WO2013155692A1 - Signaling for uplink sounding - Google Patents

Signaling for uplink sounding Download PDF

Info

Publication number
WO2013155692A1
WO2013155692A1 PCT/CN2012/074381 CN2012074381W WO2013155692A1 WO 2013155692 A1 WO2013155692 A1 WO 2013155692A1 CN 2012074381 W CN2012074381 W CN 2012074381W WO 2013155692 A1 WO2013155692 A1 WO 2013155692A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
dci
user terminal
dci format
pusch
Prior art date
Application number
PCT/CN2012/074381
Other languages
French (fr)
Inventor
Haochuan Zhang
Shaohua Li
Zhenshan Zhao
Original Assignee
Telefonaktiebolaget L M Ericsson (Publ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget L M Ericsson (Publ) filed Critical Telefonaktiebolaget L M Ericsson (Publ)
Priority to EP12874476.0A priority Critical patent/EP2839707A4/en
Priority to US14/386,861 priority patent/US9521688B2/en
Priority to PCT/CN2012/074381 priority patent/WO2013155692A1/en
Publication of WO2013155692A1 publication Critical patent/WO2013155692A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment

Definitions

  • the present invention relates generally to wireless communication system, and more particularly, to the signaling design for uplink sounding in wireless communication system.
  • LTE Long Term Evolution
  • LTE release 8 which is currently in use does not satisfy the requirements set forth by the ITU-R organization.
  • Future releases of LTE (referred to as LTE Advanced) are expected to satisfy the requirements to be considered 4G.
  • Sounding techniques are commonly used in the uplink of LTE or LTE-A systems by the radio base stations, usually known as eNB or eNodeB, (where "e” stands for evolved) to estimate the uplink channel state at different frequencies.
  • the channel-state estimates can then, for example, be used by the network scheduler to assign resource blocks of instantaneously good quality for uplink physical uplink shared channel (PUSCH) transmission, as well as to select different transmission parameters such as the instantaneous data rate and different parameters related to uplink multi-antenna transmission.
  • Uplink sounding can also be used by the network to control the uplink transmit timing by means of the uplink-timing-alignment procedure.
  • SRS Sounding Reference Signal
  • Base stations can then perform sounding by transmitting SRS to estimate the uplink channel state at different frequencies.
  • SRS transmission could occur at regular time intervals or in an aperiodic manner.
  • Sounding is an important aspect in the uplink performance enhancement of a wireless communication system, such as the LTE system. To seek an efficient and cost-effective way of sounding, various substitutes for SRS techniques are being considered. However, there is essentially no viable scheme that can well fit in the existing architecture.
  • one of the objects of the present invention is to provide an improved solution for uplink sounding in a wireless communication system, which can be conveniently implemented without increasing computational complexity.
  • the present invention relates to a method in a transmitting node in a wireless communication system for instructing a user terminal to perform uplink sounding, said method comprising: generating an uplink grant in a downlink control information (DO) for instructing the user terminal to transmit an uplink channel with only a reference signal; and transmitting the DCI with said uplink grant to the user terminal, and wherein said uplink grant is configured as a redundant state within the DCI.
  • DO downlink control information
  • the redundant state is able to indicate the disabled transmission of data blocks and control signaling on the uplink.
  • the DCI is in DCI format-4
  • the redundant state is the configuration of DCI format-4 indicating the disabled transmission of the transport blocks and the control state information (CSI) report on a physical uplink shared channel (PUSCH).
  • CSI control state information
  • Another embodiment of the present invention relates to a method in a receiving node in a wireless communication system for performing uplink sounding, said method comprising: receiving a downlink control information (DCI) with an uplink grant from the network node; and enabling the transmission of an uplink channel with only a reference signal to the network node based on the uplink grant, wherein said uplink grant is configured as a redundant state within the DCI.
  • DCI downlink control information
  • the present invention relates to a network node in a wireless communication system operative to instruct a user terminal to perform uplink sounding, comprising: a processing unit for generating an uplink grant in a downlink control information (DCI) for instructing the user terminal to transmit an uplink channel with only a reference signal; and a transmitting unit for transmitting the DCI with said uplink grant to the user terminal; wherein said uplink grant is configured as a redundant state within the DCI.
  • DCI downlink control information
  • the present invention relates to a user terminal in a wireless communication system operative to perform uplink sounding instructed by a network node, comprising: a receiving unit for receiving a downlink control information (DCI) with an uplink grant from the network node; and a processing unit for configuring the user terminal to transmit the uplink channel with only a reference signal according to the uplink grant, wherein said uplink grant is configured as a redundant state within the DCI,
  • DCI downlink control information
  • the user tprminal Viae r#»1 nt/ino fiinr!timialitv
  • the present invention provides an uplink sounding procedure based on the transmission of uplink channel with reference signal other than SRS, which could be triggered by the standard downlink control information as part of the scheduling grant.
  • Such sounding procedure could be conducted in an aperiodic manner, supporting a timely estimate of the channel states without heavy resource burden. Since there is no need to define a new signaling format, not much extra standardization effort is required to bring the present solution into service. Furthermore, backward compatibility with the old releases of systems in use has been taken into consideration.
  • Fig.1 is one functional block diagram illustrating a network node and a user terminal in a wireless communication network performing uplink sounding according to one embodiment of the present invention.
  • Fig.2 is another functional block diagram illustrating a relay node in a wireless communication network performing uplink sounding according to one embodiment of the present invention.
  • Fig.3 is a flow diagram of performing uplink sounding in a network node according to one embodiment of the present invention.
  • Fig.4 is a flow diagram of oerformine unlink soundine in an user terminal according to one embodiment of the present invention.
  • Fig.5 is a table depicting the codeword-to-layer mapping for spatial multiplexing according to one embodiment of the present 111V G1U1U11.
  • Fig.6 is a table depicting the configuration of precoding information field in DCI format-4 for 2 antenna ports according to one embodiment of the present invention.
  • Fig.7 is a table depicting the configuration of precoding information field in DCI format-4 for 4 antenna ports according to one embodiment of the present invention.
  • Fig. l is the functional block diagram illustrating a network node and a user terminal in a wireless communication network performing uplink sounding according to one embodiment of the present invention.
  • Network node 100 for example, is an access point or a base station, like an eNodeB (eNB) in a LTE system, while user terminal 200 could be a user equipment (UE), such as a cellular phone, a personal computer device, etc.
  • eNB eNodeB
  • UE user equipment
  • network node 100 may comprise a processing unit 110 and a transmitting unit, TX 120.
  • the processing unit 110 is operative to generate an uplink grant in a downlink control information (DO) for instructing the user terminal 200 to transmit an uplink channel with only a reference signal.
  • transmitting unit TX would transmit the DCI with said uplink grant to the user terminal.
  • user terminal 200 first receives the DCI with an uplink grant from the network node 100 through the receiving unit RX 220.
  • its processing unit 210 is operative to configure the user terminal to transmit the uplink channel with only a reference signal according to the uplink grant. With the help of the reference signal transmitted alone on the uplink channel, the network node 100 could conduct channel estimation conveniently and precisely.
  • the present invention is not limited to the implementation with one network node and one user terminal as illustrated in Fig. l .
  • it could also be implemented in the communication devices with relaying functionality acting as both transmitter and receiver according to the present disclosure at the same time, such as the relay node 300 illustrated in Fig. 2.
  • the relay node 300 could communicate with both the network node 310 (e.g. a donor eNodeB) and the user terminal 320, wherein the link between the relay node 300 and the network node 310 is usually referred to as backhaul link while the link between the relay node 300 and the user terminal 320 is referred to as access link.
  • the present invention could also be implemented on both the backhaul link and the access link.
  • Fig.3 is a flow diagram of performing uplink sounding in a network node
  • Fig.4 is a flow diagram of performing uplink sounding in an user terminal.
  • the network node (100), i.e., an eNB may first generate an uplink grant in DCI to trigger the transmission of an uplink channel with only a reference signal from the user terminal (200), i.e., an user equipment (UE), as illustrated in Step 101 in Fig.3.
  • said reference signal could be the demodulation reference signal (DM-RS), which is usually transmitted by each UE with a physical uplink shared channel (PUSCH) to enable coherent demodulation for transmitted data or control signals at the eNB, as specified in release 8, 9 and 10 of LTE.
  • DM-RS demodulation reference signal
  • PUSCH physical uplink shared channel
  • a UE could be configured for sounding on the physical resource blocks (PRBs) that are not used by any other UEs for PUSCH transmission, or PRBs that have been allocated to other UEs for PUSCH transmission.
  • PRBs physical resource blocks
  • the latter case above can be viewed as a MU-MIMO pairing but with one UE that does not transmitting any data (except for DM-RS) on the PUSCH.
  • the UEs transmit signals conveying data or control information through a PUSCH, while the uplink scheduling information, also referred to as downlink control information (DCI) is conveyed to those UEs through a physical downlink control channel (PDCCH) from the base stations.
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • the UEs listen for DCI messages and act according to the instructions contained therein.
  • DCI format 0 is used for the scheduling of PUSCH in one UL cell.
  • DCI format 1 is used for the scheduling of one PDSCH codeword in one cell.
  • DCI format 3 is used for the transmission of TPC commands for PUCCH and PUSCH with 2-bit power adjustments, and DCI format 4 is used for the scheduling of PUSCH in one UL cell with multi-antenna port transmission mode.
  • a proper DCI format is in need to convey the "empty" UL grant, which means the scheduling of PUSCH without any data (except for DM-RS) transmission.
  • DCI format 4 currently being used in the LTE system would be a preferable candidate to carry the without-data-transmission UL grant, which could guarantee the DM-RS sounding be UE specific and the sounding configuration be per TTI changeable, while the power of PUSCH be under good control.
  • DCI format 4 has the flexibility to disable the transmission of both the transport blocks, which is desirable in the DM-RS based sounding procedure.
  • a DM-RS based sounding can thus be attained by scheduling the desired UE via DCI format 4 like what has been done for normal with-data UL grant, except that (within DCI format 4) the transmission of both transport blocks (TB) and the channel state information (CSI) reporting are disabled, i.e., both TB sizes equal to zero and no L1/L2 signaling.
  • DCI format 4 the transmission of both transport blocks (TB) and the channel state information (CSI) reporting are disabled, i.e., both TB sizes equal to zero and no L1/L2 signaling.
  • CSI request field there is a 1 or 2 bits CSI request field in DCI format 4, which is used by the eNB to request for a CSI report from UE.
  • a CSI report may consist of channel quality indicator (CQI), precoding matrix indicator (PMI), precoding type indicator (PTI), and/or rand indication (RI).
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • PTI precoding type indicator
  • RI rand indication
  • CSI reporting could be periodic or aperiodic.
  • the 2-bit field only applies to UEs that are configured with more than one DL cell.
  • CSI request field is 1 bit
  • a report is triggered for the serving cell when the CSI request field is set to ' 1 '.
  • the CSI request field size is 2 bits, a report is triggered according to the value in the table below, as defined in release 10 of LTE.
  • the configuration of DCI format 4 for DM-RS sounding shall include setting the 1-bit CSI request field to '0' or setting a 2-bit CSI request field to ⁇ '.
  • both of the two transport blocks shall be disabled.
  • the UE shall first read the 5-bit "modulation and coding scheme" field in the DCI.
  • a transport block is disabled if the modulation and coding scheme (MCS) index is set to 28 and more than one physical resource blocks (PRB) are allocated, or if the MCS is set to 0 and only one PRB is allocated.
  • MCS modulation and coding scheme
  • release 10 of LTE in its current form, allows for the disabling of both transport blocks, but such a case is usually avoided by the base station as abnormal scheduling.
  • DCI format 4 now can be used to schedule an uplink transmission without data on PUSCH.
  • the signaling proposed by the present invention requires only minor changes to the computational complexity of UE to determine its behavior in response as compared to introducing a new DCI format, since no new transmission mode is added here.
  • DCI format 4 contains precoding information, which is determined by the transmitted precoding matrix indicator (TPMI) and the number of layers.
  • TPMI transmitted precoding matrix indicator
  • the configuration of DCI format-4 may include setting TPMI to 0 and setting the layer number field to the number of antenna ports if the number of antenna ports at UE side for the PUSCH equals 2 or 4, so that an identity matrix would be selected for the precoding in the case of zero codeword.
  • some reserved state within DCI format 4 may be used for future functionalities in DM-RS based sounding procedure, such as sounding with antenna selection.
  • DM-RS based sounding procedure such as sounding with antenna selection.
  • the downlink control information in its format 4 may be transmitted with the PUSCH to a UE by the eNB when an uplink sounding is required to be done, as illustrated in Step 102.
  • the operations of UE in response to this control signaling will be described in detail below with respect to Fig.4.
  • Step 201 UE first receives the DCI with an uplink grant from the eNB, which may be in the DCI format 4, as described above. Same as tVif» nnrrtml rvrr»r»i»Hniv» fr»r rti Ccanp
  • UE would conduct blind detection in a search space of DCI messages.
  • the UE may enable the transmission of PUSCH with only DM-RS to the eNB based on information determined from said DCI message, as illustrated in S202. For example, Since no change have been made to the definition of each field in the DCI format, UE could obtain the instruction for the transmission of PUSCH without data in its usual way. For example, upon detecting that the CSI request field is set to 0, it may get the message that no CSI reporting is required. Similarly, by detecting the resource block assignment field and MCS index contained in the DCI message, UE may know that the two transport blocks should both be disabled. Finally, eNB may be able to estimate the uplink channel state based on the response from the UE to the DCI format 4 message.
  • Fig.5 is a table depicting the codeword-to-layer mapping for spatial multiplexing according to one embodiment of the present invention.
  • the complex-valued modulation symbols for each of the codewords to be transmitted are mapped onto one or two layers.
  • the number of codewords would be zero, since both of the two TB have been disabled, wherein one codeward corresponds to one TB which has experienced channel coding. Therefore, the codeword-to-laver marjDine result, i.e. x ⁇ v) i) , and the number of modulation symbols per layer s 3 ⁇ 4 r both shall equal to zero.
  • Fl oS 6 is table t e rnnfi miratio ⁇ n— o—f nI r r.orlin op information field in DCI format-4 for 2 antenna ports according to one embodiment of the present invention.
  • the number of bits for precoding information in DCI format 4 is 3 when the number of antenna ports at the UE is 2.
  • there is zero codeword i.e. both codeword 0 and codeword 1 are disabled, as described above.
  • the 3 bits precoding information are set to 0, it represents the situation of non-precoded PUSCH transmission, as described above.
  • the other settings could be reserved for future use, such as sounding with antenna selection.
  • Fig.7 is a table depicting the configuration of precoding information field in DCI format-4 for 4 antenna ports according to one embodiment of the present invention.
  • 6 bits are distributed for precoding information in DCI format 4 when there are 4 antenna ports at UE. Again, if the 6 bits precoding information are set to 0, it represents the situation of non-precoded PUSCH transmission. The other settings could be reserved for future use.
  • the PDCCH with DCI format 4 ensures that the signaling for DM-RS based sounding is UE specific, and per TTI dynamic.
  • the bandwidth allocation, frequency hopping configuration, and power control are also dedicated to one user equipment per TTI. It is backward compatible with carrier aggregation as well.
  • the signaling method proposed applies for both TDD and FDD.
  • the present invention relates to a computer program product adapted to carry out the methods as described above when run on a computer.
  • Another embodiment of the present invention relates to a computer readable medium comprising computer executable program code adapted to carry out the steps of anyone of the methods as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method in a transmitting node in a wireless communication system for instructing a user terminal to perform uplink sounding is provided, said method comprising: generating an unlink grant in a downlink control information (DCI) for instructing the user terminal to transmit an uplink channel with only a reference signal; and transmitting the DCI with said uplink grant to the user terminal, and wherein said uplink grant is configured as a redundant state within the DCI. A method in a receiving node in a wireless communication system for performing uplink sounding is also provided.

Description

SIGNALING FOR UPLINK SOUNDING
Technical Field
The present invention relates generally to wireless communication system, and more particularly, to the signaling design for uplink sounding in wireless communication system.
Background
The 3 Generation Partnership Project (3 GPP) Long Term Evolution, usually referred to as LTE, is a standard for wireless communication of high-speed data for mobile phones and data terminals, technologies. It is designed to better support mobile broadband Internet access by increasing the capacity and speed using new modulation techniques. Although commonly referred to as a type of 4G wireless service, LTE release 8, which is currently in use does not satisfy the requirements set forth by the ITU-R organization. Future releases of LTE (referred to as LTE Advanced) are expected to satisfy the requirements to be considered 4G.
Sounding techniques are commonly used in the uplink of LTE or LTE-A systems by the radio base stations, usually known as eNB or eNodeB, (where "e" stands for evolved) to estimate the uplink channel state at different frequencies. The channel-state estimates can then, for example, be used by the network scheduler to assign resource blocks of instantaneously good quality for uplink physical uplink shared channel (PUSCH) transmission, as well as to select different transmission parameters such as the instantaneous data rate and different parameters related to uplink multi-antenna transmission. Uplink sounding can also be used by the network to control the uplink transmit timing by means of the uplink-timing-alignment procedure. In the current LTE or LTE-A systems, there has been designed reference signals that are used for sounding the uplink channel, referred to as Sounding Reference Signal (SRS). SRS is typically wideband in nature, since it is often used to probe a wide range of bandwidth. Base stations can then perform sounding by transmitting SRS to estimate the uplink channel state at different frequencies. Generally, SRS transmission could occur at regular time intervals or in an aperiodic manner.
However, with the development of LTE technology, the uplink sounding solutions with SRS turn out to be not adequate. For example, in Li r,-aavanceu, as spe iiieu in jurr release ιυ, ΟΛΟ rcsuur es aic insufficient to support timely sounding since uplink channel states related to maximum 4 antennas need to be monitored. In the context of CoMP (coordinated multi-point transmission) in release 11, the problem becomes even worse, considering the SRS resources might be shared by all UEs.
Sounding is an important aspect in the uplink performance enhancement of a wireless communication system, such as the LTE system. To seek an efficient and cost-effective way of sounding, various substitutes for SRS techniques are being considered. However, there is essentially no viable scheme that can well fit in the existing architecture.
Summary of the Invention
In light of the above, one of the objects of the present invention is to provide an improved solution for uplink sounding in a wireless communication system, which can be conveniently implemented without increasing computational complexity.
According to one embodiment of the invention the present invention relates to a method in a transmitting node in a wireless communication system for instructing a user terminal to perform uplink sounding, said method comprising: generating an uplink grant in a downlink control information (DO) for instructing the user terminal to transmit an uplink channel with only a reference signal; and transmitting the DCI with said uplink grant to the user terminal, and wherein said uplink grant is configured as a redundant state within the DCI.
In another embodiment according to the present invention, the redundant state is able to indicate the disabled transmission of data blocks and control signaling on the uplink.
In yet another embodiment according to the present invention, the DCI is in DCI format-4, and the redundant state is the configuration of DCI format-4 indicating the disabled transmission of the transport blocks and the control state information (CSI) report on a physical uplink shared channel (PUSCH).
Another embodiment of the present invention relates to a method in a receiving node in a wireless communication system for performing uplink sounding, said method comprising: receiving a downlink control information (DCI) with an uplink grant from the network node; and enabling the transmission of an uplink channel with only a reference signal to the network node based on the uplink grant, wherein said uplink grant is configured as a redundant state within the DCI.
According to still another embodiment the present invention relates to a network node in a wireless communication system operative to instruct a user terminal to perform uplink sounding, comprising: a processing unit for generating an uplink grant in a downlink control information (DCI) for instructing the user terminal to transmit an uplink channel with only a reference signal; and a transmitting unit for transmitting the DCI with said uplink grant to the user terminal; wherein said uplink grant is configured as a redundant state within the DCI.
In still another embodiment the present invention relates to a user terminal in a wireless communication system operative to perform uplink sounding instructed by a network node, comprising: a receiving unit for receiving a downlink control information (DCI) with an uplink grant from the network node; and a processing unit for configuring the user terminal to transmit the uplink channel with only a reference signal according to the uplink grant, wherein said uplink grant is configured as a redundant state within the DCI,
In one embodiment according to the present invention, the user tprminal Viae r#»1 nt/ino fiinr!timialitv
There is also one embodiment of the present invention that relates to a computer program product adapted to carry out the method as described above when run on a computer and a computer readable medium comprising computer executable program code adapted to carry out the steps in the method as described above.
The present invention provides an uplink sounding procedure based on the transmission of uplink channel with reference signal other than SRS, which could be triggered by the standard downlink control information as part of the scheduling grant. Such sounding procedure could be conducted in an aperiodic manner, supporting a timely estimate of the channel states without heavy resource burden. Since there is no need to define a new signaling format, not much extra standardization effort is required to bring the present solution into service. Furthermore, backward compatibility with the old releases of systems in use has been taken into consideration.
Brief Description of the Drawings
The foregoing and other objects, features, and advantages of the invention will be apparent from the following more particular description of preferred embodiments as illustrated in the accompanying drawings, in which:
Fig.1 is one functional block diagram illustrating a network node and a user terminal in a wireless communication network performing uplink sounding according to one embodiment of the present invention. Fig.2 is another functional block diagram illustrating a relay node in a wireless communication network performing uplink sounding according to one embodiment of the present invention.
Fig.3 is a flow diagram of performing uplink sounding in a network node according to one embodiment of the present invention.
Fig.4 is a flow diagram of oerformine unlink soundine in an user terminal according to one embodiment of the present invention.
Fig.5 is a table depicting the codeword-to-layer mapping for spatial multiplexing according to one embodiment of the present 111V G1U1U11.
Fig.6 is a table depicting the configuration of precoding information field in DCI format-4 for 2 antenna ports according to one embodiment of the present invention.
Fig.7 is a table depicting the configuration of precoding information field in DCI format-4 for 4 antenna ports according to one embodiment of the present invention.
Detailed Description
While the invention covers various modifications and alternative constructions, embodiments of the invention are shown in the drawings and will hereinafter be described in detail. However it should be understood that the specific description and drawings are not intended to limit the invention to the specific forms disclosed. On the contrary, it is intended that the scope of the claimed invention includes all modifications and alternative constructions thereof falling within the scope of the invention as expressed in the appended claims.
Unless defined in the context of the present description, otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Moreover, by way of a non-limiting example, the methods and arrangements of the present disclosure are illustrated by being used in LTE scenario. However, it should be understood that the teaching of the present disclosure can be applied to other kinds of wireless communication systems, such as other 3G or 4G systems with similar architecture, where uplink sounding procedure and its signaling is desired to get estimates of the channel.
Fig. l is the functional block diagram illustrating a network node and a user terminal in a wireless communication network performing uplink sounding according to one embodiment of the present invention. Network node 100, for example, is an access point or a base station, like an eNodeB (eNB) in a LTE system, while user terminal 200 could be a user equipment (UE), such as a cellular phone, a personal computer device, etc. These two parts are basic elements for a communication system to function properly, with several types of signals transmitted there between according to a certain protocol.
As illustrated in Fig. l, network node 100 according to one embodiment of the present invention may comprise a processing unit 110 and a transmitting unit, TX 120. When uplink sounding is required to be performed, the processing unit 110 is operative to generate an uplink grant in a downlink control information (DO) for instructing the user terminal 200 to transmit an uplink channel with only a reference signal. Then, transmitting unit TX would transmit the DCI with said uplink grant to the user terminal. Correspondingly, user terminal 200 first receives the DCI with an uplink grant from the network node 100 through the receiving unit RX 220. Then, its processing unit 210 is operative to configure the user terminal to transmit the uplink channel with only a reference signal according to the uplink grant. With the help of the reference signal transmitted alone on the uplink channel, the network node 100 could conduct channel estimation conveniently and precisely.
Figure imgf000008_0001
j. l in Liiv^ ouuiiuin^ iuutuui uwd iuw αυυ ν ν, / ui ^x^v^ instead of using the conventional sounding reference signal, some existing reference signal, normally for other uses, which is associated with a specific uplink channel has been adopted for sounding in such a way that only the reference signal itself is transmitted on its associated uplink channel without any other data or control signals. In order to trigger this kind of transmission, it is designed that at the side of a network node 100, downlink control signaling for the "normal" transmission of the uplink channel (i.e. with data and control signals) is employed to send the message that the user terminal 200 would transmit the uplink channel with the reference signal alone. More preferably, a redundant state within the existing downlink control information may be brought into service for this task. Said redundant state can be able to indicate the desired transmission of the reference signals as well as the disabled transmission of data and control signals on the uplink.
It can be seen that though a different way of sounding has been implemented here, no effort for creating a dedicated signaling between the network node and the user terminal in the existing architecture will be necessary, which otherwise could cause the computational complexity of the whole system to soar up and may not be transparent to the legacy equipments.
It is to be understood that the present invention is not limited to the implementation with one network node and one user terminal as illustrated in Fig. l . For example, it could also be implemented in the communication devices with relaying functionality acting as both transmitter and receiver according to the present disclosure at the same time, such as the relay node 300 illustrated in Fig. 2. The relay node 300 could communicate with both the network node 310 (e.g. a donor eNodeB) and the user terminal 320, wherein the link between the relay node 300 and the network node 310 is usually referred to as backhaul link while the link between the relay node 300 and the user terminal 320 is referred to as access link. In such situation, the present invention could also be implemented on both the backhaul link and the access link.
One embodiment of the present invention in terms of the LTE system will be described in detail hereinafter with reference to Fig.3 and Fig.4, wherein Fig.3 is a flow diagram of performing uplink sounding in a network node, and Fig.4 is a flow diagram of performing uplink sounding in an user terminal.
For an LTE system to implement the aperiodic sounding procedure provided in the present disclosure, the network node (100), i.e., an eNB may first generate an uplink grant in DCI to trigger the transmission of an uplink channel with only a reference signal from the user terminal (200), i.e., an user equipment (UE), as illustrated in Step 101 in Fig.3. In this situation, said reference signal could be the demodulation reference signal (DM-RS), which is usually transmitted by each UE with a physical uplink shared channel (PUSCH) to enable coherent demodulation for transmitted data or control signals at the eNB, as specified in release 8, 9 and 10 of LTE.
A UE could be configured for sounding on the physical resource blocks (PRBs) that are not used by any other UEs for PUSCH transmission, or PRBs that have been allocated to other UEs for PUSCH transmission. The latter case above can be viewed as a MU-MIMO pairing but with one UE that does not transmitting any data (except for DM-RS) on the PUSCH.
Generally in LTE systems, the UEs transmit signals conveying data or control information through a PUSCH, while the uplink scheduling information, also referred to as downlink control information (DCI) is conveyed to those UEs through a physical downlink control channel (PDCCH) from the base stations. There has been defined several DCI formats in LTE standards for the transmission of various DL control information, such as the downlink or uplink scheduling information, requests for CQI reports, power control commands. Different messages are sent in different formats through the PDCCH. The UEs listen for DCI messages and act according to the instructions contained therein.
For example, as defined in release 10 of LTE, DCI format 0 is used for the scheduling of PUSCH in one UL cell. DCI format 1 is used for the scheduling of one PDSCH codeword in one cell. DCI format 3 is used for the transmission of TPC commands for PUCCH and PUSCH with 2-bit power adjustments, and DCI format 4 is used for the scheduling of PUSCH in one UL cell with multi-antenna port transmission mode. To achieve the DM-RS based aperiodic sounding as described above, a proper DCI format is in need to convey the "empty" UL grant, which means the scheduling of PUSCH without any data (except for DM-RS) transmission.
Considering the requirements for the DM-RS based sounding to function effectively, DCI format 4 currently being used in the LTE system would be a preferable candidate to carry the without-data-transmission UL grant, which could guarantee the DM-RS sounding be UE specific and the sounding configuration be per TTI changeable, while the power of PUSCH be under good control. Compared to DCI format 0, which is also used for PUSCH scheduling, DCI format 4 has the flexibility to disable the transmission of both the transport blocks, which is desirable in the DM-RS based sounding procedure.
A DM-RS based sounding can thus be attained by scheduling the desired UE via DCI format 4 like what has been done for normal with-data UL grant, except that (within DCI format 4) the transmission of both transport blocks (TB) and the channel state information (CSI) reporting are disabled, i.e., both TB sizes equal to zero and no L1/L2 signaling.
For example, there is a 1 or 2 bits CSI request field in DCI format 4, which is used by the eNB to request for a CSI report from UE. A CSI report may consist of channel quality indicator (CQI), precoding matrix indicator (PMI), precoding type indicator (PTI), and/or rand indication (RI). CSI reporting could be periodic or aperiodic. The 2-bit field only applies to UEs that are configured with more than one DL cell. For an aperiodic CSI reporting with PUSCH triggered by the DCI format 4, if the CSI request field is 1 bit, a report is triggered for the serving cell when the CSI request field is set to ' 1 '. If the CSI request field size is 2 bits, a report is triggered according to the value in the table below, as defined in release 10 of LTE.
Figure imgf000011_0001
lauic i
It then can be seen in Table 1 that the configuration of DCI format 4 for DM-RS sounding shall include setting the 1-bit CSI request field to '0' or setting a 2-bit CSI request field to ΌΟ'.
For the data transmission on a PUSCH, it is specified by the LTE standards that at most two transport blocks are allowed to be transmitted in one TTI. In the DM-RS based sounding procedure according to one embodiment, both of the two transport blocks shall be disabled. According to release 10 of LTE, to determine transport block size(s) in the physical downlink shared channel, the UE shall first read the 5-bit "modulation and coding scheme" field in the DCI. In DCI format 4, a transport block is disabled if the modulation and coding scheme (MCS) index is set to 28 and more than one physical resource blocks (PRB) are allocated, or if the MCS is set to 0 and only one PRB is allocated. Actually, release 10 of LTE, in its current form, allows for the disabling of both transport blocks, but such a case is usually avoided by the base station as abnormal scheduling. With the setting above, DCI format 4 now can be used to schedule an uplink transmission without data on PUSCH. Notably, the signaling proposed by the present invention requires only minor changes to the computational complexity of UE to determine its behavior in response as compared to introducing a new DCI format, since no new transmission mode is added here.
When the DM-RS sounding is triggered by an uplink grant in DCI format 4, it could also allow for the transmission of non-precoded PUSCH. As defined in release 10 of LTE, DCI format 4 contains precoding information, which is determined by the transmitted precoding matrix indicator (TPMI) and the number of layers. To transmit a non-precoded PUSCH, the configuration of DCI format-4 may include setting TPMI to 0 and setting the layer number field to the number of antenna ports if the number of antenna ports at UE side for the PUSCH equals 2 or 4, so that an identity matrix would be selected for the precoding in the case of zero codeword.
Moreover, some reserved state within DCI format 4 may be used for future functionalities in DM-RS based sounding procedure, such as sounding with antenna selection. When the number of antenna ports at UE for the PUSCH equals to 2, by setting TPMI to 4 or 5 and setting the layer number field to 1, PUSCH transmission with antenna selection would be enabled for the demodulation reference signal.
With respect to other fields in DCI format 4, such as the carrier indicator, resource block assignment, TPC command for scheduled PUSCH, cyclic shift for DM RS and OCC index, UL index, no specific rules are set in the case of DM-RS sounding. Basically, it is desired that their settings would not prevent UE from getting the right message for the transmission of PUSCH without data. The eNB could still be able to control the power as well as the time and frequency resources for such transmission by means of these information fields. After the configuration as described above, the downlink control information in its format 4 may be transmitted with the PUSCH to a UE by the eNB when an uplink sounding is required to be done, as illustrated in Step 102. The operations of UE in response to this control signaling will be described in detail below with respect to Fig.4.
In Step 201. UE first receives the DCI with an uplink grant from the eNB, which may be in the DCI format 4, as described above. Same as tVif» nnrrtml rvrr»r»i»Hniv» fr»r rti Ccanp
Figure imgf000013_0001
without any priori knowledge regarding the formatting details used to transmit a given DCI message. To determine whether the DCI message is targeted to it and the DCI format being used, UE would conduct blind detection in a search space of DCI messages.
Upon the detection of the specific DCI format 4 message, the UE may enable the transmission of PUSCH with only DM-RS to the eNB based on information determined from said DCI message, as illustrated in S202. For example, Since no change have been made to the definition of each field in the DCI format, UE could obtain the instruction for the transmission of PUSCH without data in its usual way. For example, upon detecting that the CSI request field is set to 0, it may get the message that no CSI reporting is required. Similarly, by detecting the resource block assignment field and MCS index contained in the DCI message, UE may know that the two transport blocks should both be disabled. Finally, eNB may be able to estimate the uplink channel state based on the response from the UE to the DCI format 4 message.
In the LTE systems, to further ensure the proper UE behavior on receiving the DCI as described above, minor changes to the specifications are needed. Fig.5 is a table depicting the codeword-to-layer mapping for spatial multiplexing according to one embodiment of the present invention. According to the LTE standards, the complex-valued modulation symbols for each of the codewords to be transmitted are mapped onto one or two layers. In this case, the number of codewords would be zero, since both of the two TB have been disabled, wherein one codeward corresponds to one TB which has experienced channel coding. Therefore, the codeword-to-laver marjDine result, i.e. x{v) i) , and the number of modulation symbols per layer s¾r both shall equal to zero.
Fl oS 6 is table
Figure imgf000014_0001
t e rnnfi miratio ~n— o—f nI r r.orlin op information field in DCI format-4 for 2 antenna ports according to one embodiment of the present invention. As defined in release 10 of LTE, the number of bits for precoding information in DCI format 4 is 3 when the number of antenna ports at the UE is 2. In the ease of DM-RS sounding, there is zero codeword, i.e. both codeword 0 and codeword 1 are disabled, as described above. When the 3 bits precoding information are set to 0, it represents the situation of non-precoded PUSCH transmission, as described above. The other settings could be reserved for future use, such as sounding with antenna selection.
Fig.7 is a table depicting the configuration of precoding information field in DCI format-4 for 4 antenna ports according to one embodiment of the present invention. Similarly, as defined in release 10 of LTE, 6 bits are distributed for precoding information in DCI format 4 when there are 4 antenna ports at UE. Again, if the 6 bits precoding information are set to 0, it represents the situation of non-precoded PUSCH transmission. The other settings could be reserved for future use.
In such LTE implementation, the PDCCH with DCI format 4 ensures that the signaling for DM-RS based sounding is UE specific, and per TTI dynamic. The bandwidth allocation, frequency hopping configuration, and power control are also dedicated to one user equipment per TTI. It is backward compatible with carrier aggregation as well. Furthermore, the signaling method proposed applies for both TDD and FDD.
However, those skilled in the art would understand that the concept of the present disclosure could apply to other similar wireless communication systems as defined by e.g. the 3GPP standards
According to one embodiment the present invention relates to a computer program product adapted to carry out the methods as described above when run on a computer.
Another embodiment of the present invention relates to a computer readable medium comprising computer executable program code adapted to carry out the steps of anyone of the methods as described above.
It should be noted that the aforesaid embodiments are illustrative of this invention instead of restricting it, substitute embodiments may be designed by those skilled in the art without departing from the scope of the claims below. The wordings such as "include", "including", "comprise" and "comprising" do not exclude elements or steps which are present but not listed in the description and the claims. It also shall be noted that as used herein and in the appended claims, the singular forms "a", "an", and "the" include plural referents unless the context clearly dictates otherwise. This invention can be achieved by means of hardware including several different elements or by means of a suitably programmed computer. In the unit claims that list several means, several ones among these means can be specifically embodied in the same hardware item. The use of such words as first, second, third does not represent any order, which can be simply explained as names.

Claims

Claims
1 Δ
Figure imgf000016_0001
nmmnti i Q ti nn system for instructing a user terminal to perform uplink sounding, said method comprising:
generating (S 101 ) an uplink grant in a downlink control information
(DCI) for instructing the user terminal to transmit an uplink channel with only a reference signal; and
transmitting (SI 02) the DCI with said uplink grant to the user terminal, and
wherein said uplink grant is configured as a redundant state within the DCI.
2. The method according to claim 1, wherein the redundant state is able to indicate the disabled transmission of data blocks and control signaling on the uplink.
3. The method according to claim 2, wherein the DCI is in DCI format-4, and the redundant state is the configuration of DCI format-4 indicating the disabled transmission of the transport blocks and the control state information (CSI) report on a physical uplink shared channel
(PUSCH).
4. The method according to claim 3, wherein said configuration of DCI format-4 including a 1-bit CSI request field set to Ό' or a 2-bit CSI request field set to ΌΟ'.
5. The method according to claim 4, wherein said configuration of DCI format-4 including the modulation and coding scheme (MCS) index set to 28 if more than one physical resource blocks (PRB) are allocated, or the MCS set to 0 if only one PRB is allocated.
6. The method according to claim 5, wherein said configuration of DCI format-4 further including the transmitted precoding matrix indicator (TPMI) set to 0 and the layer number field set to the number of antenna ports if the number of antenna ports for the PUSCH equals 2 or 4 to enable flip t on otYii c oi n
u iii-iiiiiJJivu "DT
Figure imgf000017_0001
VJTQfVU11>
7. The method according to claim 5, wherein said configuration of DCI format-4 further including the transmitted precoding matrix indicator (TPMI) set to 4 or 5 and the layer number field set to 1 when the number of antenna ports for the PUSCH equals to 2 to enable the transmission of PUSCH transmission with antenna selection.
8. A method in a receiving node in a wireless communication system for performing uplink sounding, said method comprising:
receiving (S201) a downlink control information (DCI) with an uplink grant from the network node; and
enabling (S202) the transmission of an uplink channel with only a reference signal to the network node based on the uplink grant,
wherein said uplink grant is configured as a redundant state within the DCI.
9. The method according to claim 8, wherein the redundant state is able to indicate the disabled transmission of all the data blocks and control signaling on the uplink.
10. The method according to claim 9, wherein the DCI is in DCI format-4, and the redundant state is the configuration of DCI format-4 indicating the disabled transmission of all the transport blocks and the control state information (CSI) report on a physical uplink shared channel (PUSCH).
11. The method according to claim 10, wherein said configuration of DCI format-4 including a 1 -bit CSI request field set to Ό' or a 2-bit CSI request field set to ΌΟ'.
DCI format-4 including the modulation and coding scheme (MCS) index set to 28 if more than one physical resource blocks (PRB) are allocated, or the MCS set to 0 if only one PRB is allocated.
13. The method according to claim 11, further comprising enabling the transmission of non-precoded PUSCH if said configuration of DCI format-4 further including the transmitted precoding matrix indicator (TPMI) set to 0 and the layer number field set to the number of antenna ports if the number of antenna ports for the PUSCH equals 2 or 4.
14. The method according to claim 1 1, further comprising enabling the PUSCH transmission with antenna selection if said configuration of
DCI format-4 further including the transmitted precoding matrix indicator (TPMI) set to 4 or 5 and the layer number field set to 1 when the number of antenna ports for the PUSCH equals to 2.
15. A network node ( 100) in a wireless communication system operative to instruct a user terminal (200) to perform uplink sounding, comprising:
a processing unit (110) for generating an uplink grant in a downlink control information (DCI) for instructing the user terminal to transmit an uplink channel with only a reference signal; and a transmitting unit (120) for transmitting the DCI with said uplink grant to the user terminal;
wherein said uplink grant is configured as a redundant state within the DCI.
5
16. A user terminal (200) in a wireless communication svstem
operative to perform uplink sounding instructed by a network node (100), Γ»τητν βιησ·
a receiving unit (220) for receiving a downlink control information i u wiui an upiiii gram nuiii uic HCIWUIK. nuuc, anu
a processing unit (210) for configuring the user terminal to transmit the uplink channel with only a reference signal according to the uplink grant,
wherein said uplink grant is configured as a redundant state within 15 the DCI.
17. A user terminal (200) according to claim 16, wherein the user terminal has relaying functionality. 0 18. A computer program product adapted to carry out the method according to anyone of claims 1-13 when run on a computer.
PCT/CN2012/074381 2012-04-19 2012-04-19 Signaling for uplink sounding WO2013155692A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12874476.0A EP2839707A4 (en) 2012-04-19 2012-04-19 Signaling for uplink sounding
US14/386,861 US9521688B2 (en) 2012-04-19 2012-04-19 Signaling for uplink sounding
PCT/CN2012/074381 WO2013155692A1 (en) 2012-04-19 2012-04-19 Signaling for uplink sounding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/074381 WO2013155692A1 (en) 2012-04-19 2012-04-19 Signaling for uplink sounding

Publications (1)

Publication Number Publication Date
WO2013155692A1 true WO2013155692A1 (en) 2013-10-24

Family

ID=49382811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074381 WO2013155692A1 (en) 2012-04-19 2012-04-19 Signaling for uplink sounding

Country Status (3)

Country Link
US (1) US9521688B2 (en)
EP (1) EP2839707A4 (en)
WO (1) WO2013155692A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111262650A (en) * 2014-09-26 2020-06-09 高通股份有限公司 Ultra-low latency LTE reference signal transmission

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110365382B (en) * 2012-05-10 2022-06-21 中兴通讯股份有限公司 Indication configuration method of CSI feedback signaling and base station
CN103581090B (en) * 2012-07-26 2016-12-28 华为技术有限公司 Pilot signal transmission method and device
CN104038312B (en) * 2013-03-08 2019-12-31 中兴通讯股份有限公司 Method and device for determining indication signaling of channel measurement pilot frequency and method and device for feeding back CSI (channel state information)
BR112017003967A2 (en) * 2014-08-30 2018-05-08 Huawei Technologies Co., Ltd. Apparatus and data processing method for data processing
US10547426B2 (en) * 2016-03-14 2020-01-28 Samsung Electronics Co., Ltd. Transmission of sounding reference signals in communication systems with carrier aggregation
US10749584B2 (en) * 2016-12-22 2020-08-18 Samsung Electronics Co., Ltd. Uplink MIMO codebook for advanced wireless communication systems
US10601621B2 (en) 2017-01-06 2020-03-24 Sharp Kabushiki Kaisha User equipments, base stations and methods
CA3052397C (en) * 2017-03-31 2022-01-11 Lg Electronics Inc. Method for transmitting uplink data in wireless communication system and apparatus therefor
KR102331127B1 (en) * 2017-04-25 2021-11-26 삼성전자 주식회사 Method and apparatus for resource allocation and precoding for uplink mobile communication system
SG11201910586WA (en) * 2017-08-10 2020-02-27 Guangdong Oppo Mobile Telecommunications Corp Ltd Data transmission method, network device and terminal device
CN109842937B (en) * 2017-09-20 2021-11-19 维沃移动通信有限公司 Information transmission method, network device, terminal, and computer-readable storage medium
US11831436B2 (en) * 2017-09-28 2023-11-28 Comcast Cable Communications, Llc HARQ feedback for grant-free transmission
US20190260435A1 (en) * 2018-02-17 2019-08-22 Mediatek Inc. Uplink Transmission Schemes In Mobile Communications
US11956787B2 (en) * 2018-04-05 2024-04-09 Qualcomm Incorporated Power headroom reporting in coverage edge
WO2019213841A1 (en) * 2018-05-08 2019-11-14 Oppo广东移动通信有限公司 Wireless communication method, terminal device, and network device
EP3815416A1 (en) * 2018-06-29 2021-05-05 Sony Corporation Method and system for triggering an uplink reference signal transmission
KR102617897B1 (en) 2019-02-15 2023-12-26 삼성전자주식회사 Method and apparatus for transmitting and receiving uplink reference signal in wireless communication systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101917765A (en) * 2010-08-13 2010-12-15 中兴通讯股份有限公司 Configuration method and system for measuring reference signal
WO2011034399A2 (en) * 2009-09-21 2011-03-24 엘지전자 주식회사 Method for transmitting a sounding reference signal in a wireless communication system, and apparatus for same
CN102165720A (en) * 2008-09-26 2011-08-24 三星电子株式会社 Apparatus and method for supporting transmission of sounding reference signals from multiple antennas
CN102340800A (en) * 2010-07-16 2012-02-01 华为技术有限公司 Method for obtaining information indicated by DCI, UE and base station

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101416212B1 (en) * 2007-02-15 2014-07-08 가부시키가이샤 엔티티 도코모 Base station device, mobile station, radio communication system, and communication control method
EP3860034B1 (en) * 2007-08-08 2023-11-01 Telefonaktiebolaget LM Ericsson (publ) Channel sounding using multiple sounding signal configurations
KR101741397B1 (en) * 2009-05-15 2017-06-08 엘지전자 주식회사 Method for transmitting sounding reference signal in wireless communication system and apparatus therefor
US9107208B2 (en) * 2010-05-12 2015-08-11 Lg Electronics Inc. Method for transmitting an SRS-triggering-based SRS in a wireless communication system
KR20110126034A (en) 2010-05-14 2011-11-22 엘지전자 주식회사 Method and apparatus of transmitting aperiodic sounding reference signal in wireless communication system
US8837394B2 (en) * 2010-06-18 2014-09-16 Mediatek Inc. Sounding mechanism under carrier aggregation
KR102130417B1 (en) * 2011-09-30 2020-07-08 인터디지탈 패튼 홀딩스, 인크 Multipoint transmission in wireless communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102165720A (en) * 2008-09-26 2011-08-24 三星电子株式会社 Apparatus and method for supporting transmission of sounding reference signals from multiple antennas
WO2011034399A2 (en) * 2009-09-21 2011-03-24 엘지전자 주식회사 Method for transmitting a sounding reference signal in a wireless communication system, and apparatus for same
CN102340800A (en) * 2010-07-16 2012-02-01 华为技术有限公司 Method for obtaining information indicated by DCI, UE and base station
CN101917765A (en) * 2010-08-13 2010-12-15 中兴通讯股份有限公司 Configuration method and system for measuring reference signal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2839707A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111262650A (en) * 2014-09-26 2020-06-09 高通股份有限公司 Ultra-low latency LTE reference signal transmission
CN111262650B (en) * 2014-09-26 2022-06-14 高通股份有限公司 Ultra-low latency LTE reference signal transmission
US11985084B2 (en) 2014-09-26 2024-05-14 Qualcomm Incorporated Ultra-low latency LTE reference signal transmission

Also Published As

Publication number Publication date
EP2839707A4 (en) 2015-12-09
US9521688B2 (en) 2016-12-13
EP2839707A1 (en) 2015-02-25
US20150055576A1 (en) 2015-02-26

Similar Documents

Publication Publication Date Title
US9521688B2 (en) Signaling for uplink sounding
US10681687B2 (en) User equipment and base station configured for aperiodic CSI references signals(CSI-RS) with aperiodic report triggering
EP3337053B1 (en) Communication technique using csi-rs in mobile communication system
CN109075847B (en) User equipment and method for wireless communication
CA3082555C (en) Variable coherence adaptive antenna array
US20200146047A1 (en) Data transmission method, terminal device, base station, and communications system
US10785007B2 (en) Dynamic precoding of shared reference signals
CN113273251B (en) Apparatus, network and method for sounding reference signal transmission and reception
EP2574126B1 (en) Mobile communication system, base station apparatus, mobile station apparatus and communication method
EP2995113B1 (en) Measurements in a wireless system
CN107079324B (en) Base station device, terminal device, and communication method
CN108352885B (en) Channel station information reporting and transmission modes for enhanced machine type communication
CN110741595B (en) Method for allocating frequency resources
CN108366390B (en) Apparatus and method for processing channel state information report for transmission time interval
CN107734686B (en) Method, device, base station and terminal for sending and receiving downlink control signaling
WO2016173489A1 (en) Control information sending method and receiving method, sender and receiver
CN110710252B (en) D2D operation method of terminal in wireless communication system and terminal using the same
EP2984766A1 (en) Methods, mobile devices and nodes for use in a mobile communication network
CN114391236A (en) Time-domain bundling of reference signals based on Transmission Configuration Indicator (TCI) status
EP2805558A1 (en) Enhanced channel state information reporting for downlink control channel
CN110662301B (en) Apparatus and method for processing sounding reference signal transmission
WO2020090573A1 (en) Base station, terminal device, method, program, and recording medium
WO2019105215A1 (en) Transmission indication method, device and system, and storage medium
JP5337835B2 (en) Communication system, user apparatus and transmission method
CN110268668B (en) User equipment and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874476

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14386861

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012874476

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012874476

Country of ref document: EP