WO2013157618A1 - Encapsulant composition for light-emitting diode - Google Patents

Encapsulant composition for light-emitting diode Download PDF

Info

Publication number
WO2013157618A1
WO2013157618A1 PCT/JP2013/061558 JP2013061558W WO2013157618A1 WO 2013157618 A1 WO2013157618 A1 WO 2013157618A1 JP 2013061558 W JP2013061558 W JP 2013061558W WO 2013157618 A1 WO2013157618 A1 WO 2013157618A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
carbon atoms
examples
silsesquioxane compound
Prior art date
Application number
PCT/JP2013/061558
Other languages
French (fr)
Japanese (ja)
Inventor
竹中 潤治
百田 潤二
雅和 大原
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2013157618A1 publication Critical patent/WO2013157618A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder

Definitions

  • the present invention is a novel encapsulant composition for a light-emitting diode (hereinafter sometimes simply referred to as “LED”) containing a fluorescent material (fluorescent dye), which has good dispersibility of the phosphor.
  • LED light-emitting diode
  • the present invention relates to a novel sealant composition.
  • a fluorescent dye is mixed for the purpose of converting light from the light emitting element into light having a desired wavelength with high efficiency.
  • yttria / aluminum / garnet-based inorganic material (hereinafter sometimes simply referred to as “YAG-based inorganic material”) is used as the fluorescent dye.
  • YAG-based inorganic material Such fluorescent dyes usually have a specific gravity larger than that of the resin component contained in the sealant, and thus have a problem that they settle downward with time.
  • a method of using a translucent resin as a filler for a sealant has been proposed (see Japanese Patent Application Laid-Open No. 2009-117831).
  • the translucent resin since the translucent resin is well dispersed in the encapsulant, the fluorescent dye is present between the translucent resins, the chromaticity is stable, and the encapsulant itself White turbidity can be prevented.
  • the translucent resin used in the method is polymethyl methacrylate and is an organic polymer, the method has room for improvement in terms of heat resistance.
  • a method of blending silica as a filler in the sealant has been proposed, but since the aggregated particle diameter of silica is about 100 nm to several microns, the method scatters light, and the sealant There was a problem of clouding itself. Therefore, development of the sealing agent composition which can disperse
  • an object of the present invention is to provide an LED encapsulant composition that eliminates the above-mentioned drawbacks of the prior art, achieves more stable dispersibility of the fluorescent dye, and is excellent in transparency.
  • the present inventors have improved the dispersibility of the fluorescent dye by blending the silsesquioxane compound into the sealing agent containing the fluorescent dye. It discovered that the sealing compound composition for LED was obtained, and came to complete this invention. That is, the present invention A sealing composition for a light emitting diode, comprising (I) a silsesquioxane compound, (II) a fluorescent dye, and (III) a resin.
  • the average particle size of the (I) silsesquioxane compound is preferably 0.1 to 50 nm. According to the present invention, the use of (I) a silsesquioxane compound as a filler in a sealant composition for a light emitting diode is further provided.
  • the composition for sealing agents of this invention contains (I) silsesquioxane compound, (II) fluorescent dye, and (III) resin.
  • component (I) silsesquioxane compound used in the present invention will be described in detail.
  • component (I) Silsesquioxane Compound: Component (I)
  • the silsesquioxane compound means a siloxane-based compound having a main chain skeleton composed of Si—O bonds and having 1.5 oxygen atoms in the unit composition.
  • Examples of such silsesquioxane compounds include the following formula (1): The compound shown by these is preferable.
  • g R 1 s may be the same or different from each other, and are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, A halogenated alkyl group having 1 to 6 carbon atoms, a phenyl group, a phenyl group substituted with a halogen, a phenyl group substituted with a halogenated alkyl group having 1 to 6 carbon atoms, a hydroxyl group, a vinyl group, a trimethylsiloxy group, or An organic group having any one of an amino group, a cyano group, an epoxy group, an acrylic group, a methacryl group, a maleimide group, a vinyl group or a cyclohexenyl group; g represents the degree of polymerization.
  • Examples of the alkyl group having 1 to 10 carbon atoms in R 1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, Examples include n-hexyl group, n-octyl group, isooctyl group, and n-decyl group.
  • Examples of the cycloalkyl group having 3 to 8 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclooctyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • Examples of the alkoxy group having 1 to 6 carbon atoms include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, n-pentoxy group, and n-hexoxy. Groups.
  • Examples of the halogenated alkyl group having 1 to 6 carbon atoms include trifluoromethyl group, pentafluoroethyl group, chloromethyl group, 2-chloroethyl group, and bromomethyl group.
  • Examples of the phenyl group substituted with halogen include a 4-chlorophenyl group and a 4-bromophenyl group.
  • Examples of the phenyl group substituted with a halogenated alkyl group having 1 to 6 carbon atoms include a 4-chloromethylphenyl group.
  • Examples of the organic group having any one of an amino group, a cyano group, an epoxy group, an acrylic group, a methacryl group, a maleimide group, a vinyl group, and a cyclohexenyl group include the following organic groups.
  • Examples of the organic group having an amino group include an aminopropyl group, an N-methylaminopropyl group, an aminoethylaminopropyl group, and an N-phenylaminopropyl group.
  • Examples of the organic group having a cyano group include a cyanopropyl group.
  • Examples of the organic group having an epoxy group include an epoxymethyl group, an epoxyethyl group, an epoxypropyl group, an epoxycyclohexylmethyl group, an epoxycyclohexylethyl group, a glycidylpropyl group, and a (glycidylethyl) dimethylsiloxy group.
  • Examples of the organic group having an acrylic group include acryloxymethyl group, acryloxypropyl group, and (3-acryloxypropyl) dimethylsiloxy group.
  • Examples of the organic group having a methacryl group include a methacryloxymethyl group, a methacryloxypropyl group, and a (3-methacryloxypropyl) dimethylsiloxy group.
  • Examples of the organic group having a maleimide group include an N-maleimidopropyl group.
  • Examples of the organic group having a vinyl group include an allyl group, a vinylpropyl group, a vinyloctyl group, a vinyldimethylsiloxy group, an allylpropyl group, and an allylpropyldimethylsiloxy group.
  • Examples of the organic group having a cyclohexenyl group include a (4-cyclohexenyl) ethyldimethylsiloxy group.
  • R 1 is an organic group having an acrylic group or a methacryl group or an organic group having an epoxy group
  • R 1 is an organic group having an acrylic group or a methacryl group or an organic group having an epoxy group
  • g represents the degree of polymerization. This g is preferably in the range of 5 to 100 from the viewpoint of improving the dispersibility of the fluorescent dye and the dispersibility of the fluorescent dye in the resin.
  • the silsesquioxane compound described above can take various structures such as ladder shape, cage shape, and random shape, and any of those structures can be used in the present invention without any limitation. It is also possible to use a mixture having the following structure.
  • the ladigo-like silsesquioxane compound is preferably the following formula (2): here, X 1 to X h may be the same or different from each other, and are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 1 carbon atom.
  • halogenated alkyl group phenyl group, phenyl group substituted by halogen, phenyl group substituted by halogenated alkyl group having 1 to 6 carbon atoms, hydroxyl group, vinyl group, trimethylsiloxy group, or amino group
  • the end groups X a and X b are each independently a hydroxyl group or an alkoxy group having 1 to 6 carbon atoms,
  • the end groups X c and X d are each independently a hydrogen atom or an alkoxy group having 1 to 6 carbon atoms, h represents the degree of polymerization.
  • the preferable group is also the same.
  • Examples of the alkoxy group having 1 to 6 carbon atoms in the end groups X a X b , X c, and X d include the same groups as the alkoxy groups described for R 1 in the formula (1).
  • the preferable group is also the same.
  • h represents the degree of polymerization. h is preferably in the range of 5 to 100 from the viewpoint of improving the dispersibility of the fluorescent dye and the dispersibility of the fluorescent dye in the resin.
  • Y 1 to Y i may be the same or different from each other, and are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 1 carbon atom.
  • halogenated alkyl group phenyl group, phenyl group substituted by halogen, phenyl group substituted by halogenated alkyl group having 1 to 6 carbon atoms, hydroxyl group, vinyl group, trimethylsiloxy group, or amino group
  • the compound shown by can be mentioned.
  • Y 1 to Y i substituted with an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms, or a halogen Phenyl group substituted with a halogenated alkyl group having 1 to 6 carbon atoms, trimethylsiloxy group, or amino group, cyano group, epoxy group, acrylic group, methacryl group, maleimide group, vinyl group, or cyclo
  • the organic group having any one of the hexenyl groups include the same groups as those described for R 1 in the formula (1), and preferred groups are also the same.
  • i represents the degree of polymerization. This degree of polymerization is preferably an integer of 6 to 12.
  • a silsesquioxane compound that can be particularly preferably used is, for example, cage-shaped T8 (in the above formula (3), i is 8 and formed of 4 Si atoms and 4 0 atoms).
  • the above silsesquioxane compounds can be produced by known methods. A commercially available product may also be used.
  • AC-SQ TA-100 a mixture of polysiloxane compounds containing polyacryloxypropyl polyorganosiloxane (cage-like T8) (Toagosei Co., Ltd.) (Made by)
  • MAC-SQ TM-100 a mixture of polysiloxane compounds containing polymethacryloxypropyl polyorganosiloxane (cage-shaped T8) (manufactured by Toagosei Co., Ltd.)
  • Q-8 Octa [(3-methacryloxypropyl) dimethylsiloxy] silsesquioxane (manufactured by Toagosei Co., Ltd.)
  • Q-6 Octa [2- (vinyl) dimethylsiloxy] silsesquioxane (manufactured by Toagosei Co., Ltd.) and the like,
  • the component (I) is 0.5 to the specific gravity of the resin component from the viewpoint of dispersibility in the encapsulant resin (component (III) described below) and dispersion stability. Those having a specific gravity of 1.1 times are preferable. Further, the component (I) preferably has an average particle size of 0.1 to 50 nm, more preferably 0.1 to 20 nm, from the viewpoint of preventing sedimentation of the fluorescent dye (component (II)). The thickness is preferably 0.5 to 5 nm. In addition, when component (I) is a mixture, it is preferable that the average particle diameter of the mixture satisfies the said range.
  • the component (I) preferably has a weight average molecular weight of 500 to 20,000 from the viewpoint of preventing sedimentation of the fluorescent dye (component (II)).
  • the molecular weight is a value confirmed by GPC (gel permeation chromatography), and in the case of a mixture, it is the weight average molecular weight of the mixture.
  • the fluorescent dye (II) (hereinafter sometimes referred to as component (II)) is not particularly limited, and a fluorescent inorganic substance that is usually used can be used.
  • a YAG inorganic material doped with a rare earth element such as YAG: Nd ZnS: Mn, ZnS: Cu, ZnS: Ag, Cl, 3Ca 3 (PO 4 ) 2 .Ca (F, Cl) 2 :
  • fluorescent dyes such as Sb, Mn, BaMg 2 Al 16 O 27 : Eu 2+ , LaPO 4 : Ce 3+ , Th 3+ , Y 2 O 3 : Eu 3+ , Sr 2 P 2 O 7 : Eu 2+ .
  • thermoplastic resin and a thermosetting resin used for an LED sealing agent can be used without any limitation.
  • thermosetting silicone resins forming organopolysiloxane cured products (crosslinked products) such as silicone rubber and silicone gel
  • thermosetting resins such as urea resins, fluorine resins, polyester resins, Polycarbonate resin
  • the blending ratio of each component is not particularly limited, and may be appropriately determined according to the size of the LED chip, the shape of the package, and the like.
  • the component (I) is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 15 parts by weight, with respect to 100 parts by weight of the component (III). It is particularly preferable that
  • component (I) contains multiple types of silsesquioxane compounds, let the total amount of multiple types of silsesquioxane compounds be the compounding quantity of component (I).
  • the component (II) is preferably contained in an amount of 0.3 to 60 parts by weight, more preferably 0.5 to 30 parts by weight, and more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the component (III). It is particularly preferable to do this.
  • the sealing agent composition of this invention can be manufactured by mixing the said component (I), component (II), and component (III) by a well-known means. Moreover, a publicly known compounding (addition) agent can also be mix
  • Example 1 As a silsesquioxane compound, the following formula (MS0805) 5 parts by mass of a mixture of silsesquioxane compounds containing T8 in the form of cage (MS0805 manufactured by Hybrid Plastics, average particle diameter of the mixture: 1.5 nm, weight average molecular weight of the mixture: 1322) represented by 3 parts by mass of YAG-based phosphor ZYP550H (manufactured by Beijing Ugoku Technological Development Co., Ltd.) was mixed with silicone resin (100 parts by mass) to produce a composition for sealant. Table 1 summarizes the type and composition of each component.
  • Example 3 is a silsesquioxane compound represented by the following formula (MS0830).
  • Example 4 is a silsesquioxane compound represented by the following formula (EP0409) 5 parts by mass of a mixture of silsesquioxane compounds containing cage-shaped T8 (Hybrid Plastics EP0409, average particle diameter of the mixture: 2.0 nm, weight average molecular weight of the mixture: 1336) shown in FIG.
  • Example 5 shows a silsesquioxane compound represented by the following formula (MA0735).
  • Example 1 5 parts by mass of a cage-like silsesquioxane compound mixture (MA0735 manufactured by Hybrid Plastics Co., Ltd., average particle diameter of the mixture: 2.0 nm, weight average molecular weight of the mixture: 1434) represented by the formula (1) was used. Comparative Examples 1 and 2 In Example 1, it carried out like Example 1 except not adding a silsesquioxane compound (Comparative Example 1 does not add a filler, and Comparative Example 2 adds a silica.). These types and formulations are summarized in Table 2. Moreover, LED was produced like the Example using the obtained sealing agent composition, evaluation similar to Example 1 was performed, and the result was put together in Table 3. FIG.
  • the present invention is an LED encapsulant composition
  • a silsesquioxane compound comprising (I) a silsesquioxane compound, (II) a fluorescent dye, and (III) a resin.
  • a resin By sealing the LED chip using this composition, it has excellent transparency and further excellent dispersibility and dispersion stability of the fluorescent dye, and even when used repeatedly for a long time, the emission color changes. It is possible to manufacture an LED having characteristics such as low durability and high durability. The LED can have a very long life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Led Device Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

Provided is an encapsulant composition for light-emitting diodes which comprises a silsesquioxane derivative, a fluorescent substance, and a resin and in which the fluorescent substance has been satisfactorily dispersed. When this composition is used to encapsulate a light-emitting diode, the unevenness in chromaticity of the light-emitting diode can be reduced.

Description

発光ダイオード用封止剤組成物Sealant composition for light emitting diode
 本発明は、蛍光物質(蛍光色素)を含む発光ダイオード(以下、単に「LED」とする場合もある)用の新規な封止剤組成物であって、該蛍光体の分散性を良好にした新規な封止剤組成物に関する。 The present invention is a novel encapsulant composition for a light-emitting diode (hereinafter sometimes simply referred to as “LED”) containing a fluorescent material (fluorescent dye), which has good dispersibility of the phosphor. The present invention relates to a novel sealant composition.
 LEDチップを封止するための封止剤中には、発光素子からの光を高効率に所望の波長の光に変換することを目的として、蛍光色素が混入されている。この蛍光色素は、例えば、イットリア・アルミニウム・ガーネット系無機物質(以下、単に「YAG系無機物質」とする場合もある)が使用されている。
 このような蛍光色素は、通常、該封止剤に含まれる樹脂成分と比べて比重が大きいため、時間の経過と共に下方に沈降してしまうという問題がある。このような問題を解決するために、封止剤の充填体として透光性樹脂を使用する方法が提案されている(特開2009−117831号公報参照)。この方法によれば、該透光性樹脂が封止剤中で良好に分散するため、この透光性樹脂間に蛍光色素が存在するようになり、色度が安定し、封止剤そのものの白濁を防止することができる。
 しかしながら、該方法に使用されている透光性樹脂は、ポリメチルメタアクリレートであり、有機高分子であるため、該方法では、耐熱性という点で改善の余地があった。
 一方、該封止剤にフィラーとしてシリカを配合する方法が提案されているが、シリカの凝集粒子径は100nm~数ミクロン程度であるため、該方法では、光を散乱してしまい、封止剤そのものを白濁させるという問題があった。
 そのため、封止剤の透明性を保持しつつ、蛍光色素を安定して分散させることができる封止剤組成物の開発が望まれている。
In the sealant for sealing the LED chip, a fluorescent dye is mixed for the purpose of converting light from the light emitting element into light having a desired wavelength with high efficiency. For example, yttria / aluminum / garnet-based inorganic material (hereinafter sometimes simply referred to as “YAG-based inorganic material”) is used as the fluorescent dye.
Such fluorescent dyes usually have a specific gravity larger than that of the resin component contained in the sealant, and thus have a problem that they settle downward with time. In order to solve such a problem, a method of using a translucent resin as a filler for a sealant has been proposed (see Japanese Patent Application Laid-Open No. 2009-117831). According to this method, since the translucent resin is well dispersed in the encapsulant, the fluorescent dye is present between the translucent resins, the chromaticity is stable, and the encapsulant itself White turbidity can be prevented.
However, since the translucent resin used in the method is polymethyl methacrylate and is an organic polymer, the method has room for improvement in terms of heat resistance.
On the other hand, a method of blending silica as a filler in the sealant has been proposed, but since the aggregated particle diameter of silica is about 100 nm to several microns, the method scatters light, and the sealant There was a problem of clouding itself.
Therefore, development of the sealing agent composition which can disperse | distribute fluorescent dye stably, maintaining the transparency of sealing agent is desired.
 したがって、本発明の目的は、上記の従来技術の欠点を解消し、蛍光色素のより安定した分散性を達成し、且つ透明性に優れたLED用封止剤組成物を提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、蛍光色素を含有した封止剤中に、シルセスキオキサン化合物を配合することにより、蛍光色素の分散性が向上したLED用封止剤組成物が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明は、
 (I)シルセスキオキサン化合物、(II)蛍光色素、及び(III)樹脂を含むことを特徴とする発光ダイオード用封止剤組成物である。
 前記組成物において、前記(I)シルセスキオキサン化合物の平均粒子径は0.1~50nmであることが好ましい。
 本発明によれば、さらに(I)シルセスキオキサン化合物の発光ダイオード用封止剤組成物へのフィラーとしての使用も提供される。
Accordingly, an object of the present invention is to provide an LED encapsulant composition that eliminates the above-mentioned drawbacks of the prior art, achieves more stable dispersibility of the fluorescent dye, and is excellent in transparency.
As a result of intensive studies to solve the above problems, the present inventors have improved the dispersibility of the fluorescent dye by blending the silsesquioxane compound into the sealing agent containing the fluorescent dye. It discovered that the sealing compound composition for LED was obtained, and came to complete this invention.
That is, the present invention
A sealing composition for a light emitting diode, comprising (I) a silsesquioxane compound, (II) a fluorescent dye, and (III) a resin.
In the composition, the average particle size of the (I) silsesquioxane compound is preferably 0.1 to 50 nm.
According to the present invention, the use of (I) a silsesquioxane compound as a filler in a sealant composition for a light emitting diode is further provided.
 本発明の封止剤用組成物は、(I)シルセスキオキサン化合物、(II)蛍光色素、及び、(III)樹脂を含むものである。まず、本発明に用いる、シルセスキオキサン化合物(以下、成分(I)とする場合もある)について詳細に説明する。
 ((I)シルセスキオキサン化合物:成分(I))
 本発明において、シルセスキオキサン化合物とは、主鎖骨格がSi−O結合からなり、単位組成中に1.5個の酸素を有するシロキサン系化合物を意味する。かかるシルセスキオキサン化合物としては、下記式(1)
Figure JPOXMLDOC01-appb-I000001
で示される化合物が好ましい。
 式中、g個のRは、互いに同一もしくは異なっていてもよく、水素原子、炭素数1~10のアルキル基、炭素数3~8のシクロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロゲン化アルキル基、フェニル基、ハロゲンで置換されたフェニル基、炭素数1~6のハロゲン化アルキル基で置換されたフェニル基、ヒドロキシル基、ビニル基、トリメチルシロキシ基、または
 アミノ基、シアノ基、エポキシ基、アクリル基、メタクリル基、マレイミド基、ビニル基もしくはシクロヘキセニル基のいずれかを有する有機基
であり、
gは、重合度を表す。
 Rにおける、炭素数1~10のアルキル基としては、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基、n−オクチル基、イソオクチル基、n−デシル基が挙げられる。
 炭素数3~8のシクロアルキル基としては、例えばシクロプロピル基、シクロブチル基、シクロオクチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基が挙げられる。
 炭素数1~6のアルコキシ基としては、例えばメトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、n−ペントキシ基、n−ヘキソキシ基が挙げられる。
 炭素数1~6のハロゲン化アルキル基としては、例えばトリフルオロメチル基、ペンタフルオロエチル基、クロロメチル基、2−クロロエチル基、ブロモメチル基が挙げられる。
 ハロゲンで置換されたフェニル基としては、例えば4−クロロフェニル基、4−ブロモフェニル基が挙げられる。
 炭素数1~6のハロゲン化アルキル基で置換されたフェニル基としては、例えば4−クロロメチルフェニル基等が挙げられる。
 アミノ基、シアノ基、エポキシ基、アクリル基、メタクリル基、マレイミド基、ビニル基あるいはシクロヘキセニル基のいずれかを有する有機基としては、例えば以下の有機基が挙げられる。
 アミノ基を有する有機基としては、例えばアミノプロピル基、N−メチルアミノプロピル基、アミノエチルアミノプロピル基、N−フェニルアミノプロピル基が挙げられる。
 シアノ基を有する有機基としては、例えばシアノプロピル基が挙げられる。
 エポキシ基を有する有機基としては、例えばエポキシメチル基、エポキシエチル基、エポキシプロピル基、エポキシシクロヘキシルメチル基、エポキシシクロヘキシルエチル基、グリシジルプロピル基、(グリシジルエチル)ジメチルシロキシ基が挙げられる。
 アクリル基を有する有機基としては、例えばアクリロキシメチル基、アクリロキシプロピル基、(3−アクリロキシプロピル)ジメチルシロキシ基が挙げられる。
 メタクリル基を有する有機基としては、例えばメタクリロキシメチル基、メタクリロキシプロピル基、(3−メタクリロキシプロピル)ジメチルシロキシ基が挙げられる。
 マレイミド基を有する有機基としては、例えばN−マレイミドプロピル基が挙げられる。
 ビニル基を有する有機基としては、例えばアリル基、ビニルプロピル基、ビニルオクチル基、ビニルジメチルシロキシ基、アリルプロピル基、アリルプロピルジメチルシロキシ基が挙げられる。
 シクロヘキセニル基を有する有機基としては、例えば(4−シクロヘキセニル)エチルジメチルシロキシ基が挙げられる。
 以上のような基の中でも、Rが、アクリル基またはメタクリル基を有する有機基、エポキシ基を有する有機基である化合物は封止樹脂成分と一緒に硬化することができるため、優れた硬度を得やすい点で特に好ましい。
 gは、重合度を示す。このgは、蛍光色素の分散性向上効果および蛍光色素の樹脂中への分散性の観点から、5~100の範囲が好適である。
 上記のシルセスキオキサン化合物は、ハシゴ状、ケージ状、ランダムといった種々の構造を取ることができ、本発明においてはそのいずれの構造のものも何ら制限なく用いることができ、また、それらの複数の構造からなる混合物を使用することもできる。
 これらの構造のうち、ハジゴ状シルセスキオキサン化合物としては、好ましくは下記式(2)
Figure JPOXMLDOC01-appb-I000002
ここで、
 X~Xは、互いに同一もしくは異なっていてもよく、水素原子、炭素数1~10のアルキル基、炭素数3~8のシクロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロゲン化アルキル基、フェニル基、ハロゲンで置換されたフェニル基、炭素数1~6のハロゲン化アルキル基で置換されたフェニル基、ヒドロキシル基、ビニル基、トリメチルシロキシ基、または
 アミノ基、シアノ基、エポキシ基、アクリル基、メタクリル基、マレイミド基、ビニル基、あるいはシクロヘキセニル基のいずれかを有する有機基
であり、
 末端基X及びXは、それぞれ独立に、ヒドロキシル基または炭素数1~6のアルコキシ基であり、
 末端基X及びXは、それぞれ独立に、水素原子または炭素原子1~6のアルコキシ基であり、
 hは、重合度を表す。
で示される化合物が挙げられる。
 上記X~Xにおいて、炭素数1~10のアルキル基、炭素数3~8のシクロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロゲン化アルキル基、ハロゲンで置換されたフェニル基、炭素数1~6のハロゲン化アルキル基で置換されたフェニル基、トリメチルシロキシ基、または
 アミノ基、シアノ基、エポキシ基、アクリル基、メタクリル基、マレイミド基、ビニル基、あるいはシクロヘキセニル基のいずれかを有する有機基としては、前記式(1)のRで説明した基と同様の基が挙げられる。好ましい基も同様である。
 末端基X、X及びXにおける炭素数1~6のアルコキシ基としても、前記式(1)のRで説明したアルコキシ基と同様の基が挙げられる。好ましい基も同様である。
 hは、重合度を示す。hは、蛍光色素の分散性の向上効果および蛍光色素の樹脂中への分散性の観点から、5~100の範囲が好適である。
 また、ケージ状のシルセスキオキサン化合物としては、好ましくは下記式(3)
Figure JPOXMLDOC01-appb-I000003
ここで、
 Y~Yは、互いに同一もしくは異なっていてもよく、水素原子、炭素数1~10のアルキル基、炭素数3~8のシクロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロゲン化アルキル基、フェニル基、ハロゲンで置換されたフェニル基、炭素数1~6のハロゲン化アルキル基で置換されたフェニル基、ヒドロキシル基、ビニル基、トリメチルシロキシ基、または
 アミノ基、シアノ基、エポキシ基、アクリル基、メタクリル基、マレイミド基、ビニル基、あるいはシクロヘキセニル基のいずれかを有する有機基
であり、
 iは、重合度を表し、6~12の整数である。
で示される化合物を挙げることができる。
 上記Y~Yにおいて、炭素数1~10のアルキル基、炭素数3~8のシクロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロゲン化アルキル基、ハロゲンで置換されたフェニル基、炭素数1~6のハロゲン化アルキル基で置換されたフェニル基、トリメチルシロキシ基、または
 アミノ基、シアノ基、エポキシ基、アクリル基、メタクリル基、マレイミド基、ビニル基、あるいはシクロヘキセニル基のいずれかを有する有機基としては、前記式(1)のRで説明した基と同様の基が挙げられる、好ましい基も同様である。
 iは、重合度を示す。この重合度は、6~12の整数であることが好ましい。
 本発明において、特に好適に使用できるシルセスキオキサン化合物は例えば、ケージ状のT8(前記式(3)において、iが8であって、4個のSi原子と4個の0原子で形成される8角形からなる面6面で構成される6面体構造のもの)、ケージ状のT10(前記式(3)において、iが10であって、5個のSi原子と5個の0原子で形成される10角形からなる面7面で構成される7面体構造のもの)、ケージ状のT12(前記式(3)において、iが12であって、6個のSi原子と6個の0原子で形成される12角形からなる面で構成される8面体構造のもの)
 を好ましいものとして挙げることができる。
 以上のシルセスキオキサン化合物は、公知の方法で製造することができる。また、市販のものであってもよい。市販のものとして、ケージ状のシルセスキオキサン化合物を含むものとしては、例えば
 AC−SQ TA−100:ポリアクリロキシプロピルポリオルガノシロキサン(ケージ状のT8)を含むポリシロキサン化合物の混合物(東亞合成(株)製)、
 MAC−SQ TM−100:ポリメタクリロキシプロピルポリオルガノシロキサン(ケージ状のT8)を含むポリシロキサン化合物の混合物(東亜合成(株)製)、
 Q−8:オクタ[(3−メタクリロキシプロピル)ジメチルシロキシ]シルセスキオキサン(東亞合成(株)製)、
 Q−6:オクタ[2−(ビニル)ジメチルシロキシ]シルセスキオキサン(東亞合成(株)製)等、さらには、
 ハイブリッドプラスチックス社製のPOSSシリーズが挙げられる。
 本発明において、前記成分(I)は、封止剤樹脂(下記に説明する成分(III))中への分散性と分散の安定性の観点から、樹脂成分の比重に対して0.5~1.1倍の比重を持つものが好ましい。
 さらに、前記成分(I)は、蛍光色素(成分(II))の沈降防止の観点から、その平均粒子径が0.1~50nmであることが好ましく、0.1~20nmであることがさらに好ましく、0.5~5nmであることが特に好ましい。なお、成分(I)が混合物の場合は、その混合物の平均粒子径が前記範囲を満足することが好ましい。
 また、前記成分(I)は、同じく蛍光色素(成分(II))の沈降防止の観点から、重量平均分子量が500~20,000であることが好ましい。なお、分子量はGPC(ゲルパーメーションクロマトグラフィー)により確認した値であり、混合物の場合は、その混合物の重量平均分子量である。
 (II)蛍光色素(成分(II))
 本発明において、(II)蛍光色素(以下、成分(II)とする場合もある)は特に制限されるものではなく、通常、使用されている蛍光無機物質を使用することができる。具体的には、例えばYAG:Ndの如き希土類元素をドープしたYAG系無機物質ZnS:Mn、ZnS:Cu、ZnS:Ag、Cl、3Ca(PO・Ca(F、Cl):Sb、Mn、BaMgAl1627:Eu2+、LaPO:Ce3+、Th3+、Y:Eu3+、Sr:Eu2+の如き蛍光色素を挙げることができる。
 (III)樹脂(成分(III))
 本発明において、(III)樹脂(以下、成分(III)とする場合もある)としては、LEDの封止剤に使用される熱可塑性樹脂および熱硬化性樹脂が何ら制限なく使用できる。具体的には、エポキシ樹脂、熱硬化性シリコーン樹脂(シリコーン ゴム、シリコーンゲル等のオルガノポリシロキサン硬化物(架橋物)を形成する)、ユリア樹脂の如き熱硬化性樹脂およびフッ素樹脂、ポリエステル樹脂、ポリカーボネート樹脂を用いることができる。中でも、成分(I)との関係から、シリコーン樹脂、ポリエステル樹脂を使用することが好ましい。
 (各成分の配合割合 成分(I)、成分(II)、成分(III)の配合割合)
 本発明において、各成分の配合割合は、特に制限されるものではなく、LEDチップの大きさ、パッケージの形状等に応じて適宜決定すればよい。
 中でも、成分(III)100質量部に対して、成分(I)を0.1~20質量部とすることが好ましく、0.5~15質量部とするのがさらに好ましく、1~10質量部とするのが特に好ましい。なお、成分(I)が複数種類のシルセスキオキサン化合物を含む場合には、複数種類のシルセスキオキサン化合物の合計量を成分(I)の配合量とする。
 また、成分(III)100質量部に対して、成分(II)を0.3~60質量部含むことが好ましく、0.5~30質量部とするのがさらに好ましく、1~10質量部とするのが特に好ましい。
 本発明の封止剤組成物は、前記成分(I)、成分(II)、及び成分(III)を公知の手段により混合することにより製造することができる。また、該封止剤組成物には、本発明の効果を損なわない範囲で公知の配合(添加)剤を配合(添加)することもできる。
The composition for sealing agents of this invention contains (I) silsesquioxane compound, (II) fluorescent dye, and (III) resin. First, the silsesquioxane compound (hereinafter sometimes referred to as component (I)) used in the present invention will be described in detail.
((I) Silsesquioxane Compound: Component (I))
In the present invention, the silsesquioxane compound means a siloxane-based compound having a main chain skeleton composed of Si—O bonds and having 1.5 oxygen atoms in the unit composition. Examples of such silsesquioxane compounds include the following formula (1):
Figure JPOXMLDOC01-appb-I000001
The compound shown by these is preferable.
In the formula, g R 1 s may be the same or different from each other, and are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, A halogenated alkyl group having 1 to 6 carbon atoms, a phenyl group, a phenyl group substituted with a halogen, a phenyl group substituted with a halogenated alkyl group having 1 to 6 carbon atoms, a hydroxyl group, a vinyl group, a trimethylsiloxy group, or An organic group having any one of an amino group, a cyano group, an epoxy group, an acrylic group, a methacryl group, a maleimide group, a vinyl group or a cyclohexenyl group;
g represents the degree of polymerization.
Examples of the alkyl group having 1 to 10 carbon atoms in R 1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, Examples include n-hexyl group, n-octyl group, isooctyl group, and n-decyl group.
Examples of the cycloalkyl group having 3 to 8 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclooctyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
Examples of the alkoxy group having 1 to 6 carbon atoms include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, n-pentoxy group, and n-hexoxy. Groups.
Examples of the halogenated alkyl group having 1 to 6 carbon atoms include trifluoromethyl group, pentafluoroethyl group, chloromethyl group, 2-chloroethyl group, and bromomethyl group.
Examples of the phenyl group substituted with halogen include a 4-chlorophenyl group and a 4-bromophenyl group.
Examples of the phenyl group substituted with a halogenated alkyl group having 1 to 6 carbon atoms include a 4-chloromethylphenyl group.
Examples of the organic group having any one of an amino group, a cyano group, an epoxy group, an acrylic group, a methacryl group, a maleimide group, a vinyl group, and a cyclohexenyl group include the following organic groups.
Examples of the organic group having an amino group include an aminopropyl group, an N-methylaminopropyl group, an aminoethylaminopropyl group, and an N-phenylaminopropyl group.
Examples of the organic group having a cyano group include a cyanopropyl group.
Examples of the organic group having an epoxy group include an epoxymethyl group, an epoxyethyl group, an epoxypropyl group, an epoxycyclohexylmethyl group, an epoxycyclohexylethyl group, a glycidylpropyl group, and a (glycidylethyl) dimethylsiloxy group.
Examples of the organic group having an acrylic group include acryloxymethyl group, acryloxypropyl group, and (3-acryloxypropyl) dimethylsiloxy group.
Examples of the organic group having a methacryl group include a methacryloxymethyl group, a methacryloxypropyl group, and a (3-methacryloxypropyl) dimethylsiloxy group.
Examples of the organic group having a maleimide group include an N-maleimidopropyl group.
Examples of the organic group having a vinyl group include an allyl group, a vinylpropyl group, a vinyloctyl group, a vinyldimethylsiloxy group, an allylpropyl group, and an allylpropyldimethylsiloxy group.
Examples of the organic group having a cyclohexenyl group include a (4-cyclohexenyl) ethyldimethylsiloxy group.
Among the above groups, compounds in which R 1 is an organic group having an acrylic group or a methacryl group or an organic group having an epoxy group can be cured together with the encapsulating resin component, and thus have excellent hardness. It is particularly preferable because it is easy to obtain.
g represents the degree of polymerization. This g is preferably in the range of 5 to 100 from the viewpoint of improving the dispersibility of the fluorescent dye and the dispersibility of the fluorescent dye in the resin.
The silsesquioxane compound described above can take various structures such as ladder shape, cage shape, and random shape, and any of those structures can be used in the present invention without any limitation. It is also possible to use a mixture having the following structure.
Of these structures, the ladigo-like silsesquioxane compound is preferably the following formula (2):
Figure JPOXMLDOC01-appb-I000002
here,
X 1 to X h may be the same or different from each other, and are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 1 carbon atom. ~ 6 halogenated alkyl group, phenyl group, phenyl group substituted by halogen, phenyl group substituted by halogenated alkyl group having 1 to 6 carbon atoms, hydroxyl group, vinyl group, trimethylsiloxy group, or amino group, An organic group having any of a cyano group, an epoxy group, an acrylic group, a methacryl group, a maleimide group, a vinyl group, or a cyclohexenyl group;
The end groups X a and X b are each independently a hydroxyl group or an alkoxy group having 1 to 6 carbon atoms,
The end groups X c and X d are each independently a hydrogen atom or an alkoxy group having 1 to 6 carbon atoms,
h represents the degree of polymerization.
The compound shown by these is mentioned.
In the above X 1 to X h , substituted with an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms, or a halogen Phenyl group substituted with a halogenated alkyl group having 1 to 6 carbon atoms, trimethylsiloxy group, or amino group, cyano group, epoxy group, acrylic group, methacryl group, maleimide group, vinyl group, or cyclo Examples of the organic group having any one of hexenyl groups include the same groups as those described for R 1 in the formula (1). The preferable group is also the same.
Examples of the alkoxy group having 1 to 6 carbon atoms in the end groups X a X b , X c, and X d include the same groups as the alkoxy groups described for R 1 in the formula (1). The preferable group is also the same.
h represents the degree of polymerization. h is preferably in the range of 5 to 100 from the viewpoint of improving the dispersibility of the fluorescent dye and the dispersibility of the fluorescent dye in the resin.
Moreover, as a cage-like silsesquioxane compound, Preferably following formula (3)
Figure JPOXMLDOC01-appb-I000003
here,
Y 1 to Y i may be the same or different from each other, and are a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 1 carbon atom. ~ 6 halogenated alkyl group, phenyl group, phenyl group substituted by halogen, phenyl group substituted by halogenated alkyl group having 1 to 6 carbon atoms, hydroxyl group, vinyl group, trimethylsiloxy group, or amino group, An organic group having any of a cyano group, an epoxy group, an acrylic group, a methacryl group, a maleimide group, a vinyl group, or a cyclohexenyl group;
i represents the degree of polymerization and is an integer of 6 to 12.
The compound shown by can be mentioned.
In Y 1 to Y i , substituted with an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms, or a halogen Phenyl group substituted with a halogenated alkyl group having 1 to 6 carbon atoms, trimethylsiloxy group, or amino group, cyano group, epoxy group, acrylic group, methacryl group, maleimide group, vinyl group, or cyclo Examples of the organic group having any one of the hexenyl groups include the same groups as those described for R 1 in the formula (1), and preferred groups are also the same.
i represents the degree of polymerization. This degree of polymerization is preferably an integer of 6 to 12.
In the present invention, a silsesquioxane compound that can be particularly preferably used is, for example, cage-shaped T8 (in the above formula (3), i is 8 and formed of 4 Si atoms and 4 0 atoms). A hexahedral structure composed of six octagonal faces), cage-shaped T10 (in the above formula (3), i is 10, and 5 Si atoms and 5 0 atoms) 7-sided structure composed of 7 faces formed of a dodecagon, and cage-shaped T12 (in the above formula (3), i is 12, 6 Si atoms and 6 0s) (With octahedral structure composed of dodecagonal surfaces formed by atoms)
Can be mentioned as preferred.
The above silsesquioxane compounds can be produced by known methods. A commercially available product may also be used. As a commercially available product containing a cage-like silsesquioxane compound, for example, AC-SQ TA-100: a mixture of polysiloxane compounds containing polyacryloxypropyl polyorganosiloxane (cage-like T8) (Toagosei Co., Ltd.) (Made by)
MAC-SQ TM-100: a mixture of polysiloxane compounds containing polymethacryloxypropyl polyorganosiloxane (cage-shaped T8) (manufactured by Toagosei Co., Ltd.),
Q-8: Octa [(3-methacryloxypropyl) dimethylsiloxy] silsesquioxane (manufactured by Toagosei Co., Ltd.)
Q-6: Octa [2- (vinyl) dimethylsiloxy] silsesquioxane (manufactured by Toagosei Co., Ltd.) and the like,
The POSS series manufactured by Hybrid Plastics can be mentioned.
In the present invention, the component (I) is 0.5 to the specific gravity of the resin component from the viewpoint of dispersibility in the encapsulant resin (component (III) described below) and dispersion stability. Those having a specific gravity of 1.1 times are preferable.
Further, the component (I) preferably has an average particle size of 0.1 to 50 nm, more preferably 0.1 to 20 nm, from the viewpoint of preventing sedimentation of the fluorescent dye (component (II)). The thickness is preferably 0.5 to 5 nm. In addition, when component (I) is a mixture, it is preferable that the average particle diameter of the mixture satisfies the said range.
The component (I) preferably has a weight average molecular weight of 500 to 20,000 from the viewpoint of preventing sedimentation of the fluorescent dye (component (II)). The molecular weight is a value confirmed by GPC (gel permeation chromatography), and in the case of a mixture, it is the weight average molecular weight of the mixture.
(II) Fluorescent dye (component (II))
In the present invention, the fluorescent dye (II) (hereinafter sometimes referred to as component (II)) is not particularly limited, and a fluorescent inorganic substance that is usually used can be used. Specifically, for example, a YAG inorganic material doped with a rare earth element such as YAG: Nd ZnS: Mn, ZnS: Cu, ZnS: Ag, Cl, 3Ca 3 (PO 4 ) 2 .Ca (F, Cl) 2 : Examples thereof include fluorescent dyes such as Sb, Mn, BaMg 2 Al 16 O 27 : Eu 2+ , LaPO 4 : Ce 3+ , Th 3+ , Y 2 O 3 : Eu 3+ , Sr 2 P 2 O 7 : Eu 2+ .
(III) Resin (component (III))
In the present invention, as the (III) resin (hereinafter sometimes referred to as component (III)), a thermoplastic resin and a thermosetting resin used for an LED sealing agent can be used without any limitation. Specifically, epoxy resins, thermosetting silicone resins (forming organopolysiloxane cured products (crosslinked products) such as silicone rubber and silicone gel), thermosetting resins such as urea resins, fluorine resins, polyester resins, Polycarbonate resin can be used. Especially, it is preferable to use a silicone resin and a polyester resin from a relationship with a component (I).
(Blend ratio of each component Component ratio of component (I), component (II), component (III))
In the present invention, the blending ratio of each component is not particularly limited, and may be appropriately determined according to the size of the LED chip, the shape of the package, and the like.
Among them, the component (I) is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 15 parts by weight, with respect to 100 parts by weight of the component (III). It is particularly preferable that In addition, when component (I) contains multiple types of silsesquioxane compounds, let the total amount of multiple types of silsesquioxane compounds be the compounding quantity of component (I).
The component (II) is preferably contained in an amount of 0.3 to 60 parts by weight, more preferably 0.5 to 30 parts by weight, and more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the component (III). It is particularly preferable to do this.
The sealing agent composition of this invention can be manufactured by mixing the said component (I), component (II), and component (III) by a well-known means. Moreover, a publicly known compounding (addition) agent can also be mix | blended (added) to this sealing agent composition in the range which does not impair the effect of this invention.
 次に、実施例及び比較例を用いて本発明を詳細に説明するが、本発明は本実施例に限定されるものではない。
 実施例1
 (I)シルセスキオキサン化合物として、下記式(MS0805)
Figure JPOXMLDOC01-appb-I000004
で示されるケージ状のT8を含むシルセスキオキサン化合物の混合物(ハイブリッドプラスチックス社製MS0805、混合物の平均粒子径:1.5nm、混合物の重量平均分子量:1322)を5質量部、蛍光体としてYAG系蛍光体ZYP550H(北京宇極科技発展有限公司製)3質量部をシリコーン樹脂(100質量部)に混合して封止剤用組成物を製造した。各成分の種類、配合を表1にまとめた。
 得られた封止剤用組成物を硬化させ、蛍光体の分散状態と硬化物の白濁度を目視で評価した。結果を表3に示した。
 実施例2~5
 実施例1におけるシルセスキオキサン化合物の種類と質量比を代えた以外は、実施例1と同様の評価を行った。封止剤組成物の配合割合、及び各成分の種類を表1にまとめた。また、得られた封止剤組成物を使用して実施例1と同様の評価を行いその結果を表3にまとめた。
 実施例2は、実施例1で使用したシルセスキオキサン化合物と同じものの配合量を10質量部に変更したものである。
 実施例3は、シルセスキオキサン化合物として、下記式(MS0830)
Figure JPOXMLDOC01-appb-I000005
で示されるケージ状のT8を含むシルセスキオキサン化合物の混合物(ハイブリッドプラスチック社製MS0830、混合物の平均粒子径:1.0nm、混合物の重量平均分子量:550)を5質量部使用した。
 実施例4は、シルセスキオキサン化合物として、下記式(EP0409)
Figure JPOXMLDOC01-appb-I000006
で示されるケージ状のT8を含むシルセスキオキサン化合物の混合物(ハイブリッドプラスチック社製EP0409、混合物の平均粒子径:2.0nm、混合物の重量平均分子量:1336)を5質量部使用した。
 実施例5は、シルセスキオキサン化合物として、下記式(MA0735)
Figure JPOXMLDOC01-appb-I000007
で示されるケージ状のT8を含むシルセスキオキサン化合物の混合物(ハイブリッドプラスチック社製MA0735、混合物の平均粒子径:2.0nm、混合物の重量平均分子量:1434)を5質量部使用した。
Figure JPOXMLDOC01-appb-T000008
 比較例1、2
 実施例1において、シルセスキオキサン化合物を添加しない以外は、実施例1と同様に行った(比較例1はフィラーの添加なし、比較例2はシリカを添加。)。これら種類、配合を表2にまとめた。また、得られた封止剤組成物を使用して実施例と同様にLEDを作製し、実施例1と同様の評価を行いその結果を表3にまとめた。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表3から、実施例1~5の封止剤用組成物の場合、封止部分はきわめて透明度が高く、さらに蛍光体の沈降も見られず良好な分散状態で、均一な硬化物が得られた。また、比較例1、2では、シルセスキオキサン化合物を添加しなかった場合、蛍光体が沈降し2層に分離した。また粒径の大きなシリカを添加した場合、白濁を示した。従って本発明により、シルセスキオキサン化合物の混合により、高い透明度で且つ均一な硬化物が得られることが確認された。
Next, the present invention will be described in detail using examples and comparative examples, but the present invention is not limited to the examples.
Example 1
(I) As a silsesquioxane compound, the following formula (MS0805)
Figure JPOXMLDOC01-appb-I000004
5 parts by mass of a mixture of silsesquioxane compounds containing T8 in the form of cage (MS0805 manufactured by Hybrid Plastics, average particle diameter of the mixture: 1.5 nm, weight average molecular weight of the mixture: 1322) represented by 3 parts by mass of YAG-based phosphor ZYP550H (manufactured by Beijing Ugoku Technological Development Co., Ltd.) was mixed with silicone resin (100 parts by mass) to produce a composition for sealant. Table 1 summarizes the type and composition of each component.
The obtained composition for sealants was cured, and the dispersion state of the phosphor and the white turbidity of the cured product were visually evaluated. The results are shown in Table 3.
Examples 2-5
Evaluation similar to Example 1 was performed except having changed the kind and mass ratio of the silsesquioxane compound in Example 1. FIG. The blending ratio of the sealant composition and the types of each component are summarized in Table 1. Moreover, the same evaluation as Example 1 was performed using the obtained sealing agent composition, and the result was put together in Table 3.
Example 2 changes the compounding quantity of the same thing as the silsesquioxane compound used in Example 1 to 10 mass parts.
Example 3 is a silsesquioxane compound represented by the following formula (MS0830).
Figure JPOXMLDOC01-appb-I000005
5 parts by mass of a cage-like silsesquioxane compound mixture (MS0830, manufactured by Hybrid Plastics Co., Ltd., average particle diameter of the mixture: 1.0 nm, weight average molecular weight of the mixture: 550) represented by the formula (1) was used.
Example 4 is a silsesquioxane compound represented by the following formula (EP0409)
Figure JPOXMLDOC01-appb-I000006
5 parts by mass of a mixture of silsesquioxane compounds containing cage-shaped T8 (Hybrid Plastics EP0409, average particle diameter of the mixture: 2.0 nm, weight average molecular weight of the mixture: 1336) shown in FIG.
Example 5 shows a silsesquioxane compound represented by the following formula (MA0735).
Figure JPOXMLDOC01-appb-I000007
5 parts by mass of a cage-like silsesquioxane compound mixture (MA0735 manufactured by Hybrid Plastics Co., Ltd., average particle diameter of the mixture: 2.0 nm, weight average molecular weight of the mixture: 1434) represented by the formula (1) was used.
Figure JPOXMLDOC01-appb-T000008
Comparative Examples 1 and 2
In Example 1, it carried out like Example 1 except not adding a silsesquioxane compound (Comparative Example 1 does not add a filler, and Comparative Example 2 adds a silica.). These types and formulations are summarized in Table 2. Moreover, LED was produced like the Example using the obtained sealing agent composition, evaluation similar to Example 1 was performed, and the result was put together in Table 3. FIG.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
From Table 3, in the case of the compositions for encapsulants of Examples 1 to 5, the encapsulated portion is extremely transparent, and further, no sedimentation of the phosphor is observed, and a uniform cured product is obtained in a good dispersion state. It was. In Comparative Examples 1 and 2, when the silsesquioxane compound was not added, the phosphor settled and separated into two layers. When silica having a large particle size was added, white turbidity was exhibited. Therefore, according to the present invention, it was confirmed that a uniform cured product with high transparency can be obtained by mixing the silsesquioxane compound.
発明の効果The invention's effect
 本発明は、(I)シルセスキオキサン化合物、(II)蛍光色素、及び(III)樹脂を含むLED用封止剤組成物である。この組成物を使用してLEDチップを封止することにより、透明性に優れ、さらに優れた蛍光色素の分散性と分散安定性を有し、長期間繰り返し使用した場合でも、発光色の変化が少なく耐久性も高いといった特性を有するLEDを製造することができる。そして、該LEDは、極めて高寿命化することができる。 The present invention is an LED encapsulant composition comprising (I) a silsesquioxane compound, (II) a fluorescent dye, and (III) a resin. By sealing the LED chip using this composition, it has excellent transparency and further excellent dispersibility and dispersion stability of the fluorescent dye, and even when used repeatedly for a long time, the emission color changes. It is possible to manufacture an LED having characteristics such as low durability and high durability. The LED can have a very long life.

Claims (3)

  1.  (I)シルセスキオキサン化合物、(II)蛍光色素、及び(III)樹脂を含むことを特徴とする発光ダイオード用封止剤組成物。 (I) Silsesquioxane compound, (II) fluorescent pigment | dye, and (III) resin sealing agent composition characterized by including.
  2.  前記(I)シルセスキオキサン化合物の平均粒子径が0.1~50nmである請求項1に記載の発光ダイオード用封止剤組成物。 2. The encapsulant composition for light emitting diodes according to claim 1, wherein the (I) silsesquioxane compound has an average particle size of 0.1 to 50 nm.
  3.  (I)シルセスキオキサン化合物の、発光ダイオード用封止剤組成物へのフィラーとしての使用。 (I) Use of a silsesquioxane compound as a filler for a light-emitting diode encapsulant composition.
PCT/JP2013/061558 2012-04-16 2013-04-12 Encapsulant composition for light-emitting diode WO2013157618A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012092778A JP2015120767A (en) 2012-04-16 2012-04-16 Sealant composition for light-emitting diode
JP2012-092778 2012-04-16

Publications (1)

Publication Number Publication Date
WO2013157618A1 true WO2013157618A1 (en) 2013-10-24

Family

ID=49383568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061558 WO2013157618A1 (en) 2012-04-16 2013-04-12 Encapsulant composition for light-emitting diode

Country Status (2)

Country Link
JP (1) JP2015120767A (en)
WO (1) WO2013157618A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321832A (en) * 2005-05-17 2006-11-30 Konishi Kagaku Ind Co Ltd Resin composition for sealing optical semiconductor and optical semiconductor device using the same
JP2008159713A (en) * 2006-12-21 2008-07-10 Momentive Performance Materials Japan Kk Light emitting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321832A (en) * 2005-05-17 2006-11-30 Konishi Kagaku Ind Co Ltd Resin composition for sealing optical semiconductor and optical semiconductor device using the same
JP2008159713A (en) * 2006-12-21 2008-07-10 Momentive Performance Materials Japan Kk Light emitting device

Also Published As

Publication number Publication date
JP2015120767A (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP5971835B2 (en) Curable silicone resin composition and light emitting diode device using the same
CN104151834B (en) Hardening resin composition, its solidfied material and luminescent semiconductor device
KR20150047448A (en) LED encapsulant
US9773953B2 (en) Organic phosphor-functionalized nanoparticles and compositions comprising the same
US20120142803A1 (en) Method for curing a silicone resin composition
TW200932794A (en) Diglygidylisocyanurylmodified organopolysiloxane and composition including the organopolysiloxane
JP2011144360A (en) Resin composition for sealing optical semiconductor element and optical semiconductor device sealed with the composition
US20130241390A1 (en) Metal-containing encapsulant compositions and methods
JP2006321832A (en) Resin composition for sealing optical semiconductor and optical semiconductor device using the same
WO2017110468A1 (en) Heat-curable resin composition
CN102569614A (en) Encapsulation material and electronic device prepared using the same
JP5652410B2 (en) Thermosetting silicone resin sheet having phosphor-containing layer and white pigment-containing layer, method for producing light-emitting device using the same, and sealed light-emitting semiconductor device
CN104487520A (en) Curable organopolysiloxane composition, method for producing same, method for producing cured organopolysiloxane, method for condensing organopolysiloxane, optical semiconductor package, and condensation catalyst for organopolysiloxanes
JP2017119848A (en) Organic silicon compound, thermosetting composition containing the organic silicon compound, and encapsulation material for optical semiconductor
KR20190020768A (en) Method for improving remote fluorescent optical properties of polycarbonate
US20130241404A1 (en) Encapsulant compositions and methods for lighting devices
EP2662412B1 (en) Curable composition
JP2015113348A (en) Curable composition and optical semiconductor device
WO2013157618A1 (en) Encapsulant composition for light-emitting diode
JP7027931B2 (en) Thermosetting resin composition
JP2017186479A (en) Thermosetting resin composition
TWI789736B (en) Thermosetting silicone composition, sheet, and silicone cured product
CN109836453A (en) Silicone epoxy containing multiple si-h bonds is applied with it
JP6510468B2 (en) Curable silicone resin composition and method of preparing curable silicone resin composition
JP6358016B2 (en) Thermosetting resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13777729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13777729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP