG. 7 is a schematic diagram of MOS performance simulation of SBSD performing BF flipping and BF flipping without BFSD according to an embodiment of the present invention
- FIG. 8 is a schematic diagram of BER performance simulation of ISCD performing BF flipping under different SSI estimators according to an embodiment of the present invention
- FIG. 9 is a schematic diagram of MOS performance simulation after ISCD performing BF flipping under different SSI estimators according to an embodiment of the present invention.
- FIG. 10 is a schematic diagram of BER performance simulation after BF flipping of SBSD under different S SI estimators according to an embodiment of the present invention.
- FIG. 1 is a schematic diagram of MOS performance simulation after BF flipping of SBSD under different S SI estimators according to an embodiment of the present invention
- FIG. 12 is a schematic diagram of MOS performance simulation under the IEC and SEC mechanisms according to an embodiment of the present invention.
- FIG. 13 is a schematic diagram of UER performance simulation after BF flipping of SBSD and ISCD algorithms according to an embodiment of the present invention
- FIG. 14 is a schematic flowchart of a source side information acquisition method according to an embodiment of the present invention
- FIG. 15 is a schematic structural diagram of an air interface voice frame repair and decoding apparatus according to an embodiment of the present invention.
- FIG. 16 is a schematic structural diagram of another air interface voice frame repair and decoding apparatus according to an embodiment of the present invention.
- FIG. 17 is still another air interface voice frame repair and decoding device according to an embodiment of the present invention. Schematic;
- FIG. 18 is a schematic structural diagram of another air interface voice frame repair and decoding device according to an embodiment of the present invention.
- FIG. 19 is a schematic structural diagram of still another air interface voice frame repair and decoding apparatus according to an embodiment of the present invention.
- FIG. 20 is a schematic structural diagram of a source side information acquiring device according to an embodiment of the present invention.
- the air interface voice frame repair and decoding method provided by the embodiment of the present invention is as shown in FIG. 1 , and the method steps include:
- the air interface voice frame repairing device acquires a parameter composed of decoding bits.
- the air interface speech frame repairing device performs parameter reliability calculation on the parameter, obtains soft information corresponding to the parameter, and sets the parameter after the parameter is corrected by using the soft information.
- the air interface voice frame repair device can use ISCD (Iserative Source-Channel Decoding, Joint Source Channel Decoding) and SBSD (Soft-Bit) in JSCD (Joint Source-Channel Decoding).
- ISCD Intelligent Source-Channel Decoding
- SBSD Soft-Bit
- JSCD Joint Source-Channel Decoding
- Source Decoding soft bit source decoding Two algorithms perform parameter reliability calculation to obtain the soft information corresponding to the parameter, and use soft information to modify the parameter or some of the parameters, such as AMR (Adaptive Multi-Rate, Adaptive multi-rate) The A substream in the encoding is corrected.
- AMR Adaptive Multi-Rate, Adaptive multi-rate
- the air interface voice frame repair device can also use the JSCD algorithm according to each
- the parameter transition probability obtained by real-time acquisition of one frame is obtained by the posterior probability corresponding to the parameter.
- the initial prior information of the channel decoding can be calculated according to the parameter transition probability P: C3 ⁇ 43 ⁇ 4- and the posterior probability of the previous frame and sent to the interleaver; Perform channel decoding and deinterleave to obtain channel soft information and a priori information of source decoding
- the source decoder can calculate the posterior probability ⁇ ⁇ and the soft information ⁇ ® according to the above parameters, wherein the posterior probability of the parameter represents the parameter reliability.
- 3 ⁇ 4W j ⁇ refers to the set of bits corresponding to the parameters involved in JSCD correction, such as
- the set of A substream bits, the set of bits corresponding to the remaining parameters, such as the B substream bit set and the C substream bit set, are outputted by channel decoding.
- the CRC check can be performed on the parameters of the current subframe before the algorithm is enabled. Since the SBSD algorithm is similar to an error concealment technique, the algorithm can be started when the CRC check fails.
- the source channel joint decoding device calculates the error probability of the ith bit parameter of the kth frame according to the bit soft information output by the channel decoding ((0) according to the error probability, obtains the bit transmission probability
- the posterior probability represents the parameter reliability. among them
- the output makes the posterior probability rate
- the bit sequence () of the binary representation corresponding to the largest parameter, ie IS s S s I r , is the set of bits corresponding to the parameters involved in the JSCD correction, such as the A substream bit set, and the remaining parameters.
- the set of bits, such as the B substream bit set and the C substream bit set, are channel decoded output.
- the air interface voice frame repairing device performs a first C R C check on the modified parameter set.
- the air interface speech frame repair device may perform a first CC check on the entire modified parameter set, or may perform a first CRC check on the modified parameter in the modified set, as modified in the modified AMR code.
- the A substream performs a first CRC check.
- GSM Global System for AMR business under Mobile communications
- the bits that make up the parameters in the AMR encoding are divided into A ⁇ B ⁇ C substreams according to their importance, where the A substream is of the highest importance and is protected by the CRC check.
- SEC Standard Error Concealment
- 3GPP The 3rd Generation Partnership Project
- the CRC detection is continued after the A substream is modified, so that when the verification fails, the probability of bit errors in the A substream is reduced by inverting the decoded bits.
- the A bit stream of the AMR in the GSM system is used as an example of the modified bit set as an example.
- the modified bit set in other systems or other services is within the protection range.
- the bit that meets the bit flip rule in the parameter set is flipped, and the parameter set after the rollover is obtained.
- the soft information of the bit in the parameter set is £ ⁇ ( )
- the error probability of the bit is: ⁇ 1 ⁇ ⁇ * ⁇ 3 ⁇ 4 ⁇ ⁇ : The larger the absolute value, the lower the error probability of this bit.
- the error parameters can be further corrected by flipping those bits with a higher probability of error (lower absolute soft information) until the CRC check passes.
- the air interface speech frame repair device determines that the modified parameter set meets the preset rule, for example, determining the absolute value of the soft information corresponding to the bit in the parameter in the A substream or the bit corresponding to the other parameters in the modified parameter set. If the absolute value of the soft information is less than or greater than a preset threshold, the BF (Bit-Flipping) algorithm is started to perform BF flipping of the bits in the A substream that conform to the bit flip rule, such as the A substream. The bit whose absolute value of the soft information corresponding to the middle bit is smaller than the preset threshold value is subjected to BF inversion.
- the preset rule for example, determining the absolute value of the soft information corresponding to the bit in the parameter in the A substream or the bit corresponding to the other parameters in the modified parameter set.
- the air interface voice frame repairing device performs a second CRC check on the inverted parameter set.
- a second CRC check is performed on the flipped parameter set, and the flipped parameter set includes parameters consisting of inverted bits and parameters composed of unflipped bits.
- the bit satisfying the above-mentioned bit flipping rule has been flipped, and the bit that does not satisfy the rule is not flipped, and the air interface voice frame repairing device includes some flipping for the inverted parameter set.
- the A substream of the bit is subjected to a second CRC check.
- the air interface voice frame repairing device saves and outputs the inverted parameter set if the second CRC check succeeds.
- the air interface voice frame repairing device performs the second CRC check successfully, and can also save and output the inverted parameter set and the posterior probability corresponding to the parameter in the parameter set.
- the air interface voice frame repair device acquires a parameter composed of decoding bits; performs parameter reliability calculation on the parameter to obtain soft information corresponding to the parameter and the modified parameter set;
- the modified parameter set performs cyclic redundancy check; if it fails, after determining that the parameter set meets the preset rule, the bit that meets the bit flip rule in the parameter set is flipped to obtain the inverted parameter set;
- the parameter set performs cyclic redundancy check; if successful, saves and outputs the inverted parameter set.
- the pass rate of the CRC check is improved, the bit error rate and the frame error rate performance are improved, and the subjective quality of the voice is improved.
- the air interface voice frame repair and decoding method provided by the embodiment of the present invention is based on the decoding of the AMR service in the GSM, wherein the parameter set modified by the soft information includes a parameter composed of the first type of bits and a parameter composed of the second type of bits.
- the first type of bit is a CRC bit
- the second type of bit is a bit in the A substream, which is only illustrated by way of example, but is not limited thereto.
- the method steps are as shown in FIG. 2, including:
- the air interface voice frame repair device acquires a parameter composed of decoding bits.
- the air interface voice frame repairing device acquires the posterior probability and the soft information corresponding to the parameter through the ISCD and the SBSD according to the parameter, and obtains the parameter set corrected by the soft information.
- the modified parameter set is composed of a parameter consisting of CRC bits and an A substream. It should be noted that if the SBSD algorithm is adopted, the CRC can be performed after the parameters are acquired. Verification, if the verification fails, the SB SD algorithm is started.
- bit information used after step S204 is inverted and the parameters are
- the posterior probability corresponding to the parameter can be calculated according to the parameter transition probability obtained in real time, if the voice signal to be transmitted is known, the parameter transition probability obtained by the SSI (Source Side Information) is ⁇ ⁇ - ⁇ can be obtained by calculation of the number of transmissions. Since the speech signal is generally a non-stationary signal, the redundancy of adjacent frames is much larger than the inter-frame redundancy that is far apart. Therefore, using the parameters of the previous frame and the frame parameters to calculate the number of transmissions can reduce the impact of redundancy.
- SSI Source Side Information
- the following algorithm can be used:
- initialization parameter transition probabilities 3 ⁇ 4 3 ⁇ 4-i Using a mean initialization or training corpus to obtain a set of initialization parameter transition probabilities 3 ⁇ 4 3 ⁇ 4-i), wherein the training corpus is obtained by statistically analyzing speech samples of people of different races, genders, ages, etc., and passing the speech sample file. The sample file is statistically calculated, and the initialization parameter transition probability is obtained by performing a desired calculation or the like.
- the target parameter transition probability is obtained according to the initial parameter transition probability.
- the target parameter transition probability is the parameter transition probability obtained in real time after the end of each frame decoding, that is, after each frame decoding is completed, the obtained parameter transition probability is updated to the previous parameter transition probability.
- the air interface voice frame repair device performs a first CRC check on the modified parameter set. It should be noted that if the first CRC check succeeds, step S204 is performed, and if the first CRC check fails, step S205 is performed.
- the air interface speech frame repair device selects a parameter corresponding to the maximum posterior probability, and outputs the selected parameter.
- the output current frame information may be stored in the VSD (Virtual Source Decoder) as good frame information, so that the air interface voice frame is obtained.
- the repair device can use the stored parameters to perform error concealment processing on the error parameters of the bad frame when the next frame is a bad frame.
- the air interface voice frame repairing device sorts the absolute values of the soft information corresponding to the bits of each parameter in the A substream in the modified parameter set by small to large.
- the absolute value of the soft information may be A sub streams corresponding to each bit £ ( ' ⁇ (0)
- the modified parameter set conforms to the preset rule when the following three conditions are met:
- the absolute value of the soft information corresponding to the CRC bit is greater than the second preset threshold L th , that is: min " 1 ; and the soft information corresponding to each bit in the A substream sorted from small to large is absolutely
- the absolute value of the smallest soft information corresponding to the bit in the A substream is greater than the third preset threshold, namely: min " 1 .
- the ratio of the absolute value of the soft information to the absolute value of the minimum soft information in the parameter set of the air interface voice frame repairing device is smaller than the bit in the A substream of the fourth preset threshold, and the third parameter set containing the inverted bit is performed. CRC check.
- the absolute value of the soft information corresponding to the bits in all the dice streams is the fourth preset threshold, and the air interface speech frame repair device flips (3 ⁇ 4 ⁇ 3 ⁇ 4 bits).
- the air interface voice frame repairing device determines the validity of the parameter set according to the effective range.
- the effective range can be set according to whether the parameter is valid.
- the validity of the parameter range is determined by the effective range of the adaptive codebook gain parameter in the AMR coding.
- the validity range of other parameters or the effective range of the current system configuration can also be used to judge the validity. Do this with any restrictions.
- the air interface voice frame repair device outputs a parameter in the parameter set of the flip and an updated posterior probability corresponding to the parameter.
- the output current frame information may be stored in the VSD (Virtual Source Decoder) as good frame information.
- VSD Virtual Source Decoder
- the air interface voice frame repair device outputs the JSCD modified parameter set and the posterior probability corresponding to the parameter.
- the modified parameter of JSCD is the posterior probability corresponding to the parameter is P (D.
- the parameters of the A substream soft information whose absolute value is smaller than the fifth preset threshold in the parameter set of the air interface voice frame repairing device flipping correction, and the parameter set including the flipped parameter is performed.
- the second CRC check' is the parameter of the flip correction, and (d))i
- a substream soft information absolute value, r th is the fifth preset threshold.
- the inversion of S206 and S210 is not limited, and S210 may be performed first, that is, if the preset rule is met, then S210 is performed, otherwise, S209 is performed; Step S210; After the inversion, if the fourth CRC check is successful, then S207 is performed. If the fourth CRC check fails, step S206 is performed. After the step S206 is reversed, if the second CRC check is successful, step S207 is performed. Otherwise, Step S209 is performed.
- first CRC check, the second CRC check, the third CRC check, and the fourth CRC check only indicate that the set of parameters for the check is different, or the conditions for verifying start are different, but All are CRC check, no restrictions are imposed.
- the BER and FER of the A substream are significantly reduced, and a gain of about 0.5 dB can be obtained.
- the performance of ISCD-BF is better than that of SBSD-BF in dry ratio. With the increase of carrier-to-interference ratio, the performance of the two algorithms is relatively close and superior.
- Figures 6 and 7 show that JSCD with BF algorithm can obtain better MOS. (Mean Opinion Score, average subjective score) Performance, Similarly, the MOS score performance of ISCD-BF is better than SBSD-BF at low carrier to dry ratio.
- Figure 8 and Figure 9 show the BER performance and MOS performance of the A substream using different SSI estimators under the ISCD-BF algorithm.
- the performance of the on-line SSI estimator is close to the ideal off-line SSI estimator performance.
- Figure 10 and Figure 1 show the BER performance and MOS performance of the A substream using different SSI estimators under the SBSD-BF algorithm.
- the performance of each SSI estimator is basically close under SBSD-BF, and SBSD-BF does not exhibit the performance backplane appearing in ISCD-BF at high carrier-to-interference ratio. This is because the SBSD-BF algorithm only starts when the CRC check error occurs, and the probability of a CRC check error at the high load-to-interference ratio is very low.
- step S209 the air interface voice frame repairing device performs step S211 to perform IEC (Individual Error Concealment) on the error parameter.
- IEC Intelligent Error Concealment
- the air interface voice frame repairing device identifies the parameter whose posterior probability is less than the first preset threshold P th as a bad parameter.
- the air interface speech frame repair device may set the number of bad parameters of the current frame, for example, set to 4. If the number of bad parameters of the frame is less than 4, select the minimum 4 parameters of the posterior probability ' ⁇ : ⁇ ⁇ )
- the parameter is a bad parameter. For example, when there are only 3 bad parameters in the frame, the parameter with the smallest thickness parameter among other good parameters is also selected as a bad parameter, which can reduce the probability of noise generation.
- the first preset threshold may be any value selected between 0-2.
- the air interface voice frame repairing device updates the bad parameters by using parameters in the pre-stored good frame.
- the parameters in the pre-stored good frame can be pre-stored in the VSD, wherein the pre-stored good frame is a frame that does not identify a bad parameter, and the air interface voice frame repair device can perform the current frame according to the parameters of the previous good frame. If the bad parameters are updated, the parameter similarity rate of the adjacent frames may be higher, which is convenient for improving the voice quality of the current frame after updating the bad parameters, but not all bad previous frames are good frames, and only the case is illustrated here. , do not make any restrictions on this.
- the air interface speech frame repair device may use the LSF (Linear Spectrum Frequency), the adaptive codebook gain parameter, and the fixed codebook gain parameter in the previous good frame to update the bad parameters in the current bad frame.
- LSF Linear Spectrum Frequency
- the LSF and LSF mean values of the current frame in which the bad parameters are replaced are used by using the LSF of the previous good frame and the LSF mean; and the pre-stored good frames are reused.
- the signal amplitude limits the adaptive codebook gain parameter and the fixed codebook gain parameter of the current frame, such as limiting the adaptive codebook gain parameter to 10, and limiting the fixed codebook gain parameter to 20; or
- the adaptive codebook gain parameter is limited to 13 and the fixed codebook gain parameter is limited to 22, which is only illustrated by the above numerical values, and is not limited thereto.
- the air interface speech frame repairing device can further replace the pitch delay parameter at the corresponding odd position of the current frame where the bad parameter is located by using the pre-stored pitch delay parameter of the odd position in the previous good frame, and use the pre-stored previous good frame.
- the pitch delay parameter of the even position in the middle adds the preset offset and replaces the pitch delay parameter at the corresponding even position of the current frame. It may be assumed that the current frame contains four subframes, and since the second subframe and the fourth subframe are less redundant, the second subframe and the fourth subframe of the previous good frame may be used instead, and the first subframe is replaced by the first subframe.
- the third subframe can use the gene delay parameter of the first subframe of the previous good frame plus a preset offset, such as the gene delay parameter of the first subframe is 10, the preset offset If the quantity is 2, the gene delay parameter of the first subframe of the current frame is 12, and the gene delay parameter of the fourth subframe can be obtained by the same reason.
- Figure 6, Figure 7, and Figure 12 show that the IEC mechanism implemented in steps S211 and S212 can further improve the performance of the algorithm compared to the SEC (Standard Error Concealment) mechanism in the prior art.
- SEC Standard Error Concealment
- the air interface voice frame repair device acquires a parameter composed of decoding bits; performs parameter reliability calculation on the parameter to obtain soft information corresponding to the parameter and the modified parameter set;
- the modified parameter set performs cyclic redundancy check; if it fails, after determining that the parameter set meets the preset rule, the bit that meets the bit flip rule in the parameter set is flipped to obtain the inverted parameter set;
- the parameter set performs cyclic redundancy check; if successful, saves and outputs the inverted parameter set.
- the source side information obtaining method provided by the embodiment of the present invention is as shown in FIG. 14 , and the method steps include:
- the source side information acquiring device obtains an initial parameter transition probability according to the mean initialization or the training corpus.
- the source side information acquisition device uses the mean initialization or training corpus to obtain a set of initialization parameter transfer probability ⁇ -
- the source side information acquiring device calculates the target parameter transition probability according to the initial parameter transition probability, and updates the target parameter transition probability calculated by the current frame to the parameter transition probability of the next frame in real time, so that the air interface voice frame repair decoding device
- the parameter reliability is calculated based on the parameter transition probability obtained in real time for each frame.
- the target parameter transition probability is obtained according to the initial parameter transition probability.
- the target parameter transition probability is the parameter transition probability obtained in real time after the end of each frame decoding, that is, after each frame decoding is completed, the obtained parameter transition probability is updated to the previous parameter transition probability.
- ⁇ is the weighting factor
- ⁇ — can be normalized to the parameter transition probability
- the method for acquiring source side information provided by the embodiment of the present invention the initial parameter transition probability acquired by the source side information acquiring device, and calculating according to the obtained initial parameter transition probability
- the target parameter transition probability is obtained, and the target parameter transition probability calculated in the current frame is updated in real time to the parameter transition probability of the next frame.
- the source side information acquiring device can update the parameter transition probability in real time, and provide a more accurate parameter transition probability for other connected devices, such as an air interface speech frame repair decoding device, which uses the parameter transfer probability with higher correct rate for processing. , in turn to ensure the correct rate of data processing of other connected devices.
- the air interface voice frame repairing device 30 provided by the embodiment of the present invention, as shown in FIG. 15 , includes:
- the obtaining module 301 is configured to obtain a parameter composed of decoding bits.
- the acquisition module 301 can obtain parameters consisting of decoded bits output from the channel decoder.
- the calculation module 302 is configured to perform resource source joint decoding calculation parameter reliability calculation on the parameters acquired by the obtaining module 301, obtain soft information corresponding to the parameter, and use the soft information to correct the parameter set.
- the parameter set modified by the soft information may be a new parameter set composed of parameters consisting of the A substream and the CRC bit, and is recorded as a modified parameter set, wherein the CRC bit can be used to determine whether the CRC check is trusted. .
- the verification module 303 is further configured to perform a first CRC check on the modified parameter set obtained by the calculation module 302.
- the bit flipping module 304 is configured to: if the first CRC check fails by the check module 303 on the modified parameter set, and after determining that the modified parameter set meets the preset rule, the bit flip rule is matched in the parameter set. The bits are flipped to obtain a flipped set of parameters containing the inverted bit composition parameters.
- the verification module 303 is configured to perform a second cyclic redundancy check on the inverted parameter set obtained by the bit flip module 304.
- the second CRC check by the check module 303 is successful, it is saved by the virtual source decoder 305, and the first output module 306 outputs the inverted set of parameters.
- the adaptive air interface voice frame repairing device 30 further includes:
- the determining module 307 is configured to perform validity determination according to the valid range in the actual transmission according to the inverted set of parameters obtained by the bit flip module 304 after the second CRC check by the check module 303 is successful.
- the effective range is limited according to the lowest value and the highest value that can be achieved by the actual coding of the parameter.
- the adaptive codebook gain in the AMR speech coding occupies 6 bits, and ideally, 64 values should be taken. , recorded as 0 ⁇ 63, but the actual code can only reach 60, so the range is limited to 0 ⁇ 60.
- the determining module 307 determines that the flipped parameter set is within the valid range, the virtual source decoder 305 saves the flipped parameter set, and the first output module 306 outputs the inverted parameter set.
- the virtual source decoder 305 saves the corrected parameter set before the flip, and the second output module 308 outputs the corrected parameter set before the flip.
- the virtual source decoder 305 stores the corrected parameter set before the flip, and the second output module 308 outputs the corrected parameter set before the flip.
- the virtual source decoder 305 saves, and the first output module 306 outputs the inverted parameter set and the posterior probability corresponding to the parameter in the parameter set.
- the virtual source decoder 305 saves, and the second output module 308 outputs the corrected parameter set before the flip and the posterior probability corresponding to the parameter in the parameter set.
- the air interface voice frame repairing apparatus 30 further includes: a source side information estimator 309, configured to acquire a parameter transition probability of each frame in real time, so that the calculating module 302 performs parameter reliability on the parameter. Calculate, calculate the posterior probability corresponding to the parameter according to the parameter transition probability.
- the source side information estimator 309 can also be configured to obtain an initial parameter transition probability according to the mean initialization or training corpus; calculate the target parameter transition probability according to the initial parameter transition probability, and calculate the target parameter transition probability in the current frame in real time. Update to the parameter transition probability of the next frame.
- the air interface voice frame repairing device 30 further includes: an identifying module 310, configured to use the virtual source decoder 305 to save the posterior probability of the modified parameter set before the flipping is smaller than the first preset. The parameter of the threshold is identified as a bad parameter.
- the independent error concealment module 31 1 is configured to update the bad parameters by using parameters in the good frame in the pre-stored virtual source decoder 305, wherein the good frame is a frame that does not identify the bad parameter.
- the independent error concealment module 31 1 replaces the LSF and LSF mean of the current frame in which the bad parameters are located by using the good frame midline spectral frequency LSF and the LSF mean of the pre-existing virtual source decoder 305; using the pre-existing virtual source decoder 305
- the signal amplitude in the good frame limits the adaptive codebook gain parameter and the fixed codebook gain parameter of the current frame.
- the independent error concealment module 31 1 is configured to replace the pitch delay at the corresponding odd position of the current frame where the bad parameter is located, respectively, by using the pitch delay parameter of the odd position in the previous good frame of the pre-existing virtual source decoder 305.
- the parameter is used to replace the pitch delay parameter of the corresponding even position of the current frame by using the pitch delay parameter of the even position in the previous good frame of the pre-existing virtual source decoder 305 and adding the preset offset.
- the air interface voice frame repairing apparatus 30 further includes: a maximum a posteriori probability estimator 312, configured to successfully perform a first CRC check on the first CRC check performed by the check module 303, The parameter corresponding to the maximum a posteriori probability in the inverted parameter set is selected, and the selected parameter is output.
- the virtual source decoder 305 also saves the selected parameter and saves the frame of the selected parameter as a good frame.
- the air interface voice frame repairing device 30 can use the air interface voice frame repairing method provided in the foregoing embodiment. The method has been described in detail in the foregoing embodiments, and details are not described herein again.
- the air interface voice frame repairing device 30 and the air interface voice frame repairing device 30 of the embodiment of the present invention acquire parameters composed of decoding bits; perform parameter reliability calculation on the parameters to obtain soft information corresponding to the parameters and the modified parameter set;
- the modified parameter set performs cyclic redundancy check; if it fails, after determining that the parameter set meets the preset rule, the bit that meets the bit flip rule in the parameter set is flipped to obtain the inverted parameter set;
- the parameter set performs cyclic redundancy check; if successful, saves and outputs the inverted parameter set.
- the parameter with higher error probability that is, the parameter with lower absolute value of the soft information
- the pass rate of the CRC check is improved
- the bit error rate and the frame error rate performance are improved
- the subjective quality of the voice is improved.
- the source side information acquiring device 40 provided by the embodiment of the present invention is as shown in FIG. Includes:
- the obtaining module 401 is configured to obtain an initial parameter transition probability according to the mean initialization or the training corpus.
- the calculation module 402 is configured to calculate a target parameter transition probability according to the initial parameter transition probability, and update the target parameter transition probability calculated by the current frame to the parameter transition probability of the next frame in real time, so that the air interface voice frame is obtained.
- the repair decoding device 30 performs the parameter reliability meter on the parameter according to the parameter transition probability obtained in real time for each frame.
- the source side information acquiring device 40 can use the source side information obtaining method provided by the foregoing embodiment. The method has been described in detail in the above embodiments, and details are not described herein again.
- the source side information acquiring device 40 can also be used as the source side information estimator 309 in the above-mentioned air interface voice frame repairing device 30, and details are not described herein.
- the source side information obtaining device 40 and the source parameter side acquiring information obtained by the source side information acquiring device 40 calculate the target parameter transition probability according to the obtained initial parameter transition probability, and calculate the current frame in real time.
- the target parameter transition probability is updated to the parameter transition probability of the next frame.
- the source side information acquiring device can update the parameter transition probability in real time, and provide a more accurate parameter transition probability for other devices connected to the source side information acquiring device 40, such as the air interface voice frame repair decoding device 30.
- a higher rate of parameter transfer probability is processed to ensure the correct rate of data processing of the connected device.
Landscapes
- Physics & Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
Abstract
Embodiments of the present invention relate to the field of communications, and provide a method for repairing and decoding an air interface voice frame, and a signal source side information acquisition method and device, which can improve the bit error rate and frame error rate performance. The method comprises: acquiring parameters formed of decoding bits; performing reliability calculation on the parameters to obtain soft information corresponding to the parameters and a parameter set containing the parameters which have been corrected using the soft information; performing first cyclic redundancy check on the corrected parameter set; if the first cyclic redundancy check fails, flipping a parameter satisfying a bit flipping rule in the parameter set after determining that the parameter set satisfies a preset rule, so as to obtain a flipped parameter set; performing second cyclic redundancy check on flipped parameter set; and if the second cyclic redundancy check is successful, saving and outputting the flipped parameter set. The embodiment of the present invention is used for joint decoding of signal source channels.
Description
空口语音帧修复译码方法、 信源边信息获取方法及设备 技术领域 Air interface voice frame repair decoding method, source side information acquisition method and device
本发明涉及通信领域, 尤其涉及一种空口语音帧修复译码方法、 信源边信息获取方法及设备。 The present invention relates to the field of communications, and in particular, to an air interface voice frame repair decoding method, a source side information acquiring method, and a device.
背景技术 Background technique
随着多媒体技术的不断完善, 用户对音频、 视频等多媒体业务 的需求越来越高, 随着多媒体设备的业务多样化, 用户对多媒体的 质量要求也与 日倶增, 这就导致对多媒体传输的要求也日益提升。 现有的多媒体传输系统通常采用校验码,如 CRC( Cyclic Redundancy Check , 循环冗余核对) 校验码, 来检测接收比特流的正确性。 With the continuous improvement of multimedia technology, users are increasingly demanding multimedia services such as audio and video. With the diversification of multimedia devices, the quality requirements of users for multimedia are also increasing, which leads to multimedia transmission. The requirements are also increasing. Existing multimedia transmission systems usually use a check code, such as a CRC (Cyclic Redundancy Check) check code, to detect the correctness of the received bit stream.
以采用 CRC校验码来检测接收比特流的正确性为例,如果 CRC 校验错误, 则该帧的 BFI ( Bad Frame Indication,坏帧标识) 置为 1 , 且整帧丟弃, 然后信源解码利用相邻帧间的相关性对错帧进行错误 隐藏。 虽然错误隐藏处理可以用前一帧或几帧的好帧代替或外推平 滑处理坏帧的信息, 但是经过错误隐藏后的降级语音文件相比于原 始的语音文件, 主观感受仍然会有明显下降, 不能满足用户对多媒 体质量的要求, 尤其不能满足对语音的高保真的需求。 For example, if the correctness of the received bit stream is detected by using the CRC check code, if the CRC check is incorrect, the BFI (Bad Frame Indication) of the frame is set to 1, and the entire frame is discarded, and then the source is Decoding uses the correlation between adjacent frames to error conceal the wrong frame. Although the error concealment processing can replace or extrapolate the information of the bad frame with the good frame of the previous frame or several frames, the subjective feeling of the degraded speech file after the error concealment is still significantly lower than that of the original speech file. , can not meet the user's requirements for multimedia quality, especially the high fidelity demand for voice.
为了避免这种整帧丟弃带来的不良效果,现有技术又提出了 BPI ( Bad Parameter Indication , 坏参数标识 ) 机制, 虽然测试结果表明 该方案与上述的 BFI机制相比, 能够有效的提升语音的主观质量, 但是它无法与 目前协议架构兼容。 In order to avoid the adverse effects caused by such full frame discarding, the prior art has proposed a BPI (Bad Parameter Indication) mechanism, although the test results show that the scheme can be effectively improved compared with the BFI mechanism described above. The subjective quality of speech, but it is not compatible with current protocol architectures.
因此, 为了解决上述问题, 现有技术又提出了一些对空口语音 帧进行修复的方案, 但是其对语音质量的提升有限。 Therefore, in order to solve the above problem, the prior art has proposed some solutions for repairing air interface voice frames, but its improvement on voice quality is limited.
总之, 现有技术中的空口语音帧修复译码方法对误码率和误帧 率性能提升有限, 语音的主观质量不很理想, 有改进的空间。 In summary, the air interface speech frame repair and decoding method in the prior art has limited performance improvement on the bit error rate and the frame error rate, and the subjective quality of the speech is not ideal, and there is room for improvement.
发明内容 Summary of the invention
本发明的实施例提供一种空口语音帧修复译码方法、 信源边信 息获取方法及设备, 能够提升误码率和误帧率性能, 进而有效提升 语音的主观质量。
为达到上述目 的, 本发明的实施例采用如下技术方案: 一方面, 提供一种空口语音帧修复译码方法, 包括: Embodiments of the present invention provide an air interface voice frame repair decoding method, a source side information acquiring method, and a device, which can improve the bit error rate and the frame error rate performance, thereby effectively improving the subjective quality of the voice. To achieve the above objective, the embodiment of the present invention adopts the following technical solutions: On the one hand, an air interface voice frame repair and decoding method is provided, including:
获取由译码比特组成的参数; 对所述参数进行参数可靠度计算, 得到所述参数对应的软信息, 以及利用所述软信息对所述参数进行 修正后的参数集合; Obtaining a parameter consisting of decoding bits; performing parameter reliability calculation on the parameter, obtaining soft information corresponding to the parameter, and setting a parameter set by using the soft information to correct the parameter;
对所述修正后的参数集合进行第一循环冗余校验; 若所述第一 循环冗余校验失败, 则在确定所述参数集合符合预设规则后, 对所 述参数集合中符合比特翻转规则的参数进行翻转, 得到翻转后的参 数集合; Performing a first cyclic redundancy check on the modified parameter set; if the first cyclic redundancy check fails, determining that the parameter set meets a preset rule, and matching bits in the parameter set Flipping the parameters of the flip rule to flip, and obtaining the set of parameters after the flipping;
对所述翻转后的参数集合进行第二循环冗余校验; 若所述第二 循环冗余校验成功, 则保存并输出所述翻转后的参数集合。 Performing a second cyclic redundancy check on the inverted parameter set; if the second cyclic redundancy check is successful, saving and outputting the inverted parameter set.
一方面, 提供一种信源边信息获取方法, 包括: In one aspect, a method for acquiring source side information is provided, including:
根据均值初始化或训练语料获取初始参数转移概率; Obtain an initial parameter transition probability according to the mean initialization or training corpus;
根据所述初始参数转移概率计算得到目标参数转移概率, 实时 将当前帧计算得到的所述目标参数转移概率更新为下一帧的所述参 数转移概率, 以使得空口语音帧修复译码设备根据每一帧实时获取 的所述参数转移概率对所述参数进行参数可靠度计算。 Calculating a target parameter transition probability according to the initial parameter transition probability, and updating the target parameter transition probability calculated by the current frame to the parameter transition probability of the next frame in real time, so that the air interface voice frame repair decoding device is configured according to each The parameter transition probability obtained in real time by one frame performs parameter reliability calculation on the parameter.
另一方面, 提供一种空口语音帧修复译码设备, 包括: In another aspect, an air interface voice frame repair decoding apparatus is provided, including:
获取模块, 用于获取译码比特组成的参数; An obtaining module, configured to acquire a parameter composed of decoding bits;
译码模块, 用于对获取模块获取的所述参数进行参数可靠度计 算, 得到所述参数对应的软信息, 以及利用所述软信息对所述参数 进行修正后的参数集合; a decoding module, configured to perform parameter reliability calculation on the parameter acquired by the obtaining module, obtain soft information corresponding to the parameter, and obtain a parameter set that is corrected by using the soft information;
校验模块, 用于对所述译码模块获取的所述修正后的参数集合 进行第一循环冗余校验; a verification module, configured to perform a first cyclic redundancy check on the modified parameter set obtained by the decoding module;
比特翻转模块, 用于若所述校验模块的所述第一循环冗余校验 失败, 则在确定所述参数集合符合预设规则后, 对所述参数集合中 符合比特翻转规则的比特进行翻转, 得到翻转后的参数集合; a bit flipping module, configured to: if the first cyclic redundancy check fails of the check module, after determining that the parameter set meets a preset rule, perform a bit that meets a bit flip rule in the parameter set Flip, get the set of parameters after flipping;
校验模块, 还用于对所述比特翻转模块得到的所述翻转后的参 数集合进行第二循环冗余校验;
若所述校验模块的所述第二循环冗余校验成功, 由虚拟信源解 码器保存、 第一输出模块输出所述翻转后的参数集合。 a verification module, configured to perform a second cyclic redundancy check on the inverted parameter set obtained by the bit flip module; If the second cyclic redundancy check of the verification module is successful, the virtual source decoder saves, and the first output module outputs the inverted parameter set.
另一方面, 提供一种信源边信息获取设备, 包括: In another aspect, a source side information acquiring device is provided, including:
获取模块, 用于根据均值初始化或训练语料获取初始参数转移 概率; An obtaining module, configured to obtain an initial parameter transition probability according to the mean initialization or the training corpus;
计算模块, 用于根据所述初始参数转移概率计算得到目标参数 转移概率, 实时将当前帧计算得到的所述目标参数转移概率更新为 下一帧的所述参数转移概率, 以使得空口语音帧修复译码设备根据 每一帧实时获取的所述参数转移概率对所述参数进行参数可靠度计 本发明实施例提供的空口语音帧修复译码方法、 信源边信息获 取方法及设备, 空口语音帧修复译码设备获取由译码比特组成的参 数; 对参数进行参数可靠度计算以得到参数对应的软信息及修正后 的参数集合; 对修正后的参数集合进行循环冗余校验; 若失败, 则 在确定参数集合符合预设规则后, 对参数集合中符合比特翻转规则 的参数进行翻转, 得到翻转后的参数集合; 再对翻转后的参数集合 进行循环冗余校验; 若成功, 则保存并输出翻转后的参数集合。 这 样一来, 可以通过对错误概率较高, 即软信息绝对值较低的参数进 行翻转, 提高 CRC校验的通过率, 提升误码率和误帧率性能, 进而 使得语音的主观质量得以提升。 a calculation module, configured to calculate a target parameter transition probability according to the initial parameter transition probability, and update the target parameter transition probability calculated by the current frame to the parameter transition probability of the next frame in real time, so that the air interface voice frame is repaired The decoding device performs the parameter reliability of the parameter according to the parameter transition probability obtained in real time in each frame. The air interface voice frame repair and decoding method, the source side information acquiring method and device, and the air interface voice frame provided by the embodiments of the present invention are provided. Repairing the decoding device to obtain parameters consisting of decoding bits; performing parameter reliability calculation on the parameters to obtain soft information corresponding to the parameters and the modified parameter set; performing cyclic redundancy check on the modified parameter set; After determining that the parameter set meets the preset rule, flipping the parameter that meets the bit flip rule in the parameter set, and obtaining the inverted parameter set; performing cyclic redundancy check on the inverted parameter set; if successful, saving And output the inverted parameter set. In this way, the parameter with higher error probability, that is, the parameter with lower absolute value of the soft information can be flipped, the pass rate of the CRC check is improved, the bit error rate and the frame error rate performance are improved, and the subjective quality of the voice is improved. .
附图说明 DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。 In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the embodiments or the description of the prior art will be briefly described below. Obviously, the drawings in the following description are only It is a certain embodiment of the present invention, and other drawings can be obtained from those skilled in the art without any creative work.
图 1 为本发明实施例提供的空口语音帧修复译码方法流程示意 图; 1 is a schematic flow chart of a method for repairing and decoding an air interface voice frame according to an embodiment of the present invention;
图 2为本发明实施例提供的另一空口语音帧修复译码方法流程
示意图; FIG. 2 is a flowchart of another air interface voice frame repair and decoding method according to an embodiment of the present invention; Schematic diagram
图 3 为本发明实施例提供的又一空口语音帧修复译码方法流程 示意图; 3 is a schematic flowchart of still another method for repairing and decoding an air interface voice frame according to an embodiment of the present invention;
图 4为本发明实施例提供的 SBSD和 ISCD算法进行 BF翻转后 的 BER性能仿真示意图; 4 is a schematic diagram of BER performance simulation of SBSD and ISCD algorithms after BF flipping according to an embodiment of the present invention;
图 5为本发明实施例提供的 SBSD和 ISCD算法进行 BF翻转后 的 FER性能仿真示意图; FIG. 5 is a schematic diagram of FER performance simulation after BF flipping of SBSD and ISCD algorithms according to an embodiment of the present invention; FIG.
图 6为本发明实施例提供的 ISCD进行 BF翻转和未进行 BF翻 转的 MOS性能仿真示意图; FIG. 6 is a schematic diagram of MOS performance simulation of ISCD performing BF inversion and not performing BF flipping according to an embodiment of the present invention; FIG.
图 7为本发明实施例提供的 SBSD进行 BF翻转和未进行 BF翻 转的 MOS性能仿真示意图; FIG. 7 is a schematic diagram of MOS performance simulation of SBSD performing BF flipping and BF flipping without BFSD according to an embodiment of the present invention; FIG.
图 8为本发明实施例提供的不同 SSI估计器下 ISCD进行 BF翻 转后的 BER性能仿真示意图; FIG. 8 is a schematic diagram of BER performance simulation of ISCD performing BF flipping under different SSI estimators according to an embodiment of the present invention; FIG.
图 9为本发明实施例提供的不同 SSI估计器下 ISCD进行 BF翻 转后的 MOS性能仿真示意图; FIG. 9 is a schematic diagram of MOS performance simulation after ISCD performing BF flipping under different SSI estimators according to an embodiment of the present invention; FIG.
图 10为本发明实施例提供的不同 S SI估计器下 SBSD进行 BF 翻转后的 BER性能仿真示意图; FIG. 10 is a schematic diagram of BER performance simulation after BF flipping of SBSD under different S SI estimators according to an embodiment of the present invention; FIG.
图 1 1 为本发明实施例提供的不同 S SI估计器下 SBSD进行 BF 翻转后的 MOS性能仿真示意图; FIG. 1 is a schematic diagram of MOS performance simulation after BF flipping of SBSD under different S SI estimators according to an embodiment of the present invention;
图 12为本发明实施例提供的 IEC和 SEC机制下的 MOS性能仿 真示意图; FIG. 12 is a schematic diagram of MOS performance simulation under the IEC and SEC mechanisms according to an embodiment of the present invention; FIG.
图 13 为本发明实施例提供的 SBSD和 ISCD算法进行 BF翻转 后的 UER性能仿真示意图; FIG. 13 is a schematic diagram of UER performance simulation after BF flipping of SBSD and ISCD algorithms according to an embodiment of the present invention; FIG.
图 14为本发明实施例提供的信源边信息获取方法流程示意图; 图 15 为本发明实施例提供的空口语音帧修复译码设备的结构 示意图; FIG. 14 is a schematic flowchart of a source side information acquisition method according to an embodiment of the present invention; FIG. 15 is a schematic structural diagram of an air interface voice frame repair and decoding apparatus according to an embodiment of the present invention;
图 16 为本发明实施例提供的另一空口语音帧修复译码设备的 结构示意图; FIG. 16 is a schematic structural diagram of another air interface voice frame repair and decoding apparatus according to an embodiment of the present invention;
图 17 为本发明实施例提供的又一空口语音帧修复译码设备的
结构示意图; FIG. 17 is still another air interface voice frame repair and decoding device according to an embodiment of the present invention. Schematic;
图 1 8 为本发明实施例提供的再一空口语音帧修复译码设备的 结构示意图; FIG. 18 is a schematic structural diagram of another air interface voice frame repair and decoding device according to an embodiment of the present invention;
图 19 为本发明实施例提供的还一空口语音帧修复译码设备的 结构示意图; FIG. 19 is a schematic structural diagram of still another air interface voice frame repair and decoding apparatus according to an embodiment of the present invention;
图 20 为本发明实施例提供的信源边信息获取设备的结构示意 图。 FIG. 20 is a schematic structural diagram of a source side information acquiring device according to an embodiment of the present invention.
具体实施方式 detailed description
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。 The technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, but not all embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
本发明实施例提供的空口语音帧修复译码方法, 如图 1 所示, 该 方法步骤包括: The air interface voice frame repair and decoding method provided by the embodiment of the present invention is as shown in FIG. 1 , and the method steps include:
S 101、 空口语音帧修复设备获取译码比特组成的参数。 S101. The air interface voice frame repairing device acquires a parameter composed of decoding bits.
示例性的, 假设参数 V由 N个译码比特组成, 因此第 k帧参数 = 对 应 的 二 进 制 比 特
, 其 中 , ? e v,v = {0(1, 3'^ - 1} Exemplarily, assume that the parameter V consists of N decoded bits, so the kth frame parameter = the corresponding binary bit , where ev,v = {0 ( 1, 3'^ - 1}
S 102、 空口语音帧修复设备对参数进行参数可靠度计算, 得到参 数对应的软信息, 以及利用软信息对参数进行修正后的参数集合。 S102. The air interface speech frame repairing device performs parameter reliability calculation on the parameter, obtains soft information corresponding to the parameter, and sets the parameter after the parameter is corrected by using the soft information.
进一步的, 空口语音帧修复设备可以通过 JSCD ( Joint Source-Channel Decoding , 信源信道联合译码) 中的 ISCD ( Iterative Source-Channel Decoding ,迭代的信源信道联合译码)和 SBSD ( Soft-Bit Source Decoding 软比特信源译码) 两种算法进行参数可靠度计算, 以获取到的参数 所对应的软信息, 并用软信息对参数或其中一部分参数进行修正, 如对 AMR ( Adaptive Multi-Rate , 自适应多码率) 编码中的 A子流 进行修正。 Further, the air interface voice frame repair device can use ISCD (Iserative Source-Channel Decoding, Joint Source Channel Decoding) and SBSD (Soft-Bit) in JSCD (Joint Source-Channel Decoding). Source Decoding soft bit source decoding) Two algorithms perform parameter reliability calculation to obtain the soft information corresponding to the parameter, and use soft information to modify the parameter or some of the parameters, such as AMR (Adaptive Multi-Rate, Adaptive multi-rate) The A substream in the encoding is corrected.
进一步的, 空口语音帧修复设备可以通过 JSCD 算法还可以根据每
一帧实时获取的参数转移概率计算得到参数对应的后验概率。 Further, the air interface voice frame repair device can also use the JSCD algorithm according to each The parameter transition probability obtained by real-time acquisition of one frame is obtained by the posterior probability corresponding to the parameter.
对于 ISCD 算法, 在第一次迭代时, 可以先根据参数转移概率 P:C¾¾- 和前一帧的后验概率 ^计算出信道译码的初始先验 信息 并送入交织器; 而后对接收信号进行信道译码并解交 织后 获得信道软信息 以及信源解码的先验信息
信源 解码器可以根据上述参数计算得到后验概率 ρί 】和软信息 ^ί ®, 其中, 参数的后验概率即表示参数可靠度。 For the ISCD algorithm, in the first iteration, the initial prior information of the channel decoding can be calculated according to the parameter transition probability P: C3⁄43⁄4- and the posterior probability of the previous frame and sent to the interleaver; Perform channel decoding and deinterleave to obtain channel soft information and a priori information of source decoding The source decoder can calculate the posterior probability ρ ί and the soft information ^ί ® according to the above parameters, wherein the posterior probability of the parameter represents the parameter reliability.
空口语音帧修复设备对该帧参数进行 CRC 校验, 如果校验失败 则进行下一次迭代计算, 与上述步骤相同, 需要改变的是信道译码 的先验信息变为 £ ©) = ^ ^Μ - (4(03,如果迭代的次数超过了预 设的最大值, 如 10次, 则不再进行迭代计算; 若 CRC校验成功, 则按照最大后验概率原则 , 输出使后验概率 ^ 1 )最大的参数 The air interface speech frame repair device performs CRC check on the frame parameter. If the check fails, the next iteration calculation is performed. As with the above steps, it is necessary to change that the a priori information of the channel decoding becomes £ ©) = ^ ^Μ - (4 (03, if the number of iterations exceeds the preset maximum value, such as 10 times, iterative calculation is no longer performed; if the CRC check is successful, the output makes the posterior probability ^ 1 according to the principle of maximum posterior probability The largest parameter
¾W j ^指的是参与 JSCD修正的参数所对应的比特集合, 如 3⁄4W j ^ refers to the set of bits corresponding to the parameters involved in JSCD correction, such as
A子流比特集合, 剩余参数所对应的比特集合, 如 B子流比特集合 和 C子流比特集合, 采用信道解码输出。 The set of A substream bits, the set of bits corresponding to the remaining parameters, such as the B substream bit set and the C substream bit set, are outputted by channel decoding.
对于 SBSD 算法, 可以在启用算法之前先对当前子帧的参数进 行 CRC 校验, 由于 SBSD 算法类似于一种错误隐藏技术, 所以在 CRC校验失败的时候可以启动该算法。 信源信道联合译码设备根据信 道译码输出的比特软信息 计算第 k帧第 i个比特参数 ®的错 误概率 ( (0) 根据此错误概率 、 得到 比特传输概率
尸 [4 (o/( (o] , 再 计 算 出 传 输 序 列 k 到 译 码 序 列 ^ = ( .(¾) (1)'"' : - 1))的 序 列 传 输 概 率 , 其 中 , For the SBSD algorithm, the CRC check can be performed on the parameters of the current subframe before the algorithm is enabled. Since the SBSD algorithm is similar to an error concealment technique, the algorithm can be started when the CRC check fails. The source channel joint decoding device calculates the error probability of the ith bit parameter of the kth frame according to the bit soft information output by the channel decoding ((0) according to the error probability, obtains the bit transmission probability The corpse [4 (o/( (o), then calculate the sequence transmission probability of the transmission sequence k to the decoding sequence ^ = ( .(3⁄4) (1)'"': - 1)), where
Side Information, 信源边信息)获取的传输参数转移概率 P¾ -i;i和 Side Information, source side information) The transfer parameter transfer probability P3⁄4 - i;i and
C C
冬寻 Winter search
对于 SBSD 算法参数的后验概率 验 按照最大后验概率原则, 输出使后验概率 率 For the posterior probability test of the SBSD algorithm parameters, according to the principle of maximum posterior probability, the output makes the posterior probability rate
Ρ《 最大的参数所对应的二进制表示的比特序列 ()} , i e I SsSsIr , 的是参与 JSCD修正的参数所对应的比特集合, 如 A子流比特集合, 剩余参数所对应的比特集合, 如 B子流比特集合和 C子流比特集合 采用信道解码输出。 Ρ The bit sequence () of the binary representation corresponding to the largest parameter, ie IS s S s I r , is the set of bits corresponding to the parameters involved in the JSCD correction, such as the A substream bit set, and the remaining parameters. The set of bits, such as the B substream bit set and the C substream bit set, are channel decoded output.
S 103、空口语音帧修复设备对修正后的参数集合进行第一 C R C校 验。 S103. The air interface voice frame repairing device performs a first C R C check on the modified parameter set.
示例性的, 空口语音帧修复设备可以对整个修正的参数集合进行第 一 C C校验, 也可以对修正集合中修正了的参数进行第一 CRC校验, 如 对修正的 AMR编码中修正了的 A子流进行第一 CRC校验。 Exemplarily, the air interface speech frame repair device may perform a first CC check on the entire modified parameter set, or may perform a first CRC check on the modified parameter in the modified set, as modified in the modified AMR code. The A substream performs a first CRC check.
需要说明的是, 本实施例列举了基于 GSM ( Global System for
Mobile communications , 全球移动通信系统) 下的 AMR业务。 AMR 编码中组成参数的比特按其重要性被分为 A\B\C 子流, 其中 A子 流的重要性最高并被 CRC校验保护。 在 3 GPP ( The 3rd Generation Partnership Project , 第三代合作伙伴计划 ) 定义的 SEC ( Standard Error Concealment , 标准错误隐藏)机制中, 如果 Α子流发生错误, 则该帧认为是坏帧, 整帧信息被全部丟弃。 所以本实施例对 A子流 修正后继续进行 CRC检测, 以使得校验失败时, 通过翻转译码比特 降低 A子流中比特出错的概率。 但是此处仅以 GSM系统中 AMR的 A 子流为修正的比特集合为例进行说明, 但不以此做任何限定, 其 他系统或其他业务下的修正的比特集合均在保护范围之内。 It should be noted that this embodiment lists GSM (Global System for AMR business under Mobile communications, Global System for Mobile Communications. The bits that make up the parameters in the AMR encoding are divided into A\B\C substreams according to their importance, where the A substream is of the highest importance and is protected by the CRC check. In the SEC (Standard Error Concealment) mechanism defined by 3GPP (The 3rd Generation Partnership Project), if the scorpion stream has an error, the frame is considered to be a bad frame. All are discarded. Therefore, in this embodiment, the CRC detection is continued after the A substream is modified, so that when the verification fails, the probability of bit errors in the A substream is reduced by inverting the decoded bits. However, the A bit stream of the AMR in the GSM system is used as an example of the modified bit set as an example. However, without limitation, the modified bit set in other systems or other services is within the protection range.
S 104、 若空口语音帧修复设备的第一 CRC校验失败, 则在确定修正 后的参数集合符合预设规则后, 对参数集合中符合比特翻转规则的比特进 行翻转, 得到翻转后的参数集合。 需要说明的是, 假设参数集合中比特的软信息为£^( , 则该比 特的错误概率为: ― 1÷^*ί¾ί ΐ:。 因此可以看出
绝对 值越大, 该比特的错误概率越低。 通过翻转那些错误概率较高 (软 信息绝对值较低) 的比特直到 CRC校验通过, 可以进一步纠正错误 参数。 S104. If the first CRC check of the air interface voice frame repair device fails, after determining that the modified parameter set meets the preset rule, the bit that meets the bit flip rule in the parameter set is flipped, and the parameter set after the rollover is obtained. . It should be noted that, assuming that the soft information of the bit in the parameter set is £ ^ ( , the error probability of the bit is: ― 1÷ ^* ί3⁄4ί ΐ: The larger the absolute value, the lower the error probability of this bit. The error parameters can be further corrected by flipping those bits with a higher probability of error (lower absolute soft information) until the CRC check passes.
示例性的, 空口语音帧修复设备若判断修正后的参数集合符合预 设规则, 如判断 A 子流中的参数中比特对应的软信息绝对值或修正 后的参数集合中其他参数中比特对应的软信息绝对值小于或大于一 个预设的门限值等, 则启动 BF ( Bit-Flipping , 比特翻转) 算法, 将 A子流中的符合比特翻转规则的比特进行 BF翻转, 如将 A子流中比 特对应的软信息的绝对值小于预设的门限值的比特进行 BF翻转。 For example, if the air interface speech frame repair device determines that the modified parameter set meets the preset rule, for example, determining the absolute value of the soft information corresponding to the bit in the parameter in the A substream or the bit corresponding to the other parameters in the modified parameter set. If the absolute value of the soft information is less than or greater than a preset threshold, the BF (Bit-Flipping) algorithm is started to perform BF flipping of the bits in the A substream that conform to the bit flip rule, such as the A substream. The bit whose absolute value of the soft information corresponding to the middle bit is smaller than the preset threshold value is subjected to BF inversion.
S 105、 空口语音帧修复设备对翻转后的参数集合进行第二 CRC 校 验。
对翻转的参数集合进行第二 CRC校验,翻转的参数集合包含已 翻转的比特组成的参数和未翻转的比特组成的参数。 S105. The air interface voice frame repairing device performs a second CRC check on the inverted parameter set. A second CRC check is performed on the flipped parameter set, and the flipped parameter set includes parameters consisting of inverted bits and parameters composed of unflipped bits.
需要说明的是, 翻转的参数集合中, 满足上述比特翻转规则的 比特已完成翻转, 不满足规则的比特并未进行翻转, 空口语音帧修复 设备对这个翻转了的参数集合, 如包含着一些翻转了的比特的 A 子 流进行第二 CRC校验。 It should be noted that, in the parameter set of the flipping, the bit satisfying the above-mentioned bit flipping rule has been flipped, and the bit that does not satisfy the rule is not flipped, and the air interface voice frame repairing device includes some flipping for the inverted parameter set. The A substream of the bit is subjected to a second CRC check.
S 106、 空口语音帧修复设备若第二 CRC校验成功, 则保存并输出 翻转后的参数集合。 S 106. The air interface voice frame repairing device saves and outputs the inverted parameter set if the second CRC check succeeds.
进一步的, 空口语音帧修复设备进行第二 CRC校验成功, 还可以 保存并输出翻转后的参数集合以及参数集合中参数对应的后验概率。 Further, the air interface voice frame repairing device performs the second CRC check successfully, and can also save and output the inverted parameter set and the posterior probability corresponding to the parameter in the parameter set.
本发明实施例提供的信源信道联合译码方法, 空口语音帧修复设备获 取由译码比特组成的参数; 对参数进行参数可靠度计算以得到参数对应的 软信息及修正后的参数集合; 对修正后的参数集合进行循环冗余校验; 若 失败, 则在确定参数集合符合预设规则后, 对参数集合中符合比特翻转规 则的比特进行翻转, 得到翻转后的参数集合; 再对翻转后的参数集合进行 循环冗余校验; 若成功, 则保存并输出翻转后的参数集合。 这样一来, 可 以通过对错误概率较高, 即软信息绝对值较低的比特进行翻转, 提高 CRC 校验的通过率, 提升误码率和误帧率性能, 进而使得语音的主观质量得以 提升。 The method for jointly decoding a source channel according to an embodiment of the present invention, the air interface voice frame repair device acquires a parameter composed of decoding bits; performs parameter reliability calculation on the parameter to obtain soft information corresponding to the parameter and the modified parameter set; The modified parameter set performs cyclic redundancy check; if it fails, after determining that the parameter set meets the preset rule, the bit that meets the bit flip rule in the parameter set is flipped to obtain the inverted parameter set; The parameter set performs cyclic redundancy check; if successful, saves and outputs the inverted parameter set. In this way, by translating the bit with a higher error probability, that is, the lower absolute value of the soft information, the pass rate of the CRC check is improved, the bit error rate and the frame error rate performance are improved, and the subjective quality of the voice is improved. .
本发明实施例提供的空口语音帧修复译码方法, 基于 GSM 下的 AMR业务的译码,其中软信息修正了的参数集合中包含第一类比特组成 的参数和第二类比特组成的参数, 其中, 第一类比特为 CRC比特、 第二类 比特为 A子流中的比特 , 仅以此举例说明, 但并不以此做任何限定, 该 方法步骤如图 2所示, 包括: The air interface voice frame repair and decoding method provided by the embodiment of the present invention is based on the decoding of the AMR service in the GSM, wherein the parameter set modified by the soft information includes a parameter composed of the first type of bits and a parameter composed of the second type of bits. The first type of bit is a CRC bit, and the second type of bit is a bit in the A substream, which is only illustrated by way of example, but is not limited thereto. The method steps are as shown in FIG. 2, including:
S201、 空口语音帧修复设备获取译码比特组成的参数。 S201. The air interface voice frame repair device acquires a parameter composed of decoding bits.
S202、 空口语音帧修复设备根据参数通过 ISCD和 SBSD获取参数对 应的后验概率及软信息, 并获取软信息修正了的参数集合。 S202. The air interface voice frame repairing device acquires the posterior probability and the soft information corresponding to the parameter through the ISCD and the SBSD according to the parameter, and obtains the parameter set corrected by the soft information.
其中, 修正了的参数集合由 CRC比特组成的参数和 A子流组成。 需要说明的是, 若采用 SBSD算法, 可以在获取参数之后先进行 CRC
校验, 校验失败则启动 SB SD算法。 The modified parameter set is composed of a parameter consisting of CRC bits and an A substream. It should be noted that if the SBSD algorithm is adopted, the CRC can be performed after the parameters are acquired. Verification, if the verification fails, the SB SD algorithm is started.
进一步的, 若使用 SBSD算法, 则步骤 S204之后使用的比特翻 转的软信息 且参数的
Further, if the SBSD algorithm is used, the bit information used after step S204 is inverted and the parameters are
后验概率为 Posterior probability is
进一步的, 由于参数对应的后验概率可以根据实时获取的参数 转移概率计算得到, 如果待传输的语音信号是已知的, SSI ( Source Side Information , 信源边信息 ) 获取的参数转移概率 Ρ^^ - ^可以通 过传输次数计算获得。 由于语音信号一般是非平稳信号, 相邻帧的 冗余度比相隔较远的帧间冗余度要大很多, 所以利用上一帧的参数 与本帧参数计算传输次数才能减少冗余度的影响, 假设上一帧解码 参数 - i = 本帧解码参数 = γ, 如果本帧 CRC校验不通过, 则本 帧参数 : = ν的后验概率不为 ι。 因此传输次数 &0¾/¾-i〕需要加上 =
E F。 为了降低 的存储复杂度, 可以采用如下 算法: Further, since the posterior probability corresponding to the parameter can be calculated according to the parameter transition probability obtained in real time, if the voice signal to be transmitted is known, the parameter transition probability obtained by the SSI (Source Side Information) is Ρ^ ^ - ^ can be obtained by calculation of the number of transmissions. Since the speech signal is generally a non-stationary signal, the redundancy of adjacent frames is much larger than the inter-frame redundancy that is far apart. Therefore, using the parameters of the previous frame and the frame parameters to calculate the number of transmissions can reduce the impact of redundancy. , assuming the previous frame decoding parameter - i = the current frame decoding parameter = γ , if the frame CRC check does not pass, then the frame parameter: = ν has a posterior probability that is not ι. Therefore, the number of transmissions & 03⁄4/3⁄4-i] needs to be added = EF. In order to reduce the storage complexity, the following algorithm can be used:
采用均值初始化或训练语料得到一组初始化参数转移概率 ¾ ¾-i), 其中, 训练语料为通过对不同种族, 不同性别、 年龄等人 群的语音样本进行统计得到语音样本文件, 并通过对该语音样本文 件进行统计计算, 如进行期望的计算等得到初始化参数转移概率。 Using a mean initialization or training corpus to obtain a set of initialization parameter transition probabilities 3⁄4 3⁄4-i), wherein the training corpus is obtained by statistically analyzing speech samples of people of different races, genders, ages, etc., and passing the speech sample file. The sample file is statistically calculated, and the initialization parameter transition probability is obtained by performing a desired calculation or the like.
根据初始参数转移概率计算得到目标参数转移概率, 目标参数转移概 率为每帧译码结束后实时获取的参数转移概率, 即每帧译码结束后, 将 获取的参数转移概率更新先前的参数转移概率 p : The target parameter transition probability is obtained according to the initial parameter transition probability. The target parameter transition probability is the parameter transition probability obtained in real time after the end of each frame decoding, that is, after each frame decoding is completed, the obtained parameter transition probability is updated to the previous parameter transition probability. p :
二 Two
其中 n 权重因子, ¾r' (¾= W 《 = 》, 可以对参数转移 概率进行归一化。 Where n weighting factor, 3⁄4r' (3⁄4= W << = 》, can normalize the parameter transition probability.
值得指出的是, 现有技术提出的 S SI方案是建立在传输语音信 号已知的基础上的, 又叫做 off-line S SI , 所以本方案将实时动态更 新的上述 SSI方案称为 on-line SSI„ It is worth noting that the S SI scheme proposed by the prior art is based on the known transmission voice signal, which is also called off-line S SI. Therefore, the scheme refers to the above-mentioned SSI scheme which is dynamically updated in real time as on-line. SSI„
S203、 空口语音帧修复设备对修正的参数集合进行第一 CRC校验。
需要说明的是, 若第一 CRC 校验成功则执行步骤 S204 , 若第 一 CRC校验失败则执行步骤 S205。 S203. The air interface voice frame repair device performs a first CRC check on the modified parameter set. It should be noted that if the first CRC check succeeds, step S204 is performed, and if the first CRC check fails, step S205 is performed.
5204、 空口语音帧修复设备选定对应最大后验概率的参数, 输出选 定的参数。 5204. The air interface speech frame repair device selects a parameter corresponding to the maximum posterior probability, and outputs the selected parameter.
需要说明的是, 由于对当前帧参数的第一 CRC校验成功, 那么 可以将输出的当前帧信息作为好帧信息存入 VSD ( Virtual Source Decoder , 虚拟信源解码器) 中, 使得空口语音帧修复设备可以在下一 帧为坏帧时, 使用储存的参数对坏帧的错误参数进行错误隐藏处理。 It should be noted that, since the first CRC check of the current frame parameter is successful, the output current frame information may be stored in the VSD (Virtual Source Decoder) as good frame information, so that the air interface voice frame is obtained. The repair device can use the stored parameters to perform error concealment processing on the error parameters of the bad frame when the next frame is a bad frame.
5205、 空口语音帧修复设备将修正的参数集合中的 A子流中各参数 的比特对应的软信息绝对值按从小到大进行排序。 5205. The air interface voice frame repairing device sorts the absolute values of the soft information corresponding to the bits of each parameter in the A substream in the modified parameter set by small to large.
需要说明的是, 也可以对 A 子流中各比特对应的软信息绝对值 £( '^(0)|按照从大到小的顺序进行排序或不进行排序, 此处仅以从小到大 排序为优选方案, 并不以此做任何限定。 Incidentally, the absolute value of the soft information may be A sub streams corresponding to each bit £ ( '^ (0) | sorted in descending order or not sorted, where only small to large For the preferred embodiment, it is not limited thereto.
若符合预设规则, 则执行 S206,否则, 执行 S209。 If the preset rule is met, S206 is executed; otherwise, S209 is executed.
示例性的, 可以在满足下述三个条件时确定修正后的参数集合符合预 设规则: Exemplarily, it can be determined that the modified parameter set conforms to the preset rule when the following three conditions are met:
若 CRC 比特对应的软信息绝对值中, 最小的软信息绝对值大于第二 预设门限 Lth, 即: min " 1 ; 且上述从小到大排序的 A子流中 各比特对应的软信息绝对值中前 M个软信息绝对值也大于第二预设门限, 其中 M=Lmp +l , 且 M为小于 A子流包含的比特总个数的整数, 即: 前 Lmp If the absolute value of the soft information corresponding to the CRC bit is greater than the second preset threshold L th , that is: min "1; and the soft information corresponding to each bit in the A substream sorted from small to large is absolutely The absolute value of the first M soft information in the value is also greater than the second preset threshold, where M=L mp +l , and M is an integer smaller than the total number of bits included in the A substream, namely: pre-L mp
+1个 ^ 1 ' 同时, A子流中的比特对应的最小的软信息绝对值 大于第三预设门限, 即: min " 1 。 +1 ^ 1 ' At the same time, the absolute value of the smallest soft information corresponding to the bit in the A substream is greater than the third preset threshold, namely: min " 1 .
5206、空口语音帧修复设备翻转修正后的参数集合中软信息绝对值与 最小软信息绝对值的比值小于第四预设门限的 A子流中比特, 并对包含已 翻转比特的参数集合进行第三 CRC校验。 5206. The ratio of the absolute value of the soft information to the absolute value of the minimum soft information in the parameter set of the air interface voice frame repairing device is smaller than the bit in the A substream of the fourth preset threshold, and the third parameter set containing the inverted bit is performed. CRC check.
值得指出的是, 为所有 Α子流中比特对应的软信息绝对值
与最小软信息绝对值的比值, Aa为第四预设门限, 空口语音帧修复设备翻 转 (¾ < ¾的比特。It is worth pointing out that the absolute value of the soft information corresponding to the bits in all the dice streams The ratio of the absolute value to the minimum soft information, Aa is the fourth preset threshold, and the air interface speech frame repair device flips (3⁄4 < 3⁄4 bits).
若翻转后进行的第三 CRC校验成功, 则执行 S207 , 若第三 CRC校验 失败, 则执行 S210。 If the third CRC check performed after the flip is successful, S207 is performed, and if the third CRC check fails, S210 is performed.
S 207、 空口语音帧修复设备根据有效范围对参数集合进行有效性判 断。 S 207. The air interface voice frame repairing device determines the validity of the parameter set according to the effective range.
示例性的, 有效范围可以根据参数是否有效设定, 如 AMR编码中 自适应码本增益参数虽然有 6 个比特, 即一共存在 2¾ = δ4:种取值:Exemplarily, the effective range can be set according to whether the parameter is valid. For example, the adaptive codebook gain parameter in the AMR code has 6 bits, that is, a total of 23⁄4 = δ4: the value:
0-63 , 但实际编码中最高只能到 60 , 所以最大范围为 0〜60 , 所以有 效范围为 0〜60 , 如果翻转后的参数集合中 自适应码本增益参数超出0-63, but the actual encoding can only be up to 60, so the maximum range is 0~60, so the effective range is 0~60. If the adaptive codebook gain parameter is exceeded in the parameter set after flipping
60 , 则认为不可信, 即判断这个参数集合无效, 如果参数集合中的 自适应码本增益参数未超出 60 , 则判断这个参数集合有效。 值得指 出的是,此处仅以 AMR编码中 自适应码本增益参数的有效范围判断 参数集合是否有效, 也可以采用其他参数的有效范围或当前系统配 置下的有效范围来判断有效性, 并不以此做任何限定。 60, it is considered untrustworthy, that is, it is judged that this parameter set is invalid. If the adaptive codebook gain parameter in the parameter set does not exceed 60, it is judged that this parameter set is valid. It is worth noting that the validity of the parameter range is determined by the effective range of the adaptive codebook gain parameter in the AMR coding. The validity range of other parameters or the effective range of the current system configuration can also be used to judge the validity. Do this with any restrictions.
若判断为有效则执行 S208 , 否则执行 S209。 If it is judged to be valid, S208 is executed, otherwise, S209 is executed.
5208、空口语音帧修复设备输出翻转的参数集合中的参数及参数对应 的更新后的后验概率。 5208. The air interface voice frame repair device outputs a parameter in the parameter set of the flip and an updated posterior probability corresponding to the parameter.
进一步的, 由于对当前帧参数的 CRC校验成功, 并判断出参数 集合有效, 那么可以将输出的当前帧信息作为好帧信息存入 VSD ( Virtual Source Decoder , 虚拟信源解码器) 中, 以使得空口语音 帧修复设备可以根据当前帧信息为下一帧的错误参数进行错误隐藏处 理。 Further, since the CRC check of the current frame parameter is successful, and it is determined that the parameter set is valid, the output current frame information may be stored in the VSD (Virtual Source Decoder) as good frame information, The air interface voice frame repairing device can perform error concealment processing for the error parameter of the next frame according to the current frame information.
5209、 空口语音帧修复设备输出 JSCD修正后的参数集合及参数对应 的后验概率。 5209. The air interface voice frame repair device outputs the JSCD modified parameter set and the posterior probability corresponding to the parameter.
其中, JSCD修正后的参数为 参数对应的后验概率为 P( D。Among them, the modified parameter of JSCD is the posterior probability corresponding to the parameter is P (D.
5210、 空口语音帧修复设备翻转修正的参数集合中 A 子流软信息绝 对值小于第五预设门限的的参数, 并对包含已翻转参数的参数集合进行第
二 CRC校验' 即翻转修正的参数 合中 数,其中, (d ))i
5210. The parameters of the A substream soft information whose absolute value is smaller than the fifth preset threshold in the parameter set of the air interface voice frame repairing device flipping correction, and the parameter set including the flipped parameter is performed. The second CRC check' is the parameter of the flip correction, and (d))i
A子流软信息绝对值, rth为第五预设门限。 A substream soft information absolute value, r th is the fifth preset threshold.
若翻转后 CRC校验成功, 则执行 S207 , 若校验失败, 则执行 S209。 值得指出的是,上述各门限值的选择需要考虑 FER( Frame Error Rate, 删帧率 ) 和 UER (Undetected Error Rate, 漏检率)的权衡。 UER表示 CRC 校验成功而 A子流仍然有误码的概率。 表 1给出了一组门限值范围, 上述 各个门限可以从取值范围中选取、 设定。 If the CRC check succeeds after the rollover, S207 is executed, and if the check fails, S209 is executed. It is worth noting that the selection of each of the above thresholds needs to consider the trade-off between FER (Frame Error Rate) and UER (Undetected Error Rate). UER indicates the probability that the CRC check is successful and the A substream still has a bit error. Table 1 shows a set of threshold values. Each of the above thresholds can be selected and set from the range of values.
表 1 Table 1
需要说明的是, 如图 3所示, 上述步骤 S205后, S206和 S210的翻 转不存在限定, 也可以先执行 S210, 即: 若符合预设规则, 则执行 S210, 否则,执行 S209; 步骤 S210翻转后,若第四 CRC校验成功, 则执行 S207 , 若第四 CRC校验失败, 则执行步骤 S206; 当执行步骤 S206翻转后, 若第 二 CRC校验成功, 则执行步骤 S207 , 否则, 执行步骤 S209。 It should be noted that, as shown in FIG. 3, after the step S205, the inversion of S206 and S210 is not limited, and S210 may be performed first, that is, if the preset rule is met, then S210 is performed, otherwise, S209 is performed; Step S210; After the inversion, if the fourth CRC check is successful, then S207 is performed. If the fourth CRC check fails, step S206 is performed. After the step S206 is reversed, if the second CRC check is successful, step S207 is performed. Otherwise, Step S209 is performed.
值得指出的是, 上述第一 CRC校验、 第二 CRC校验、 第三 CRC校 验和第四 CRC校验只是表示校验针对的参数集合不同,或者校验启动的条 件有所不同, 但均为 CRC校验, 不做任何限定。 It is worth noting that the first CRC check, the second CRC check, the third CRC check, and the fourth CRC check only indicate that the set of parameters for the check is different, or the conditions for verifying start are different, but All are CRC check, no restrictions are imposed.
如图 4和图 5所示, 空口语音帧修复设备采用 SBSD和 ISCD算法后 使用 BF算法后, A子流的 BER和 FER都得到了明显降低, 大约可获得 0.5dB左右的增益, 在低载干比下 ISCD-BF性能优于 SBSD-BF, 而随着载 干比的上升, 两种算法的性能较为接近, 都较为优越。 As shown in FIG. 4 and FIG. 5, after the BFSD and ISCD algorithms are used in the air interface speech frame repairing device, the BER and FER of the A substream are significantly reduced, and a gain of about 0.5 dB can be obtained. The performance of ISCD-BF is better than that of SBSD-BF in dry ratio. With the increase of carrier-to-interference ratio, the performance of the two algorithms is relatively close and superior.
另外, 图 6和图 7表明采用 BF算法后的 JSCD可获得更优的 MOS
( Mean Opinion Score , 平均主观得分) 性能, 同样的, 在低载干比下 ISCD-BF的 MOS分性能优于 SBSD-BF。 In addition, Figures 6 and 7 show that JSCD with BF algorithm can obtain better MOS. (Mean Opinion Score, average subjective score) Performance, Similarly, the MOS score performance of ISCD-BF is better than SBSD-BF at low carrier to dry ratio.
而图 8和图 9分别给出了 ISCD-BF算法下,采用不同 SSI估计器的 A 子流 BER性能和 MOS分性能。 通过对比图 8 中 BER的性能和对比图 9 中 MOS的性能能够得到, 采用 on-line SSI估计器后, 性能可基本接近理 想的 off-line SSI估计器性能。 但是可能在高载干比下会存在性能底板。 图 10、 图 1 1 分别给出了 SBSD-BF算法下, 采用不同 SSI估计器的 A子流 BER性能和 MOS分性能。 由图可知, 各 SSI估计器在 SBSD-BF下性能基 本接近, 并且 SBSD-BF在高载干比下并没有出现 ISCD-BF中出现的性能 底板。 这是由于 SBSD-BF算法只有在 CRC校验错误的时候才会启动, 高 载干比下 CRC校验出错的概率非常低。 Figure 8 and Figure 9 show the BER performance and MOS performance of the A substream using different SSI estimators under the ISCD-BF algorithm. By comparing the performance of the BER in Figure 8 with the performance of the MOS in Figure 9, the performance of the on-line SSI estimator is close to the ideal off-line SSI estimator performance. However, there may be a performance backplane at high carrier to dry ratios. Figure 10 and Figure 1 show the BER performance and MOS performance of the A substream using different SSI estimators under the SBSD-BF algorithm. As can be seen from the figure, the performance of each SSI estimator is basically close under SBSD-BF, and SBSD-BF does not exhibit the performance backplane appearing in ISCD-BF at high carrier-to-interference ratio. This is because the SBSD-BF algorithm only starts when the CRC check error occurs, and the probability of a CRC check error at the high load-to-interference ratio is very low.
进一步的, 步骤 S209之后, 空口语音帧修复设备执行步骤 S211对错 误参数进行 IEC ( Individual Error Concealment, 独立的错误隐藏) 。 Further, after step S209, the air interface voice frame repairing device performs step S211 to perform IEC (Individual Error Concealment) on the error parameter.
5211、空口语音帧修复设备将后验概率小于第一预设门限 Pth的参数 标识为坏参数。 The air interface voice frame repairing device identifies the parameter whose posterior probability is less than the first preset threshold P th as a bad parameter.
示例性的, 空口语音帧修复设备可以设定一个当前帧的坏参数数目, 如设为 4, 如果该帧坏参数数目小于 4, 则选择参数后验概率' Ρ:ί ^ )最小 的 4个参数为坏参数。 如, 当该帧只存在 3个坏参数时, 选取其他好参 数中厚颜参数最小的一个参数也作为坏参数, 这样可以降低杂音产生的 概率。 Exemplarily, the air interface speech frame repair device may set the number of bad parameters of the current frame, for example, set to 4. If the number of bad parameters of the frame is less than 4, select the minimum 4 parameters of the posterior probability ' Ρ: ί ^ ) The parameter is a bad parameter. For example, when there are only 3 bad parameters in the frame, the parameter with the smallest thickness parameter among other good parameters is also selected as a bad parameter, which can reduce the probability of noise generation.
需要说明的是, 第一预设门限值可以为 0-2之间选取的任一定值。 It should be noted that the first preset threshold may be any value selected between 0-2.
5212、 空口语音帧修复设备利用预存的好帧中的参数更新坏参数。 需要说明的是,预存的好帧中的参数一般可以预存在 VSD中,其中, 预存的好帧就是没有标识坏参数的帧, 空口语音帧修复设备可以根据前 一好帧的参数对当前帧的坏参数进行更新, 相邻帧的参数相似率可能较 高, 便于提高更新坏参数后当前帧的语音质量, 但不是所有坏的前一帧 都是好帧, 此处仅以这种情况举例说明, 并不以此做任何限定。 5212. The air interface voice frame repairing device updates the bad parameters by using parameters in the pre-stored good frame. It should be noted that the parameters in the pre-stored good frame can be pre-stored in the VSD, wherein the pre-stored good frame is a frame that does not identify a bad parameter, and the air interface voice frame repair device can perform the current frame according to the parameters of the previous good frame. If the bad parameters are updated, the parameter similarity rate of the adjacent frames may be higher, which is convenient for improving the voice quality of the current frame after updating the bad parameters, but not all bad previous frames are good frames, and only the case is illustrated here. , do not make any restrictions on this.
示例性的, 空口语音帧修复设备可以利用前一好帧中的 LSF(Linear Spectrum Frequency, 线谱频率)、 自适应码本增益参数和固定码本增益参 数对当前坏帧中的坏参数进行更新。 如利用前一好帧的 LSF以及 LSF均 值进行替代坏参数所在当前帧的 LSF及 LSF均值; 再利用预存的好帧中
的信号幅度对当前帧的自适应码本增益参数和固定码本增益参数进行限 幅,如对自适应码本增益参数限幅为 10,对固定码本增益参数限幅为 20; 或者对自适应码本增益参数限幅为 13 , 对固定码本增益参数限幅为 22, 此处仅以上述数值举例说明, 并不以此做任何限定。 For example, the air interface speech frame repair device may use the LSF (Linear Spectrum Frequency), the adaptive codebook gain parameter, and the fixed codebook gain parameter in the previous good frame to update the bad parameters in the current bad frame. . For example, the LSF and LSF mean values of the current frame in which the bad parameters are replaced are used by using the LSF of the previous good frame and the LSF mean; and the pre-stored good frames are reused. The signal amplitude limits the adaptive codebook gain parameter and the fixed codebook gain parameter of the current frame, such as limiting the adaptive codebook gain parameter to 10, and limiting the fixed codebook gain parameter to 20; or The adaptive codebook gain parameter is limited to 13 and the fixed codebook gain parameter is limited to 22, which is only illustrated by the above numerical values, and is not limited thereto.
优选的, 空口语音帧修复设备还可以利用预存的前一好帧中奇数位 置的基音延时参数分别替换坏参数所在当前帧的对应奇数位置上的基音 延时参数, 利用预存的前一好帧中偶数位置的基音延时参数加和预设偏 移量后分别替换当前帧的对应偶数位置上的基音延时参数。 不妨假设, 当前帧包含四个子帧, 由于第二个子帧和第四个子帧冗余性较小, 可以 使用前一好帧的第二个子帧和第四个子帧替代, 而第一个子帧和第三个 子帧可以用前一好帧的第一个子帧的基因延时参数加上预设的偏移量, 如第一个子帧的基因延时参数为 10, 预设的偏移量为 2, 则当前帧的第 一个子帧的基因延时参数为 12 , 同理可以得到第四个子帧的基因延时参 数。 Preferably, the air interface speech frame repairing device can further replace the pitch delay parameter at the corresponding odd position of the current frame where the bad parameter is located by using the pre-stored pitch delay parameter of the odd position in the previous good frame, and use the pre-stored previous good frame. The pitch delay parameter of the even position in the middle adds the preset offset and replaces the pitch delay parameter at the corresponding even position of the current frame. It may be assumed that the current frame contains four subframes, and since the second subframe and the fourth subframe are less redundant, the second subframe and the fourth subframe of the previous good frame may be used instead, and the first subframe is replaced by the first subframe. And the third subframe can use the gene delay parameter of the first subframe of the previous good frame plus a preset offset, such as the gene delay parameter of the first subframe is 10, the preset offset If the quantity is 2, the gene delay parameter of the first subframe of the current frame is 12, and the gene delay parameter of the fourth subframe can be obtained by the same reason.
图 6、 图 7和图 12表明, 步骤 S211和 S212执行的 IEC机制相比现 有技术中的 SEC ( Standard Error Concealment, 独立的错误隐藏) 机制, 可以进一步提升算法性能。 Figure 6, Figure 7, and Figure 12 show that the IEC mechanism implemented in steps S211 and S212 can further improve the performance of the algorithm compared to the SEC (Standard Error Concealment) mechanism in the prior art.
由于进行了 BF翻转, CRC存在漏检的可能性加大, 而漏检针对语音 业务会增加引入杂质的风险, 因此需要进一步比较本实施例与现有方案的 UER ( Undetected Error Rate, 漏检概率 ) 。 图 13表明, 本实施例的 UER 基本与现有方案持平, 并没有因为提升 FER和 MOS性能而增加 UER。 Due to the BF flipping, the possibility of CRC miss detection is increased, and the missed detection increases the risk of introducing impurities for the voice service. Therefore, it is necessary to further compare the UER (Undetected Error Rate) of the present embodiment and the existing scheme. ). Figure 13 shows that the UER of this embodiment is basically the same as the existing scheme, and the UER is not increased by improving the FER and MOS performance.
本发明实施例提供的信源信道联合译码方法, 空口语音帧修复设备获 取由译码比特组成的参数; 对参数进行参数可靠度计算以得到参数对应的 软信息及修正后的参数集合; 对修正后的参数集合进行循环冗余校验; 若 失败, 则在确定参数集合符合预设规则后, 对参数集合中符合比特翻转规 则的比特进行翻转, 得到翻转后的参数集合; 再对翻转后的参数集合进行 循环冗余校验; 若成功, 则保存并输出翻转后的参数集合。 这样一来, 可 以通过对错误概率较高, 即软信息绝对值较低的参数进行翻转, 提高 CRC 校验的通过率, 提升误码率和误帧率性能, 进而使得语音的主观质量得以 提升。
本发明实施例提供的信源边信息获取方法, 如图 14所示, 该方 法步骤包括: The method for jointly decoding a source channel according to an embodiment of the present invention, the air interface voice frame repair device acquires a parameter composed of decoding bits; performs parameter reliability calculation on the parameter to obtain soft information corresponding to the parameter and the modified parameter set; The modified parameter set performs cyclic redundancy check; if it fails, after determining that the parameter set meets the preset rule, the bit that meets the bit flip rule in the parameter set is flipped to obtain the inverted parameter set; The parameter set performs cyclic redundancy check; if successful, saves and outputs the inverted parameter set. In this way, the parameter with higher error probability, that is, the parameter with lower absolute value of the soft information can be flipped, the pass rate of the CRC check is improved, the bit error rate and the frame error rate performance are improved, and the subjective quality of the voice is improved. . The source side information obtaining method provided by the embodiment of the present invention is as shown in FIG. 14 , and the method steps include:
S 301、 信源边信息获取设备根据均值初始化或训练语料获取初 始参数转移概率。 S 301. The source side information acquiring device obtains an initial parameter transition probability according to the mean initialization or the training corpus.
示例性的, 如果待传输的语音信号是已知的, SSI 获取的参数 转移概率 pc¾/ - 可以通过传输次数计算获得。 由于语音信号一般是 非平稳信号, 相邻帧的冗余度比相隔较远的帧间冗余度要大很多, 所以利用上一帧的参数与本帧参数计算传输次数才能减少冗余度的 影响, 假设上一帧解码参数 -i = w , 本帧解码参数 = v, 如果本帧Exemplarily, if the speech signal to be transmitted is known, the parameter transition probability p c3⁄4 / - obtained by the SSI can be obtained by calculation of the number of transmissions. Since the speech signal is generally a non-stationary signal, the redundancy of adjacent frames is much larger than the inter-frame redundancy that is far apart. Therefore, using the parameters of the previous frame and the frame parameters to calculate the number of transmissions can reduce the impact of redundancy. , assuming the previous frame decoding parameter -i = w , this frame decoding parameter = v , if this frame
CRC 校验不通过, 则本帧参数 ¾— v的后验概率不为 1。 因此传输次 数 1)需要加上 =
£ F 为了降低 3·3的存储复杂 度, 信源边信息获取设备采用均值初始化或训练语料得到一组始化 参数转移概率 ^^^-If the CRC check fails, the posterior probability of this frame parameter 3⁄4 - v is not 1. Therefore, the number of transmissions 1) needs to be added = £ F In order to reduce the storage complexity of 3 · 3, the source side information acquisition device uses the mean initialization or training corpus to obtain a set of initialization parameter transfer probability ^^^-
S302、 信源边信息获取设备根据初始参数转移概率计算得到目 标参数转移概率, 实时将当前帧计算得到的目标参数转移概率更新 为下一帧的参数转移概率, 以使得空口语音帧修复译码设备根据每 一帧实时获取的参数转移概率对参数进行参数可靠度计算。 S302. The source side information acquiring device calculates the target parameter transition probability according to the initial parameter transition probability, and updates the target parameter transition probability calculated by the current frame to the parameter transition probability of the next frame in real time, so that the air interface voice frame repair decoding device The parameter reliability is calculated based on the parameter transition probability obtained in real time for each frame.
根据初始参数转移概率计算得到目标参数转移概率, 目标参数 转移概率为每帧译码结束后实时获取的参数转移概率, 即每帧译码 结束后, 将获取的参数转移概率更新先前的参数转移概率 P:i- 'AU: The target parameter transition probability is obtained according to the initial parameter transition probability. The target parameter transition probability is the parameter transition probability obtained in real time after the end of each frame decoding, that is, after each frame decoding is completed, the obtained parameter transition probability is updated to the previous parameter transition probability. P:i - ' A U:
其中 η是权重因子, ^― — 可以对参数转移 概率进行归一化。 Where η is the weighting factor, ^― — can be normalized to the parameter transition probability.
需要说明的是, 空口语音帧修复译码设备根据每一帧实时获取 的参数转移概率对参数进行参数可靠度计算在上述实施例中已经展 开, 在此不再贅述。 It should be noted that the calculation of the parameter reliability of the parameters by the air interface voice frame repair and decoding device according to the parameter transition probability obtained in real time in each frame has been expanded in the above embodiments, and details are not described herein again.
本发明实施例提供的信源边信息获取方法, 信源边信息获取设备 获取的初始参数转移概率, 并根据获取的初始参数转移概率, 计算
得到目标参数转移概率, 实时将当前帧计算得到的目标参数转移概 率更新为下一帧的参数转移概率。 这样一来, 信源边信息获取设备可 以实时更新参数转移概率,提供更准确的参数转移概率便于其他相接设备, 如空口语音帧修复译码设备利用这个正确率更高的参数转移概率进行 处理, 进而保证其他相接设备数据处理的正确率。 The method for acquiring source side information provided by the embodiment of the present invention, the initial parameter transition probability acquired by the source side information acquiring device, and calculating according to the obtained initial parameter transition probability The target parameter transition probability is obtained, and the target parameter transition probability calculated in the current frame is updated in real time to the parameter transition probability of the next frame. In this way, the source side information acquiring device can update the parameter transition probability in real time, and provide a more accurate parameter transition probability for other connected devices, such as an air interface speech frame repair decoding device, which uses the parameter transfer probability with higher correct rate for processing. , in turn to ensure the correct rate of data processing of other connected devices.
本发明实施例提供的空口语音帧修复设备 30 , 如图 1 5 所示, 包 括: The air interface voice frame repairing device 30 provided by the embodiment of the present invention, as shown in FIG. 15 , includes:
获取模块 301 , 用于获取译码比特组成的参数。 The obtaining module 301 is configured to obtain a parameter composed of decoding bits.
示例性的, 获取模块 301可以获取从信道解码器输出的译码比特组成 的参数。 Illustratively, the acquisition module 301 can obtain parameters consisting of decoded bits output from the channel decoder.
计算模块 302 , 用于对获取模块 301获取的参数进行信源信道联合译 码计算参数可靠度计算, 得到参数对应的软信息, 以及利用软信息对参数 进行修正后的参数集合。 The calculation module 302 is configured to perform resource source joint decoding calculation parameter reliability calculation on the parameters acquired by the obtaining module 301, obtain soft information corresponding to the parameter, and use the soft information to correct the parameter set.
进一步的, 软信息修正了的参数集合可以是 A子流和 CRC比特构成 的参数组成的新的参数集合, 记作修正后的参数集合, 其中, CRC比特可 以用来判断 CRC校验是否可信。 Further, the parameter set modified by the soft information may be a new parameter set composed of parameters consisting of the A substream and the CRC bit, and is recorded as a modified parameter set, wherein the CRC bit can be used to determine whether the CRC check is trusted. .
校验模块 303 , 还用于对计算模块 302获取的修正后的参数集合进行 第一 CRC校验。 The verification module 303 is further configured to perform a first CRC check on the modified parameter set obtained by the calculation module 302.
比特翻转模块 304 , 用于若校验模块 303对修正后的参数集合进行的 第一 CRC校验失败, 且在确定修正后的参数集合符合预设规则后, 对参数 集合中符合比特翻转规则的比特进行翻转, 得到包含着翻转了的比特组成 参数的翻转后的参数集合。 The bit flipping module 304 is configured to: if the first CRC check fails by the check module 303 on the modified parameter set, and after determining that the modified parameter set meets the preset rule, the bit flip rule is matched in the parameter set. The bits are flipped to obtain a flipped set of parameters containing the inverted bit composition parameters.
需要说明的是, 翻转的条件与方法在上述实施例中详细描述, 在此不 再赘述。 It should be noted that the conditions and methods of flipping are described in detail in the above embodiments, and are not described herein again.
校验模块 303 , 用于对比特翻转模块 304得到的翻转后的参数集合进 行第二循环冗余校验。 The verification module 303 is configured to perform a second cyclic redundancy check on the inverted parameter set obtained by the bit flip module 304.
若校验模块 303进行的第二 CRC校验成功, 由虚拟信源解码器 305 保存、 第一输出模块 306输出翻转后的参数集合。 If the second CRC check by the check module 303 is successful, it is saved by the virtual source decoder 305, and the first output module 306 outputs the inverted set of parameters.
进一步的, 如图 16所示, 自适应的空口语音帧修复设备 30 , 还包括:
判断模块 307 , 用于在校验模块 303进行的第二 CRC校验成功之后, 根据比特翻转模块 304得到的翻转后的参数集合在实际传输中的有效范围 进行有效性判断。 Further, as shown in FIG. 16, the adaptive air interface voice frame repairing device 30 further includes: The determining module 307 is configured to perform validity determination according to the valid range in the actual transmission according to the inverted set of parameters obtained by the bit flip module 304 after the second CRC check by the check module 303 is successful.
值得指出的是,有效范围根据参数的实际编码时能达到的最低值与最 高值限定, 如 AMR语音编码中的自适应码本增益虽然占有 6个比特, 理 想情况下, 应该能取 64种取值, 记作 0〜63 , 但实际编码最高只能达到 60 , 所以范围限定为 0〜60。 It is worth noting that the effective range is limited according to the lowest value and the highest value that can be achieved by the actual coding of the parameter. For example, the adaptive codebook gain in the AMR speech coding occupies 6 bits, and ideally, 64 values should be taken. , recorded as 0~63, but the actual code can only reach 60, so the range is limited to 0~60.
若判断模块 307确定翻转后的参数集合在有效范围内 , 则使得虚拟信 源解码器 305保存翻转后的参数集合、 第一输出模块 306输出翻转后的参 数集合。 If the determining module 307 determines that the flipped parameter set is within the valid range, the virtual source decoder 305 saves the flipped parameter set, and the first output module 306 outputs the inverted parameter set.
若判断模块 307确定翻转后的参数集合在有效范围外 , 则使得虚拟信 源解码器 305保存翻转前的修正后的参数集合、 第二输出模块 308输出翻 转前的修正后的参数集合。 If the judging module 307 determines that the flipped parameter set is outside the valid range, the virtual source decoder 305 saves the corrected parameter set before the flip, and the second output module 308 outputs the corrected parameter set before the flip.
需要说明的是, 若校验模块 303进行的第二 CRC校验失败, 虚拟信 源解码器 305保存翻转前的修正后的参数集合、 第二输出模块 308输出翻 转前的修正后的参数集合。 It should be noted that if the second CRC check by the check module 303 fails, the virtual source decoder 305 stores the corrected parameter set before the flip, and the second output module 308 outputs the corrected parameter set before the flip.
优选的, 虚拟信源解码器 305保存、 第一输出模块 306输出翻转后的 参数集合和参数集合中参数对应的后验概率。 Preferably, the virtual source decoder 305 saves, and the first output module 306 outputs the inverted parameter set and the posterior probability corresponding to the parameter in the parameter set.
或, Or,
虚拟信源解码器 305保存、第二输出模块 308输出翻转前的修正后的 参数集合和参数集合中参数对应的后验概率。 The virtual source decoder 305 saves, and the second output module 308 outputs the corrected parameter set before the flip and the posterior probability corresponding to the parameter in the parameter set.
进一步的, 如图 17所示, 空口语音帧修复设备 30 , 还包括: 信源边信息估计器 309 , 用于实时获取每一帧的参数转移概率, 以使 得计算模块 302对参数进行参数可靠度计算, 根据参数转移概率计算得到 参数对应的后验概率。 Further, as shown in FIG. 17, the air interface voice frame repairing apparatus 30 further includes: a source side information estimator 309, configured to acquire a parameter transition probability of each frame in real time, so that the calculating module 302 performs parameter reliability on the parameter. Calculate, calculate the posterior probability corresponding to the parameter according to the parameter transition probability.
优选的, 信源边信息估计器 309 , 还可以用于根据均值初始化或训练 语料获取初始参数转移概率; 根据初始参数转移概率计算得到目标参数转 移概率, 实时将当前帧计算得到的目标参数转移概率更新为下一帧的参数 转移概率。
进一步的, 如图 18所示, 空口语音帧修复设备 30 , 还包括: 标识模块 310 , 用于将虚拟信源解码器 305保存的翻转前的修正的 参数集合中后验概率小于第一预设门限的参数标识为坏参数。 Preferably, the source side information estimator 309 can also be configured to obtain an initial parameter transition probability according to the mean initialization or training corpus; calculate the target parameter transition probability according to the initial parameter transition probability, and calculate the target parameter transition probability in the current frame in real time. Update to the parameter transition probability of the next frame. Further, as shown in FIG. 18, the air interface voice frame repairing device 30 further includes: an identifying module 310, configured to use the virtual source decoder 305 to save the posterior probability of the modified parameter set before the flipping is smaller than the first preset. The parameter of the threshold is identified as a bad parameter.
独立错误隐藏模块 31 1 , 用于利用预存虚拟信源解码器 305 中的好 帧中的参数更新坏参数, 其中, 好帧为未标识坏参数的帧。 The independent error concealment module 31 1 is configured to update the bad parameters by using parameters in the good frame in the pre-stored virtual source decoder 305, wherein the good frame is a frame that does not identify the bad parameter.
示例性的, 独立错误隐藏模块 31 1 利用预存在虚拟信源解码器 305 的好帧中线谱频率 LSF 以及 LSF均值替代坏参数所在当前帧的 LSF及 LSF 均值; 利用预存在虚拟信源解码器 305 的好帧中的信号幅度对当前 帧的自适应码本增益参数和固定码本增益参数进行限幅。 Illustratively, the independent error concealment module 31 1 replaces the LSF and LSF mean of the current frame in which the bad parameters are located by using the good frame midline spectral frequency LSF and the LSF mean of the pre-existing virtual source decoder 305; using the pre-existing virtual source decoder 305 The signal amplitude in the good frame limits the adaptive codebook gain parameter and the fixed codebook gain parameter of the current frame.
示例性的, 独立错误隐藏模块 31 1 用于利用预存在虚拟信源解码器 305 的前一好帧中奇数位置的基音延时参数分别替换坏参数所在当前帧 的对应奇数位置上的基音延时参数, 利用预存在虚拟信源解码器 305 的 前一好帧中偶数位置的基音延时参数加和预设偏移量后分别替换当前帧 的对应偶数位置上的基音延时参数。 Exemplarily, the independent error concealment module 31 1 is configured to replace the pitch delay at the corresponding odd position of the current frame where the bad parameter is located, respectively, by using the pitch delay parameter of the odd position in the previous good frame of the pre-existing virtual source decoder 305. The parameter is used to replace the pitch delay parameter of the corresponding even position of the current frame by using the pitch delay parameter of the even position in the previous good frame of the pre-existing virtual source decoder 305 and adding the preset offset.
进一步的, 如图 19所示, 空口语音帧修复设备 30 , 还包括: 最大后验概率估计器 312 , 用于若校验模块 303进行的第一 CRC校 验进行的第一 CRC校验成功, 选定翻转后的参数集合中对应最大后验概 率的参数, 输出选定的参数, 虚拟信源解码器 305 也保存选定的参数, 将选定参数所在帧作为好帧保存。 Further, as shown in FIG. 19, the air interface voice frame repairing apparatus 30 further includes: a maximum a posteriori probability estimator 312, configured to successfully perform a first CRC check on the first CRC check performed by the check module 303, The parameter corresponding to the maximum a posteriori probability in the inverted parameter set is selected, and the selected parameter is output. The virtual source decoder 305 also saves the selected parameter and saves the frame of the selected parameter as a good frame.
本空口语音帧修复设备 30可以使用上述实施例提供的空口语音帧 修复方法, 所述方法在上述实施例中已经详细描述, 在此不再贅述。 The air interface voice frame repairing device 30 can use the air interface voice frame repairing method provided in the foregoing embodiment. The method has been described in detail in the foregoing embodiments, and details are not described herein again.
本发明实施例提供的空口语音帧修复设备 30 , 空口语音帧修复设备 30获取由译码比特组成的参数; 对参数进行参数可靠度计算以得到参数对 应的软信息及修正后的参数集合;对修正后的参数集合进行循环冗余校验; 若失败, 则在确定参数集合符合预设规则后, 对参数集合中符合比特翻转 规则的比特进行翻转, 得到翻转后的参数集合; 再对翻转后的参数集合进 行循环冗余校验; 若成功, 则保存并输出翻转后的参数集合。 这样一来, 可以通过对错误概率较高, 即软信息绝对值较低的参数进行翻转, 提高 CRC校验的通过率, 提升误码率和误帧率性能, 进而使得语音的主观质量 得以提升。 The air interface voice frame repairing device 30 and the air interface voice frame repairing device 30 of the embodiment of the present invention acquire parameters composed of decoding bits; perform parameter reliability calculation on the parameters to obtain soft information corresponding to the parameters and the modified parameter set; The modified parameter set performs cyclic redundancy check; if it fails, after determining that the parameter set meets the preset rule, the bit that meets the bit flip rule in the parameter set is flipped to obtain the inverted parameter set; The parameter set performs cyclic redundancy check; if successful, saves and outputs the inverted parameter set. In this way, the parameter with higher error probability, that is, the parameter with lower absolute value of the soft information can be flipped, the pass rate of the CRC check is improved, the bit error rate and the frame error rate performance are improved, and the subjective quality of the voice is improved. .
本发明实施例提供的信源边信息获取设备 40 , 如图 20所示, 包
括: The source side information acquiring device 40 provided by the embodiment of the present invention is as shown in FIG. Includes:
获取模块 401 , 用于根据均值初始化或训练语料获取初始参数 转移概率。 The obtaining module 401 is configured to obtain an initial parameter transition probability according to the mean initialization or the training corpus.
计算模块 402 , 用于根据所述初始参数转移概率计算得到目标 参数转移概率, 实时将当前帧计算得到的所述目标参数转移概率更 新为下一帧的所述参数转移概率, 以使得空口语音帧修复译码设备 30 根据每一帧实时获取的参数转移概率对参数进行参数可靠度计 需要说明的是, 本信源边信息获取设备 40可以使用上述实施例 提供的信源边信息获取方法, 所述方法在上述实施例中已经详细描 述, 在此不再赘述。 The calculation module 402 is configured to calculate a target parameter transition probability according to the initial parameter transition probability, and update the target parameter transition probability calculated by the current frame to the parameter transition probability of the next frame in real time, so that the air interface voice frame is obtained. The repair decoding device 30 performs the parameter reliability meter on the parameter according to the parameter transition probability obtained in real time for each frame. The source side information acquiring device 40 can use the source side information obtaining method provided by the foregoing embodiment. The method has been described in detail in the above embodiments, and details are not described herein again.
进一步的, 信源边信息获取设备 40也可以作为信源边信息估计 器 309在上述空口语音帧修复设备 30中使用, 不再贅述。 Further, the source side information acquiring device 40 can also be used as the source side information estimator 309 in the above-mentioned air interface voice frame repairing device 30, and details are not described herein.
本发明实施例提供的信源边信息获取设备 40 , 信源边信息获取设 备 40获取的初始参数转移概率, 并根据获取的初始参数转移概率, 计算得到目标参数转移概率, 实时将当前帧计算得到的目标参数转 移概率更新为下一帧的参数转移概率。 这样一来, 信源边信息获取设 备可以实时更新参数转移概率, 提供更准确的参数转移概率便于其他与信 源边信息获取设备 40相接设备, 如空口语音帧修复译码设备 30利用 这个正确率更高的参数转移概率进行处理, 进而保证相接设备数据处理的 正确率。 The source side information obtaining device 40 and the source parameter side acquiring information obtained by the source side information acquiring device 40 according to the embodiment of the present invention calculate the target parameter transition probability according to the obtained initial parameter transition probability, and calculate the current frame in real time. The target parameter transition probability is updated to the parameter transition probability of the next frame. In this way, the source side information acquiring device can update the parameter transition probability in real time, and provide a more accurate parameter transition probability for other devices connected to the source side information acquiring device 40, such as the air interface voice frame repair decoding device 30. A higher rate of parameter transfer probability is processed to ensure the correct rate of data processing of the connected device.
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应所述以权利要求的保护范围为准。
The above is only the specific embodiment of the present invention, but the scope of the present invention is not limited thereto, and any person skilled in the art can easily think of changes or substitutions within the technical scope of the present invention. It should be covered by the scope of the present invention. Therefore, the scope of the invention should be determined by the scope of the claims.
Claims
1、 一种空口语音帧修复译码方法, 其特征在于, 包括: 获取由译码比特组成的参数; 对所述参数进行参数可靠度计算, 得到所述参数对应的软信息, 以及利用所述软信息对所述参数进行修 正后的参数集合; An air interface voice frame repair and decoding method, comprising: acquiring a parameter consisting of decoding bits; performing parameter reliability calculation on the parameter, obtaining soft information corresponding to the parameter, and using the a set of parameters for which the soft information corrects the parameters;
对所述修正后的参数集合进行第一循环冗余校验;若所述第一循 环冗余校验失败, 则在确定所述参数集合符合预设规则后, 对所述参 数集合中符合比特翻转规则的比特进行翻转, 得到翻转后的参数集 合; Performing a first cyclic redundancy check on the modified parameter set; if the first cyclic redundancy check fails, determining that the parameter set meets a preset rule, and matching bits in the parameter set The bits of the flip rule are flipped to obtain a set of parameters after the flipping;
对所述翻转后的参数集合进行第二循环冗余校验;若所述第二循 环冗余校验成功, 则保存并输出所述翻转后的参数集合。 Performing a second cyclic redundancy check on the inverted parameter set; if the second cyclic redundancy check is successful, saving and outputting the inverted parameter set.
2、 根据权利要求 1 所述的方法, 其特征在于, 所述若所述第二 循环冗余校验成功之后, 还包括: The method according to claim 1, wherein, after the second cyclic redundancy check succeeds, the method further includes:
根据所述翻转后的参数集合在实际传输中的有效范围进行有效 性判断; 若所述翻转后的参数集合在有效范围内, 则保存并输出所述 翻转后的参数集合; 若所述翻转后的参数集合在有效范围外, 则保存 并输出翻转前的所述修正后的参数集合。 Performing validity determination according to the valid range of the inverted parameter set in the actual transmission; if the inverted parameter set is within the valid range, saving and outputting the inverted parameter set; If the parameter set is outside the valid range, the modified parameter set before the flip is saved and output.
3、 根据权利要求 1 所述的方法, 其特征在于, 所述对所述翻转 后的参数集合进行第二循环冗余校验之后, 还包括: The method according to claim 1, wherein after performing the second cyclic redundancy check on the inverted parameter set, the method further includes:
若所述第二循环冗余校验失败,则保存并输出翻转前的所述修正 后的参数集合。 If the second cyclic redundancy check fails, the modified parameter set before the flip is saved and output.
4、 根据权利要求 1 至 3任一所述的方法, 其特征在于, 所述获 取由译码比特组成的参数之后, 还包括: The method according to any one of claims 1 to 3, wherein after the obtaining the parameter consisting of the decoded bits, the method further includes:
对所述参数进行参数可靠度计算,根据每一帧实时获取的参数转 移概率计算得到所述参数对应的后验概率。 The parameter reliability calculation is performed on the parameter, and the posterior probability corresponding to the parameter is calculated according to the parameter transfer probability obtained in real time for each frame.
5、 根据权利要求 4所述的方法, 其特征在于, 5. The method of claim 4, wherein
在保存并输出翻转前的所述修正后的参数集合时,还保存并输出 翻转前的所述修正后的参数集合中参数对应的后验概率; And saving and outputting the posterior probability corresponding to the parameter in the corrected parameter set before the flipping, when saving and outputting the modified parameter set before the flipping;
或, 在保存并输出所述翻转后的参数集合时,还保存并输出所述翻转 后的参数集合中参数对应的后验概率。 or, When the inverted parameter set is saved and output, the posterior probability corresponding to the parameter in the inverted parameter set is also saved and output.
6、 根据权利要求 5所述的方法, 其特征在于, 所述保存并输出 翻转前的所述修正后的参数集合时, 还保存并输出翻转前的所述修正 后的参数集合中参数对应的后验概率之后, 还包括: The method according to claim 5, wherein, when saving and outputting the corrected parameter set before flipping, storing and outputting the parameter corresponding to the parameter in the corrected parameter set before flipping After the posterior probability, it also includes:
将保存并输出的翻转前的所述修正的参数集合中后验概率小于 第一预设门限的参数标识为坏参数; And identifying, in the set of the modified parameters before the flipping that is saved and output, a parameter whose posterior probability is less than the first preset threshold is a bad parameter;
利用预存的好帧中的参数更新所述坏参数, 其中, 所述好帧为未 标识坏参数的帧。 The bad parameters are updated with parameters in a pre-stored good frame, wherein the good frame is a frame that does not identify a bad parameter.
7、 根据权利要求 1或 4所述的方法, 其特征在于, 所述对所述 参数进行参数可靠度计算, 根据每一帧实时获取的参数转移概率计算 得到所述参数对应的后验概率之前, 还包括: The method according to claim 1 or 4, wherein the parameter reliability calculation is performed on the parameter, and the posterior probability corresponding to the parameter is calculated according to the parameter transition probability obtained in real time for each frame. , Also includes:
根据均值初始化或训练语料获取初始参数转移概率; Obtain an initial parameter transition probability according to the mean initialization or training corpus;
根据所述初始参数转移概率计算得到目标参数转移概率,实时将 当前帧计算得到的所述目标参数转移概率更新为下一帧的所述参数 转移概率。 Calculating the target parameter transition probability according to the initial parameter transition probability, and updating the target parameter transition probability calculated by the current frame to the parameter transition probability of the next frame in real time.
8、 根据权利要求 6所述的方法, 其特征在于, 所述利用预存的 好帧中的好参数更新所述坏参数包括: 8. The method according to claim 6, wherein the updating the bad parameters by using a good parameter in a pre-stored good frame comprises:
分别利用预存的所述好帧中线谱频率 LSF 以及 LSF均值替代所 述坏参数所在当前帧的 LSF及 LSF均值; And using the pre-stored good frame mid-line spectrum frequency LSF and the LSF mean value to replace the LSF and LSF mean values of the current frame in which the bad parameter is located;
利用预存的所述好帧中的信号幅度对所述当前帧的自适应码本 增益参数和固定码本增益参数进行限幅。 The adaptive codebook gain parameter and the fixed codebook gain parameter of the current frame are limited by the pre-stored signal amplitude in the good frame.
9、 根据权利要求 6所述的方法, 其特征在于, 所述利用预存的 好帧中的好参数更新所述坏参数包括: 9. The method according to claim 6, wherein the updating the bad parameters by using a good parameter in a pre-stored good frame comprises:
利用预存的前一好帧中奇数位置的基音延时参数分别替换所述 坏参数所在当前帧的对应奇数位置上的基音延时参数, 利用预存的所 述前一好帧中偶数位置的基音延时参数加和预设偏移量后分别替换 所述当前帧的对应偶数位置上的基音延时参数。 Using the pitch delay parameters of the odd-numbered positions in the pre-stored previous good frame to replace the pitch delay parameters at the corresponding odd positions of the current frame where the bad parameters are located, respectively, and using the pre-stored base delay of the even-numbered positions in the previous good frame. The time parameter is added to the preset offset and then replaced with the pitch delay parameter at the corresponding even position of the current frame.
10、 根据权利要求 1所述的方法, 其特征在于, 所述对所述修正 后的参数集合进行第一循环冗余校验之后, 还包括: 10. The method of claim 1 wherein: said correcting said After the first parameter set performs the first cyclic redundancy check, it also includes:
若所述第一循环冗余校验成功,则选定所述翻转后的参数集合中 对应最大后验概率的参数, 保存并输出所述选定的参数。 If the first cyclic redundancy check succeeds, the parameter corresponding to the maximum posterior probability in the inverted parameter set is selected, and the selected parameter is saved and output.
1 1、 一种信源边信息获取方法, 其特征在于, 包括: 1 1 . A method for acquiring information of a source side, which is characterized by comprising:
根据均值初始化或训练语料获取初始参数转移概率; Obtain an initial parameter transition probability according to the mean initialization or training corpus;
根据所述初始参数转移概率计算得到目标参数转移概率,实时将 当前帧计算得到的所述目标参数转移概率更新为下一帧的所述参数 转移概率, 以使得空口语音帧修复译码设备根据每一帧实时获取的所 述参数转移概率对所述参数进行参数可靠度计算。 Calculating a target parameter transition probability according to the initial parameter transition probability, and updating the target parameter transition probability calculated by the current frame to the parameter transition probability of the next frame in real time, so that the air interface voice frame repair decoding device is configured according to each The parameter transition probability obtained in real time by one frame performs parameter reliability calculation on the parameter.
12、 一种空口语音帧修复译码设备, 其特征在于, 包括: 获取模块, 用于获取译码比特组成的参数; An air interface voice frame repair and decoding device, comprising: an acquiring module, configured to acquire a parameter composed of decoding bits;
计算模块, 用于对获取模块获取的所述参数进行参数可靠度计 算, 得到所述参数对应的软信息, 以及利用所述软信息对所述参数进 行修正后的参数集合; a calculation module, configured to perform parameter reliability calculation on the parameter acquired by the acquisition module, obtain soft information corresponding to the parameter, and obtain a parameter set corrected by using the soft information to the parameter;
校验模块,用于对所述信源信道联合译码模块获取的所述修正后 的参数集合进行第一循环冗余校验; a verification module, configured to perform a first cyclic redundancy check on the modified parameter set obtained by the source channel joint decoding module;
比特翻转模块,用于若所述校验模块的所述第一循环冗余校验失 败, 则在确定所述参数集合符合预设规则后, 对所述参数集合中符合 比特翻转规则的比特进行翻转, 得到翻转后的参数集合; a bit flipping module, configured to: if the first cyclic redundancy check fails in the check module, after determining that the parameter set meets a preset rule, perform a bit that meets a bit flip rule in the parameter set Flip, get the set of parameters after flipping;
校验模块,还用于对所述比特翻转模块得到的所述翻转后的参数 集合进行第二循环冗余校验; a verification module, configured to perform a second cyclic redundancy check on the inverted parameter set obtained by the bit flip module;
若所述校验模块的所述第二循环冗余校验成功,由虚拟信源解码 器保存、 第一输出模块输出所述翻转后的参数集合。 And if the second cyclic redundancy check of the verification module is successful, saved by the virtual source decoder, and the first output module outputs the inverted parameter set.
13、 根据权利要求 12所述设备, 其特征在于, 还包括: 判断模块,用于在校验模块进行的所述第二循环冗余校验成功之 后, 根据所述比特翻转模块得到的所述翻转后的参数集合在实际传输 中的有效范围进行有效性判断; The device according to claim 12, further comprising: a determining module, configured to: according to the bit flip module, after the second cyclic redundancy check by the check module is successful The set of parameters after the flipping is validated in the effective range of the actual transmission;
若所述翻转后的参数集合在有效范围内,则使得所述虚拟信源解 码器保存、 所述第一输出模块输出所述翻转后的参数集合; 若所述翻转后的参数集合在有效范围外,则使得所述虚拟信源解 码器保存、 第二输出模块输出翻转前的所述修正后的参数集合。 If the parameter set after the flipping is within the valid range, the virtual source decoder is saved, and the first output module outputs the inverted parameter set; And if the parameter set after the flipping is outside the valid range, the virtual source decoder is saved, and the second output module outputs the modified parameter set before the flipping.
14、 根据权利要求 12所述设备, 其特征在于, 14. Apparatus according to claim 12 wherein:
若所述校验模块进行的所述第二循环冗余校验失败,所述虚拟信 源解码器保存、 所述第二输出模块输出翻转前的所述修正后的参数集 合。 And if the second cyclic redundancy check by the check module fails, the virtual source decoder saves, and the second output module outputs the corrected parameter set before flipping.
15、 根据权利要求 12至 14任一所述的设备, 其特征在于, 还包 括: The device according to any one of claims 12 to 14, further comprising:
信源边信息估计器, 用于实时获取每一帧的参数转移概率, 以使 得所述计算模块对所述参数进行参数可靠度计算, 根据所述参数转移 概率计算得到所述参数对应的后验概率。 a source side information estimator, configured to acquire a parameter transition probability of each frame in real time, so that the calculation module performs parameter reliability calculation on the parameter, and calculates a posteriori corresponding to the parameter according to the parameter transition probability Probability.
16、 根据权利要求 15所述的设备, 其特征在于, 16. Apparatus according to claim 15 wherein:
所述虚拟信源解码器保存、所述第一输出模块输出所述翻转后的 参数集合和所述参数集合中参数对应的后验概率。 The virtual source decoder saves, the first output module outputs the inverted parameter set and a posterior probability corresponding to the parameter in the parameter set.
或, Or,
所述虚拟信源解码器保存、所述第二输出模块输出翻转前的所述 修正后的参数集合和所述参数集合中参数对应的后验概率。 The virtual source decoder saves, the second output module outputs the modified parameter set before flipping and the posterior probability corresponding to the parameter in the parameter set.
17、 根据权利要求 16所述的设备, 其特征在于, 还包括: 标识模块,用于将所述虚拟信源解码器保存的翻转前的所述修正 的参数集合中所述后验概率小于第一预设门限的参数标识为坏参数; 独立错误隐藏模块,用于利用预存所述虚拟信源解码器中的好帧 中的参数更新所述坏参数, 其中, 所述好帧为未标识坏参数的帧。 The device according to claim 16, further comprising: an identifier module, wherein the posterior probability of the modified parameter set before flipping saved by the virtual source decoder is less than A parameter of a preset threshold is identified as a bad parameter; an independent error concealment module is configured to update the bad parameter by pre-storing parameters in a good frame in the virtual source decoder, where the good frame is unidentified bad The frame of the parameter.
1 8、 根据权利要求 12或 15所述的设备, 其特征在于, 18. Apparatus according to claim 12 or claim 15 wherein:
所述信源边信息估计器,具体用于根据均值初始化或训练语料获 取初始参数转移概率; 根据所述初始参数转移概率计算得到目标参数 转移概率, 实时将当前帧计算得到的所述目标参数转移概率更新为下 一帧的所述参数转移概率。 The source side information estimator is specifically configured to obtain an initial parameter transition probability according to the mean value initialization or training corpus; calculate a target parameter transition probability according to the initial parameter transition probability, and transfer the target parameter calculated in the current frame in real time. The probability is updated to the parameter transition probability of the next frame.
19、 根据权利 17要求所述的设备, 其特征在于, 19. Apparatus according to claim 17 wherein:
所述独立错误隐藏模块,具体用于利用预存在所述虚拟信源解码 器的好帧中线谱频率 LSF 以及 LSF 均值替代所述坏参数所在当前帧 的 LSF及 LSF 均值; 利用预存在所述虚拟信源解码器的好帧中的信 号幅度对所述当前帧的 自适应码本增益参数和固定码本增益参数进 行限幅。 The independent error concealing module is specifically configured to decode by using the pre-existing virtual source The good frame mid-line spectrum frequency LSF and the LSF mean replace the LSF and LSF mean of the current frame in which the bad parameter is located; the adaptation of the current frame using the signal amplitude in the good frame pre-existing in the virtual source decoder The codebook gain parameter and the fixed codebook gain parameter are limited.
20、 根据权利要求 17所述的设备, 其特征在于, 20. Apparatus according to claim 17 wherein:
所述独立错误隐藏模块,具体用于利用预存在所述虚拟信源解码 器的前一好帧中奇数位置的基音延时参数分别替换所述坏参数所在 当前帧的对应奇数位置上的基音延时参数, 利用预存在所述虚拟信源 解码器的前一好帧中偶数位置的基音延时参数加和预设偏移量后分 别替换所述当前帧的对应偶数位置上的基音延时参数。 The independent error concealment module is specifically configured to replace, by using a pitch delay parameter of an odd position in a previous good frame of the virtual source decoder, a pitch delay at a corresponding odd position of the current frame where the bad parameter is located, respectively. a time parameter, using a pitch delay parameter pre-existing in an even position of the previous good frame of the virtual source decoder, adding a preset offset, and respectively replacing the pitch delay parameter at the corresponding even position of the current frame .
21、 根据权利要求 12所述的设备, 其特征在于, 还包括: 最大后验概率估计器,用于若所述第一循环冗余校验进行的第一 循环冗余校验成功, 选定所述翻转后的参数集合中对应最大后验概率 的参数, 输出所述选定的参数; The device according to claim 12, further comprising: a maximum a posteriori probability estimator, configured to: if the first cyclic redundancy check performed by the first cyclic redundancy check succeeds, select Outputting the selected parameter to the parameter corresponding to the maximum posterior probability in the inverted parameter set;
所述虚拟信源解码器保存所述选定的参数。 The virtual source decoder saves the selected parameters.
22、 一种信源边信息获取设备, 其特征在于, 包括: 22. A source side information acquiring device, comprising:
获取模块,用于根据均值初始化或训练语料获取初始参数转移概 率; An obtaining module, configured to obtain an initial parameter transfer probability according to the mean initialization or training corpus;
计算模块,用于根据所述初始参数转移概率计算得到目标参数转 移概率, 实时将当前帧计算得到的所述目标参数转移概率更新为下一 帧的所述参数转移概率, 以使得空口语音帧修复译码设备根据每一帧 实时获取的所述参数转移概率对所述参数进行参数可靠度计算。 a calculation module, configured to calculate a target parameter transition probability according to the initial parameter transition probability, and update the target parameter transition probability calculated by the current frame to the parameter transition probability of the next frame in real time, so that the air interface voice frame is repaired The decoding device performs parameter reliability calculation on the parameter according to the parameter transition probability obtained in real time for each frame.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280000459.0A CN104081669B (en) | 2012-04-28 | 2012-04-28 | Air interface voice frame repairs interpretation method, information source side information acquisition method and equipment |
PCT/CN2012/074930 WO2013159364A1 (en) | 2012-04-28 | 2012-04-28 | Method for repairing and decoding air interface voice frame, and signal source side information acquisition method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2012/074930 WO2013159364A1 (en) | 2012-04-28 | 2012-04-28 | Method for repairing and decoding air interface voice frame, and signal source side information acquisition method and device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/162,787 Continuation US9400903B2 (en) | 2011-05-03 | 2014-01-24 | Communication method, device, and system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013159364A1 true WO2013159364A1 (en) | 2013-10-31 |
Family
ID=49482183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/074930 WO2013159364A1 (en) | 2012-04-28 | 2012-04-28 | Method for repairing and decoding air interface voice frame, and signal source side information acquisition method and device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104081669B (en) |
WO (1) | WO2013159364A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108958963A (en) * | 2018-06-01 | 2018-12-07 | 杭州电子科技大学 | A kind of NAND FLASH error control method based on LDPC and cyclic redundancy check code |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021107697A1 (en) | 2019-11-27 | 2021-06-03 | Samsung Electronics Co., Ltd. | Smart decoder |
CN111814009B (en) * | 2020-06-28 | 2022-03-01 | 四川长虹电器股份有限公司 | Mode matching method based on search engine retrieval information |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050283702A1 (en) * | 2004-06-16 | 2005-12-22 | Yingquan Wu | Soft-decision decoding using selective bit flipping |
CN1938955A (en) * | 2004-03-22 | 2007-03-28 | 松下电器产业株式会社 | Local erasure map decoder |
CN101707485A (en) * | 2009-02-03 | 2010-05-12 | 天津博微科技有限公司 | LDPC decoding method combining bit flipping (BF) and majority logic (MLG) |
CN101846978A (en) * | 2010-05-20 | 2010-09-29 | 北京航空航天大学 | Reliability analyzing method based on GSPN reliability model |
-
2012
- 2012-04-28 WO PCT/CN2012/074930 patent/WO2013159364A1/en active Application Filing
- 2012-04-28 CN CN201280000459.0A patent/CN104081669B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1938955A (en) * | 2004-03-22 | 2007-03-28 | 松下电器产业株式会社 | Local erasure map decoder |
US20050283702A1 (en) * | 2004-06-16 | 2005-12-22 | Yingquan Wu | Soft-decision decoding using selective bit flipping |
CN101707485A (en) * | 2009-02-03 | 2010-05-12 | 天津博微科技有限公司 | LDPC decoding method combining bit flipping (BF) and majority logic (MLG) |
CN101846978A (en) * | 2010-05-20 | 2010-09-29 | 北京航空航天大学 | Reliability analyzing method based on GSPN reliability model |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108958963A (en) * | 2018-06-01 | 2018-12-07 | 杭州电子科技大学 | A kind of NAND FLASH error control method based on LDPC and cyclic redundancy check code |
Also Published As
Publication number | Publication date |
---|---|
CN104081669B (en) | 2017-08-25 |
CN104081669A (en) | 2014-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100634071B1 (en) | Method and apparatus for performing decoding of crc outer concatenated codes | |
JP4199281B2 (en) | Soft error correction in TDMA wireless systems | |
US7716561B2 (en) | Multi-threshold reliability decoding of low-density parity check codes | |
US6813323B2 (en) | Decoding method and communication terminal apparatus | |
US20090276221A1 (en) | Method and System for Processing Channel B Data for AMR and/or WAMR | |
US7539928B2 (en) | Method and apparatus for decoding inner and outer codes in a mobile communication system | |
US7454684B2 (en) | Apparatus and method for turbo decoder termination | |
WO2002052734A1 (en) | Apparatus and method for stopping iterative decoding in a cdma mobile communication system | |
JP2001513598A (en) | Method and apparatus for determining the rate of received data in a variable rate communication system | |
KR100413097B1 (en) | Data transmission method, data transmission system, transmitter and receiver | |
US20090193313A1 (en) | Method and apparatus for decoding concatenated code | |
JP2006516846A (en) | Multipath in-band bit and channel decoding in multirate receivers | |
WO2014075267A1 (en) | Decoding processing method and decoder | |
US8793562B2 (en) | Apparatus and method for decoding in mobile communication system | |
KR100943856B1 (en) | Method and system for redundancy-based decoding of voice content in a wireless lan system | |
WO2013159364A1 (en) | Method for repairing and decoding air interface voice frame, and signal source side information acquisition method and device | |
US10715272B2 (en) | Signal processing method and device | |
KR101462211B1 (en) | Apparatus and method for decoding in portable communication system | |
US8483327B2 (en) | Reverse Viterbi and forward serial list Viterbi decoding for FER | |
US8019615B2 (en) | Method and system for decoding GSM speech data using redundancy | |
JP2002501328A (en) | Method and apparatus for coding, decoding and transmitting information using source control channel decoding | |
JP2008054235A (en) | Modulation method decision unit, receiver, modulation method decision method, and modulation method decision program | |
CN103812511B (en) | Decoding method and device | |
WO2012171199A1 (en) | Block error ratio estimation method and communication device | |
JP2000269937A (en) | Digital data decoder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12875686 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12875686 Country of ref document: EP Kind code of ref document: A1 |