WO2013157207A1 - Vascular insertion type treatment device - Google Patents

Vascular insertion type treatment device Download PDF

Info

Publication number
WO2013157207A1
WO2013157207A1 PCT/JP2013/002285 JP2013002285W WO2013157207A1 WO 2013157207 A1 WO2013157207 A1 WO 2013157207A1 JP 2013002285 W JP2013002285 W JP 2013002285W WO 2013157207 A1 WO2013157207 A1 WO 2013157207A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood vessel
treatment device
type treatment
balloon
insertion type
Prior art date
Application number
PCT/JP2013/002285
Other languages
French (fr)
Japanese (ja)
Inventor
吏悟 小林
小林 淳一
杉本 良太
平原 一郎
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2013157207A1 publication Critical patent/WO2013157207A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • A61N7/022Localised ultrasound hyperthermia intracavitary
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • A61B2017/22065Functions of balloons
    • A61B2017/22068Centering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0004Applications of ultrasound therapy
    • A61N2007/0021Neural system treatment
    • A61N2007/003Destruction of nerve tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0056Beam shaping elements
    • A61N2007/006Lenses

Definitions

  • the present invention relates to a blood vessel insertion type treatment device, and particularly to a blood vessel insertion type treatment device that can be inserted into a blood vessel and cauterize a living tissue around the blood vessel from inside the blood vessel.
  • a blood vessel insertion type treatment device capable of cauterizing a living tissue around a blood vessel such as a renal artery sympathetic nerve around the renal artery while suppressing damage to the blood vessel.
  • a blood vessel insertion type treatment device includes: An elongated insert having a proximal end and an insertion end at both ends; A first ultrasonic transducer that is provided in the vicinity of the insertion end and emits ultrasonic waves for ablation radially when viewed from the longitudinal direction of the longitudinal shape.
  • ultrasonic waves for cauterization are emitted radially from the first ultrasonic transducer as viewed from the longitudinal direction. Therefore, it is possible to cauterize the annular ablation target tissue existing around the blood vessel without changing the direction of the first ultrasonic transducer. Therefore, it is possible to omit a procedure for changing the direction of the first ultrasonic transducer.
  • the blood vessel insertion type treatment device configured as described above, it is possible to remove living tissue around the blood vessel while suppressing damage to the blood vessel.
  • FIG. 2 is an enlarged view of the vicinity of a renal artery in which a guiding catheter is inserted in FIG. 1. It is sectional drawing along the longitudinal direction of the insertion end vicinity of the blood vessel insertion type treatment device of 1st Embodiment. It is a perspective view of the acoustic balloon lens for demonstrating the structure of an acoustic balloon lens. It is sectional drawing along the longitudinal direction of the insertion end vicinity of the blood vessel insertion type treatment device of 2nd Embodiment.
  • FIG. 6 is an enlarged view of the vicinity of a renal artery in which a guiding catheter is inserted in FIG.
  • (A) is sectional drawing along the longitudinal direction of the insertion end vicinity of the blood vessel insertion type treatment device of 3rd Embodiment
  • (b) is a 1st ultrasonic transducer
  • FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. It is a figure which shows the 2nd modification of a mesh balloon.
  • FIG. 11 is a cross-sectional view taken along line XI-XI in FIG. 10.
  • FIG. 1 is a diagram for explaining a technique for removing a renal artery sympathetic nerve using the blood vessel insertion type treatment device according to the first embodiment of the present invention.
  • the operator inserts the guiding catheter 200 from the patient's thigh into the femoral artery FA in advance and allows the distal end of the guiding catheter 200 to reach the renal artery RA.
  • a guide wire (not shown) is used for reaching the guiding artery 200 to the renal artery RA.
  • the guiding catheter 200 is tubular, and a device for diagnosis and treatment can be inserted.
  • the blood vessel insertion type treatment device 100 is generally string-shaped, has an insertion end and a proximal end, and can be inserted into the lumen of the guiding catheter 200 from the insertion end.
  • the surgeon inserts the blood vessel insertion type treatment device 100 into the guiding catheter 200 and causes the insertion end to protrude from the guiding catheter 200 (see FIG. 2).
  • the acoustic balloon lens 101 provided in the vicinity of the insertion end of the blood vessel insertion type treatment device 100 is expanded to fix the blood vessel insertion type treatment device 100 in the renal artery RA.
  • the blood vessel insertion type treatment device 100 has an imaging function and an ablation function.
  • the blood vessel insertion type treatment device 100 can emit imaging ultrasound IUS. The surgeon executes an imaging function of the inserted blood vessel insertion type treatment device 100 to acquire an image around the renal artery from the renal artery RA.
  • the surgeon discriminates the sympathetic nerve SN to be cauterized based on the acquired image, and adjusts the position of the blood vessel insertion type treatment device 100 so that the cauterized ultrasound CUS is irradiated to the discriminated sympathetic nerve SN. . After the position adjustment, the surgeon performs the cauterization function of the blood vessel insertion type treatment device 100 to cauterize the desired sympathetic nerve SN.
  • the blood vessel insertion type treatment device 100 includes a sheath 102, an insert 103, a first ultrasonic transducer 104, an image acquisition unit 105, an acoustic balloon lens 101 (see FIG. 2), and the like.
  • the sheath 102 is formed of a member having acoustic properties and flexibility.
  • the end of the sheath 102 on the insertion end side is open. Further, at the start of use, the inside of the sheath 102 is filled with a medium having acoustic transmission properties from the proximal end side.
  • the insert 103 is formed by a flexible member so as to extend from the vicinity of the proximal end of the sheath 102 to the insertion end. With the insertion end of the insertion body 103 reaching the insertion end of the sheath 102, the proximal end of the insertion body 103 protrudes from the proximal end of the sheath 102.
  • the outer diameter of the insert 103 is determined to be smaller than the inner diameter of the sheath 102, and the insert 103 can be displaced along the longitudinal direction in the sheath 102. Further, the insert 103 is rotatable within the sheath 102 about the longitudinal direction.
  • the first ultrasonic transducer 104 has a cylindrical shape, and the first ultrasonic transducer 104 is formed so that the inner diameter of the cylinder is substantially equal to the outer diameter of the insertion body 103.
  • the first ultrasonic transducer 104 is fixed in the vicinity of the insertion end in a state where the insertion body 103 is inserted through the inner surface of the cylinder.
  • the first ultrasonic transducer 104 emits ultrasonic waves CUS for cauterization radially from the outer surface about the axis of the cylinder.
  • the distance for transmitting ultrasonic waves and the amount of heat generated at the position where the ultrasonic waves converge are determined by the frequency. Therefore, the frequency of the ultrasound CUS for cauterization is determined in advance based on the approximate interval from the inside of the renal artery RA to the renal artery sympathetic nerve SN and the amount of heat generated for cauterization of the sympathetic nerve SN.
  • a signal line extending from the first ultrasonic transducer 104 to the proximal end is connected to an ablation control unit (not shown).
  • the ablation control unit supplies a drive signal to the first ultrasonic transducer 104 so as to generate the ablation ultrasonic wave CUS at the aforementioned frequency.
  • the image acquisition unit 105 is provided near the insertion end of the insertion body 103.
  • the image acquisition unit 105 has a single imaging ultrasonic transducer 106.
  • the imaging ultrasonic transducer 106 is arranged so as to emit ultrasonic waves in a direction inclined by a predetermined angle from the direction perpendicular to the longitudinal direction of the insert 103 to the insertion end side.
  • the imaging ultrasonic transducer 106 From the imaging ultrasonic transducer 106, it is possible to generate imaging ultrasound IUS suitable for image acquisition.
  • the imaging ultrasonic transducer 106 generates a pixel signal corresponding to the reflected wave of the imaging ultrasonic wave IUS.
  • the resolution due to the reflected wave of the ultrasonic wave varies depending on the frequency.
  • the frequency of the imaging ultrasound IUS is determined in advance based on the resolution necessary for confirmation and diagnosis of the position of a specific sympathetic nerve.
  • a signal line extending from the imaging ultrasonic transducer 106 to the base end is connected to an imaging control unit (not shown).
  • the imaging control unit supplies a drive signal to the imaging ultrasonic transducer 106 so as to generate the imaging ultrasonic IUS at the above-described frequency.
  • the imaging control unit receives a pixel signal generated by the imaging ultrasonic transducer 106.
  • the imaging control unit creates an image based on pixel signals corresponding to a number of locations irradiated with imaging ultrasonic waves.
  • the irradiation position of the imaging ultrasonic wave can be determined by detecting the rotational position of the insertion body 103 and the displacement position along the longitudinal direction using an encoder or a position sensor, and is used for creating an image.
  • the acoustic balloon lens 101 is provided on the sheath 102 in the vicinity of the position where the first ultrasonic transducer 104 is disposed. By inflating the acoustic balloon lens 101 outside the sheath 102 and pressing the acoustic balloon lens 101 against the inner wall of the blood vessel, the blood vessel insertion type treatment device 100 can be fixed in the blood vessel.
  • the acoustic balloon lens 101 has a double structure having an inner balloon 107 and an outer balloon 108. Different media are used to inflate the inner balloon 107 and the outer balloon 108, respectively. As the medium of the inner balloon 107, an object having a transmission speed of ultrasonic waves smaller than that of the medium of the outer balloon 108 is used.
  • the ablation ultrasonic wave CUS emitted from the first ultrasonic transducer 104 changes the passing distance of the inner balloon 107 and the passing distance of the outer balloon 108 depending on the position along the cylindrical height direction. Therefore, the inner balloon 107 and the outer balloon 108 are formed so as to be able to converge the ultrasonic wave at a convergence position separated from the sheath 102 by a predetermined distance.
  • the approximate distance from the renal artery to the renal artery sympathetic nerve is determined as a predetermined distance.
  • the blood vessel insertion type treatment device 100 of the first embodiment configured as described above, it is possible to maximize the heat generation energy at the convergence position of the ablation ultrasonic waves. Therefore, while it is possible to cauterize living tissue distributed from the inside of the blood vessel to the outside of the blood vessel, it is possible to suppress damage to the blood vessel interposed between the living tissue.
  • the blood vessel insertion type treatment device 100 of the first embodiment it is possible to emit ultrasonic waves for cauterization radially from the central axis of the cylinder from the cylindrical first ultrasonic transducer 104. Therefore, it is possible to easily cauterize an object extending in an annular shape or an arc shape outside the blood vessel without rotating the blood vessel insertion type treatment device 100.
  • the acoustic balloon lens 101 is used to fix the blood vessel insertion type treatment device 100 in the blood vessel and converge the ablation ultrasonic wave at a predetermined distance. Is feasible. Therefore, it is possible to reduce the number of components compared to the case where separate balloons and acoustic lenses are used.
  • the image acquisition unit 105 is provided in the vicinity of the first ultrasonic transducer 104, confirmation of a living tissue to be ablated, and ablation status Confirmation is easy.
  • the second embodiment is different from the first embodiment in that a cylindrical acoustic lens and a mesh balloon are used without using an acoustic balloon lens.
  • the second embodiment will be described below with a focus on differences from the first embodiment.
  • symbol is attached
  • the blood vessel insertion type treatment device 1000 of the second embodiment includes a sheath 102, an insert 103, a first ultrasonic transducer 104, an image acquisition unit 105, a cylindrical acoustic lens 1090, and a mesh balloon. 1100 (see FIG. 6) and the like.
  • the configurations and functions of the sheath 102, the insert 103, the first ultrasonic transducer 104, and the image acquisition unit 105 are the same as those in the first embodiment.
  • the cylindrical acoustic lens 1090 has a cylindrical side surface on the inner surface and a concave surface in the cylindrical axis direction on the outer surface, that is, a saddle shape with a concave center. Therefore, the cylindrical acoustic lens 1090 has a function of converging ultrasonic waves along the cylinder height direction.
  • the cylindrical acoustic lens 1090 is formed so that the length in the height direction of the cylindrical acoustic lens 1090 is the same as the cylindrical height of the first ultrasonic transducer 104.
  • the cylindrical acoustic lens 1090 is fixed in a state where the entire first ultrasonic transducer 104 is accommodated inside the cylinder.
  • the mesh balloon 1100 is provided on the sheath 102.
  • the mesh balloon 1100 is provided closer to the proximal end than the image acquisition unit 105 in a state where the insertion body 103 has reached the insertion end of the sheath 102.
  • the blood vessel insertion type treatment device 1000 of the second embodiment configured as described above can cauterize living tissue distributed from the inside of the blood vessel to the outside of the blood vessel. It is possible to suppress damage to blood vessels intervening between tissues. Further, similarly to the first embodiment, an object extending in an annular shape or an arc shape can be easily cauterized outside the blood vessel without rotating the blood vessel insertion type treatment device 1000. In addition, as in the first embodiment, it is easy to confirm a living tissue to be ablated, a condition of ablation, and the like.
  • the vicinity of the insertion end of the blood vessel insertion type treatment device 1000 can be temporarily fixed in the blood vessel using the mesh balloon 1100. Further, since the mesh balloon 1100 is used, blood flow can be secured, and overheating of the inner wall of the blood vessel that irradiates the ultrasound CUS for cauterization while fixing the blood vessel insertion type treatment device 1000 in the blood vessel can be prevented. is there.
  • the third embodiment is different from the first embodiment in that a mesh balloon is used instead of the acoustic balloon lens and the configuration of the first ultrasonic transducer.
  • the third embodiment will be described below with a focus on differences from the first embodiment.
  • symbol is attached
  • the blood vessel insertion type treatment device 1001 of the third embodiment includes a sheath 102, an insert 103, a first ultrasonic transducer 1041, an image acquisition unit 105, and a mesh balloon 1100 ( Etc.).
  • the third embodiment unlike the first embodiment, no acoustic balloon lens is provided.
  • the configurations and functions of the sheath 102, the insertion body 103, and the image acquisition unit 105 are the same as those in the first embodiment.
  • the configuration and function of the mesh balloon 1100 are the same as those in the second embodiment.
  • the first ultrasonic transducer 1041 is annular. Similar to the first embodiment, the first ultrasonic transducer 1041 is formed so that the annular inner diameter of the first ultrasonic transducer 1041 is substantially equal to the outer diameter of the insert 103. Unlike the first embodiment, the plurality of first ultrasonic transducers 1041 are fixed so as to be evenly arranged along the longitudinal direction in the vicinity of the insertion end in a state where the insertion body 103 is inserted through the annular inner surface. Each first ultrasonic transducer 1041 emits ablation ultrasonic waves CUS radially from the outer peripheral surface around an annular axis.
  • the first ultrasonic transducer 1041 differs in the timing or phase of emitting ultrasonic waves depending on the position.
  • the ablation control unit causes the first ultrasonic transducer 1041 to be delayed from the both ends of the first ultrasonic transducers 1041 arranged in the longitudinal direction toward the center when the ablation ultrasonic waves are emitted or transferred. Drive separately.
  • the blood vessel insertion type treatment device 1001 of the third embodiment configured as described above can cauterize living tissue distributed from the inside of the blood vessel to the outside of the blood vessel. It is possible to suppress damage to blood vessels intervening between tissues. Further, as in the first embodiment, an object extending in an annular shape or an arc shape can be easily cauterized outside the blood vessel without rotating the blood vessel insertion type treatment device 1001. In addition, as in the first embodiment, it is easy to confirm a living tissue to be ablated, a condition of ablation, and the like.
  • the vicinity of the insertion end of the blood vessel insertion type treatment device 1000 is temporarily fixed in the blood vessel using the mesh balloon 1100 as in the second embodiment. Is possible. Further, since the mesh balloon 1100 is used, it is possible to prevent overheating of the inner wall portion of the blood vessel that is irradiated with the ultrasound CUS for cauterization while fixing the blood vessel insertion type treatment device 1000 in the blood vessel.
  • the blood vessel insertion type treatment device 1001 of the third embodiment since an element such as an acoustic lens for converging the ultrasonic waves for ablation is unnecessary, it is possible to reduce the number of components. Furthermore, according to the blood vessel insertion type treatment device 1001, it is possible to change the focal length by adjusting the delay time such as the time of generating the ultrasonic wave from the first ultrasonic transducer 1041. Therefore, according to the blood vessel insertion type treatment device 1001, it is possible to cauterize living tissue existing in a wide range with respect to the distance from the blood vessel.
  • T is a period
  • C is a velocity (sound velocity) of ultrasonic waves
  • is a wavelength at a driving frequency of the first ultrasonic transducer 1041.
  • the drive frequency f of the first ultrasonic transducer 1041 is represented by 1 / T
  • the wavelength ⁇ at the drive frequency f of the first ultrasonic transducer 1041 is represented by CT.
  • the first ultrasonic transducers 104 and 1041 are cylindrical and annular, but it is possible to emit ultrasonic waves for cauterization radially when viewed from the longitudinal direction of the insert. Any other shape may be used. For example, it may be spiral.
  • the mesh balloon 1100 is provided.
  • the blood vessel insertion type treatment devices 1000 and 1001 may be temporarily fixed in the blood vessel using other balloons.
  • a balloon that prevents overheating of the inner wall of the blood vessel is preferable.
  • the same overheating prevention effect as that of the mesh balloon 1100 can be obtained by a configuration having a plurality of balloons 111 that can be expanded in different directions around the sheath 102.
  • the mesh balloon 1100 and the mesh balloon 1100 may be configured to have a balloon 112 that can be inflated all around the sheath 102 and has a hole OH that penetrates in the longitudinal direction. It is possible to obtain the same overheating prevention effect.
  • the same overheating prevention effect as that of the mesh balloon 1100 can be obtained by the configuration having the balloon 113 formed so that the cross section along the plane perpendicular to the longitudinal direction has a star shape. Is possible.
  • the same overheating prevention effect as that of the mesh balloon 1100 can be obtained by a configuration in which the balloon 115 is partially inflated using a plurality of wires 114.
  • a perfusion balloon or a cryoballoon that can cool the inner wall of the blood vessel using a refrigerant.
  • cauterization using ultrasonic waves it is possible to maximize the heat generation energy at the focal point, but the blood vessel walls including the inner wall of the blood vessel that propagates the ultrasonic waves before convergence can also generate heat due to the ultrasonic waves. Therefore, it is possible to further reduce the possibility of damage that can occur on the inner wall of the blood vessel by using a cooled balloon.
  • the image acquisition unit 105 is configured to acquire an image using ultrasonic waves. However, the image acquisition unit 105 acquires an image based on optical information such as TD-OCT and HUD-OCT. It may be configured to.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

This vascular insertion type treatment device (100) is provided with an insertion body (103) and a first ultrasonic transducer (104). The insertion body (103) has a longitudinal shape, the two ends of which are a base end and an insertion end. The first ultrasonic transducer (104) is provided near the insertion end of the insertion body (103). The first ultrasonic transducer (104) produces cauterizing ultrasonic waves radially seen from the longitudinal direction of the longitudinal shape.

Description

血管挿入型治療デバイスVascular insertion device
 本発明は、血管挿入型治療デバイスに関する発明であって、特に、血管内に挿入し、血管内部から血管周辺の生体組織を焼灼可能な血管挿入型治療デバイスに関する。 The present invention relates to a blood vessel insertion type treatment device, and particularly to a blood vessel insertion type treatment device that can be inserted into a blood vessel and cauterize a living tissue around the blood vessel from inside the blood vessel.
 近年、腎動脈交感神経活動の異常が、鬱血性心不全、腎不全、高血圧症、およびこれら以外の心腎疾患を引起すことが、解明されている。また、腎動脈交感神経の除去等により、これらの疾患を治療することも知られている。腎動脈交感神経の焼灼のために、腎動脈内部に電極を挿入し、電極から腎動脈交換神経にパルス出力電界を印加する腎臓神経調節装置が提案されている(特許文献1参照)。 In recent years, it has been elucidated that abnormal renal artery sympathetic nerve activity causes congestive heart failure, renal failure, hypertension, and other cardiorenal diseases. It is also known to treat these diseases by removing renal artery sympathetic nerves. In order to cauterize the renal artery sympathetic nerve, a renal nerve control device has been proposed in which an electrode is inserted into the renal artery and a pulse output electric field is applied from the electrode to the renal artery replacement nerve (see Patent Document 1).
 しかし、特許文献1に記載の腎臓神経調節装置による、パルス出力電界を用いた腎動脈交感神経の焼灼では、血管内膜の電流密度が最も大きくなる。そのため、血管内膜において発生する熱が最も大きくなる。このため、血管内膜を含めた血管壁全体が焼灼される可能性があり、内膜肥厚および血栓等の副作用が発生し得る。 However, in the cauterization of the renal artery sympathetic nerve using the pulse output electric field by the renal nerve control device described in Patent Document 1, the current density of the intima becomes the largest. Therefore, the heat generated in the vascular intima is the largest. For this reason, the whole blood vessel wall including the intima of the blood vessel may be cauterized, and side effects such as intimal thickening and thrombus may occur.
特表2008-515544号公報Special table 2008-515544
 従って、上記のような問題点に鑑みてなされた本発明では、血管の損傷を抑制しながら腎動脈周囲の腎動脈交感神経等の血管周囲の生体組織の焼灼が可能な血管挿入型治療デバイスの提供を目的とする。 Therefore, in the present invention made in view of the above problems, there is provided a blood vessel insertion type treatment device capable of cauterizing a living tissue around a blood vessel such as a renal artery sympathetic nerve around the renal artery while suppressing damage to the blood vessel. For the purpose of provision.
 上述した諸課題を解決すべく、本発明による血管挿入型治療デバイスは、
 両端に基端および挿入端を有する長手形状の挿入体と、
 挿入端近傍に設けられ、長手形状の長手方向から見て放射状に焼灼用超音波を発する第1の超音波振動子とを備える
 ことを特徴とするものである。
In order to solve the above-described problems, a blood vessel insertion type treatment device according to the present invention includes:
An elongated insert having a proximal end and an insertion end at both ends;
A first ultrasonic transducer that is provided in the vicinity of the insertion end and emits ultrasonic waves for ablation radially when viewed from the longitudinal direction of the longitudinal shape.
 このような構成によれば、第1の超音波振動子から長手方向から見て放射状に焼灼用超音波が発せられる。したがって、第1の超音波振動子の向きを変えずに、血管の周囲に存在する環状の焼灼対象組織を焼灼可能である。それゆえ、第1の超音波振動子の向きを変えるための手技を省くことが可能である。 According to such a configuration, ultrasonic waves for cauterization are emitted radially from the first ultrasonic transducer as viewed from the longitudinal direction. Therefore, it is possible to cauterize the annular ablation target tissue existing around the blood vessel without changing the direction of the first ultrasonic transducer. Therefore, it is possible to omit a procedure for changing the direction of the first ultrasonic transducer.
 上記のように構成された本発明に係る血管挿入型治療デバイスによれば、血管の損傷を抑制しながら、血管周囲の生体組織の除去が可能である。 According to the blood vessel insertion type treatment device according to the present invention configured as described above, it is possible to remove living tissue around the blood vessel while suppressing damage to the blood vessel.
本発明の第1の実施形態に係る血管挿入型治療デバイスを用いた腎動脈交感神経除去の手技を説明する図である。It is a figure explaining the technique of renal artery sympathetic nerve removal using the blood vessel insertion type treatment device concerning a 1st embodiment of the present invention. 図1における、ガイディングカテーテルが挿入された腎動脈近辺の拡大図である。FIG. 2 is an enlarged view of the vicinity of a renal artery in which a guiding catheter is inserted in FIG. 1. 第1の実施形態の血管挿入型治療デバイスの挿入端近傍の長手方向に沿った断面図である。It is sectional drawing along the longitudinal direction of the insertion end vicinity of the blood vessel insertion type treatment device of 1st Embodiment. 音響バルーンレンズの構成を説明するための、音響バルーンレンズの透視図である。It is a perspective view of the acoustic balloon lens for demonstrating the structure of an acoustic balloon lens. 第2の実施形態の血管挿入型治療デバイスの挿入端近傍の長手方向に沿った断面図である。It is sectional drawing along the longitudinal direction of the insertion end vicinity of the blood vessel insertion type treatment device of 2nd Embodiment. 図5における、ガイディングカテーテルが挿入された腎動脈近辺の拡大図である。FIG. 6 is an enlarged view of the vicinity of a renal artery in which a guiding catheter is inserted in FIG. 5. (a)は、第3の実施形態の血管挿入型治療デバイスの挿入端近傍の長手方向に沿った断面図であり、(b)は、図7(a)における第1の超音波振動子が発する超音波を説明する図である。(A) is sectional drawing along the longitudinal direction of the insertion end vicinity of the blood vessel insertion type treatment device of 3rd Embodiment, (b) is a 1st ultrasonic transducer | vibrator in Fig.7 (a). It is a figure explaining the ultrasonic wave to emit. メッシュバルーンの第1の変形例を示す図である。It is a figure which shows the 1st modification of a mesh balloon. 図8におけるIX-IX線に沿った断面図である。FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. メッシュバルーンの第2の変形例を示す図である。It is a figure which shows the 2nd modification of a mesh balloon. 図10におけるXI-XI線に沿った断面図である。FIG. 11 is a cross-sectional view taken along line XI-XI in FIG. 10. メッシュバルーンの第3の変形例を説明するための、長手方向に垂直な方向に沿った血管内の血管挿入型治療デバイスの断面図である。It is sectional drawing of the blood vessel insertion type treatment device in the blood vessel along the direction perpendicular | vertical to a longitudinal direction for demonstrating the 3rd modification of a mesh balloon. メッシュバルーンの第4の変形例を説明するための、長手方向に垂直な方向に沿った血管内の血管挿入型治療デバイスの断面図である。It is sectional drawing of the blood vessel insertion type treatment device in the blood vessel along the direction perpendicular | vertical to a longitudinal direction for demonstrating the 4th modification of a mesh balloon.
 以下、本発明を適用した血管挿入型治療デバイスの実施形態について、図面を参照して説明する。図1は、本発明の第1の実施形態に係る血管挿入型治療デバイスを用いた腎動脈交感神経除去の手技を説明する図である。 Hereinafter, an embodiment of a blood vessel insertion type treatment device to which the present invention is applied will be described with reference to the drawings. FIG. 1 is a diagram for explaining a technique for removing a renal artery sympathetic nerve using the blood vessel insertion type treatment device according to the first embodiment of the present invention.
 腎動脈交感神経除去の手技のために、術者は予めガイディングカテーテル200を患者の大腿部から大腿動脈FAに挿入し、ガイディングカテーテル200の先端を腎動脈RAに到達させる。ガイディングカテーテル200の腎動脈RAへの到達には、ガイドワイヤ(図示せず)が用いられる。 In order to remove the renal artery sympathetic nerve, the operator inserts the guiding catheter 200 from the patient's thigh into the femoral artery FA in advance and allows the distal end of the guiding catheter 200 to reach the renal artery RA. A guide wire (not shown) is used for reaching the guiding artery 200 to the renal artery RA.
 ガイディングカテーテル200は管状であり、診察および治療用のデバイスを挿入可能である。血管挿入型治療デバイス100は全体的に紐状であり、挿入端と基端とを有し、挿入端からガイディングカテーテル200の内腔に挿入可能である。術者は、血管挿入型治療デバイス100をガイディングカテーテル200内に挿入し、その挿入端をガイディングカテーテル200から突出させる(図2参照)。突出させた状態で、血管挿入型治療デバイス100の挿入端近傍に設けられる音響バルーンレンズ101を膨張させることにより、血管挿入型治療デバイス100を腎動脈RA内に固定する。 The guiding catheter 200 is tubular, and a device for diagnosis and treatment can be inserted. The blood vessel insertion type treatment device 100 is generally string-shaped, has an insertion end and a proximal end, and can be inserted into the lumen of the guiding catheter 200 from the insertion end. The surgeon inserts the blood vessel insertion type treatment device 100 into the guiding catheter 200 and causes the insertion end to protrude from the guiding catheter 200 (see FIG. 2). In the protruding state, the acoustic balloon lens 101 provided in the vicinity of the insertion end of the blood vessel insertion type treatment device 100 is expanded to fix the blood vessel insertion type treatment device 100 in the renal artery RA.
 後述するように、血管挿入型治療デバイス100は、撮像機能および焼灼機能を有する。撮像機能を実行するために、血管挿入型治療デバイス100は、撮像用超音波IUSを発することが可能である。術者は、挿入した血管挿入型治療デバイス100の撮像機能を実行させることにより、腎動脈RA内部からの腎動脈周囲の画像を取得させる。 As will be described later, the blood vessel insertion type treatment device 100 has an imaging function and an ablation function. In order to perform the imaging function, the blood vessel insertion type treatment device 100 can emit imaging ultrasound IUS. The surgeon executes an imaging function of the inserted blood vessel insertion type treatment device 100 to acquire an image around the renal artery from the renal artery RA.
 術者は、取得した画像に基づいて、焼灼すべき交感神経SNを判別し、判別した交感神経SNに焼灼用超音波CUSが照射されるように、血管挿入型治療デバイス100の位置を調節する。位置調節後、術者は血管挿入型治療デバイス100の焼灼機能を実行させて、所望の交感神経SNを焼灼する。 The surgeon discriminates the sympathetic nerve SN to be cauterized based on the acquired image, and adjusts the position of the blood vessel insertion type treatment device 100 so that the cauterized ultrasound CUS is irradiated to the discriminated sympathetic nerve SN. . After the position adjustment, the surgeon performs the cauterization function of the blood vessel insertion type treatment device 100 to cauterize the desired sympathetic nerve SN.
 次に、血管挿入型治療デバイス100の構成について、図3を用いて説明する。血管挿入型治療デバイス100は、シース102、挿入体103、第1の超音波振動子104、画像取得ユニット105、および音響バルーンレンズ101(図2参照)等を含んで構成される。 Next, the configuration of the blood vessel insertion type treatment device 100 will be described with reference to FIG. The blood vessel insertion type treatment device 100 includes a sheath 102, an insert 103, a first ultrasonic transducer 104, an image acquisition unit 105, an acoustic balloon lens 101 (see FIG. 2), and the like.
 シース102は、音響性および可撓性を有する部材によって形成される。シース102の挿入端側の端部は開放されている。また、使用開始時、シース102内部は基端側から音響伝達性を有する媒質により満たされる。 The sheath 102 is formed of a member having acoustic properties and flexibility. The end of the sheath 102 on the insertion end side is open. Further, at the start of use, the inside of the sheath 102 is filled with a medium having acoustic transmission properties from the proximal end side.
 挿入体103は、可撓性を有する部材によってシース102の基端近傍から挿入端まで延在するように形成される。挿入体103の挿入端をシース102の挿入端まで到達させた状態で、挿入体103の基端はシース102の基端から突出する。 The insert 103 is formed by a flexible member so as to extend from the vicinity of the proximal end of the sheath 102 to the insertion end. With the insertion end of the insertion body 103 reaching the insertion end of the sheath 102, the proximal end of the insertion body 103 protrudes from the proximal end of the sheath 102.
 挿入体103の外径はシース102の内径より細くなるように定められ、挿入体103は、シース102内で長手方向に沿って変位自在である。また、挿入体103はシース102内で長手方向を軸に回動自在である。 The outer diameter of the insert 103 is determined to be smaller than the inner diameter of the sheath 102, and the insert 103 can be displaced along the longitudinal direction in the sheath 102. Further, the insert 103 is rotatable within the sheath 102 about the longitudinal direction.
 第1の超音波振動子104は円筒状であり、円筒の内径が挿入体103の外径と実質的に等しくなるように、第1の超音波振動子104は形成される。第1の超音波振動子104は、挿入体103を円筒内側面に挿通させた状態で挿入端近辺に固定される。第1の超音波振動子104は、外側面から円筒の軸を中心に放射状に焼灼用超音波CUSを発する。 The first ultrasonic transducer 104 has a cylindrical shape, and the first ultrasonic transducer 104 is formed so that the inner diameter of the cylinder is substantially equal to the outer diameter of the insertion body 103. The first ultrasonic transducer 104 is fixed in the vicinity of the insertion end in a state where the insertion body 103 is inserted through the inner surface of the cylinder. The first ultrasonic transducer 104 emits ultrasonic waves CUS for cauterization radially from the outer surface about the axis of the cylinder.
 周波数により、超音波を伝達させる距離および超音波の収束位置における発熱量等が定まる。それゆえ、腎動脈RA内部から腎動脈交感神経SNまでのおおよその間隔および交感神経SNの焼灼に必要な発熱量等に基づいて、焼灼用超音波CUSの周波数が予め定められる。 The distance for transmitting ultrasonic waves and the amount of heat generated at the position where the ultrasonic waves converge are determined by the frequency. Therefore, the frequency of the ultrasound CUS for cauterization is determined in advance based on the approximate interval from the inside of the renal artery RA to the renal artery sympathetic nerve SN and the amount of heat generated for cauterization of the sympathetic nerve SN.
 第1の超音波振動子104から基端まで延びる信号線が焼灼制御部(図示せず)に接続される。焼灼制御部は、前述の周波数で焼灼用超音波CUSを発生するように駆動信号を第1の超音波振動子104に供給する。 A signal line extending from the first ultrasonic transducer 104 to the proximal end is connected to an ablation control unit (not shown). The ablation control unit supplies a drive signal to the first ultrasonic transducer 104 so as to generate the ablation ultrasonic wave CUS at the aforementioned frequency.
 画像取得ユニット105は、挿入体103における挿入端近傍に設けられる。画像取得ユニット105は、単一の撮像用超音波振動子106を有する。撮像用超音波振動子106は、挿入体103の長手方向に垂直な方向から挿入端側に所定の角度だけ傾斜した方向に、超音波を発することが可能なように配置される。 The image acquisition unit 105 is provided near the insertion end of the insertion body 103. The image acquisition unit 105 has a single imaging ultrasonic transducer 106. The imaging ultrasonic transducer 106 is arranged so as to emit ultrasonic waves in a direction inclined by a predetermined angle from the direction perpendicular to the longitudinal direction of the insert 103 to the insertion end side.
 撮像用超音波振動子106からは、画像の取得に適した撮像用超音波IUSを発生させることが可能である。また、撮像用超音波振動子106は、撮像用超音波IUSの反射波に応じた画素信号を生成する。周波数により、超音波の反射波による解像度が変動する。特定の交感神経の位置の確認および診断等に必要な解像度に基づいて、撮像用超音波IUSの周波数が予め定められる。 From the imaging ultrasonic transducer 106, it is possible to generate imaging ultrasound IUS suitable for image acquisition. The imaging ultrasonic transducer 106 generates a pixel signal corresponding to the reflected wave of the imaging ultrasonic wave IUS. The resolution due to the reflected wave of the ultrasonic wave varies depending on the frequency. The frequency of the imaging ultrasound IUS is determined in advance based on the resolution necessary for confirmation and diagnosis of the position of a specific sympathetic nerve.
 撮像用超音波振動子106から基端まで延びる信号線が撮像制御部(図示せず)に接続される。撮像制御部は、前述の周波数で撮像用超音波IUSを発生するように駆動信号を撮像用超音波振動子106に供給する。 A signal line extending from the imaging ultrasonic transducer 106 to the base end is connected to an imaging control unit (not shown). The imaging control unit supplies a drive signal to the imaging ultrasonic transducer 106 so as to generate the imaging ultrasonic IUS at the above-described frequency.
 また、撮像制御部は撮像用超音波振動子106が生成する画素信号を受信する。撮像制御部は撮像用超音波が照射される多数の箇所に対応する画素信号に基づいて、画像を作成する。なお、撮像用超音波の照射位置は、エンコーダや位置センサを用いて挿入体103の回転位置および長手方向に沿った変位位置を検出することにより判別可能であり、画像の作成に用いられる。 Further, the imaging control unit receives a pixel signal generated by the imaging ultrasonic transducer 106. The imaging control unit creates an image based on pixel signals corresponding to a number of locations irradiated with imaging ultrasonic waves. Note that the irradiation position of the imaging ultrasonic wave can be determined by detecting the rotational position of the insertion body 103 and the displacement position along the longitudinal direction using an encoder or a position sensor, and is used for creating an image.
 音響バルーンレンズ101は、第1の超音波振動子104が配置された位置近傍のシース102に設けられる。音響バルーンレンズ101をシース102の外部に膨張させて、音響バルーンレンズ101を血管内壁に押圧することにより、血管挿入型治療デバイス100を血管内に固定可能である。 The acoustic balloon lens 101 is provided on the sheath 102 in the vicinity of the position where the first ultrasonic transducer 104 is disposed. By inflating the acoustic balloon lens 101 outside the sheath 102 and pressing the acoustic balloon lens 101 against the inner wall of the blood vessel, the blood vessel insertion type treatment device 100 can be fixed in the blood vessel.
 図4に示すように、音響バルーンレンズ101は内部バルーン107および外部バルーン108を有する2重構造である。内部バルーン107および外部バルーン108の膨張には、それぞれ異なる媒質が用いられる。内部バルーン107の媒質には、外部バルーン108の媒質より超音波の伝達速度が小さな物体が用いられる。 As shown in FIG. 4, the acoustic balloon lens 101 has a double structure having an inner balloon 107 and an outer balloon 108. Different media are used to inflate the inner balloon 107 and the outer balloon 108, respectively. As the medium of the inner balloon 107, an object having a transmission speed of ultrasonic waves smaller than that of the medium of the outer balloon 108 is used.
 上述のような構成において、第1の超音波振動子104から発する焼灼用超音波CUSは、円筒高さ方向に沿った位置によって、内部バルーン107の通過距離および外部バルーン108の通過距離が変わる。そこで、内部バルーン107および外部バルーン108は、シース102から所定の距離だけ離れた収束位置に超音波を収束可能となるように形成される。なお、腎動脈内部から腎動脈交感神経までのおおよその距離が所定の距離に定められる。 In the configuration as described above, the ablation ultrasonic wave CUS emitted from the first ultrasonic transducer 104 changes the passing distance of the inner balloon 107 and the passing distance of the outer balloon 108 depending on the position along the cylindrical height direction. Therefore, the inner balloon 107 and the outer balloon 108 are formed so as to be able to converge the ultrasonic wave at a convergence position separated from the sheath 102 by a predetermined distance. The approximate distance from the renal artery to the renal artery sympathetic nerve is determined as a predetermined distance.
 以上のような構成の第1の実施形態の血管挿入型治療デバイス100によれば、焼灼用超音波の収束位置において発熱エネルギーを最大化させることが可能である。したがって、血管の内部から血管の外部に分布する生体組織を焼灼可能である一方で、生体組織との間に介在する血管の損傷を抑制することが可能である。 According to the blood vessel insertion type treatment device 100 of the first embodiment configured as described above, it is possible to maximize the heat generation energy at the convergence position of the ablation ultrasonic waves. Therefore, while it is possible to cauterize living tissue distributed from the inside of the blood vessel to the outside of the blood vessel, it is possible to suppress damage to the blood vessel interposed between the living tissue.
 また、第1の実施形態の血管挿入型治療デバイス100によれば、円筒状の第1の超音波振動子104から円筒の中心軸から放射状に焼灼用超音波を発することが可能である。したがって、血管挿入型治療デバイス100を回転させることなく、血管外部において環状または円弧状に延在する対象物を容易に焼灼可能である。 Further, according to the blood vessel insertion type treatment device 100 of the first embodiment, it is possible to emit ultrasonic waves for cauterization radially from the central axis of the cylinder from the cylindrical first ultrasonic transducer 104. Therefore, it is possible to easily cauterize an object extending in an annular shape or an arc shape outside the blood vessel without rotating the blood vessel insertion type treatment device 100.
 また、第1の実施形態の血管挿入型治療デバイス100によれば、音響バルーンレンズ101を用いることにより、血管内における血管挿入型治療デバイス100の固定、および焼灼用超音波の所定の距離における収束を実現可能である。したがって、別々のバルーンおよび音響レンズを用いる場合に比べて、構成部材を減らすことが可能である。 Moreover, according to the blood vessel insertion type treatment device 100 of the first embodiment, the acoustic balloon lens 101 is used to fix the blood vessel insertion type treatment device 100 in the blood vessel and converge the ablation ultrasonic wave at a predetermined distance. Is feasible. Therefore, it is possible to reduce the number of components compared to the case where separate balloons and acoustic lenses are used.
 また、第1の実施形態の血管挿入型治療デバイス100によれば、第1の超音波振動子104の近傍に画像取得ユニット105が設けられるため、焼灼対象の生体組織の確認、および焼灼状況の確認等が容易である。 Further, according to the blood vessel insertion type treatment device 100 of the first embodiment, since the image acquisition unit 105 is provided in the vicinity of the first ultrasonic transducer 104, confirmation of a living tissue to be ablated, and ablation status Confirmation is easy.
 次に、本発明の第2の実施形態に係る血管挿入型治療デバイスについて説明する。第2の実施形態では音響バルーンレンズを用いずに円筒音響レンズおよびメッシュバルーンを用いる点において第1の実施形態と異なっている。以下に、第1の実施形態と異なる点を中心に第2の実施形態について説明する。なお、第1の実施形態と同じ機能および構成を有する部位には同じ符号を付す。 Next, a blood vessel insertion type treatment device according to a second embodiment of the present invention will be described. The second embodiment is different from the first embodiment in that a cylindrical acoustic lens and a mesh balloon are used without using an acoustic balloon lens. The second embodiment will be described below with a focus on differences from the first embodiment. In addition, the same code | symbol is attached | subjected to the site | part which has the same function and structure as 1st Embodiment.
 図5に示すように、第2の実施形態の血管挿入型治療デバイス1000は、シース102、挿入体103、第1の超音波振動子104、画像取得ユニット105、円筒音響レンズ1090、およびメッシュバルーン1100(図6参照)等を含んで構成される。 As shown in FIG. 5, the blood vessel insertion type treatment device 1000 of the second embodiment includes a sheath 102, an insert 103, a first ultrasonic transducer 104, an image acquisition unit 105, a cylindrical acoustic lens 1090, and a mesh balloon. 1100 (see FIG. 6) and the like.
 第2の実施形態では、第1の実施形態と異なり、音響バルーンレンズが設けられない。第2の実施形態において、シース102、挿入体103、第1の超音波振動子104、および画像取得ユニット105の構成および機能は第1の実施形態と同じである。 In the second embodiment, unlike the first embodiment, no acoustic balloon lens is provided. In the second embodiment, the configurations and functions of the sheath 102, the insert 103, the first ultrasonic transducer 104, and the image acquisition unit 105 are the same as those in the first embodiment.
 図5に示すように、円筒音響レンズ1090は内面が円筒側面状であり、外面が円筒軸方向に凹面状、すなわち中央が凹んだ鞍型状である。したがって、円筒音響レンズ1090は、円筒高さ方向に沿った超音波を収束させる機能を有する。 As shown in FIG. 5, the cylindrical acoustic lens 1090 has a cylindrical side surface on the inner surface and a concave surface in the cylindrical axis direction on the outer surface, that is, a saddle shape with a concave center. Therefore, the cylindrical acoustic lens 1090 has a function of converging ultrasonic waves along the cylinder height direction.
 円筒音響レンズ1090の高さ方向の長さは、第1の超音波振動子104の円筒高さと同じになるように、円筒音響レンズ1090は形成される。円筒音響レンズ1090は、第1の超音波振動子104全体を円筒の内部に収容した状態で固定される。 The cylindrical acoustic lens 1090 is formed so that the length in the height direction of the cylindrical acoustic lens 1090 is the same as the cylindrical height of the first ultrasonic transducer 104. The cylindrical acoustic lens 1090 is fixed in a state where the entire first ultrasonic transducer 104 is accommodated inside the cylinder.
 図6に示すように、メッシュバルーン1100は、シース102に設けられる。メッシュバルーン1100は、挿入体103をシース102の挿入端に到達させた状態で、画像取得ユニット105よりも基端側に設けられる。メッシュバルーン1100を構成するワイヤを血管挿入型治療デバイス1000から外部に湾曲させてワイヤを血管内壁に押圧することにより、血管挿入型治療デバイス1000を血管内に固定可能である。 As shown in FIG. 6, the mesh balloon 1100 is provided on the sheath 102. The mesh balloon 1100 is provided closer to the proximal end than the image acquisition unit 105 in a state where the insertion body 103 has reached the insertion end of the sheath 102. By bending the wire constituting the mesh balloon 1100 outward from the blood vessel insertion type treatment device 1000 and pressing the wire against the inner wall of the blood vessel, the blood vessel insertion type treatment device 1000 can be fixed in the blood vessel.
 以上のような構成の第2の実施形態の血管挿入型治療デバイス1000によっても、第1の実施形態と同じく、血管の内部から血管の外部に分布する生体組織を焼灼可能である一方で、生体組織との間に介在する血管の損傷を抑制することが可能である。また、第1の実施形態と同じく、血管挿入型治療デバイス1000を回転させることなく、血管外部において、環状または円弧状に延在する対象物を容易に焼灼可能である。また、第1の実施形態と同じく、焼灼対象の生体組織の確認、および焼灼状況の確認等が容易である。 Similarly to the first embodiment, the blood vessel insertion type treatment device 1000 of the second embodiment configured as described above can cauterize living tissue distributed from the inside of the blood vessel to the outside of the blood vessel. It is possible to suppress damage to blood vessels intervening between tissues. Further, similarly to the first embodiment, an object extending in an annular shape or an arc shape can be easily cauterized outside the blood vessel without rotating the blood vessel insertion type treatment device 1000. In addition, as in the first embodiment, it is easy to confirm a living tissue to be ablated, a condition of ablation, and the like.
 また、第2の実施形態の血管挿入型治療デバイス1000によれば、メッシュバルーン1100を用いて血管挿入型治療デバイス1000の挿入端近傍を血管内に一時的に固定することが可能である。また、メッシュバルーン1100を用いるので、血流を確保可能であり、血管挿入型治療デバイス1000を血管内で固定しながらも焼灼用超音波CUSを照射する血管内壁部の過熱を防止ことが可能である。 Further, according to the blood vessel insertion type treatment device 1000 of the second embodiment, the vicinity of the insertion end of the blood vessel insertion type treatment device 1000 can be temporarily fixed in the blood vessel using the mesh balloon 1100. Further, since the mesh balloon 1100 is used, blood flow can be secured, and overheating of the inner wall of the blood vessel that irradiates the ultrasound CUS for cauterization while fixing the blood vessel insertion type treatment device 1000 in the blood vessel can be prevented. is there.
 次に、本発明の第3の実施形態に係る血管挿入型治療デバイスについて説明する。第3の実施形態では音響バルーンレンズの代わりにメッシュバルーン用いる点および第1の超音波振動子の構成が第1の実施形態と異なっている。以下に、第1の実施形態と異なる点を中心に第3の実施形態について説明する。なお、第1の実施形態と同じ機能および構成を有する部位には同じ符号を付す。 Next, a blood vessel insertion type treatment device according to a third embodiment of the present invention will be described. The third embodiment is different from the first embodiment in that a mesh balloon is used instead of the acoustic balloon lens and the configuration of the first ultrasonic transducer. The third embodiment will be described below with a focus on differences from the first embodiment. In addition, the same code | symbol is attached | subjected to the site | part which has the same function and structure as 1st Embodiment.
 図7(a)に示すように、第3の実施形態の血管挿入型治療デバイス1001は、シース102、挿入体103、第1の超音波振動子1041、画像取得ユニット105、およびメッシュバルーン1100(図6参照)等を含んで構成される。 As shown in FIG. 7A, the blood vessel insertion type treatment device 1001 of the third embodiment includes a sheath 102, an insert 103, a first ultrasonic transducer 1041, an image acquisition unit 105, and a mesh balloon 1100 ( Etc.).
 第3の実施形態では、第1の実施形態と異なり、音響バルーンレンズが設けられない。シース102、挿入体103、および画像取得ユニット105の構成および機能は、第1の実施形態と同じである。また、メッシュバルーン1100の構成および機能は、第2の実施形態と同じである。 In the third embodiment, unlike the first embodiment, no acoustic balloon lens is provided. The configurations and functions of the sheath 102, the insertion body 103, and the image acquisition unit 105 are the same as those in the first embodiment. The configuration and function of the mesh balloon 1100 are the same as those in the second embodiment.
 第1の実施形態と異なり、第1の超音波振動子1041は環状である。第1の実施形態と同様に、第1の超音波振動子1041の環状の内径が挿入体103の外径と実質的に等しくなるように、第1の超音波振動子1041は形成される。第1の実施形態と異なり、複数の第1の超音波振動子1041が、挿入体103を環状内面に挿通させた状態で挿入端近辺において長手方向に沿って均等に並ぶように固定される。各々の第1の超音波振動子1041は、外周面から環状の軸を中心に放射状に焼灼用超音波CUSを発する。 Unlike the first embodiment, the first ultrasonic transducer 1041 is annular. Similar to the first embodiment, the first ultrasonic transducer 1041 is formed so that the annular inner diameter of the first ultrasonic transducer 1041 is substantially equal to the outer diameter of the insert 103. Unlike the first embodiment, the plurality of first ultrasonic transducers 1041 are fixed so as to be evenly arranged along the longitudinal direction in the vicinity of the insertion end in a state where the insertion body 103 is inserted through the annular inner surface. Each first ultrasonic transducer 1041 emits ablation ultrasonic waves CUS radially from the outer peripheral surface around an annular axis.
 第1の超音波振動子1041は、超音波を発する時期または位相が位置によって異なる。焼灼制御部は、焼灼用超音波を発する時期または移送が長手方向に沿って並ぶ第1の超音波振動子1041の両端から中央に向かって遅延するように、第1の超音波振動子1041を別々に駆動する。このような第1の超音波振動子1041の駆動により、音響レンズを用いることなく、超音波を収束位置に収束させることが可能である。 The first ultrasonic transducer 1041 differs in the timing or phase of emitting ultrasonic waves depending on the position. The ablation control unit causes the first ultrasonic transducer 1041 to be delayed from the both ends of the first ultrasonic transducers 1041 arranged in the longitudinal direction toward the center when the ablation ultrasonic waves are emitted or transferred. Drive separately. By driving the first ultrasonic transducer 1041 as described above, it is possible to converge the ultrasonic wave at the convergence position without using an acoustic lens.
 以上のような構成の第3の実施形態の血管挿入型治療デバイス1001によっても、第1の実施形態と同じく、血管の内部から血管の外部に分布する生体組織を焼灼可能である一方で、生体組織との間に介在する血管の損傷を抑制することが可能である。また、第1の実施形態と同じく、血管挿入型治療デバイス1001を回転させることなく、血管外部において、環状または円弧状に延在する対象物を容易に焼灼可能である。また、第1の実施形態と同じく、焼灼対象の生体組織の確認、および焼灼状況の確認等が容易である。 Similarly to the first embodiment, the blood vessel insertion type treatment device 1001 of the third embodiment configured as described above can cauterize living tissue distributed from the inside of the blood vessel to the outside of the blood vessel. It is possible to suppress damage to blood vessels intervening between tissues. Further, as in the first embodiment, an object extending in an annular shape or an arc shape can be easily cauterized outside the blood vessel without rotating the blood vessel insertion type treatment device 1001. In addition, as in the first embodiment, it is easy to confirm a living tissue to be ablated, a condition of ablation, and the like.
 また、第3の実施形態の血管挿入型治療デバイス1001によっても、第2の実施形態と同様に、メッシュバルーン1100を用いて血管挿入型治療デバイス1000の挿入端近傍を血管内に一時的に固定することが可能である。また、メッシュバルーン1100を用いるので、血管挿入型治療デバイス1000を血管内で固定しながらも焼灼用超音波CUSを照射する血管内壁部の過熱を防止することが可能である。 Also, according to the blood vessel insertion type treatment device 1001 of the third embodiment, the vicinity of the insertion end of the blood vessel insertion type treatment device 1000 is temporarily fixed in the blood vessel using the mesh balloon 1100 as in the second embodiment. Is possible. Further, since the mesh balloon 1100 is used, it is possible to prevent overheating of the inner wall portion of the blood vessel that is irradiated with the ultrasound CUS for cauterization while fixing the blood vessel insertion type treatment device 1000 in the blood vessel.
 また、第3の実施形態の血管挿入型治療デバイス1001によれば、焼灼用超音波を収束させる音響レンズなどの素子が不要なので、構成部品を減じることが可能である。さらに、血管挿入型治療デバイス1001によれば、第1の超音波振動子1041から超音波を発生させる時期等の遅延時間を調節することにより、焦点距離を変える事が可能である。したがって、血管挿入型治療デバイス1001によれば、血管からの距離に関して広い範囲に存在する生体組織を焼灼可能である。 Further, according to the blood vessel insertion type treatment device 1001 of the third embodiment, since an element such as an acoustic lens for converging the ultrasonic waves for ablation is unnecessary, it is possible to reduce the number of components. Furthermore, according to the blood vessel insertion type treatment device 1001, it is possible to change the focal length by adjusting the delay time such as the time of generating the ultrasonic wave from the first ultrasonic transducer 1041. Therefore, according to the blood vessel insertion type treatment device 1001, it is possible to cauterize living tissue existing in a wide range with respect to the distance from the blood vessel.
 なお、図7(b)に示すように、点C(x=0,y=y)に向かって、A(x=0,y=0)に位置する第1の超音波振動子1041から発した超音波と、B(x=x,y=0)に位置する第1の超音波振動子1041から発した超音波との経路差△lは、下記式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
As shown in FIG. 7B, from the first ultrasonic transducer 1041 located at A (x = 0, y = 0) toward the point C (x = 0, y = y 0 ). The path difference Δl between the emitted ultrasonic wave and the ultrasonic wave emitted from the first ultrasonic transducer 1041 located at B (x = x, y = 0) is expressed by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
 また、補正すべき経路差による遅延時間τ(x)は、下記式(2)で表される。なお、Cは超音波の速度(音速)である。
Figure JPOXMLDOC01-appb-M000002
Further, the delay time τ (x) due to the path difference to be corrected is expressed by the following equation (2). Note that C is the speed of ultrasonic waves (sound speed).
Figure JPOXMLDOC01-appb-M000002
 さらに、これを位相差θ(x)で表すと、下記式(3)に示すようになる。なお、Tは、周期であり、Cは、超音波の速度(音速)であり、λは、第1の超音波振動子1041の駆動周波数での波長である。また、第1の超音波振動子1041の駆動周波数fは、1/Tで表され、第1の超音波振動子1041の駆動周波数fでの波長λは、CTで表される。
Figure JPOXMLDOC01-appb-M000003
Further, when this is expressed by the phase difference θ (x), the following equation (3) is obtained. Note that T is a period, C is a velocity (sound velocity) of ultrasonic waves, and λ is a wavelength at a driving frequency of the first ultrasonic transducer 1041. The drive frequency f of the first ultrasonic transducer 1041 is represented by 1 / T, and the wavelength λ at the drive frequency f of the first ultrasonic transducer 1041 is represented by CT.
Figure JPOXMLDOC01-appb-M000003
 本発明を諸図面や実施形態に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。 Although the present invention has been described based on the drawings and embodiments, it should be noted that those skilled in the art can easily make various modifications and corrections based on the present disclosure. Therefore, it should be noted that these variations and modifications are included in the scope of the present invention.
 例えば、第1から第3の実施形態において、第1の超音波振動子104、1041は円筒状および環状であるが、挿入体の長手方向から見て放射状に焼灼用超音波を発することが可能であれば、他の形状であってもよい。例えば、らせん状であってもよい。 For example, in the first to third embodiments, the first ultrasonic transducers 104 and 1041 are cylindrical and annular, but it is possible to emit ultrasonic waves for cauterization radially when viewed from the longitudinal direction of the insert. Any other shape may be used. For example, it may be spiral.
 また、第2、3の実施形態において、メッシュバルーン1100を設けたが、他のバルーンを用いて血管挿入型治療デバイス1000、1001を血管内に一時的に固定可能な構成であってもよい。 In the second and third embodiments, the mesh balloon 1100 is provided. However, the blood vessel insertion type treatment devices 1000 and 1001 may be temporarily fixed in the blood vessel using other balloons.
 特に、血管内壁部の過熱を防止するバルーンであることが好ましい。例えば、図8、9に示すように、シース102を中心に異なる方向に膨張可能な複数のバルーン111を有する構成によってもメッシュバルーン1100と同様の過熱防止効果を得ることが可能である。また、例えば、図10、11に示すように、シース102を中心に全周囲に膨張可能であって、長手方向に貫通する孔部OHが形成されたバルーン112を有する構成によってもメッシュバルーン1100と同様の過熱防止効果を得ることが可能である。 In particular, a balloon that prevents overheating of the inner wall of the blood vessel is preferable. For example, as shown in FIGS. 8 and 9, the same overheating prevention effect as that of the mesh balloon 1100 can be obtained by a configuration having a plurality of balloons 111 that can be expanded in different directions around the sheath 102. Further, for example, as shown in FIGS. 10 and 11, the mesh balloon 1100 and the mesh balloon 1100 may be configured to have a balloon 112 that can be inflated all around the sheath 102 and has a hole OH that penetrates in the longitudinal direction. It is possible to obtain the same overheating prevention effect.
 また、例えば、図12に示すように、長手方向に垂直な平面に沿った断面が星型となるように形成したバルーン113を有する構成によってもメッシュバルーン1100と同様の過熱防止効果を得ることが可能である。また、例えば、図13に示すように、複数のワイヤ114を用いてバルーン115を部分的に膨張させる構成によってもメッシュバルーン1100と同様の過熱防止効果を得ることが可能である。 Further, for example, as shown in FIG. 12, the same overheating prevention effect as that of the mesh balloon 1100 can be obtained by the configuration having the balloon 113 formed so that the cross section along the plane perpendicular to the longitudinal direction has a star shape. Is possible. For example, as shown in FIG. 13, the same overheating prevention effect as that of the mesh balloon 1100 can be obtained by a configuration in which the balloon 115 is partially inflated using a plurality of wires 114.
 あるいは、血管内壁を冷媒により冷却可能な灌流バルーン、クライオバルーンを用いることが好ましい。超音波を用いた焼灼では、焦点において発熱エネルギーを最大化させることが可能であるが、収束前の超音波を伝播する血管内壁を含む血管壁も超音波により発熱し得る。それゆえ、冷却型バルーンを用いることにより血管内壁に生じ得る損傷の可能性をさらに低減化させることが可能である。 Alternatively, it is preferable to use a perfusion balloon or a cryoballoon that can cool the inner wall of the blood vessel using a refrigerant. In cauterization using ultrasonic waves, it is possible to maximize the heat generation energy at the focal point, but the blood vessel walls including the inner wall of the blood vessel that propagates the ultrasonic waves before convergence can also generate heat due to the ultrasonic waves. Therefore, it is possible to further reduce the possibility of damage that can occur on the inner wall of the blood vessel by using a cooled balloon.
 また、第1から第3の実施形態において、画像取得ユニット105は超音波を用いて画像を取得する構成であるが、TD-OCTおよびHUD-OCT等のように光学情報に基づいて画像を取得する構成であってもよい。 In the first to third embodiments, the image acquisition unit 105 is configured to acquire an image using ultrasonic waves. However, the image acquisition unit 105 acquires an image based on optical information such as TD-OCT and HUD-OCT. It may be configured to.
 100、1000、1001 血管挿入型治療デバイス
 101 音響バルーンレンズ
 102 シース
 103 挿入体
 104、1041 第1の超音波振動子
 105 画像取得ユニット
 106 撮像用超音波振動子
 107 内部バルーン
 108 外部バルーン
 1090 円筒音響レンズ
 1100 メッシュバルーン
 111~113、115 バルーン
 114 ワイヤ
 200 ガイディングカテーテル
 CUS 焼灼用超音波
 FA 大腿動脈
 IUS 撮像用超音波
 OH 孔部
 RA 腎動脈
 SN 交感神経
100, 1000, 1001 Blood vessel insertion type treatment device 101 Acoustic balloon lens 102 Sheath 103 Insert 104, 1041 First ultrasound transducer 105 Image acquisition unit 106 Imaging ultrasound transducer 107 Internal balloon 108 External balloon 1090 Cylindrical acoustic lens 1100 Mesh balloon 111-113, 115 Balloon 114 Wire 200 Guiding catheter CUS Ultrasound for cauterization FA Femoral artery IUS Ultrasound for imaging OH Hole RA Renal artery SN Sympathetic nerve

Claims (7)

  1.  両端に基端および挿入端を有する長手形状の挿入体と、
     前記挿入体の挿入端近傍に設けられ、前記長手形状の長手方向から見て放射状に焼灼用超音波を発する第1の超音波振動子とを備える
     ことを特徴とする血管挿入型治療デバイス。
    An elongated insert having a proximal end and an insertion end at both ends;
    A blood vessel insertion type treatment device comprising: a first ultrasonic transducer that is provided in the vicinity of an insertion end of the insertion body and emits ultrasonic waves for ablation radially when viewed from the longitudinal direction of the longitudinal shape.
  2.  前記第1の超音波振動子は円筒状であることを特徴とする請求項1に記載の血管挿入型治療デバイス。 2. The blood vessel insertion type treatment device according to claim 1, wherein the first ultrasonic transducer is cylindrical.
  3.  前記第1の超音波振動子の外周を覆う円筒形状であり、円筒高さ方向に沿って放射する前記焼灼用超音波を収束させる音響レンズを更に備えることを特徴とする請求項2に記載の血管挿入型治療デバイス。 3. The acoustic lens according to claim 2, further comprising an acoustic lens that has a cylindrical shape that covers an outer periphery of the first ultrasonic transducer, and that converges the ablation ultrasonic waves that radiate along the height direction of the cylinder. Blood vessel insertion type treatment device.
  4.  前記挿入体および前記第1の超音波発生器を覆う管状のシースと、
     前記シース内において前記第1の超音波振動子が配置される位置に設けられ、前記シースの周囲に膨張した状態において前記挿入体の長手形状の長手方向に沿って放射する前記焼灼用超音波を収束させる音響バルーンレンズとを更に備える
     ことを特徴とする請求項2に記載の血管挿入型治療デバイス。
    A tubular sheath covering the insert and the first ultrasonic generator;
    The ablation ultrasonic wave radiated along the longitudinal direction of the longitudinal shape of the inserted body in a state in which the first ultrasonic transducer is disposed in the sheath and expanded around the sheath. The blood vessel insertion type treatment device according to claim 2, further comprising an acoustic balloon lens for convergence.
  5.  前記第1の超音波振動子は環状であって、前記長手方向に沿って複数の該第1の超音波振動子が前記挿入体に設けられることを特徴とする請求項1に記載の血管挿入型治療デバイス。 The blood vessel insertion according to claim 1, wherein the first ultrasonic transducer is annular, and a plurality of the first ultrasonic transducers are provided in the insert along the longitudinal direction. Type treatment device.
  6.  前記挿入体および前記第1の超音波発生器を覆う管状のシースと、
     前記シースの挿入端側の端部近傍に設けられ、前記シースの周囲に膨張可能なバルーンとを更に備える
     ことを特徴とする請求項1に記載の血管挿入型治療デバイス。
    A tubular sheath covering the insert and the first ultrasonic generator;
    The blood vessel insertion type treatment device according to claim 1, further comprising a balloon that is provided in the vicinity of an end portion on the insertion end side of the sheath and is inflatable around the sheath.
  7.  前記バルーンは、前記バルーンの膨張時に前記バルーンに接触する部位の過熱を防ぐ冷却バルーンであることを特徴とする請求項6に記載の血管挿入型治療デバイス。 The blood vessel insertion type treatment device according to claim 6, wherein the balloon is a cooling balloon that prevents overheating of a portion that contacts the balloon when the balloon is inflated.
PCT/JP2013/002285 2012-04-20 2013-04-02 Vascular insertion type treatment device WO2013157207A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012097079 2012-04-20
JP2012-097079 2012-04-20

Publications (1)

Publication Number Publication Date
WO2013157207A1 true WO2013157207A1 (en) 2013-10-24

Family

ID=49383181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002285 WO2013157207A1 (en) 2012-04-20 2013-04-02 Vascular insertion type treatment device

Country Status (1)

Country Link
WO (1) WO2013157207A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017144288A1 (en) * 2016-02-23 2017-08-31 Koninklijke Philips N.V. Ultrasound ablation device
US10293190B2 (en) 2002-04-08 2019-05-21 Medtronic Ardian Luxembourg S.A.R.L. Thermally-induced renal neuromodulation and associated systems and methods
US10335280B2 (en) 2000-01-19 2019-07-02 Medtronic, Inc. Method for ablating target tissue of a patient
US10589130B2 (en) 2006-05-25 2020-03-17 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568684A (en) * 1991-09-13 1993-03-23 Olympus Optical Co Ltd Ultrasonic diagnosing device
JP2004503335A (en) * 2000-07-13 2004-02-05 トランサージカル,インコーポレイテッド A device that applies energy to the body of the treated organism
JP2004503324A (en) * 2000-07-13 2004-02-05 トランサージカル,インコーポレイテッド Energy imparting device with expandable annular lens
JP2004130096A (en) * 2002-07-23 2004-04-30 Biosense Webster Inc Ablation catheter having stabilized array and method for medical treatment of atrial fibrillation
JP2005034202A (en) * 2003-07-15 2005-02-10 Terumo Corp Energy treatment device
JP2008513056A (en) * 2004-09-13 2008-05-01 バイオセンス・ウェブスター・インコーポレイテッド Ablation device with phased array ultrasonic transducer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568684A (en) * 1991-09-13 1993-03-23 Olympus Optical Co Ltd Ultrasonic diagnosing device
JP2004503335A (en) * 2000-07-13 2004-02-05 トランサージカル,インコーポレイテッド A device that applies energy to the body of the treated organism
JP2004503324A (en) * 2000-07-13 2004-02-05 トランサージカル,インコーポレイテッド Energy imparting device with expandable annular lens
JP2004130096A (en) * 2002-07-23 2004-04-30 Biosense Webster Inc Ablation catheter having stabilized array and method for medical treatment of atrial fibrillation
JP2005034202A (en) * 2003-07-15 2005-02-10 Terumo Corp Energy treatment device
JP2008513056A (en) * 2004-09-13 2008-05-01 バイオセンス・ウェブスター・インコーポレイテッド Ablation device with phased array ultrasonic transducer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10335280B2 (en) 2000-01-19 2019-07-02 Medtronic, Inc. Method for ablating target tissue of a patient
US10293190B2 (en) 2002-04-08 2019-05-21 Medtronic Ardian Luxembourg S.A.R.L. Thermally-induced renal neuromodulation and associated systems and methods
US10589130B2 (en) 2006-05-25 2020-03-17 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
WO2017144288A1 (en) * 2016-02-23 2017-08-31 Koninklijke Philips N.V. Ultrasound ablation device
US10772655B2 (en) 2016-02-23 2020-09-15 Koninklijke Philips N.V. Ultrasound ablation device

Similar Documents

Publication Publication Date Title
WO2013150777A1 (en) Blood vessel insertion-type treatment device
US10980565B2 (en) Method for ablating body tissue
AU2002312085B2 (en) Tissue-retaining system for ultrasound medical treatment
US20040267132A1 (en) Ultrasonic radial focused transducer for pulmonary vein ablation
EP2750765A1 (en) Method and system for tissue modulation
WO2013157207A1 (en) Vascular insertion type treatment device
WO2013140738A1 (en) Therapeutic device of blood vessel insertion type
US10549127B2 (en) Self-cooling ultrasound ablation catheter
WO2013157208A1 (en) Vascular insertion type treatment device
WO2013150776A1 (en) Blood vessel insertion-type treatment device
AU2002312083B2 (en) Treatment of lung lesions using ultrasound
AU2016204484A1 (en) Device for ablating body tissue
AU2002312083A1 (en) Treatment of lung lesions using ultrasound
AU2002314817A1 (en) Method for aiming ultrasound for medical treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13777730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 13777730

Country of ref document: EP

Kind code of ref document: A1