WO2013157470A1 - Microscope objective lens - Google Patents

Microscope objective lens Download PDF

Info

Publication number
WO2013157470A1
WO2013157470A1 PCT/JP2013/060907 JP2013060907W WO2013157470A1 WO 2013157470 A1 WO2013157470 A1 WO 2013157470A1 JP 2013060907 W JP2013060907 W JP 2013060907W WO 2013157470 A1 WO2013157470 A1 WO 2013157470A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
objective lens
microscope objective
cra
imaging
Prior art date
Application number
PCT/JP2013/060907
Other languages
French (fr)
Japanese (ja)
Inventor
梶谷和男
後藤尚志
鈴木良政
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2013157470A1 publication Critical patent/WO2013157470A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives

Definitions

  • the present invention relates to a microscope objective lens.
  • Patent Document 1 proposes a microscope lens for photographing a wide range while maintaining the resolving power as compared with a conventional objective lens.
  • the total lens length becomes very large, 60 to 120 mm, compared with 45 mm of the existing objective lens.
  • the exit pupil diameter is about ⁇ 30 compared to about ⁇ 15 of the existing objective lens.
  • the conventional objective lens is almost twice as large as the existing objective lens.
  • the present invention has been made in view of the above, and an object thereof is to provide a compact microscope objective lens capable of observing a wider range.
  • the microscope objective lens of the present invention is:
  • the focal length of the imaging lens for infinity correction is Ftl
  • the maximum image height is IH
  • the intermediate barrel magnification factor is Q
  • the projection magnification factor is P
  • the principal ray maximum tilt angle CRA (unit: degree) between the microscope objective lens and the imaging lens satisfies the conditional expression (1). 5 ⁇ CRA ⁇ 22 (1)
  • CRA tan ⁇ 1 (IH / (Ftl ⁇ Q ⁇ P))
  • the microscope objective lens according to the present invention has an effect of being a compact lens that can observe a wider range.
  • (A) is a figure which shows the cross-sectional structure of the microscope objective lens of Example 1
  • (b) is a figure which shows the cross-sectional structure of an imaging lens. It is a figure which shows the astigmatism of the optical system which combined the objective lens and imaging lens of Example 1, a distortion aberration, and spherical aberration.
  • (A) is a figure which shows the cross-sectional structure of the microscope objective lens of Example 2
  • (b) is a figure which shows the cross-sectional structure of an imaging lens. It is a figure which shows the astigmatism, distortion aberration, and spherical aberration of the optical system which combined the objective lens and imaging lens of Example 2.
  • (A) is a figure which shows the cross-sectional structure of the microscope objective lens of Example 3
  • (b) is a figure which shows the cross-sectional structure of an imaging lens. It is a figure which shows the astigmatism, distortion aberration, and spherical aberration of the optical system which combined the objective lens and imaging lens of Example 3.
  • (A) is a figure which shows the cross-sectional structure of the microscope objective lens of Example 4
  • (b) is a figure which shows the cross-sectional structure of an imaging lens. It is a figure which shows the astigmatism, distortion aberration, and spherical aberration of the optical system which combined the objective lens and imaging lens of Example 4.
  • the reference focal length of the imaging lens is set to 160 mm to 210 mm.
  • an air conversion distance from the final surface of the imaging lens to the image needs to be 150 mm or more.
  • the eyepiece has a maximum field of view of ⁇ 26.5 due to the size of the prism of the binocular device and the design of the 10 ⁇ eyepiece. If the number of fields of view is larger than this, the effective diameter of the binocular prism increases and the prism becomes larger. This makes it expensive and makes designing a 10 ⁇ eyepiece difficult. As a result, it has not been put into practical use. Accordingly, the actual specimen observation range of each objective lens is also designed to correct aberrations within a range divided by the magnification of the objective lens, with the number of fields of view as about 26.5 as the upper limit.
  • the CRA is 3.61 ° to 4.74 °.
  • Existing conventional microscope objectives are designed without exceeding this value.
  • the projection magnification is adjusted after the imaging lens in accordance with the element size of the electronic image sensor.
  • the CRA in the afocal portion where the luminous flux is a same does not change.
  • Patent Document 1 when shooting a wide range while maintaining the NA, it is designed with the idea of increasing the observation field diameter by multiplying the size of the objective lens by a factor. It was. This simultaneously increases the pupil diameter and the lens diameter. And CRA is almost unchanged.
  • the focal length of the imaging lens for infinity correction is Ftl
  • the maximum image height is IH
  • the intermediate barrel magnification factor is Q
  • the projection magnification factor is P
  • the principal ray maximum tilt angle CRA (unit: degree) between the microscope objective lens and the imaging lens satisfies the conditional expression (1). 5 ⁇ CRA ⁇ 22 (1)
  • CRA tan ⁇ 1 (IH / (Ftl ⁇ Q ⁇ P))
  • a microscope dedicated to an image sensor that can capture a wider field of view without increasing the overall length and thickness of the optical system by increasing the CRA is configured. Since the focal length of the objective lens is not increased and the observation field diameter is increased, and at the same time, the pupil diameter is not increased, the optical system does not have to be increased.
  • Conditional expression (1) defines an appropriate range of CRA. If the lower limit of conditional expression (1) is not reached, there is no effect as in the conventional system. If the upper limit of conditional expression (1) is exceeded, both the microscope objective lens and the imaging lens cannot sufficiently correct field curvature and coma.
  • the exit pupil diameter ⁇ P of the microscope objective lens is ⁇ P ⁇ 15 (2) It is desirable to satisfy
  • Conditional expression (2) defines an appropriate range of the exit pupil diameter. If the upper limit of conditional expression (2) is exceeded, it becomes difficult to correct coma aberration of the microscope objective lens, and the number of lenses of the microscope objective lens increases and the size increases.
  • Conditional expression (3) defines an appropriate range of NA. If the lower limit of conditional expression (3) is not reached, sufficient resolution expected as a microscope objective lens cannot be obtained.
  • the left side of conditional expression (4) is the diameter of the observation range of the sample, and is a relational expression with the linear function of NA on the right side. Conventionally, the objective lens has discrete values of 10 times and 20 times. This is because the total magnification obtained by multiplying the magnification with the observation eyepiece is set to an appropriate value.
  • conditional expression (4) represents a boundary for photographing a wider range with a sufficient NA than the conventional microscope.
  • FIG. 1A is a cross-sectional view along the optical axis showing the configuration of the microscope objective lens according to the first embodiment.
  • FIG. 1B is a cross-sectional view along the optical axis showing the configuration of the imaging lens combined with the microscope objective lens.
  • 2A, 2 ⁇ / b> B, and 2 ⁇ / b> C are aberration diagrams showing astigmatism (AS), distortion (DT), and spherical aberration (SA) of the microscope objective lens according to Example 1, respectively.
  • CG is a cover glass.
  • the object side means the sample side.
  • the microscope objective lens according to Example 1 includes, in order from the object side, a cemented lens of a negative meniscus lens L1 and a biconvex positive lens L2 having a convex surface facing the object side, a biconvex positive lens L3, a biconvex positive lens L4, and both A cemented lens of a concave negative lens L5, a cemented lens of a negative meniscus lens L6 having a convex surface facing the image side and a positive meniscus lens L7 having a convex surface facing the image side, and a positive meniscus lens L8 having a convex surface facing the image side It consists of.
  • FIG. 1B is a cross-sectional configuration diagram illustrating a schematic configuration of an imaging lens to be combined with the microscope objective lens of the first embodiment.
  • a biconvex positive lens L21 a cemented lens of a biconcave negative lens L22 and a biconvex positive lens L23, a cemented lens of a planoconvex positive lens L24 and a planoconcave negative lens L25, and a biconvex positive lens L26.
  • FIG. 3A is a cross-sectional view along the optical axis showing the configuration of the microscope objective lens according to the second embodiment.
  • FIG. 3B is a cross-sectional view along the optical axis showing the configuration of the imaging lens combined with the microscope objective lens.
  • 4A, 4B, and 4C are aberration diagrams showing astigmatism (AS), distortion (DT), and spherical aberration (SA) of the microscope objective lens according to Example 2, respectively.
  • CG is a cover glass.
  • the object side means the sample side.
  • the microscope objective lens according to Example 2 includes, in order from the object side, a biconvex positive lens L1, a positive meniscus lens L2 having a convex surface facing the object side, a positive meniscus lens L3 having a convex surface facing the object side, and a convex surface facing the object side.
  • a meniscus lens L7 a meniscus lens L7.
  • FIG. 3B is a cross-sectional configuration diagram illustrating a schematic configuration of an imaging lens to be combined with the microscope objective lens of the second embodiment. In order from the object side, it includes a planoconvex positive lens L21, a biconvex positive lens L22, a cemented lens of a biconvex positive lens L23 and a biconcave negative lens L24, and a planoconvex positive lens L25.
  • FIG. 5A is a cross-sectional view taken along the optical axis, illustrating the configuration of the microscope objective lens according to the third embodiment.
  • FIG. 5B is a cross-sectional view along the optical axis showing the configuration of the imaging lens combined with the microscope objective lens.
  • FIGS. 6A, 6B, and 6C are aberration diagrams showing astigmatism (AS), distortion (DT), and spherical aberration (SA) of the microscope objective lens according to Example 3, respectively.
  • CG is a cover glass.
  • the object side means the sample side.
  • the microscope objective lens of Example 3 includes, in order from the object side, a cemented lens of a biconcave negative lens L1 and a biconvex positive lens L2, a biconvex positive lens L3, a biconcave negative lens L4, and a biconvex positive lens L5.
  • FIG. 3B is a cross-sectional configuration diagram illustrating a schematic configuration of an imaging lens to be combined with the microscope objective lens of the third embodiment.
  • the lens includes a cemented lens of a biconcave negative lens L21 and a biconvex positive lens L22, and a cemented lens of a biconvex positive lens L23 and a negative meniscus lens L24 having a convex surface facing the image side.
  • FIG. 7A is a cross-sectional view along the optical axis showing the configuration of the microscope objective lens according to Example 4.
  • FIG. 7B is a cross-sectional view along the optical axis showing the configuration of the imaging lens combined with the microscope objective lens.
  • FIGS. 8A, 8B, and 8C are aberration diagrams showing astigmatism (AS), distortion (DT), and spherical aberration (SA) of the microscope objective lens according to Example 4, respectively.
  • CG is a cover glass.
  • the object side means the sample side.
  • the microscope objective lens according to Example 4 includes, in order from the object side, a positive meniscus lens L1 having a convex surface facing the image side, a positive meniscus lens L2 having a convex surface facing the image side, a biconcave negative lens L3, and a biconvex positive lens.
  • a cemented lens of L4 a cemented lens of a negative meniscus lens L5 having a convex surface facing the object side and a biconvex positive lens L6, a negative meniscus lens L7 having a convex surface facing the object side, a biconvex positive lens L8, and the image side
  • FIG. 7B is a cross-sectional configuration diagram illustrating a schematic configuration of an imaging lens to be combined with the microscope objective lens of the fourth embodiment.
  • the lens includes a cemented lens of a biconcave negative lens L21 and a biconvex positive lens L22, and a cemented lens of a biconvex positive lens L23 and a negative meniscus lens L24 having a convex surface facing the image side.
  • ftl is the focal length of the entire imaging lens
  • r is the radius of curvature of the optical member
  • d is the surface interval (thickness or air interval) of the optical member
  • nd is the refractive index of the optical member at the d-line
  • ⁇ d represents the Abbe number of the optical member at the d-line.
  • NA is the numerical aperture on the entrance side of the microscope objective lens
  • Fob is the focal length of the microscope objective lens
  • Ftl is the focal length of the entire system
  • IH is the maximum image height
  • Q is the intermediate barrel magnification factor
  • P is the projection magnification factor.
  • CRA unit: degree
  • ⁇ p is the exit pupil diameter
  • is the total projection magnification.
  • Numerical example 2 Unit mm Objective lens Surface number r d nd ⁇ d Object ⁇ 0.17 1.5163 64.1 0 ⁇ 7.30 1 166.845 0.61 1.7130 53.8 2 -15.327 0.02 3 6.284 0.82 1.6779 55.3 4 22.990 0.04 5 4.483 1.63 1.7130 53.8 6 38.317 0.40 1.6989 30.1 7 2.859 3.22 8 -3.203 0.33 1.6483 33.8 9 -122.623 1.67 1.6935 53.3 10 -5.670 0.02 11 -24.767 1.25 1.6645 35.8 12 -7.568 Imaging lens Surface number r d nd ⁇ d 21 ⁇ 4.68 1.5163 64.1 22 -41.885 0.22 23 54.746 6.84 1.5891 61.1 24 -73.486 0.22 25 36.462 8.40 1.5891 61.1 26 -73.486 3.24 1.7618 26.5 27 21.803 5.71 28 33.850 5.76 1.7859 44.2 29 ⁇ (Values for conditional expressions
  • Numerical Example 4 Unit mm Objective lens Surface number r d nd ⁇ d Object ⁇ 0.17 1.5163 64.1 0 ⁇ 0.48 1 -3.377 4.12 1.4587 67.7 2 -3.334 0.14 3 -12.952 2.45 1.5691 71.3 4 -6.973 0.18 5 -89.413 0.99 1.5750 41.4 6 15.155 5.85 1.4339 95.3 7 -9.522 0.18 8 125.839 0.90 1.5520 49.7 9 16.241 4.88 1.4856 85.2 10 -17.209 1.90 11 39.450 1.17 1.5520 49.7 12 7.407 6.84 1.4339 95.3 13 -12.884 1.02 1.5268 51.4 14 -64.453 17.55 15 76.843 2.52 1.6034 38.0 16 -9.751 1.53 1.4856 85.2 17 11.623 Imaging lens Surface number r d nd ⁇ d 21 -21.420 3.17 1.5163 64.1 22 123.450 7.40 1.6779 55.3 23 -27.
  • the microscope objective lens according to the present invention is useful for a compact microscope system for photographing a wide range with a large NA.

Abstract

The present invention is characterized in that the maximum inclination (CRA) of a principal ray (units: degrees) between a microscope objective lens (L1-L8) and an imaging lens satisfies conditional expression (1), where Ft1 is the focal length of a non-infinity-corrected imaging lens, IH is the maximum image height, Q is an intermediate lens barrel magnification coefficient, and P is a projection magnification coefficient. A microscope objective lens can thereby be provided that is compact and that enables a wider range of observation. (1): 5 < CRA < 22; CRA = tan-1(IH/(Ft1 × Q × P))

Description

顕微鏡対物レンズMicroscope objective lens
 本発明は、顕微鏡対物レンズに関するものである。 The present invention relates to a microscope objective lens.
 近年、肉眼観察用の接眼レンズを備えないデジタル専用顕微鏡が開発されている。例えば、従来の対物レンズよりも解像力を維持したまま、広い範囲を撮影するための顕微鏡レンズが特許文献1に提案されている。この対物レンズは、20倍対物レンズ並みの解像力(NA=0.8)を有する10倍対物レンズである。 Recently, digital microscopes that do not have eyepieces for visual observation have been developed. For example, Patent Document 1 proposes a microscope lens for photographing a wide range while maintaining the resolving power as compared with a conventional objective lens. This objective lens is a 10 × objective lens having the same resolution (NA = 0.8) as that of a 20 × objective lens.
特開2008-185965号公報JP 2008-185965 A
 従来の顕微鏡対物レンズでは、レンズ全長が既存の対物レンズの45mmに対して60~120mmと非常に大きくなってしまう。また、射出瞳径も既存の対物レンズのφ15程度に比較して、φ30程度となる。このように、従来の対物レンズは、既存の対物レンズのほぼ2倍の大きさとなってしまう。 In the conventional microscope objective lens, the total lens length becomes very large, 60 to 120 mm, compared with 45 mm of the existing objective lens. Also, the exit pupil diameter is about φ30 compared to about φ15 of the existing objective lens. Thus, the conventional objective lens is almost twice as large as the existing objective lens.
 本発明は、上記に鑑みてなされたものであって、より広い範囲を観察できるコンパクトな顕微鏡対物レンズを提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide a compact microscope objective lens capable of observing a wider range.
 上述した課題を解決し、目的を達成するために、本発明の顕微鏡対物レンズは、
 無限遠補正の結像レンズの焦点距離をFtl、最大像高をIH、中間鏡筒倍率係数をQ、投影倍率係数をPとそれぞれしたとき、
 顕微鏡対物レンズと結像レンズの間の主光線最大傾角CRA(単位:度)は、条件式(1)を満足することを特徴とする。
 5<CRA<22   (1)
 CRA=tan-1(IH/(Ftl×Q×P)) 
In order to solve the above-described problems and achieve the object, the microscope objective lens of the present invention is:
When the focal length of the imaging lens for infinity correction is Ftl, the maximum image height is IH, the intermediate barrel magnification factor is Q, and the projection magnification factor is P,
The principal ray maximum tilt angle CRA (unit: degree) between the microscope objective lens and the imaging lens satisfies the conditional expression (1).
5 <CRA <22 (1)
CRA = tan −1 (IH / (Ftl × Q × P))
 本発明にかかる顕微鏡対物レンズは、より広い範囲を観察できるコンパクトなレンズであるという効果を奏する。 The microscope objective lens according to the present invention has an effect of being a compact lens that can observe a wider range.
(a)は実施例1の顕微鏡対物レンズの断面構成を示す図、(b)は結像レンズの断面構成を示す図である。(A) is a figure which shows the cross-sectional structure of the microscope objective lens of Example 1, (b) is a figure which shows the cross-sectional structure of an imaging lens. 実施例1の対物レンズと結像レンズを組み合わせた光学系の非点収差、歪曲収差、球面収差を示す図である。It is a figure which shows the astigmatism of the optical system which combined the objective lens and imaging lens of Example 1, a distortion aberration, and spherical aberration. (a)は実施例2の顕微鏡対物レンズの断面構成を示す図、(b)は結像レンズの断面構成を示す図である。(A) is a figure which shows the cross-sectional structure of the microscope objective lens of Example 2, (b) is a figure which shows the cross-sectional structure of an imaging lens. 実施例2の対物レンズと結像レンズを組み合わせた光学系の非点収差、歪曲収差、球面収差を示す図である。It is a figure which shows the astigmatism, distortion aberration, and spherical aberration of the optical system which combined the objective lens and imaging lens of Example 2. (a)は実施例3の顕微鏡対物レンズの断面構成を示す図、(b)は結像レンズの断面構成を示す図である。(A) is a figure which shows the cross-sectional structure of the microscope objective lens of Example 3, (b) is a figure which shows the cross-sectional structure of an imaging lens. 実施例3の対物レンズと結像レンズを組み合わせた光学系の非点収差、歪曲収差、球面収差を示す図である。It is a figure which shows the astigmatism, distortion aberration, and spherical aberration of the optical system which combined the objective lens and imaging lens of Example 3. (a)は実施例4の顕微鏡対物レンズの断面構成を示す図、(b)は結像レンズの断面構成を示す図である。(A) is a figure which shows the cross-sectional structure of the microscope objective lens of Example 4, (b) is a figure which shows the cross-sectional structure of an imaging lens. 実施例4の対物レンズと結像レンズを組み合わせた光学系の非点収差、歪曲収差、球面収差を示す図である。It is a figure which shows the astigmatism, distortion aberration, and spherical aberration of the optical system which combined the objective lens and imaging lens of Example 4.
 以下に、本発明にかかる顕微鏡対物レンズの実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。 Hereinafter, embodiments of the microscope objective lens according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
 まず、従来の顕微鏡においては、結像レンズの基準焦点距離は160mmから210mmに設定されている。肉眼観察用の双眼装置を構成するため、結像レンズの最終面から像までの空気換算距離が150mm以上必要である。 First, in the conventional microscope, the reference focal length of the imaging lens is set to 160 mm to 210 mm. In order to construct a binocular device for the naked eye observation, an air conversion distance from the final surface of the imaging lens to the image needs to be 150 mm or more.
 接眼レンズは双眼装置のプリズムの大きさ及び10倍接眼レンズの設計から視野数は最大でもφ26.5である。これ以上視野数が大きいと双眼プリズムの有効径が大きくなってプリズムが大きくなる。これにより、高価になると同時に10倍接眼レンズの設計も難しくなる。この結果、実用化されていない。したがって、各対物レンズの実際の標本観察範囲も、視野数φ26.5程度を上限として、対物レンズの倍率で割った範囲で収差補正、設計されている。 The eyepiece has a maximum field of view of φ26.5 due to the size of the prism of the binocular device and the design of the 10 × eyepiece. If the number of fields of view is larger than this, the effective diameter of the binocular prism increases and the prism becomes larger. This makes it expensive and makes designing a 10 × eyepiece difficult. As a result, it has not been put into practical use. Accordingly, the actual specimen observation range of each objective lens is also designed to correct aberrations within a range divided by the magnification of the objective lens, with the number of fields of view as about 26.5 as the upper limit.
 このような従来のシステムの特徴を再考し、鋭意研究した結果、上述の双眼装置の制約から、対物レンズと結像レンズとの光線がアフォーカル部分における最大主光線傾角(CRA)が制約されていることを見出した。 As a result of reconsidering the features of such a conventional system and earnestly researching, the maximum principal ray tilt angle (CRA) in the afocal part of the light beam between the objective lens and the imaging lens is restricted due to the above-described binocular device limitations. I found out.
 最大視野数をφ26.5のとき、結像レンズの焦点距離が160~210mmであればCRAは3.61°~4.74°である。既存の従来の顕微鏡対物レンズは、この値を上回ることなく設計されている。 When the maximum field number is φ26.5 and the focal length of the imaging lens is 160 to 210 mm, the CRA is 3.61 ° to 4.74 °. Existing conventional microscope objectives are designed without exceeding this value.
 電子撮像素子で像を取得する構成の場合、電子撮像素子の素子サイズにあわせて結像レンズ以降で投影倍率を調整する。ここで、光束がアフォーカル部分におけるCRAは変わらない。
 このシステムにとらわれたもとで、上述の特許文献1に記載されたようにNAを保ったまま広範囲を撮影しようとすると、対物レンズのサイズを係数倍することで観察視野径を大きくする思想で設計していた。これにより、同時に瞳径も大きくなり、レンズ径が太くなってしまう。そして、CRAはほぼ変わらない。
In the case of a configuration in which an image is acquired with an electronic image sensor, the projection magnification is adjusted after the imaging lens in accordance with the element size of the electronic image sensor. Here, the CRA in the afocal portion where the luminous flux is a same does not change.
Under this system, as described in the above-mentioned Patent Document 1, when shooting a wide range while maintaining the NA, it is designed with the idea of increasing the observation field diameter by multiplying the size of the objective lens by a factor. It was. This simultaneously increases the pupil diameter and the lens diameter. And CRA is almost unchanged.
 本実施形態では、無限遠補正の結像レンズの焦点距離をFtl、最大像高をIH、中間鏡筒倍率係数をQ、投影倍率係数をPとそれぞれしたとき、
 顕微鏡対物レンズと結像レンズの間の主光線最大傾角CRA(単位:度)は、条件式(1)を満足することを特徴とする。
 5<CRA<22   (1)
 CRA=tan-1(IH/(Ftl×Q×P)) 
In this embodiment, when the focal length of the imaging lens for infinity correction is Ftl, the maximum image height is IH, the intermediate barrel magnification factor is Q, and the projection magnification factor is P,
The principal ray maximum tilt angle CRA (unit: degree) between the microscope objective lens and the imaging lens satisfies the conditional expression (1).
5 <CRA <22 (1)
CRA = tan −1 (IH / (Ftl × Q × P))
 本実施形態は、CRAを大きくすることで光学系の全長、太さを大きくせず、より広い視野を撮影できる撮像素子専用の顕微鏡を構成した。対物レンズの焦点距離を大きくせず観察視野径を拡げ、同時に瞳径も大きくならないため光学系は大きくならずに済む。 In the present embodiment, a microscope dedicated to an image sensor that can capture a wider field of view without increasing the overall length and thickness of the optical system by increasing the CRA is configured. Since the focal length of the objective lens is not increased and the observation field diameter is increased, and at the same time, the pupil diameter is not increased, the optical system does not have to be increased.
 条件式(1)は、CRAの適切な範囲を規定している。
 条件式(1)の下限値を下回ると、従来のシステムと変わらず効果がない。
 条件式(1)の上限値を上回ると、顕微鏡対物レンズ、結像レンズとも像面湾曲、コマ収差の補正が十分にできない。
Conditional expression (1) defines an appropriate range of CRA.
If the lower limit of conditional expression (1) is not reached, there is no effect as in the conventional system.
If the upper limit of conditional expression (1) is exceeded, both the microscope objective lens and the imaging lens cannot sufficiently correct field curvature and coma.
 条件式(1)の代わりに、条件式(1’)を満足することが望ましい。
 6<CRA<18   (1’)
 条件式(1)の代わりに、条件式(1”)を満足することがさらに望ましい。
 6<CRA<13   (1”)
It is desirable to satisfy the conditional expression (1 ′) instead of the conditional expression (1).
6 <CRA <18 (1 ')
It is more desirable to satisfy the conditional expression (1 ″) instead of the conditional expression (1).
6 <CRA <13 (1 ”)
 また、本実施形態において、顕微鏡対物レンズの射出瞳径φPは、
 φP<15   (2)
を満足することが望ましい。
In this embodiment, the exit pupil diameter φP of the microscope objective lens is
φP <15 (2)
It is desirable to satisfy
 条件式(2)は、射出瞳径の適切な範囲を規定している。
 条件式(2)の上限値を上回ると、顕微鏡対物レンズのコマ収差を補正することが難しくなり補正するため顕微鏡対物レンズのレンズ枚数も増加し大型化する。
Conditional expression (2) defines an appropriate range of the exit pupil diameter.
If the upper limit of conditional expression (2) is exceeded, it becomes difficult to correct coma aberration of the microscope objective lens, and the number of lenses of the microscope objective lens increases and the size increases.
 また、本実施形態において、顕微鏡対物レンズの入射側の開口数をNA、顕微鏡対物レンズの焦点距離をFobとしたとき、結像面に配置される撮像素子への総合投影倍率を以下に定義されるβとそれぞれしたとき、条件式(3)、(4)を満足することが望ましい。
 β=(Ftl×Q×P)/Fobであり、
 0.2<NA   (3)
 log(2×IH/β)>-1.06×NA+0.86   (4)
In the present embodiment, when the numerical aperture on the entrance side of the microscope objective lens is NA and the focal length of the microscope objective lens is Fob, the total projection magnification on the image sensor arranged on the imaging plane is defined as follows. It is desirable that the conditional expressions (3) and (4) be satisfied.
β = (Ftl × Q × P) / Fob,
0.2 <NA (3)
log (2 × IH / β)> − 1.06 × NA + 0.86 (4)
 条件式(3)は、NAの適切な範囲を規定している。
 条件式(3)の下限値を下回ると、顕微鏡対物レンズとして期待される分解能を十分得られない。
 また、条件式(4)の左辺は標本の観察範囲の直径であり、右辺のNAの一次関数との関係式である。従来、対物レンズは10倍、20倍と離散的な値である。これは観察接眼との倍率を掛け合わせた総合倍率を適正な値にするためである。
Conditional expression (3) defines an appropriate range of NA.
If the lower limit of conditional expression (3) is not reached, sufficient resolution expected as a microscope objective lens cannot be obtained.
The left side of conditional expression (4) is the diameter of the observation range of the sample, and is a relational expression with the linear function of NA on the right side. Conventionally, the objective lens has discrete values of 10 times and 20 times. This is because the total magnification obtained by multiplying the magnification with the observation eyepiece is set to an appropriate value.
 これに対して、固体撮像素子で撮像する場合はそのような制約はない。このため、顕微鏡対物レンズの倍率も自由に設定できる。これにより、条件式(4)は従来の顕微鏡より広い範囲を十分なNAで撮影する境界を表わしている。 In contrast, there is no such restriction when imaging with a solid-state imaging device. For this reason, the magnification of the microscope objective lens can also be set freely. Thus, conditional expression (4) represents a boundary for photographing a wider range with a sufficient NA than the conventional microscope.
 以下に、本発明に係る顕微鏡対物レンズの実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。 Hereinafter, embodiments of the microscope objective lens according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
 以下、本発明の顕微鏡対物レンズの実施例1~4について説明する。
 図1(a)は、実施例1に係る顕微鏡対物レンズの構成を示す光軸に沿う断面図である。図1(b)は、本顕微鏡対物レンズと組み合わせる結像レンズの構成を示す光軸に沿う断面図である。
 図2(a)、(b)、(c)は、それぞれ実施例1にかかる顕微鏡対物レンズの非点収差(AS)、歪曲収差(DT)、球面収差(SA)を示す収差図である。
 なお、図1(a)において、CGはカバーガラスである。また、物体側とは、試料側をいう。
Examples 1 to 4 of the microscope objective lens according to the present invention will be described below.
FIG. 1A is a cross-sectional view along the optical axis showing the configuration of the microscope objective lens according to the first embodiment. FIG. 1B is a cross-sectional view along the optical axis showing the configuration of the imaging lens combined with the microscope objective lens.
2A, 2 </ b> B, and 2 </ b> C are aberration diagrams showing astigmatism (AS), distortion (DT), and spherical aberration (SA) of the microscope objective lens according to Example 1, respectively.
In FIG. 1A, CG is a cover glass. The object side means the sample side.
 実施例1の顕微鏡対物レンズは、物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と両凸正レンズL2の接合レンズと、両凸正レンズL3と、両凸正レンズL4と両凹負レンズL5との接合レンズと、像側に凸面を向けた負メニスカスレンズL6と像側に凸面を向けた正メニスカスレンズL7との接合レンズと、像側に凸面を向けた正メニスカスレンズL8とからなる。 The microscope objective lens according to Example 1 includes, in order from the object side, a cemented lens of a negative meniscus lens L1 and a biconvex positive lens L2 having a convex surface facing the object side, a biconvex positive lens L3, a biconvex positive lens L4, and both A cemented lens of a concave negative lens L5, a cemented lens of a negative meniscus lens L6 having a convex surface facing the image side and a positive meniscus lens L7 having a convex surface facing the image side, and a positive meniscus lens L8 having a convex surface facing the image side It consists of.
 図1(b)は、実施例1の顕微鏡対物レンズに組み合せる結像レンズの概略構成を示す断面構成図である。
 物体側から順に、両凸正レンズL21と、両凹負レンズL22と両凸正レンズL23との接合レンズと、平凸正レンズL24と平凹負レンズL25との接合レンズと、両凸正レンズL26からなる。
FIG. 1B is a cross-sectional configuration diagram illustrating a schematic configuration of an imaging lens to be combined with the microscope objective lens of the first embodiment.
In order from the object side, a biconvex positive lens L21, a cemented lens of a biconcave negative lens L22 and a biconvex positive lens L23, a cemented lens of a planoconvex positive lens L24 and a planoconcave negative lens L25, and a biconvex positive lens L26.
 図3(a)は、実施例2に係る顕微鏡対物レンズの構成を示す光軸に沿う断面図である。図3(b)は、本顕微鏡対物レンズと組み合わせる結像レンズの構成を示す光軸に沿う断面図である。
 図4(a)、(b)、(c)は、それぞれ実施例2にかかる顕微鏡対物レンズの非点収差(AS)、歪曲収差(DT)、球面収差(SA)を示す収差図である。
 なお、図3(a)において、CGはカバーガラスである。また、物体側とは、試料側をいう。
FIG. 3A is a cross-sectional view along the optical axis showing the configuration of the microscope objective lens according to the second embodiment. FIG. 3B is a cross-sectional view along the optical axis showing the configuration of the imaging lens combined with the microscope objective lens.
4A, 4B, and 4C are aberration diagrams showing astigmatism (AS), distortion (DT), and spherical aberration (SA) of the microscope objective lens according to Example 2, respectively.
In FIG. 3A, CG is a cover glass. The object side means the sample side.
 実施例2の顕微鏡対物レンズは、物体側から順に、両凸正レンズL1と、物体側に凸面を向けた正メニスカスレンズL2と、物体側に凸面を向けた正メニスカスレンズL3と物体側に凸面を向けた負メニスカスレンズL4との接合レンズと、像側に凸面を向けた負メニスカスレンズL5と像側に凸面を向けた正メニスカスレンズL6との接合レンズと、像側に凸面を向けた正メニスカスレンズL7とからなる。 The microscope objective lens according to Example 2 includes, in order from the object side, a biconvex positive lens L1, a positive meniscus lens L2 having a convex surface facing the object side, a positive meniscus lens L3 having a convex surface facing the object side, and a convex surface facing the object side. A cemented lens with a negative meniscus lens L4 facing the lens, a cemented lens with a negative meniscus lens L5 with a convex surface facing the image side and a positive meniscus lens L6 with a convex surface facing the image side, and a positive lens with the convex surface facing the image side And a meniscus lens L7.
 図3(b)は、実施例2の顕微鏡対物レンズに組み合せる結像レンズの概略構成を示す断面構成図である。
 物体側から順に、平凸正レンズL21と、両凸正レンズL22と、両凸正レンズL23と両凹負レンズL24との接合レンズと、平凸正レンズL25とからなる。
FIG. 3B is a cross-sectional configuration diagram illustrating a schematic configuration of an imaging lens to be combined with the microscope objective lens of the second embodiment.
In order from the object side, it includes a planoconvex positive lens L21, a biconvex positive lens L22, a cemented lens of a biconvex positive lens L23 and a biconcave negative lens L24, and a planoconvex positive lens L25.
 図5(a)は、実施例3に係る顕微鏡対物レンズの構成を示す光軸に沿う断面図である。図5(b)は、本顕微鏡対物レンズと組み合わせる結像レンズの構成を示す光軸に沿う断面図である。
 図6(a)、(b)、(c)は、それぞれ実施例3にかかる顕微鏡対物レンズの非点収差(AS)、歪曲収差(DT)、球面収差(SA)を示す収差図である。
 なお、図5(a)において、CGはカバーガラスである。また、物体側とは、試料側をいう。
FIG. 5A is a cross-sectional view taken along the optical axis, illustrating the configuration of the microscope objective lens according to the third embodiment. FIG. 5B is a cross-sectional view along the optical axis showing the configuration of the imaging lens combined with the microscope objective lens.
FIGS. 6A, 6B, and 6C are aberration diagrams showing astigmatism (AS), distortion (DT), and spherical aberration (SA) of the microscope objective lens according to Example 3, respectively.
In FIG. 5A, CG is a cover glass. The object side means the sample side.
 実施例3の顕微鏡対物レンズは、物体側から順に、両凹負レンズL1と両凸正レンズL2との接合レンズと、両凸正レンズL3と、両凹負レンズL4と両凸正レンズL5との接合レンズと、両凹負レンズL6と物体側に凸面を向けた正メニスカスレンズL7と両凸正レンズL8との接合レンズとからなる。 The microscope objective lens of Example 3 includes, in order from the object side, a cemented lens of a biconcave negative lens L1 and a biconvex positive lens L2, a biconvex positive lens L3, a biconcave negative lens L4, and a biconvex positive lens L5. A cemented lens composed of a biconcave negative lens L6, a positive meniscus lens L7 having a convex surface facing the object side, and a biconvex positive lens L8.
 図3(b)は、実施例3の顕微鏡対物レンズに組み合せる結像レンズの概略構成を示す断面構成図である。
 物体側から順に、両凹負レンズL21と両凸正レンズL22との接合レンズと、両凸正レンズL23と像側に凸面を向けた負メニスカスレンズL24との接合レンズとからなる。
FIG. 3B is a cross-sectional configuration diagram illustrating a schematic configuration of an imaging lens to be combined with the microscope objective lens of the third embodiment.
In order from the object side, the lens includes a cemented lens of a biconcave negative lens L21 and a biconvex positive lens L22, and a cemented lens of a biconvex positive lens L23 and a negative meniscus lens L24 having a convex surface facing the image side.
 図7(a)は、実施例4に係る顕微鏡対物レンズの構成を示す光軸に沿う断面図である。図7(b)は、本顕微鏡対物レンズと組み合わせる結像レンズの構成を示す光軸に沿う断面図である。
 図8(a)、(b)、(c)は、それぞれ実施例4にかかる顕微鏡対物レンズの非点収差(AS)、歪曲収差(DT)、球面収差(SA)を示す収差図である。
 なお、図7(a)において、CGはカバーガラスである。また、物体側とは、試料側をいう。
FIG. 7A is a cross-sectional view along the optical axis showing the configuration of the microscope objective lens according to Example 4. FIG. 7B is a cross-sectional view along the optical axis showing the configuration of the imaging lens combined with the microscope objective lens.
FIGS. 8A, 8B, and 8C are aberration diagrams showing astigmatism (AS), distortion (DT), and spherical aberration (SA) of the microscope objective lens according to Example 4, respectively.
In FIG. 7A, CG is a cover glass. The object side means the sample side.
 実施例4の顕微鏡対物レンズは、物体側から順に、像側に凸面を向けた正メニスカスレンズL1と、像側に凸面を向けた正メニスカスレンズL2と、両凹負レンズL3と両凸正レンズL4との接合レンズと、物体側に凸面を向けた負メニスカスレンズL5と両凸正レンズL6との接合レンズと、物体側に凸面を向けた負メニスカスレンズL7と両凸正レンズL8と像側に凸面を向けた負メニスカスレンズL9との接合レンズと、両凸正レンズL10と両凹負レンズL11との接合レンズとからなる。 The microscope objective lens according to Example 4 includes, in order from the object side, a positive meniscus lens L1 having a convex surface facing the image side, a positive meniscus lens L2 having a convex surface facing the image side, a biconcave negative lens L3, and a biconvex positive lens. A cemented lens of L4, a cemented lens of a negative meniscus lens L5 having a convex surface facing the object side and a biconvex positive lens L6, a negative meniscus lens L7 having a convex surface facing the object side, a biconvex positive lens L8, and the image side A cemented lens with a negative meniscus lens L9 having a convex surface facing the lens, and a cemented lens with a biconvex positive lens L10 and a biconcave negative lens L11.
 図7(b)は、実施例4の顕微鏡対物レンズに組み合せる結像レンズの概略構成を示す断面構成図である。
 物体側から順に、両凹負レンズL21と両凸正レンズL22との接合レンズと、両凸正レンズL23と像側に凸面を向けた負メニスカスレンズL24との接合レンズとからなる。
FIG. 7B is a cross-sectional configuration diagram illustrating a schematic configuration of an imaging lens to be combined with the microscope objective lens of the fourth embodiment.
In order from the object side, the lens includes a cemented lens of a biconcave negative lens L21 and a biconvex positive lens L22, and a cemented lens of a biconvex positive lens L23 and a negative meniscus lens L24 having a convex surface facing the image side.
 次に、上記各実施例の顕微鏡対物レンズと結像レンズを構成する光学部材の数値データを示す。数値データ中、ftlは結像レンズ全体の焦点距離、なお、rは光学部材の曲率半径、dは光学部材の面間隔(肉厚又は空気間隔)、ndは光学部材のd線における屈折率、νdは光学部材のd線におけるアッベ数をそれぞれ示している。
 また、NAは顕微鏡対物レンズの入射側の開口数、Fobは顕微鏡対物レンズの焦点距離、Ftlは全系の焦点距離、IHは最大像高、Qは中間鏡筒倍率係数、Pは投影倍率係数、CRA(単位:度)は主光線最大傾角、φpは射出瞳径、βは総合投影倍率である。
Next, numerical data of optical members constituting the microscope objective lens and the imaging lens of each of the above embodiments will be shown. In the numerical data, ftl is the focal length of the entire imaging lens, r is the radius of curvature of the optical member, d is the surface interval (thickness or air interval) of the optical member, nd is the refractive index of the optical member at the d-line, νd represents the Abbe number of the optical member at the d-line.
NA is the numerical aperture on the entrance side of the microscope objective lens, Fob is the focal length of the microscope objective lens, Ftl is the focal length of the entire system, IH is the maximum image height, Q is the intermediate barrel magnification factor, and P is the projection magnification factor. , CRA (unit: degree) is the principal ray maximum tilt angle, φp is the exit pupil diameter, and β is the total projection magnification.
数値実施例1
単位   mm
 
面データ
         対物レンズ                             
面番号   r           d        nd          νd
物体     ∞          0.17     1.5163      64.1 
0        ∞         11.21 
1       172.221      0.55     1.7215      29.2 
2        27.654      3.44     1.6968      55.4 
3       -19.291      0.14                
4        58.215      2.63     1.6968      55.4 
5       -46.909      0.14                
6        12.165      5.70      1.6968     55.4 
7       -31.350      0.95     1.6889      31.2 
8         8.002      6.20                 
9        -8.266      0.89     1.6034      38.0 
10     -364.112      5.13     1.6935      53.3 
11      -13.604      0.14                
12     -137.084      2.68     1.7237      38.1 
13      -30.866
 
       結像レンズ                       
面番号   r          d        nd          νd
21       48.952     3.00     1.4875      70.2 
22     -326.612     2.47                
23      -25.056     2.50     1.6134      44.3 
24       41.275     6.00     1.7200      46.0  
25      -33.253     0.25                
26       30.955     4.50     1.4970      81.5 
27        ∞        2.50     1.6541      39.7 
28       23.497     2.90                
29       37.460     4.41     1.4875      70.2 
30      -84.979                        
 
(条件式対応値)
 NA   0.40
 Fob  18.03 
 Ftl  50.0 
 CRA  13° 
 Q     1 
 P     1 
 β=(Ftl×Q×P)/Fob      2.77
 IH    11 
 φP    14.4
 log(2×IH/β)   0.90 
-1.06×NA+0.86   0.44
 
Numerical example 1
Unit mm

Surface data Objective lens
Surface number r d nd νd
Object ∞ 0.17 1.5163 64.1
0 ∞ 11.21
1 172.221 0.55 1.7215 29.2
2 27.654 3.44 1.6968 55.4
3 -19.291 0.14
4 58.215 2.63 1.6968 55.4
5 -46.909 0.14
6 12.165 5.70 1.6968 55.4
7 -31.350 0.95 1.6889 31.2
8 8.002 6.20
9 -8.266 0.89 1.6034 38.0
10 -364.112 5.13 1.6935 53.3
11 -13.604 0.14
12 -137.084 2.68 1.7237 38.1
13 -30.866

Imaging lens
Surface number r d nd νd
21 48.952 3.00 1.4875 70.2
22 -326.612 2.47
23 -25.056 2.50 1.6134 44.3
24 41.275 6.00 1.7200 46.0
25 -33.253 0.25
26 30.955 4.50 1.4970 81.5
27 ∞ 2.50 1.6541 39.7
28 23.497 2.90
29 37.460 4.41 1.4875 70.2
30 -84.979

(Conditional expression corresponding value)
NA 0.40
Fob 18.03
Ftl 50.0
CRA 13 °
Q 1
P 1
β = (Ftl × Q × P) / Fob 2.77
IH 11
φP 14.4
log (2 × IH / β) 0.90
-1.06 × NA + 0.86 0.44
数値実施例2
単位:mm
 
       対物レンズ                       
面番号    r         d         nd         νd
物体     ∞         0.17     1.5163      64.1 
0        ∞         7.30 
1       166.845     0.61     1.7130      53.8 
2       -15.327     0.02                
3         6.284     0.82     1.6779      55.3 
4        22.990     0.04                
5         4.483     1.63     1.7130      53.8 
6        38.317     0.40     1.6989      30.1 
7         2.859     3.22                
8        -3.203     0.33     1.6483      33.8 
9      -122.623     1.67     1.6935      53.3 
10       -5.670     0.02                
11      -24.767     1.25     1.6645      35.8 
12       -7.568                          
 
       結像レンズ                       
面番号   r          d         nd         νd
21       ∞         4.68     1.5163      64.1 
22      -41.885     0.22                
23       54.746     6.84     1.5891      61.1 
24      -73.486     0.22                
25       36.462     8.40     1.5891      61.1 
26      -73.486     3.24     1.7618      26.5 
27       21.803     5.71                
28       33.850     5.76     1.7859      44.2 
29       ∞                       
 
(条件式対応値)
 NA   0.35  
 Fob  9.9    
 Ftl  30 
 CRA  20.4°
 Q    1
 P    1
 β=(Ftl×Q×P)/Fob  3.0 
 IH   11
 φP   6.9 
 log(2×IH/β)    0.86 
 -1.06×NA+0.86   0.49
 
Numerical example 2
Unit: mm

Objective lens
Surface number r d nd νd
Object ∞ 0.17 1.5163 64.1
0 ∞ 7.30
1 166.845 0.61 1.7130 53.8
2 -15.327 0.02
3 6.284 0.82 1.6779 55.3
4 22.990 0.04
5 4.483 1.63 1.7130 53.8
6 38.317 0.40 1.6989 30.1
7 2.859 3.22
8 -3.203 0.33 1.6483 33.8
9 -122.623 1.67 1.6935 53.3
10 -5.670 0.02
11 -24.767 1.25 1.6645 35.8
12 -7.568

Imaging lens
Surface number r d nd νd
21 ∞ 4.68 1.5163 64.1
22 -41.885 0.22
23 54.746 6.84 1.5891 61.1
24 -73.486 0.22
25 36.462 8.40 1.5891 61.1
26 -73.486 3.24 1.7618 26.5
27 21.803 5.71
28 33.850 5.76 1.7859 44.2
29 ∞

(Values for conditional expressions)
NA 0.35
Fob 9.9
Ftl 30
CRA 20.4 °
Q 1
P 1
β = (Ftl × Q × P) / Fob 3.0
IH 11
φP 6.9
log (2 × IH / β) 0.86
-1.06 × NA + 0.86 0.49
数値実施例3
単位:mm
 
       対物レンズ                       
面番号    r          d        nd          νd
物体     ∞          0.17     1.5163      64.1 
0        ∞          1.47  
1        -7.296      2.23     1.5268      51.4 
2        14.633      8.02     1.4339      95.6 
3        -7.961      1.00  
4        65.889      2.59     1.4856      85.2 
5       -16.706      1.80  
6       -74.525      0.89     1.6204      38.4 
7        19.611      3.39     1.4856      85.2 
8       -25.809     26.21  
9      -461.611      1.07     1.5891      61.1 
10       15.094      2.23     1.6204      38.4 
11       21.286      5.26     1.4339      95.6 
12      -26.908                        
                               
       結像レンズ                       
面番号   r           d        nd          νd
21      -25.344      3.75     1.5163      64.1 
22      146.068      8.75     1.6779      55.3 
23      -32.678      2.50  
24       91.455      8.75     1.4970      81.5 
25      -31.076      3.75     1.6730      38.1 
26     -112.813                       
 
(条件式対応値)
 NA    0.3
 Fob   18
 Ftl   90
 CRA   7.3°
 Q     1 
 P     1
 β=(Ftl×Q×P)/Fob     5
 IH      11
 φP     10.8
 log(2×IH/β)   0.64
 -1.06×NA+0.86   0.54
 
Numerical Example 3
Unit: mm

Objective lens
Surface number r d nd νd
Object ∞ 0.17 1.5163 64.1
0 ∞ 1.47
1 -7.296 2.23 1.5268 51.4
2 14.633 8.02 1.4339 95.6
3 -7.961 1.00
4 65.889 2.59 1.4856 85.2
5 -16.706 1.80
6 -74.525 0.89 1.6204 38.4
7 19.611 3.39 1.4856 85.2
8 -25.809 26.21
9 -461.611 1.07 1.5891 61.1
10 15.094 2.23 1.6204 38.4
11 21.286 5.26 1.4339 95.6
12 -26.908

Imaging lens
Surface number r d nd νd
21 -25.344 3.75 1.5163 64.1
22 146.068 8.75 1.6779 55.3
23 -32.678 2.50
24 91.455 8.75 1.4970 81.5
25 -31.076 3.75 1.6730 38.1
26 -112.813

(Conditional expression corresponding value)
NA 0.3
Fob 18
Ftl 90
CRA 7.3 °
Q 1
P 1
β = (Ftl × Q × P) / Fob 5
IH 11
φP 10.8
log (2 × IH / β) 0.64
-1.06 × NA + 0.86 0.54
数値実施例4
単位:mm
 
       対物レンズ                       
面番号   r           d         nd         νd
物体     ∞          0.17     1.5163      64.1 
0        ∞          0.48 
1        -3.377      4.12     1.4587      67.7 
2        -3.334      0.14 
3       -12.952      2.45     1.5691      71.3 
4        -6.973      0.18 
5       -89.413      0.99     1.5750      41.4 
6        15.155      5.85     1.4339      95.3 
7        -9.522      0.18 
8       125.839      0.90     1.5520      49.7 
9        16.241      4.88     1.4856      85.2 
10      -17.209      1.90 
11       39.450      1.17     1.5520      49.7 
12        7.407      6.84     1.4339      95.3 
13      -12.884      1.02     1.5268      51.4 
14      -64.453     17.55 
15       76.843      2.52     1.6034      38.0 
16       -9.751      1.53     1.4856      85.2 
17       11.623 
 
                               
       結像レンズ                       
面番号   r           d        nd          νd
21      -21.420      3.17     1.5163      64.1 
22      123.450      7.40     1.6779      55.3 
23      -27.618      2.11 
24       77.294      7.40     1.4970      81.5 
25      -26.264      3.17     1.6730      38.1 
26      -95.345  
 
(条件式対応値)
 NA   0.75
 Fob  4.5
 Ftl  76    
 CRA  8.7°  
 Q    1  
 P    1  
 β=(Ftl×Q×P)/Fob  17
 IH   11 
 φP   6.8
 log(2×IH/β)    0.11
 -1.06×NA+0.86   0.06
 
Numerical Example 4
Unit: mm

Objective lens
Surface number r d nd νd
Object ∞ 0.17 1.5163 64.1
0 ∞ 0.48
1 -3.377 4.12 1.4587 67.7
2 -3.334 0.14
3 -12.952 2.45 1.5691 71.3
4 -6.973 0.18
5 -89.413 0.99 1.5750 41.4
6 15.155 5.85 1.4339 95.3
7 -9.522 0.18
8 125.839 0.90 1.5520 49.7
9 16.241 4.88 1.4856 85.2
10 -17.209 1.90
11 39.450 1.17 1.5520 49.7
12 7.407 6.84 1.4339 95.3
13 -12.884 1.02 1.5268 51.4
14 -64.453 17.55
15 76.843 2.52 1.6034 38.0
16 -9.751 1.53 1.4856 85.2
17 11.623


Imaging lens
Surface number r d nd νd
21 -21.420 3.17 1.5163 64.1
22 123.450 7.40 1.6779 55.3
23 -27.618 2.11
24 77.294 7.40 1.4970 81.5
25 -26.264 3.17 1.6730 38.1
26 -95.345

(Conditional expression corresponding value)
NA 0.75
Fob 4.5
Ftl 76
CRA 8.7 °
Q 1
P 1
β = (Ftl × Q × P) / Fob 17
IH 11
φP 6.8
log (2 × IH / β) 0.11
-1.06 × NA + 0.86 0.06
 以上のように、本発明にかかる顕微鏡対物レンズは、大きなNAで広い範囲を撮影するコンパクトな顕微鏡システムに有用である。 As described above, the microscope objective lens according to the present invention is useful for a compact microscope system for photographing a wide range with a large NA.
 L1~L11、L21~L26 各レンズ
 CG カバーガラス
 
L1 to L11, L21 to L26 lenses CG Cover glass

Claims (3)

  1.  無限遠補正の結像レンズの焦点距離をFtl、最大像高をIH、中間鏡筒倍率係数をQ、投影倍率係数をPとそれぞれしたとき、
     顕微鏡対物レンズと結像レンズの間の主光線最大傾角CRA(単位:度)は、条件式(1)を満足することを特徴とする顕微鏡対物レンズ。
     5<CRA<22   (1)
     CRA=tan-1(IH/(Ftl×Q×P)) 
    When the focal length of the imaging lens for infinity correction is Ftl, the maximum image height is IH, the intermediate barrel magnification factor is Q, and the projection magnification factor is P,
    A microscope objective lens characterized in that a principal ray maximum inclination angle CRA (unit: degree) between the microscope objective lens and the imaging lens satisfies the conditional expression (1).
    5 <CRA <22 (1)
    CRA = tan −1 (IH / (Ftl × Q × P))
  2.  前記顕微鏡対物レンズの射出瞳径φPは、条件式(2)を満足することを特徴とする請求項1に記載の顕微鏡対物レンズ。
     φP<15   (2)
    The microscope objective lens according to claim 1, wherein an exit pupil diameter φP of the microscope objective lens satisfies the conditional expression (2).
    φP <15 (2)
  3.  前記顕微鏡対物レンズの入射側の開口数をNA、前記顕微鏡対物レンズの焦点距離をFobとし、結像面に配置される撮像素子への総合投影倍率を以下に定義されるβとしたとき、
     β=(Ftl×Q×P)/Fob、
     条件式(3)、(4)を満足することを特徴とする請求項2に記載の顕微鏡対物レンズ。
     0.2<NA   (3)
     log(2×IH/β)>-1.06×NA+0.86 (4)
     
     
    When the numerical aperture on the incident side of the microscope objective lens is NA, the focal length of the microscope objective lens is Fob, and the total projection magnification on the image pickup device arranged on the imaging surface is β defined below,
    β = (Ftl × Q × P) / Fob,
    3. The microscope objective lens according to claim 2, wherein conditional expressions (3) and (4) are satisfied.
    0.2 <NA (3)
    log (2 × IH / β)> − 1.06 × NA + 0.86 (4)

PCT/JP2013/060907 2012-04-17 2013-04-11 Microscope objective lens WO2013157470A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-093726 2012-04-17
JP2012093726A JP2013222078A (en) 2012-04-17 2012-04-17 Microscope objective lens

Publications (1)

Publication Number Publication Date
WO2013157470A1 true WO2013157470A1 (en) 2013-10-24

Family

ID=49383429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060907 WO2013157470A1 (en) 2012-04-17 2013-04-11 Microscope objective lens

Country Status (2)

Country Link
JP (1) JP2013222078A (en)
WO (1) WO2013157470A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104238076A (en) * 2014-08-19 2014-12-24 利达光电股份有限公司 Monitoring camera with high resolution ratio
CN104280868A (en) * 2014-10-29 2015-01-14 南京康庄光电仪器有限公司 Microscope objective lens
NL2011874C2 (en) * 2013-11-29 2015-06-01 Anteryon Wafer Optics B V Lens system.
CN104932086A (en) * 2015-06-29 2015-09-23 中山联合光电科技股份有限公司 Large-aperture and large image plane optical lens
WO2019125160A1 (en) 2017-12-21 2019-06-27 Anteryon Wafer Optics B.V. Lens system
US10935771B2 (en) 2017-12-21 2021-03-02 Anteryon International B.V. Lens system
US11048067B2 (en) 2018-05-25 2021-06-29 Anteryon International B.V. Lens system
CN113433705A (en) * 2021-08-26 2021-09-24 沂普光电(天津)有限公司 VR optical lens module
CN114089511A (en) * 2021-11-26 2022-02-25 湖北久之洋红外系统股份有限公司 Very wide band transmission type telescopic optical system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6397717B2 (en) * 2014-10-08 2018-09-26 オリンパス株式会社 Microscope imaging lens, microscope apparatus, and imaging optical system
CN105044881B (en) * 2015-08-28 2017-08-22 大族激光科技产业集团股份有限公司 Magnifying glass head and Laser Processing optical system
CN107329241B (en) * 2016-04-29 2020-02-28 信泰光学(深圳)有限公司 Wide-angle lens
KR102512540B1 (en) * 2020-06-22 2023-03-23 주식회사 에이스솔루텍 Cemented lens, lens optical system and Imaging Apparatus
CN114217433B (en) * 2021-12-20 2023-06-02 中国科学院长春光学精密机械与物理研究所 Eyepiece optical system with long exit pupil
CN114153064B (en) * 2021-12-31 2023-09-01 湖南长步道光学科技有限公司 Integrated micro-optical system and microscope

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006178440A (en) * 2004-11-29 2006-07-06 Nikon Corp Zoom microscope
JP2007011092A (en) * 2005-06-30 2007-01-18 Nikon Corp Objective lens
WO2011070943A1 (en) * 2009-12-09 2011-06-16 株式会社ニコン Zoom lens for microscope, and microscope
JP2012163616A (en) * 2011-02-03 2012-08-30 Nikon Corp Zoom lens for microscope and microscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006178440A (en) * 2004-11-29 2006-07-06 Nikon Corp Zoom microscope
JP2007011092A (en) * 2005-06-30 2007-01-18 Nikon Corp Objective lens
WO2011070943A1 (en) * 2009-12-09 2011-06-16 株式会社ニコン Zoom lens for microscope, and microscope
JP2012163616A (en) * 2011-02-03 2012-08-30 Nikon Corp Zoom lens for microscope and microscope

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2011874C2 (en) * 2013-11-29 2015-06-01 Anteryon Wafer Optics B V Lens system.
WO2015080582A1 (en) 2013-11-29 2015-06-04 Anteryon Wafer Optics B.V. Lens system
CN104238076A (en) * 2014-08-19 2014-12-24 利达光电股份有限公司 Monitoring camera with high resolution ratio
CN104238076B (en) * 2014-08-19 2018-11-06 利达光电股份有限公司 A kind of high-resolution monitoring camera
CN104280868A (en) * 2014-10-29 2015-01-14 南京康庄光电仪器有限公司 Microscope objective lens
CN104932086A (en) * 2015-06-29 2015-09-23 中山联合光电科技股份有限公司 Large-aperture and large image plane optical lens
WO2019125160A1 (en) 2017-12-21 2019-06-27 Anteryon Wafer Optics B.V. Lens system
US10935771B2 (en) 2017-12-21 2021-03-02 Anteryon International B.V. Lens system
US11048067B2 (en) 2018-05-25 2021-06-29 Anteryon International B.V. Lens system
CN113433705A (en) * 2021-08-26 2021-09-24 沂普光电(天津)有限公司 VR optical lens module
CN114089511A (en) * 2021-11-26 2022-02-25 湖北久之洋红外系统股份有限公司 Very wide band transmission type telescopic optical system
CN114089511B (en) * 2021-11-26 2024-01-16 湖北久之洋红外系统股份有限公司 Very wide band transmission type telescopic optical system

Also Published As

Publication number Publication date
JP2013222078A (en) 2013-10-28

Similar Documents

Publication Publication Date Title
WO2013157470A1 (en) Microscope objective lens
JP5379784B2 (en) Fixed focus lens
US7253972B2 (en) Telephoto lens system
JP5616539B2 (en) Ultra wide-angle lens and imaging device
JP5552000B2 (en) Viewfinder device and imaging device
JP6401137B2 (en) Imaging lens and imaging apparatus
JP5767335B2 (en) Zoom lens and imaging device
JP2019139238A (en) Image-capturing optical system and image-capturing device
US6747817B2 (en) Macro lens, and camera comprising the same
WO2018235352A1 (en) Objective optical system for endoscope
JP2011075613A (en) Variable-magnification optical system and image pickup device
JP5642894B2 (en) Super wide-angle lens and imaging apparatus using the same
JPWO2013031180A1 (en) Zoom lens and imaging device
JPWO2017216969A1 (en) Bright relay optical system and optical system for rigid mirror using the same, rigid mirror
JP5767330B2 (en) Zoom lens and imaging device
JPWO2009093582A1 (en) Telescope optics
JP5063211B2 (en) Zoom lens and imaging device
CN109983383B (en) Endoscope objective optical system
JP5200564B2 (en) Inner focus optical system, imaging device, and focusing method
JPWO2013031184A1 (en) Zoom lens and imaging device
JP2013054191A (en) Zoom lens
JP5767332B2 (en) Zoom lens and imaging device
WO2020021662A1 (en) Microscope objective lens and microscope
JPWO2013031178A1 (en) Zoom lens and imaging device
JP2014081429A (en) Imaging lens, optical device having imaging lens and manufacturing method of imaging lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13778553

Country of ref document: EP

Kind code of ref document: A1