WO2013157585A1 - Method for stable immobilization of cesium - Google Patents

Method for stable immobilization of cesium Download PDF

Info

Publication number
WO2013157585A1
WO2013157585A1 PCT/JP2013/061419 JP2013061419W WO2013157585A1 WO 2013157585 A1 WO2013157585 A1 WO 2013157585A1 JP 2013061419 W JP2013061419 W JP 2013061419W WO 2013157585 A1 WO2013157585 A1 WO 2013157585A1
Authority
WO
WIPO (PCT)
Prior art keywords
cesium
temperature
molecular sieve
ferrocyan compound
insoluble
Prior art date
Application number
PCT/JP2013/061419
Other languages
French (fr)
Japanese (ja)
Inventor
均 三村
実 松倉
Original Assignee
ユニオン昭和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニオン昭和株式会社 filed Critical ユニオン昭和株式会社
Priority to JP2014511238A priority Critical patent/JP6131245B2/en
Publication of WO2013157585A1 publication Critical patent/WO2013157585A1/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/10Processing by flocculation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing

Definitions

  • the present invention relates to a method for stably fixing cesium, and more particularly, to a method for stably fixing cesium adsorbed on an insoluble ferrocyan compound as a stable ceramic solidified body.
  • the waste liquid generated in nuclear facilities contains various radioactive substances that need to be removed prior to discharge.
  • these waste liquids those which are regarded as high-level waste liquids contain a relatively high concentration of nitric acid or sodium nitrate as a main component and contain radioactive cesium and other nuclides.
  • an insoluble ferrocyan compound as an adsorbent (for example, Patent Documents 1 and 2).
  • Patent Document 3 a zeolite impregnated with a ferrocyan compound is used (for example, Patent Document 3).
  • the insoluble ferrocyan compounds used in Patent Documents 1 to 3 are susceptible to thermal decomposition, and there is a concern about the generation of cyanide gas in a reducing atmosphere.
  • the insoluble ferrocyan compound that adsorbs cesium reaches a high temperature, it may easily be thermally decomposed to volatilize cesium. Therefore, when the insoluble ferrocyan compound is baked and solidified, cesium is volatilized, and iron or cobalt oxides derived from the insoluble ferrocyan compound remain as a residue.
  • an object of the present invention is to provide a stable immobilization method for stably fixing an insoluble ferrocyan compound having adsorbed cesium while suppressing volatilization of cesium to form a highly safe disposal form.
  • the present inventor has found that by using molecular sieve as a solidified carrier, volatilization of cesium during firing can be suppressed, and an insoluble ferrocyan compound adsorbed with cesium can be made into a stable ceramic-like solidified body.
  • the present invention has been completed based on such knowledge.
  • the present invention [1] A step (A) of mixing an insoluble ferrocyan compound adsorbed with cesium and a molecular sieve; A step (B) of firing the mixture obtained in the step (A) to obtain a ceramic-like solidified body; A method for stably fixing cesium having [2] The method for stably fixing cesium according to [1], wherein in step (A), the mass ratio of the insoluble ferrocyan compound to the molecular sieve is 1: 1 to 1: 3. [3] The method for stably immobilizing cesium according to [1] or [2], wherein the molecular sieve is zeolite.
  • step (B) The method for stably fixing cesium according to [3], wherein the zeolite is mordenite or clinoptilolite.
  • step (B) The method for stably fixing cesium according to any one of [1] to [4], wherein in step (B), the maximum firing temperature is 1000 to 1100 ° C.
  • step (B) the firing is performed at a temperature of 600 to 700 ° C. for 3 to 180 minutes, and then at a high temperature of 1000 ° C. or higher for 3 to 180 minutes.
  • the method further includes a step (C) of press-molding the mixture obtained in the step (A), and the press-molded body obtained in the step (C) is fired in the step (B) [1].
  • an insoluble ferrocyan compound having adsorbed cesium can be stably fixed and treated while suppressing volatilization of cesium, and a highly safe disposal form can be obtained.
  • the stable immobilization method of the present invention includes a step (A) of mixing an insoluble ferrocyan compound adsorbed with cesium and a molecular sieve, and a step of firing the mixture obtained in the step (A) to obtain a ceramic solidified body. (B).
  • the insoluble ferrocyan compound having adsorbed cesium can be stably fixed while suppressing volatilization of cesium. The reason why such a result was obtained is not clear, but is considered to be due to the following reason.
  • the insoluble ferrocyan compound after cesium adsorption is generally thermally decomposed at a high temperature of 600 to 700 ° C. to release cesium oxide such as Cs 2 O.
  • cesium oxide such as Cs 2 O.
  • the molecular sieve is added, the released cesium is adsorbed to the molecular sieve.
  • Si-O-Al sica-alumina
  • Si-O-Ti sica-titania
  • the insoluble ferrocyan compound adsorbed with cesium and the molecular sieve are mixed.
  • the mass ratio of the insoluble ferrocyan compound having adsorbed cesium and the molecular sieve is preferably 10: 1 to 1:10 from the viewpoint of stable fixation without volatilizing cesium. 1: 5 is more preferable, and 1: 1 to 1: 3 is still more preferable from the viewpoint of remarkably increasing the immobilization rate of adsorbed cesium.
  • the insoluble ferrocyan compound adsorbed with cesium used in the present invention is a so-called used insoluble ferrocyan compound in which cesium is adsorbed from the waste liquid by the insoluble ferrocyan compound.
  • “insoluble” means that the solubility in water at 20 ° C. is 5 g / 100 mL or less.
  • the insoluble ferrocyan compound before adsorption is not particularly limited as long as it can be used for adsorption and removal of cesium.
  • dipotassium hexacyanocobalt iron K 2 [CoFe (CN) 6 ]
  • disodium hexacyano examples thereof include cobalt iron (Na 2 [CoFe (CN) 6 ]) and dipotassium hexacyanonickel iron (K 2 [NiFe (CN) 6 ]).
  • dipotassium hexacyanocobalt iron and dipotassium hexacyanonickel iron are particularly preferable.
  • the insoluble ferrocyan compound adsorbing cesium can be obtained, for example, by mixing a cesium salt solution and the insoluble ferrocyan compound and adsorbing cesium.
  • cesium salt for example, cesium nitrate (CsNO 3), cesium acetate (CH 3 COOCs), cesium sulfate (Cs 2 SO 4), like cesium chloride, cesium halides such as cesium iodide It is done.
  • the insoluble ferrocyan compound having adsorbed cesium is not particularly limited, and examples thereof include those obtained by exchanging the cation of the insoluble ferrocyan compound described above with cesium ion.
  • the cesium content in the insoluble ferrocyan compound adsorbed with cesium is not particularly limited, but is, for example, 0.001 to 30% by mass.
  • the cesium content can be determined by analysis using EDS (energy dispersive micro part X-ray analysis method) described later.
  • the molecular sieve used in the present invention is not particularly limited, and examples thereof include zeolite and silicate titanate. Among these, zeolite is preferable.
  • the zeolite used in the present invention is not particularly limited, and examples thereof include faujasite, A-type zeolite, L-type zeolite, zeolite ⁇ , mordenite, ferrierite, and clinoptilolite.
  • the faujasite include X zeolite, Y zeolite, and ultra-stabilized Y zeolite (Ultra Stable Y; USY).
  • the clinoptilolite may be natural clinoptilolite or synthetic clinoptilolite. Among these, mordenite and clinoptilolite are preferable from the viewpoint of obtaining a particularly preferable adsorption retention.
  • the silica / alumina ratio of the zeolite used in the present invention is not particularly limited, but is usually determined by the type of zeolite. For example, 3 to 200 (preferably 5 to 200) is usually used for mordenite and clinoptilolite, and 5 to 300 is generally used for zeolite ⁇ .
  • As the silicotitanate crystalline silicotitanate (crystalline silicotitanate (CST)) is preferable.
  • step (B) the mixture obtained in the step (A) is fired to obtain a ceramic solidified body.
  • the firing is performed at a temperature of 600 to 700 ° C. for 3 to 180 minutes (hereinafter, simply referred to as “first stage firing”), and then at a high temperature of 1000 ° C. or higher for 3 to It is preferable to perform the treatment for 180 minutes (hereinafter, simply referred to as “second stage baking”).
  • the cesium adsorbed on the insoluble ferrocyan compound is transferred to the molecular sieve, and in the second stage firing at a relatively high temperature, the molecular sieve adsorbing the cesium is sintered to ceramics.
  • the treatment time in the first stage firing is preferably 5 to 170 minutes, more preferably 5 to 160 minutes, from the viewpoint of suitable migration of cesium and work efficiency.
  • the treatment time in the second stage firing is preferably 5 to 100 minutes, more preferably 20 to 40 minutes, from the viewpoint of the efficiency of the work for obtaining the ceramic solidified body.
  • the maximum temperature in the firing of the present invention is preferably 1000 to 1200 ° C., more preferably 1000 to 1100 ° C. from the viewpoint of easily obtaining a ceramic-like solidified body.
  • the ceramic solidified body may be amorphous or crystalline, and includes a decomposition product of molecular sieves by firing.
  • cesium may exist in any form, but forms a bond such as Cs—Al—O—Si—O or Cs—Ti—O—Si—O.
  • the cesium element is incorporated by a covalent bond.
  • the ceramic solidified body may contain residual iron, cobalt, nickel and the like derived from the insoluble ferrocyan compound.
  • voids may be generated in the ceramic solidified body due to the release of ammonia and NOx.
  • the stable immobilization method of the present invention further includes a step (C) of press-molding the mixture obtained in the step (A) between the step (A) and the step (B). It is preferable to fire the press-molded body obtained by the step (C).
  • the mixture is compacted, and the volatilization of cesium can be more significantly suppressed.
  • press-molding it is possible to prevent powder from adhering to a container such as a crucible during firing (second stage heat treatment).
  • it does not specifically limit about the method of press molding, It can carry out using a well-known method.
  • the ceramic solid after firing can be easily handled by molding the mixture into a pellet.
  • the ceramic solidified body obtained by the stable fixing method of the present invention can stably fix cesium. Furthermore, according to the present invention, cesium in an insoluble ferrocyan compound that adsorbs a large amount of cesium adsorbed can be fixed and discarded in the treatment of waste liquid containing radioactive substances.
  • Example 1 Stable fixation of cesium
  • the cesium adsorption insoluble ferrocyan compound obtained in Production Example 1 and zeolite (clinoptilolite, manufactured by Giquelite Industrial Co., Ltd.) are mixed at a mass ratio of 1: 1, and the temperature raising method A shown below
  • zeolite clinoptilolite, manufactured by Giquelite Industrial Co., Ltd.
  • EDS energy dispersive micro-part X-ray analysis
  • Examples 2 to 20, Comparative Examples 1 to 11 The mixture was heat-treated in the same manner as in Example 1 except that the type of molecular sieve, the mass ratio of the cesium-adsorbing insoluble ferrocyan compound and the molecular sieve, and the temperature raising method were changed to the conditions shown in Table 1. The obtained results are shown in Table 1. In Examples 1 to 20, ceramic-like solidified bodies were obtained. In Comparative Examples 1 to 11, the samples after the heat treatment were not melted and solidified.
  • Temperature raising method A After holding at 200 ° C. for 30 minutes, raising temperature (17 ° C./min), holding at 400 ° C. for 30 minutes, raising temperature (20 ° C./min), holding at 500 ° C. for 30 minutes, raising temperature ( 14 ° C./min) and held at 1000 ° C. for 1 hour, heated (17 ° C./min) and held at 1200 ° C. for 1 hour (600 to 700 ° C .: 7.14 minutes, 1000 ° C. or higher: 1 hour or longer) ).
  • the maximum temperature in Table 1 is 1000 ° C.
  • the temperature raising method was held at 1000 ° C.
  • Temperature raising method B After holding at 200 ° C. for 30 minutes, raising the temperature (17 ° C./min) and holding at 400 ° C. for 30 minutes, raising the temperature (20 ° C./min) and holding at 500 ° C. for 30 minutes, then The temperature was raised to 1100 ° C. (14 ° C./min). (* In Examples where the maximum temperature in Table 1 is 1000 ° C., the final temperature rise was set to 1000 ° C. and held for about 5 minutes.) Temperature raising method C: Raised from 45 ° C. to 200 ° C. (25 ° C./min), then raised to 300 ° C. (22 ° C./min), then raised to 500 ° C.
  • the ceramic solidified body obtained by the stable fixing method of the present invention can stably fix cesium. Furthermore, according to the present invention, in the treatment of the waste liquid containing the radioactive substance, cesium in the insoluble ferrocyan compound adsorbing a large amount of cesium can be fixed and dissolved, and discarded.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Provided is a method for stable immobilization of cesium, said method being capable of converting an insoluble ferrocyanide compound bearing cesium adsorbed thereon into a highly safe waste through stable immobilization accompanied with little volatilization of the cesium. A method for stable immobilization of cesium, including a step (A) for mixing an insoluble ferrocyanide compound bearing cesium adsorbed thereon with a molecular sieve and a step (B) for converting the mixture obtained in the step (A) into a ceramic-like solidified body through firing.

Description

セシウムの安定固定化方法Method for stably fixing cesium
 本発明は、セシウムの安定固定化方法に関し、より詳しくは、不溶性フェロシアン化合物に吸着されたセシウムを安定なセラミックス状固化体として安定固定化する方法に関する。 The present invention relates to a method for stably fixing cesium, and more particularly, to a method for stably fixing cesium adsorbed on an insoluble ferrocyan compound as a stable ceramic solidified body.
 原子力関連施設において発生する廃液中には、種々の放射性物質が含まれており、排出に先立ってこれを除去する必要がある。これらの廃液の中でも、高レベル廃液とされるものでは、比較的高濃度の硝酸又は硝酸ナトリウムを主成分とし放射性セシウムその他の核種を含有している。このような廃液の中からセシウムを選択的に取り除く方法としては、不溶性フェロシアン化合物を吸着剤として使用することが知られている(例えば、特許文献1、2)。その他、放射性排水等からセシウムを分離濃縮するために、フェロシアン化合物を添着させたゼオライトを用いることが報告されている(例えば、特許文献3)。 The waste liquid generated in nuclear facilities contains various radioactive substances that need to be removed prior to discharge. Among these waste liquids, those which are regarded as high-level waste liquids contain a relatively high concentration of nitric acid or sodium nitrate as a main component and contain radioactive cesium and other nuclides. As a method for selectively removing cesium from such waste liquid, it is known to use an insoluble ferrocyan compound as an adsorbent (for example, Patent Documents 1 and 2). In addition, in order to separate and concentrate cesium from radioactive wastewater or the like, it has been reported that a zeolite impregnated with a ferrocyan compound is used (for example, Patent Document 3).
特開平4-118596号公報Japanese Patent Laid-Open No. 4-118596 特開平5-254828号公報JP-A-5-254828 特公昭62-18216号公報Japanese Patent Publication No.62-18216
 特許文献1~3において用いられる不溶性フェロシアン化合物は、熱分解しやすく、還元性雰囲気ではシアンガスの発生が懸念される。セシウムを吸着した不溶性フェロシアン化合物は高温となった場合に、容易に熱分解してセシウムが揮発する可能性がある。そのため、当該不溶性フェロシアン化合物を焼成固化すると、セシウムは揮発し、残渣として不溶性フェロシアン化合物に由来する鉄やコバルトの酸化物が残ることとなる。 The insoluble ferrocyan compounds used in Patent Documents 1 to 3 are susceptible to thermal decomposition, and there is a concern about the generation of cyanide gas in a reducing atmosphere. When the insoluble ferrocyan compound that adsorbs cesium reaches a high temperature, it may easily be thermally decomposed to volatilize cesium. Therefore, when the insoluble ferrocyan compound is baked and solidified, cesium is volatilized, and iron or cobalt oxides derived from the insoluble ferrocyan compound remain as a residue.
 原子力関連施設において、このようなセシウム吸着した使用済みの不溶性フェロシアン化合物が大量に発生しているため、これらの処理が問題となっている。そこで、本発明は、セシウムを吸着した不溶性フェロシアン化合物を、セシウムの揮発を抑制しつつ安定固定し、安全性の高い処分形態とするための安定固定化法を提供することを目的とする。 In a nuclear facility, a large amount of such used cesium-adsorbed insoluble ferrocyan compounds are generated, and these treatments are problematic. Therefore, an object of the present invention is to provide a stable immobilization method for stably fixing an insoluble ferrocyan compound having adsorbed cesium while suppressing volatilization of cesium to form a highly safe disposal form.
 本発明者は、モレキュラーシーブを固化担体として利用することにより、焼成時のセシウムの揮発を抑制し、セシウムを吸着した不溶性フェロシアン化合物を安定なセラミックス状固化体にすることができることを見出した。本発明は係る知見に基づいて完成されたものである。 The present inventor has found that by using molecular sieve as a solidified carrier, volatilization of cesium during firing can be suppressed, and an insoluble ferrocyan compound adsorbed with cesium can be made into a stable ceramic-like solidified body. The present invention has been completed based on such knowledge.
 すなわち本発明は、
[1]セシウムを吸着した不溶性フェロシアン化合物及びモレキュラーシーブを混合する工程(A)と、
 前記工程(A)により得られた混合物を焼成してセラミックス状固化体とする工程(B)と、
を有するセシウムの安定固定化方法、
[2]工程(A)において、前記不溶性フェロシアン化合物と前記モレキュラーシーブとの質量比が、1:1~1:3である[1]のセシウムの安定固定化方法、
[3]前記モレキュラーシーブが、ゼオライトである[1]又は[2]のセシウムの安定固定化方法。
[4]前記ゼオライトが、モルデナイト又はクリノプチロライトである[3]のセシウムの安定固定化方法、
[5]工程(B)において、焼成の最高温度が、1000~1100℃である[1]~[4]のいずれかのセシウムの安定固定化方法、
[6]工程(B)において、前記焼成が、600~700℃の条件で3~180分間処理された後、1000℃以上の高温で3~180分間処理される[1]~[5]のいずれかのセシウムの安定固定化方法、
[7]前記工程(A)において得られた混合物をプレス成型する工程(C)を更に有し、前記工程(B)において前記工程(C)により得られたプレス成型体を焼成する[1]~[6]のいずれかのセシウムの安定固定化方法、
である。
That is, the present invention
[1] A step (A) of mixing an insoluble ferrocyan compound adsorbed with cesium and a molecular sieve;
A step (B) of firing the mixture obtained in the step (A) to obtain a ceramic-like solidified body;
A method for stably fixing cesium having
[2] The method for stably fixing cesium according to [1], wherein in step (A), the mass ratio of the insoluble ferrocyan compound to the molecular sieve is 1: 1 to 1: 3.
[3] The method for stably immobilizing cesium according to [1] or [2], wherein the molecular sieve is zeolite.
[4] The method for stably fixing cesium according to [3], wherein the zeolite is mordenite or clinoptilolite.
[5] The method for stably fixing cesium according to any one of [1] to [4], wherein in step (B), the maximum firing temperature is 1000 to 1100 ° C.
[6] In the step (B), the firing is performed at a temperature of 600 to 700 ° C. for 3 to 180 minutes, and then at a high temperature of 1000 ° C. or higher for 3 to 180 minutes. Any cesium stable immobilization method,
[7] The method further includes a step (C) of press-molding the mixture obtained in the step (A), and the press-molded body obtained in the step (C) is fired in the step (B) [1]. A method for stably fixing cesium according to any one of [6],
It is.
 本発明によれば、セシウムを吸着した不溶性フェロシアン化合物をセシウムの揮発を抑制しつつ安定固定して処理し、安全性の高い処分形態とすることができる。 According to the present invention, an insoluble ferrocyan compound having adsorbed cesium can be stably fixed and treated while suppressing volatilization of cesium, and a highly safe disposal form can be obtained.
 本発明の安定固定化方法は、セシウムを吸着した不溶性フェロシアン化合物及びモレキュラーシーブを混合する工程(A)と、前記工程(A)により得られた混合物を焼成してセラミックス状固化体とする工程(B)と、を有する。このような方法によって、セシウムを吸着した不溶性フェロシアン化合物をセシウムの揮発を抑制しつつ安定固定することができる。
 このような結果が得られた理由は定かではないが以下の理由によるものと考えられる。
The stable immobilization method of the present invention includes a step (A) of mixing an insoluble ferrocyan compound adsorbed with cesium and a molecular sieve, and a step of firing the mixture obtained in the step (A) to obtain a ceramic solidified body. (B). By such a method, the insoluble ferrocyan compound having adsorbed cesium can be stably fixed while suppressing volatilization of cesium.
The reason why such a result was obtained is not clear, but is considered to be due to the following reason.
 セシウム吸着後の不溶性フェロシアン化合物は、一般的に600~700℃の高温条件で熱分解してCs2O等の酸化セシウムを放出する。この際に、モレキュラーシーブ添加されていることによって、これらの放出したセシウムが該モレキュラーシーブに吸着される。当該セシウムを吸着したモレキュラーシーブを更に高温で焼成することによって、モレキュラーシーブの分解生成物であるSi-O-Al(シリカ-アルミナ)又はSi-O-Ti(シリカ-チタニア)等と反応してCs-Al-O-Si-O化合物又はCs-Ti-O-Si-O等として固定化されると考えられる。 The insoluble ferrocyan compound after cesium adsorption is generally thermally decomposed at a high temperature of 600 to 700 ° C. to release cesium oxide such as Cs 2 O. At this time, since the molecular sieve is added, the released cesium is adsorbed to the molecular sieve. By calcining the molecular sieve adsorbing the cesium at a higher temperature, it reacts with Si-O-Al (silica-alumina) or Si-O-Ti (silica-titania), which is a decomposition product of the molecular sieve. It is considered to be immobilized as a Cs—Al—O—Si—O compound or Cs—Ti—O—Si—O.
<工程(A)>
 工程(A)では、セシウムを吸着した不溶性フェロシアン化合物及びモレキュラーシーブを混合する。
 工程(A)において、セシウムを吸着した不溶性フェロシアン化合物とモレキュラーシーブとの質量比は、セシウムを揮発させずに安定固定化する観点から、10:1~1:10が好ましく、5:1~1:5がより好ましく、更に吸着セシウムの固定化率を顕著に高める観点から、1:1~1:3が更に好ましい。
<Process (A)>
In the step (A), the insoluble ferrocyan compound adsorbed with cesium and the molecular sieve are mixed.
In the step (A), the mass ratio of the insoluble ferrocyan compound having adsorbed cesium and the molecular sieve is preferably 10: 1 to 1:10 from the viewpoint of stable fixation without volatilizing cesium. 1: 5 is more preferable, and 1: 1 to 1: 3 is still more preferable from the viewpoint of remarkably increasing the immobilization rate of adsorbed cesium.
(セシウムを吸着した不溶性フェロシアン化合物)
 本発明で用いられる、セシウムを吸着した不溶性フェロシアン化合物は、不溶性フェロシアン化合物によって、廃液中からセシウムを吸着したいわゆる使用済みの不溶性フェロシアン化合物である。
 ここで「不溶性」とは、20℃における水への溶解性が、5g/100mL以下のものを意味する。
 吸着前の不溶性フェロシアン化合物としては、セシウムの吸着・除去に使用可能なものであれば、特に限定されないが、例えば、ジカリウムヘキサシアノコバルト鉄(K2[CoFe(CN)6])、ジナトリウムヘキサシアノコバルト鉄(Na2[CoFe(CN)6])、ジカリウムヘキサシアノニッケル鉄(K2[NiFe(CN)6])等が挙げられる。これらの中でも、特に、ジカリウムヘキサシアノコバルト鉄、ジカリウムヘキサシアノニッケル鉄が好ましい。
(Insoluble ferrocyan compound adsorbed cesium)
The insoluble ferrocyan compound adsorbed with cesium used in the present invention is a so-called used insoluble ferrocyan compound in which cesium is adsorbed from the waste liquid by the insoluble ferrocyan compound.
Here, “insoluble” means that the solubility in water at 20 ° C. is 5 g / 100 mL or less.
The insoluble ferrocyan compound before adsorption is not particularly limited as long as it can be used for adsorption and removal of cesium. For example, dipotassium hexacyanocobalt iron (K 2 [CoFe (CN) 6 ]), disodium hexacyano Examples thereof include cobalt iron (Na 2 [CoFe (CN) 6 ]) and dipotassium hexacyanonickel iron (K 2 [NiFe (CN) 6 ]). Among these, dipotassium hexacyanocobalt iron and dipotassium hexacyanonickel iron are particularly preferable.
 セシウムを吸着した不溶性フェロシアン化合物は、例えば、セシウム塩溶液と、前記不溶性フェロシアン化合物とを混合し、セシウムを吸着することにより得られる。ここでセシウム塩としては特に限定されないが、例えば、硝酸セシウム(CsNO3)、酢酸セシウム(CH3COOCs)、硫酸セシウム(Cs2SO4)、塩化セシウム、ヨウ化セシウム等のセシウムハロゲン化物が挙げられる。 The insoluble ferrocyan compound adsorbing cesium can be obtained, for example, by mixing a cesium salt solution and the insoluble ferrocyan compound and adsorbing cesium. Here is not particularly restricted but includes cesium salt, for example, cesium nitrate (CsNO 3), cesium acetate (CH 3 COOCs), cesium sulfate (Cs 2 SO 4), like cesium chloride, cesium halides such as cesium iodide It is done.
 セシウムを吸着した不溶性フェロシアン化合物は、特に限定されないが、前述の不溶性フェロシアン化合物の陽イオンが、セシウムイオンに交換されたものが挙げられる。セシウムを吸着した不溶性フェロシアン化合物中のセシウム含有量は、特に限定されないが、例えば、0.001~30質量%である。なお、セシウム含有量は、後述するEDS(エネルギー分散型微小部X線分析法)による解析により求めることができる。 The insoluble ferrocyan compound having adsorbed cesium is not particularly limited, and examples thereof include those obtained by exchanging the cation of the insoluble ferrocyan compound described above with cesium ion. The cesium content in the insoluble ferrocyan compound adsorbed with cesium is not particularly limited, but is, for example, 0.001 to 30% by mass. The cesium content can be determined by analysis using EDS (energy dispersive micro part X-ray analysis method) described later.
(モレキュラーシーブ)
 本発明において用いられるモレキュラーシーブは、特に制限されるものではないが、ゼオライト、ケイチタン酸塩が挙げられる。これらの中でも、ゼオライトが好ましい。
(Molecular sieve)
The molecular sieve used in the present invention is not particularly limited, and examples thereof include zeolite and silicate titanate. Among these, zeolite is preferable.
 本発明において用いられるゼオライトは、特に制限されるものではないが、フォージャサイト、A型ゼオライト、L型ゼオライト、ゼオライトβ、モルデナイト、フェリエライト、クリノプチロライトが挙げられる。なお、フォージャサイトとしては、Xゼオライト、Yゼオライト、超安定化Yゼオライト(Ultra Stable Y;USY)が挙げられる。クリノプチロライトは、天然クリノプチロライトであっても、合成クリノプチロライトであってもよい。これらの中でも、特に好適な吸着保持率を得る観点から、好ましくは、モルデナイト、クリノプチロライトである。
 本発明に用いるゼオライトのシリカ/アルミナ比は、特に制限はないが、通常ゼオライトの種類によりその値が決定される。例えば、モルデナイト、クリノプチロライトの場合は3~200(好ましくは5~200)、ゼオライトβの場合は5~300のものが通常用いられる。
 ケイチタン酸塩としては、結晶性ケイチタン酸塩(クリスタラインシリコチタネート(CST))が好ましい。
The zeolite used in the present invention is not particularly limited, and examples thereof include faujasite, A-type zeolite, L-type zeolite, zeolite β, mordenite, ferrierite, and clinoptilolite. Examples of the faujasite include X zeolite, Y zeolite, and ultra-stabilized Y zeolite (Ultra Stable Y; USY). The clinoptilolite may be natural clinoptilolite or synthetic clinoptilolite. Among these, mordenite and clinoptilolite are preferable from the viewpoint of obtaining a particularly preferable adsorption retention.
The silica / alumina ratio of the zeolite used in the present invention is not particularly limited, but is usually determined by the type of zeolite. For example, 3 to 200 (preferably 5 to 200) is usually used for mordenite and clinoptilolite, and 5 to 300 is generally used for zeolite β.
As the silicotitanate, crystalline silicotitanate (crystalline silicotitanate (CST)) is preferable.
<工程(B)>
 工程(B)では、前記工程(A)により得られた混合物を焼成してセラミックス状固化体とする。本発明においては、焼成の条件としては、600~700℃の条件で、3~180分間処理(以下、単に「第一段階の焼成」とする。)した後に、1000℃以上の高温で3~180分間処理(以下、単に「第二段階の焼成」とする。)されることが好適である。すなわち比較的低温の第一段階の焼成において、不溶性フェロシアン化合物に吸着したセシウムをモレキュラーシーブに移行させ、比較的高温の第二段階の焼成において、セシウムを吸着したモレキュラーシーブを焼結してセラミックス状固化体に変換しやすくすることで、セシウムの揮発をより顕著に抑制することができる。
 第一段階の焼成における処理時間は、セシウムの好適な移行と作業の効率の観点から、好ましくは5~170分間であり、より好ましくは5~160分間である。
 第二段階の焼成における処理時間は、セラミックス状固化体とするための作業の効率の観点から、好ましくは5~100分間であり、より好ましくは20~40分間である。
 本発明の焼成における最高温度は、セラミックス状固化体を得やすくする観点から、好ましくは1000~1200℃であり、より好ましくは1000~1100℃である。
<Process (B)>
In the step (B), the mixture obtained in the step (A) is fired to obtain a ceramic solidified body. In the present invention, the firing is performed at a temperature of 600 to 700 ° C. for 3 to 180 minutes (hereinafter, simply referred to as “first stage firing”), and then at a high temperature of 1000 ° C. or higher for 3 to It is preferable to perform the treatment for 180 minutes (hereinafter, simply referred to as “second stage baking”). In other words, in the first stage firing at a relatively low temperature, the cesium adsorbed on the insoluble ferrocyan compound is transferred to the molecular sieve, and in the second stage firing at a relatively high temperature, the molecular sieve adsorbing the cesium is sintered to ceramics. By making it easy to convert into a solidified body, volatilization of cesium can be more significantly suppressed.
The treatment time in the first stage firing is preferably 5 to 170 minutes, more preferably 5 to 160 minutes, from the viewpoint of suitable migration of cesium and work efficiency.
The treatment time in the second stage firing is preferably 5 to 100 minutes, more preferably 20 to 40 minutes, from the viewpoint of the efficiency of the work for obtaining the ceramic solidified body.
The maximum temperature in the firing of the present invention is preferably 1000 to 1200 ° C., more preferably 1000 to 1100 ° C. from the viewpoint of easily obtaining a ceramic-like solidified body.
(セラミックス状固化体)
 工程(B)によりセラミックス状固化体が得られる。セラミックス状固化体としては、アモルファスであっても、結晶性であってもよく、焼成によるモレキュラーシーブの分解物が含まれる。セラミックス状固化体の中で、セシウムは、どのような形態で存在していてもよいが、Cs-Al-O-Si-O又はCs-Ti-O-Si-O等の結合を生成するなどして、共有結合によりセシウム元素が取り込まれていることが好適である。また、セラミックス状固化体は、不溶性フェロシアン化合物に由来する残渣の鉄、コバルト、ニッケル等が含まれていてもよい。その他、セラミックス状固化体には、アンモニア、NOxの放出によって空隙が発生することもある。
(Ceramics solidified body)
A ceramic-like solidified body is obtained by the step (B). The ceramic solidified body may be amorphous or crystalline, and includes a decomposition product of molecular sieves by firing. In the ceramic-like solidified body, cesium may exist in any form, but forms a bond such as Cs—Al—O—Si—O or Cs—Ti—O—Si—O. Thus, it is preferable that the cesium element is incorporated by a covalent bond. Further, the ceramic solidified body may contain residual iron, cobalt, nickel and the like derived from the insoluble ferrocyan compound. In addition, voids may be generated in the ceramic solidified body due to the release of ammonia and NOx.
<工程(C)>
 本発明の安定固定化方法は、工程(A)及び工程(B)の間に、工程(A)において得られた混合物をプレス成型する工程(C)を更に有し、前記工程(B)において前記工程(C)により得られたプレス成型体を焼成することが好適である。工程(C)においてプレス成型することで、混合物が押し固められて、セシウムの揮発をより顕著に抑制することが可能となる。また、プレス成型することで、焼成(第二段の熱処理)において、るつぼ等の容器に粉末が付着することを防止することができる。なお、プレス成型の方法については、特に限定されず、公知の方法を用いて行うことが可能である。特に、混合物をペレット状に成型することで、焼成後のセラミックス固体の取り扱いが容易となる。
<Process (C)>
The stable immobilization method of the present invention further includes a step (C) of press-molding the mixture obtained in the step (A) between the step (A) and the step (B). It is preferable to fire the press-molded body obtained by the step (C). By performing the press molding in the step (C), the mixture is compacted, and the volatilization of cesium can be more significantly suppressed. Moreover, by press-molding, it is possible to prevent powder from adhering to a container such as a crucible during firing (second stage heat treatment). In addition, it does not specifically limit about the method of press molding, It can carry out using a well-known method. In particular, the ceramic solid after firing can be easily handled by molding the mixture into a pellet.
 以上、本発明の安定固定化方法により得られるセラミックス状固化体は、セシウムを安定固定化することができる。更に本発明によれば、放射性物質を含む廃液の処理において、大量に発生するセシウムを吸着した不溶性フェロシアン化合物中のセシウムを固定化して廃棄することができる。 As described above, the ceramic solidified body obtained by the stable fixing method of the present invention can stably fix cesium. Furthermore, according to the present invention, cesium in an insoluble ferrocyan compound that adsorbs a large amount of cesium adsorbed can be fixed and discarded in the treatment of waste liquid containing radioactive substances.
(製造例1:セシウム吸着不溶性フェロシアン化合物)
 0.5mol/LのCsNO3水溶液100mLに対して、不溶性フェロシアン化合物(ジカリウムヘキサシアノコバルト(II)鉄(II):K2[CoFe(CN)6])2gを添加して1日攪拌して室温で放置した。生成した沈殿物を蒸留水で5回洗浄し、90℃で6時間乾燥することにより、セシウム吸着不溶性フェロシアン化合物(セシウムヘキサシアノコバルト(II)鉄(II))が得られた。当該不溶性フェロシアン化合物中のセシウムの濃度は、11.8質量%であった。
(Production Example 1: Cesium adsorption insoluble ferrocyan compound)
To 100 mL of 0.5 mol / L CsNO 3 aqueous solution, 2 g of insoluble ferrocyan compound (dipotassium hexacyanocobalt (II) iron (II): K 2 [CoFe (CN) 6 ]) was added and stirred for 1 day. Left at room temperature. The produced precipitate was washed 5 times with distilled water and dried at 90 ° C. for 6 hours to obtain a cesium-adsorbing insoluble ferrocyan compound (cesium hexacyanocobalt (II) iron (II)). The concentration of cesium in the insoluble ferrocyan compound was 11.8% by mass.
(実施例1:セシウムの安定固定化)
 製造例1で得られたセシウム吸着不溶性フェロシアン化合物と、ゼオライト(クリノプチロライト、ジークライト工業社製)とを質量比1:1の割合で混合して、以下に示す、昇温方法Aにて熱処理し、セラミックス状固化体を得た。セシウム吸着不溶性フェロシアン化合物とゼオライトとの混合時及び熱処理後の試料についてEDS(エネルギー分散型微小部X線分析法)により解析を行って試料中のセシウム濃度(質量%)を測定し、これらの結果から吸着保持率(%)([熱処理後のセシウム濃度]/[混合時のセシウム濃度]×100)を求めて、表1に示した。
(Example 1: Stable fixation of cesium)
The cesium adsorption insoluble ferrocyan compound obtained in Production Example 1 and zeolite (clinoptilolite, manufactured by Giquelite Industrial Co., Ltd.) are mixed at a mass ratio of 1: 1, and the temperature raising method A shown below To obtain a ceramic-like solidified body. Samples after mixing and heat treatment of cesium adsorption insoluble ferrocyan compound and zeolite were analyzed by EDS (energy dispersive micro-part X-ray analysis) to measure cesium concentration (mass%) in the sample. The adsorption retention rate (%) ([cesium concentration after heat treatment] / [cesium concentration at the time of mixing] × 100) was determined from the results and shown in Table 1.
(実施例2~20、比較例1~11)
 モレキュラーシーブの種類、セシウム吸着不溶性フェロシアン化合物とモレキュラーシーブとの質量比、及び、昇温方法を表1に記載の条件に変更した以外は実施例1と同様にして、混合物を熱処理した。得られた結果を表1に示した。実施例1~20ではセラミックス状固化体が得られた。なお、比較例1~11においては、熱処理後の試料は溶融固化しなかった。
(Examples 2 to 20, Comparative Examples 1 to 11)
The mixture was heat-treated in the same manner as in Example 1 except that the type of molecular sieve, the mass ratio of the cesium-adsorbing insoluble ferrocyan compound and the molecular sieve, and the temperature raising method were changed to the conditions shown in Table 1. The obtained results are shown in Table 1. In Examples 1 to 20, ceramic-like solidified bodies were obtained. In Comparative Examples 1 to 11, the samples after the heat treatment were not melted and solidified.
(昇温方法)
昇温方法A: 200℃で30分保持後、昇温(17℃/分)、400℃で30分保持後、昇温(20℃/分)、500℃で30分保持し、昇温(14℃/分)して1000℃で1時間保持し、昇温(17℃/分)して1200℃で1時間保持した(600~700℃:7.14分、1000℃以上:1時間以上)。(*なお、表1中最高温度が1000℃の実施例においては、上記昇温方法において、1000℃で1時間保持後、昇温せずに終了した。)
昇温方法B: 200℃で30分保持後、昇温(17℃/分)して400℃で30分保持後、昇温(20℃/分)して500℃で30分保持し、その後1100℃まで昇温(14℃/分)した。(*なお、表1中最高温度が1000℃の実施例においては、上記最終昇温温度を1000℃として5分間程度保持して終了した。)
昇温方法C: 45℃から200℃まで昇温(25℃/分)し、その後300℃まで昇温(22℃/分)し、その後500℃まで昇温(25℃/分)し、その後1000℃まで昇温(16℃/分)し、その後1200℃まで昇温(6℃/分)した。(*なお、表1中の各比較例においては、示された最高温度に達した時点又は、その温度での保持がある場合には保持した後に終了した。)
(Temperature raising method)
Temperature raising method A: After holding at 200 ° C. for 30 minutes, raising temperature (17 ° C./min), holding at 400 ° C. for 30 minutes, raising temperature (20 ° C./min), holding at 500 ° C. for 30 minutes, raising temperature ( 14 ° C./min) and held at 1000 ° C. for 1 hour, heated (17 ° C./min) and held at 1200 ° C. for 1 hour (600 to 700 ° C .: 7.14 minutes, 1000 ° C. or higher: 1 hour or longer) ). (* In Examples where the maximum temperature in Table 1 is 1000 ° C., in the above temperature raising method, the temperature was held at 1000 ° C. for 1 hour and then finished without raising the temperature.)
Temperature raising method B: After holding at 200 ° C. for 30 minutes, raising the temperature (17 ° C./min) and holding at 400 ° C. for 30 minutes, raising the temperature (20 ° C./min) and holding at 500 ° C. for 30 minutes, then The temperature was raised to 1100 ° C. (14 ° C./min). (* In Examples where the maximum temperature in Table 1 is 1000 ° C., the final temperature rise was set to 1000 ° C. and held for about 5 minutes.)
Temperature raising method C: Raised from 45 ° C. to 200 ° C. (25 ° C./min), then raised to 300 ° C. (22 ° C./min), then raised to 500 ° C. (25 ° C./min), then The temperature was raised to 1000 ° C. (16 ° C./min), and then raised to 1200 ° C. (6 ° C./min). (* In each comparative example in Table 1, when the maximum temperature shown was reached or when there was a hold at that temperature, the test was terminated after the hold.)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の安定固定化方法により得られるセラミックス状固化体は、セシウムを安定固定化することができる。更に本発明によれば、放射性物質を含む廃液の処理において、大量に発生するセシウムを吸着した不溶性フェロシアン化合物中のセシウムを固定化及び減溶化処理して廃棄することができる。 The ceramic solidified body obtained by the stable fixing method of the present invention can stably fix cesium. Furthermore, according to the present invention, in the treatment of the waste liquid containing the radioactive substance, cesium in the insoluble ferrocyan compound adsorbing a large amount of cesium can be fixed and dissolved, and discarded.

Claims (7)

  1.  セシウムを吸着した不溶性フェロシアン化合物及びモレキュラーシーブを混合する工程(A)と、
     前記工程(A)により得られた混合物を焼成してセラミックス状固化体とする工程(B)と、
    を有するセシウムの安定固定化方法。
    Mixing the insoluble ferrocyan compound adsorbed with cesium and the molecular sieve (A);
    A step (B) of firing the mixture obtained in the step (A) to obtain a ceramic-like solidified body;
    A method for stably immobilizing cesium having:
  2.  工程(A)において、前記不溶性フェロシアン化合物と前記モレキュラーシーブとの質量比が、1:1~1:3である請求項1に記載のセシウムの安定固定化方法。 2. The method for stably immobilizing cesium according to claim 1, wherein in step (A), a mass ratio of the insoluble ferrocyan compound and the molecular sieve is 1: 1 to 1: 3.
  3.  前記モレキュラーシーブが、ゼオライトである請求項1又は2に記載のセシウムの安定固定化方法。 The method for stably immobilizing cesium according to claim 1 or 2, wherein the molecular sieve is zeolite.
  4.  前記ゼオライトが、モルデナイト又はクリノプチロライトである請求項3に記載のセシウムの安定固定化方法。 The method for stably fixing cesium according to claim 3, wherein the zeolite is mordenite or clinoptilolite.
  5.  工程(B)において、焼成の最高温度が、1000~1100℃である請求項1~4のいずれか1項に記載のセシウムの安定固定化方法。 The method for stably fixing cesium according to any one of claims 1 to 4, wherein, in the step (B), the maximum firing temperature is 1000 to 1100 ° C.
  6.  工程(B)において、前記焼成が、600~700℃の条件で3~180分間処理された後、1000℃以上の高温で3~180分間処理される請求項1~5のいずれか1項に記載のセシウムの安定固定化方法。 6. The process according to any one of claims 1 to 5, wherein in the step (B), the baking is performed at a temperature of 600 to 700 ° C. for 3 to 180 minutes and then at a high temperature of 1000 ° C. or higher for 3 to 180 minutes. The method for stably immobilizing cesium as described.
  7.  前記工程(A)において得られた混合物をプレス成型する工程(C)を更に有し、前記工程(B)において前記工程(C)により得られたプレス成型体を焼成する請求項1~6のいずれか1項に記載のセシウムの安定固定化方法。 7. The method according to claim 1, further comprising a step (C) of press-molding the mixture obtained in the step (A), and calcining the press-molded body obtained by the step (C) in the step (B). The method for stably fixing cesium according to any one of the above.
PCT/JP2013/061419 2012-04-18 2013-04-17 Method for stable immobilization of cesium WO2013157585A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014511238A JP6131245B2 (en) 2012-04-18 2013-04-17 Method for treating insoluble ferrocyan compound adsorbed with cesium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012094740 2012-04-18
JP2012-094740 2012-04-18

Publications (1)

Publication Number Publication Date
WO2013157585A1 true WO2013157585A1 (en) 2013-10-24

Family

ID=49383540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061419 WO2013157585A1 (en) 2012-04-18 2013-04-17 Method for stable immobilization of cesium

Country Status (2)

Country Link
JP (1) JP6131245B2 (en)
WO (1) WO2013157585A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138000A (en) * 2014-01-24 2015-07-30 国立研究開発法人日本原子力研究開発機構 Method for stabilization of radioactive cesium adsorbing to ferrocyanide
JP2015225012A (en) * 2014-05-29 2015-12-14 株式会社東芝 Method and device of treating radioactive material absorbent
JP2016114396A (en) * 2014-12-12 2016-06-23 株式会社東芝 Disposal method and disposal device for radioactive substance adsorbent
JP2017096707A (en) * 2015-11-20 2017-06-01 株式会社東芝 Processing system of radioactive substance adsorbent and processing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184598A (en) * 1982-04-23 1983-10-28 株式会社日立製作所 Method of solidifying radioactive liquid waste
JPS5958398A (en) * 1982-09-29 1984-04-04 株式会社新潟鉄工所 Disposal of dense salt effluent containing radioactive matt-er

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184598A (en) * 1982-04-23 1983-10-28 株式会社日立製作所 Method of solidifying radioactive liquid waste
JPS5958398A (en) * 1982-09-29 1984-04-04 株式会社新潟鉄工所 Disposal of dense salt effluent containing radioactive matt-er

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138000A (en) * 2014-01-24 2015-07-30 国立研究開発法人日本原子力研究開発機構 Method for stabilization of radioactive cesium adsorbing to ferrocyanide
JP2015225012A (en) * 2014-05-29 2015-12-14 株式会社東芝 Method and device of treating radioactive material absorbent
JP2016114396A (en) * 2014-12-12 2016-06-23 株式会社東芝 Disposal method and disposal device for radioactive substance adsorbent
JP2017096707A (en) * 2015-11-20 2017-06-01 株式会社東芝 Processing system of radioactive substance adsorbent and processing method

Also Published As

Publication number Publication date
JP6131245B2 (en) 2017-05-17
JPWO2013157585A1 (en) 2015-12-21

Similar Documents

Publication Publication Date Title
JP6166869B2 (en) Separation and stability immobilization method of multi-nuclide elements including cesium and strontium
JP6131245B2 (en) Method for treating insoluble ferrocyan compound adsorbed with cesium
JP7475338B2 (en) Particulate silver phosphate-based porous inorganic material for the adsorption and capture of gaseous iodine, its preparation method and use thereof
CN106205758B (en) The preparation method of firming body based on the silicon substrate heteropoly acid salt compound adsorbent after absorption caesium
Vasylyeva et al. Adsorption of zirconium ions by X-type zeolite
US20140231353A1 (en) Method and Apparatus for Removing Cesium Ion from Water
JP5684102B2 (en) Method and apparatus for treating radioactive cesium-containing material
Ikarashi et al. Selective cesium uptake behavior of insoluble ferrocyanide loaded zeolites and development of stable solidification method
JP2013519890A (en) Process for treating a nitrogen-containing aqueous solution containing at least one radionuclide and possibly ruthenium before calcination
JP2020016656A (en) Radionuclide adsorbent, manufacturing method therefor, and method of removing radionuclide using the same
JP2005345448A (en) Adsorbent for radioactive element-containing waste, and method of immobilizing radioactive element
JP5881482B2 (en) Method and apparatus for treating radioactive cesium contaminants
JP4296414B2 (en) Metal element immobilization method
KR101611260B1 (en) Synthesis method of 4A-Ba zeolite and treatment method for radioactive Sr contaminated water
JP6300197B2 (en) Method for stabilizing radioactive cesium adsorbed on ferrocyanide
JP5562606B2 (en) Method for treating radioactive ammonia-containing effluent
EP1412950B1 (en) Encapsulation of waste
KR101588497B1 (en) Process for synthesizing ammonium salt of heteropoly acid immobilized on mesoporous silica
JPH0534497A (en) Process of radioactive waste liquid
Ikarashi et al. Selective adsorption properties and stable solidification of Cs by insoluble ferrocyanide loaded zeolites
JP6668215B2 (en) Radioactive waste treatment method and treatment device
Wang et al. A Study on the Removal of Heavy Metal with Mg-Modified Zeolite
RU2575044C1 (en) Calcium silicate based composite granular sorbent
Васильєва et al. Adsorption of zirconium ions by X-type zeolite
Ikarashi et al. Selective adsorption properties and stable solidification of Cs by insoluble ferrocyanide loaded zeolites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014511238

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13778353

Country of ref document: EP

Kind code of ref document: A1