WO2013157599A1 - Novel epoxy resin, epoxy resin composition comprising said epoxy resin, cured product of said resin composition, and material for preventing adhesion of microorganisms - Google Patents

Novel epoxy resin, epoxy resin composition comprising said epoxy resin, cured product of said resin composition, and material for preventing adhesion of microorganisms Download PDF

Info

Publication number
WO2013157599A1
WO2013157599A1 PCT/JP2013/061477 JP2013061477W WO2013157599A1 WO 2013157599 A1 WO2013157599 A1 WO 2013157599A1 JP 2013061477 W JP2013061477 W JP 2013061477W WO 2013157599 A1 WO2013157599 A1 WO 2013157599A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
novel
cured product
manufactured
Prior art date
Application number
PCT/JP2013/061477
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 古江
由起 大野
西村 憲人
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2014511243A priority Critical patent/JP5961687B2/en
Publication of WO2013157599A1 publication Critical patent/WO2013157599A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1656Antifouling paints; Underwater paints characterised by the film-forming substance
    • C09D5/1662Synthetic film-forming substance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)

Abstract

A novel epoxy resin obtained by reacting 2,3,5,6-tetrafluoro-p-phenylenedimethanol with a glycidyl epoxy resin.

Description

新規エポキシ樹脂、該エポキシ樹脂を含むエポキシ樹脂組成物、該樹脂組成物の硬化物および微生物付着防止材料Novel epoxy resin, epoxy resin composition containing the epoxy resin, cured product of the resin composition, and antimicrobial adhesion material
 本発明は、例えば微生物付着防止材料として好適に用いることができるエポキシ樹脂組成物の硬化物と、エポキシ樹脂組成物と、該エポキシ樹脂組成物を構成する新規エポキシ樹脂に関する。
  本発明は、日本に2012年04月20日に出願された特願2012-096568号および2012年11月12日に出願された特願2012-248449号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a cured product of an epoxy resin composition that can be suitably used as, for example, a microorganism adhesion prevention material, an epoxy resin composition, and a novel epoxy resin constituting the epoxy resin composition.
The present invention claims priority based on Japanese Patent Application No. 2012-096568 filed on April 20, 2012 and Japanese Patent Application No. 2012-248449 filed on November 12, 2012. This is incorporated here.
 細菌、真菌、糸状菌、藻類等のある種の微生物は、基材(担体)の表面に付着してコロニーを形成し、一定の細胞数に達すると、多糖類や糖タンパク質等の有機物質を生成、分泌してバイオフィルム(生物膜)を形成する。形成されたバイオフィルムにはさらに他の微生物が入り込み、複雑な微生物の集団が形成されることもある。 Certain microorganisms such as bacteria, fungi, filamentous fungi, and algae adhere to the surface of the substrate (carrier) to form colonies. When a certain number of cells are reached, organic substances such as polysaccharides and glycoproteins are removed. It is produced and secreted to form a biofilm (biofilm). The formed biofilm may further contain other microorganisms to form a complex population of microorganisms.
 バイオフィルムは、自然界、産業環境下、一般家庭環境下などのあらゆる環境下で形成され、様々な問題を引き起こす場合がある。
 例えば、バイオフィルムは、水処理施設、工場などの送水管や排水管の内表面、浴室、空調設備に備えられた循環配管の内表面などに付着し、熱効率の低下、流量低下、管の閉塞などを誘発する場合がある。また、建築物の内外装、水周り設備、冷蔵・冷凍設備、空調装置などの結露が起こりやすい部分に形成され、材質の劣化、美観の低下、周囲の人の健康悪化を引き起こすこともある。さらにバイオフィルムが海水や河川水に接触する構造物の表面に形成された結果、該表面を構成する部材が腐食したり、バイオフィルム上に藻類、貝類、フジツボ等の大型生物が付着、成長し、その構造物に多大な障害を与えたりする場合もある。
 このようにバイオフィルムの形成は、その一部または全部が水分と接触するような部材、すなわち水接触部材において、顕著に認められる。
Biofilms are formed in various environments such as the natural world, industrial environments, and general household environments, and may cause various problems.
For example, biofilm adheres to the inner surface of water pipes and drainage pipes in water treatment facilities and factories, the inner surface of circulation pipes provided in bathrooms and air conditioning equipment, etc., resulting in lower thermal efficiency, lower flow rate, and blockage of pipes. May be triggered. In addition, it is formed in areas where condensation is likely to occur such as the interior and exterior of buildings, water facilities, refrigeration / refrigeration facilities, air conditioners, etc., which may cause deterioration of materials, loss of aesthetics, and deterioration of the health of surrounding people. Furthermore, as a result of the formation of biofilm on the surface of structures that come into contact with seawater or river water, the components that make up the surface corrode, and large organisms such as algae, shellfish, and barnacles adhere to and grow on the biofilm. In some cases, the structure may be damaged greatly.
Thus, the formation of a biofilm is remarkably recognized in a member in which a part or all of it is in contact with moisture, that is, a water contact member.
 微生物等の付着に起因する問題の防止方法としては、防汚剤や抗菌剤等の薬剤を基材に塗布したり、含浸させたりする方法がある。ところが、このように塗布や含浸により付与された薬剤は、徐々に環境中に放出され、周辺の生物に悪影響を与える場合がある。また、継続的に放出される薬剤に曝されるうちに、薬剤に対する耐性をもった微生物が周辺に出現する可能性もある。 As a method for preventing problems caused by adhesion of microorganisms and the like, there are methods of applying or impregnating a base material with a chemical such as an antifouling agent or an antibacterial agent. However, the drug applied by application or impregnation in this way is gradually released into the environment and may adversely affect surrounding organisms. Further, microorganisms having resistance to the drug may appear in the vicinity while being exposed to the continuously released drug.
 そこで、環境に配慮された方法として、例えば特許文献1には、基材に生分解性樹脂などを含む分散液を塗布して被膜を形成することにより、水棲生物の付着を防止するとともに、付着した生物の除去を容易にする技術が開示されている。
 特許文献2などには、基材中に光触媒である酸化チタンを練り込んで防汚性を持たせる技術が開示されている。
 その他、基材に防汚性を付与する技術としては、基材の表面にガラスコーティングする技術(特許文献3参照。)、電流を利用して海水と接触する構造物(基材)への生物付着を防止する技術(特許文献4参照。)などがある。
Therefore, as an environmentally friendly method, for example, in Patent Document 1, a coating film is formed by applying a dispersion containing a biodegradable resin or the like to a base material, thereby preventing adhesion of aquatic organisms and adhesion. A technique for facilitating removal of living organisms is disclosed.
Patent Document 2 and the like disclose a technique for imparting antifouling properties by kneading titanium oxide as a photocatalyst into a base material.
In addition, as a technique for imparting antifouling properties to the base material, a technique for glass coating on the surface of the base material (see Patent Document 3), a living organism to a structure (base material) that contacts seawater using an electric current. There exists a technique (refer patent document 4) etc. which prevent adhesion.
特開2005-132924号公報JP 2005-132924 A 特開2003-231814号公報JP 2003-231814 A 特許第4551963号公報Japanese Patent No. 4551963 特開2003-13264号公報JP 2003-13264 A
 しかしながら、特許文献1に記載の方法の場合、被膜が生分解して剥離すると、その部分は基材がむき出しになる。そのため、再度付着する微生物群に対しては除去作用が働かず、効果が継続しない。 However, in the case of the method described in Patent Document 1, when the coating is biodegraded and peeled off, the portion of the substrate is exposed. Therefore, the removal action does not work for the microorganism group that adheres again, and the effect does not continue.
 一方、特許文献2の方法によれば、基材の表面だけでなく全体に防汚性を付与できる。しかし、防汚性の効果を顕現させるためには、一定割合の酸化チタンを練り込む必要があり、練り込む割合によっては、基材本来の性質を損ね、外見や耐久性、加工性などの品質が低下する場合がある。
 ガラスコーティングを施す特許文献3の方法は、耐久性はあるものの物理的なダメージに弱い。また、ガラスコーティングは靭性に乏しいため、温度変化や外力などによって生じる変形やひずみに追従しにくく、亀裂などが生じる場合があった。
 電流を利用した特許文献4の方法には、常時通電するための付帯設備が必要であり、その管理に人手とコストがかかる。
On the other hand, according to the method of Patent Document 2, antifouling properties can be imparted not only to the surface of the base material but also to the whole. However, in order to demonstrate the antifouling effect, it is necessary to knead a certain proportion of titanium oxide. Depending on the kneading proportion, the original properties of the base material may be impaired, and the quality such as appearance, durability, and workability May decrease.
Although the method of patent document 3 which gives a glass coating is durable, it is weak to a physical damage. In addition, since glass coating has poor toughness, it is difficult to follow deformation and strain caused by temperature change or external force, and cracks may occur.
The method of Patent Document 4 using current requires an auxiliary facility for energizing at all times, and manpower and cost are required for its management.
 本発明は上記事情に鑑みてなされたもので、環境への悪影響がなく、特別な管理をしなくても長期間、微生物付着防止性に優れ、例えば微生物付着防止材料として種々の用途に幅広く用いることができるエポキシ樹脂組成物の硬化物と、エポキシ樹脂組成物と、該エポキシ樹脂組成物を構成する新規エポキシ樹脂の提供を課題とする。 The present invention has been made in view of the above circumstances, has no adverse effects on the environment, has excellent antimicrobial adhesion properties for a long period of time without special management, and is widely used for various applications as, for example, an antimicrobial adhesion material. An object of the present invention is to provide a cured product of an epoxy resin composition, an epoxy resin composition, and a novel epoxy resin constituting the epoxy resin composition.
 本発明者は鋭意検討を行った結果、テトラフルオロベンジル骨格を有する新規エポキシ樹脂の硬化物が優れた微生物付着防止性を発現することを見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventor has found that a cured product of a novel epoxy resin having a tetrafluorobenzyl skeleton exhibits excellent microbial adhesion prevention properties, and has completed the present invention.
 本発明は以下の構成を有する。
[1]2,3,5,6-テトラフルオロ-p-フェニレンジメタノールとグリシジル型のエポキシ樹脂とを反応させて得られる新規エポキシ樹脂。
[2]式(1)で表される、[1]に記載の新規エポキシ樹脂。
Figure JPOXMLDOC01-appb-C000004
(式(1)中のRは、それぞれ独立に、前記グリシジル型のエポキシ樹脂の製造に用いられたポリヒドロキシ化合物の残基またはポリカルボン酸化合物の残基を示す。nは、1以上の整数である。)
[3]前記グリシジル型のエポキシ樹脂が、エピハロヒドリンとポリヒドロキシ化合物との反応で得られるエポキシ樹脂である、[1]または[2]に記載の新規エポキシ樹脂。
[4]前記エピハロヒドリンがエピクロロヒドリンである、[3]に記載の新規エポキシ樹脂。
[5]ポリヒドロキシ化合物がビスフェノールAである、[3]または[4]に記載の新規エポキシ樹脂。
[6]式(2)で表される、[5]に記載の新規エポキシ樹脂。
Figure JPOXMLDOC01-appb-C000005
(式(2)中のnは、1以上の整数である。)
[7]ポリヒドロキシ化合物がビスフェノールFである、[3]または[4]に記載の新規エポキシ樹脂。
[8]式(3)で表される、[7]に記載の新規エポキシ樹脂。
Figure JPOXMLDOC01-appb-C000006
(式(3)中のnは、1以上の整数である。)
[9][1]~[8]のいずれかに記載の新規エポキシ樹脂と硬化剤とを少なくとも含有するエポキシ樹脂組成物。
[10][9]のエポキシ樹脂組成物が硬化した硬化物。
[11][10]の硬化物からなる微生物付着防止材料。
The present invention has the following configuration.
[1] A novel epoxy resin obtained by reacting 2,3,5,6-tetrafluoro-p-phenylenedimethanol with a glycidyl type epoxy resin.
[2] The novel epoxy resin according to [1], represented by the formula (1).
Figure JPOXMLDOC01-appb-C000004
(In formula (1), each R independently represents a residue of a polyhydroxy compound or a residue of a polycarboxylic acid compound used in the production of the glycidyl type epoxy resin. N is an integer of 1 or more) .)
[3] The novel epoxy resin according to [1] or [2], wherein the glycidyl type epoxy resin is an epoxy resin obtained by a reaction between an epihalohydrin and a polyhydroxy compound.
[4] The novel epoxy resin according to [3], wherein the epihalohydrin is epichlorohydrin.
[5] The novel epoxy resin according to [3] or [4], wherein the polyhydroxy compound is bisphenol A.
[6] The novel epoxy resin according to [5], represented by the formula (2).
Figure JPOXMLDOC01-appb-C000005
(N in the formula (2) is an integer of 1 or more.)
[7] The novel epoxy resin according to [3] or [4], wherein the polyhydroxy compound is bisphenol F.
[8] The novel epoxy resin according to [7], represented by formula (3).
Figure JPOXMLDOC01-appb-C000006
(N in Formula (3) is an integer of 1 or more.)
[9] An epoxy resin composition containing at least the novel epoxy resin according to any one of [1] to [8] and a curing agent.
[10] A cured product obtained by curing the epoxy resin composition of [9].
[11] A microorganism adhesion preventing material comprising the cured product of [10].
 本発明によれば、環境への悪影響がなく、特別な管理をしなくても長期間、微生物付着防止性に優れ、例えば微生物付着防止材料として種々の用途に幅広く用いることができるエポキシ樹脂組成物の硬化物と、エポキシ樹脂組成物と、該エポキシ樹脂組成物を構成する新規エポキシ樹脂を提供できる。 According to the present invention, an epoxy resin composition that has no adverse environmental impact and is excellent in preventing microbial adhesion for a long period of time without special management, for example, can be widely used in various applications as a microbial adhesion preventing material. The cured product, the epoxy resin composition, and a novel epoxy resin constituting the epoxy resin composition can be provided.
実施例における蛍光強度比(付着微生物量の指標。)を示すグラフである。It is a graph which shows the fluorescence intensity ratio in the Example (index of the amount of attached microorganisms).
 以下、本発明について詳細に説明する。
 本発明の硬化物は、微生物の付着を防止する微生物付着防止材料として好適に使用されるものであって、2,3,5,6-テトラフルオロ-p-フェニレンジメタノールと既存のグリシジル型のエポキシ樹脂とを反応させて得られる新規エポキシ樹脂と、硬化剤とを少なくとも含有するエポキシ樹脂組成物が硬化したものである。
 本明細書において、微生物とは、細菌、古細菌、ラン藻類、菌類、藻類、地衣類、原生動物の他、海藻類の胞子(遊走子)、イガイ類やカキ類などの貝類の幼生、フジツボ類の幼生、カンザシゴカイ類の幼生、ヒドロ虫類の幼生、コケムシ類の幼生、ホヤ類の幼生、カイメン類の幼生、イソギンチャク類の幼生などを含む。
 また、本明細書において、エポキシ樹脂とは、1分子中にエポキシ基(オキシラン環)を2以上含む化合物を意味する。
Hereinafter, the present invention will be described in detail.
The cured product of the present invention is preferably used as a microorganism adhesion preventing material for preventing adhesion of microorganisms, and is composed of 2,3,5,6-tetrafluoro-p-phenylenedimethanol and an existing glycidyl type. An epoxy resin composition containing at least a novel epoxy resin obtained by reacting an epoxy resin and a curing agent is cured.
In the present specification, microorganisms include bacteria, archaea, cyanobacteria, fungi, algae, lichens, protozoa, seaweed spores (larvae), larvae of shellfish such as mussels and oysters, barnacles Larvae of the moss, larvae of the mosquitoes, hydrolar larvae, bryozoan larvae, ascidian larvae, sponge larvae, and sea anemone larvae.
Moreover, in this specification, an epoxy resin means the compound which contains two or more epoxy groups (oxirane ring) in 1 molecule.
<新規エポキシ樹脂>
 本発明の新規エポキシ樹脂(以下、該新規エポキシ樹脂をエポキシ樹脂(A)という場合がある。)は、下記一般式(1)の構造を有する。
<New epoxy resin>
The novel epoxy resin of the present invention (hereinafter, the novel epoxy resin may be referred to as an epoxy resin (A)) has a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000007
 ここで、式(1)中のnは、1以上の整数であり、好ましくはエポキシ樹脂(A)のエポキシ当量が300~3000を満足する範囲の整数である。
Figure JPOXMLDOC01-appb-C000007
Here, n in the formula (1) is an integer of 1 or more, preferably an integer in the range where the epoxy equivalent of the epoxy resin (A) satisfies 300 to 3000.
 該エポキシ樹脂(A)は、2,3,5,6-テトラフルオロ-p-フェニレンジメタノール(以下、該化合物をTFDMという場合がある。)と既存のグリシジル型のエポキシ樹脂(以下、該既存のエポキシ樹脂をエポキシ樹脂(A’)という場合がある。)とを反応させて得られるものであって、上記式(1)に記載のように、テトラフルオロベンジル骨格を有するグリシジル型のエポキシ樹脂である。
 エポキシ樹脂(A’)は、ポリヒドロキシ化合物および/またはポリカルボン酸化合物と、エピクロロヒドリンなどのグリシジル基を有する化合物との反応により得られるエポキシ樹脂であって、式(1)中のRは、それぞれ独立に、エポキシ樹脂(A’)の製造に用いられたポリヒドロキシ化合物の残基またはポリカルボン酸化合物の残基を示す。
 なお、ポリヒドロキシ化合物の残基とは、ポリヒドロキシ化合物の有するOH基のうち、2つのOH基を除いた2価の基であり、ポリカルボン酸化合物の残基とは、ポリカルボン酸化合物の有するOH基のうち、2つのOH基を除いた2価の基である。
The epoxy resin (A) is composed of 2,3,5,6-tetrafluoro-p-phenylenedimethanol (hereinafter sometimes referred to as TFDM) and an existing glycidyl type epoxy resin (hereinafter referred to as the existing epoxy resin). And a glycidyl type epoxy resin having a tetrafluorobenzyl skeleton as described in the above formula (1). It is.
The epoxy resin (A ′) is an epoxy resin obtained by reacting a polyhydroxy compound and / or a polycarboxylic acid compound with a compound having a glycidyl group such as epichlorohydrin, and R in the formula (1) Each independently represents a residue of a polyhydroxy compound or a residue of a polycarboxylic acid compound used in the production of the epoxy resin (A ′).
The polyhydroxy compound residue is a divalent group obtained by removing two OH groups from the OH group of the polyhydroxy compound, and the polycarboxylic acid compound residue is a polycarboxylic acid compound residue. Among the OH groups possessed, it is a divalent group excluding two OH groups.
 ポリヒドロキシ化合物としては、ビスフェノールA、ビスフェノールF、4,4’-ビフェノール、2,3,5,6-テトラメチル-4,4’-ビフェノール、1,4-ナフトール、フェノールノボラック、クレゾールノボラック等のフェノール化合物や、1,6-ヘキサンジオール、1,9-ノナンジオール、ポリエチレングリコール、ポリプロピレングリコール、トリメチロールプロパン、ペンタエリスリトール等のポリオール化合物が挙げられる。ポリカルボン酸化合物としては、アジピン酸、フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸等、ダイマー酸等が挙げられる。
 グリシジル基を有する化合物としては、例えばエピハロヒドリン、多価エポキシ樹脂等を挙げることができ、前記エピハロヒドリンとしては、具体的には、エピクロロヒドリン、エピブロモヒドリン等を例示できる。
 エポキシ樹脂(A’)としては、上記ポリヒドロキシ化合物およびポリカルボン酸化合物のうちの1種以上を用いて製造されたものであれば、制限なく使用できる。
Examples of polyhydroxy compounds include bisphenol A, bisphenol F, 4,4′-biphenol, 2,3,5,6-tetramethyl-4,4′-biphenol, 1,4-naphthol, phenol novolak, cresol novolak, and the like. Examples include phenol compounds and polyol compounds such as 1,6-hexanediol, 1,9-nonanediol, polyethylene glycol, polypropylene glycol, trimethylolpropane, and pentaerythritol. Examples of the polycarboxylic acid compound include adipic acid, phthalic acid, tetrahydrophthalic anhydride, hexahydrophthalic acid, methylhexahydrophthalic acid, and dimer acid.
Examples of the compound having a glycidyl group include epihalohydrin and polyvalent epoxy resin. Specific examples of the epihalohydrin include epichlorohydrin and epibromohydrin.
As an epoxy resin (A '), if it was manufactured using 1 or more types of the said polyhydroxy compound and polycarboxylic acid compound, it can be used without a restriction | limiting.
 例えばエポキシ樹脂(A’)が、エピクロロヒドリン、およびポリヒドロキシ化合物としてビスフェノールAを用いて製造されたビスフェノールA型エポキシ樹脂である場合、式(1)中のRはビスフェノールAの残基となり、該エポキシ樹脂(A’)とTFDMから得られる新規なエポキシ樹脂(A)は式(2)の構造となる。 For example, when the epoxy resin (A ′) is a bisphenol A type epoxy resin produced using epichlorohydrin and bisphenol A as a polyhydroxy compound, R in the formula (1) is a residue of bisphenol A. The novel epoxy resin (A) obtained from the epoxy resin (A ′) and TFDM has the structure of the formula (2).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 例えばエポキシ樹脂(A’)が、エピクロロヒドリン、およびポリヒドロキシ化合物としてビスフェノールFを用いて製造されたビスフェノールF型エポキシ樹脂である場合、式(1)中のRはビスフェノールFの残基となり、該エポキシ樹脂(A’)とTFDMから得られる新規なエポキシ樹脂(A)は式(3)の構造となる。 For example, when the epoxy resin (A ′) is bisphenol F type epoxy resin produced using epichlorohydrin and bisphenol F as a polyhydroxy compound, R in the formula (1) is a residue of bisphenol F. The novel epoxy resin (A) obtained from the epoxy resin (A ′) and TFDM has the structure of the formula (3).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 エポキシ樹脂(A)のエポキシ当量は300~3000となるような値であることが好ましく、400~2000がより好ましく、500~1500が特に好ましい。エポキシ樹脂(A)のエポキシ当量がこの範囲であると、硬化物の微生物の付着防止効果が大きいが、この範囲外であると微生物付着防止効果が弱まる。また、エポキシ樹脂(A)のエポキシ当量は、エポキシ樹脂(A)の製造に用いられるエポキシ樹脂(A’)のエポキシ当量かつ、エポキシ樹脂(A’)とTFDMとの仕込み比に応じて決まる値である。
 エポキシ樹脂(A)の分子量は、GPC(ゲルパーミエーションクロマトグラフィ)により測定されたポリスチレン換算の値として、数平均分子量は500~5000が好ましく、800~4000がより好ましく、1000~3000が特に好ましい。重量平均分子量は1000~25000が好ましく、2000~22000がより好ましく、4000~20000が特に好ましい。
The epoxy equivalent of the epoxy resin (A) is preferably a value such that it is 300 to 3000, more preferably 400 to 2000, and particularly preferably 500 to 1500. When the epoxy equivalent of the epoxy resin (A) is within this range, the effect of preventing adhesion of the cured product to the microorganisms is large, but when it is outside this range, the effect of preventing adhesion of the microorganisms is weakened. The epoxy equivalent of the epoxy resin (A) is a value determined according to the epoxy equivalent of the epoxy resin (A ′) used for the production of the epoxy resin (A) and the charging ratio of the epoxy resin (A ′) and TFDM. It is.
As for the molecular weight of the epoxy resin (A), the number average molecular weight is preferably from 500 to 5,000, more preferably from 800 to 4,000, and particularly preferably from 1,000 to 3,000 as a value in terms of polystyrene measured by GPC (gel permeation chromatography). The weight average molecular weight is preferably 1000 to 25000, more preferably 2000 to 22000, and particularly preferably 4000 to 20000.
 エポキシ樹脂(A)は、TFDMとエポキシ樹脂(A’)との反応により製造できる。該反応は付加反応であり、公知のエポキシ樹脂のアドバンス化(エポキシ樹脂に、ポリヒドロキシ化合物および/またはポリカルボン酸を反応させることにより、分子鎖を延ばす反応。)において採用されている条件と同様の条件にて行うことができる。
 例えば、エポキシ樹脂(A’)のエポキシ基に対してTFDMの水酸基が0.4~1.0当量となる比率でTFDMを添加し、第3級アミン(例えばトリエチルアミンなど。)のような塩基の存在下、必要に応じてケトン類、非プロトン性極性溶媒等の溶媒を使用して、100℃~200℃で反応させる。好ましい温度は110~190℃で、特に好ましい温度は120~180℃である。
 このような反応により、エポキシ樹脂(A)を含有する生成物が得られる。ここでTFDMの水酸基が0.4当量未満であれば、エポキシ樹脂(A)を含有する生成物をそのまま用いてエポキシ樹脂組成物を調製し、これを硬化して得られる硬化物は、充分な微生物付着防止性を発現し難くなる傾向がある。一方、TFDMの水酸基が1.0当量を超えると、TFDMが未反応のまま残存しやすくなる。
The epoxy resin (A) can be produced by a reaction between TFDM and the epoxy resin (A ′). This reaction is an addition reaction, and is the same as the conditions employed in the advancement of a known epoxy resin (a reaction in which a molecular chain is extended by reacting an epoxy resin with a polyhydroxy compound and / or a polycarboxylic acid). Can be performed under the following conditions.
For example, TFDM is added at a ratio of 0.4 to 1.0 equivalent of the TFDM hydroxyl group to the epoxy group of the epoxy resin (A ′), and a base such as a tertiary amine (for example, triethylamine) is added. In the presence, the reaction is carried out at 100 ° C. to 200 ° C. using a solvent such as a ketone or an aprotic polar solvent as necessary. A preferred temperature is 110 to 190 ° C, and a particularly preferred temperature is 120 to 180 ° C.
By such a reaction, a product containing the epoxy resin (A) is obtained. Here, if the hydroxyl group of TFDM is less than 0.4 equivalent, an epoxy resin composition is prepared using the product containing the epoxy resin (A) as it is, and the cured product obtained by curing this is sufficient. There is a tendency that it is difficult to express the ability to prevent microbial adhesion. On the other hand, when the hydroxyl group of TFDM exceeds 1.0 equivalent, TFDM tends to remain unreacted.
 TFDMとエポキシ樹脂(A’)との反応の際には、エポキシ樹脂(A’)として、1種のエポキシ樹脂を用いてもよいし、2種以上のエポキシ樹脂を用いてもよい。2種以上のエポキシ樹脂を用いた場合には、これら複数種のエポキシ樹脂それぞれにTFDMが反応、付加することになる。 In the reaction between TFDM and the epoxy resin (A ′), one type of epoxy resin may be used as the epoxy resin (A ′), or two or more types of epoxy resins may be used. When two or more kinds of epoxy resins are used, TFDM reacts and is added to each of these plural kinds of epoxy resins.
<エポキシ樹脂組成物およびその硬化物>
 本発明のエポキシ樹脂組成物は、上述の新規エポキシ樹脂、すなわちエポキシ樹脂(A)と、硬化剤とを少なくとも含み、必要に応じて硬化促進剤などを含有する。エポキシ樹脂組成物の製造においては、上述の反応で得られたエポキシ樹脂(A)を含有する生成物からエポキシ樹脂(A)を単離して用いてもよいし、エポキシ樹脂(A)を単離せずに未反応のエポキシ樹脂(A’)やTFDMを含んだまま使用してもよい。
 また、エポキシ樹脂組成物には、エポキシ樹脂(A)以外の1種以上のエポキシ樹脂を、例えばエポキシ樹脂全体に対して1~50質量%の範囲で配合してもよい。
<Epoxy resin composition and cured product thereof>
The epoxy resin composition of the present invention contains at least the above-described novel epoxy resin, that is, the epoxy resin (A) and a curing agent, and contains a curing accelerator and the like as necessary. In the production of the epoxy resin composition, the epoxy resin (A) may be isolated from the product containing the epoxy resin (A) obtained by the above reaction, or the epoxy resin (A) may be isolated. Alternatively, unreacted epoxy resin (A ′) or TFDM may be used as it is contained.
Further, in the epoxy resin composition, one or more epoxy resins other than the epoxy resin (A) may be blended, for example, in the range of 1 to 50% by mass with respect to the whole epoxy resin.
 硬化剤としては、アミン系化合物、酸無水物系化合物、フェノール系化合物、チオール系化合物などが挙げられる。具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、ジシアンジアミド、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、カルボキシ基含有ウレタン樹脂、フェノールノボラック、1,2-エタンジチオール、1,4-ベンゼンジチオール、トリメチロールプロパントリス-メルカプトアセテート、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、およびこれらの変性品などが挙げられ、これらを1種以上使用できる。 Examples of the curing agent include amine compounds, acid anhydride compounds, phenol compounds, and thiol compounds. Specific examples include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, dicyandiamide, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydro Phthalic anhydride, methylhexahydrophthalic anhydride, urethane resin containing carboxy group, phenol novolak, 1,2-ethanedithiol, 1,4-benzenedithiol, trimethylolpropane tris-mercaptoacetate, pentaerythritol tetrakis (3-mercaptopro Pionate), pentaerythritol tetrakis (3-mercaptobutyrate), and modified products thereof, and one or more of these can be used.
 エポキシ樹脂組成物中の硬化剤の含有量は、エポキシ樹脂組成物中のエポキシ基に対して0.7~1.2当量が好ましい。この範囲外であると、硬化が不完全となり良好な硬化物性が得られない可能性がある。 The content of the curing agent in the epoxy resin composition is preferably 0.7 to 1.2 equivalents relative to the epoxy group in the epoxy resin composition. If it is outside this range, curing may be incomplete and good cured properties may not be obtained.
 硬化促進剤としては、例えばイミダゾール類、第3級アミン類、フェノール類、ルイス酸塩などが挙げられ、これらのうち1種以上を使用できる。
 エポキシ樹脂組成物中の硬化促進剤の含有量は、エポキシ樹脂組成物中に含まれる全てのエポキシ樹脂の合計100質量部に対して、0.01~5.0質量部が好ましい。0.01質量部未満では、硬化促進剤の添加効果が得られない可能性があり、5.0質量部を超えると、ゲル化を起こしたり、硬化促進剤が未反応で残存することに起因して着色が生じたりするなど、性能低下の懸念がでてくる。
Examples of the curing accelerator include imidazoles, tertiary amines, phenols, Lewis acid salts and the like, and one or more of these can be used.
The content of the curing accelerator in the epoxy resin composition is preferably 0.01 to 5.0 parts by mass with respect to 100 parts by mass in total of all the epoxy resins contained in the epoxy resin composition. If the amount is less than 0.01 parts by mass, the effect of adding a curing accelerator may not be obtained. If the amount exceeds 5.0 parts by mass, gelation occurs or the curing accelerator remains unreacted. As a result, there are concerns about performance degradation such as coloring.
 エポキシ樹脂組成物には、必要に応じて溶剤を配合してもよい。溶剤としては、例えばエチルエーテル、イソプロピルエーテル、ブチルエーテル、ジイソアミルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、アミルフェニルエーテル、エチルベンジルエーテル、ジオキサン、メチルフラン、テトラヒドロフラン等のエーテル類、メチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブ、セロソルブアセテート、エチレングリコールイソプロピルエーテル、ジエチレングリコールジメチルエーテル、メチルエチルカルビトール、プロピレングリコールモノメチルエーテル、メトキシプロピルアセテート、ジメチルホルムアミド、ジメチルスルホキシド等が使用できるが、これらに限定されるものではなく、2種類以上混合して使用しても良い。
 また、エポキシ樹脂組成物には、エポキシ樹脂組成物の硬化物が微生物付着防止性を損なわない限り、例えば、可塑剤、充填材、顔料、劣化防止剤、紫外線吸収剤、忌避剤などの各種添加剤が含まれてもよい。
You may mix | blend a solvent with an epoxy resin composition as needed. Examples of the solvent include ethers such as ethyl ether, isopropyl ether, butyl ether, diisoamyl ether, methyl phenyl ether, ethyl phenyl ether, amyl phenyl ether, ethyl benzyl ether, dioxane, methyl furan, and tetrahydrofuran, methyl cellosolve, methyl cellosolve acetate. , Ethyl cellosolve, cellosolve acetate, ethylene glycol isopropyl ether, diethylene glycol dimethyl ether, methyl ethyl carbitol, propylene glycol monomethyl ether, methoxypropyl acetate, dimethylformamide, dimethyl sulfoxide, etc. can be used, but are not limited to these. A mixture of two or more types may be used.
In addition, various additions such as plasticizers, fillers, pigments, deterioration inhibitors, ultraviolet absorbers, repellents, etc. are added to the epoxy resin composition as long as the cured product of the epoxy resin composition does not impair the ability to adhere to microorganisms. Agents may be included.
 本発明のエポキシ樹脂組成物は、公知のエポキシ樹脂組成物と同様の方法にて製造できる。
 例えば、エポキシ樹脂(A)および硬化剤と、必要に応じて使用される硬化促進剤、他のエポキシ樹脂、各種溶剤、各種添加剤をミキサー、ニーダ、ロール等を用いて均一になるまで充分に混合する方法、ディスパー、サンドミル、ボールミル等を用いて混練・分散する方法などが挙げられる。
 なお、エポキシ樹脂組成物の製造において、エポキシ樹脂(A)を配合する際には、すでに上述したとおり、TFDMとエポキシ樹脂(A’)との反応により生成した生成物をそのまま配合してもよい。
The epoxy resin composition of this invention can be manufactured by the method similar to a well-known epoxy resin composition.
For example, the epoxy resin (A) and the curing agent and the curing accelerator used as necessary, other epoxy resins, various solvents, various additives are sufficiently mixed until they are uniform using a mixer, kneader, roll, etc. Examples thereof include a mixing method, a kneading and dispersing method using a disper, a sand mill, a ball mill and the like.
In addition, in the production of the epoxy resin composition, when the epoxy resin (A) is blended, as already described above, the product generated by the reaction of TFDM and the epoxy resin (A ′) may be blended as it is. .
 このようにして調製されたエポキシ樹脂組成物を例えば塗膜、フィルム状、シート状、管状、板状、繊維状、メッシュ状、ハニカム状、粉末状、ブロック状、任意の立体形状など、硬化物の用途などに応じて成形、塗装することができる。成形、塗装する方法としては、金型成形、押し出し成形、刷け塗り、スプレー塗装など一般的な手法で実施できる。 The epoxy resin composition thus prepared is cured, for example, as a coating, film, sheet, tubular, plate, fiber, mesh, honeycomb, powder, block, or any three-dimensional shape. It can be molded and painted according to the application. As a method of molding and painting, general methods such as mold molding, extrusion molding, brush coating, and spray coating can be used.
 このようなエポキシ樹脂組成物を例えば室温~200℃、好ましくは室温~150℃、より好ましくは室温~120℃で硬化させて得られた硬化物は、微生物が付着しにくい特性を発現するため、微生物の付着を防止する微生物付着防止材料として好適に使用される。
 該微生物付着防止材料は、エポキシ樹脂(A)を含むエポキシ樹脂組成物の硬化物からなり、材料そのものが微生物付着防止性を発揮する。そのため、薬剤の塗布、含浸により微生物付着防止性を発揮させる場合のように、塗布、含浸された薬剤が徐々に環境中に放出されることがない。よって、環境への影響がなく、微生物付着防止性の継続性にも優れる。また、光触媒などの微生物付着防止性を有する物質を一定量以上配合するものでもないため、エポキシ樹脂(A)が本来有する性質を損ねたり、外見、耐久性、加工性などの品質を低下させたりすることもない。また、微生物付着防止性を継続的に発揮させるための特別な管理も必要としない。
For example, a cured product obtained by curing such an epoxy resin composition at room temperature to 200 ° C., preferably room temperature to 150 ° C., more preferably room temperature to 120 ° C., exhibits characteristics that microorganisms are difficult to adhere. It is preferably used as a microorganism adhesion preventing material for preventing the adhesion of microorganisms.
This microorganism adhesion prevention material consists of the hardened | cured material of the epoxy resin composition containing an epoxy resin (A), and material itself exhibits microorganisms adhesion prevention property. For this reason, the applied and impregnated drug is not gradually released into the environment as in the case of exerting antimicrobial adhesion by applying and impregnating the drug. Therefore, there is no influence on the environment and the continuity of the antimicrobial adhesion is excellent. In addition, since it does not contain a certain amount or more of a substance having antimicrobial adhesion properties such as a photocatalyst, the properties inherent to the epoxy resin (A) are impaired, and the quality such as appearance, durability, and workability is deteriorated. I don't have to. In addition, special management for continuously exhibiting the ability to adhere to microorganisms is not required.
 本発明の硬化物は、微生物付着防止材料として、水分が存在したり発生したり導入されたりする結果、微生物の付着が懸念される水接触部材に好適に用いられる。ここで水接触部材とは、少なくともその一部が水分(蒸気、結露水、体液などを含む。)と接触する部材であり、例えば下記(1)~(7)に記載のものの全体または一部、あるいは、その周辺を構成する部材である。
(1)海・河川・湖沼の関連部材:
 海水や河川水などの水に接触する護岸設備、治水設備などの構造物表面材、橋構造体、水産物養殖用施設、水槽、水族館設備、オイルフェンス、ブイ、フロート、魚網、海産物用の網、支柱、筏など。
(2)各種処理設備・工場関連部材:
 工場の各種プラント、水処理施設などに使用される躯体、配管(送液管、排液管、熱交換用管など。)、フィルタ、タンク、槽、ドレイン、汚れ等防止のために敷かれる製造現場用下敷きシート、空調設備、冷蔵設備、冷凍設備など。
(3)内外装関連部材:
 各種建築物(住宅、工場建屋、倉庫、各種施設など。)や輸送用機器(自動車、二輪車、鉄道車両、船舶、飛行機など。)の内装材および外装材など。特に、船底、船材、船底カバー。
(4)住宅・各種施設(企業、病院、学校など。)の設備関連部材:
 浴室(浴槽)、浴室用用品、洗濯場、洗濯用用品、台所、台所用用品、調理器具、食器、空調設備、冷蔵・冷凍設備、トイレ、トイレ用用品、洗面所、洗面所用用品、プール、汚れ等防止のために敷かれる各種シート(調理場下敷きシート、浴室や脱衣場の下敷きシート、洗面所用下敷きシート、トイレ用下敷きシートなど。)、医療用器具など。
(5)包装用資材関連部材:
 食品(農畜産物、水産物、各種加工品など。)、飲料、薬品、肥料、家畜の餌等やこれらの原材料を貯留する容器、包材など。
(6)屋外構造物関連部材:
 照明、看板、標識、オブジェなど。
(7)娯楽・生活用品関連部材:
 つり用具、園芸用具の他、水滴や汗、唾液等が付着しやすいスポーツ用具、楽器、服飾品、だ液や便などがつきやすい育児器具・遊具類、ペット用具など。
The cured product of the present invention is suitably used as a microbial adhesion preventing material for a water contact member in which microbial adhesion is a concern as a result of the presence, generation or introduction of moisture. Here, the water contact member is a member in which at least a part thereof is in contact with moisture (including steam, condensed water, body fluid, etc.), for example, the whole or a part of those described in (1) to (7) below. Or it is the member which comprises the periphery.
(1) Sea / river / lake related materials:
Seawall and river water, etc., revetment facilities, flood control facilities and other structural surface materials, bridge structures, aquaculture facilities, aquariums, aquarium equipment, oil fences, buoys, floats, fish nets, nets for marine products, Prop, spear, etc.
(2) Various processing facilities and factory-related materials:
Manufacture laid to prevent housing, pipes (liquid feed pipes, drainage pipes, heat exchange pipes, etc.), filters, tanks, tanks, drains, dirt, etc. used in various plants and water treatment facilities On-site underlay sheets, air conditioning equipment, refrigeration equipment, refrigeration equipment, etc.
(3) Interior and exterior related members:
Interior materials and exterior materials for various buildings (houses, factory buildings, warehouses, various facilities, etc.) and transportation equipment (automobiles, motorcycles, rail cars, ships, airplanes, etc.). In particular, ship bottoms, ship materials, ship bottom covers.
(4) Equipment-related materials for housing and various facilities (company, hospital, school, etc.):
Bathroom (bathtub), bathroom items, laundry, laundry items, kitchen, kitchenware, cooking utensils, tableware, air-conditioning equipment, refrigeration / freezing equipment, toilet, toilet products, toilet, toilet article, pool, Various sheets (such as kitchen floor sheets, bathroom and dressing room floor sheets, toilet floor sheets, toilet floor sheets, etc.) and medical equipment that are laid to prevent dirt, etc.
(5) Materials related to packaging materials:
Food (agricultural and livestock products, marine products, various processed products, etc.), beverages, medicines, fertilizers, livestock feeds, containers for these raw materials, packaging materials, etc.
(6) Outdoor structure-related members:
Lighting, signs, signs, objects, etc.
(7) Amusement and household goods-related materials:
In addition to fishing equipment, gardening equipment, sports equipment that easily adheres to water drops, sweat, saliva, etc., musical instruments, clothing, childcare equipment, play equipment, pet equipment, etc.
 また、本発明の微生物付着防止材料は、特に、環境への悪影響がない点、特別な管理をしなくても長期間効果が継続する点などから、上記のなかでも、(1)海、河川、湖沼関連部材、(2)各種処理設備・工場関連部材、(3)内外装関連部材などの水接触部材として好適である。 In addition, the microorganism adhesion preventing material according to the present invention has the following advantages: (1) Seas, rivers, etc., in particular because there are no adverse effects on the environment and the effect continues for a long time without special management. It is suitable as a water contact member such as a lake related member, (2) various processing equipment / factory related member, and (3) interior / exterior related member.
 以下、本発明について、実施例を挙げて具体的に説明する。
[製造例1:カルボキシ基含有ウレタン樹脂の製造]
 撹拌装置、温度計、コンデンサを備えた反応容器に、ポリカーボネートジオール化合物としてC-1015N((株)クラレ製ポリカーボネートジオール,原料ジオールモル比 1,9-ノナンジオール:2-メチル-1,8-オクタンジオール=15:85,分子量964)330.2g、カルボキシル基を有するジヒドロキシル化合物として2,2-ジメチロールブタン酸(日本化成(株)製)60.4g、溶媒としてテトラヒドロフラン(関東化学(株)製)571.2gを仕込み、反応液の温度を60℃まで上げて、滴下ロートにより、ポリイソシアネート化合物としてデスモジュール-W(住化バイエルウレタン(株)製)180.4gを30分かけて滴下した。
 滴下終了後、60℃で更に6時間反応を行い、ほぼイソシアネートが消失したことを確認した後、イソブタノール(和光純薬(株)製)5gを滴下し、更に60℃にて2時間反応を行った。
 得られたカルボキシ基含有ウレタン樹脂の数平均分子量は8600、固形分の酸価は39.6mgKOH/g、不揮発分は50質量%であった。
 なお、イソシアネートの消失は、FT-IR(日本分光(株)製 FT/IR-410)を使用し、イソシアネート基由来2270cm-1のピークの有無を分析することにより確認した。
Hereinafter, the present invention will be specifically described with reference to examples.
[Production Example 1: Production of carboxy group-containing urethane resin]
In a reaction vessel equipped with a stirrer, a thermometer, and a condenser, C-1015N (polycarbonate diol manufactured by Kuraray Co., Ltd., raw material diol molar ratio 1,9-nonanediol: 2-methyl-1,8-octanediol as a polycarbonate diol compound) = 15: 85, molecular weight 964) 330.2 g, 2,2-dimethylolbutanoic acid (manufactured by Nippon Kasei Co., Ltd.) 60.4 g as a dihydroxyl compound having a carboxyl group, tetrahydrofuran (manufactured by Kanto Chemical Co., Ltd.) as a solvent ) 571.2 g was charged, the temperature of the reaction solution was raised to 60 ° C., and 180.4 g of Desmodur-W (manufactured by Sumika Bayer Urethane Co., Ltd.) was dropped as a polyisocyanate compound over 30 minutes using a dropping funnel. .
After completion of the addition, the reaction was further carried out at 60 ° C. for 6 hours, and after confirming that the isocyanate had almost disappeared, 5 g of isobutanol (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise, and the reaction was further carried out at 60 ° C. for 2 hours. went.
The number average molecular weight of the obtained carboxy group-containing urethane resin was 8600, the acid value of the solid content was 39.6 mgKOH / g, and the non-volatile content was 50% by mass.
The disappearance of isocyanate was confirmed by using FT-IR (FT / IR-410, manufactured by JASCO Corporation) and analyzing the presence or absence of a peak at 2270 cm −1 from the isocyanate group.
〔実施例1〕
(新規エポキシ樹脂(A-1)の合成)
 窒素ガス導入管、アリーン冷却器、温度計、撹拌翼を装備した300mL容のセパラブルフラスコに、ビスフェノールA型エポキシ樹脂であるエポトートYD-128(新日鐵化学(株)製)63.5g(0.17モル)、TFDM(2,3,5,6-テトラフルオロ-p-フェニレンジメタノール、昭和電工(株)製)16.0g(0.076モル)を加え、120℃に加熱した。次いで触媒としてトリエチルアミン(和光純薬工業(株)製)0.455gを投入し、窒素気流下で撹拌しながら120℃で5時間反応させたところ、TFDMの消失がガスクロマトグラフィーによって確認され、ポリスチレン換算で、数平均分子量が1000、重量平均分子量が4600の生成物が得られたことがGPCによって確認された。すなわち下記式(2)で示され、エポキシ当量が500の新規エポキシ樹脂(A-1)を含有する生成物を得た。
[Example 1]
(Synthesis of new epoxy resin (A-1))
In a 300 mL separable flask equipped with a nitrogen gas inlet tube, an Allen cooler, a thermometer, and a stirring blade, 63.5 g of Epototo YD-128 (manufactured by Nippon Steel Chemical Co., Ltd.), which is a bisphenol A type epoxy resin, 0.17 mol) and 16.0 g (0.076 mol) of TFDM (2,3,5,6-tetrafluoro-p-phenylenedimethanol, Showa Denko KK) were added and heated to 120 ° C. Next, 0.455 g of triethylamine (manufactured by Wako Pure Chemical Industries, Ltd.) was added as a catalyst and reacted at 120 ° C. for 5 hours with stirring under a nitrogen stream. The disappearance of TFDM was confirmed by gas chromatography, and polystyrene In terms of conversion, it was confirmed by GPC that a product having a number average molecular weight of 1000 and a weight average molecular weight of 4600 was obtained. That is, a product containing a novel epoxy resin (A-1) represented by the following formula (2) and having an epoxy equivalent of 500 was obtained.
・ガスクロマトグラフィーは、GC-4000(ジーエルサイエンス株式会社製)を用いた。分析条件は以下の通りである。
 カラム:Inert Cap 1(ジーエルサイエンス株式会社製)
 カラム温度条件:初期設定温度100℃、20℃/分で昇温後、300℃で5分保持
 検出器温度:330℃
 注入口温度:330℃
・GPCはShodex GPC-101(昭和電工株式会社製)を用いた。分析条件は以下のとおりである。
 カラム:Shodex GPC KF-805、KF-803、KF-802(昭和電工株式会社製)
 移動相:テトラヒドロフラン、流速:1ml/分
 検出器:Shodex RI-71(昭和電工株式会社製)
-GC-4000 (manufactured by GL Sciences Inc.) was used for gas chromatography. The analysis conditions are as follows.
Column: Inert Cap 1 (manufactured by GL Sciences Inc.)
Column temperature conditions: Initial temperature 100 ° C., heated at 20 ° C./min, then held at 300 ° C. for 5 minutes Detector temperature: 330 ° C.
Inlet temperature: 330 ° C
-GPC used Shodex GPC-101 (made by Showa Denko KK). The analysis conditions are as follows.
Column: Shodex GPC KF-805, KF-803, KF-802 (manufactured by Showa Denko KK)
Mobile phase: Tetrahydrofuran, Flow rate: 1 ml / min Detector: Shodex RI-71 (manufactured by Showa Denko KK)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 なお、エポキシ当量はJIS K7236(2001)にしたがって測定した。 The epoxy equivalent was measured in accordance with JIS K7236 (2001).
(エポキシ樹脂組成物およびその硬化物の製造)
 上記で得られた新規エポキシ樹脂(A-1)を含有する生成物を2.0g、硬化剤として上記製造例で得られたカルボキシ基含有ウレタン樹脂を不揮発分50質量%のものとして6.9g、溶剤としてメトキシプロピルアセテート(ダイセル化学工業(株)製)10.0g、硬化促進剤としてトリフェニルホスフィン(北興化学工業(株)製)0.10gを混合し、エポキシ樹脂組成物(1)を得た。
 続いて、基材であるシムボックスBXS10-005(SUS板、(株)岩田製作所製)(以下、「SUS」という。)にエポキシ樹脂組成物(1)を塗布し、室温(20~25℃)×1時間乾燥させた後、オーブン中で120℃×1時間加熱することにより、エポキシ樹脂組成物(1)の硬化物からなる微生物付着防止膜(厚み:20μm)付きSUSを得た。該微生物付着防止膜付きSUSを試験片として、下記の評価を行った。
(Production of epoxy resin composition and cured product thereof)
2.0 g of the product containing the novel epoxy resin (A-1) obtained above and 6.9 g of the carboxy group-containing urethane resin obtained in the above production example as a curing agent having a nonvolatile content of 50% by mass. And 10.0 g of methoxypropyl acetate (manufactured by Daicel Chemical Industries, Ltd.) as a solvent and 0.10 g of triphenylphosphine (manufactured by Hokuko Chemical Co., Ltd.) as a curing accelerator are mixed together to prepare an epoxy resin composition (1). Obtained.
Subsequently, the epoxy resin composition (1) was applied to Shimbox BXS10-005 (SUS board, manufactured by Iwata Manufacturing Co., Ltd.) (hereinafter referred to as “SUS”) as a base material, and room temperature (20 to 25 ° C.) was applied. ) × 1 hour, and then heated in an oven at 120 ° C. for 1 hour to obtain a SUS with a microorganism adhesion preventing film (thickness: 20 μm) made of a cured product of the epoxy resin composition (1). The following evaluation was performed using the SUS with a microorganism adhesion preventing film as a test piece.
<微生物付着防止性能評価(大腸菌暴露試験)>
(1)大腸菌懸濁液調製
 大腸菌JM109株をLBplate(ペプトン1質量%、酵母エキス0.5質量%、塩化ナトリウム0.5質量%、寒天2質量%を121℃/20分滅菌後平板化)上において、37℃で一晩培養した。生育したコロニーを5mLのLBbroth(ペプトン1質量%、酵母エキス0.5質量%、塩化ナトリウム0.5質量%を121℃/20分滅菌)に一白金耳植菌し、37℃で一晩振とう培養した。濁度は約3(対数増殖期後期)であった。この懸濁液を生理食塩水(0.2μmフィルターろ過滅菌)で10倍に希釈し直ちに使用した。
(2)暴露・計測
 実施例1で得られた試験片を約20mm角に切断し、60mmφのシャーレに入れた。そこに前述の大腸菌懸濁液10mLを添加した。80rpmで3時間振とう後、試験片を取り出し、10mlの純水を入れた60mmφシャーレに移して洗浄を行った。次いで試験片を40mmφのシャーレに入れ、そこへ5質量%アラマーブルー(登録商標、和光純薬工業(株)製)の水溶液を3mL添加した。
 ここで、ブランクとして、大腸菌懸濁液未暴露の試験片を別の40mmφのシャーレに入れ、同様に5質量%アラマーブルーの水溶液を3ml添加したものも用意した。
 2時間静置後、液の一部を96ウェルのマイクロプレートに200μL移し、560nm励起で590nmの蛍光強度を測定した。
 測定される蛍光強度と微生物量には相関性があり、蛍光強度は微生物量の指標となることを事前に確認しておいた。そして、サンプル(試験片)とブランクとの蛍光強度の差Dをとり、後述の比較例1における蛍光強度の差Dを100とした場合の本実施例1における蛍光強度の差Dの相対値を蛍光強度比として図1のグラフに示した。
<Microbe adhesion prevention performance evaluation (E. coli exposure test)>
(1) Preparation of Escherichia coli suspension LBplate of E. coli JM109 strain (Peptone 1% by mass, yeast extract 0.5% by mass, sodium chloride 0.5% by mass, agar 2% by mass after sterilization at 121 ° C / 20 minutes for flattening) Above, it was cultured overnight at 37 ° C. The grown colonies were inoculated into 5 mL of LBbroth (1% by weight of peptone, 0.5% by weight of yeast extract, 0.5% by weight of sodium chloride at 121 ° C / 20 minutes sterilized) and plated at 37 ° C overnight. Cultured at last. Turbidity was about 3 (late logarithmic phase). This suspension was diluted 10-fold with physiological saline (0.2 μm filter sterilized by filtration) and immediately used.
(2) Exposure / Measurement The test piece obtained in Example 1 was cut into about 20 mm square and placed in a petri dish of 60 mmφ. Thereto was added 10 mL of the aforementioned E. coli suspension. After shaking for 3 hours at 80 rpm, the test piece was taken out and transferred to a 60 mmφ petri dish containing 10 ml of pure water for cleaning. Next, the test piece was placed in a petri dish of 40 mmφ, and 3 mL of an aqueous solution of 5% by mass Alamar Blue (registered trademark, manufactured by Wako Pure Chemical Industries, Ltd.) was added thereto.
Here, as a blank, a test piece unexposed to the E. coli suspension was placed in another petri dish of 40 mmφ, and similarly, 3 ml of 5% by mass aqueous solution of alamar blue was also prepared.
After standing for 2 hours, 200 μL of a part of the solution was transferred to a 96-well microplate, and the fluorescence intensity at 590 nm was measured by excitation at 560 nm.
It has been confirmed in advance that there is a correlation between the measured fluorescence intensity and the amount of microorganisms, and that the fluorescence intensity is an indicator of the amount of microorganisms. And the relative value of the fluorescence intensity difference D in the present Example 1 when taking the fluorescence intensity difference D between the sample (test piece) and the blank and taking the fluorescence intensity difference D in Comparative Example 1 described later as 100 is obtained. The fluorescence intensity ratio is shown in the graph of FIG.
〔実施例2〕
(エポキシ樹脂組成物およびその硬化物の製造)
 実施例1で製造した新規エポキシ樹脂(A-1)を含有する生成物を4.9g、硬化剤としてペンタエリスリトールテトラキス(3-メルカプトブチレート)(昭和電工(株)製、商標:カレンズMT PE1)1.4g、溶剤としてメトキシプロピルアセテート(ダイセル化学工業(株)製)15.6g、硬化促進剤として2,4,6-トリス(ジメチルアミノメチル)フェノール(和光純薬工業(株)製)6mgを混合し、エポキシ樹脂組成物(2)を得た。
 続いて、SUSにエポキシ樹脂組成物(2)を塗布し、室温×1時間乾燥させた後、オーブン中で60℃×1時間加熱することにより、エポキシ樹脂組成物(2)の硬化物からなる微生物付着防止膜(厚み:10μm)付きSUSを得た。該微生物付着防止膜付きSUSを試験片として、実施例1と同様の評価を行った。結果を図1に示す。
[Example 2]
(Production of epoxy resin composition and cured product thereof)
4.9 g of the product containing the novel epoxy resin (A-1) produced in Example 1 and pentaerythritol tetrakis (3-mercaptobutyrate) (manufactured by Showa Denko KK, trade name: Karenz MT PE1) as a curing agent 1.4 g, 15.6 g of methoxypropyl acetate (manufactured by Daicel Chemical Industries) as a solvent, 2,4,6-tris (dimethylaminomethyl) phenol (manufactured by Wako Pure Chemical Industries, Ltd.) as a curing accelerator 6 mg was mixed and the epoxy resin composition (2) was obtained.
Subsequently, the epoxy resin composition (2) is applied to SUS, dried at room temperature for 1 hour, and then heated in an oven at 60 ° C. for 1 hour to form a cured product of the epoxy resin composition (2). SUS with an antimicrobial adhesion film (thickness: 10 μm) was obtained. The same evaluation as in Example 1 was performed using the SUS with a microorganism adhesion preventing film as a test piece. The results are shown in FIG.
〔実施例3〕
(新規エポキシ樹脂(A-2)の合成)
 窒素ガス導入管、アリーン冷却器、温度計、撹拌翼を装備した300mL容のセパラブルフラスコに、ビスフェノールA型エポキシ樹脂であるエポトートYD-128(新日鐵化学(株)製)56.4g(0.15モル)、TFDM(2,3,5,6-テトラフルオロ-p-フェニレンジメタノール、昭和電工(株)製)25.2g(0.12モル)を加え、120℃に加熱した。次いで触媒としてトリエチルアミン(和光純薬工業(株)製)0.16gを投入し、窒素気流下で撹拌しながら120℃で3時間反応させた。その後、溶媒としてメトキシプロピルアセテート(ダイセル化学工業(株)製)30.0gを加え、150℃で3時間撹拌したところ、TFDMの消失がガスクロマトグラフィーによって確認され、ポリスチレン換算で、数平均分子量が2000、重量平均分子量が13300の生成物が得られたことがGPCによって確認された。すなわち式(2)で示され、エポキシ当量が固形分あたり1400である新規エポキシ樹脂(A-2)を含有する生成物を得た。
Example 3
(Synthesis of new epoxy resin (A-2))
Into a 300 mL separable flask equipped with a nitrogen gas inlet tube, an Allen cooler, a thermometer, and a stirring blade, 56.4 g of Epototo YD-128 (manufactured by Nippon Steel Chemical Co., Ltd.), a bisphenol A type epoxy resin, 0.15 mol) and 25.2 g (0.12 mol) of TFDM (2,3,5,6-tetrafluoro-p-phenylenedimethanol, Showa Denko KK) were added and heated to 120 ° C. Next, 0.16 g of triethylamine (manufactured by Wako Pure Chemical Industries, Ltd.) was added as a catalyst, and the mixture was reacted at 120 ° C. for 3 hours with stirring under a nitrogen stream. Thereafter, 30.0 g of methoxypropyl acetate (manufactured by Daicel Chemical Industries, Ltd.) was added as a solvent, and the mixture was stirred at 150 ° C. for 3 hours. The disappearance of TFDM was confirmed by gas chromatography, and the number average molecular weight was calculated in terms of polystyrene. It was confirmed by GPC that a product with a weight average molecular weight of 2000 and 2000 was obtained. That is, a product containing a novel epoxy resin (A-2) represented by the formula (2) and having an epoxy equivalent of 1400 per solid content was obtained.
(エポキシ樹脂組成物およびその硬化物の製造)
 上記で得られた新規エポキシ樹脂(A-2)を含有する生成物を3.5g、硬化剤として上記製造例で得られたカルボキシ基含有ウレタン樹脂を不揮発分50質量%のものとして3.4g、溶剤としてメトキシプロピルアセテート(ダイセル化学工業(株)製)7.4g、硬化促進剤としてトリフェニルホスフィン(北興化学工業(株)製)40mgを混合し、エポキシ樹脂組成物(3)を得た。
 続いて、SUSにエポキシ樹脂組成物(3)を塗布し、室温×1時間乾燥させた後、オーブン中で120℃×1時間加熱することにより、エポキシ樹脂組成物(3)の硬化物からなる微生物付着防止膜(厚み:20μm)付きSUSを得た。該微生物付着防止膜付きSUSを試験片として、実施例1と同様の評価を行った。結果を図1に示す。
(Production of epoxy resin composition and cured product thereof)
3.5 g of the product containing the novel epoxy resin (A-2) obtained above and 3.4 g of the carboxy group-containing urethane resin obtained in the above production example as a curing agent with a nonvolatile content of 50% by mass. And 7.4 g of methoxypropyl acetate (manufactured by Daicel Chemical Industries, Ltd.) as a solvent and 40 mg of triphenylphosphine (manufactured by Hokuko Chemical Industries, Ltd.) as a curing accelerator were mixed to obtain an epoxy resin composition (3). .
Subsequently, the epoxy resin composition (3) is applied to SUS, dried at room temperature for 1 hour, and then heated in an oven at 120 ° C. for 1 hour to form a cured product of the epoxy resin composition (3). SUS with a microbe adhesion prevention film (thickness: 20 μm) was obtained. The same evaluation as in Example 1 was performed using the SUS with a microorganism adhesion preventing film as a test piece. The results are shown in FIG.
〔実施例4〕
(エポキシ樹脂組成物およびその硬化物の製造)
 実施例3で製造した新規エポキシ樹脂(A-2)を含有する生成物を7.0g、硬化剤としてペンタエリスリトールテトラキス(3-メルカプトブチレート)(商標:カレンズMT PE1、昭和電工(株)製)0.27g、溶剤としてメトキシプロピルアセテート(ダイセル化学工業(株)製)6.7g、硬化促進剤として2,4,6-トリス(ジメチルアミノメチル)フェノール(和光純薬工業(株)製)7mgを混合し、エポキシ樹脂組成物(4)を得た。
 続いて、SUSにエポキシ樹脂組成物(4)を塗布し、室温×1時間乾燥させた後、オーブン中で60℃×1時間加熱することにより、エポキシ樹脂組成物(4)の硬化物からなる微生物付着防止膜(厚み:10μm)付きSUSを得た。該微生物付着防止膜付きSUSを試験片として、実施例1と同様の評価を行った。結果を図1に示す。
Example 4
(Production of epoxy resin composition and cured product thereof)
7.0 g of the product containing the novel epoxy resin (A-2) produced in Example 3 and pentaerythritol tetrakis (3-mercaptobutyrate) (trademark: Karenz MT PE1, manufactured by Showa Denko KK) as a curing agent 0.27 g, 6.7 g of methoxypropyl acetate (manufactured by Daicel Chemical Industries) as a solvent, 2,4,6-tris (dimethylaminomethyl) phenol (manufactured by Wako Pure Chemical Industries, Ltd.) as a curing accelerator 7 mg was mixed and the epoxy resin composition (4) was obtained.
Subsequently, the epoxy resin composition (4) is applied to SUS, dried at room temperature for 1 hour, and then heated in an oven at 60 ° C. for 1 hour to form a cured product of the epoxy resin composition (4). SUS with an antimicrobial adhesion film (thickness: 10 μm) was obtained. The same evaluation as in Example 1 was performed using the SUS with a microorganism adhesion preventing film as a test piece. The results are shown in FIG.
〔実施例5〕
(新規エポキシ樹脂(A-3)の合成)
 窒素ガス導入管、アリーン冷却器、温度計、撹拌翼を装備した300mL容のセパラブルフラスコに、ビスフェノールF型エポキシ樹脂であるエポトートYDF-170(新日鐵化学(株)製)66.8g(0.2モル)、TFDM(2,3,5,6-テトラフルオロ-p-フェニレンジメタノール、昭和電工(株)製)18.9g(0.09モル)を加え、120℃に加熱した。次いで触媒としてトリエチルアミン(和光純薬工業(株)製)0.17gを投入し、窒素気流下で撹拌しながら120℃で3時間反応させたところ、TFDMの消失がガスクロマトグラフィーによって確認され、ポリスチレン換算で、数平均分子量が1100、重量平均分子量が5600の生成物が得られたことがGPCによって確認された。すなわち式(3)で示され、エポキシ当量が500である新規エポキシ樹脂(A-3)を含有する生成物を得た。
Example 5
(Synthesis of new epoxy resin (A-3))
Into a 300 mL separable flask equipped with a nitrogen gas inlet tube, an Allen cooler, a thermometer, and a stirring blade, 66.8 g of Epototo YDF-170 (manufactured by Nippon Steel Chemical Co., Ltd.), which is a bisphenol F type epoxy resin, 0.2 mol) and 18.9 g (0.09 mol) of TFDM (2,3,5,6-tetrafluoro-p-phenylenedimethanol, Showa Denko KK) were added and heated to 120 ° C. Next, 0.17 g of triethylamine (manufactured by Wako Pure Chemical Industries, Ltd.) was added as a catalyst and reacted for 3 hours at 120 ° C. with stirring under a nitrogen stream. As a result, the disappearance of TFDM was confirmed by gas chromatography. In terms of conversion, it was confirmed by GPC that a product having a number average molecular weight of 1100 and a weight average molecular weight of 5600 was obtained. That is, a product containing a novel epoxy resin (A-3) represented by the formula (3) and having an epoxy equivalent of 500 was obtained.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(エポキシ樹脂組成物およびその硬化物の製造)
 上記で得られた新規エポキシ樹脂(A-3)を含有する生成物を10.0g、硬化剤としてペンタエリスリトールテトラキス(3-メルカプトブチレート)(商標:カレンズMT PE1、昭和電工(株)製)3.27g、溶剤としてメトキシプロピルアセテート(ダイセル化学工業(株)製)19.9g、硬化促進剤として2,4,6-トリス(ジメチルアミノメチル)フェノール(和光純薬工業(株)製)13mgを混合し、エポキシ樹脂組成物(5)を得た。
 続いて、SUSにエポキシ樹脂組成物(5)を塗布し、室温×1時間乾燥させた後、オーブン中で60℃×1時間加熱することにより、エポキシ樹脂組成物(5)の硬化物からなる微生物付着防止膜(厚み:10μm)付きSUSを得た。該微生物付着防止膜付きSUSを試験片として、実施例1と同様の評価を行った。結果を図1に示す。
(Production of epoxy resin composition and cured product thereof)
10.0 g of the product containing the novel epoxy resin (A-3) obtained above, and pentaerythritol tetrakis (3-mercaptobutyrate) (trademark: Karenz MT PE1, manufactured by Showa Denko KK) as a curing agent 3.27 g, 19.9 g of methoxypropyl acetate (manufactured by Daicel Chemical Industries) as a solvent, 13 mg of 2,4,6-tris (dimethylaminomethyl) phenol (manufactured by Wako Pure Chemical Industries, Ltd.) as a curing accelerator Were mixed to obtain an epoxy resin composition (5).
Subsequently, the epoxy resin composition (5) is applied to SUS, dried at room temperature for 1 hour, and then heated in an oven at 60 ° C. for 1 hour to form a cured product of the epoxy resin composition (5). SUS with an antimicrobial adhesion film (thickness: 10 μm) was obtained. The same evaluation as in Example 1 was performed using the SUS with a microorganism adhesion preventing film as a test piece. The results are shown in FIG.
〔実施例6〕
(新規エポキシ樹脂(A-4)の合成)
 窒素ガス導入管、アリーン冷却器、温度計、撹拌翼を装備した300mL容のセパラブルフラスコに、ビスフェノールF型エポキシ樹脂であるエポトートYDF-170(新日鐵化学(株)製)66.8g(0.2モル)、TFDM(2,3,5,6-テトラフルオロ-p-フェニレンジメタノール、昭和電工(株)製)29.4g(0.14モル)を加え、120℃に加熱した。次いで触媒としてトリエチルアミン(和光純薬工業(株)製)0.19gを投入し、窒素気流下で撹拌しながら120℃で3時間反応させた。その後、溶媒としてメトキシプロピルアセテート(ダイセル化学工業(株)製)17.0gを加え、120℃でさらに2時間撹拌したところ、TFDMの消失がガスクロマトグラフィーによって確認され、ポリスチレン換算で、数平均分子量が2200、重量平均分子量が6400の生成物が得られたことがGPCによって確認された。すなわち式(3)で示され、エポキシ当量が固形分あたり840である新規エポキシ樹脂(A-4)を含有する生成物を得た。
Example 6
(Synthesis of new epoxy resin (A-4))
Into a 300 mL separable flask equipped with a nitrogen gas inlet tube, an Allen cooler, a thermometer, and a stirring blade, 66.8 g of Epototo YDF-170 (manufactured by Nippon Steel Chemical Co., Ltd.), which is a bisphenol F type epoxy resin, 0.2 mol) and 29.4 g (0.14 mol) of TFDM (2,3,5,6-tetrafluoro-p-phenylenedimethanol, Showa Denko KK) were added and heated to 120 ° C. Next, 0.19 g of triethylamine (manufactured by Wako Pure Chemical Industries, Ltd.) was added as a catalyst, and the mixture was reacted at 120 ° C. for 3 hours while stirring under a nitrogen stream. Thereafter, 17.0 g of methoxypropyl acetate (manufactured by Daicel Chemical Industries, Ltd.) was added as a solvent, and the mixture was further stirred at 120 ° C. for 2 hours. The disappearance of TFDM was confirmed by gas chromatography, and the number average molecular weight was converted to polystyrene. Of 2200 and a weight average molecular weight of 6400 was obtained by GPC. That is, a product containing a novel epoxy resin (A-4) represented by the formula (3) and having an epoxy equivalent of 840 per solid content was obtained.
(エポキシ樹脂組成物およびその硬化物の製造)
 上記で得られた新規エポキシ樹脂(A-4)を含有する生成物を10.0g、硬化剤としてペンタエリスリトールテトラキス(3-メルカプトブチレート)(商標:カレンズMT PE1、昭和電工(株)製)1.66g、溶剤としてメトキシプロピルアセテート(ダイセル化学工業(株)製)13.7g、硬化促進剤として2,4,6-トリス(ジメチルアミノメチル)フェノール(和光純薬工業(株)製)10mgを混合し、エポキシ樹脂組成物(6)を得た。
 続いて、SUSにエポキシ樹脂組成物(6)を塗布し、室温×1時間乾燥させた後、オーブン中で60℃×1時間加熱することにより、エポキシ樹脂組成物(6)の硬化物からなる微生物付着防止膜(厚み:10μm)付きSUSを得た。該微生物付着防止膜付きSUSを試験片として、実施例1と同様の評価を行った。結果を図1に示す。
(Production of epoxy resin composition and cured product thereof)
10.0 g of the product containing the novel epoxy resin (A-4) obtained above, pentaerythritol tetrakis (3-mercaptobutyrate) as a curing agent (trademark: Karenz MT PE1, manufactured by Showa Denko KK) 1.66 g, 13.7 g of methoxypropyl acetate (manufactured by Daicel Chemical Industries) as a solvent, 10 mg of 2,4,6-tris (dimethylaminomethyl) phenol (manufactured by Wako Pure Chemical Industries, Ltd.) as a curing accelerator Were mixed to obtain an epoxy resin composition (6).
Subsequently, the epoxy resin composition (6) is applied to SUS, dried at room temperature for 1 hour, and then heated in an oven at 60 ° C. for 1 hour to form a cured product of the epoxy resin composition (6). SUS with an antimicrobial adhesion film (thickness: 10 μm) was obtained. The same evaluation as in Example 1 was performed using the SUS with a microorganism adhesion preventing film as a test piece. The results are shown in FIG.
〔比較例1〕
 試験片として、微生物付着防止膜付きSUSの代わりに、未処理のSUSを使用した以外は、実施例1と同様の評価を行った。結果を図1に示す。
[Comparative Example 1]
Evaluation similar to Example 1 was performed except that untreated SUS was used as a test piece instead of SUS with a microorganism adhesion preventing film. The results are shown in FIG.
〔比較例2〕
 新規エポキシ樹脂(A-1)を含有する生成物の代わりに、エポトートYD-128(新日鐵化学(株)製)を同量使用した以外は実施例1と同様にして試験片を製造し、該試験片について実施例1と同様の評価を行った。結果を図1に示す。
[Comparative Example 2]
A test piece was produced in the same manner as in Example 1 except that the same amount of Epototo YD-128 (manufactured by Nippon Steel Chemical Co., Ltd.) was used instead of the product containing the new epoxy resin (A-1). The test piece was evaluated in the same manner as in Example 1. The results are shown in FIG.
〔比較例3〕
 試験片として、微生物付着防止膜付きSUSの代わりに、約20mm角のPVDFフィルム(ポリフッ化ビニリデンフィルム、クレハ(株)製)を使用した以外は、実施例1と同様の評価を行った。結果を図1に示す。
[Comparative Example 3]
Evaluation was performed in the same manner as in Example 1 except that a PVDF film (polyvinylidene fluoride film, manufactured by Kureha Co., Ltd.) of about 20 mm square was used as a test piece instead of SUS with a microorganism adhesion preventing film. The results are shown in FIG.
 図1のグラフから明らかなように、実施例の試験片は、比較例の試験片に比べて微生物量(蛍光強度)が極めて少なく、微生物付着防止材料として好適に使用できることが示された。 As is apparent from the graph of FIG. 1, the test piece of the example has an extremely small amount of microorganisms (fluorescence intensity) compared to the test piece of the comparative example, indicating that it can be suitably used as a material for preventing microbial adhesion.

Claims (11)

  1.  2,3,5,6-テトラフルオロ-p-フェニレンジメタノールとグリシジル型のエポキシ樹脂とを反応させて得られる新規エポキシ樹脂。 A novel epoxy resin obtained by reacting 2,3,5,6-tetrafluoro-p-phenylenedimethanol with a glycidyl type epoxy resin.
  2.  式(1)で表される、請求項1に記載の新規エポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中のRは、それぞれ独立に、前記グリシジル型のエポキシ樹脂の製造に用いられたポリヒドロキシ化合物の残基またはポリカルボン酸化合物の残基を示す。nは、1以上の整数である。)
    The novel epoxy resin of Claim 1 represented by Formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), each R independently represents a residue of a polyhydroxy compound or a residue of a polycarboxylic acid compound used in the production of the glycidyl type epoxy resin. N is an integer of 1 or more) .)
  3.  前記グリシジル型のエポキシ樹脂が、エピハロヒドリンとポリヒドロキシ化合物との反応で得られるエポキシ樹脂である、請求項1に記載の新規エポキシ樹脂。 The novel epoxy resin according to claim 1, wherein the glycidyl type epoxy resin is an epoxy resin obtained by a reaction between an epihalohydrin and a polyhydroxy compound.
  4.  前記エピハロヒドリンがエピクロロヒドリンである、請求項3に記載の新規エポキシ樹脂。 The novel epoxy resin according to claim 3, wherein the epihalohydrin is epichlorohydrin.
  5.  ポリヒドロキシ化合物がビスフェノールAである、請求項3に記載の新規エポキシ樹脂。 The novel epoxy resin according to claim 3, wherein the polyhydroxy compound is bisphenol A.
  6.  式(2)で表される、請求項5に記載の新規エポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中のnは、1以上の整数である。)
    The novel epoxy resin of Claim 5 represented by Formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (N in the formula (2) is an integer of 1 or more.)
  7.  ポリヒドロキシ化合物がビスフェノールFである、請求項3に記載の新規エポキシ樹脂。 The novel epoxy resin according to claim 3, wherein the polyhydroxy compound is bisphenol F.
  8.  式(3)で表される、請求項7に記載の新規エポキシ樹脂。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中のnは、1以上の整数である。)
    The novel epoxy resin of Claim 7 represented by Formula (3).
    Figure JPOXMLDOC01-appb-C000003
    (N in Formula (3) is an integer of 1 or more.)
  9.  請求項1~8のいずれか一項に記載の新規エポキシ樹脂と硬化剤とを少なくとも含有するエポキシ樹脂組成物。 An epoxy resin composition containing at least the novel epoxy resin according to any one of claims 1 to 8 and a curing agent.
  10.  請求項9のエポキシ樹脂組成物が硬化した硬化物。 A cured product obtained by curing the epoxy resin composition according to claim 9.
  11.  請求項10の硬化物からなる微生物付着防止材料。 A microorganism adhesion preventing material comprising the cured product according to claim 10.
PCT/JP2013/061477 2012-04-20 2013-04-18 Novel epoxy resin, epoxy resin composition comprising said epoxy resin, cured product of said resin composition, and material for preventing adhesion of microorganisms WO2013157599A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014511243A JP5961687B2 (en) 2012-04-20 2013-04-18 Novel epoxy resin, epoxy resin composition containing the epoxy resin, cured product of the resin composition, and antimicrobial adhesion material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012096568 2012-04-20
JP2012-096568 2012-04-20
JP2012248449 2012-11-12
JP2012-248449 2012-11-12

Publications (1)

Publication Number Publication Date
WO2013157599A1 true WO2013157599A1 (en) 2013-10-24

Family

ID=49383552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061477 WO2013157599A1 (en) 2012-04-20 2013-04-18 Novel epoxy resin, epoxy resin composition comprising said epoxy resin, cured product of said resin composition, and material for preventing adhesion of microorganisms

Country Status (3)

Country Link
JP (1) JP5961687B2 (en)
TW (1) TW201404794A (en)
WO (1) WO2013157599A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110345338A (en) * 2019-07-05 2019-10-18 合肥卓汇新材料科技有限公司 A method of inhibiting the microbiologic(al) corrosion of metal material pipeline

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158754A (en) * 1999-11-30 2001-06-12 Showa Denko Kk Method for producing tetrafluorobenzenedimethanol
JP2001335740A (en) * 2000-05-30 2001-12-04 Clean Life System:Kk Coating material containing animal bone meal
JP2006052366A (en) * 2004-08-16 2006-02-23 Sakamoto Yakuhin Kogyo Co Ltd Thermosetting resin composition for optical component
JP2007177144A (en) * 2005-12-28 2007-07-12 Shin Etsu Chem Co Ltd Room temperature-curable fluorine-containing composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158754A (en) * 1999-11-30 2001-06-12 Showa Denko Kk Method for producing tetrafluorobenzenedimethanol
JP2001335740A (en) * 2000-05-30 2001-12-04 Clean Life System:Kk Coating material containing animal bone meal
JP2006052366A (en) * 2004-08-16 2006-02-23 Sakamoto Yakuhin Kogyo Co Ltd Thermosetting resin composition for optical component
JP2007177144A (en) * 2005-12-28 2007-07-12 Shin Etsu Chem Co Ltd Room temperature-curable fluorine-containing composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110345338A (en) * 2019-07-05 2019-10-18 合肥卓汇新材料科技有限公司 A method of inhibiting the microbiologic(al) corrosion of metal material pipeline

Also Published As

Publication number Publication date
JPWO2013157599A1 (en) 2015-12-21
JP5961687B2 (en) 2016-08-02
TW201404794A (en) 2014-02-01

Similar Documents

Publication Publication Date Title
CA1316623C (en) Biocidal surface coating and casting compositions based on quarternary ammonium salts of nalkyl x,x bis (4,4&#39; hydroxyphenyl) and quarternary salts of polyglycols as backbones of resins
CN102037031B (en) Triblock polymers and polymer coatings
Pan et al. Degradable vinyl polymers for combating marine biofouling
JP6691698B2 (en) Method for forming a film on a substrate using a film-forming composition containing a tannic acid derivative, and a film containing a tannic acid derivative formed on a substrate
Park et al. Antimicrobial behavior of semifluorinated-quaternized triblock copolymers against airborne and marine microorganisms
Jellali et al. Antifouling activity of novel polyisoprene-based coatings made from photocurable natural rubber derived oligomers
Elshaarawy et al. Mining marine shell wastes for polyelectrolyte chitosan anti-biofoulants: Fabrication of high-performance economic and ecofriendly anti-biofouling coatings
CN104927618B (en) A kind of low-surface-energy is from polishing type polyurethane marine antifouling coating and preparation method
CN106062092A (en) Antifouling composition
Poornima Vijayan et al. Integration of antifouling properties into epoxy coatings: a review
Sfameni et al. Sustainable Secondary-Raw Materials, Natural Substances and Eco-Friendly Nanomaterial-Based Approaches for Improved Surface Performances: An Overview of What They Are and How They Work
JP5961687B2 (en) Novel epoxy resin, epoxy resin composition containing the epoxy resin, cured product of the resin composition, and antimicrobial adhesion material
CN115433497A (en) Antifouling and antibacterial water-based wood paint and preparation method thereof
Dixit et al. Synthesis and characterization of citric acid and itaconic acid-based two-pack polyurethane antimicrobial coatings
Rudlong et al. Advances in nonfouling and antimicrobial coatings: Perspectives for the food industry
CN102453412A (en) Antifouling latex paint for inner wall and production process thereof
Faÿ et al. Biobased anti-adhesive marine coatings from polyhydroxyalkanoates and polysaccharides
KR101820432B1 (en) Eco-friendly antifouling composition, manufacturing method thereof, and eco-friendly antifouling film using the same
CN104023528A (en) Biocidal coating
US8785679B2 (en) Hydrophilic biocidal coatings
JPH11255869A (en) Hydrolyzable polyester and antifouling paint composition containing same
KR101126680B1 (en) Coating Material For Concrete Structure Comprising Hybrid Polymer And Construction Method Using The Same
Ali et al. Eco-friendly biodegradable polyurethane based coating for antibacterial and antifouling performance
Jiang et al. Metal-free, low-surface energy, and self-healing polyurethane coating with an excellent antifouling property
WO2013077247A1 (en) Material for preventing adhesion of microorganism and method for producing same, and method for preventing adhesion of microorganism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014511243

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13778650

Country of ref document: EP

Kind code of ref document: A1