WO2013154085A1 - Calibration method and device - Google Patents

Calibration method and device Download PDF

Info

Publication number
WO2013154085A1
WO2013154085A1 PCT/JP2013/060680 JP2013060680W WO2013154085A1 WO 2013154085 A1 WO2013154085 A1 WO 2013154085A1 JP 2013060680 W JP2013060680 W JP 2013060680W WO 2013154085 A1 WO2013154085 A1 WO 2013154085A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
vehicle
index
image
images
Prior art date
Application number
PCT/JP2013/060680
Other languages
French (fr)
Japanese (ja)
Inventor
盛彦 坂野
啓二 佐藤
Original Assignee
クラリオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラリオン株式会社 filed Critical クラリオン株式会社
Publication of WO2013154085A1 publication Critical patent/WO2013154085A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/168Driving aids for parking, e.g. acoustic or visual feedback on parking space
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle

Definitions

  • the present invention relates to a calibration method and apparatus using a plurality of cameras.
  • a calibration index is installed behind the vehicle, and the calibration index reflected on the in-vehicle monitor is displayed. While viewing the image, the mounting state of the in-vehicle camera is adjusted so that the image of the calibration index is appropriately reflected.
  • an image displayed on the in-vehicle monitor is appropriately calibrated by applying a predetermined arithmetic processing based on the image of the calibration index to the image obtained by the in-vehicle camera.
  • the entire periphery of the vehicle is photographed by a plurality of in-vehicle cameras, and the plurality of images obtained by each in-vehicle camera are converted into images (overhead images) that look down from directly above the vehicle, and between the images.
  • images overhead images
  • a single viewpoint-converted composite image is also obtained by performing mapping with the position adjusted. In such a case, since it is necessary to perform alignment between two adjacent images with high accuracy, highly accurate calibration is required.
  • the calibration index is accurately set for the vehicle.
  • the calibration index is installed, it is necessary to accurately install the vehicle with respect to the calibration index.
  • the vehicle production line has been devised to improve the alignment accuracy between the vehicle and the calibration index by modifying the equipment at high cost. Furthermore, if the calibration is performed again by the maintenance department of the sales / service company after it has been shipped from the production site (for repairs, retrofitting an in-vehicle camera, etc.), the calibration index must be set accurately each time. Since it is necessary to install it, it takes much time and labor.
  • Patent Document 1 calibrates internal / distortion parameters and external parameters of a plurality of cameras by using features unrelated to the position of the vehicle such as linearity, parallelism, orthogonality, and spacing of white line grids. Since vehicle positioning is unnecessary and internal / distortion parameters can be calibrated, simple and highly accurate calibration is possible. However, the white line grid for calibration is used by drawing or laying directly on the plane under the vehicle, so if the vehicle is huge, such as a large construction machine, a large calibration chart is required. It takes time and effort to prepare for calibration such as chart creation, transportation and laying.
  • Patent Document 2 installs a calibration chart that is imaged in common between cameras, and calibrates the relative posture between the cameras via the calibration chart. Vehicle positioning is not required and simple calibration is possible. However, since calibration of internal / distortion parameters is not assumed, the calibration accuracy is insufficient.
  • the present invention provides a calibration method for a calibration apparatus that converts a vehicle surrounding image captured by a plurality of cameras into a bird's-eye view image and synthesizes the calibration index on which at least two parallel straight lines are drawn.
  • One is provided in the common imaging area of the two cameras, and the calibration is performed using at least three or more calibration indices installed on a plane around the vehicle.
  • a calibration index on which at least two parallel straight lines are drawn is placed in a common imaging area of the two cameras. And a calibration is performed using at least three or more calibration indicators installed on a plane around the vehicle.
  • Example 1 is a block diagram illustrating a schematic configuration of an image calibration apparatus according to Example 1 which is an embodiment of the present invention. It is a schematic diagram which shows the vehicle carrying four cameras. It is a figure which shows an example of the parameter
  • a partial straight line placed on a road surface as a calibration index is photographed by each of a plurality of vehicle-mounted cameras, and the obtained plurality of images are distorted using default internal parameters, respectively. Correction is performed by adjusting the internal parameters so that the partial straight line image of the calibration index forms a straight line shape in the distortion correction image (or a viewpoint conversion composite image described later) obtained by correcting the distortion.
  • the new distortion-corrected image obtained using the internal parameters is converted into a single viewpoint conversion composite image using the default external parameters, and the partial straight line image of the calibration index in the viewpoint conversion composite image is As with the actual calibration index line, the calibration index is imaged between different images so that the distance between the lines is aligned to be parallel.
  • a peripheral area of the vehicle including a calibration index provided on a road surface on which the vehicle is installed is respectively photographed by a plurality of cameras installed on the vehicle, Optical characteristics of the camera with respect to the peripheral area image captured by each of them (for example, a shift between the optical axis of the image sensor of the vehicle-mounted camera and the optical axis of the lens, or an image by the lens (image formed on the image sensor))
  • Optical characteristics of the camera with respect to the peripheral area image captured by each of them for example, a shift between the optical axis of the image sensor of the vehicle-mounted camera and the optical axis of the lens, or an image by the lens (image formed on the image sensor)
  • Single viewpoint conversion obtained by looking down from above the vehicle with a plurality of distortion correction images obtained by performing distortion correction based on internal parameters corresponding to distortion (aberration, etc.)
  • the camera is attached to the vehicle (a vehicle, for example, a bird's-eye view image that is an image when looking down vertically from an upper
  • the calibration is performed in the image calibration method for calibrating the viewpoint conversion composite image by adjusting the external parameter based on the image of the calibration index in the viewpoint conversion composite image.
  • the index for use includes a sequence of points arranged on at least two straight lines that are parallel to each other, and the calibration index includes two cameras (for example, a front camera and a right side camera) that are adjacent to each other in an imaging region among a plurality of cameras. The right side camera and the rear camera) are set in a common imaging area so that the calibration index is set.
  • the slope of the straight line formed by the point sequence of the calibration index is taken simultaneously in one camera (for example, the calibration index installed in the common area of the front camera and the right side camera, and the front camera And calibration indices installed in a common area of the left side camera) are set different from each other, and for each of the plurality of distortion correction images, a sequence of points included in each distortion correction image, Correction is performed to adjust the internal parameter so as to form a straight line, and a new distortion-converted image obtained from the corrected internal parameter is obtained using the new distortion-corrected image.
  • the correction for adjusting the external parameter is performed so that the new viewpoint-converted composite image satisfies the following conditions (1) to (3).
  • the calibration index specifically, one having two parallel straight lines having a certain width on a rectangular plate can be applied.
  • the rectangular plates are installed so that the inclinations of the straight lines are orthogonal to each other as much as possible between the calibration indices photographed simultaneously in one camera.
  • the calibration method according to the present invention is not limited to the calibration index of this form, and corresponds to at least a point sequence arranged on two lines parallel to each other in each vehicle peripheral image. It is sufficient that each of the images is included.
  • the distortion correction image obtained by using the default internal parameters is set so that the partial straight line image of the calibration index in the distortion correction image is a straight line. Since the parameters are corrected, distortion correction suitable for variations in optical characteristics of individual cameras and individual differences can be performed.
  • a viewpoint based on the default external parameters is used.
  • a converted composite image is generated. Since the generated viewpoint-converted composite image has a high accuracy of the distortion-corrected image as a base, the accuracy of the viewpoint-converted composite image is inevitably high.
  • the above three conditions (1) to (3) do not depend on the relative positional relationship between the vehicle and the calibration index, but only the relationship between the partial straight line images of the calibration index in the viewpoint conversion composite image. (Parallelity, spacing, and image coincidence) are defined, and therefore, the vehicle position and vehicle attitude (orientation) with respect to the calibration index when the vehicle is installed with respect to the calibration index are not required.
  • the relative positional relationship between the calibration index installed on the road surface and the vehicle placed on the road surface is the position of the vehicle obtained by a normal parking operation in a parking frame in a general parking lot or the like,
  • the accuracy of the posture (a degree having a practical level deviation) is sufficient, and the strict degree of the relative positional relationship can be relaxed.
  • the calibration index with a partial straight line drawn on the rectangular plate can be used, the calibration index can be reduced to a size that is easy for an operator to carry even when the vehicle is huge like a construction machine. It is possible to reduce the labor required for preparing the calibration index.
  • the internal / distortion parameters may be corrected by performing general evaluation (a state in which linearity is ensured in the most balanced manner as a whole).
  • external parameter estimation it may not be possible to adjust to an external parameter that is in a completely parallel state (a state in which the slope values are exactly the same) between corresponding images. And external parameters may be adjusted by comprehensive evaluation of the orthogonality (as a whole, in a state where parallelism and orthogonality are ensured in the most balanced manner).
  • FIG. 1 is a block diagram showing a configuration of an image calibration apparatus 100 according to the first embodiment which is an embodiment of the present invention.
  • the illustrated calibration device 100 is mounted on a vehicle 200 shown in FIG.
  • four calibration indexes 20 shown in FIG. 3 are arranged around the vehicle 200 as shown in FIG.
  • a front camera (front camera) 11, a rear camera (rear camera) 12, a right side camera (right side camera) 13, and a left side camera (left side camera) 14 are mounted on a vehicle as shown in FIG.
  • the front camera 11, the rear camera 12, the right side camera 13, and the left side camera 14 photograph the surrounding areas R1, R2, R3, and R4 of the vehicle 200 shown in FIG. 2 as surrounding area images S1, S2, S3, and S4, respectively.
  • FIG. 5 shows S1, S2, S3, and S4.
  • S1 to S4 are fish-eye cameras for photographing at a wide angle, and each image is distorted as shown in FIG.
  • a calibration index 33 and a calibration index 34 are imaged.
  • the calibration index 23 and the calibration index 24 are imaged.
  • the calibration index 33 and the calibration index 23 are imaged.
  • the calibration index 34 and the calibration index 24 are imaged.
  • the partial straight line extraction unit 60 extracts a feature amount used for calibration from each of S1, S2, S3, and S4 from a calibration index. From S1, the partial straight line F1 is extracted as the feature amount of the calibration index 33 and the calibration index 34. From S2, the partial straight line F2 is extracted as the feature quantity of the calibration index 23 and the calibration index 24. From S3, the partial straight line F3 is extracted as the feature quantity of the calibration index 33 and the calibration index 23. From S4, the partial straight line F4 is extracted as the feature quantity of the calibration index 34 and the calibration index 24.
  • FIG. 6 shows F1, F2, F3, and F4.
  • the internal / distortion parameter estimator 51 uses the partial straight lines F1, F2, F3, and F4 to determine internal parameters M (a plurality of cameras (front camera 11, rear camera 12, right side camera 13, left side camera 14)).
  • the internal parameter M1 of the front camera 11, the internal parameter M2 of the rear camera 12, the internal parameter M3 of the right side camera 13, and the internal parameter M4 of the left side camera 14) are estimated.
  • the internal parameter is a numerical value representing the optical properties of each camera, such as the optical axis position, focal length, and distortion of the camera.
  • the distortion correction processing unit 30 shoots images of a plurality of cameras (front camera 11, rear camera 12, right side camera 13, left side camera 14) with a camera without distortion using internal parameters M1, M2, M3, and M4. Convert to a video. By correcting the distortion, the curved partial straight lines F1, F2, F3, and F4 are converted into linear partial straight lines F1, F2, F3, and F4.
  • FIG. 7 shows images T1, T2, T3, and T4 after converting S1, S2, S3, and S4, respectively
  • FIG. 8 also shows corrected partial straight lines P1, P2, P3, and P4.
  • the external parameter estimator 52 uses the partial straight lines P1, P2, P3, and P4 converted into the straight line shape to external the plurality of cameras (front camera 11, rear camera 12, right side camera 13, left side camera 14). Parameters N (external parameter N1 of front camera 11, external parameter N2 of rear camera 12, external parameter N3 of right side camera 13, external parameter N4 of left side camera 14) are corrected.
  • the external parameter is a numerical value that represents the position and orientation of the camera.
  • the calibration unit 50 includes an internal / distortion parameter estimation unit 51 and an external parameter estimation unit 52.
  • the viewpoint conversion processing unit 40 uses the external parameters N1, N2, N3, and N4 of the plurality of cameras (front camera 11, rear camera 12, right side camera 13, and left side camera 14) to use the plurality of cameras (front camera 11).
  • the rear camera 12, the right side camera 13, and the left side camera 14) are converted into overhead images Q1, Q2, Q3, and Q4 looked down from above to generate a composite image Q10.
  • FIG. 9 shows Q1, Q2, Q3, and Q4, and
  • FIG. 10 shows Q10.
  • the calibration index 20 includes, for example, a first straight line L1 and a second straight line L2 drawn on the rectangular plate 25 and parallel to each other, as shown in FIG.
  • the first straight line L1 and the second straight line L2 are parallel to each other, and the distance between the first straight line L1 and the second straight line L2 is set to a known W.
  • the calibration index includes a common region R13 of the peripheral regions R1 and R3 of the vehicle 200, a common region R14 of the peripheral regions R1 and R4 of the vehicle 200, a common region R23 of the peripheral regions R2 and R3 of the vehicle 200, and the periphery of the vehicle 200 It is installed in the common area R24 of the areas R2 and R4.
  • the index set in the common area R13 is the calibration index 33
  • the index set in the common area R14 is the calibration index 34
  • the index set in the common area R23 is set in the calibration index 23 and the common area R24.
  • the index is the calibration index 24.
  • the image of the partial straight lines L1 and L2 of the calibration index 33 and the images of the partial straight lines L1 and L2 of the calibration index 34 are shown in the peripheral area image S1.
  • the inclinations are orthogonal so that the partial straight lines L1 and L2 of the calibration index 33 and the partial straight lines L1 and L2 of the calibration index 34 do not match. Install in.
  • the peripheral area image S2 includes images of partial straight lines L1 and L2 of the calibration index 23 and images of partial straight lines L1 and L2 of the calibration index 24.
  • the inclinations are orthogonal so that the partial straight lines L1 and L2 of the calibration index 23 and the partial straight lines L1 and L2 of the calibration index 24 do not match. Install in.
  • the peripheral area image S3 includes the images of the partial straight lines L1 and L2 of the calibration index 33 and the images of the partial straight lines L1 and L2 of the calibration index 23.
  • the inclinations are orthogonal so that the partial straight lines L1 and L2 of the calibration index 33 and the partial straight lines L1 and L2 of the calibration index 23 do not match. Install in.
  • the peripheral area image S4 includes images of the partial straight lines L1 and L2 of the calibration index 34 and images of the partial straight lines L1 and L2 of the calibration index 24.
  • the inclinations are orthogonal so that the partial straight lines L1 and L2 of the calibration index 34 and the partial straight lines L1 and L2 of the calibration index 24 do not match. Install in.
  • the calibration index only needs to include point sequences FP1, FP2, FP3 and FP4, FP5, FP6 arranged in parallel with each other as in the calibration index 120 shown in FIG.
  • the virtual straight line L11 formed by the feature points FP1, FP2, and FP3 and L12 formed by the feature points FP4, FP5, and FP6 may be regarded as the same as the partial straight lines L1 and L2 and set as calibration indices. .
  • the interval W4 between the center of the image and the center of the feature point FP6 may be a known interval and may be a constraint condition during external parameter calibration described later.
  • the calibration unit 50 makes the images corresponding to the correction partial straight lines P1 to P4 extend linearly for each of the four distortion correction partial straight lines P1, P2, P3, and P4.
  • An internal / distortion parameter correction unit 51 (internal parameter correction unit) that performs correction to adjust the internal parameter M, and a new distortion correction partial straight line obtained by the distortion correction processing unit 30 using the corrected internal parameter M
  • the external parameter N is set so that the obtained new viewpoint transformation partial straight line Q10 satisfies the following conditions (1) to (3).
  • An external parameter estimation unit 52 (external parameter correction unit) that performs correction to be adjusted is included.
  • the distance between the images corresponding to the two partial straight lines parallel to each other is a known distance W between the lines of the calibration index 20
  • the partial straight line image corresponding to the calibration index is a viewpoint conversion composition. Match on partial line Q10.
  • a rear camera 12 is installed at the rear
  • a right side camera 13 is installed on the right side
  • a left side camera 14 is installed on the left side. 4 are arranged on a flat road surface as shown in FIG.
  • the arrangement state of the calibration indices 33, 34, 23, and 24 with respect to the arrangement state of the vehicle 200 is arranged as long as it is included in the common imaging regions R13, R14, R23, and R24 of the cameras shown in FIG. May be.
  • the inclination of the partial straight lines L1 and L2 of the calibration index 33 included in the peripheral area image R1 captured by the front camera 11 of the peripheral area R1 is different from the inclination of the partial straight lines L1 and L2 of the calibration index 34. , Place these.
  • the inclination of the partial straight lines L1 and L2 of the calibration index 23 included in the peripheral area image R2 captured by the rear camera 12 of the peripheral area R2 and the inclination of the partial straight lines L1 and L2 of the calibration index 24 are different. , Place these.
  • the inclination of the partial straight lines L1 and L2 of the calibration index 33 included in the peripheral area image R3 captured by the right side camera 13 of the peripheral area R3 and the inclination of the partial straight lines L1 and L2 of the calibration index 23 are different from each other. Arrange these.
  • the inclinations of the partial straight lines L1 and L2 of the calibration index 34 included in the peripheral area image R4 captured by the left side camera 14 of the peripheral area R4 and the inclinations of the partial straight lines L1 and L2 of the calibration index 24 are different. Arrange these. Therefore, for example, the calibration indicators 34 and 23 are installed so that the partial straight line is parallel to the vehicle width direction, and the calibration indicators 33 and 23 are installed so that the partial straight line is parallel to the vehicle length direction. This is intended to improve the accuracy of internal parameter calibration by including straight lines in two directions in the image.
  • each camera (front camera 11, rear camera 12, right side camera 13, left side camera 14) of the calibration apparatus 100 is in a state where the vehicle 200 is placed on the calibration index.
  • each camera (front camera 11, rear camera 12, right side camera 13, left side camera 14) Peripheral area images S1, S2, S3, and S4 (FIG. 5) corresponding to R2, R3, and R4, respectively, are obtained.
  • the peripheral area images S1, S2, S3, and S4 obtained by each camera (front camera 11, rear camera 12, right side camera 13, and left side camera 14) are images of calibration indices 33, 34, 23, and 24, respectively. It is included.
  • the peripheral area image S1 includes images of partial straight lines L1 and L2 of the calibration index 33 and partial straight lines L1 and L2 of the calibration index 34
  • the peripheral area image S2 includes The images of the partial straight lines L1 and L2 of the calibration index 23 and the images of the partial straight lines L1 and L2 of the calibration index 24 are reflected.
  • the peripheral area image S3 includes the images of the partial straight lines L1 and L2 of the calibration index 33.
  • the peripheral area image S4 includes the images of the partial straight lines L1 and L2 of the calibration index 34 and the images of the partial straight lines L1 and L2 of the calibration index 24. Is reflected.
  • peripheral region images S1 to S4 are input to the distortion correction processing unit 30, and the distortion correction processing unit 30 performs distortion correction on each of the input peripheral region images S1 to S4 using a default internal parameter M.
  • each of the peripheral area images S1 to S4 becomes a distortion corrected image in which the distortion is corrected to some extent.
  • the default internal parameter M is a design value that is uniformly set ignoring the individual differences in the optical characteristics of the camera, so that the ideal optical parameter of the camera is not different from the design value. In some cases, the distortion correction by the default internal parameter M will cause the distortion corrected image to be completely corrected for distortion.
  • the internal parameter M used for distortion correction should be different for each individual camera.
  • the distortion correction processing unit 30 initially performs distortion correction using the default internal parameter M, the obtained distortion-corrected image is not one in which distortion is completely corrected.
  • the internal / distortion parameter correction unit 51 of the calibration unit 50 corrects the default internal parameter M of the distortion correction processing unit 30.
  • the correction of the internal parameter M by the internal / distortion parameter correction unit 51 is performed by sequentially changing the value of the internal parameter M to adjust the calibration index lines H1, H2, V1, and V2 included in each distortion corrected image S. This is a process for converging the images H1, H2, V1, and V2 into linearly extending images.
  • the error function shall evaluate the linearity of the line. For example, it can be realized by using a spherical projection method. In the spherical projection method, a captured straight line is projected onto a virtual sphere. If the straight line has an original linear shape, it forms part of a great circle on the spherical surface. If a straight line is not formed due to distortion or the like, the projected straight line will not be part of the great circle. Therefore, the degree of linearity is determined by using the degree to which each straight line on the spherical surface forms part of a great circle as an error function.
  • the error function is the orthogonality of the vector of feature points on the straight line and the normal vector of the surface formed by the feature vector group composed of other feature points on the straight line.
  • the internal parameters M1 to M4 are internal parameters for each of the cameras 11 to 14 having individual differences in optical characteristics, and the distortion correction processing unit 30 performs distortion correction by the internal parameters M1 to M4 for each of the cameras 11 to 14.
  • each of the peripheral area images S1 to S4 becomes the distortion corrected images T1 to T4 in which the distortion is accurately corrected as shown in FIG.
  • the obtained distortion correction images T1 to T4 are input to the viewpoint conversion processing unit 40, and the viewpoint conversion processing unit 40 performs viewpoint conversion processing on the input distortion correction image according to the default external parameter N.
  • the single viewpoint conversion partial images Q1 to Q4 are generated (see FIG. 12).
  • the correction index lines H1, H2, V1, and V2 have already been corrected so that the images H1, H2, V1, and V2 are linear.
  • the calibration index lines H1, H2, V1, and V2 images H1, H2, V1, and V2 in the respective viewpoint conversion partial images Q1 to Q4 generated based on the distortion corrected images T1 to T4 are also linear.
  • the external parameter N used in the viewpoint conversion processing by the viewpoint conversion processing unit 40 is a design value that is uniformly set ignoring individual differences in the mounting state of each camera with respect to the vehicle 200.
  • the calibration index lines H1, H2, V1, V2 in the viewpoint conversion composite image Q10 obtained by the viewpoint conversion processing with the default external parameter N are used.
  • the images H1, H2, V1, and V2 are parallel to each other and the distance between the lines is equal to a known value as shown in FIG.
  • the line image that is included in common in the two images should be at the same position on the image.
  • the mounting state such as the mounting position and mounting posture of the camera with respect to the vehicle 200 is naturally determined. While there are individual differences.
  • the external parameter N used for the viewpoint conversion / combination processing should be different for each individual camera.
  • the viewpoint conversion processing unit 40 initially performs the viewpoint conversion processing with the default external parameter N, the obtained viewpoint conversion images Q1 to Q4 are included therein as shown in FIG.
  • the images H1, H2, V1, and V2 of the calibration index lines H1, H2, V1, and V2 are not parallel to each other, the distance between the images corresponding to the lines is inappropriate, or are originally in the same position.
  • the image of the line that should be may not be at the same position.
  • the external parameter estimation unit 52 of the calibration unit 50 corrects the default external parameter N of the viewpoint conversion processing unit 40.
  • the correction of the external parameter N by the external parameter estimator 52 is performed by sequentially changing the value of the external parameter N, and images of the calibration index lines H1, H2, V1, and V2 included in the viewpoint conversion images Q1 to Q4.
  • the external parameter estimation unit 52 specifically sets the condition (2) as the condition (2) so as to satisfy the conditions (1-1) to (1-8).
  • Each external parameter N is corrected so as to satisfy the above conditions (3), specifically, the conditions (3-1) to (3-4) so as to satisfy 1) to (2-8).
  • the external parameter estimation unit 52 (1-1)
  • the images V1 and V2 respectively corresponding to the two parallel lines V1 and V2 in the viewpoint converted image Q1 are parallel to each other.
  • the images H1 and H2 respectively corresponding to the two parallel lines H1 and H2 in the viewpoint-converted image Q1 are parallel to each other.
  • the images V1 and V2 respectively corresponding to the two parallel lines V1 and V2 in the viewpoint converted image Q2 are parallel to each other.
  • the images H1 and H2 respectively corresponding to the two parallel lines H1 and H2 in the viewpoint-converted image Q2 are parallel to each other.
  • the images V1 and V2 respectively corresponding to the two parallel lines V1 and V2 in the viewpoint converted image Q3 are parallel to each other.
  • the images H1 and H2 respectively corresponding to the two parallel lines H1 and H2 in the viewpoint converted image Q3 are parallel to each other.
  • the images V1 and V2 respectively corresponding to the two parallel lines V1 and V2 in the viewpoint-converted image Q4 are parallel to each other.
  • the images H1 and H2 corresponding to the two parallel lines H1 and H2 in the viewpoint-converted image Q4 are parallel to each other.
  • the distance between the images V1 and V2 corresponding respectively to the two parallel lines V1 and V2 in the viewpoint conversion image Q1 is the known distance W between the lines L1 and L2 in the actual calibration index 20.
  • the distance between the images H1 and H2 respectively corresponding to the two parallel lines H1 and H2 in the viewpoint conversion image Q1 is the known distance W between the lines L1 and L2 in the actual calibration index 20 So that (2-3)
  • the distance between the images V1 and V2 respectively corresponding to the two parallel lines V1 and V2 in the viewpoint-converted image Q2 is the known distance W between the lines L1 and L2 in the actual calibration index 20.
  • the distance between the images H1 and H2 respectively corresponding to the two parallel lines H1 and H2 in the viewpoint converted image Q2 is the known distance W between the lines L1 and L2 in the actual calibration index 20.
  • (2-5) The distance between the images V1 and V2 respectively corresponding to the two parallel lines V1 and V2 in the viewpoint conversion image Q3 is the known distance W between the lines L1 and L2 in the actual calibration index 20.
  • (2-6) The distance between the images H1 and H2 respectively corresponding to the two parallel lines H1 and H2 in the viewpoint converted image Q3 is the known distance W between the lines L1 and L2 in the actual calibration index 20.
  • the external parameter N is adjusted by the external parameter estimation unit 52 in the above conditions (1-1) to (1-8), conditions (2-1) to (2-8), and conditions (3-1) to ( 3-4) is preferably completely satisfied, but not all external parameters N may be uniquely determined. Therefore, the above conditions (1-1) to (1-8), It is also possible to converge to an external parameter N that satisfies the conditions (2-1) to (2-8) and the conditions (3-1) to (3-4) in a well-balanced manner.
  • the external parameter N when the above-described conditions are converged becomes the corrected parameter N
  • the viewpoint conversion processing unit 40 performs viewpoint conversion processing on each of the distortion corrected images T1 to T4 with the corrected external parameter N.
  • the obtained new viewpoint conversion composite image Q10 is as shown in FIG.
  • This processing can also be realized by designing an error function and applying an optimization method, as in the case of internal parameter estimation.
  • the error function is designed to measure the parallelism of straight lines, the distance between straight lines, and the degree of coincidence of straight line coordinates.
  • Each error function can be calculated from a straight line equation formed by feature points.
  • This error function is partially differentiated with respect to each external parameter, so that the change amount of the error function with respect to each external parameter can be obtained, and the value of the external parameter is updated based on this change amount (for example, steepest descent method). . By repeating this process until the error function does not decrease, the external parameter is obtained.
  • the calibration index in the distortion corrected image P is obtained for the distortion corrected image P obtained using the internal parameter M having the default value. Since the internal parameter M is corrected so that the images H and V of the 20 lines H and V are straight lines, it is possible to perform distortion correction suitable for variations in optical characteristics of individual cameras and individual differences, and high accuracy. A distortion-corrected image can be obtained.
  • a new distortion correction image obtained based on the internal parameters corrected in this way (the lines H and V images H and V of the calibration index 20 are straight lines) is used as a default value.
  • the viewpoint conversion composite image Q10 based on the external parameter N is generated. Since the generated viewpoint conversion composite image Q10 has a high accuracy of the distortion correction image P as a base, the accuracy of the viewpoint conversion composite image Q10 is high. Inevitably high.
  • the viewpoint conversion composite image Q10 with higher accuracy can be obtained.
  • the above three conditions (1) to (3) do not depend on the relative positional relationship between the vehicle 200 and the calibration index 20, and are merely a line H of the calibration index 20 in the viewpoint conversion composite image Q10. And the relationship between only the images H and V (parallel, line spacing, same position), the vehicle 200 with respect to the calibration index 20 when the vehicle 200 is installed with respect to the calibration index 20. The strictness of the position and the attitude (orientation) of the vehicle 200 is not required.
  • the relative positional relationship between the calibration index 20 installed on the road surface and the vehicle 200 arranged on the road surface is obtained by a normal parking operation on a parking frame in a general parking lot or the like.
  • the accuracy of the position and orientation (the extent of having a practical level deviation) is sufficient, and the strict degree of the relative positional relationship can be relaxed.
  • the common calibration index 20 can be used as it is. It is no longer necessary to prepare and install a dedicated calibration index 20, and labor and time can be greatly reduced.
  • the images H and V in the distortion corrected image P corresponding to the lines H and V of the calibration index 20 extend linearly.
  • the internal parameter M it is possible to realize calibration with higher accuracy than the conventional calibration using the fixed internal parameter and adjusting the external parameter N.
  • the line is used as the calibration index 20 as compared with the conventional calibration method performed only with points, distortion between points is not considered. The accuracy can be improved over the conventional calibration.
  • At least two calibration markers with at least two parallel straight lines are provided in the common imaging area of the two cameras, and at least three calibration markers are installed on the plane around the vehicle.
  • Use to calibrate Specifically, the degree of parallelism of the images H and V in the viewpoint conversion composite image Q10, the distance between the images (lines), and the images H and V corresponding to the lines H and V captured across the two viewpoint conversion images.
  • the external parameter N By adjusting the external parameter N so that they are located at the same position, it is possible to perform calibration with high accuracy over the entire viewpoint conversion composite image Q10.
  • the image calibration apparatus 100 uses a simple pattern in which the distance between the lines is known and parallel, and the calibration index 20 having such a simple configuration is available.
  • the external parameter estimation unit 52 repeatedly performs the calculation under the above conditions (1) to (3), so that the viewpoint conversion composite image Q10 becomes a new viewpoint conversion composite image Q10.
  • the image calibration apparatus of the present invention is not limited to this form, and the external parameter estimation unit 52 performs the above (1) to (3).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Image Processing (AREA)

Abstract

A calibration method used in a calibration device that converts around-vehicle images captured by a plurality of cameras into overhead images for synthesis, wherein one calibration index in which at least two parallel straight lines are drawn is installed in a common imaging area of two of the cameras, and at least three units of the calibration index installed on a flat surface around a vehicle are used to perform calibration. Therefore, the time and effort necessary for calibration such as the creation, transportation, and laying of a calibration chart are reduced, and high-precision camera calibration including the calibration of internal distortion and external parameters is performed.

Description

キャリブレーション方法および装置Calibration method and apparatus
 本発明は、複数のカメラを用いたキャリブレーション方法および装置に関する。 The present invention relates to a calibration method and apparatus using a plurality of cameras.
 車載カメラで撮影された車両後方の画像を車載モニタに表示することで、運転者から死角になる車両後方直近の状況を、車載モニタに表示された画像により視認し、車両後退時の視認性を向上させることが行われている。 By displaying an image of the rear of the vehicle captured by the in-vehicle camera on the in-vehicle monitor, the situation immediately behind the vehicle, which is a blind spot from the driver, is visually confirmed by the image displayed on the in-vehicle monitor, and visibility when the vehicle is moving backward is improved. Improvements are being made.
 このような車載カメラの画像を車載モニタに表示するに際して、車載カメラの車両への取付け状態を校正するために、車両の後方に校正用の指標を設置し、車載モニタに映った校正用指標の像を見ながら、その校正用指標の像が適正に映るように、車載カメラの取付け状態を調整することが行われている。 When displaying such an in-vehicle camera image on the in-vehicle monitor, in order to calibrate the mounting state of the in-vehicle camera on the vehicle, a calibration index is installed behind the vehicle, and the calibration index reflected on the in-vehicle monitor is displayed. While viewing the image, the mounting state of the in-vehicle camera is adjusted so that the image of the calibration index is appropriately reflected.
 また、車載カメラで得られた画像に対して、校正用指標の像に基づいた所定の演算処理を施すことで、車載モニタに映る画像を適正に校正することが行われている。 In addition, an image displayed on the in-vehicle monitor is appropriately calibrated by applying a predetermined arithmetic processing based on the image of the calibration index to the image obtained by the in-vehicle camera.
 さらに車両の全周囲を複数の車載カメラで撮影し、各車載カメラで得られた複数の画像を、それぞれ車両の真上から見下ろしたような画像(俯瞰画像)に変換すると共に、各画像間での位置を調整したマッピングを行うことで、単一の視点変換合成画像を得ることも行われている。このような場合、隣接する2つの画像間で精度よく位置合わせを行う必要があるため、高精度のキャリブレーションが求められる。 Furthermore, the entire periphery of the vehicle is photographed by a plurality of in-vehicle cameras, and the plurality of images obtained by each in-vehicle camera are converted into images (overhead images) that look down from directly above the vehicle, and between the images. A single viewpoint-converted composite image is also obtained by performing mapping with the position adjusted. In such a case, since it is necessary to perform alignment between two adjacent images with high accuracy, highly accurate calibration is required.
 しかし、従来のキャリブレーション方法は、校正用指標と車両との相対的な位置関係を厳密に定める必要があり、車両を設置した後に、その車両に対して精度よく校正用指標を設置するか、または校正用指標を設置した後に、その校正用指標に対して精度よく車両を設置する必要があった。 However, in the conventional calibration method, it is necessary to strictly determine the relative positional relationship between the calibration index and the vehicle. After the vehicle is installed, the calibration index is accurately set for the vehicle. Alternatively, after the calibration index is installed, it is necessary to accurately install the vehicle with respect to the calibration index.
 このため、車両生産ラインでは、費用を掛けて設備を改造し、車両と校正用指標との位置合わせ精度を向上させる工夫がなされている。さらに、生産現場から一旦出荷された後に販売・サービス会社の整備部門でキャリブレーションをやり直す場合(修理等の場合、車載カメラ等を後付けする場合等)には、校正用指標をその都度、精度良く設置する必要があるため、作業の手間が一層掛かるものとなっている。 For this reason, the vehicle production line has been devised to improve the alignment accuracy between the vehicle and the calibration index by modifying the equipment at high cost. Furthermore, if the calibration is performed again by the maintenance department of the sales / service company after it has been shipped from the production site (for repairs, retrofitting an in-vehicle camera, etc.), the calibration index must be set accurately each time. Since it is necessary to install it, it takes much time and labor.
 このような状況下、車両と校正用指標の相対的な設置精度を求めないキャリブレーション方法が求められている。 Under such circumstances, there is a need for a calibration method that does not require relative installation accuracy between the vehicle and the calibration index.
特開2012-015576号公報JP 2012-015576 A 特開2008-187564号公報JP 2008-187564 A
 特許文献1は、白線格子の直線性、平行性、直交性、間隔といった車両の位置とは無関係な特徴を利用して、複数カメラの内部/歪みパラメータ、および外部パラメータをキャリブレーションする。車両の位置決めが不要で、内部/歪みパラメータもキャリブレーションできるため、簡易かつ高精度なキャリブレーションが可能である。しかしながら、校正用の白線格子は、車両下の平面に直接描画、あるいは敷設して利用するため、大型の建設用機械など、車両が巨大な場合には、大きな校正用チャートが必要になり、校正用チャートの作成、運搬、敷設などの校正に必要な準備に手間がかかる。 Patent Document 1 calibrates internal / distortion parameters and external parameters of a plurality of cameras by using features unrelated to the position of the vehicle such as linearity, parallelism, orthogonality, and spacing of white line grids. Since vehicle positioning is unnecessary and internal / distortion parameters can be calibrated, simple and highly accurate calibration is possible. However, the white line grid for calibration is used by drawing or laying directly on the plane under the vehicle, so if the vehicle is huge, such as a large construction machine, a large calibration chart is required. It takes time and effort to prepare for calibration such as chart creation, transportation and laying.
 特許文献2は、カメラ間で共通に撮像される校正用チャートを設置し、校正用チャートを介して、カメラ間の相対姿勢をキャリブレーションする。車両の位置決めが不要で、簡易なキャリブレーションが可能である。しかしながら、内部/歪みパラメータのキャリブレーションを想定していないため、校正精度が不十分である。 Patent Document 2 installs a calibration chart that is imaged in common between cameras, and calibrates the relative posture between the cameras via the calibration chart. Vehicle positioning is not required and simple calibration is possible. However, since calibration of internal / distortion parameters is not assumed, the calibration accuracy is insufficient.
 本発明は、上記課題を鑑み、複数のカメラで撮像した車両周囲画像を俯瞰画像に変換し、合成するキャリブレーション装置のキャリブレーション方法において、少なくとも2本の平行直線が描かれた校正用指標を、二つのカメラの共通撮像領域内に1つ設け、車両周囲の平面上に、少なくとも3つ以上設置された校正用指標を用いて校正する構成とする。 In view of the above-described problems, the present invention provides a calibration method for a calibration apparatus that converts a vehicle surrounding image captured by a plurality of cameras into a bird's-eye view image and synthesizes the calibration index on which at least two parallel straight lines are drawn. One is provided in the common imaging area of the two cameras, and the calibration is performed using at least three or more calibration indices installed on a plane around the vehicle.
 また、複数のカメラで撮像した車両周囲画像を俯瞰画像に変換し、合成するキャリブレーション装置において、少なくとも2本の平行直線が描かれた校正用指標を、二つのカメラの共通撮像領域内に1つ設け、車両周囲の平面上に、少なくとも3つ以上設置された校正用指標を用いて校正する構成とする。 In addition, in a calibration device that converts a vehicle surrounding image captured by a plurality of cameras into a bird's-eye view image and combines them, a calibration index on which at least two parallel straight lines are drawn is placed in a common imaging area of the two cameras. And a calibration is performed using at least three or more calibration indicators installed on a plane around the vehicle.
 本明細書は本願の優先権の基礎である日本国特許出願2012-088598号の明細書および/または図面に記載される内容を包含する。 This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2012-088598, which is the basis of the priority of the present application.
 本発明によれば、内部/歪みパラメータ校正を実施することに由来する高いキャリブレーション精度の確保と、校正用チャートの運搬、作成、敷設など、校正に必要な準備の容易性の実現とを、両立させるキャリブレーション方法および装置を提供することができる。 According to the present invention, ensuring high calibration accuracy derived from performing internal / strain parameter calibration, and realizing ease of preparation necessary for calibration, such as transportation, creation, and laying of a calibration chart, It is possible to provide a calibration method and apparatus that are compatible with each other.
本発明の実施形態である実施例1に係る画像のキャリブレーション装置の概略構成を示すブロック図である。1 is a block diagram illustrating a schematic configuration of an image calibration apparatus according to Example 1 which is an embodiment of the present invention. 4つのカメラが搭載された車両を示す模式図である。It is a schematic diagram which shows the vehicle carrying four cameras. 校正用指標の一例を示す図である。It is a figure which shows an example of the parameter | index for calibration. 図3に示した校正用指標の設置の一例を示す図である。It is a figure which shows an example of installation of the parameter | index for calibration shown in FIG. 各カメラで周辺領域を撮影した画像を示す図であり、S1はフロントカメラによる撮像、S2はリヤカメラによる撮像、S3は右サイドカメラによる撮像、S4は左サイドカメラによる撮像領域、をそれぞれ表す。It is a figure which shows the image which image | photographed the peripheral area | region with each camera, S1 represents the imaging by a front camera, S2 imaged by the rear camera, S3 imaged by the right side camera, S4 represents the imaging area by the left side camera, respectively. 各画像から抽出された部分直線を示す図である。It is a figure which shows the partial straight line extracted from each image. 歪み補正後の画像を示す図である。It is a figure which shows the image after distortion correction. 歪み補正後の部分直線を示す図である。It is a figure which shows the partial straight line after distortion correction. 俯瞰変換後の各画像を示す図である。It is a figure which shows each image after overhead conversion. 俯瞰変換合成画像を示す図である。It is a figure which shows a bird's-eye view conversion synthetic | combination image. 校正用指標における仮想直線の例を示す図である。It is a figure which shows the example of the virtual straight line in the parameter | index for calibration. デフォルト外部パラメータによる俯瞰変換後の各画像を示す図である。It is a figure which shows each image after bird's-eye view conversion by a default external parameter.
 本発明に係るキャリブレーションの方法および装置は、校正用指標として路面上に設置した部分直線を複数の車載カメラのそれぞれで撮影し、得られた複数の画像をそれぞれデフォルトの内部パラメータを用いて歪み補正し、その歪み補正して得られた歪み補正画像(または後述する視点変換合成画像)における校正用指標の部分直線の像が直線形状をなすように内部パラメータを調整する補正を行い、補正された内部パラメータを用いて得られた新たな歪み補正画像を、デフォルトの外部パラメータを用いて単一の視点変換合成画像に変換し、この視点変換合成画像における校正用指標の部分直線の像が、実物の校正用指標の線と同様に、平行になるように、線間の間隔が一致するように、互いに異なる画像間で、校正用指標の撮像が一致するように、外部パラメータを補正するものである。路面上に設置された校正用指標とその路面に配置される車両との相対的な位置関係の厳密さを要求せず、建設機械等、車両が非常に大きい場合でも、人が運搬できる程度の小型の校正用指標を利用することができ、校正に必要な準備の負担を軽減することができる。 In the calibration method and apparatus according to the present invention, a partial straight line placed on a road surface as a calibration index is photographed by each of a plurality of vehicle-mounted cameras, and the obtained plurality of images are distorted using default internal parameters, respectively. Correction is performed by adjusting the internal parameters so that the partial straight line image of the calibration index forms a straight line shape in the distortion correction image (or a viewpoint conversion composite image described later) obtained by correcting the distortion. The new distortion-corrected image obtained using the internal parameters is converted into a single viewpoint conversion composite image using the default external parameters, and the partial straight line image of the calibration index in the viewpoint conversion composite image is As with the actual calibration index line, the calibration index is imaged between different images so that the distance between the lines is aligned to be parallel. As to, and corrects the external parameters. It does not require rigorous relative positional relationship between calibration indicators installed on the road surface and vehicles placed on the road surface, and can be transported by humans even when the vehicle is very large, such as construction machinery. A small calibration index can be used, and the burden of preparation necessary for calibration can be reduced.
 すなわち、本発明のキャリブレーション方法は、車両が設置された路面上に設けた校正用指標を含む、前記車両の周辺領域を、前記車両に設置された複数のカメラによりそれぞれ撮影し、前記カメラのそれぞれによって撮影された周辺領域画像に対して前記カメラの光学的特性(例えば、車載カメラの撮像素子の光軸とレンズの光軸とのずれやレンズによる像(撮像素子に結像される像)の歪み(収差等)等)に対応した内部パラメータに基づいた歪み補正をそれぞれ施し、前記歪み補正によって得られた複数の歪み補正画像が、前記車両の上方から見下ろして得られる単一の視点変換合成画像(例えば、車両の上方位置から鉛直下方を見下ろしたときの画像である俯瞰画像)となるように、前記カメラの前記車両への取り付け状態(車両との相対的な位置関係(3次元の空間座標位置)および姿勢(3次元の各軸回りの光軸の角度))に対応した外部パラメータに基づいて前記複数の歪み補正画像を視点変換処理し、前記視点変換処理に際しては、前記視点変換合成画像における前記校正用指標の像に基づいて前記外部パラメータを調整することにより、前記視点変換合成画像のキャリブレーションを行う画像のキャリブレーション方法において、前記校正用指標は、互いに平行をなす少なくとも2本の直線上に配列された点列を含み、前記校正用指標は、複数カメラのうち、撮像領域の隣接する2カメラ(例えば、フロントカメラと右サイドカメラ、右サイドカメラとリアカメラなど)両方に撮影されるように、共通の撮像領域に設置されるものであり、前記校正用指標を設置する際、校正用指標の点列が形成する直線の傾きが、1カメラ中に同時に撮影されるもの同士(例えば、フロントカメラと右サイドカメラの共通領域に設置される校正用指標と、フロントカメラと左サイドカメラの共通領域に設置される校正用指標)では互いに異なるように設置されるものであって、前記複数の歪み補正画像のそれぞれについて、前記各歪み補正画像に含まれる点列が、直線をなすように、前記内部パラメータを調整する補正を行い、その補正された後の前記内部パラメータにより得られた新たな歪み補正画像を用いて、新たな視点変換合成画像を得、その得られた新たな視点変換合成画像が以下の条件(1)~(3)を満たすように、前記外部パラメータを調整する補正を行うことを特徴とする。 That is, in the calibration method of the present invention, a peripheral area of the vehicle including a calibration index provided on a road surface on which the vehicle is installed is respectively photographed by a plurality of cameras installed on the vehicle, Optical characteristics of the camera with respect to the peripheral area image captured by each of them (for example, a shift between the optical axis of the image sensor of the vehicle-mounted camera and the optical axis of the lens, or an image by the lens (image formed on the image sensor)) Single viewpoint conversion obtained by looking down from above the vehicle with a plurality of distortion correction images obtained by performing distortion correction based on internal parameters corresponding to distortion (aberration, etc.) The camera is attached to the vehicle (a vehicle, for example, a bird's-eye view image that is an image when looking down vertically from an upper position of the vehicle). Viewpoint conversion processing of the plurality of distortion-corrected images based on external parameters corresponding to the relative positional relationship (three-dimensional spatial coordinate position) and posture (angle of the optical axis around each three-dimensional axis), In the viewpoint conversion process, in the image calibration method for calibrating the viewpoint conversion composite image by adjusting the external parameter based on the image of the calibration index in the viewpoint conversion composite image, the calibration is performed. The index for use includes a sequence of points arranged on at least two straight lines that are parallel to each other, and the calibration index includes two cameras (for example, a front camera and a right side camera) that are adjacent to each other in an imaging region among a plurality of cameras. The right side camera and the rear camera) are set in a common imaging area so that the calibration index is set. When the slope of the straight line formed by the point sequence of the calibration index is taken simultaneously in one camera (for example, the calibration index installed in the common area of the front camera and the right side camera, and the front camera And calibration indices installed in a common area of the left side camera) are set different from each other, and for each of the plurality of distortion correction images, a sequence of points included in each distortion correction image, Correction is performed to adjust the internal parameter so as to form a straight line, and a new distortion-converted image obtained from the corrected internal parameter is obtained using the new distortion-corrected image. The correction for adjusting the external parameter is performed so that the new viewpoint-converted composite image satisfies the following conditions (1) to (3).
(1)前記互いに平行な2本の線に対応した像が互いに平行である。 (1) Images corresponding to the two parallel lines are parallel to each other.
(2)前記互いに平行な2本の線に対応した像間の距離が、前記校正用指標の点列間の既知の距離である。 (2) The distance between the images corresponding to the two parallel lines is a known distance between the point sequences of the calibration index.
(3)撮像領域の隣接する2カメラで撮像された前記校正用指標の映像が一致する。 (3) The images of the calibration index captured by the two cameras adjacent to the imaging area match.
 ここで、校正用指標は、具体的には、矩形のプレート上に一定の幅を持つ2本の平行直線を備えるものを適用することができる。この矩形プレートは、例えば、1カメラ中に同時に撮影される校正用指標同士では、直線の傾きができるだけ互いに直交するように設置する。 Here, as the calibration index, specifically, one having two parallel straight lines having a certain width on a rectangular plate can be applied. For example, the rectangular plates are installed so that the inclinations of the straight lines are orthogonal to each other as much as possible between the calibration indices photographed simultaneously in one camera.
 ただし、本発明のキャリブレーション方法においては、この形態の校正用指標に限定されるものではなく、少なくとも、各車両周辺画像に、少なくとも、互いに平行な2本の線上に配列された点列に対応した像が、それぞれ含まれたものであればよい。 However, the calibration method according to the present invention is not limited to the calibration index of this form, and corresponds to at least a point sequence arranged on two lines parallel to each other in each vehicle peripheral image. It is sufficient that each of the images is included.
 本発明の第1の画像のキャリブレーション方法では、デフォルト値の内部パラメータを用いて得られた歪み補正画像について、その歪み補正画像中の校正用指標の部分直線の像を直線とするように内部パラメータを補正するため、個々のカメラの光学特性のばらつき、個体差に適した歪み補正を行うことができる。 In the first image calibration method of the present invention, the distortion correction image obtained by using the default internal parameters is set so that the partial straight line image of the calibration index in the distortion correction image is a straight line. Since the parameters are corrected, distortion correction suitable for variations in optical characteristics of individual cameras and individual differences can be performed.
 さらに、そのようにして補正された内部パラメータに基づいて得られた新たな歪み補正画像(校正用指標の部分直線の像が直線になっている)を用いて、デフォルトの外部パラメータに基づいた視点変換合成画像が生成されるが、この生成された視点変換合成画像は、基になる歪み補正画像の精度が良いため、この視点変換合成画像の精度も必然的に高い。 Furthermore, using a new distortion-corrected image obtained based on the internal parameters corrected in this way (the partial straight line image of the calibration index is a straight line), a viewpoint based on the default external parameters is used. A converted composite image is generated. Since the generated viewpoint-converted composite image has a high accuracy of the distortion-corrected image as a base, the accuracy of the viewpoint-converted composite image is inevitably high.
 上記3つの条件(1)~(3)は、車両と校正用指標との相対的位置関係に依存するものではなく、あくまで視点変換合成画像中における校正用指標の部分直線の像間だけの関係(平行、間隔、画像の一致)を規定するものであるため、校正用指標に対して車両を設置する際の、校正用指標に対する車両位置や車両の姿勢(向き)の厳密性は要求されない。 The above three conditions (1) to (3) do not depend on the relative positional relationship between the vehicle and the calibration index, but only the relationship between the partial straight line images of the calibration index in the viewpoint conversion composite image. (Parallelity, spacing, and image coincidence) are defined, and therefore, the vehicle position and vehicle attitude (orientation) with respect to the calibration index when the vehicle is installed with respect to the calibration index are not required.
 すなわち、路面上に設置された校正用指標とその路面に配置される車両との相対的な位置関係は、一般的な駐車場等における駐車枠に、通常の駐車操作で得られる車両の位置、姿勢の精度(実用レベルのずれを有する程度)であれば十分であり、その相対的位置関係の厳密度合いを緩和させることができる。 That is, the relative positional relationship between the calibration index installed on the road surface and the vehicle placed on the road surface is the position of the vehicle obtained by a normal parking operation in a parking frame in a general parking lot or the like, The accuracy of the posture (a degree having a practical level deviation) is sufficient, and the strict degree of the relative positional relationship can be relaxed.
 このことは、車両の種類(車両の大きさや形状)が異なっても、共通した校正用指標をそのまま利用することができるので、キャリブレーションを行う都度、車両の種類ごとに専用の校正用指標を準備して設置する必要がなくなり、作業の労力を軽減し、作業の時間を大幅に短縮させることができる。 This means that even if the type of vehicle (vehicle size and shape) is different, a common calibration index can be used as it is. Therefore, each time a calibration is performed, a dedicated calibration index is provided for each type of vehicle. This eliminates the need for preparation and installation, reduces the work effort, and greatly reduces the work time.
 さらに、矩形プレートに部分直線が描画された校正用指標を利用できるため、建設機械のように車両が巨大な場合でも、校正用指標の大きさを作業員が運搬しやすい大きさに小型化することができ、校正用指標の設置準備に費やす労力を軽減することができる。 Furthermore, since the calibration index with a partial straight line drawn on the rectangular plate can be used, the calibration index can be reduced to a size that is easy for an operator to carry even when the vehicle is huge like a construction machine. It is possible to reduce the labor required for preparing the calibration index.
 内部/歪みパラメータ推定に関しては、全ての線の像を同時に直線状にするための内部/歪みパラメータが必ずしも存在しない場合もあるが、そのような場合は、全ての線の像の直線性について総合的な評価(全体として、最もバランスよく直線性が確保されるような状態)を行うことで、内部/歪みパラメータを補正すればよい。 Regarding internal / distortion parameter estimation, there are cases where there is not necessarily an internal / distortion parameter for linearizing all line images simultaneously, but in such a case, the linearity of all line images is comprehensive. The internal / distortion parameters may be corrected by performing general evaluation (a state in which linearity is ensured in the most balanced manner as a whole).
 外部パラメータ推定に関しても同様に、対応する像間で、完全な平行状態(傾き値が厳密に同一の状態)となる外部パラメータに調整できない場合もあるが、そのような場合は、上述した平行性と直交性について総合的な評価(全体として、最もバランスよく平行性および直交性が確保されるような状態)によって外部パラメータを調整すればよい。 Similarly, with respect to external parameter estimation, it may not be possible to adjust to an external parameter that is in a completely parallel state (a state in which the slope values are exactly the same) between corresponding images. And external parameters may be adjusted by comprehensive evaluation of the orthogonality (as a whole, in a state where parallelism and orthogonality are ensured in the most balanced manner).
 以下、本発明に係る画像のキャリブレーション装置の実施の形態について、図を参照して説明する。 Hereinafter, embodiments of an image calibration apparatus according to the present invention will be described with reference to the drawings.
[実施例1]
 図1は、本発明の一つの実施の形態である実施例1の画像のキャリブレーション装置100の構成を示すブロック図である。
[Example 1]
FIG. 1 is a block diagram showing a configuration of an image calibration apparatus 100 according to the first embodiment which is an embodiment of the present invention.
 図示のキャリブレーション装置100は、図2に示す車両200に搭載されている。図3に示す校正用指標20は、図4に示すように、車両200の周辺に、例えば4つ、配置される。フロントカメラ(前部カメラ)11、リヤカメラ(後部カメラ)12、右サイドカメラ(右側部カメラ)13、左サイドカメラ(左側部カメラ)14は、図2に示すように車両に搭載される。 The illustrated calibration device 100 is mounted on a vehicle 200 shown in FIG. For example, four calibration indexes 20 shown in FIG. 3 are arranged around the vehicle 200 as shown in FIG. A front camera (front camera) 11, a rear camera (rear camera) 12, a right side camera (right side camera) 13, and a left side camera (left side camera) 14 are mounted on a vehicle as shown in FIG.
 フロントカメラ11、リヤカメラ12、右サイドカメラ13、左サイドカメラ14は、図2に示す車両200の周辺領域R1、R2、R3、R4を、それぞれ周辺領域画像S1、S2、S3、S4として撮影する。図5は、S1、S2、S3、S4を示す。S1からS4は広角に撮影する魚眼カメラであり、図5に示すように各画像に歪みが生じる。 The front camera 11, the rear camera 12, the right side camera 13, and the left side camera 14 photograph the surrounding areas R1, R2, R3, and R4 of the vehicle 200 shown in FIG. 2 as surrounding area images S1, S2, S3, and S4, respectively. . FIG. 5 shows S1, S2, S3, and S4. S1 to S4 are fish-eye cameras for photographing at a wide angle, and each image is distorted as shown in FIG.
 S1には校正用指標33および校正用指標34が撮像されている。S2には、校正用指標23および校正用指標24が撮像されている。S3には、校正用指標33および校正用指標23が撮像されている。S4には、校正用指標34および校正用指標24が撮像されている。 In S1, a calibration index 33 and a calibration index 34 are imaged. In S2, the calibration index 23 and the calibration index 24 are imaged. In S3, the calibration index 33 and the calibration index 23 are imaged. In S4, the calibration index 34 and the calibration index 24 are imaged.
 部分直線抽出部60は、S1、S2、S3、S4のそれぞれから、校正に用いる特徴量を校正用指標から抽出する。S1からは校正用指標33および校正用指標34の特徴量として部分直線F1を抽出する。S2からは校正用指標23および校正用指標24の特徴量として部分直線F2を抽出する。S3からは校正用指標33および校正用指標23の特徴量として部分直線F3を抽出する。S4からは校正用指標34および校正用指標24の特徴量として部分直線F4を抽出する。図6は、F1、F2、F3、F4を示す。 The partial straight line extraction unit 60 extracts a feature amount used for calibration from each of S1, S2, S3, and S4 from a calibration index. From S1, the partial straight line F1 is extracted as the feature amount of the calibration index 33 and the calibration index 34. From S2, the partial straight line F2 is extracted as the feature quantity of the calibration index 23 and the calibration index 24. From S3, the partial straight line F3 is extracted as the feature quantity of the calibration index 33 and the calibration index 23. From S4, the partial straight line F4 is extracted as the feature quantity of the calibration index 34 and the calibration index 24. FIG. 6 shows F1, F2, F3, and F4.
 内部/歪みパラメータ推定部51は、前記の部分直線F1、F2、F3、F4を用いて、複数のカメラ(フロントカメラ11、リヤカメラ12、右サイドカメラ13、左サイドカメラ14)の内部パラメータM(フロントカメラ11の内部パラメータM1、リヤカメラ12の内部パラメータM2、右サイドカメラ13の内部パラメータM3、左サイドカメラ14の内部パラメータM4)を推定する。内部パラメータとは、カメラの光軸位置や焦点距離、歪みなど、カメラ個別の光学的性質を表す数値である。 The internal / distortion parameter estimator 51 uses the partial straight lines F1, F2, F3, and F4 to determine internal parameters M (a plurality of cameras (front camera 11, rear camera 12, right side camera 13, left side camera 14)). The internal parameter M1 of the front camera 11, the internal parameter M2 of the rear camera 12, the internal parameter M3 of the right side camera 13, and the internal parameter M4 of the left side camera 14) are estimated. The internal parameter is a numerical value representing the optical properties of each camera, such as the optical axis position, focal length, and distortion of the camera.
 歪み補正処理部30は、内部パラメータM1、M2、M3、M4を用いて、複数のカメラ(フロントカメラ11、リヤカメラ12、右サイドカメラ13、左サイドカメラ14)の映像を歪みのないカメラで撮影された映像に変換する。歪みの補正によって、曲線形状の部分直線F1、F2、F3、F4は、直線形状の部分直線F1、F2、F3、F4に変換される。図7は、S1、S2、S3、S4をそれぞれ変換した後の画像T1、T2、T3、T4を示し、図8は、同じく補正部分直線P1、P2、P3、P4を示す。 The distortion correction processing unit 30 shoots images of a plurality of cameras (front camera 11, rear camera 12, right side camera 13, left side camera 14) with a camera without distortion using internal parameters M1, M2, M3, and M4. Convert to a video. By correcting the distortion, the curved partial straight lines F1, F2, F3, and F4 are converted into linear partial straight lines F1, F2, F3, and F4. FIG. 7 shows images T1, T2, T3, and T4 after converting S1, S2, S3, and S4, respectively, and FIG. 8 also shows corrected partial straight lines P1, P2, P3, and P4.
 外部パラメータ推定部52は、前記直線形状に変換された部分直線P1、P2、P3、P4を用いて、複数のカメラ(フロントカメラ11、リヤカメラ12、右サイドカメラ13、左サイドカメラ14)の外部パラメータN(フロントカメラ11の外部パラメータN1、リヤカメラ12の外部パラメータN2、右サイドカメラ13の外部パラメータN3、左サイドカメラ14の外部パラメータN4)を補正する。外部パラメータとは、カメラの位置や姿勢を表す数値である。 The external parameter estimator 52 uses the partial straight lines P1, P2, P3, and P4 converted into the straight line shape to external the plurality of cameras (front camera 11, rear camera 12, right side camera 13, left side camera 14). Parameters N (external parameter N1 of front camera 11, external parameter N2 of rear camera 12, external parameter N3 of right side camera 13, external parameter N4 of left side camera 14) are corrected. The external parameter is a numerical value that represents the position and orientation of the camera.
 キャリブレーション部50は、内部/歪みパラメータ推定部51と外部パラメータ推定部52から構成される。 The calibration unit 50 includes an internal / distortion parameter estimation unit 51 and an external parameter estimation unit 52.
 視点変換処理部40では、複数のカメラ(フロントカメラ11、リヤカメラ12、右サイドカメラ13、左サイドカメラ14)の外部パラメータN1、N2、N3、N4を用いて、この複数のカメラ(フロントカメラ11、リヤカメラ12、右サイドカメラ13、左サイドカメラ14)で撮影された映像を上方から見下ろした俯瞰映像Q1、Q2、Q3、Q4にそれぞれ変換し、その合成画像Q10を生成する。図9は、Q1、Q2、Q3、Q4を示し、図10は、Q10を示す。 The viewpoint conversion processing unit 40 uses the external parameters N1, N2, N3, and N4 of the plurality of cameras (front camera 11, rear camera 12, right side camera 13, and left side camera 14) to use the plurality of cameras (front camera 11). The rear camera 12, the right side camera 13, and the left side camera 14) are converted into overhead images Q1, Q2, Q3, and Q4 looked down from above to generate a composite image Q10. FIG. 9 shows Q1, Q2, Q3, and Q4, and FIG. 10 shows Q10.
 ここで、校正用指標20は、例えば図3に示すように、矩形プレート25に描画された互いに平行をなす第一直線L1および第二直線L2を備えている。そして、第1直線L1と第2直線L2は互いに平行で、かつ第1直線L1と第2直線L2との間の距離が既知のWに設定されている。 Here, the calibration index 20 includes, for example, a first straight line L1 and a second straight line L2 drawn on the rectangular plate 25 and parallel to each other, as shown in FIG. The first straight line L1 and the second straight line L2 are parallel to each other, and the distance between the first straight line L1 and the second straight line L2 is set to a known W.
 そして、校正用指標は、車両200の周辺領域R1とR3の共通領域R13、車両200の周辺領域R1とR4の共通領域R14、車両200の周辺領域R2とR3の共通領域R23、車両200の周辺領域R2およびR4の共通領域R24にそれぞれ設置される。なお、共通領域R13に設置された指標が校正用指標33、共通領域R14に設置された指標が校正用指標34、共通領域R23に設置された指標が校正用指標23、共通領域R24に設置された指標が校正用指標24である。 The calibration index includes a common region R13 of the peripheral regions R1 and R3 of the vehicle 200, a common region R14 of the peripheral regions R1 and R4 of the vehicle 200, a common region R23 of the peripheral regions R2 and R3 of the vehicle 200, and the periphery of the vehicle 200 It is installed in the common area R24 of the areas R2 and R4. Note that the index set in the common area R13 is the calibration index 33, the index set in the common area R14 is the calibration index 34, and the index set in the common area R23 is set in the calibration index 23 and the common area R24. The index is the calibration index 24.
 ここで、周辺領域画像S1には、校正用指標33の部分直線L1およびL2の像と、校正用指標34の部分直線L1およびL2の像が写っている。ここで、校正用指標を地面に設置する際、校正用指標33の部分直線L1およびL2と、校正用指標34の部分直線L1およびL2の傾きが一致しないように、例えば、傾きが直交するように設置する。 Here, the image of the partial straight lines L1 and L2 of the calibration index 33 and the images of the partial straight lines L1 and L2 of the calibration index 34 are shown in the peripheral area image S1. Here, when the calibration index is placed on the ground, for example, the inclinations are orthogonal so that the partial straight lines L1 and L2 of the calibration index 33 and the partial straight lines L1 and L2 of the calibration index 34 do not match. Install in.
 同様に、周辺領域画像S2には、校正用指標23の部分直線L1およびL2の像と、校正用指標24の部分直線L1およびL2の像が写っている。ここで、校正用指標を地面に設置する際、校正用指標23の部分直線L1およびL2と、校正用指標24の部分直線L1およびL2の傾きが一致しないように、例えば、傾きが直交するように設置する。 Similarly, the peripheral area image S2 includes images of partial straight lines L1 and L2 of the calibration index 23 and images of partial straight lines L1 and L2 of the calibration index 24. Here, when the calibration index is placed on the ground, for example, the inclinations are orthogonal so that the partial straight lines L1 and L2 of the calibration index 23 and the partial straight lines L1 and L2 of the calibration index 24 do not match. Install in.
 同様に、周辺領域画像S3には、校正用指標33の部分直線L1およびL2の像と、校正用指標23の部分直線L1およびL2の像が写っている。ここで、校正用指標を地面に設置する際、校正用指標33の部分直線L1及びL2と、校正用指標23の部分直線L1及びL2の傾きが一致しないように、例えば、傾きが直交するように設置する。 Similarly, the peripheral area image S3 includes the images of the partial straight lines L1 and L2 of the calibration index 33 and the images of the partial straight lines L1 and L2 of the calibration index 23. Here, when the calibration index is installed on the ground, for example, the inclinations are orthogonal so that the partial straight lines L1 and L2 of the calibration index 33 and the partial straight lines L1 and L2 of the calibration index 23 do not match. Install in.
 同様に、周辺領域画像S4には、校正用指標34の部分直線L1およびL2の像と、校正用指標24の部分直線L1およびL2の像が写っている。ここで、校正用指標を地面に設置する際、校正用指標34の部分直線L1およびL2と、校正用指標24の部分直線L1およびL2の傾きが一致しないように、例えば、傾きが直交するように設置する。 Similarly, the peripheral area image S4 includes images of the partial straight lines L1 and L2 of the calibration index 34 and images of the partial straight lines L1 and L2 of the calibration index 24. Here, when the calibration index is placed on the ground, for example, the inclinations are orthogonal so that the partial straight lines L1 and L2 of the calibration index 34 and the partial straight lines L1 and L2 of the calibration index 24 do not match. Install in.
 校正用指標は、図11に示す校正用指標120のように、互いに平行をなす直線状に配列された点列FP1、FP2、FP3と、FP4、FP5、FP6を含んでいればよい。特徴点FP1、FP2、FP3が形成する仮想直線L11と、特徴点FP4、FP5、FP6が形成するL12は、これを前記部分直線L1およびL2と同様とみなして、校正用指標として設置すればよい。 The calibration index only needs to include point sequences FP1, FP2, FP3 and FP4, FP5, FP6 arranged in parallel with each other as in the calibration index 120 shown in FIG. The virtual straight line L11 formed by the feature points FP1, FP2, and FP3 and L12 formed by the feature points FP4, FP5, and FP6 may be regarded as the same as the partial straight lines L1 and L2 and set as calibration indices. .
 また、特徴点FP1の中心と特徴点FP2の中心の間隔W1、特徴点FP2の中心と特徴点FP3の中心の間隔W2、特徴点FP4の中心と特徴点FP5の中心の間隔W3、特徴点FP5の中心と特徴点FP6の中心の間隔W4を、既知の間隔とし、後述する外部パラメータキャリブレーション時の拘束条件としてもよい。 Further, the distance W1 between the center of the feature point FP1 and the center of the feature point FP2, the distance W2 between the center of the feature point FP2 and the center of the feature point FP3, the distance W3 between the center of the feature point FP4 and the center of the feature point FP5, and the feature point FP5. The interval W4 between the center of the image and the center of the feature point FP6 may be a known interval and may be a constraint condition during external parameter calibration described later.
 また、キャリブレーション部50は、4つの歪みの補正部分直線P1、P2、P3、P4のそれぞれについて、各補正部分直線P1~P4に対応した像がそれぞれ直線状に延びたものとなるように、内部パラメータMを調整する補正を行う内部/歪みパラメータ補正部51(内部パラメータ補正手段)と、補正された後の内部パラメータMを用いて歪み補正処理部30により得られた新たな歪み補正部分直線P1~P4を用いて新たな視点変換部分直線Q10を得たとき、その得られた新たな視点変換合成部分直線Q10が以下の条件(1)~(3)を満たすように、外部パラメータNを調整する補正を行う外部パラメータ推定部52(外部パラメータ補正手段)を有する。 In addition, the calibration unit 50 makes the images corresponding to the correction partial straight lines P1 to P4 extend linearly for each of the four distortion correction partial straight lines P1, P2, P3, and P4. An internal / distortion parameter correction unit 51 (internal parameter correction unit) that performs correction to adjust the internal parameter M, and a new distortion correction partial straight line obtained by the distortion correction processing unit 30 using the corrected internal parameter M When a new viewpoint transformation partial straight line Q10 is obtained using P1 to P4, the external parameter N is set so that the obtained new viewpoint transformation partial straight line Q10 satisfies the following conditions (1) to (3). An external parameter estimation unit 52 (external parameter correction unit) that performs correction to be adjusted is included.
(1)互いに平行な2本の部分直線L1とL2に対応する像が平行である。 (1) The images corresponding to the two partial straight lines L1 and L2 parallel to each other are parallel.
(2)互いに平行な2本の部分直線に対応した像間の距離が、校正用指標20の線間の既知の距離Wである
(3)校正用指標に対応する部分直線像が視点変換合成部分直線Q10上で一致する。
(2) The distance between the images corresponding to the two partial straight lines parallel to each other is a known distance W between the lines of the calibration index 20 (3) The partial straight line image corresponding to the calibration index is a viewpoint conversion composition. Match on partial line Q10.
 次に、本実施例のキャリブレーション装置100の作用について説明する。 Next, the operation of the calibration apparatus 100 of this embodiment will be described.
 まず、図2に示す、その前部にフロントカメラ11、その後部にリヤカメラ12、その右側部に右サイドカメラ13、その左側部に左サイドカメラ14が設置された車両200の周辺に、図3に示した校正用指標20は、図4に示すように平坦な路面上に4つ配置される。 First, as shown in FIG. 2, in the vicinity of a vehicle 200 in which a front camera 11 is installed at the front, a rear camera 12 is installed at the rear, a right side camera 13 is installed on the right side, and a left side camera 14 is installed on the left side. 4 are arranged on a flat road surface as shown in FIG.
 車両200の配置状態に対する校正用指標33、34、23、24の配置状態は、図2に示す各カメラの共通撮像領域R13、R14、R23、R24に含まれていれば、どのように配置してもよい。ただし、周辺領域R1のフロントカメラ11により撮像である周辺領域画像R1に含まれる校正用指標33の部分直線L1およびL2の傾きと、校正用指標34の部分直線L1およびL2の傾きが異なるように、これらを配置する。同様に、周辺領域R2のリヤカメラ12による撮像である周辺領域画像R2に含まれる校正用指標23の部分直線L1およびL2の傾きと、校正用指標24の部分直線L1およびL2の傾きは異なるように、これらを配置する。周辺領域R3の右サイドカメラ13による撮像である周辺領域画像R3に含まれる校正用指標33の部分直線L1およびL2の傾きと、校正用指標23の部分直線L1およびL2の傾きは異なるように、これらを配置する。周辺領域R4の左サイドカメラ14による撮像である周辺領域画像R4に含まれる校正用指標34の部分直線L1およびL2の傾きと、校正用指標24の部分直線L1およびL2の傾きは異なるように、これらを配置する。したがって、例えば校正用指標34および23は、部分直線が車両の幅方向と平行をなすように、校正用指標33および23は、部分直線が車両の長さ方向と平行をなすように設置する。これは2方向の直線を画像に含むことで、内部パラメータ校正の精度を向上させることを狙ったものである。 The arrangement state of the calibration indices 33, 34, 23, and 24 with respect to the arrangement state of the vehicle 200 is arranged as long as it is included in the common imaging regions R13, R14, R23, and R24 of the cameras shown in FIG. May be. However, the inclination of the partial straight lines L1 and L2 of the calibration index 33 included in the peripheral area image R1 captured by the front camera 11 of the peripheral area R1 is different from the inclination of the partial straight lines L1 and L2 of the calibration index 34. , Place these. Similarly, the inclination of the partial straight lines L1 and L2 of the calibration index 23 included in the peripheral area image R2 captured by the rear camera 12 of the peripheral area R2 and the inclination of the partial straight lines L1 and L2 of the calibration index 24 are different. , Place these. The inclination of the partial straight lines L1 and L2 of the calibration index 33 included in the peripheral area image R3 captured by the right side camera 13 of the peripheral area R3 and the inclination of the partial straight lines L1 and L2 of the calibration index 23 are different from each other. Arrange these. The inclinations of the partial straight lines L1 and L2 of the calibration index 34 included in the peripheral area image R4 captured by the left side camera 14 of the peripheral area R4 and the inclinations of the partial straight lines L1 and L2 of the calibration index 24 are different. Arrange these. Therefore, for example, the calibration indicators 34 and 23 are installed so that the partial straight line is parallel to the vehicle width direction, and the calibration indicators 33 and 23 are installed so that the partial straight line is parallel to the vehicle length direction. This is intended to improve the accuracy of internal parameter calibration by including straight lines in two directions in the image.
 本実施例においては、以下、図4に示す配置状態の場合について説明するが、この配置状態以外の配置状態にあっても、それによって発揮される作用および効果は、図4の配置状態の場合と同様である。 In the present embodiment, the case of the arrangement state shown in FIG. 4 will be described below. However, even in the arrangement state other than this arrangement state, the action and effect exhibited thereby are the case of the arrangement state of FIG. It is the same.
 図4に示すように、車両200が校正用指標上に配置された状態で、キャリブレーション装置100の各カメラ(フロントカメラ11、リヤカメラ12、右サイドカメラ13、左サイドカメラ14)が、車両200の一部と校正用指標の一部とを含む周辺領域R1~R4を撮影することにより、各カメラ(フロントカメラ11、リヤカメラ12、右サイドカメラ13、左サイドカメラ14)によって、周辺領域R1、R2、R3、R4にそれぞれ対応した周辺領域画像S1、S2、S3、S4(図5)が得られる。各カメラ(フロントカメラ11、リヤカメラ12、右サイドカメラ13、左サイドカメラ14)により得られた周辺領域画像S1、S2、S3、S4には、それぞれ校正用指標33、34、23、24の画像が含まれている。 As shown in FIG. 4, each camera (front camera 11, rear camera 12, right side camera 13, left side camera 14) of the calibration apparatus 100 is in a state where the vehicle 200 is placed on the calibration index. By capturing each of the peripheral areas R1 to R4 including a part of the image and a part of the calibration index, each camera (front camera 11, rear camera 12, right side camera 13, left side camera 14) Peripheral area images S1, S2, S3, and S4 (FIG. 5) corresponding to R2, R3, and R4, respectively, are obtained. The peripheral area images S1, S2, S3, and S4 obtained by each camera (front camera 11, rear camera 12, right side camera 13, and left side camera 14) are images of calibration indices 33, 34, 23, and 24, respectively. It is included.
 具体的には、周辺領域画像S1には、校正用指標33の部分直線L1およびL2の像と、校正用指標34の部分直線L1およびL2の像が映り、また、周辺領域画像S2には、校正用指標23の部分直線L1およびL2の像と、校正用指標24の部分直線L1およびL2の像が映り、更に周辺領域画像S3には、校正用指標33の部分直線L1およびL2の像と、校正用指標23の部分直線L1およびL2の像が映り、更に周辺領域画像S4には、校正用指標34の部分直線L1およびL2の像と、校正用指標24の部分直線L1およびL2の像が映っている。 Specifically, the peripheral area image S1 includes images of partial straight lines L1 and L2 of the calibration index 33 and partial straight lines L1 and L2 of the calibration index 34, and the peripheral area image S2 includes The images of the partial straight lines L1 and L2 of the calibration index 23 and the images of the partial straight lines L1 and L2 of the calibration index 24 are reflected. Further, the peripheral area image S3 includes the images of the partial straight lines L1 and L2 of the calibration index 33. Then, the images of the partial straight lines L1 and L2 of the calibration index 23 are shown, and the peripheral area image S4 includes the images of the partial straight lines L1 and L2 of the calibration index 34 and the images of the partial straight lines L1 and L2 of the calibration index 24. Is reflected.
 そして、これらの周辺領域画像S1~S4は歪み補正処理部30に入力され、歪み補正処理部30は、入力された各周辺領域画像S1~S4に対して、デフォルトの内部パラメータMにより歪み補正を施し、これにより、各周辺領域画像S1~S4は、歪みがある程度補正された歪み補正画像となる。 These peripheral region images S1 to S4 are input to the distortion correction processing unit 30, and the distortion correction processing unit 30 performs distortion correction on each of the input peripheral region images S1 to S4 using a default internal parameter M. As a result, each of the peripheral area images S1 to S4 becomes a distortion corrected image in which the distortion is corrected to some extent.
 ここで、デフォルトの内部パラメータMは、カメラの光学的特性の個体差を無視して一律に設定された設計値であるため、カメラの光学的特性が設計値と寸分違わない理想的なものであるときは、このデフォルトの内部パラメータMによる歪み補正により、歪み補正画像は、完全に歪みが補正されたものとなるはずである。 Here, the default internal parameter M is a design value that is uniformly set ignoring the individual differences in the optical characteristics of the camera, so that the ideal optical parameter of the camera is not different from the design value. In some cases, the distortion correction by the default internal parameter M will cause the distortion corrected image to be completely corrected for distortion.
 しかし、現実のカメラは、製造上の誤差を勘案した設計許容差等により、その光学的特性に個体差を有している。それゆえ、歪み補正のために用いられ内部パラメータMは、本来、個々のカメラごとに異なるべきものである。しかしながら、この歪み補正処理部30は、最初、デフォルトの内部パラメータMにより、歪み補正を行っているため、得られた歪み補正画像は、歪みが完全に補正されたものではない。 However, actual cameras have individual differences in their optical characteristics due to design tolerances that take into account manufacturing errors. Therefore, the internal parameter M used for distortion correction should be different for each individual camera. However, since the distortion correction processing unit 30 initially performs distortion correction using the default internal parameter M, the obtained distortion-corrected image is not one in which distortion is completely corrected.
 そこで、本実施例のキャリブレーション装置100は、キャリブレーション部50の内部/歪みパラメータ補正部51が、歪み補正処理部30のデフォルトの内部パラメータMを補正する。 Therefore, in the calibration device 100 of the present embodiment, the internal / distortion parameter correction unit 51 of the calibration unit 50 corrects the default internal parameter M of the distortion correction processing unit 30.
 この内部/歪みパラメータ補正部51による内部パラメータMの補正は、内部パラメータMの値を順次変化させて、各歪み補正画像Sに含まれている校正用指標の線H1、H2、V1、V2の像H1、H2、V1、V2を、それぞれ直線状に延びたものに収束させる処理である。 The correction of the internal parameter M by the internal / distortion parameter correction unit 51 is performed by sequentially changing the value of the internal parameter M to adjust the calibration index lines H1, H2, V1, and V2 included in each distortion corrected image S. This is a process for converging the images H1, H2, V1, and V2 into linearly extending images.
 本処理は、技術的には、誤差関数を設計し,誤差を最小化するように最適化を実施することで実現される。誤差関数は、線の直線性を評価するものとする。例えば、球面投影法を用いることで実現できる。球面投影法では、撮影された直線を仮想球面上に投影する。直線が本来の直線形状を為していれば、球面上では大円の一部を構成する。歪みなどにより直線形状を為していなければ、投影後の直線は大円の一部とはならない。そこで、球面上の各直線がどれだけ大円の一部をなしているかの程度を誤差関数とすることで、直線性を判定する。この場合、誤差関数は、直線上の特徴点のベクトルと、それら直線上の他の特徴点からなる特徴ベクトル群が形成する面の法線ベクトルの直交性とする。この誤差関数を、各内部パラメータに関して偏微分することで、各内部パラメータに対する誤差関数の変化量を求めることができ、この変化量に基づいて内部パラメータの値を更新する(例えば、最急降下法など)。この処理を誤差関数が減少しなくなるまで反復することで、内部パラメータMを求める。 This process is technically realized by designing an error function and performing optimization so as to minimize the error. The error function shall evaluate the linearity of the line. For example, it can be realized by using a spherical projection method. In the spherical projection method, a captured straight line is projected onto a virtual sphere. If the straight line has an original linear shape, it forms part of a great circle on the spherical surface. If a straight line is not formed due to distortion or the like, the projected straight line will not be part of the great circle. Therefore, the degree of linearity is determined by using the degree to which each straight line on the spherical surface forms part of a great circle as an error function. In this case, the error function is the orthogonality of the vector of feature points on the straight line and the normal vector of the surface formed by the feature vector group composed of other feature points on the straight line. By partial differentiation of this error function with respect to each internal parameter, the amount of change of the error function for each internal parameter can be obtained, and the value of the internal parameter is updated based on this amount of change (for example, the steepest descent method, etc. ). By repeating this process until the error function does not decrease, the internal parameter M is obtained.
 そして、各歪み補正画像Sに含まれている校正用指標の線H1、H2、V1、V2の像H1、H2、V1、V2がそれぞれ直線状に延びたものに収束されたときの、各カメラ11~14にそれぞれ対応した各内部パラメータM1~M4が、補正後の内部パラメータとなる。 Then, each camera when the calibration index lines H1, H2, V1, and V2 included in each distortion-corrected image S are converged to linearly extending images H1, H2, V1, and V2, respectively. The internal parameters M1 to M4 respectively corresponding to 11 to 14 are corrected internal parameters.
 つまり、内部パラメータM1~M4は、光学的特性に個体差を有するカメラ11~14ごとの内部パラメータであり、このカメラ11~14ごとの内部パラメータM1~M4によって、歪み補正処理部30が歪み補正を行うことにより、各周辺領域画像S1~S4は、図7に示すように、歪みが精度良く補正された歪み補正画像T1~T4となる。 That is, the internal parameters M1 to M4 are internal parameters for each of the cameras 11 to 14 having individual differences in optical characteristics, and the distortion correction processing unit 30 performs distortion correction by the internal parameters M1 to M4 for each of the cameras 11 to 14. By performing the above, each of the peripheral area images S1 to S4 becomes the distortion corrected images T1 to T4 in which the distortion is accurately corrected as shown in FIG.
 次に、得られた歪み補正画像T1~T4は、視点変換処理部40に入力され、視点変換処理部40は、入力された歪み補正画像を、デフォルトの外部パラメータNにしたがった視点変換処理を施し、単一の視点変換部分画像Q1~Q4を生成する(図12参照)。 Next, the obtained distortion correction images T1 to T4 are input to the viewpoint conversion processing unit 40, and the viewpoint conversion processing unit 40 performs viewpoint conversion processing on the input distortion correction image according to the default external parameter N. The single viewpoint conversion partial images Q1 to Q4 are generated (see FIG. 12).
 ここで、歪み補正画像T1~T4において、校正用指標の線H1、H2、V1、V2の像H1、H2、V1、V2は、既に直線状となるように補正が完了しているため、これら歪み補正画像T1~T4に基づいて生成された各視点変換部分画像Q1~Q4における校正用指標の線H1、H2、V1、V2の像H1、H2、V1、V2も直線状となっている。 Here, in the distortion corrected images T1 to T4, the correction index lines H1, H2, V1, and V2 have already been corrected so that the images H1, H2, V1, and V2 are linear. The calibration index lines H1, H2, V1, and V2 images H1, H2, V1, and V2 in the respective viewpoint conversion partial images Q1 to Q4 generated based on the distortion corrected images T1 to T4 are also linear.
 しかし、視点変換処理部40による視点変換処理の際に用いられた外部パラメータNが、車両200に対する各カメラの取り付け状態の個体差を無視して一律に設定された設計値であるため、カメラの取り付け状態が設計値と寸分違わない理想的なものであるときは、このデフォルトの外部パラメータNによる視点変換処理で得られた視点変換合成画像Q10における校正用指標の線H1、H2、V1、V2の像H1、H2、V1、V2は、現実の校正用指標における線H1、H2、V1、V2と同様に、図9のように、互いに平行で、線の像間距離が既知の値に一致し、または視点変換画像Q1~Q4において二つの画像に共通して含まれる線の像は画像上で同一の位置となるはずである。 However, since the external parameter N used in the viewpoint conversion processing by the viewpoint conversion processing unit 40 is a design value that is uniformly set ignoring individual differences in the mounting state of each camera with respect to the vehicle 200, When the mounting state is ideal so as not to differ from the design value, the calibration index lines H1, H2, V1, V2 in the viewpoint conversion composite image Q10 obtained by the viewpoint conversion processing with the default external parameter N are used. Like the lines H1, H2, V1, and V2 in the actual calibration index, the images H1, H2, V1, and V2 are parallel to each other and the distance between the lines is equal to a known value as shown in FIG. In addition, in the viewpoint conversion images Q1 to Q4, the line image that is included in common in the two images should be at the same position on the image.
 しかし、現実のカメラおよび車両200は、それぞれ製造上の誤差を勘案した設計許容差等を有して形作られているため、車両200に対するカメラの取付け位置や取付け姿勢等の取付け状態には、当然ながら個体差がある。 However, since the actual camera and the vehicle 200 are formed with design tolerances and the like that take into account manufacturing errors, the mounting state such as the mounting position and mounting posture of the camera with respect to the vehicle 200 is naturally determined. While there are individual differences.
 したがって、視点変換合成処理のために用いられる外部パラメータNは、本来、個々のカメラごとに異なるべきものである。 Therefore, the external parameter N used for the viewpoint conversion / combination processing should be different for each individual camera.
 しかしながら、この視点変換処理部40は、最初、デフォルトの外部パラメータNにより視点変換処理を行っているため、得られた視点変換画像Q1~Q4は、図12に示すように、そこに含まれている校正用指標の線H1、H2、V1、V2の像H1、H2、V1、V2が、互いに平行でなかったり、線に対応した像間の距離が不適正であったり、本来、同一位置にあるべき線の像が同一位置に無いこともある。 However, since the viewpoint conversion processing unit 40 initially performs the viewpoint conversion processing with the default external parameter N, the obtained viewpoint conversion images Q1 to Q4 are included therein as shown in FIG. The images H1, H2, V1, and V2 of the calibration index lines H1, H2, V1, and V2 are not parallel to each other, the distance between the images corresponding to the lines is inappropriate, or are originally in the same position. The image of the line that should be may not be at the same position.
 そこで、本実施例のキャリブレーション装置100において、キャリブレーション部50の外部パラメータ推定部52が、視点変換処理部40のデフォルトの外部パラメータNを補正する。 Therefore, in the calibration apparatus 100 of the present embodiment, the external parameter estimation unit 52 of the calibration unit 50 corrects the default external parameter N of the viewpoint conversion processing unit 40.
 この外部パラメータ推定部52による外部パラメータNの補正は、外部パラメータNの値を順次変化させて、視点変換画像Q1~Q4に含まれている校正用指標の線H1、H2、V1、V2の像H1、H2、V1、V2の平行性(条件(1))、線間距離の適切性(条件(2))、同一位置に位置すること(条件(3))、を満たすように収束させる処理である。 The correction of the external parameter N by the external parameter estimator 52 is performed by sequentially changing the value of the external parameter N, and images of the calibration index lines H1, H2, V1, and V2 included in the viewpoint conversion images Q1 to Q4. H1, H2, V1, V2 parallelism (condition (1)), appropriateness of distance between lines (condition (2)), and processing to converge to satisfy the same position (condition (3)) It is.
 すなわち、外部パラメータ推定部52は、上記条件(1)として具体的には条件(1-1)~(1-8)を満たすように、上記条件(2)として具体的には条件(2-1)~(2-8)を満たすように、上記条件(3)として具体的には条件(3-1)~(3-4)を満たすように、各外部パラメータNを補正する。 That is, the external parameter estimation unit 52 specifically sets the condition (2) as the condition (2) so as to satisfy the conditions (1-1) to (1-8). Each external parameter N is corrected so as to satisfy the above conditions (3), specifically, the conditions (3-1) to (3-4) so as to satisfy 1) to (2-8).
 つまり、外部パラメータ推定部52は、
(1-1)視点変換画像Q1における互いに平行な2本の線V1、V2にそれぞれ対応した像V1、V2が互いに平行となるように、
(1-2)視点変換画像Q1における互いに平行な2本の線H1、H2にそれぞれ対応した像H1、H2が互いに平行となるように、
(1-3)視点変換画像Q2における互いに平行な2本の線V1、V2にそれぞれ対応した像V1、V2が互いに平行となるように、
(1-4)視点変換画像Q2における互いに平行な2本の線H1、H2にそれぞれ対応した像H1、H2が互いに平行となるように、
(1-5)視点変換画像Q3における互いに平行な2本の線V1、V2にそれぞれ対応した像V1、V2が互いに平行となるように、
(1-6)視点変換画像Q3における互いに平行な2本の線H1、H2にそれぞれ対応した像H1、H2が互いに平行となるように、
(1-7)視点変換画像Q4における互いに平行な2本の線V1、V2にそれぞれ対応した像V1、V2が互いに平行となるように、
(1-8)視点変換画像Q4における互いに平行な2本の線H1、H2にそれぞれ対応した像H1、H2が互いに平行となるように、
(2-1)視点変換画像Q1における互いに平行な2本の線V1、V2にそれぞれ対応した像V1、V2の距離が、実際の校正用指標20における線L1、L2間の既知の距離Wとなるように、
(2-2)視点変換画像Q1における互いに平行な2本の線H1、H2にそれぞれ対応した像H1、H2の距離が、実際の校正用指標20における線L1、L2間の既知の距離Wとなるように、
(2-3)視点変換画像Q2における互いに平行な2本の線V1、V2にそれぞれ対応した像V1、V2の距離が、実際の校正用指標20における線L1、L2間の既知の距離Wとなるように、
(2-4)視点変換画像Q2における互いに平行な2本の線H1、H2にそれぞれ対応した像H1、H2の距離が、実際の校正用指標20における線L1、L2間の既知の距離Wとなるように、
(2-5)視点変換画像Q3における互いに平行な2本の線V1、V2にそれぞれ対応した像V1、V2の距離が、実際の校正用指標20における線L1、L2間の既知の距離Wとなるように、
(2-6)視点変換画像Q3における互いに平行な2本の線H1、H2にそれぞれ対応した像H1、H2の距離が、実際の校正用指標20における線L1、L2間の既知の距離Wとなるように、
(2-7)視点変換画像Q4における互いに平行な2本の線V1、V2にそれぞれ対応した像V1、V2の距離が、実際の校正用指標20における線L1、L2間の既知の距離Wとなるように、
(2-8)視点変換画像Q4における互いに平行な2本の線H1、H2にそれぞれ対応した像H1、H2の距離が、実際の校正用指標20における線L1、L2間の既知の距離Wとなるように、
(3-1)視点変換画像Q1と視点変換画像Q3に共通に撮像された直線の像V1、V2の位置が互いに同一位置となるように、
(3-2)視点変換画像Q1と視点変換画像Q4に共通に撮像された直線の像H1、H2の位置が互いに同一位置となるように、
(3-3)視点変換画像Q3と視点変換画像Q2に共通に撮像された直線の像H1、H2の位置が互いに同一位置となるように、
(3-4)視点変換画像Q4と視点変換画像Q2に共通に撮像された直線の像V1、V2の位置が互いに同一位置となるように、
フロントカメラ11に対応した外部パラメータN1、リヤカメラ12に対応した外部パラメータN2、右サイドカメラ13に対応した外部パラメータN3、左サイドカメラ14に対応した外部パラメータN4をそれぞれ調整する補正を行う。
That is, the external parameter estimation unit 52
(1-1) The images V1 and V2 respectively corresponding to the two parallel lines V1 and V2 in the viewpoint converted image Q1 are parallel to each other.
(1-2) The images H1 and H2 respectively corresponding to the two parallel lines H1 and H2 in the viewpoint-converted image Q1 are parallel to each other.
(1-3) The images V1 and V2 respectively corresponding to the two parallel lines V1 and V2 in the viewpoint converted image Q2 are parallel to each other.
(1-4) The images H1 and H2 respectively corresponding to the two parallel lines H1 and H2 in the viewpoint-converted image Q2 are parallel to each other.
(1-5) The images V1 and V2 respectively corresponding to the two parallel lines V1 and V2 in the viewpoint converted image Q3 are parallel to each other.
(1-6) The images H1 and H2 respectively corresponding to the two parallel lines H1 and H2 in the viewpoint converted image Q3 are parallel to each other.
(1-7) The images V1 and V2 respectively corresponding to the two parallel lines V1 and V2 in the viewpoint-converted image Q4 are parallel to each other.
(1-8) The images H1 and H2 corresponding to the two parallel lines H1 and H2 in the viewpoint-converted image Q4 are parallel to each other.
(2-1) The distance between the images V1 and V2 corresponding respectively to the two parallel lines V1 and V2 in the viewpoint conversion image Q1 is the known distance W between the lines L1 and L2 in the actual calibration index 20. So that
(2-2) The distance between the images H1 and H2 respectively corresponding to the two parallel lines H1 and H2 in the viewpoint conversion image Q1 is the known distance W between the lines L1 and L2 in the actual calibration index 20 So that
(2-3) The distance between the images V1 and V2 respectively corresponding to the two parallel lines V1 and V2 in the viewpoint-converted image Q2 is the known distance W between the lines L1 and L2 in the actual calibration index 20. So that
(2-4) The distance between the images H1 and H2 respectively corresponding to the two parallel lines H1 and H2 in the viewpoint converted image Q2 is the known distance W between the lines L1 and L2 in the actual calibration index 20. So that
(2-5) The distance between the images V1 and V2 respectively corresponding to the two parallel lines V1 and V2 in the viewpoint conversion image Q3 is the known distance W between the lines L1 and L2 in the actual calibration index 20. So that
(2-6) The distance between the images H1 and H2 respectively corresponding to the two parallel lines H1 and H2 in the viewpoint converted image Q3 is the known distance W between the lines L1 and L2 in the actual calibration index 20. So that
(2-7) The distance between the images V1 and V2 respectively corresponding to the two parallel lines V1 and V2 in the viewpoint-converted image Q4 is the known distance W between the lines L1 and L2 in the actual calibration index 20. So that
(2-8) The distance between the images H1 and H2 respectively corresponding to the two parallel lines H1 and H2 in the viewpoint conversion image Q4 is the known distance W between the lines L1 and L2 in the actual calibration index 20. So that
(3-1) In such a manner that the positions of the straight images V1 and V2 captured in common to the viewpoint converted image Q1 and the viewpoint converted image Q3 are the same as each other.
(3-2) The linear images H1 and H2 captured in common to the viewpoint converted image Q1 and the viewpoint converted image Q4 are positioned at the same position.
(3-3) In such a manner that the positions of the straight images H1 and H2 captured in common in the viewpoint converted image Q3 and the viewpoint converted image Q2 are the same position.
(3-4) In order that the positions of the straight images V1 and V2 captured in common to the viewpoint converted image Q4 and the viewpoint converted image Q2 are the same,
Correction is performed to adjust the external parameter N1 corresponding to the front camera 11, the external parameter N2 corresponding to the rear camera 12, the external parameter N3 corresponding to the right side camera 13, and the external parameter N4 corresponding to the left side camera 14, respectively.
 なお、外部パラメータ推定部52による外部パラメータNの調整は、上記条件(1-1)~(1-8)、条件(2-1)~(2-8)、条件(3-1)~(3-4)の全てを完全に満たすものであることが好ましいが、全ての外部パラメータNを一義的に求めることができない場合もあるため、上記条件(1-1)~(1-8)、条件(2-1)~(2-8)、条件(3-1)~(3-4)をバランスよく満たすような外部パラメータNに収束させるものであってもよい。 The external parameter N is adjusted by the external parameter estimation unit 52 in the above conditions (1-1) to (1-8), conditions (2-1) to (2-8), and conditions (3-1) to ( 3-4) is preferably completely satisfied, but not all external parameters N may be uniquely determined. Therefore, the above conditions (1-1) to (1-8), It is also possible to converge to an external parameter N that satisfies the conditions (2-1) to (2-8) and the conditions (3-1) to (3-4) in a well-balanced manner.
 そして、上述した条件が収束されたときの外部パラメータNが補正後のパラメータNとなり、視点変換処理部40が、その補正後の外部パラメータNによって各歪み補正画像T1~T4を視点変換処理して得た新たな視点変換合成画像Q10は、図10に示すものとなる。 Then, the external parameter N when the above-described conditions are converged becomes the corrected parameter N, and the viewpoint conversion processing unit 40 performs viewpoint conversion processing on each of the distortion corrected images T1 to T4 with the corrected external parameter N. The obtained new viewpoint conversion composite image Q10 is as shown in FIG.
 本処理に関しても内部パラメータ推定と同様に、誤差関数の設計と最適化手法の適用によって実現できる。誤差関数の設計は、直線の平行性、直線の間隔、直線の座標一致度を測るものを設定する。各誤差関数は、すべて特徴点が形成する直線の方程式から計算できる。 This processing can also be realized by designing an error function and applying an optimization method, as in the case of internal parameter estimation. The error function is designed to measure the parallelism of straight lines, the distance between straight lines, and the degree of coincidence of straight line coordinates. Each error function can be calculated from a straight line equation formed by feature points.
 なお、線の像が互いに平行か否かは、各線の像を、図12におけるx軸とy軸とによる2次元直交座標系における直線の式で近似し、その直線の式の傾き(微分値)が同一か否かによって判定することができる。 Whether or not the line images are parallel to each other is determined by approximating each line image with a straight line expression in the two-dimensional orthogonal coordinate system with the x-axis and y-axis in FIG. ) Are the same.
 また、例えば校正用指標33のH1,H2と校正用指標34のV1,V2が直交して配置されている場合、線の像が互いに直交しているか否かは、上記直線の式における傾きの積の値が「-1」(各像をベクトル表現したときは、それらの内積の値が「0」)か否かによって判定することができる。 Further, for example, when H1 and H2 of the calibration index 33 and V1 and V2 of the calibration index 34 are arranged orthogonally, whether or not the line images are orthogonal to each other is determined by the inclination in the above linear equation. Whether the product value is “−1” (when each image is represented by a vector, the inner product value is “0”) can be determined.
 この誤差関数を、各外部パラメータに関して偏微分することで、各外部パラメータに対する誤差関数の変化量を求めることができ、この変化量に基づいて外部パラメータの値を更新する(例えば最急降下法など)。この処理を誤差関数が減少しなくなるまで反復することで、外部パラメータを求める。 This error function is partially differentiated with respect to each external parameter, so that the change amount of the error function with respect to each external parameter can be obtained, and the value of the external parameter is updated based on this change amount (for example, steepest descent method). . By repeating this process until the error function does not decrease, the external parameter is obtained.
 なお、1つのカメラごとに対応する1つの符号として表現した外部パラメータNは、実際には3次元空間における位置を特定する位置パラメータ(3つの変数)と、3次元空間における向きを特定する向きパラメータ(3つの変数)とからなるため、各外部パラメータN1、N2、N3、N4はそれぞれ6つずつの変数からなり、外部パラメータ推定部52は、合計24(=6×4)の変数を調整することとなる。 The external parameter N expressed as one code corresponding to each camera is actually a position parameter (three variables) for specifying a position in a three-dimensional space and a direction parameter for specifying a direction in a three-dimensional space. Since each of the external parameters N1, N2, N3, and N4 is composed of 6 variables, the external parameter estimation unit 52 adjusts a total of 24 (= 6 × 4) variables. It will be.
 以上のように、本実施例の第1の画像のキャリブレーション装置100によれば、デフォルト値の内部パラメータMを用いて得られた歪み補正画像Pについて、その歪み補正画像P中の校正用指標20の線H、Vの像H、Vを直線とするように内部パラメータMを補正するため、個々のカメラの光学特性のばらつき、個体差に適した歪み補正を行うことができ、精度の高い歪み補正画像を得ることができる。 As described above, according to the first image calibration apparatus 100 of the present embodiment, the calibration index in the distortion corrected image P is obtained for the distortion corrected image P obtained using the internal parameter M having the default value. Since the internal parameter M is corrected so that the images H and V of the 20 lines H and V are straight lines, it is possible to perform distortion correction suitable for variations in optical characteristics of individual cameras and individual differences, and high accuracy. A distortion-corrected image can be obtained.
 さらに、そのようにして補正された内部パラメータに基づいて得られた新たな歪み補正画像(校正用指標20の線H、Vの像H、Vが直線になっている)を用いて、デフォルト値の外部パラメータNに基づいた視点変換合成画像Q10が生成されるが、この生成された視点変換合成画像Q10は、基になる歪み補正画像Pの精度が良いため、この視点変換合成画像Q10の精度も必然的に高い。 Furthermore, a new distortion correction image obtained based on the internal parameters corrected in this way (the lines H and V images H and V of the calibration index 20 are straight lines) is used as a default value. The viewpoint conversion composite image Q10 based on the external parameter N is generated. Since the generated viewpoint conversion composite image Q10 has a high accuracy of the distortion correction image P as a base, the accuracy of the viewpoint conversion composite image Q10 is high. Inevitably high.
 さらに、この視点変換合成画像Q10が上記3つの条件(1)~(3)を満たすように外部パラメータNを補正することにより、一層精度の良い視点変換合成画像Q10を得ることができる。 Further, by correcting the external parameter N so that the viewpoint conversion composite image Q10 satisfies the above three conditions (1) to (3), the viewpoint conversion composite image Q10 with higher accuracy can be obtained.
 しかも、上記3つの条件(1)~(3)は、車両200と校正用指標20との相対的位置関係に依存するものではなく、あくまで視点変換合成画像Q10中における校正用指標20の線HおよびVの像HおよびV間だけの関係(平行、線間隔、同一位置)を規定するものであるため、校正用指標20に対して車両200を設置する際の、校正用指標20に対する車両200の位置や車両200の姿勢(向き)の厳密性は要求されない。 In addition, the above three conditions (1) to (3) do not depend on the relative positional relationship between the vehicle 200 and the calibration index 20, and are merely a line H of the calibration index 20 in the viewpoint conversion composite image Q10. And the relationship between only the images H and V (parallel, line spacing, same position), the vehicle 200 with respect to the calibration index 20 when the vehicle 200 is installed with respect to the calibration index 20. The strictness of the position and the attitude (orientation) of the vehicle 200 is not required.
 すなわち、路面上に設置された校正用指標20とその路面に配置される車両200との相対的な位置関係は、一般的な駐車場等における駐車枠に、通常の駐車操作で得られる車両200の位置、姿勢の精度(実用レベルのずれを有する程度)であれば十分であり、その相対的位置関係の厳密度合いを緩和させることができる。 That is, the relative positional relationship between the calibration index 20 installed on the road surface and the vehicle 200 arranged on the road surface is obtained by a normal parking operation on a parking frame in a general parking lot or the like. The accuracy of the position and orientation (the extent of having a practical level deviation) is sufficient, and the strict degree of the relative positional relationship can be relaxed.
 このことは、車両200の種類(車両の大きさや形状)が異なっても、共通した校正用指標20をそのまま利用することができることにもなるため、キャリブレーションを行う都度、車両200の種類ごとに専用の校正用指標20を準備、設置する必要もなくなり、作業の労力、時間を大幅に軽減させることができる。 This means that even if the type of vehicle 200 (the size and shape of the vehicle) is different, the common calibration index 20 can be used as it is. It is no longer necessary to prepare and install a dedicated calibration index 20, and labor and time can be greatly reduced.
 以上のように、本実施例の画像のキャリブレーション装置100によれば、校正用指標20の線H、Vに対応する、歪み補正画像Pにおける像H、Vが直線状に延びるものとなるように内部パラメータMを調整することで、従来の、固定された内部パラメータを用いるとともに外部パラメータNを調整していたキャリブレーションよりも精度の高いキャリブレーションを実現することができる。 As described above, according to the image calibration apparatus 100 of the present embodiment, the images H and V in the distortion corrected image P corresponding to the lines H and V of the calibration index 20 extend linearly. By adjusting the internal parameter M, it is possible to realize calibration with higher accuracy than the conventional calibration using the fixed internal parameter and adjusting the external parameter N.
 また、本実施形態の画像のキャリブレーション装置100によれば、従来の、点だけで行われているキャリブレーション方法と比べて、線を校正用指標20としているため、点間の歪みが考慮されない従来のキャリブレーションよりも精度を向上させることができる。 In addition, according to the image calibration apparatus 100 of the present embodiment, since the line is used as the calibration index 20 as compared with the conventional calibration method performed only with points, distortion between points is not considered. The accuracy can be improved over the conventional calibration.
 そして、少なくとも2本の平行直線が描かれた校正用指標を、二つのカメラの共通撮像領域内に1つ設け、車両周囲の平面上に、少なくとも3つ以上設置された、その校正用指標を用いて校正する。具体的には、視点変換合成画像Q10における像HおよびVの平行の度合い、像(線)間の距離、および2つの視点変換画像に跨って写った線HおよびVに対応した像HおよびVが同一位置に位置するように外部パラメータNを調整することで、視点変換合成画像Q10の全体に亘って、精度の高いキャリブレーションを行うことができる。 Then, at least two calibration markers with at least two parallel straight lines are provided in the common imaging area of the two cameras, and at least three calibration markers are installed on the plane around the vehicle. Use to calibrate. Specifically, the degree of parallelism of the images H and V in the viewpoint conversion composite image Q10, the distance between the images (lines), and the images H and V corresponding to the lines H and V captured across the two viewpoint conversion images. By adjusting the external parameter N so that they are located at the same position, it is possible to perform calibration with high accuracy over the entire viewpoint conversion composite image Q10.
 また、本実施例の画像のキャリブレーション装置100は、各線間の距離が既知で平行な簡単なパターンを利用したものであり、そのような簡単な構成の校正用指標20は、入手が用意であること、また、路面上に描いて形成するものであってもよく簡単に描くことができることから、取り扱いが非常に容易であるという利点がある。 The image calibration apparatus 100 according to the present embodiment uses a simple pattern in which the distance between the lines is known and parallel, and the calibration index 20 having such a simple configuration is available. In addition, there is an advantage that handling is very easy because it may be drawn on the road surface and can be drawn easily.
 本実施例のキャリブレーション装置100は、外部パラメータ推定部52が、上記の(1)~(3)の条件で繰り返し演算を行うことにより、視点変換合成画像Q10を新たな視点変換合成画像Q10に収束させるように、外部パラメータNを補正するものであるが、本発明の画像のキャリブレーション装置は、この形態に限定されるものではなく、外部パラメータ推定部52が、上記(1)~(3)の条件に条件(4)(外部パラメータのデフォルト値を用いて信頼性のある線の像を特定する)を加えて、外部パラメータNを調整する補正を行うものであってもよい。 In the calibration apparatus 100 of the present embodiment, the external parameter estimation unit 52 repeatedly performs the calculation under the above conditions (1) to (3), so that the viewpoint conversion composite image Q10 becomes a new viewpoint conversion composite image Q10. Although the external parameter N is corrected so as to converge, the image calibration apparatus of the present invention is not limited to this form, and the external parameter estimation unit 52 performs the above (1) to (3). ) May be added to the condition (4) (reliable line image is specified using the default value of the external parameter), and correction for adjusting the external parameter N may be performed.
 このように、上記(1)~(4)の条件だけでなく、外部パラメータのデフォルト値をも用いて信頼性のある線の像を特定することで、新たな視点変換合成画像Q10に収束させるための繰り返し演算の回数を減らすことができ、収束に至る経過時間を短縮することができる。 In this way, not only the above conditions (1) to (4) but also the default values of the external parameters are used to identify a reliable line image, so that the image is converged to a new viewpoint conversion composite image Q10. Therefore, it is possible to reduce the number of repetitive computations and shorten the elapsed time until convergence.
 11・・・フロントカメラ、12・・・リアカメラ、13・・・右サイドカメラ、14・・・左サイドカメラ
 30・・・歪み補正処理部、40・・・視点変換処理部、60・・・部分直線抽出部、
 50・・・キャリブレーション部、51・・・内部/歪みパラメータ推定部、52・・・外部パラメータ推定部
 100・・・キャリブレーション装置
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
DESCRIPTION OF SYMBOLS 11 ... Front camera, 12 ... Rear camera, 13 ... Right side camera, 14 ... Left side camera 30 ... Distortion correction processing part, 40 ... Viewpoint conversion processing part, 60 ...・ Partial line extraction unit,
50 ... Calibration unit, 51 ... Internal / distortion parameter estimation unit, 52 ... External parameter estimation unit 100 ... Calibration device All publications, patents and patent applications cited in this specification It shall be taken into this specification as it is for reference.

Claims (14)

  1.  複数のカメラで撮像した車両周囲画像を俯瞰画像に変換し、合成するキャリブレーション装置のキャリブレーション方法において、
     少なくとも2本の平行直線が描かれた校正用指標を、二つのカメラの共通撮像領域内に1つ設け、
     車両周囲の平面上に、少なくとも3つ以上設置された前記校正用指標を用いて校正することを特徴とするキャリブレーション方法。
    In a calibration method of a calibration device that converts a vehicle surrounding image captured by a plurality of cameras into a bird's-eye view image and combines them,
    One calibration index on which at least two parallel straight lines are drawn is provided in the common imaging area of the two cameras,
    A calibration method, wherein calibration is performed by using at least three or more calibration indexes installed on a plane around the vehicle.
  2.  前記複数のカメラは、車両の前後左右に配置されている請求項1に記載されたキャリブレーション方法。 The calibration method according to claim 1, wherein the plurality of cameras are arranged on the front, rear, left and right of the vehicle.
  3.  前記複数のカメラは、広角の魚眼カメラを用いている請求項1に記載されたキャリブレーション方法。 The calibration method according to claim 1, wherein the plurality of cameras are wide-angle fisheye cameras.
  4.  前記校正用指標は、平行直線状に配列されたパターンである請求項1に記載されたキャリブレーション方法。 The calibration method according to claim 1, wherein the calibration index is a pattern arranged in a parallel straight line.
  5.  前記複数の全カメラの内部パラメータおよび外部パラメータを校正する請求項1に記載されたキャリブレーション方法。 The calibration method according to claim 1, wherein internal parameters and external parameters of all the plurality of cameras are calibrated.
  6.  前記内部パラメータの校正方法は、前記校正用指標の前記平行直線の直線性に関する誤差関数を用いて、誤差を最小化するように最適化をして校正する請求項5に記載されたキャリブレーション方法。 6. The calibration method according to claim 5, wherein the calibration method of the internal parameter is performed by optimizing so as to minimize an error, using an error function related to linearity of the parallel straight line of the calibration index. .
  7.  前記外部パラメータの校正方法は、前記校正用指標の前記平行直線の平行性、間隔、座標、一致度のいずれかに関する誤差関数を用いて、誤差を最小化するように最適化をして校正する請求項5に記載されたキャリブレーション方法。 The calibration method of the external parameter is calibrated by optimizing so as to minimize the error by using an error function regarding any of parallelism, interval, coordinates, and coincidence of the parallel straight lines of the calibration index. The calibration method according to claim 5.
  8.  複数のカメラで撮像した車両周囲画像を俯瞰画像に変換し、合成するキャリブレーション装置において、
     少なくとも2本の平行直線が描かれた校正用指標を、二つのカメラの共通撮像領域内に1つ設け、
     車両周囲の平面上に、少なくとも3つ以上設置された前記校正用指標を用いて校正することを特徴とするキャリブレーション装置。
    In a calibration device that converts a vehicle surrounding image captured by a plurality of cameras into an overhead image and synthesizes it,
    One calibration index on which at least two parallel straight lines are drawn is provided in the common imaging area of the two cameras,
    A calibration apparatus characterized in that calibration is performed using at least three or more calibration indices installed on a plane around the vehicle.
  9.  前記カメラは、車両の前後左右に取り付けられたものである請求項8に記載されたキャリブレーション装置。 The calibration device according to claim 8, wherein the cameras are attached to the front, rear, left and right of the vehicle.
  10.  前記カメラは、広角の魚眼カメラを用いたものである請求項8に記載のキャリブレーション装置。 The calibration device according to claim 8, wherein the camera uses a wide-angle fisheye camera.
  11.  前記校正用指標は、平行直線状に配列されたパターンである請求項8に記載されたキャリブレーション装置。 The calibration apparatus according to claim 8, wherein the calibration index is a pattern arranged in a parallel straight line.
  12.  前記複数の全カメラの内部パラメータおよび外部パラメータを校正する請求項8に記載されたキャリブレーション装置。 The calibration device according to claim 8, wherein internal parameters and external parameters of all the plurality of cameras are calibrated.
  13.  前記内部パラメータの校正は、前記校正用指標の前記平行直線の直線性に関する誤差関数を用いて、誤差を最小化するように最適化をして実施する請求項12に記載されたキャリブレーション装置。 13. The calibration apparatus according to claim 12, wherein the calibration of the internal parameter is performed by using an error function related to linearity of the parallel straight line of the calibration index so as to minimize the error.
  14.  前記外部パラメータ校正は、前記校正用指標の前記平行直線の平行性、間隔、座標、一致度のいずれかに関する誤差関数を用いて、誤差を最小化するように最適化をして実施する請求項12に記載されたキャリブレーション装置。 The external parameter calibration is performed by optimizing to minimize an error by using an error function related to any of parallelism, spacing, coordinates, and coincidence of the parallel straight lines of the calibration index. 12. The calibration apparatus described in 12.
PCT/JP2013/060680 2012-04-09 2013-04-09 Calibration method and device WO2013154085A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-088598 2012-04-09
JP2012088598 2012-04-09

Publications (1)

Publication Number Publication Date
WO2013154085A1 true WO2013154085A1 (en) 2013-10-17

Family

ID=49327648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060680 WO2013154085A1 (en) 2012-04-09 2013-04-09 Calibration method and device

Country Status (1)

Country Link
WO (1) WO2013154085A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10466027B2 (en) 2017-06-21 2019-11-05 Fujitsu Ten Corp. Of America System and method for marker placement
JP6746031B1 (en) * 2019-02-18 2020-08-26 三菱電機株式会社 Image processing apparatus, image processing method, and image processing program
WO2023249126A1 (en) * 2022-06-24 2023-12-28 日立Astemo株式会社 Image processing device and image processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024647A (en) * 2005-07-14 2007-02-01 Iwate Univ Distance calculating apparatus, distance calculating method, structure analyzing apparatus and structure analyzing method
JP2008187564A (en) * 2007-01-31 2008-08-14 Sanyo Electric Co Ltd Camera calibration apparatus and method, and vehicle
JP2012015576A (en) * 2010-06-29 2012-01-19 Clarion Co Ltd Image calibration method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024647A (en) * 2005-07-14 2007-02-01 Iwate Univ Distance calculating apparatus, distance calculating method, structure analyzing apparatus and structure analyzing method
JP2008187564A (en) * 2007-01-31 2008-08-14 Sanyo Electric Co Ltd Camera calibration apparatus and method, and vehicle
JP2012015576A (en) * 2010-06-29 2012-01-19 Clarion Co Ltd Image calibration method and device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10466027B2 (en) 2017-06-21 2019-11-05 Fujitsu Ten Corp. Of America System and method for marker placement
JP6746031B1 (en) * 2019-02-18 2020-08-26 三菱電機株式会社 Image processing apparatus, image processing method, and image processing program
WO2020170486A1 (en) * 2019-02-18 2020-08-27 三菱電機株式会社 Image processing device, image processing method, and image processing program
GB2595151A (en) * 2019-02-18 2021-11-17 Mitsubishi Electric Corp Image processing device, image processing method, and image processing program
GB2595151B (en) * 2019-02-18 2023-04-19 Mitsubishi Electric Corp Image processing device, image processing method, and image processing program
WO2023249126A1 (en) * 2022-06-24 2023-12-28 日立Astemo株式会社 Image processing device and image processing method

Similar Documents

Publication Publication Date Title
CN102959953B (en) Image calibrating method and device
JP6154905B2 (en) Camera calibration apparatus, camera calibration system, and camera calibration method
JP6576945B2 (en) Calibration apparatus, calibration method, optical apparatus, photographing apparatus, projection apparatus, measurement system, and measurement method
KR101113679B1 (en) Image correction method for a camera system
JP5898475B2 (en) In-vehicle camera system, calibration method thereof, and calibration program thereof
JP5923422B2 (en) Camera calibration method and apparatus
WO2017195801A1 (en) Calibration device, calibration method, optical device, imaging device, projection device, measurement system and measurement method
US20090299684A1 (en) Method for calibrating cameras installed on vehicle
US20080181488A1 (en) Camera calibration device, camera calibration method, and vehicle having the calibration device
KR100914211B1 (en) Distorted image correction apparatus and method
JP2008187566A (en) Camera calibration apparatus and method and vehicle
JP5959311B2 (en) Data deriving apparatus and data deriving method
JP2008193188A (en) Camera calibration device and method, and vehicle
CN110505468B (en) Test calibration and deviation correction method for augmented reality display equipment
KR101583663B1 (en) Method for generating calibration indicator of camera for vehicle
CN108596982A (en) A kind of easy vehicle-mounted multi-view camera viewing system scaling method and device
CN111435540A (en) Annular view splicing method of vehicle-mounted annular view system
JP4679293B2 (en) In-vehicle panoramic camera system
JP2007295113A (en) Imaging apparatus
WO2013154085A1 (en) Calibration method and device
JP4682830B2 (en) In-vehicle image processing device
JP2013024712A (en) Method and system for calibrating multiple camera
KR101293263B1 (en) Image processing apparatus providing distacnce information in a composite image obtained from a plurality of image and method using the same
JP2010231395A (en) Camera calibration device
JP2019087858A (en) Camera correction device, camera correction system, camera correction method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13775862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP