WO2013157296A1 - Fastening structure for supercharger system pipe - Google Patents

Fastening structure for supercharger system pipe Download PDF

Info

Publication number
WO2013157296A1
WO2013157296A1 PCT/JP2013/054090 JP2013054090W WO2013157296A1 WO 2013157296 A1 WO2013157296 A1 WO 2013157296A1 JP 2013054090 W JP2013054090 W JP 2013054090W WO 2013157296 A1 WO2013157296 A1 WO 2013157296A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
rubber
fastening structure
innermost layer
hose
Prior art date
Application number
PCT/JP2013/054090
Other languages
French (fr)
Japanese (ja)
Inventor
光泰 川原
熊谷 宏
理恵 藤満
智彦 齊藤
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013157296A1 publication Critical patent/WO2013157296A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/562Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits using extra joining elements, i.e. which are not integral with the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/565Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits involving interference fits, e.g. force-fits or press-fits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/522Joining tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/08Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
    • F16L11/085Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more braided layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L33/00Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses
    • F16L33/02Hose-clips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics

Definitions

  • This invention relates to the fastening structure of the piping for supercharger systems used for connecting between the apparatuses which comprise a supercharger system.
  • the heat-resistant hose of Patent Document 1 includes a first inner rubber layer, a second inner rubber layer, a reinforcing yarn layer, and an outer rubber layer from the inside.
  • the first inner rubber layer is made of a fluorine compound rubber.
  • the second inner rubber layer and the outer rubber layer are made of silicone rubber.
  • the reinforcing yarn layer is formed of reinforcing yarn such as aramid resin.
  • the heat-resistant hose has improved fatigue resistance by defining the properties of the silicone rubber that forms the second inner rubber layer and the outer rubber layer and the number of reinforcement yarns that are driven into the reinforcement yarn layer.
  • the turbo hose is fitted to a pipe connecting part with a bulge in devices such as a supercharger, an intercooler, and a pipe joint. It is common to fasten with a connector.
  • a fastening structure when the pulsation due to gas pressure or vibration of the engine is received, there is a possibility that a deviation in the separating direction may occur between the pipe connecting portion and the turbo hose.
  • a large strain is generated in the innermost layer of the turbo hose between the bulge and the end of the clamp, and the innermost layer is cracked.
  • the present invention was made in view of the above-described conventional situation, and is a structure that fastens a turbo hose using a clamp or a quick connector to a pipe connecting portion with a bulge constituting a supercharger system, It aims at providing the fastening structure of the piping for supercharger systems which can prevent the crack generation of the innermost layer resulting from the shift
  • the present invention relates to a fastening structure for piping used between system components such as a turbocharger, an intercooler, and a pipe joint constituting a supercharger system, and a clamp or a quick connector is connected to a pipe connecting portion with a bulge of the system components.
  • It has a structure in which a turbo hose is fitted.
  • the turbo hose has an innermost layer made of fluorine compound rubber and an outer skin layer on the outer side, and the innermost layer has a breaking elongation of 230 ° C. Therefore, the above configuration is used as a means for solving the conventional problems.
  • the fastening structure for a supercharger system pipe in a structure in which a turbo hose is fastened using a clamp to a bulge-attached pipe connecting part of a device constituting the supercharger system, the pipe connecting part and the turbo Generation of cracks in the innermost layer due to deviation from the hose can be prevented.
  • FIG. 1 The fastening structure shown in FIG. 1 is such that a turbo hose H is fitted to a pipe connecting part P with a bulge (B) of the equipment M constituting the supercharger system, and a clamp C is fixed to the outer periphery of the fitting part. It consists of.
  • the equipment M constituting the supercharger system includes a turbocharger, an intercooler, a pipe joint, and the like.
  • the bulge B is a bulging portion for retaining the cap integrally formed at the tip of the pipe connecting portion P or the like.
  • the clamp C is a well-known piping clamp having a band portion and a connecting portion, and the turbo hose H is fastened to the piping connecting portion P at a position closer to the base end side than the bulge B.
  • a quick connector may be used instead of the clamp.
  • the turbo hose H has an innermost layer 1 made of a fluorine compound rubber and an outer skin layer 2 outside thereof.
  • the outer skin layer 2 has a reinforcing yarn layer 3 between the layers, and the inner side of the reinforcing yarn layer 3 is an intermediate layer 2A and the outer side of the reinforcing yarn layer 3 is an outermost layer 2B.
  • the breaking elongation of the innermost layer 1 is 100% or more in an environment of 230 ° C., and the compressibility of the innermost layer 1 in a state where the turbo hose is fastened is in a range of 20 to 50%. It is supposed to be.
  • the breaking elongation of the innermost layer 1 is 100% or more in an environment of 230 ° C., so that the pipe connecting portion P and the turbo hose H It is possible to prevent the innermost layer 1 from cracking due to the deviation.
  • the breaking elongation of the innermost layer 1 in a turbo hose fastening state is 100% or more under an environment of 230 ° C. This is because the distortion generated in the innermost layer 1 of the turbo hose H is due to the following two factors. 1. In an initial state in which the turbo hose H is fastened with the clamp C, the innermost layer 1 has a compression rate of 20% to 50%, that is, 20% to 50%. 2.
  • the initial compression rate of the innermost layer 1 when the turbo hose is fastened is set to 20 to 50%, so that hose disconnection and air leakage during supercharging can be suppressed. If the initial compression ratio exceeds 50%, the clamp may be damaged. Therefore, by setting the compressibility of the innermost layer 1 in the range of 20 to 50%, it is possible to reliably prevent the innermost layer 1 from cracking.
  • the fluorine compound rubber forming the innermost layer 1 is a peroxide vulcanization system and has a Shore hardness of 65 to 80, and MEK (methyl ethyl ketone) It is assumed that the volume swelling ratio when immersed in the container at 40 ° C. for 70 hours is in the range of 400 to 700%.
  • Fluorine compound rubber forming the innermost layer 1 is binary (copolymer of vinylidene fluoride and hexafluoropropylene), ternary (terpolymer of vinylidene fluoride, hexafluoropropylene and tetrafluoroethylene), and tetrafluoro. Any of the copolymers of ethylene and propylene can be used as the polymer.
  • the innermost layer 1 is formed of a peroxide vulcanized fluorine compound rubber, so that high resistance to acids generated in the piping environment of the intercooler can be obtained.
  • the fluorine compound rubber forming the innermost layer 1 has a Shore hardness in the range of 65 to 80, so that both supercharging and prevention of hose disconnection due to rocking, air sealability, and workability during pipe insertion are achieved. It becomes possible to do.
  • the outer skin layer 2 is made of silicone rubber, acrylic rubber, ethylene / acrylic rubber, ethylene / propylene rubber, chloroprene, chlorosulfonated rubber, epichlorohydrin rubber and hydrogenated nitrile rubber.
  • silicone rubber acrylic rubber, ethylene / acrylic rubber, ethylene / propylene rubber, chloroprene, chlorosulfonated rubber, epichlorohydrin rubber and hydrogenated nitrile rubber.
  • the fastening structure of the present invention relates to a reinforcing yarn layer 3 disposed between the outer layers 2 of the turbo hose as a more preferable embodiment, and has a thickness ta of the innermost layer 1 and an innermost layer as shown in FIG. It arrange
  • yarn layer 3 may be set to 0.5 mm ⁇ ta ⁇ tb ⁇ 3mm.
  • the thickness ta of the innermost layer 1 by setting the thickness ta of the innermost layer 1 to 0.5 mm or more, it is possible to suppress excessive distortion from occurring in the innermost layer 1 due to hose displacement at the time of supercharging and swinging, and further reinforcement It is possible to suppress the possibility that the yarn layer is exposed to the innermost layer. Further, by setting the thickness tb from the innermost layer 1 to the reinforcing yarn layer 3 to 3 mm or less, the reinforcing yarn layer 3 suppresses deformation of the innermost layer 1 at the time of supercharging. Excessive distortion can be suppressed.
  • the amount of strain generated in the innermost layer 1 when the hose is displaced can be suppressed. Can do.
  • the compression elastic modulus Ea of the rubber forming the innermost layer 1 is more than the compression elastic modulus Eb of the rubber of the intermediate layer 2A and the outermost layer 2B constituting the outer skin layer 2.
  • the compression elastic modulus Ea of the rubber of the innermost layer 1 is in the range of 10 to 25 MPa under an environment of 230 ° C.
  • the compression elastic modulus Eb of the rubber of the intermediate layer 2A and the outermost layer 2B is It is assumed that the pressure is 2 to 9 MPa in an environment of 230 ° C.
  • the fastening structure of the present invention by setting the compression elastic modulus Ea of the rubber of the innermost layer 1 to 10 MPa or more even at 230 degrees, it is possible to maintain sufficient rubber strength so as not to show significant deformation even when a hose shift occurs.
  • the turbo hose H can be inserted into the pipe connection portion P without any problem.
  • the compression elastic modulus of the rubber of the intermediate layer 2A and the outermost layer 2B is 2 to 9 MPa, the rubber is sufficiently compressed at the time of clamping, so that sufficient sealing performance can be secured.
  • the reinforcing yarn forming the reinforcing yarn layer 3 is mixed into a long fiber or material formed in one of spiral winding, braid knitting and knitting winding. It is assumed that it is a short fiber. Thereby, the intensity
  • Example 1 [Hose production] In producing the hose having the structure shown in FIG. 2, a ternary FKM (a terpolymer of vinylidene fluoride, hexafluoropropylene, and tetrafluoroethylene) that forms the innermost layer 1 according to the formulation shown in Table 1 was used. Further, silicon rubber was used for the intermediate layer (2A) and the outermost layer (2B), and polymetaphenylene terephthalamide was used for the reinforcing yarn layer (3).
  • a ternary FKM a terpolymer of vinylidene fluoride, hexafluoropropylene, and tetrafluoroethylene
  • each material was prepared, and each material was kneaded using a kneader, and then a rubber composition was prepared by adding a crosslinking agent and a co-crosslinking agent and kneading using a roll.
  • a hose (turbo hose H) was created using the rubber composition.
  • the innermost layer 1 was extruded on a mandrel with a specified thickness.
  • the intermediate layer 2A was extruded on the outer peripheral surface of the innermost layer 1 with a specified thickness.
  • polymetaphenylene terephthalamide fibers were knitted on the outer periphery of the laminate by knitting winding to form a reinforcing yarn layer.
  • the outermost layer 2B was extruded and formed with a specified thickness on the outer periphery of the laminate. Each layer was molded into a mandrel as described above, and then primary vulcanized at 165 ° C.
  • each layer of the hose is 0.7 mm for the innermost layer (FKM layer), 1.8 mm for the intermediate layer, and 2.5 mm (outermost layer) for the outermost layer.
  • the outer diameter of the hose is 63.2 mm, and the length of the hose is 300 mm.
  • Example 2 Except that the blending amount of the vulcanization accelerator in the fluororubber was 0.9 phr, the same hose as in Example 1 was produced and the same test was performed.
  • Example 1 A hose similar to that of Example 1 was prepared and the same test was performed except that the blending amounts of carbon black (CB), crosslinking agent, and vulcanization accelerator in the fluororubber were changed.
  • CB carbon black
  • crosslinking agent crosslinking agent
  • vulcanization accelerator vulcanization accelerator
  • the fastening structure of the supercharger system pipe of the present invention is not limited to the above-described embodiment, and the details of the structure can be appropriately changed without departing from the gist of the present invention. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)
  • Joints That Cut Off Fluids, And Hose Joints (AREA)

Abstract

A fastening structure for a pipe used between system component devices such as a turbocharger, an intercooler, and a pipe joint which constitute a supercharger system, the fastening structure for a supercharger system pipe being configured having a structure in which a turbo hose (H) is fitted by a clamp (C) or a quick connector to a bulged pipe connecting part (P) of a system component device (M), the turbo hose (H) being provided with an innermost layer (1) comprising a fluorine-compound-based rubber, and an outer cover layer (2) on the outside thereof, and the rupture elongation of the innermost layer (1) being at least 100% in an environment of 230°C or lower. By this configuration, cracking of the innermost layer (1) due to misalignment of the pipe connecting part (P) and the turbo hose (H) is prevented.

Description

過給機システム用配管の締結構造Fastening structure for turbocharger system piping
 本発明は、過給機システムを構成する機器間を接続するのに用いられる過給機システム用配管の締結構造に関するものである。 This invention relates to the fastening structure of the piping for supercharger systems used for connecting between the apparatuses which comprise a supercharger system.
 従来において、過給機システムに用いる配管としては、特許文献1に記載された耐熱性ホース(ターボホース)がある。特許文献1の耐熱性ホースは、内側から、第1内面ゴム層と、第2内面ゴム層と、補強糸層と、外面ゴム層を備えている。第1内面ゴム層は、フッ素化合物系ゴム製である。また、第2内面ゴム層及び外面ゴム層は、シリコーンゴム製である。さらに、補強糸層は、アラミド系樹脂等の補強糸で形成してある。そして、耐熱性ホースは、第2内面ゴム層及び外面ゴム層を形成するシリコーンゴムの性状や、補強糸層における補強糸の打ち込み数を規定することで、耐疲労性を高めたものである。 Conventionally, as a pipe used for a supercharger system, there is a heat-resistant hose (turbo hose) described in Patent Document 1. The heat-resistant hose of Patent Document 1 includes a first inner rubber layer, a second inner rubber layer, a reinforcing yarn layer, and an outer rubber layer from the inside. The first inner rubber layer is made of a fluorine compound rubber. The second inner rubber layer and the outer rubber layer are made of silicone rubber. Further, the reinforcing yarn layer is formed of reinforcing yarn such as aramid resin. The heat-resistant hose has improved fatigue resistance by defining the properties of the silicone rubber that forms the second inner rubber layer and the outer rubber layer and the number of reinforcement yarns that are driven into the reinforcement yarn layer.
日本国特開2008-248943号公報Japanese Unexamined Patent Publication No. 2008-248943
 ところで、過給機システムに用いる配管の締結構造では、ターボホースは、過給機、インタークーラ及び管継手等の機器におけるバルジ付の配管連結部に嵌合され、その嵌合部分をクランプもしくはクイックコネクターで止着するのが一般的である。このような締結構造では、ガス圧による脈動やエンジンの振動を受けた際に、配管連結部とターボホースとの間に離脱方向のずれが発生することがあり、この際、従来の耐熱性ホースをターボホースに用いた場合にはバルジとクランプの端部との間でターボホース最内層に大きな歪が発生して同最内層に亀裂が生じる虞がある。 By the way, in the pipe fastening structure used in the supercharger system, the turbo hose is fitted to a pipe connecting part with a bulge in devices such as a supercharger, an intercooler, and a pipe joint. It is common to fasten with a connector. In such a fastening structure, when the pulsation due to gas pressure or vibration of the engine is received, there is a possibility that a deviation in the separating direction may occur between the pipe connecting portion and the turbo hose. Is used for the turbo hose, there is a possibility that a large strain is generated in the innermost layer of the turbo hose between the bulge and the end of the clamp, and the innermost layer is cracked.
 本発明は、上記従来の状況に鑑みて成されたもので、過給機システムを構成する機器のバルジ付配管連結部に、クランプもしくはクイックコネクターを用いてターボホースを締結する構造であって、配管連結部とターボホースとのずれを起因とする最内層の亀裂発生を防ぐことができる過給機システム用配管の締結構造を提供することを目的としている。 The present invention was made in view of the above-described conventional situation, and is a structure that fastens a turbo hose using a clamp or a quick connector to a pipe connecting portion with a bulge constituting a supercharger system, It aims at providing the fastening structure of the piping for supercharger systems which can prevent the crack generation of the innermost layer resulting from the shift | offset | difference of a piping connection part and a turbo hose.
 本発明は、過給機システムを構成するターボチャージャ、インタークーラ及び管継手等のシステム構成機器間に用いる配管の締結構造であって、システム構成機器のバルジ付配管連結部に、クランプ若しくはクイックコネクターによってターボホースを嵌合した構造を有している。そして、過給機システム用配管の締結構造は、ターボホースが、フッ素化合物系ゴムから成る最内層とその外側の外皮層とを備えており、最内層の破断伸度が、230℃の環境下で100%以上である構成としており、上記構成をもって従来の課題を解決するための手段としている。 The present invention relates to a fastening structure for piping used between system components such as a turbocharger, an intercooler, and a pipe joint constituting a supercharger system, and a clamp or a quick connector is connected to a pipe connecting portion with a bulge of the system components. It has a structure in which a turbo hose is fitted. In the supercharger system piping fastening structure, the turbo hose has an innermost layer made of fluorine compound rubber and an outer skin layer on the outer side, and the innermost layer has a breaking elongation of 230 ° C. Therefore, the above configuration is used as a means for solving the conventional problems.
 本発明に係る過給機システム用配管の締結構造によれば、過給機システムを構成する機器のバルジ付配管連結部に、クランプを用いてターボホースを締結する構造において、配管連結部とターボホースとのずれを起因とする最内層の亀裂発生を防ぐことができる。 According to the fastening structure for a supercharger system pipe according to the present invention, in a structure in which a turbo hose is fastened using a clamp to a bulge-attached pipe connecting part of a device constituting the supercharger system, the pipe connecting part and the turbo Generation of cracks in the innermost layer due to deviation from the hose can be prevented.
本発明に係る過給機システム用配管の締結構造の一実施形態を説明する断面図である。It is sectional drawing explaining one Embodiment of the fastening structure of the piping for supercharger systems which concerns on this invention. 図1に示すターボホースの軸線に直交する断面図である。It is sectional drawing orthogonal to the axis line of the turbo hose shown in FIG. 図1に示すターボホースの軸線に沿う断面図である。It is sectional drawing which follows the axis line of the turbo hose shown in FIG.
 以下、図面に基づいて、本発明に係る過給機システム用配管の締結構造の一実施形態を説明する。
 図1に示す締結構造は、過給機システムを構成する機器Mのバルジ(B)付配管連結部PにターボホースHを嵌合し、その嵌合部分の外周にクランプCを止着して成るものである。
Hereinafter, an embodiment of a fastening structure for a supercharger system pipe according to the present invention will be described based on the drawings.
The fastening structure shown in FIG. 1 is such that a turbo hose H is fitted to a pipe connecting part P with a bulge (B) of the equipment M constituting the supercharger system, and a clamp C is fixed to the outer periphery of the fitting part. It consists of.
 過給機システムを構成する機器Mとしては、ターボチャージャ、インタークーラ及び管継手などが挙げられる。バルジBは、配管連結部Pの先端などに一体形成した抜け止め用の膨出部である。クランプCは、バンド部と連結部を有する周知の配管用クランプであり、配管連結部Pに対しては、バルジBよりも基端側の位置でターボホースHを緊締する。なお、クランプに代えてクイックコネクタを用いることもある。 The equipment M constituting the supercharger system includes a turbocharger, an intercooler, a pipe joint, and the like. The bulge B is a bulging portion for retaining the cap integrally formed at the tip of the pipe connecting portion P or the like. The clamp C is a well-known piping clamp having a band portion and a connecting portion, and the turbo hose H is fastened to the piping connecting portion P at a position closer to the base end side than the bulge B. A quick connector may be used instead of the clamp.
 前記ターボホースHは、図2及び図3に示すように、フッ素化合物系ゴムから成る最内層1と、その外側の外皮層2を有している。外皮層2は、層間に補強糸層3を有し、補強糸層3の内側を中間層2Aとし、補強糸層3の外側を最外層2Bとしている。 2 and 3, the turbo hose H has an innermost layer 1 made of a fluorine compound rubber and an outer skin layer 2 outside thereof. The outer skin layer 2 has a reinforcing yarn layer 3 between the layers, and the inner side of the reinforcing yarn layer 3 is an intermediate layer 2A and the outer side of the reinforcing yarn layer 3 is an outermost layer 2B.
 そして、ターボホースHは、最内層1の破断伸度が、230℃の環境下で100%以上であると共に、ターボホース締結状態での最内層1の圧縮率が、20~50%の範囲であるものとしている。 In the turbo hose H, the breaking elongation of the innermost layer 1 is 100% or more in an environment of 230 ° C., and the compressibility of the innermost layer 1 in a state where the turbo hose is fastened is in a range of 20 to 50%. It is supposed to be.
 上記構成を備えた締結構造では、ガス圧による脈動やエンジンの振動を受けた際に、締結部パイプ表面に付着したオイルによりさらに助長されて、配管連結部PとターボホースHとの間に離脱方向のずれが発生することがあり、図1において、バルジBの頂点とクランプCの端部(右端部)との間でターボホースHが強く挟まれる状態となる。 In the fastening structure with the above configuration, when subjected to pulsation due to gas pressure or vibration of the engine, it is further promoted by oil adhering to the surface of the fastening part pipe, and is separated between the pipe connection part P and the turbo hose H. In FIG. 1, the turbo hose H is strongly sandwiched between the apex of the bulge B and the end of the clamp C (right end) in FIG.
 ここで、上記の如き離脱方向のずれが発生すると、バルジBの頂点とクランプCの端部との間の距離が小さくなる。このときにターボホースHの最内層1に発生する歪をマイクロスコープで測定したところ、最内層1に約70%の歪が発生していることが判明した。このように、バルジBとクランプCの端部との間で最内層1に大きな歪が発生すると、最内層1に亀裂が生じる虞がある。 Here, when the deviation in the separating direction as described above occurs, the distance between the apex of the bulge B and the end of the clamp C becomes small. At this time, when the strain generated in the innermost layer 1 of the turbo hose H was measured with a microscope, it was found that about 70% strain was generated in the innermost layer 1. Thus, when a large strain occurs in the innermost layer 1 between the bulge B and the end of the clamp C, there is a possibility that the innermost layer 1 will crack.
 これに対して、上記の締結構造では、最内層1の破断伸度を230℃の環境下で100%以上であるため、ホースずれが発生した状態においても、配管連結部PとターボホースHとのずれを起因とする最内層1の亀裂発生を防ぐことができる。 On the other hand, in the above fastening structure, the breaking elongation of the innermost layer 1 is 100% or more in an environment of 230 ° C., so that the pipe connecting portion P and the turbo hose H It is possible to prevent the innermost layer 1 from cracking due to the deviation.
 なお、ターボホース締結状態での最内層1の破断伸度は、230℃の環境下で100%以上とする。なぜならば、ターボホースHの最内層1に発生する歪みは、下記の2つの要因による。
 1.ターボホースHをクランプCにて締結した初期状態では、最内層1の圧縮率は20%から50%、すなわち20%から50%の歪みが発生する。
 2.配管表面へのオイル溜まり、及びターボホースHの揺動(揺動量:最小±5mmから最大±40mm)、繰り返し過給(最小:0.1MPaから最大0.4MPa)により、ターボホースHに初期の締結状態からずれが発生し、配管連結部PのバルジBとクランプC端部で挟まれる。すると、過給、揺動によりターボホースHが抜けようとする力が、バルジBのバックアングルとクランプ端部間に集中し、ターボホースHをさらに圧縮変形させるために、50~70%の歪みが発生する。
In addition, the breaking elongation of the innermost layer 1 in a turbo hose fastening state is 100% or more under an environment of 230 ° C. This is because the distortion generated in the innermost layer 1 of the turbo hose H is due to the following two factors.
1. In an initial state in which the turbo hose H is fastened with the clamp C, the innermost layer 1 has a compression rate of 20% to 50%, that is, 20% to 50%.
2. Oil accumulation on the pipe surface, rocking of the turbo hose H (swing amount: minimum ± 5 mm to maximum ± 40 mm), and repeated supercharging (minimum: 0.1 MPa to maximum 0.4 MPa) Deviation occurs from the fastened state, and is sandwiched between the bulge B and the end of the clamp C of the pipe connecting portion P. As a result, the force that causes the turbo hose H to come off due to supercharging and swinging concentrates between the back angle of the bulge B and the end of the clamp, so that the turbo hose H is further compressed and deformed. Will occur.
 なお、ターボホース締結状態での最内層1の初期圧縮率は、20~50%にすることで、過給時のホース抜け及びエア漏れの発生を抑制することができる。また、初期圧縮率が50%を超えるものにすると、クランプの破損が発生する虞がある。したがって、最内層1の圧縮率を20~50%の範囲とすることで、最内層1の亀裂発生を確実に防止することができる。 The initial compression rate of the innermost layer 1 when the turbo hose is fastened is set to 20 to 50%, so that hose disconnection and air leakage during supercharging can be suppressed. If the initial compression ratio exceeds 50%, the clamp may be damaged. Therefore, by setting the compressibility of the innermost layer 1 in the range of 20 to 50%, it is possible to reliably prevent the innermost layer 1 from cracking.
 さらに、本発明の締結構造は、より望ましい実施形態として、最内層1を形成するフッ素化合物系ゴムが、パーオキサイド加硫系であって、ショア硬度が65~80であると共に、MEK(メチルエチルケトン)中にて40℃で70時間浸漬した際の体積膨潤率が400~700%の範囲であるものとしている。最内層1を形成するフッ素化合物系ゴムとしては、2元(ビニリデンフロライドとヘキサフルオロプロピレンのコーポリマー)、3元(ビニリデンフロライドとヘキサフルオロプロピレンとテトラフルオロエチレンのターポリマー)、及びテトラフルオロエチレンとプロピレンのコーポリマーのいずれかをポリマーとして使用することができる。 Further, in the fastening structure of the present invention, as a more desirable embodiment, the fluorine compound rubber forming the innermost layer 1 is a peroxide vulcanization system and has a Shore hardness of 65 to 80, and MEK (methyl ethyl ketone) It is assumed that the volume swelling ratio when immersed in the container at 40 ° C. for 70 hours is in the range of 400 to 700%. Fluorine compound rubber forming the innermost layer 1 is binary (copolymer of vinylidene fluoride and hexafluoropropylene), ternary (terpolymer of vinylidene fluoride, hexafluoropropylene and tetrafluoroethylene), and tetrafluoro. Any of the copolymers of ethylene and propylene can be used as the polymer.
 上記構成の締結構造では、最内層1をパーオキサイド加硫系のフッ素化合物系ゴムで形成することで、インタークーラの配管環境で生じる酸に対する高耐性を得ることができる。なお、最内層1を形成するフッ素化合物系ゴムは、ショア硬度を65から80の範囲にすることで、過給、揺動によるホース抜け防止、エアシール性およびパイプ挿入時の作業性の夫々を両立することが可能となる。 In the fastening structure having the above-described configuration, the innermost layer 1 is formed of a peroxide vulcanized fluorine compound rubber, so that high resistance to acids generated in the piping environment of the intercooler can be obtained. The fluorine compound rubber forming the innermost layer 1 has a Shore hardness in the range of 65 to 80, so that both supercharging and prevention of hose disconnection due to rocking, air sealability, and workability during pipe insertion are achieved. It becomes possible to do.
 また、最内層1のMEK体積膨潤率を400%から700%とすることで、フッ素ゴムの高伸特性とゴム強度を両立することが可能となる。したがって、フッ素化合物系ゴムのショア硬度を65~80とし、且つMEK体積膨潤率を400~700%の範囲とすることで、先述したホース抜け防止、エアシール性といったターボホースHとしての機能と、高伸特性と強度とのバランスを良好に得ることができる。 In addition, by setting the MEK volume swelling ratio of the innermost layer 1 to 400% to 700%, it becomes possible to achieve both high elongation characteristics and rubber strength of fluororubber. Therefore, by setting the Shore hardness of the fluorine compound rubber to 65 to 80 and the MEK volume swelling ratio to be in the range of 400 to 700%, the functions of the turbo hose H such as prevention of hose disconnection and air sealability described above can be achieved. A good balance between elongation characteristics and strength can be obtained.
 さらに、本発明の締結構造は、より望ましい実施形態として、外皮層2が、シリコーンゴム、アクリルゴム、エチレン・アクリルゴム、エチレン・プロピレンゴム、クロロプレン、クロロスルホン化ゴム、エピクロルヒドリンゴム及び水素化ニトリルゴムのいずれか一つを素材としている。 Further, in the fastening structure of the present invention, as a more desirable embodiment, the outer skin layer 2 is made of silicone rubber, acrylic rubber, ethylene / acrylic rubber, ethylene / propylene rubber, chloroprene, chlorosulfonated rubber, epichlorohydrin rubber and hydrogenated nitrile rubber. One of these is used as a material.
 上記構成の締結構造によれば、耐熱性の観点よりシリコーンゴム、アクリルゴム及びエチレン・アクリルゴムのいずれかを用いることがより望ましい。 According to the fastening structure having the above configuration, it is more desirable to use any of silicone rubber, acrylic rubber, and ethylene / acrylic rubber from the viewpoint of heat resistance.
 さらに、本発明の締結構造は、より望ましい実施形態として、ターボホースの外皮層2の層間に配置される補強糸層3に関し、図3に示すように最内層1の厚さtaと、最内層1から補強糸層3までの厚さtbとの関係が、0.5mm<ta<tb<3mmとなるように配置する。 Furthermore, the fastening structure of the present invention relates to a reinforcing yarn layer 3 disposed between the outer layers 2 of the turbo hose as a more preferable embodiment, and has a thickness ta of the innermost layer 1 and an innermost layer as shown in FIG. It arrange | positions so that the relationship with thickness tb from 1 to the reinforcement thread | yarn layer 3 may be set to 0.5 mm <ta <tb <3mm.
 本発明の締結構造では、最内層1の厚さta0.5mm以上とすることで、過給、揺動時のホースずれにより、最内層1に過度の歪みが発生することを抑制し、さらに補強糸層が最内層に露出する虞を抑制することが可能になる。また、最内層1から補強糸層3までの厚さtbを3mm以下とすることで、補強糸層3が過給時の最内層1の変形を抑制するので、ホースずれ時における最内層1の過度の歪みを抑制し得る。したがって、最内層1の厚さtaと、最内層1から補強糸層3までの厚さtbとの関係を上記の如く設定することで、ホースずれ時に最内層1に生じる歪み量を抑制することができる。 In the fastening structure of the present invention, by setting the thickness ta of the innermost layer 1 to 0.5 mm or more, it is possible to suppress excessive distortion from occurring in the innermost layer 1 due to hose displacement at the time of supercharging and swinging, and further reinforcement It is possible to suppress the possibility that the yarn layer is exposed to the innermost layer. Further, by setting the thickness tb from the innermost layer 1 to the reinforcing yarn layer 3 to 3 mm or less, the reinforcing yarn layer 3 suppresses deformation of the innermost layer 1 at the time of supercharging. Excessive distortion can be suppressed. Therefore, by setting the relationship between the thickness ta of the innermost layer 1 and the thickness tb from the innermost layer 1 to the reinforcing yarn layer 3 as described above, the amount of strain generated in the innermost layer 1 when the hose is displaced can be suppressed. Can do.
 さらに、本発明の締結構造は、より望ましい実施形態として、最内層1を形成するゴムの圧縮弾性率Eaが、外皮層2を構成する中間層2A及び最外層2Bのゴムの圧縮弾性率Ebよりも大きく(Ea>Eb)、最内層1のゴムの圧縮弾性率Eaが、230℃の環境下で10~25MPaの範囲であり、中間層2A及び最外層2Bのゴムの圧縮弾性率Ebが、230℃の環境下で2~9MPaであるものとしている。 Further, in the fastening structure of the present invention, as a more desirable embodiment, the compression elastic modulus Ea of the rubber forming the innermost layer 1 is more than the compression elastic modulus Eb of the rubber of the intermediate layer 2A and the outermost layer 2B constituting the outer skin layer 2. (Ea> Eb), the compression elastic modulus Ea of the rubber of the innermost layer 1 is in the range of 10 to 25 MPa under an environment of 230 ° C., and the compression elastic modulus Eb of the rubber of the intermediate layer 2A and the outermost layer 2B is It is assumed that the pressure is 2 to 9 MPa in an environment of 230 ° C.
 本発明の締結構造では、最内層1のゴムの圧縮弾性率Eaを、230度でも10MPa以上とすることで、ホースずれ発生時にも、著しい変形を示さないよう十分なゴム強度を保持することができ、230℃でも25MPa以下とすることで、配管接続部Pに対するターボホースHの挿入性についても問題なきものとすることができる。また、中間層2Aおよび最外層2Bのゴムの圧縮弾性率を2から9MPaとすれば、クランプ締結時に十分にゴムを圧縮した状態となるため、十分なシール性を確保することができる。 In the fastening structure of the present invention, by setting the compression elastic modulus Ea of the rubber of the innermost layer 1 to 10 MPa or more even at 230 degrees, it is possible to maintain sufficient rubber strength so as not to show significant deformation even when a hose shift occurs. In addition, by setting the pressure to 25 MPa or less even at 230 ° C., the turbo hose H can be inserted into the pipe connection portion P without any problem. Further, if the compression elastic modulus of the rubber of the intermediate layer 2A and the outermost layer 2B is 2 to 9 MPa, the rubber is sufficiently compressed at the time of clamping, so that sufficient sealing performance can be secured.
 さらに、本発明の締結構造は、より望ましい実施形態として、補強糸層3を形成する補強糸が、スパイラル巻き、ブレート編み及びニッティング巻きのいずれかに形成した長繊維、又は素材中に混合させた短繊維であるものとしている。これにより、外皮層2並びにターボホースH全体の強度がより高いものとなる。 Furthermore, in the fastening structure of the present invention, as a more desirable embodiment, the reinforcing yarn forming the reinforcing yarn layer 3 is mixed into a long fiber or material formed in one of spiral winding, braid knitting and knitting winding. It is assumed that it is a short fiber. Thereby, the intensity | strength of the outer skin layer 2 and the turbo hose H whole becomes a higher thing.
(実施例1)
[ホース作製]
 図2に示す構造のホースを作製するにあたり、表1に示す配合に従った最内層1を形成する3元FKM(ビニリデンフロライドとヘキサフルオロプロピレンとテトラフルオロエチレンのターポリマー)を用いた。また、中間層(2A)及び最外層(2B)にはシリコンゴムを用い、補強糸層(3)にはポリメタフェニレンテレフタルアミドを用いた。
Example 1
[Hose production]
In producing the hose having the structure shown in FIG. 2, a ternary FKM (a terpolymer of vinylidene fluoride, hexafluoropropylene, and tetrafluoroethylene) that forms the innermost layer 1 according to the formulation shown in Table 1 was used. Further, silicon rubber was used for the intermediate layer (2A) and the outermost layer (2B), and polymetaphenylene terephthalamide was used for the reinforcing yarn layer (3).
 次に、各材料を準備し、ニーダーを用いて各材料を混練し、その後、架橋剤、共架橋剤を添加し、さらにロールを用いて混練することにより、ゴム組成物を調整した。 Next, each material was prepared, and each material was kneaded using a kneader, and then a rubber composition was prepared by adding a crosslinking agent and a co-crosslinking agent and kneading using a roll.
 次に、上記のゴム組成物を用いてホース(ターボホースH)を作成した。
 第一工程において、最内層1を、マンドレルの上に規定の厚さで押出し成形した。
 第二工程において、最内層1の外周面に中間層2Aを規定の厚さで押出し成形した。
 第三工程において、ポリメタフェニレンテレフタルアミド繊維を上記積層体の外周にニッティング巻きにて編み掛けて、これを補強糸層とした。
 第四工程において、上記積層体の外周に、最外層2Bが規定の厚さで押出し成形した。
 上記の如く各層をマンドレルに成形後、165℃で1次加硫し、185℃で2次加硫を行った。
 当該ホースの各層の厚さは、最内層(FKM層)が0.7mm、中間層が1.8mm、最外層が2.5mm(最外層)である。ホースの外径は、63.2mm、ホースの長さは300mmである。
Next, a hose (turbo hose H) was created using the rubber composition.
In the first step, the innermost layer 1 was extruded on a mandrel with a specified thickness.
In the second step, the intermediate layer 2A was extruded on the outer peripheral surface of the innermost layer 1 with a specified thickness.
In the third step, polymetaphenylene terephthalamide fibers were knitted on the outer periphery of the laminate by knitting winding to form a reinforcing yarn layer.
In the fourth step, the outermost layer 2B was extruded and formed with a specified thickness on the outer periphery of the laminate.
Each layer was molded into a mandrel as described above, and then primary vulcanized at 165 ° C. and secondary vulcanized at 185 ° C.
The thickness of each layer of the hose is 0.7 mm for the innermost layer (FKM layer), 1.8 mm for the intermediate layer, and 2.5 mm (outermost layer) for the outermost layer. The outer diameter of the hose is 63.2 mm, and the length of the hose is 300 mm.
 フッ素ゴムの材料評価に際しては、ホースからフッ素ゴム層のみをシート形状にスライスし、下記物性評価を実施した。
 [引張特性]
 ゴムの破断伸度については、230℃の恒温層内で、ダンベル試験片にて引張試験を実施し、引張強度及び破断伸度を測定した。
 [体積膨潤率]
 10mm×10mm×0.5mmのフッ素ゴムをMEK(メチルエチルケトン)中に40℃で70時間浸漬し、その後の体積変化率を比重計により測定した。
 [圧縮弾性率]
 ゴムの圧縮弾性率については、フッ素ゴム、シリコンゴムの試験片(直径:29mm、厚さ:12.5mm)を25%圧縮するまでの弾性率を室温にて測定した。
In evaluating the material of the fluoro rubber, only the fluoro rubber layer was sliced from the hose into a sheet shape, and the following physical properties were evaluated.
[Tensile properties]
Regarding the elongation at break of rubber, a tensile test was carried out with a dumbbell test piece in a constant temperature layer at 230 ° C., and the tensile strength and the elongation at break were measured.
[Volume swelling]
A fluororubber of 10 mm × 10 mm × 0.5 mm was immersed in MEK (methyl ethyl ketone) at 40 ° C. for 70 hours, and the volume change rate thereafter was measured with a hydrometer.
[Compressive modulus]
Regarding the compression modulus of rubber, the modulus of elasticity until 25% compression of a test piece (diameter: 29 mm, thickness: 12.5 mm) of fluororubber and silicon rubber was measured at room temperature.
 [ホース繰り返し加圧耐久評価]
 上記の如く作成した実施例1のホースの一端部を、表面に薄くシリコンオイルを塗布したバルジ付アルミパイプに嵌合し、その嵌合部分にクランプを7Nmで止着すると共に、ホースの他端部をめくら栓で閉塞し、アルミパイプを窒素ボンベに連結した。これを230℃の恒温槽内に30分放置した後、0.3 MPaまで加圧した。
 その結果、ホースがパイプから滑り、ホースがクランプとバルジ間に挟まれた状態になった。この圧力サイクル(0⇔0.3MPa)を100回実施し、その後、ホース内面層の亀裂有無を確認した。実施例1のホースでは、フッ素ゴム層内面にも亀裂が発生することもなく、充分な強伸度を備えていることを確認した。
[Hose repeated pressure durability evaluation]
One end of the hose of Example 1 prepared as described above is fitted into an aluminum pipe with a bulge whose surface is thinly coated with silicone oil, and a clamp is fastened to the fitting portion at 7 Nm, and the other end of the hose The part was closed with a blind plug and the aluminum pipe was connected to a nitrogen cylinder. This was left in a thermostatic bath at 230 ° C. for 30 minutes and then pressurized to 0.3 MPa.
As a result, the hose slipped from the pipe and the hose was sandwiched between the clamp and the bulge. This pressure cycle (0 to 0.3 MPa) was performed 100 times, and then the presence or absence of cracks in the inner surface layer of the hose was confirmed. In the hose of Example 1, it was confirmed that cracks were not generated on the inner surface of the fluororubber layer and that it had sufficient strength and elongation.
(実施例2)
 フッ素ゴム中の加硫促進剤の配合量を0.9phrとする以外は、実施例1と同様のホースを作製し、同様の試験を実施した。
(Example 2)
Except that the blending amount of the vulcanization accelerator in the fluororubber was 0.9 phr, the same hose as in Example 1 was produced and the same test was performed.
(比較例1)
 フッ素ゴム中のカーボンブラック(CB)、架橋剤、加硫促進剤の配合量を変えて、それ以外は、実施例1と同様のホースを作製し、同様の試験を実施した。
(Comparative Example 1)
A hose similar to that of Example 1 was prepared and the same test was performed except that the blending amounts of carbon black (CB), crosslinking agent, and vulcanization accelerator in the fluororubber were changed.
 上記の実施例1,2及び比較例を以下の表1に示す。 The above Examples 1 and 2 and Comparative Examples are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、比較例1では、最内層1に、配管連結部とターボホースとのずれを起因とする亀裂が発生した。これに対して、実施例1及び2では、最内層1に亀裂が発生することがなく、充分な強伸度を備えていることや、十分なシール性を確保し得ることを確認した。 As is clear from Table 1, in Comparative Example 1, a crack was generated in the innermost layer 1 due to a shift between the pipe connecting portion and the turbo hose. On the other hand, in Examples 1 and 2, it was confirmed that the innermost layer 1 was not cracked and had sufficient strength and sufficient sealability.
 本発明の過給機システム用配管の締結構造は、その構成が上記実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲で構成の細部を適宜変更することが可能である。 The fastening structure of the supercharger system pipe of the present invention is not limited to the above-described embodiment, and the details of the structure can be appropriately changed without departing from the gist of the present invention. .
 B  バルジ
 C  クランプ
 H  ターボホース
 P  配管連結部
 M  機器
 1  最内層
 2  外皮層
 2A 中間層
 2B 最外層
 3  補強糸層
B Bulge C Clamp H Turbo hose P Pipe connection M Equipment 1 Innermost layer 2 Outer skin layer 2A Middle layer 2B Outermost layer 3 Reinforcement yarn layer

Claims (7)

  1.  過給機システムを構成するターボチャージャ、インタークーラ及び管継手等のシステム構成機器間に用いる配管の締結構造であって、
     システム構成機器のバルジ付配管連結部に、クランプ若しくはクイックコネクターによってターボホースを嵌合した構造を有し、
     ターボホースが、フッ素化合物系ゴムから成る最内層とその外側の外皮層とを備えており、
     最内層の破断伸度が、230℃の環境下で100%以上であることを特徴とする過給機システム用配管の締結構造。
    A fastening structure for piping used between system components such as a turbocharger, an intercooler and a pipe joint constituting the turbocharger system,
    It has a structure in which a turbo hose is fitted with a clamp or quick connector to the pipe connection part with bulge of the system component equipment,
    The turbo hose has an innermost layer made of fluorine compound rubber and an outer skin layer on the outer layer,
    A fastening structure for piping for a supercharger system, wherein the breaking elongation of the innermost layer is 100% or more under an environment of 230 ° C.
  2.  ターボホース最内層の初期圧縮率が、20~50%の範囲であることを特徴とする請求項1に記載の過給機システム用配管の締結構造。 2. The supercharger system pipe fastening structure according to claim 1, wherein an initial compression ratio of the innermost layer of the turbo hose is in a range of 20 to 50%.
  3.  最内層を形成するフッ素化合物系ゴムが、パーオキサイド加硫系であって、ショア硬度が65から80であると共に、MEK体積膨潤率が400~700%の範囲であることを特徴とする請求項1又は2に記載の過給機システム用配管の締結構造。 The fluorine compound rubber forming the innermost layer is a peroxide vulcanization system, and has a Shore hardness of 65 to 80 and a MEK volume swelling ratio in the range of 400 to 700%. The fastening structure of the piping for supercharger systems of 1 or 2.
  4.  外皮層が、その層間に補強糸層を有し、
     最内層の厚さtaと最内層から補強糸層までの厚さtbとの関係が、0.5mm<ta<tb<3mmとなるように配置されていることを特徴とする請求項1~3のいずれか1項に記載の過給機システム用配管の締結構造。
    The outer skin layer has a reinforcing yarn layer between the layers,
    The relationship between the thickness ta of the innermost layer and the thickness tb from the innermost layer to the reinforcing yarn layer is arranged such that 0.5 mm <ta <tb <3 mm. The fastening structure of the piping for supercharger systems of any one of these.
  5.  最内層を形成するゴムの圧縮弾性率Eaが、外皮層を形成するゴムの圧縮弾性率Ebよりも大きく、最内層のゴムの圧縮弾性率Eaが、230℃の環境下で10~25MPaの範囲であると共に、外皮層のゴムの圧縮弾性率Ebが、230℃の環境下で2~9MPaの範囲であることを特徴とする請求項1~4のいずれか1項に記載の過給機システム用配管の締結構造。 The compression elastic modulus Ea of the rubber forming the innermost layer is larger than the compression elastic modulus Eb of the rubber forming the outer skin layer, and the compression elastic modulus Ea of the rubber of the innermost layer is in the range of 10 to 25 MPa under an environment of 230 ° C. The supercharger system according to any one of claims 1 to 4, wherein the compression elastic modulus Eb of the rubber of the outer skin layer is in a range of 2 to 9 MPa under an environment of 230 ° C. Fastening structure for piping.
  6.  外皮層が、シリコーンゴム、アクリルゴム、エチレン・アクリルゴム、エチレン・プロピレンゴム、クロロプレン、クロロスルホン化ゴム、エピクロルヒドリンゴム及び水素化ニトリルゴムのいずれか一つを素材としていることを特徴とする請求項1~5のいずれか1項に記載の過給機システム用配管の締結構造。 The outer skin layer is made of any one of silicone rubber, acrylic rubber, ethylene / acrylic rubber, ethylene / propylene rubber, chloroprene, chlorosulfonated rubber, epichlorohydrin rubber, and hydrogenated nitrile rubber. 6. A fastening structure for a supercharger system pipe according to any one of 1 to 5.
  7.  補強糸層を形成する補強糸が、スパイラル巻き、ブレート編み及びニッティング巻きのいずれかに形成した長繊維、又は素材中に混合させた短繊維であることを特徴とする請求項4~6に記載の過給機システム用配管の締結構造。 The reinforcing yarn forming the reinforcing yarn layer is a long fiber formed in any one of spiral winding, braided knitting and knitting winding, or a short fiber mixed in a material. Fastening structure for the turbocharger system described.
PCT/JP2013/054090 2012-04-17 2013-02-20 Fastening structure for supercharger system pipe WO2013157296A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012093841A JP2013221580A (en) 2012-04-17 2012-04-17 Fastening structure of pipe for supercharger system
JP2012-093841 2012-04-17

Publications (1)

Publication Number Publication Date
WO2013157296A1 true WO2013157296A1 (en) 2013-10-24

Family

ID=49383265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054090 WO2013157296A1 (en) 2012-04-17 2013-02-20 Fastening structure for supercharger system pipe

Country Status (2)

Country Link
JP (1) JP2013221580A (en)
WO (1) WO2013157296A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3444515A1 (en) 2017-08-16 2019-02-20 Mann + Hummel Gmbh Air intake sealing joint arrangement

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133135A (en) * 2015-01-16 2016-07-25 日野自動車株式会社 Intercooler hose
US10975223B2 (en) 2015-03-31 2021-04-13 Mitsui Chemicals, Inc. Resin composition and use thereof
JP2017048915A (en) * 2015-09-01 2017-03-09 株式会社フコク Cloth winding hose and method of manufacturing the same
US20190047264A1 (en) 2016-03-04 2019-02-14 Mitsui Chemicals, Inc. Laminate and application for same
EP3584075B1 (en) 2017-02-20 2024-06-05 Mitsui Chemicals, Inc. Laminate
CN110312618B (en) 2017-02-20 2021-09-07 三井化学株式会社 Laminated body
CN107524870B (en) * 2017-09-06 2019-03-26 哈尔滨东安橡胶有限责任公司 Intercooler composite high-performance sebific duct and fabrication and installation methods and applications
US20210008852A1 (en) 2018-03-14 2021-01-14 Mitsui Chemicals, Inc. Laminate and application of the same
KR102463870B1 (en) * 2021-08-06 2022-11-08 주식회사 메인터넌스 All-in-one inter cooler hose

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185017A (en) * 1996-12-18 1998-07-14 Kinugawa Rubber Ind Co Ltd Pressure resistant hose
JP2008068461A (en) * 2006-09-13 2008-03-27 Toyoda Gosei Co Ltd Heat-resistant rubber hose
JP2008248943A (en) * 2007-03-29 2008-10-16 Toyoda Gosei Co Ltd Heat-resistant hose

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185017A (en) * 1996-12-18 1998-07-14 Kinugawa Rubber Ind Co Ltd Pressure resistant hose
JP2008068461A (en) * 2006-09-13 2008-03-27 Toyoda Gosei Co Ltd Heat-resistant rubber hose
JP2008248943A (en) * 2007-03-29 2008-10-16 Toyoda Gosei Co Ltd Heat-resistant hose

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3444515A1 (en) 2017-08-16 2019-02-20 Mann + Hummel Gmbh Air intake sealing joint arrangement

Also Published As

Publication number Publication date
JP2013221580A (en) 2013-10-28

Similar Documents

Publication Publication Date Title
WO2013157296A1 (en) Fastening structure for supercharger system pipe
JP4912468B2 (en) Fluid transfer hose reinforced with hybrid yarn
US7654288B2 (en) Heat-resistant rubber hose for diesel engine
JP4626624B2 (en) Heat resistant air hose
JP2007230225A (en) Heat resistant air hose for diesel
US20060182914A1 (en) Rubber hose and method for manufacture thereof
JPWO2011001756A1 (en) Laminated body
PL206295B1 (en) Tubular conduit
US7598306B2 (en) Joining structure for an acrylic rubber composition and heat-resistant hose
JPH11344165A (en) Heat resisting hose
JP2012126015A (en) Laminate
CN109983069B (en) Rubber composition for hose and hose
JP2013173930A (en) Member resistant to biodiesel fuel
CN210106122U (en) Compressor connecting pipe of marine supercharger
JP2014231159A (en) Laminate rubber hose
EP1559538A1 (en) Heat resistant air hose
EP1484172A1 (en) Hose construction containing fluoroelastomer composition and fluoroplastic barrier
CN112912632B (en) Actuator with a spring
US10962149B2 (en) Fuel hose with rubber cover layer
JP7319788B2 (en) heat resistant hose
JP2005187681A (en) Oil hose and its manufacturing method
US11565494B2 (en) Sustainable industrial hose
JPH04133727A (en) Low-permeability hose
US20210278018A1 (en) Sustainable industrial hose
JP2021070322A (en) Vulcanization method of tubular molded product using end collars, and mold assembly using the same

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13777595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13777595

Country of ref document: EP

Kind code of ref document: A1