WO2013153607A1 - Positioning device - Google Patents

Positioning device Download PDF

Info

Publication number
WO2013153607A1
WO2013153607A1 PCT/JP2012/059717 JP2012059717W WO2013153607A1 WO 2013153607 A1 WO2013153607 A1 WO 2013153607A1 JP 2012059717 W JP2012059717 W JP 2012059717W WO 2013153607 A1 WO2013153607 A1 WO 2013153607A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
threshold value
unit
output
value
Prior art date
Application number
PCT/JP2012/059717
Other languages
French (fr)
Japanese (ja)
Inventor
孝浩 矢木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013501064A priority Critical patent/JPWO2013153607A1/en
Priority to PCT/JP2012/059717 priority patent/WO2013153607A1/en
Priority to TW101136314A priority patent/TW201341997A/en
Publication of WO2013153607A1 publication Critical patent/WO2013153607A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/414Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller

Definitions

  • the present invention relates to a positioning device that performs positioning of a controlled machine.
  • a programmable controller may be configured with a positioning unit (positioning device) that performs feedback loop control of a feedback pulse input from a servo motor included in a controlled machine.
  • the positioning unit calculates the droop pulse amount of the deviation counter from the feedback pulse of the servo motor, and detects machine abnormalities during position control by the servo motor based on the comparison between the droop pulse amount and the allowable value. There is.
  • the allowable value for the droop pulse amount is calculated based on the specifications of the maximum speed of the servo motor, the difference between the droop pulse amount and the permissible value increases depending on the servo motor control contents, and abnormality detection is possible. There was a case to be late. Therefore, even if the position control is stopped after the positioning device detects an abnormality, there is a problem that the controlled machine is damaged.
  • the positioning control device stores all changes in the normal operation as a physical quantity, so that a large-capacity memory for storing the physical quantity is required separately.
  • the positioning control apparatus uses a time-consuming amount such as a dead time, a rise time, and an overshoot amount as a physical quantity for comparison. There was a problem that it could not be detected.
  • the technique of Patent Document 3 since the positioning control device stores the relationship between the movement amount and the response time as a physical quantity for comparison, the physical quantity is similar to the positioning control device according to Patent Document 1. A large-capacity memory for storing the memory was necessary.
  • the present invention has been made in view of the above, and obtains a positioning device capable of detecting a machine abnormality at an early stage without requiring a large-capacity memory and detecting a machine deterioration as an alarm. With the goal.
  • the present invention provides a positioning output for the next control cycle according to a deviation between a storage unit, a positioning output for the controlled machine, and an encoder input from the controlled machine.
  • the positioning control unit measures the maximum value of the deviation calculated for each control cycle, and records the maximum value obtained in the storage unit, during the steady operation, Based on the maximum deviation recorded in the storage unit, a first threshold value greater than the maximum value and a second threshold value greater than the first threshold value are calculated, and the positioning control unit Compares the deviation calculated for each control period with the first threshold value and the second threshold value, and the deviation exceeds the first threshold value and does not exceed the second threshold value.
  • An abnormality detection unit that issues an alarm notification without stopping positioning output and stops output of positioning output by the positioning control unit when the deviation exceeds the second threshold value.
  • the storage unit does not need to record all the accumulated pulse amounts for each control cycle during operation, can detect an abnormality without requiring a complicated calculation, and can detect the abnormality. Since an alarm notification is output before detecting and stopping the operation of the controlled machine, it is possible to detect machine abnormalities at an early stage without requiring a large-capacity memory and to detect machine deterioration as an alarm. A positioning device that can be obtained can be obtained.
  • FIG. 1 is a block diagram illustrating a configuration of a PLC including a positioning unit according to an embodiment of the present invention.
  • FIG. 2 is a flowchart for explaining the operation of the positioning unit during normal operation.
  • FIG. 3 is a flowchart for explaining the operation of the positioning unit during the steady operation.
  • FIG. 1 is a block diagram illustrating a configuration of a PLC including a positioning unit according to an embodiment of the present invention.
  • the PLC 1 is connected to a drive unit 300 and a controlled machine 400.
  • the PLC 1 inputs a position command value (positioning output) for positioning the controlled machine 400 to the drive unit 300 for each control cycle of the arithmetic unit 110 described later.
  • the drive unit 300 drives the movable part of the controlled machine 400 based on the input positioning output.
  • the controlled machine 400 includes an encoder (not shown) that detects the current position of the movable part, and a position detection value (encoder input) by the encoder is input to the PLC 1.
  • the drive unit 300 may be a servo amplifier, for example.
  • the movable part included in the controlled machine 400 may be a servo motor driven by a servo amplifier.
  • the PLC 1 includes a positioning unit 100 that calculates a positioning output using an encoder input as a feedback signal, and a CPU unit 200 that causes the positioning unit 100 to start positioning control in accordance with a request for starting position control from a user program. .
  • the PLC 1 can be configured by mounting a desired functional unit in addition to the CPU unit 200 and the positioning unit 100. Examples of the functional unit that can be attached to the PLC 1 include a temperature controller device that outputs a temperature control signal based on a command from the CPU unit 200.
  • the positioning unit 100 includes a calculation unit 110, a memory (storage unit) 120, an encoder input circuit 130, a power source 140, and a positioning output circuit 150.
  • the power supply 140 generates electric power for operating the positioning output circuit 150.
  • the encoder input circuit 130 is a connection interface that receives an encoder input from the controlled machine 400, and transfers the received encoder input to the arithmetic unit 110.
  • the positioning output circuit 150 is a connection interface for supplying the drive unit 300 with the positioning output calculated by the calculation unit 110 (more precisely, the positioning control unit 111 described later).
  • the positioning output circuit 150 can supply a positioning output to the drive unit 300 while power is supplied from the power supply 140. When the power supply from the power supply 140 is stopped, the positioning output circuit 150 stops supplying positioning output.
  • the calculation unit 110 is constituted by, for example, a CPU (Central Processing Unit).
  • the calculation unit 110 implements functions as the positioning control unit 111 and the abnormality detection unit 112 by executing a predetermined program.
  • the positioning control unit 111 When the positioning control unit 111 receives a request for starting position control from the CPU unit 200, the positioning control unit 111 starts calculating positioning output.
  • the positioning control unit 111 can calculate the positioning output under feedback control using the encoder input as a feedback signal.
  • the positioning output is input to the positioning output circuit 150 and also to the deviation counter 113 provided in the positioning control unit 111.
  • the deviation counter 113 calculates a deviation (a droop pulse amount) between the positioning output and the encoder input received by the encoder input circuit 130.
  • the positioning control unit 111 calculates a positioning output to be output in the next control cycle according to the amount of accumulated pulses.
  • the abnormality detection unit 112 records the maximum value of the accumulated pulse amount of the deviation counter 113 during normal operation in the memory 120 as the accumulated pulse amount maximum value 121, and uses the accumulated pulse amount maximum value 121 to detect an abnormality during steady operation.
  • a detection threshold value 122 and an alarm threshold value 123 are calculated.
  • the alarm threshold value 123 is set to a value larger than the accumulated pulse amount maximum value 121
  • the abnormality detection threshold value 122 is set to a value larger than the alarm threshold value 123.
  • the calculation method of the abnormality detection threshold value 122 and the alarm threshold value 123 may be any method as long as it is calculated using the accumulated pulse amount maximum value 121.
  • the abnormality detection unit 112 may obtain the abnormality detection threshold value 122 and the alarm threshold value 123 by multiplying the accumulated pulse amount maximum value 121 by a predetermined coefficient. Specifically, the abnormality detection unit 112 obtains a value obtained by multiplying the accumulated pulse amount maximum value 121 by 1.1 as an alarm threshold value 123 and multiplying the accumulated pulse amount maximum value 121 by 1.2. The detected value may be used as the abnormality detection threshold value 122. Further, the abnormality detection unit 112 may obtain the abnormality detection threshold value 122 and the alarm threshold value 123 by adding a predetermined value to the accumulated pulse amount maximum value 121.
  • the abnormality detection unit 112 compares the accumulated pulse amount calculated by the deviation counter 113 for each control cycle with each of the abnormality detection threshold value 122 and the alarm threshold value 123 during steady operation. When the accumulated pulse amount exceeds the abnormality detection threshold value 122, the abnormality detection unit 112 transmits a stop signal to the power supply 140 to stop the power supply 140 from supplying power to the positioning output circuit 150. Thereby, the operation of the controlled machine 400 can be stopped immediately. Even if the positioning output circuit 150 is broken, the controlled machine 400 can be stopped safely.
  • the abnormality detection unit 112 When the accumulated pulse amount does not exceed the abnormality detection threshold value 122 but exceeds the alarm threshold value 123, the abnormality detection unit 112 provides an alarm notification without issuing a stop signal to the power supply 140. To issue.
  • the CPU unit 200 receives the warning notification, the CPU unit 200 can output a warning to the user, for example, on a programmable display (not shown).
  • the positioning unit 100 has an output unit that displays an alarm for the user, such as an LED lamp, the output unit may output an alarm. Thereby, it becomes possible to notify the user of the abnormality without stopping the operation of the controlled machine 400.
  • the switching between the operation during normal operation and the operation during steady operation of the abnormality detection unit 112 is performed by a user operation, for example.
  • the operation for switching may be executed, for example, via the above-described programmable display, or may be executed by providing the positioning unit 100 with a hardware switch and operating the hardware switch by the user. You may make it do.
  • a programming tool is connected to store a user program in the CPU unit 200 and to set various parameters. You may enable it to perform the said switching operation using the said programming tool. That is, when the user designates the first operation mode, the abnormality detection unit 112 performs the operation during normal operation, and when the user designates the second operation mode, the abnormality detection unit 112 performs the operation during steady operation. To do.
  • FIG. 2 is a flowchart for explaining the operation of the positioning unit 100 during normal operation.
  • step S1 when the position control start from the CPU 200 is requested, the positioning control unit 111 starts the position control (step S1), and the deviation counter 113 calculates the accumulated pulse amount (step S2). . Note that the loop processing from step S2 to step S4 is executed every control cycle.
  • the abnormality detection unit 112 determines whether or not the accumulated pulse amount calculated by the deviation counter 113 is the maximum value of the accumulated pulse amount output from the start of position control (step S3). .
  • the process of step S2 is executed again.
  • the droop pulse amount calculated in the process of step S2 is the maximum value among the droop pulse amounts output from the start of position control (step S3, Yes)
  • the abnormality detection unit 112 is recorded in the memory 120.
  • step S4 The accumulated droop pulse amount maximum value 121 is overwritten with the droop pulse amount calculated in step S2 (step S4). If the droop pulse amount calculated in step S2 is the first value calculated after the start of position control, the memory 120 is in a state in which the droop pulse amount maximum value 121 is not recorded. The calculated value is recorded as the accumulated pulse amount maximum value 121. Thereafter, the process of step S2 is executed.
  • step S2 to step S4 may be stopped by a command from the user.
  • a command for stopping the loop processing may be input to the positioning unit 100 by a programmable display, a programming tool, or other input means.
  • FIG. 3 is a flowchart for explaining the operation of the positioning unit 100 during the steady operation.
  • the abnormality detection unit 112 first starts the abnormality detection threshold 122 based on the accumulated pulse amount maximum value 121 stored in the memory 120.
  • the alarm threshold value 123 is calculated (step S11).
  • the calculated abnormality detection threshold value 122 and alarm threshold value 123 are recorded in the memory 120, respectively.
  • step S12 the positioning control unit 111 starts position control (step S12), and the deviation counter 113 calculates the accumulated pulse amount (step S13).
  • step S13 the loop process of step S13, step S14, No, step S16, No is performed for every control period.
  • the abnormality detection unit 112 determines whether or not the accumulated pulse amount calculated in the process of step S13 exceeds the abnormality detection threshold value 122 (step S14). When the accumulated pulse amount exceeds the abnormality detection threshold value 122 (step S14, Yes), the abnormality detection unit 112 issues a stop signal to the power source 140 (step S15) and ends the operation. Since the power supply 140 that has received the stop signal stops the power supplied to the positioning output circuit 150, the positioning output circuit 150 stops outputting the positioning output.
  • the abnormality detection unit 112 determines whether or not the accumulated pulse amount exceeds the alarm threshold value 123 (Step S16). ). When the accumulated pulse amount exceeds the alarm threshold value 123 (step S16, Yes), the abnormality detection unit 112 outputs an alarm notification to the CPU unit 200 (step S17). Thereafter, the process of step S13 is executed. When the accumulated pulse amount does not exceed the alarm threshold 123 (No at Step S16), the process at Step S17 is skipped.
  • the positioning unit 100 corresponds to the memory 120 and the deviation (the amount of accumulated pulses) between the positioning output for the controlled machine 400 and the encoder input from the controlled machine 400.
  • the positioning control unit 111 that calculates the positioning output of the next control cycle, and the maximum value of the droop pulse amount that the positioning control unit 111 calculates for each control cycle during normal operation, The maximum amount 121) is recorded in the memory 120, and a first threshold value (alarm) that is larger than the maximum accumulated pulse amount 121 is determined based on the maximum accumulated pulse amount 121 recorded in the memory 120 during steady operation.
  • Threshold value 123) and a second threshold value (abnormality detection threshold value 122) larger than the alarm threshold value are calculated, and the positioning control unit 111
  • the droop pulse amount calculated for each cycle is compared with the alarm threshold value 123 and the abnormality detection threshold value 122.
  • the droop pulse amount exceeds the alarm threshold value 123, and the abnormality detection threshold value 122 is obtained.
  • the positioning control unit 111 outputs the positioning output by the positioning control unit 111. Since the abnormality detecting unit 112 is stopped, the memory 120 does not need to record all the accumulated pulse amounts for each control cycle during operation, so the capacity of the memory 120 can be reduced. .
  • the positioning unit 100 since the positioning unit 100 detects an abnormality based on a simple comparison between the accumulated pulse amount and the abnormality detection threshold value 122, it does not require a complicated calculation, so that the abnormality can be detected early. it can. In addition, since the positioning unit 100 outputs an alarm notification before detecting an abnormality and stopping the operation of the controlled machine 400, the user can detect the abnormality before the controlled machine 400 is determined to be abnormal and stops. The deterioration of the control machine 400 can be recognized. That is, according to the embodiment of the present invention, it is possible to obtain a positioning device that can detect an abnormality of a machine at an early stage without requiring a large-capacity memory and can detect a deterioration of the machine as an alarm.
  • the positioning unit 100 is connected to the controlled machine 400 and outputs a positioning output calculated by the positioning control unit 111 to the controlled machine 400 at each control cycle, and the positioning output circuit 150 outputs the positioning output.
  • the abnormality detection unit 112 calculates the alarm threshold value 123 by multiplying the maximum accumulated pulse amount value 121 recorded in the memory 120 by the predetermined first constant to obtain the maximum accumulated pulse amount value.
  • the abnormality detection threshold 122 may be calculated by multiplying 121 by a predetermined second constant.
  • the abnormality detection unit 112 calculates a warning threshold value 123 by adding a predetermined first constant to the accumulated pulse amount maximum value 121 recorded in the memory 120, and sets the accumulated pulse amount maximum value 121 to a predetermined value.
  • the abnormality detection threshold value 122 may be calculated by adding the second constant.
  • the positioning output is the position command value
  • the encoder input is the position detection value of the current position.
  • the speed command value is the positioning output and the speed detection value is the encoder input. You may do it.
  • the positioning device according to the present invention is suitable for application to a positioning device that performs positioning of a controlled machine.

Abstract

In order to provide a positioning device with which machinery defects can be detected at an early stage without the need for large capacity memory, and with which machinery deterioration can be detected in order to serve as a warning, a positioning unit (100) is provided with: a memory (120); a positioning control unit (111) for calculating the positioning output of the subsequent control cycle in accordance with an accumulated pulse amount; and a defect-detection unit (112) which, during normal operation, measures the maximum value of the accumulated pulse amount and records the obtained maximum accumulated-pulse-amount value (121) in the memory (120), and which, during steady operation, calculates, on the basis of the maximum accumulated-pulse-amount value (121), a warning threshold value (123) which is greater than the maximum accumulated-pulse-amount value (121) and a defect-detection threshold value (122) which is greater than the warning threshold value (123), issues a warning notification when the accumulated pulse amount exceeds the warning threshold value (123) but does not exceed the defect-detection threshold value (122), and suspends the output of the positioning output when the accumulated pulse amount exceeds the defect-detection threshold amount (122).

Description

位置決め装置Positioning device
 本発明は、被制御機械の位置決めを実行する位置決め装置に関する。 The present invention relates to a positioning device that performs positioning of a controlled machine.
 プログラマブルコントローラ(Programmable Logic Controller、PLC)は、被制御機械が備えるサーボモータから入力されたフィードバックパルスをフィードバックループ制御する位置決めユニット(位置決め装置)が装着されて構成されることがある。また、位置決めユニットには、サーボモータのフィードバックパルスから偏差カウンタの溜りパルス量を算出して、溜りパルス量と許容値との比較に基づいてサーボモータによる位置制御時の機械の異常を検知するものがある。 A programmable controller (PLC) may be configured with a positioning unit (positioning device) that performs feedback loop control of a feedback pulse input from a servo motor included in a controlled machine. In addition, the positioning unit calculates the droop pulse amount of the deviation counter from the feedback pulse of the servo motor, and detects machine abnormalities during position control by the servo motor based on the comparison between the droop pulse amount and the allowable value. There is.
 ここで、溜りパルス量にかかる許容値は、サーボモータの最高速度の仕様に基づいて算出されるため、サーボモータの制御内容によっては溜りパルス量と許容値の差が大きくなり、異常の検出が遅れる場合があった。そのため、位置決め装置が異常を検出してから位置制御を停止しても、制御対象の機械がダメージを受けてしまうという問題があった。 Here, since the allowable value for the droop pulse amount is calculated based on the specifications of the maximum speed of the servo motor, the difference between the droop pulse amount and the permissible value increases depending on the servo motor control contents, and abnormality detection is possible. There was a case to be late. Therefore, even if the position control is stopped after the positioning device detects an abnormality, there is a problem that the controlled machine is damaged.
 これに関し、正常時の動作にかかる物理量として記憶しておき、当該記憶しておいた物理量と定常作業中の物理量とを逐次比較することで異常検出を行う、位置決め制御装置の技術が提案されている(例えば、特許文献1、特許文献2、および特許文献3参照)。 In this regard, there has been proposed a technique for a positioning control device that stores a physical quantity related to normal operation and detects an abnormality by sequentially comparing the stored physical quantity with a physical quantity during regular work. (For example, see Patent Document 1, Patent Document 2, and Patent Document 3).
特開昭61-061790号公報Japanese Patent Laid-Open No. 61-061790 特開昭62-256007号公報JP 62-256007 A 特開昭60-238905号公報JP 60-238905 A
 しかしながら、上記特許文献1の技術によれば、位置決め制御装置は、正常時の全動作の変化を物理量として記憶しておくため、物理量を記憶するための大容量のメモリが別途必要であった。また、特許文献2の技術によれば、位置決め制御装置は、比較のための物理量として、無駄時間、立ち上がり時間、オーバーシュート量など、演算に時間がかかる量を用いることとしているので、迅速な異常検出ができないという問題があった。また、特許文献3の技術によれば、位置決め制御装置は、移動量と応答時間との関係を比較のための物理量として記憶しておくため、特許文献1にかかる位置決め制御装置と同様に、物理量を記憶するための大容量のメモリが必要であった。 However, according to the technique of the above-mentioned Patent Document 1, the positioning control device stores all changes in the normal operation as a physical quantity, so that a large-capacity memory for storing the physical quantity is required separately. Further, according to the technique of Patent Document 2, the positioning control apparatus uses a time-consuming amount such as a dead time, a rise time, and an overshoot amount as a physical quantity for comparison. There was a problem that it could not be detected. According to the technique of Patent Document 3, since the positioning control device stores the relationship between the movement amount and the response time as a physical quantity for comparison, the physical quantity is similar to the positioning control device according to Patent Document 1. A large-capacity memory for storing the memory was necessary.
 本発明は、上記に鑑みてなされたものであって、大容量のメモリを必要とせずに機械の異常を早期に検知するとともに、機械の劣化を警報として検出することができる位置決め装置を得ることを目的とする。 The present invention has been made in view of the above, and obtains a positioning device capable of detecting a machine abnormality at an early stage without requiring a large-capacity memory and detecting a machine deterioration as an alarm. With the goal.
 上述した課題を解決し、目的を達成するために、本発明は、記憶部と、被制御機械に対する位置決め出力と前記被制御機械からのエンコーダ入力との偏差に応じて次の制御周期の位置決め出力を算出する位置決め制御部と、正常運転時に、前記位置決め制御部が制御周期毎に算出する前記偏差の最大値を測定して、得られた最大値を前記記憶部に記録し、定常運転時に、前記記憶部に記録されている偏差の最大値に基づいて、当該最大値よりも大きい第1しきい値および当該第1しきい値よりも大きい第2しきい値を算出し、前記位置決め制御部が制御周期毎に算出する前記偏差と前記第1しきい値および前記第2しきい値とを比較し、前記偏差が前記第1しきい値を越え、かつ前記第2しきい値を越えないとき、前記位置決め制御部による位置決め出力の出力を止めることなく警報通知を発行し、前記偏差が前記第2しきい値を越えたとき、前記位置決め制御部による位置決め出力の出力を停止する異常検出部と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a positioning output for the next control cycle according to a deviation between a storage unit, a positioning output for the controlled machine, and an encoder input from the controlled machine. In the normal operation, during the normal operation, the positioning control unit measures the maximum value of the deviation calculated for each control cycle, and records the maximum value obtained in the storage unit, during the steady operation, Based on the maximum deviation recorded in the storage unit, a first threshold value greater than the maximum value and a second threshold value greater than the first threshold value are calculated, and the positioning control unit Compares the deviation calculated for each control period with the first threshold value and the second threshold value, and the deviation exceeds the first threshold value and does not exceed the second threshold value. When the positioning control unit An abnormality detection unit that issues an alarm notification without stopping positioning output and stops output of positioning output by the positioning control unit when the deviation exceeds the second threshold value. And
 本発明にかかる位置決め装置は、記憶部は動作中の制御周期毎の溜りパルス量を全て記録しておく必要がなく、かつ、複雑な演算を必要せずに異常を検出でき、かつ、異常を検出して被制御機械の動作を停止する前に、警報通知を出力するので、大容量のメモリを必要とせずに機械の異常を早期に検知するとともに、機械の劣化を警報として検出することができる位置決め装置を得ることができる。 In the positioning device according to the present invention, the storage unit does not need to record all the accumulated pulse amounts for each control cycle during operation, can detect an abnormality without requiring a complicated calculation, and can detect the abnormality. Since an alarm notification is output before detecting and stopping the operation of the controlled machine, it is possible to detect machine abnormalities at an early stage without requiring a large-capacity memory and to detect machine deterioration as an alarm. A positioning device that can be obtained can be obtained.
図1は、本発明の実施の形態の位置決めユニットを具備するPLCの構成を説明するブロック図である。FIG. 1 is a block diagram illustrating a configuration of a PLC including a positioning unit according to an embodiment of the present invention. 図2は、正常動作時の位置決めユニットの動作を説明するフローチャートである。FIG. 2 is a flowchart for explaining the operation of the positioning unit during normal operation. 図3は、定常動作時の位置決めユニットの動作を説明するフローチャートである。FIG. 3 is a flowchart for explaining the operation of the positioning unit during the steady operation.
 以下に、本発明にかかる位置決め装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, an embodiment of a positioning device according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態.
 図1は、本発明の実施の形態の位置決めユニットを具備するPLCの構成を説明するブロック図である。図示するように、PLC1は、ドライブユニット300と被制御機械400とが接続されている。PLC1は、後述する演算部110の制御周期毎にドライブユニット300に対して被制御機械400の位置決めのための位置指令値(位置決め出力)を入力する。ドライブユニット300は、入力された位置決め出力に基づいて、被制御機械400の可動部を駆動する。被制御機械400は、可動部の現在位置を検出するエンコーダ(図示せず)を備えており、当該エンコーダによる位置検出値(エンコーダ入力)はPLC1に入力される。なお、ドライブユニット300は、例えばサーボアンプであってよい。また、被制御機械400が備える可動部は、サーボアンプにより駆動されるサーボモータであってよい。
Embodiment.
FIG. 1 is a block diagram illustrating a configuration of a PLC including a positioning unit according to an embodiment of the present invention. As shown in the figure, the PLC 1 is connected to a drive unit 300 and a controlled machine 400. The PLC 1 inputs a position command value (positioning output) for positioning the controlled machine 400 to the drive unit 300 for each control cycle of the arithmetic unit 110 described later. The drive unit 300 drives the movable part of the controlled machine 400 based on the input positioning output. The controlled machine 400 includes an encoder (not shown) that detects the current position of the movable part, and a position detection value (encoder input) by the encoder is input to the PLC 1. The drive unit 300 may be a servo amplifier, for example. Further, the movable part included in the controlled machine 400 may be a servo motor driven by a servo amplifier.
 PLC1は、エンコーダ入力をフィードバック信号として用いて位置決め出力を算出する位置決めユニット100と、ユーザプログラムからの位置制御開始の要求に従って位置決めユニット100に対して位置決め制御を開始せしめるCPUユニット200とを備えている。なお、PLC1は、CPUユニット200、位置決めユニット100の他にも所望の機能ユニットが装着されて構成されることが可能である。PLC1に装着可能な機能ユニットには、例えば、CPUユニット200からの指令に基づき温度制御信号を出力する温度コントローラ装置などがある。 The PLC 1 includes a positioning unit 100 that calculates a positioning output using an encoder input as a feedback signal, and a CPU unit 200 that causes the positioning unit 100 to start positioning control in accordance with a request for starting position control from a user program. . The PLC 1 can be configured by mounting a desired functional unit in addition to the CPU unit 200 and the positioning unit 100. Examples of the functional unit that can be attached to the PLC 1 include a temperature controller device that outputs a temperature control signal based on a command from the CPU unit 200.
 位置決めユニット100は、演算部110と、メモリ(記憶部)120と、エンコーダ入力回路130と、電源140と、位置決め出力回路150とを備えている。 The positioning unit 100 includes a calculation unit 110, a memory (storage unit) 120, an encoder input circuit 130, a power source 140, and a positioning output circuit 150.
 電源140は、位置決め出力回路150を動作せしめるための電力を生成する。 The power supply 140 generates electric power for operating the positioning output circuit 150.
 エンコーダ入力回路130は、被制御機械400からのエンコーダ入力を受け付ける接続インタフェースであって、受け付けたエンコーダ入力を演算部110に転送する。 The encoder input circuit 130 is a connection interface that receives an encoder input from the controlled machine 400, and transfers the received encoder input to the arithmetic unit 110.
 位置決め出力回路150は、演算部110(正確には後述の位置決め制御部111)が算出した位置決め出力をドライブユニット300に供給するための接続インタフェースである。位置決め出力回路150は、電源140から電力が供給されている間、位置決め出力をドライブユニット300に供給することができ、電源140からの電力供給が停止すると、位置決め出力の供給を停止する。 The positioning output circuit 150 is a connection interface for supplying the drive unit 300 with the positioning output calculated by the calculation unit 110 (more precisely, the positioning control unit 111 described later). The positioning output circuit 150 can supply a positioning output to the drive unit 300 while power is supplied from the power supply 140. When the power supply from the power supply 140 is stopped, the positioning output circuit 150 stops supplying positioning output.
 演算部110は、例えばCPU(Central Processing Unit)により構成される。演算部110は、所定のプログラムを実行することにより、位置決め制御部111および異常検出部112としての機能を実現する。 The calculation unit 110 is constituted by, for example, a CPU (Central Processing Unit). The calculation unit 110 implements functions as the positioning control unit 111 and the abnormality detection unit 112 by executing a predetermined program.
 位置決め制御部111は、CPUユニット200からの位置制御開始の要求を受け付けると、位置決め出力の算出を開始する。ここで、位置決め制御部111は、エンコーダ入力をフィードバック信号とするフィードバック制御の下で位置決め出力を算出することができる。具体的には、位置決め出力は、位置決め出力回路150に入力されるとともに、位置決め制御部111が備える偏差カウンタ113に入力される。偏差カウンタ113は、位置決め出力と、エンコーダ入力回路130が受け付けたエンコーダ入力との間の偏差(溜りパルス量)を算出する。位置決め制御部111は、当該溜りパルス量に応じて、次の制御周期で出力する位置決め出力を算出する。 When the positioning control unit 111 receives a request for starting position control from the CPU unit 200, the positioning control unit 111 starts calculating positioning output. Here, the positioning control unit 111 can calculate the positioning output under feedback control using the encoder input as a feedback signal. Specifically, the positioning output is input to the positioning output circuit 150 and also to the deviation counter 113 provided in the positioning control unit 111. The deviation counter 113 calculates a deviation (a droop pulse amount) between the positioning output and the encoder input received by the encoder input circuit 130. The positioning control unit 111 calculates a positioning output to be output in the next control cycle according to the amount of accumulated pulses.
 異常検出部112は、正常運転時の偏差カウンタ113の溜りパルス量の最大値を溜りパルス量最大値121としてメモリ120に記録しておき、溜りパルス量最大値121を用いて定常運転時の異常検出用しきい値122および警報用しきい値123を算出する。 The abnormality detection unit 112 records the maximum value of the accumulated pulse amount of the deviation counter 113 during normal operation in the memory 120 as the accumulated pulse amount maximum value 121, and uses the accumulated pulse amount maximum value 121 to detect an abnormality during steady operation. A detection threshold value 122 and an alarm threshold value 123 are calculated.
 警報用しきい値123は、溜りパルス量最大値121よりも大きい値が設定され、異常検出用しきい値122は、警報用しきい値123よりも大きい値が設定される。異常検出用しきい値122および警報用しきい値123の算出方法は、溜りパルス量最大値121を用いて算出されるのであればどのような方法であってもよい。例えば、異常検出部112は、溜りパルス量最大値121に予め定められた係数を乗じることによって異常検出用しきい値122および警報用しきい値123を求めるようにしてもよい。具体的には、異常検出部112は、溜りパルス量最大値121に1.1を乗じて得られる値を警報用しきい値123とし、溜りパルス量最大値121に1.2を乗じて得られる値を異常検出用しきい値122とするようにしてもよい。また、異常検出部112は、溜りパルス量最大値121に予め定められた値を加算することによって異常検出用しきい値122および警報用しきい値123を求めるようにしてもよい。 The alarm threshold value 123 is set to a value larger than the accumulated pulse amount maximum value 121, and the abnormality detection threshold value 122 is set to a value larger than the alarm threshold value 123. The calculation method of the abnormality detection threshold value 122 and the alarm threshold value 123 may be any method as long as it is calculated using the accumulated pulse amount maximum value 121. For example, the abnormality detection unit 112 may obtain the abnormality detection threshold value 122 and the alarm threshold value 123 by multiplying the accumulated pulse amount maximum value 121 by a predetermined coefficient. Specifically, the abnormality detection unit 112 obtains a value obtained by multiplying the accumulated pulse amount maximum value 121 by 1.1 as an alarm threshold value 123 and multiplying the accumulated pulse amount maximum value 121 by 1.2. The detected value may be used as the abnormality detection threshold value 122. Further, the abnormality detection unit 112 may obtain the abnormality detection threshold value 122 and the alarm threshold value 123 by adding a predetermined value to the accumulated pulse amount maximum value 121.
 さらに、異常検出部112は、定常運転時には、偏差カウンタ113が制御周期毎に算出する溜りパルス量を、異常検出用しきい値122および警報用しきい値123の夫々と比較する。溜りパルス量が異常検出用しきい値122を越えたとき、異常検出部112は、電源140に停止信号を送信して電源140に位置決め出力回路150に対する電力供給を停止せしめる。これにより、被制御機械400の動作を即座に停止せしめることができる。また、例え位置決め出力回路150が故障していたとしても、被制御機械400を安全に停止せしめることができる。 Furthermore, the abnormality detection unit 112 compares the accumulated pulse amount calculated by the deviation counter 113 for each control cycle with each of the abnormality detection threshold value 122 and the alarm threshold value 123 during steady operation. When the accumulated pulse amount exceeds the abnormality detection threshold value 122, the abnormality detection unit 112 transmits a stop signal to the power supply 140 to stop the power supply 140 from supplying power to the positioning output circuit 150. Thereby, the operation of the controlled machine 400 can be stopped immediately. Even if the positioning output circuit 150 is broken, the controlled machine 400 can be stopped safely.
 また、溜りパルス量が異常検出用しきい値122を越えずに警報用しきい値123を越えたとき、異常検出部112は、電源140に停止信号を発行することなく警報通知をCPUユニット200に発行する。CPUユニット200は、警報通知を受信すると、例えば、図示しないプログラマブル表示器などにユーザに対する警報を出力することができる。なお、位置決めユニット100がLEDランプなどユーザに対する警報を表示する出力手段を有している場合には、当該出力手段に警報を出力せしめるようにしてもよい。これにより、被制御機械400の運転を停止することなくユーザに異常を通知せしめることができるようになる。 When the accumulated pulse amount does not exceed the abnormality detection threshold value 122 but exceeds the alarm threshold value 123, the abnormality detection unit 112 provides an alarm notification without issuing a stop signal to the power supply 140. To issue. When the CPU unit 200 receives the warning notification, the CPU unit 200 can output a warning to the user, for example, on a programmable display (not shown). When the positioning unit 100 has an output unit that displays an alarm for the user, such as an LED lamp, the output unit may output an alarm. Thereby, it becomes possible to notify the user of the abnormality without stopping the operation of the controlled machine 400.
 なお、異常検出部112の正常運転時の動作と定常運転時の動作と間の切り替えは、例えばユーザの操作により行われる。切り替えのための操作は、例えば上述のプログラマブル表示器を介して実行されるようにしてもよいし、位置決めユニット100にハードウェアスイッチを具備せしめ、ユーザが当該ハードウェアスイッチを操作することによって実行されるようにしてもよい。また、CPUユニット200にユーザプログラムを格納したり種々のパラメータを設定したりするために、プログラミングツールが接続される。当該プログラミングツールを用いて上記切り替え操作を実行できるようにしてもよい。即ち、ユーザが第1運転モードを指定した場合、異常検出部112は正常運転時の動作を実行し、ユーザが第2運転モードを指定した場合、異常検出部112は定常運転時の動作を実行する。 It should be noted that the switching between the operation during normal operation and the operation during steady operation of the abnormality detection unit 112 is performed by a user operation, for example. The operation for switching may be executed, for example, via the above-described programmable display, or may be executed by providing the positioning unit 100 with a hardware switch and operating the hardware switch by the user. You may make it do. A programming tool is connected to store a user program in the CPU unit 200 and to set various parameters. You may enable it to perform the said switching operation using the said programming tool. That is, when the user designates the first operation mode, the abnormality detection unit 112 performs the operation during normal operation, and when the user designates the second operation mode, the abnormality detection unit 112 performs the operation during steady operation. To do.
 次に、図2および図3を参照して、本発明の実施の形態の位置決めユニット100の動作を説明する。図2は、正常動作時の位置決めユニット100の動作を説明するフローチャートである。 Next, the operation of the positioning unit 100 according to the embodiment of the present invention will be described with reference to FIGS. FIG. 2 is a flowchart for explaining the operation of the positioning unit 100 during normal operation.
 図2に示すように、CPU200からの位置制御開始が要求されると、位置決め制御部111は、位置制御を開始し(ステップS1)、偏差カウンタ113は、溜りパルス量を算出する(ステップS2)。なお、ステップS2~ステップS4のループ処理は、制御周期毎に実行される。 As shown in FIG. 2, when the position control start from the CPU 200 is requested, the positioning control unit 111 starts the position control (step S1), and the deviation counter 113 calculates the accumulated pulse amount (step S2). . Note that the loop processing from step S2 to step S4 is executed every control cycle.
 ステップS2の処理の後、異常検出部112は、偏差カウンタ113が算出した溜りパルス量が位置制御開始から出力された溜りパルス量のうちの最大値であるか否かを判定する(ステップS3)。ステップS2の処理にて算出された溜りパルス量が位置制御開始から出力された溜りパルス量のうちの最大値ではない場合(ステップS3、No)、ステップS2の処理が再び実行される。ステップS2の処理にて算出された溜りパルス量が位置制御開始から出力された溜りパルス量のうちの最大値である場合(ステップS3、Yes)、異常検出部112は、メモリ120内に記録されている溜りパルス量最大値121をステップS2で算出された溜りパルス量で上書きする(ステップS4)。なお、ステップS2で算出された溜りパルス量が位置制御開始後に最初に算出された値である場合には、メモリ120には溜りパルス量最大値121が記録されていない状態であるので、当該最初に算出された値が溜りパルス量最大値121として記録される。その後、ステップS2の処理が実行される。 After the process of step S2, the abnormality detection unit 112 determines whether or not the accumulated pulse amount calculated by the deviation counter 113 is the maximum value of the accumulated pulse amount output from the start of position control (step S3). . When the droop pulse amount calculated in the process of step S2 is not the maximum value among the droop pulse amounts output from the start of position control (No in step S3), the process of step S2 is executed again. When the droop pulse amount calculated in the process of step S2 is the maximum value among the droop pulse amounts output from the start of position control (step S3, Yes), the abnormality detection unit 112 is recorded in the memory 120. The accumulated droop pulse amount maximum value 121 is overwritten with the droop pulse amount calculated in step S2 (step S4). If the droop pulse amount calculated in step S2 is the first value calculated after the start of position control, the memory 120 is in a state in which the droop pulse amount maximum value 121 is not recorded. The calculated value is recorded as the accumulated pulse amount maximum value 121. Thereafter, the process of step S2 is executed.
 なお、ステップS2~ステップS4のループ処理は、ユーザからの指令により停止せしめられるようにしてよい。当該ループ処理を停止するための指令は、プログラマブル表示器、プログラミングツール、その他の入力手段などにより、位置決めユニット100に入力されるようにしてよい。 Note that the loop processing from step S2 to step S4 may be stopped by a command from the user. A command for stopping the loop processing may be input to the positioning unit 100 by a programmable display, a programming tool, or other input means.
 図3は、定常動作時の位置決めユニット100の動作を説明するフローチャートである。図3に示すように、CPU200からの位置制御開始が要求されると、まず、異常検出部112は、メモリ120に格納されている溜りパルス量最大値121に基づいて異常検出用しきい値122および警報用しきい値123を夫々算出する(ステップS11)。算出された異常検出用しきい値122および警報用しきい値123は、メモリ120に夫々記録される。 FIG. 3 is a flowchart for explaining the operation of the positioning unit 100 during the steady operation. As shown in FIG. 3, when the position control start is requested from the CPU 200, the abnormality detection unit 112 first starts the abnormality detection threshold 122 based on the accumulated pulse amount maximum value 121 stored in the memory 120. The alarm threshold value 123 is calculated (step S11). The calculated abnormality detection threshold value 122 and alarm threshold value 123 are recorded in the memory 120, respectively.
 そして、位置決め制御部111は、位置制御を開始し(ステップS12)、偏差カウンタ113は、溜りパルス量を算出する(ステップS13)。なお、ステップS13、ステップS14、No、ステップS16、Noのループ処理は、制御周期毎に実行される。 Then, the positioning control unit 111 starts position control (step S12), and the deviation counter 113 calculates the accumulated pulse amount (step S13). In addition, the loop process of step S13, step S14, No, step S16, No is performed for every control period.
 ステップS13の処理の後、異常検出部112は、ステップS13の処理にて算出された溜りパルス量が異常検出用しきい値122を越えたか否かを判定する(ステップS14)。溜りパルス量が異常検出用しきい値122を越えた場合(ステップS14、Yes)、異常検出部112は、電源140に停止信号を発行して(ステップS15)、動作を終了する。停止信号を受信した電源140は、位置決め出力回路150に供給している電力を停止するので、位置決め出力回路150による位置決め出力の出力が停止される。 After the process of step S13, the abnormality detection unit 112 determines whether or not the accumulated pulse amount calculated in the process of step S13 exceeds the abnormality detection threshold value 122 (step S14). When the accumulated pulse amount exceeds the abnormality detection threshold value 122 (step S14, Yes), the abnormality detection unit 112 issues a stop signal to the power source 140 (step S15) and ends the operation. Since the power supply 140 that has received the stop signal stops the power supplied to the positioning output circuit 150, the positioning output circuit 150 stops outputting the positioning output.
 溜りパルス量が異常検出用しきい値122を越えていない場合(ステップS14、No)、異常検出部112は、溜りパルス量が警報用しきい値123を越えたか否かを判定する(ステップS16)。溜りパルス量が警報用しきい値123を越えた場合(ステップS16、Yes)、異常検出部112は、CPUユニット200に警報通知を出力する(ステップS17)。その後、ステップS13の処理が実行される。溜りパルス量が警報用しきい値123を越えていない場合(ステップS16、No)、ステップS17の処理がスキップされる。 When the accumulated pulse amount does not exceed the abnormality detection threshold value 122 (No at Step S14), the abnormality detection unit 112 determines whether or not the accumulated pulse amount exceeds the alarm threshold value 123 (Step S16). ). When the accumulated pulse amount exceeds the alarm threshold value 123 (step S16, Yes), the abnormality detection unit 112 outputs an alarm notification to the CPU unit 200 (step S17). Thereafter, the process of step S13 is executed. When the accumulated pulse amount does not exceed the alarm threshold 123 (No at Step S16), the process at Step S17 is skipped.
 このように、本発明の実施の形態によれば、位置決めユニット100は、メモリ120と、被制御機械400に対する位置決め出力と被制御機械400からのエンコーダ入力との偏差(溜りパルス量)に応じて次の制御周期の位置決め出力を算出する位置決め制御部111と、正常運転時に、位置決め制御部111が制御周期毎に算出する溜りパルス量の最大値を測定して、得られた最大値(溜りパルス量最大値121)をメモリ120に記録し、定常運転時に、メモリ120に記録されている溜りパルス量最大値121に基づいて、当該溜りパルス量最大値121よりも大きい第1しきい値(警報用しきい値123)および当該警報用しきい値よりも大きい第2しきい値(異常検出用しきい値122)を算出し、位置決め制御部111が制御周期毎に算出する溜りパルス量と警報用しきい値123および異常検出用しきい値122とを比較し、溜りパルス量が警報用しきい値123を越え、かつ異常検出用しきい値122を越えないとき、位置決め制御部111による位置決め出力の出力を止めることなく警報通知を発行し、溜りパルス量が異常検出用しきい値122を越えたとき、位置決め制御部111による位置決め出力の出力を停止する異常検出部112と、を備えるように構成したので、メモリ120は動作中の制御周期毎の溜りパルス量を全て記録しておく必要がないので、メモリ120の容量を低減することができる。また、位置決めユニット100は、溜りパルス量と異常検出用しきい値122との間の単純比較に基づいて異常を検出するので、複雑な演算を必要としないので、異常を早期に検出することができる。また、位置決めユニット100は、異常を検出して被制御機械400の動作を停止する前に、警報通知を出力するので、ユーザは、被制御機械400が異常と判定されて停止するまえに当該被制御機械400の劣化を認識することができる。即ち、本発明の実施の形態によれば、大容量のメモリを必要とせずに機械の異常を早期に検知するとともに、機械の劣化を警報として検出することができる位置決め装置を得ることができる。 As described above, according to the embodiment of the present invention, the positioning unit 100 corresponds to the memory 120 and the deviation (the amount of accumulated pulses) between the positioning output for the controlled machine 400 and the encoder input from the controlled machine 400. The positioning control unit 111 that calculates the positioning output of the next control cycle, and the maximum value of the droop pulse amount that the positioning control unit 111 calculates for each control cycle during normal operation, The maximum amount 121) is recorded in the memory 120, and a first threshold value (alarm) that is larger than the maximum accumulated pulse amount 121 is determined based on the maximum accumulated pulse amount 121 recorded in the memory 120 during steady operation. Threshold value 123) and a second threshold value (abnormality detection threshold value 122) larger than the alarm threshold value are calculated, and the positioning control unit 111 The droop pulse amount calculated for each cycle is compared with the alarm threshold value 123 and the abnormality detection threshold value 122. The droop pulse amount exceeds the alarm threshold value 123, and the abnormality detection threshold value 122 is obtained. When the amount of accumulated pulses exceeds the threshold value 122 for abnormality detection, the positioning control unit 111 outputs the positioning output by the positioning control unit 111. Since the abnormality detecting unit 112 is stopped, the memory 120 does not need to record all the accumulated pulse amounts for each control cycle during operation, so the capacity of the memory 120 can be reduced. . In addition, since the positioning unit 100 detects an abnormality based on a simple comparison between the accumulated pulse amount and the abnormality detection threshold value 122, it does not require a complicated calculation, so that the abnormality can be detected early. it can. In addition, since the positioning unit 100 outputs an alarm notification before detecting an abnormality and stopping the operation of the controlled machine 400, the user can detect the abnormality before the controlled machine 400 is determined to be abnormal and stops. The deterioration of the control machine 400 can be recognized. That is, according to the embodiment of the present invention, it is possible to obtain a positioning device that can detect an abnormality of a machine at an early stage without requiring a large-capacity memory and can detect a deterioration of the machine as an alarm.
 また、位置決めユニット100は、被制御機械400に接続され、位置決め制御部111が算出した位置決め出力を制御周期毎に被制御機械400に出力する位置決め出力回路150と、位置決め出力回路150に当該位置決め出力回路150を駆動する電力を供給する電源140と、を備え、異常検出部112は、溜りパルス量が異常検出用しきい値122を越えたとき、電源140が位置決め出力回路150に供給する電力を停止せしめる、ように構成したので、位置決めユニット100は、異常検出部112が異常を検出したとき、位置決め出力回路150が故障していたとしても被制御機械400の動作を停止することができる。 The positioning unit 100 is connected to the controlled machine 400 and outputs a positioning output calculated by the positioning control unit 111 to the controlled machine 400 at each control cycle, and the positioning output circuit 150 outputs the positioning output. A power supply 140 that supplies power for driving the circuit 150, and the abnormality detection unit 112 supplies power that the power supply 140 supplies to the positioning output circuit 150 when the accumulated pulse amount exceeds the abnormality detection threshold value 122. Since the positioning unit 100 is configured to be stopped, the positioning unit 100 can stop the operation of the controlled machine 400 even when the positioning output circuit 150 has failed when the abnormality detecting unit 112 detects an abnormality.
 なお、前述のように、異常検出部112は、メモリ120に記録されている溜りパルス量最大値121に所定第1の定数を乗じて警報用しきい値123を算出し、溜りパルス量最大値121に所定第2の定数を乗じて異常検出用しきい値122を算出する、ように構成してよい。同様に、異常検出部112は、メモリ120に記録されている溜りパルス量最大値121に所定第1の定数を加算して警報用しきい値123を算出し、溜りパルス量最大値121に所定第2の定数を加算して異常検出用しきい値122を算出する、ように構成してよい。これにより、被制御機械400の運転パターンが変更された場合であっても、ユーザは、試運転を行うことで異常検出用しきい値122および警報用しきい値123を自動的に設定することが可能となる。 As described above, the abnormality detection unit 112 calculates the alarm threshold value 123 by multiplying the maximum accumulated pulse amount value 121 recorded in the memory 120 by the predetermined first constant to obtain the maximum accumulated pulse amount value. The abnormality detection threshold 122 may be calculated by multiplying 121 by a predetermined second constant. Similarly, the abnormality detection unit 112 calculates a warning threshold value 123 by adding a predetermined first constant to the accumulated pulse amount maximum value 121 recorded in the memory 120, and sets the accumulated pulse amount maximum value 121 to a predetermined value. The abnormality detection threshold value 122 may be calculated by adding the second constant. Thus, even when the operation pattern of the controlled machine 400 is changed, the user can automatically set the abnormality detection threshold value 122 and the alarm threshold value 123 by performing a test operation. It becomes possible.
 なお、以上の説明においては、位置決め出力は位置指令値であり、エンコーダ入力は現在位置の位置検出値である、として説明したが、速度指令値を位置決め出力とし、速度検出値をエンコーダ入力とするようにしてもよい。 In the above description, the positioning output is the position command value, and the encoder input is the position detection value of the current position. However, the speed command value is the positioning output and the speed detection value is the encoder input. You may do it.
 以上のように、本発明にかかる位置決め装置は、被制御機械の位置決めを実行する位置決め装置に適用して好適である。 As described above, the positioning device according to the present invention is suitable for application to a positioning device that performs positioning of a controlled machine.
 100 位置決めユニット
 110 演算部
 111 位置決め制御部
 112 異常検出部
 113 偏差カウンタ
 120 メモリ
 121 溜りパルス量最大値
 122 異常検出用しきい値
 123 警報用しきい値
 130 エンコーダ入力回路
 140 電源
 150 位置決め出力回路
 200 CPUユニット
 300 ドライブユニット
 400 被制御機械
DESCRIPTION OF SYMBOLS 100 Positioning unit 110 Calculation part 111 Positioning control part 112 Abnormality detection part 113 Deviation counter 120 Memory 121 Maximum amount of accumulated pulses 122 Abnormality detection threshold value 123 Alarm threshold value 130 Encoder input circuit 140 Power supply 150 Positioning output circuit 200 CPU Unit 300 Drive unit 400 Controlled machine

Claims (5)

  1.  記憶部と、
     被制御機械に対する位置決め出力と前記被制御機械からのエンコーダ入力との偏差に応じて次の制御周期の位置決め出力を算出する位置決め制御部と、
     正常運転時に、前記位置決め制御部が制御周期毎に算出する前記偏差の最大値を測定して、得られた最大値を前記記憶部に記録し、定常運転時に、前記記憶部に記録されている偏差の最大値に基づいて、当該最大値よりも大きい第1しきい値および当該第1しきい値よりも大きい第2しきい値を算出し、前記位置決め制御部が制御周期毎に算出する前記偏差と前記第1しきい値および前記第2しきい値とを比較し、前記偏差が前記第1しきい値を越え、かつ前記第2しきい値を越えないとき、前記位置決め制御部による位置決め出力の出力を止めることなく警報通知を発行し、前記偏差が前記第2しきい値を越えたとき、前記位置決め制御部による位置決め出力の出力を停止する異常検出部と、
     を備えることを特徴とする位置決め装置。
    A storage unit;
    A positioning control unit that calculates a positioning output of the next control cycle in accordance with a deviation between a positioning output for the controlled machine and an encoder input from the controlled machine;
    During normal operation, the positioning control unit measures the maximum value of the deviation calculated for each control cycle, records the maximum value obtained in the storage unit, and is recorded in the storage unit during steady operation. Based on the maximum value of the deviation, the first threshold value larger than the maximum value and the second threshold value larger than the first threshold value are calculated, and the positioning control unit calculates each control cycle. When the deviation is compared with the first threshold value and the second threshold value, and the deviation exceeds the first threshold value and does not exceed the second threshold value, positioning by the positioning control unit An abnormality detection unit that issues an alarm notification without stopping output and stops output of positioning output by the positioning control unit when the deviation exceeds the second threshold value;
    A positioning device comprising:
  2.  前記被制御機械に接続され、前記位置決め制御部が算出した位置決め出力を制御周期毎に前記制御機械に出力する位置決め出力回路と、
     前記位置決め出力回路に当該位置決め出力回路を駆動する電力を供給する電源と、
     を備え、
     前記異常検出部は、前記偏差が前記第2しきい値を越えたとき、前記電源が前記位置決め出力回路に供給する電力を停止せしめる、
     ことを特徴とする請求項1に記載の位置決め装置。
    A positioning output circuit that is connected to the controlled machine and outputs a positioning output calculated by the positioning control unit to the control machine for each control cycle;
    A power supply for supplying power for driving the positioning output circuit to the positioning output circuit;
    With
    The abnormality detection unit stops the power supplied from the power source to the positioning output circuit when the deviation exceeds the second threshold value.
    The positioning device according to claim 1.
  3.  前記異常検出部は、前記記憶部に記録されている前記最大値に第1の定数を乗じて前記第1しきい値を算出し、前記最大値に第2の定数を乗じて前記第2しきい値を算出する、
     ことを特徴とする請求項1に記載の位置決め装置。
    The abnormality detection unit calculates the first threshold value by multiplying the maximum value recorded in the storage unit by a first constant, and multiplies the maximum value by a second constant to perform the second step. Calculate the threshold,
    The positioning device according to claim 1.
  4.  前記異常検出部は、前記記憶部に記録されている前記最大値に第1の定数を加算して前記第1しきい値を算出し、前記最大値に第2の定数を加算して前記第2しきい値を算出する、
     ことを特徴とする請求項1に記載の位置決め装置。
    The abnormality detection unit calculates a first threshold value by adding a first constant to the maximum value recorded in the storage unit, adds a second constant to the maximum value, and adds the second constant. 2 Calculate the threshold value,
    The positioning device according to claim 1.
  5.  前記正常運転時は、第1運転モードが指定された時であり、前記定常運転時は、第2運転モードが指定された時である、
     ことを特徴とする請求項1乃至請求項4のうちの何れか一項に記載の位置決め装置。
    The normal operation is when the first operation mode is designated, and the steady operation is when the second operation mode is designated.
    The positioning device according to any one of claims 1 to 4, wherein the positioning device is characterized in that:
PCT/JP2012/059717 2012-04-09 2012-04-09 Positioning device WO2013153607A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013501064A JPWO2013153607A1 (en) 2012-04-09 2012-04-09 Positioning device
PCT/JP2012/059717 WO2013153607A1 (en) 2012-04-09 2012-04-09 Positioning device
TW101136314A TW201341997A (en) 2012-04-09 2012-10-02 Positioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/059717 WO2013153607A1 (en) 2012-04-09 2012-04-09 Positioning device

Publications (1)

Publication Number Publication Date
WO2013153607A1 true WO2013153607A1 (en) 2013-10-17

Family

ID=49327217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059717 WO2013153607A1 (en) 2012-04-09 2012-04-09 Positioning device

Country Status (3)

Country Link
JP (1) JPWO2013153607A1 (en)
TW (1) TW201341997A (en)
WO (1) WO2013153607A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021100114A1 (en) * 2019-11-19 2021-05-27
CN113446407A (en) * 2020-03-27 2021-09-28 Ckd株式会社 Butterfly valve

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019040435A (en) * 2017-08-25 2019-03-14 アズビル株式会社 Controller and deteriorated position detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014721A (en) * 2000-06-30 2002-01-18 Mitsubishi Heavy Ind Ltd Alarm issuing notification device
JP2005038910A (en) * 2003-07-16 2005-02-10 Juki Corp Component arrangement machine and its self-diagnosis method
JP2010124645A (en) * 2008-11-21 2010-06-03 Denso Wave Inc Robot

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05189027A (en) * 1992-01-08 1993-07-30 Hitachi Ltd Signal abnormality diagnostic device and its use method
WO2006114843A1 (en) * 2005-04-08 2006-11-02 Mitsubishi Denki Kabushiki Kaisha Servo motor controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014721A (en) * 2000-06-30 2002-01-18 Mitsubishi Heavy Ind Ltd Alarm issuing notification device
JP2005038910A (en) * 2003-07-16 2005-02-10 Juki Corp Component arrangement machine and its self-diagnosis method
JP2010124645A (en) * 2008-11-21 2010-06-03 Denso Wave Inc Robot

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021100114A1 (en) * 2019-11-19 2021-05-27
WO2021100114A1 (en) * 2019-11-19 2021-05-27 三菱電機株式会社 Degradation assessment device, threshold value determination device, threshold value determination method, and threshold value determination program
JP7098071B2 (en) 2019-11-19 2022-07-08 三菱電機株式会社 Deterioration determination device, threshold determination device, threshold determination method, and threshold determination program
CN113446407A (en) * 2020-03-27 2021-09-28 Ckd株式会社 Butterfly valve
US11965607B2 (en) 2020-03-27 2024-04-23 Ckd Corporation Butterfly valve

Also Published As

Publication number Publication date
TW201341997A (en) 2013-10-16
JPWO2013153607A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
JP5269262B1 (en) Numerical controller
US10029340B2 (en) Machine tool
JP5497624B2 (en) Injection molding machine
KR101805985B1 (en) Electric machine and display method
WO2013153607A1 (en) Positioning device
JP5083476B1 (en) Numerical controller
JP6450806B2 (en) Cable damage detection support device and cable damage detection support method in robot mechanism
KR20150074258A (en) Method and Apparatus for Monitoring Cutting Load of Machine Tool
US10088828B2 (en) Controlling load ratio induced shut-down conditions in numerical control devices
US9983570B2 (en) Multiple system numerical control device
CN110695769B (en) Abnormality detection device for machine tool
JP5758971B2 (en) Injection molding machine with continuous operation during power failure
US20160142001A1 (en) Motor control device and motor control system
US20200026255A1 (en) Abnormality detection device of machine tool
JP6331655B2 (en) Inverter control device
US11415965B2 (en) Control apparatus and control system
CN106444853A (en) Servomotor control apparatus
JP5995688B2 (en) Actuator control device
JP2005032279A (en) Numerical controller
JP5129363B2 (en) Motor control device
JP2011176967A (en) Positioning device and positioning method
JP2017060306A (en) Control method for motor driven by inverter
JP2015065737A (en) Power monitoring device
JP2004155062A (en) Load monitoring method for electromotive injection molding machine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013501064

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12873962

Country of ref document: EP

Kind code of ref document: A1