WO2013153250A1 - Glycosaminoglycan-binding of proteins with secret domain encoded by poxvirus - Google Patents

Glycosaminoglycan-binding of proteins with secret domain encoded by poxvirus Download PDF

Info

Publication number
WO2013153250A1
WO2013153250A1 PCT/ES2013/070232 ES2013070232W WO2013153250A1 WO 2013153250 A1 WO2013153250 A1 WO 2013153250A1 ES 2013070232 W ES2013070232 W ES 2013070232W WO 2013153250 A1 WO2013153250 A1 WO 2013153250A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
secret
crmd
domain
binding
Prior art date
Application number
PCT/ES2013/070232
Other languages
Spanish (es)
French (fr)
Inventor
Antonio Alcami Pertejo
Sergio MARTIN MONTEJO
Original Assignee
Antonio Alcami Pertejo
Martin Montejo Sergio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Antonio Alcami Pertejo, Martin Montejo Sergio filed Critical Antonio Alcami Pertejo
Publication of WO2013153250A1 publication Critical patent/WO2013153250A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/01DNA viruses
    • C07K14/065Poxviridae, e.g. avipoxvirus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/24011Poxviridae
    • C12N2710/24111Orthopoxvirus, e.g. vaccinia virus, variola
    • C12N2710/24122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • This invention relates to the ability to bind glycosaminoglycans (GAGs) of the SECRET chemokine-binding domain (smallpox virus-encoded chemokine receptor) present in tumor necrotizing factor (TNFRs) receptors called cytokine response modifier B and D (CrmB and CrmD) and in the proteins called SECRET-containing proteins 1, 2 and 3 (SCP-1, SCP-2 and SCP-3) encoded by poxvirus, and by homologues, derivatives or fragments thereof, to increase the immunomodulatory properties of proteins with SECRET domain. It also refers to fusion polypeptides, pharmacological compositions and assays using the proteins of the invention. STATE OF THE TECHNIQUE
  • Cytokines as an important part in the regulation of an effective antiviral response, constitute the form of communication between the cellular components responsible for ending the infection.
  • Living with the host over years of evolution has allowed poxviruses to capture genes from their hosts to adapt them for their own benefit.
  • these viruses are capable of expressing soluble viral versions of receptors (viroceptors) or cytokines (viroquines) in order to manipulate the regulation of the anti-viral response to guarantee its expansion in the organism.
  • poxviruses express proteins without sequence similarity with any known cellular component but with specific cytokine binding and inhibition functions (Alcami, 2003).
  • the tumor necrosis factor ⁇ (TNF) is activated shortly after a virus infects its host to start the response by inducing chemokines (CKs), adhesion molecules and other cytokines and regulating or taking part in the mechanisms effectors of the cells of the Immune system to remove infected cells as soon as possible. It is an essential molecule for the establishment of a cellular response, or Th1, effective against a viral infection and, therefore, poxviruses have adopted elegant strategies to block this cytokine (Cunnion, 1999).
  • vTNFRs TNF cell receptors
  • CrmB cytokine response B
  • CrmD cytokine response B
  • CrmE cytokine response B
  • Different species of poxvirus differentially express these vTNFRs.
  • CrmB and CrmD unlike CrmC and CrmE, contain a C-terminal domain that inhibits the in vitro activity of some CKs. This domain was first described in our laboratory and was named SECRET by smallpox virus encoded chemokine receptor. Thus, CrmB and CrmD have a double activity, anti-TNF and anti-CKs.
  • SECRET domain is also part of 3 secreted proteins encoded by poxvirus, called SECRET domain-containing proteins 1, 2 and 3 (SCP-1, SCP-2 and SCP-3) (Alejo and cois. 2006).
  • SCP-1, SCP-2 and SCP-3 SECRET domain-containing proteins 1, 2 and 3
  • the genes encoding SECRET domains are found in vaccinia virus (VACV), ectromelia virus (ECTV), cowpox virus (CPXV) or smallpox virus (VARV).
  • Patent ES 2315037 describes the use of the C-terminal domain (CTD) of tumor necrotizing factor (TNFR) receptors encoded by poxvirus and called “cytokine response modifier B and D” (CrmB and CrmD), and by homologues, derivatives or fragments thereof to modulate chemokine activity and to increase the immunomodulatory properties of TNFRs. It also refers to fusion polypeptides, pharmacological compositions and assays using the proteins of the invention.
  • CCD C-terminal domain
  • CrmB and CrmD cytokine response modifier B and D
  • GAGs Glycosaminoglycans
  • SECRET chemokine binding domain
  • Some immune modulation proteins of poxvirus such as the soluble VACV interferon receptor, B18 (Montanuy et al., 201 1), or the ortholog of A41 in ECTV, E163 (Ruiz-Arguello et al., 2008), are capable of joining the cell surface by interacting with GAGs. In this way, they manage to increase their local concentration around the cytokine receptors with which they interact.
  • the possible binding of CrmD to these surface polysaccharides has been studied. In this regard, it has been discovered that CrmD, through its SECRET domain, is able to interact with GAGs with high affinity and block the effect of TNF on cell surfaces.
  • TNFa is behind the pathogenesis of numerous inflammatory disorders suffered by millions of people worldwide. Diseases such as rheumatoid arthritis, psoriasis, vasculitis, juvenile chronic arthritis, ankylosing spondylitis or Crohn's disease are being treated by TNFa inhibitors with some degree of success (Wong et al., 2008). Today there are five drugs approved for the clinic: Etanercept, adalimumab, infliximab, certolizumab and golimumab (Tak and Kalden, 201 1). All, except etanercept, consist of the application of anti-TNF antibodies of different nature.
  • Etanercept is a soluble version of a TNFR2 dimer fused to a Fe portion of a human IgG.
  • Etanercept, adalimumab and infliximab are the most widespread treatments among the world population with 500,000, 370,000 and 1,136,000 patients respectively (Tak and Kalden, 201 1). BRIEF DESCRIPTION OF THE INVENTION
  • the present invention demonstrates that the SECRET domain, in addition to inhibiting chemokines, binds to the cell surface through glycosaminoglycans (GAGs).
  • GAGs glycosaminoglycans
  • the soluble TNFRs used in clinical practice, to improve their stability, are fused to a Fe portion of human immunoglobulins, from which however adverse side effects can be derived as a result of complement system activation.
  • This fusion to the Fe portion allows the transport of TNFRs through the bloodstream bound to the cellular receptors of Fe regions.
  • the fusion of the SECRET domain to these TNFRs, would lead these TNF inhibitors to the cell surface, where their concentration would be increased local and stability, being able to be transported together to the surface GAGs but without activating the complement system.
  • the present invention identifies a new property of the SECRET domain not described in other related patents, for the development of more effective anti-TNF therapies and with less adverse effects. This property of joining surface GAGs could be incorporated into the human TNFRs used in the clinic.
  • the present invention relates to the ability to bind to GAGs of the SECRET domain of the CrmB or CrmD vTNFRs and SCPs (SCP-1, SCP-2 and SCP-3), including functional homologues, derivatives and fragments thereof to increase stability and immunomodulatory properties of these proteins.
  • the present invention also relates to the ability to bind to GAGs of the SECRET domain of CrmB or CrmD vTNFRs and SCPs (SCP-1, SCP-2 and SCP-3), including functional homologues, derivatives and fragments thereof to increase the stability and immunomodulatory properties of vTNFRs fused to them.
  • the present invention also has as a protection object a fusion polypeptide comprising a SECRET domain or homologue of the SECRET domain described in the present invention, wherein said SECRET domain or homologue is fused to a polypeptide sequence of the same or different origin.
  • the present invention also has as a protection object a polynucleotide comprising a sequence encoding the SECRET domain or a homologue of the SECRET domain, described in the present invention, or for a fusion polypeptide described in the present invention.
  • Another object of the present invention is a viral vector or expression plasmid comprising a polynucleotide described in the present invention.
  • the present invention also refers to a pharmaceutical composition
  • a pharmaceutical composition comprising the SECRET domain and / or a homologue of the SECRET domain described in the present invention and / or a fusion polypeptide described in the present invention and / or an expression cassette and / or a viral vector described in the present invention for use in increasing immunomodulatory activity by binding to GAGs in vivo.
  • the present invention has as an object of protection the use of the GAG binding capacity of the SECRET domain and / or a homologue of the SECRET domain as described in the present invention and / or a fusion polypeptide as It is described in the present invention and / or an expression cassette and / or a viral vector as described in the present invention in the preparation of a medicament for the treatment of anti-inflammatory diseases.
  • vTNFRs tumor necrotizing factor
  • SECRET domain The ability of the SECRET domain to increase the anti-inflammatory capacity of human TNFRs is protected by a previous patent of our laboratory, an aspect that we are exploring through a TRACE project of MICINN and whose patent is being funded by the Genetrix company.
  • soluble viral interferon B18 receptor or the A41 L chemokine inhibitor are also able to bind to these molecules, which can be an important feature in blocking proinflammatory agents.
  • One aspect of the invention relates to a fusion polypeptide comprising:
  • SECRET chemokine binding domain of a viral protein selected from CrmB, CrmD, SCP-1, SCP-2 and SCP-3, a functional homologue, derivative or fragment thereof, covalently linked to - a polypeptide sequence thereof or different origin than the SECRET domain,
  • SECRET chemokine binding domain of said fusion polypeptide binds to the cell surface through a glycosaminoglycan (GAG) present on said cell surface.
  • GAG glycosaminoglycan
  • a functional homologue, derivative or fragment of the same SECRET chemokine binding domain (also referred to as' SECRET domain in the present description) of a viral protein selected from CrmB, CrmD, SCP-1, SCP is contemplated -2 and SCP-3.
  • said homologs, derivatives or fragments will possess the same functional capacity as SECRET chemokine binding domain, that is, the ability to bind to the cell surface through a glycosaminoglycan (GAG) present on said surface. mobile. Tests to verify the GAG binding capacity of homologs, derivatives or fragments of the SECRET chemokine binding domain are described in the examples of the present patent application.
  • the SECRET chemokine binding domain has an amino acid sequence with at least 80% homology with an amino acid sequence selected from the group consisting of SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 and SEQ ID NO: 20.
  • identity or “sequence identity” is understood as the degree of similarity between two nucleotide or amino acid sequences obtained by aligning the two sequences.
  • BLAST Altschul SF et al. Basic local alignment search tool. J Mol Biol. 1990 Oct 5; 215 (3): 403-10].
  • the BLAST programs for example, BLASTN, BLASTX, and TBLASTX, BLASTP and TBLASTN, are in the public domain on the website of The National Center for Biotechonology Information (NCBI).
  • the percent identity or homology corresponds to the percent of common amino acids or nucleotides between the two sequences with respect to the overall alignment of the protein, that is, with respect to the alignment of the full length of both sequences. .
  • the amino acid sequence has at least 85, 90, 95, 99 or 100% homology with the sequences selected from the group consisting of SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 and SEQ ID NO: 20.
  • the SECRET chemokine binding domain has an amino acid sequence selected from the group consisting of SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO : 6, SEQ ID NO: 8, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 and SEQ ID NO: 20.
  • a preferred embodiment of the present invention relates to the GAG binding capacity of the SECRET domain of CrmB described above, where the SECRET domain of CrmB comprises SEQ ID No. 26 or SEQ ID No. 28.
  • Another embodiment of the present invention refers to the GAG binding capacity of the SECRET domain of CrmD described above, where the SECRET domain of CrmD comprises SEQ ID No. 22 or SEQ ID No. 24.
  • Another particular embodiment of the present invention refers to the ability to GAGs of the SECRET domain of SCPs: SCP-1, SCP-2 or SCP-3 described above, where the SECRET domains comprise any of the sequences: SEQ ID No. 6, SEQ ID No. 8, SEQ ID No. 14, SEQ ID No. 16, SEQ ID No. 18 or SEQ ID No. 20.
  • the SECRET domain is covalently bound or fused to a polypeptide sequence, wherein said polypeptide sequence is the recipient of the viral tumor necrotizing factor (vTNFRs).
  • the polypeptide sequence is the N-terminal domain of tumor necrotizing factor (TNF) binding of vTNFRs.
  • the polypeptide sequence is the human tumor necrotizing factor receptor (hTNFRs).
  • the present invention relates to a polynucleotide encoding a fusion polypeptide as defined in the present description. In another aspect, it relates to a viral vector or expression plasmid comprising a polynucleotide encoding a fusion polypeptide as defined herein.
  • Another preferred object of the present invention is a pharmaceutical composition
  • a pharmaceutical composition comprising a fusion polypeptide, a polynucleotide or a viral vector or expression plasmid as defined in the present description.
  • the present invention also refers to said pharmaceutical composition, further comprising an immunosuppressant or an additional anti-inflammatory substance.
  • the invention relates to the use of the pharmaceutical composition as defined in the present description for use as an anti-inflammatory.
  • the invention relates to the use of the fusion polypeptide, the polynucleotide encoding said fusion polypeptide or the viral vector or expression plasmid comprising said polynucleotide, in the preparation of a medicament for the treatment of autoimmune diseases or inflammatory
  • Another preferred object of the present invention is the use of the SECRET domain and / or a homologue of the SECRET domain or an amino acid sequence with at least 80% homology with an amino acid sequence selected from the group consisting of SEQ ID NO: 26 , SEQ ID NO: 28, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 and SEQ ID NO: 20, to obtain specific antibodies inhibiting the ability to bind to GAGs of the SECRET domain.
  • the invention relates to an antibody obtained according to the present invention.
  • the present invention also refers to the use of the antibodies described above in the manufacture of a medicament for the treatment of adverse effects caused by vaccination with vaccinia virus or of the pathology caused in man by smallpox virus. or related viruses (monkeypox virus).
  • Vaccination with the vaccinia virus can cause adverse effects and complications in the vaccinated person, such as eczema, myocarditis, progressive or generalized vaccinia, or encephalitis, which can result in the death of the individual.
  • the classic vaccination with the vaccinia virus is contraindicated in individuals with immunodeficiencies, such as those infected with the human immunodeficiency virus, because of the high risk of progressive or generalized vaccinia.
  • the pathology caused by infection with virulent viruses is due to a generalized infection with high levels of viral replication in internal organs and in the skin that can lead to the death of the individual.
  • the use of antibodies specific to the SECRET domain neutralizes the biological activity of these viral proteins and their interaction with GAGs, reducing the ability of the virus to block the immune system and allowing the immune system to control virus replication more effectively in the infected individual. Treatment with these neutralizing antibodies would limit the replication of the vaccinia virus used in vaccinations, reducing the adverse effects of vaccination, and virulent viruses (smallpox virus and monkeypox virus), reducing the pathology and mortality caused by these virulent viruses.
  • the invention relates to the use of a SECRET chemokine binding domain of a viral protein selected from CrmB, CrmD, SCP-1, SCP-2 and SCP-3, a functional homologue, derivative or fragment thereof. , in the manufacture of a medicament for the treatment of autoimmune or inflammatory diseases, characterized in that said SECRET domain is capable of binding to a glycosaminoglycan (GAG).
  • GAG glycosaminoglycan
  • the SECRET chemokine binding domain has an amino acid sequence with 80% homology with an amino acid sequence selected from the group consisting of SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 and SEQ ID NO: 20.
  • amino acid sequence of a SECRET chemokine binding domain has an amino acid sequence selected from the group consisting of SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 and SEQ ID NO: 20.
  • amino acid sequence of the SECRET domain of CrmB is SEQ ID NO: 26 or SEQ ID NO: 28.
  • amino acid sequence of the SECRET domain of CrmD is SEQ ID NO: 22 or SEQ ID NO: 24.
  • amino acid sequence of the SECRET domain of SPC-1 is SEQ ID NO: 6 or SEQ ID NO: 8
  • of SPC-2 is SEQ ID NO: 18 or SEQ ID NO: 20
  • of SPC-3 is SEQ ID NO: 14 or SEQ ID NO: 16.
  • said medicament increases the stability and / or immunomodulatory properties of at least one protein selected from CrmB, CrmD, SCP-1, SCP-2 and SCP-3.
  • the interaction with GAGs allows the protein to stick to the cell surface and be less exposed to circulating proteases in the tissues and bloodstream, increasing its stability.
  • the retention of proteins in the inflamed tissue allows it to act for longer periods and more effectively inhibit the inflammatory response, enhancing its immunomodulatory properties.
  • the SECRET domain, its functional counterpart, derivative or fragment is fused to at least one vTNFR, or to a humanized anti-TNF antibody.
  • the SECRET domain, its functional counterpart, derivative or fragment is fused to the TNF-binding N-terminal domain of vTNFR.
  • the vTNFR is CrmB or CrmD.
  • the SECRET domain, its functional counterpart, derivative or fragment is fused to at least one hTNFR.
  • the medicament comprises an immunosuppressant or an additional anti-inflammatory substance.
  • the medicament comprises at least one specific antibody inhibiting the GAG binding capacity of the SECRET domain.
  • FIGURE 1 CrmD binds to GAGs with high affinity.
  • FIGURE 2 CrmD binds to heparin and to the cell surface through the SECRET domain.
  • FIGURE 3 CrmD and CrmD163 bind to the cell surface thanks to their interaction with GAGs.
  • 300,000 CHO-K1 cells (normal GAG expression), CHO-745 (reduced GAG expression) and CHO-618 (without GAGs) were incubated with 200 nM of the CrmD, CrmD163 and CRD-CrmD proteins for 30 min at 4 ° C. After several washes, the cells were incubated with a 1: 400 dilution of the anti-His mouse antibody to label the retained protein and was detected by a secondary anti-mouse antibody conjugated to Alexa488 (1: 500). 20,000 events were collected from each sample that were analyzed by the FlowJo software.
  • the area under the curve indicates the fluorescence with respect to the total analyzed events, in percentage, of cells incubated without (gray) or with (white) recombinant protein.
  • FIGURE 4. The vTNFRs with SECRET domain are capable of binding to the cell surface.
  • A) The fluorescence (60x), with respect to the total events in percentage, is shown in samples incubated with the different recombinant proteins indicated (white) or without protein (gray).
  • FIGURE 5 CrmD bound to GAGs can interact and inhibit mTNFa.
  • FIGURE 7 GAG1 -4 mutants inhibit migration efficiently.
  • Chemotaxis experiment in transwell with MOLT4 cells Increasing amounts of the GAG1 -4 and CrmD mutants were pre-incubated with 70 nM of mCCL25. The average migration is shown, together with its standard deviation, of each of the samples analyzed in triplicate, in percentage of the migration in the absence of recombinant protein. To normalize the data taken in the absence of CK were used.
  • FIGURE 8 Sequence Alignments - CLUSTAL W (1 .82) "multiple sequence alignment"
  • FIGURE 9 Sequence Alignments - CLUSTAL W (1 .82) "multiple sequence alignment (CrmB / CrmD)"
  • FIGURE 10 Sequence Alignments - CLUSTAL W (1 .82) "multiple sequence alignment (CTDs)"
  • the generation, amplification and titration of the recombinant baculovirus stocks were carried out in adherent Spodoptera frugiperda Sf9 insect cells maintained in culture in TC100 medium (Gibco) supplemented with 10% bovine fetal serum (FCS, Sigma), 2 mM of L- glutamine (Sigma) and antibiotics, 100 g / ml of a mixture of penicillin-streptomycin antibiotics (Sigma) and 25 g / ml of gentamicin (Sigma).
  • Recombinant protein expression was done in H5 insect cells in suspension, maintained in Express Five medium (Gibco) with 8 mM L-glutamine and antibiotics. Both cell lines were cultured at 27 ° C.
  • L929 mouse fibroblasts
  • DMEM medium Gibco
  • MOLT4 cells used in the chemotaxis assays were grown in RPMI 1640 medium (MP Biomedicals) supplemented with 10% FCS, 2 mM L-glutamine and antibiotics, at 37 ° C, 95% RH and 5% C02.
  • lines derived from hamster ovary were used, CHO-K1 and its mutants for the expression of surface GAGs, CHO-618 (mutation in the enzyme galactosyltransferase) and CHO-745 (mutation in the enzyme xylosyltransferase). These lines were grown in DMEM medium: F12-HAM (Gibco), 1: 1 (v / v), duly supplemented with 10% FCS, 2 mM L-glutamine and antibiotics, at 37 ° C, 95% RH and 5% C02.
  • the E6 Naval ECTV gene encoding the CrmD protein (1-320) was amplified by polymerase chain reaction (PCR) of the pMS1 vector using the 5 ' CrmD34 and 3 ' CrmD33 oligonucleotides incorporating the BamHI and Xhol in 5 ' and 3 ' , respectively.
  • PCR polymerase chain reaction
  • the plasmid resulting from ligation was named pSP3.
  • the same strategy was followed for cloning in this vector of the SECRET domain of CrmD, CrmD163 (CrmD163-320) using oligonucleotides 5 ' CrmD36 and 3 ' CrmD33, thus generating plasmid pSP4.
  • oligonucleotides CrmD34 and CrmD87 were used to extract the PCR gene from the pMS1 template.
  • the pSP24 construct for baculovirus expression of a CrmC protein fused to the SECRET domain of CrmD, was generated by PCR extracting the corresponding plasmid pSP22 gene, which contained this fusion cloned into the pMS30 vector.
  • the 5 ' CrmC-Sp BamHI and CrmD33 and pSP22 oligonucleotides were used as a template.
  • the PCR product was subcloned into the pFastBad vector on the BamHI and Xhol targets. All oligonucleotides used for the above constructs are listed in Table 1.
  • Table 1 List of oligonucleotides used for the generation of the different constructions. The name and sequence (5 'to 3') of the different oligonucleotides used are indicated. The final construction and the protein expressed in each plasmid are also noted. The sequence underlines the Xhol restriction sites (CTCGAG) or BamHI (GGATCC) that were incorporated for cloning.
  • CTCGAG Xhol restriction sites
  • GGATCC BamHI
  • Point CrmD mutants were made using the Quik Change Lightning Site-Directed Mutagenesis Kit (Agilent Technologies). This kit allows to carry out targeted mutations following a simple protocol. Briefly, based on the pSP3 vector (CrmD in pFastBad) in which the target gene is cloned, a PCR was performed with two complementary oligonucleotides containing the desired mutation. In this way the entire vector was copied incorporating the mutation. Next, the original DNA was digested with the Dpnl enzyme which, being methylated, is susceptible to digestion and transformed XLI Gold ultracompetent bacteria. Finally, the incorporation of the mutation was verified by sequencing the DNA extracted from individual colonies. Table 2 shows the list of oligonucleotides used for the generation of specific CrmD mutants for binding to GAGs.
  • GAG1 K245A CrmD97 GCAGTGCAAGATTAATCTAGAATCGCAT
  • GAG4 K218A CrmD 103 TCTTTATTCGAGATTACTATTCAGTCGTT G ATG C ACTAG C AACTTC AG GTTT
  • GAG4 K218A CrmD104 AAACCTGAAGTTGCTAGTGCATCAACGA
  • Recombinant baculoviruses were generated using the Bac-to-Bac expression system (Invitrogen) following the manufacturer's instructions. Briefly, the genes cloned into the pFastBad vector can be integrated into bacilli of the baculovirus genome under the activity of the polyhedrin promoter by transforming competent Obac DHI cells after a transposition process. The DNA of the recombinant bacmids thus obtained was purified and transfected with cellfectine (Invitrogen) in Sf9 insect cells following the manufacturer's instructions. Recombinant baculoviruses were collected at 72 h post-transfection of the supernatants of the transfected cells.
  • the supernatants of the infection 100 ml were collected and clarified by two successive centrifugations for 5 min at 1,200 rpm and 40 min at 6000 rpm, respectively. Subsequently, they were concentrated using the Stirred Ultrafiltration Cell 8200 (Amicon) system to obtain a final volume of 2.5 ml using YM membranes (Millipore) of a pore diameter size for a molecular weight limit (MWCO) of 10,000 Da.
  • the supernatants thus concentrated were filtered with 0.22 ⁇ filters and dialyzed in "binding buffer” (50 mM sodium phosphate (pH 7.4), 300 mM NaCI, 10 mM imidazole) using PD10 filtration gel columns ( Amersham Biosciences).
  • binding buffer 50 mM sodium phosphate (pH 7.4), 300 mM NaCI, 10 mM imidazole
  • the protein was purified by nickel affinity chromatography (Nickel-NTA resin, Qiagen).
  • the concentrated and dialyzed supernatants were incubated in "binding buffer” for 1 h at 4 ° C with 0.5 ml of resin per 100 ml of initial supernatant.
  • the resin was mounted on a column (Poly-Prep, Bio-Rad) and washed with 40 ml of "wash buffer” (50 mM sodium phosphate (pH 7.4), 300 mM NaCI, 20 mM imidazole) to remove bound proteins specifically.
  • wash buffer 50 mM sodium phosphate (pH 7.4), 300 mM NaCI, 20 mM imidazole
  • the protein of interest was eluted by "elution buffer” with increasing concentrations of imidazole (60, 100 and 250 mM) in 50 mM sodium phosphate (pH 7.4), 300 mM NaCI.
  • the protein was collected in fractions of 0.5 ml each and analyzed by polyacrylamide gel electrophoresis with sodium dodecyl sulfate (SDS-PAGE) and Coomassie blue staining.
  • a chip coupled with biotinylated heparin (Calbiochem) was generated.
  • 2,000 RUs of streptavidin (Sigma), diluted in acetate pH 4.0 to 0.2 mg / ml, were coupled into a CM4 chip by the covalent immobilization system by amines in the two cells of the chip.
  • the active sites of the matrix were blocked with 1 M ethanolamine pH 8.5 and then 5 g / ml of biotinylated heparin diluted in HBS-EP with 300 mM NaCI was passed through one of the two cells.
  • the specificity of the CrmD-heparin interaction was evaluated by a competition assay with soluble GAGs, heparin, heparan sulfate (HS) and chondroitin sulfate A (CSA) and B (CSB) (Sigma).
  • HS heparan sulfate
  • CSA chondroitin sulfate A
  • B CSB
  • CHO-K1 cells have a normal expression of surface GAGs, however, CHO-745 cells do not synthesize HS or CS and CHO-618 absolutely lack any type of surface GAGs (Zhang et al., 2006). 300,000 cells were incubated with 200 nM protein in 50 ⁇ of PBS-staining (PBS supplemented with 1% FCS and 1% BSA) for 30 min on ice.
  • L929 cells seeded at confluence were used on coverslips previously washed with ethanol and exposed to UV light.
  • the cells were incubated with 150 ⁇ of 200 nM of the recombinant protein in PBS-staining for 30 min at 4 ° C and then fixed with 4% PFA in PBS at room temperature (RT).
  • the covers were washed three times and the nonspecific sites were blocked by incubating with PBS supplemented with 5% FCS for 15 min at RT.
  • the recombinant proteins used for this assay were incubated in the presence or absence of TNFa, for 1 h at RT under rotational agitation with 20 ⁇ of an agarose-coupled heparin resin (50%, v / v) in 400 ⁇ of binding buffer ( PBS supplemented with 0.2% FCS). After that time the agarose spheres were recovered by centrifuging 1 min at 13,000 rpm. The supernatants were decanted and the spheres were washed with binding buffer three times. The bound protein was eluted from the resin by adding 25 ⁇ of loading buffer for SDS-PAGE and boiling the sample for 5 min.
  • Proteins were detected by immunoblotting (Western blot) with anti-PentaHis (1: 2,000) (Qiagen) and anti-TNF (1: 1,000) (R&D Systems) antibodies and secondary anti-mouse peroxidase conjugates (1 : 5,000) (GE Healthcare) and anti-goat (1: 1, 000) (R&D Systems), respectively. Cytotoxicity assays with TNFa
  • cytotoxicity experiments were carried out on L929 cells, a line of mouse fibroblasts, following a protocol set up in the laboratory (Alejo et al., 2006). For this, 6 pM of mouse TNFa was incubated in the absence or presence of 10ug / ml of recombinant protein. After 1 h of incubation at 37 ° C in DMEM supplemented with 2% FBS, the mixture was added on L929 cells seeded the day before in M96 plates at 10,000 cells / well.
  • the transcription inhibitor actinomycin D (Sigma) was added to the cells at a final concentration of 4 g / ml.
  • actinomycin D Sigma
  • TNFa was added under the same conditions as explained above.
  • cell viability was measured by adding 20 ⁇ per well of Cell Titter AQueous One Solution (Promega) and determining the absorbance at 492 nm in a Sunrise plate reader (Tecan).
  • MOLT4 cells were harvested in exponential growth, and after washing with PBS, resuspended at 10 x 10 6 cells / ml in RPMI supplemented with 0.1% FCS.
  • M96 plates were used in transwell (Neuroprobe).
  • the CK CCL25 was incubated in the absence or presence of increasing amounts of purified protein in RPMI supplemented with 0.1% FCS, at 37 ° C for 30 min.
  • the membrane was placed on the plate and 25 ⁇ of the cell suspension was distributed in each of the upper compartments. After 3-4 h of migration at 37 ° C, the remaining cells of the upper compartments were washed with PBS and the plates were centrifuged two min at 1000 rpm before removing the membrane.
  • the number of cells that crossed the membrane into the lower wells where the CK was located was quantified by adding 5 ⁇ / well of Cell Titter AQueous One Solution (Promega) and measuring the absorbance at 492 nm. The results were represented as the percentage in relation to migration in the absence of recombinant protein. Data were previously normalized with absorbance in the absence of CK.
  • SECRET domains encoded by poxviruses that interact with GAGs consist of the following sequences (see Sequence Listing):
  • V221 gene SEQ ID No 1
  • protein SEQ ID No 2
  • E12 gene SEQ ID No 5
  • protein SEQ ID No 6
  • VARV CrmB G2R gene (SEQ ID No 9) and protein (SEQ ID No 10)
  • V005 gene SEQ ID No. 1 1
  • protein SEQ ID No. 12
  • VACV SCP-3 SECRET domain VACWR206 gene (SEQ ID No 15) and protein (SEQ ID No 16)
  • VACV SCP-2 SECRET domain VACWR189 gene (SEQ ID No 17) and protein (SEQ ID No 18) - ECTV SCP-2 SECRET domain: E184 gene (SEQ ID No 19) and protein (SEQ ID No 20)
  • CrmD has been shown to be able to interact with GAGs, which would potentially attribute the ability to bind to cell surfaces or the extracellular matrix.
  • this interaction with GAGs was mediated by one domain or another or if it was a property of the complete protein
  • 300 nM of the CRD-CrmD and CrmD163 recombinant proteins were injected onto the heparin chip.
  • CrmD By binding to GAGs, CrmD can interact with TNFoc on the cell surface
  • the SECRET domain is capable of interacting with surface GAGs with great affinity.
  • CrmD can inhibit the action of TNFa on the cell membrane, close to the cytokine receptors.
  • GAGs By interacting with GAGs, CrmD could not only increase its stability in vivo, but also allow it to increase its concentration around cellular TNFRs.
  • its great affinity for GAGs could allow CrmD to displace CKs from surfaces preventing the formation of chemotactic gradients, a strategy used, for example, by the E163 protein to interfere with the functions of CKs ( Ruiz- Arguello et al., 2008).
  • TNFa is a molecule involved in some chronic inflammatory disorders such as rheumatoid arthritis or Crohn's disease.
  • the new clinical treatments are based on the use of biological drugs consisting of recombinant antibodies (infliximab, adalimumab) or, more recently, less immunogenic molecules, such as etanercept consisting of a dimer of the TNFR2 extracellular domain fused to a human Fe fragment.
  • CKs play an important role in the development of the disease, therefore, predictably, the addition of a SECRET domain to etanercept could enhance the anti-inflammatory effect of this molecule, thanks to the anti-CK effect.
  • one of the functions of the Fe fragment is to guarantee the stability and transport of the drug, thanks to its interaction with the Fe cell receptors, in the body.
  • a SECRET domain could successfully replace these two functions of the Fe portion, providing stability and transport of the molecule thanks to its interaction with GAGs on cell surfaces. In addition, in this way, some side effects due to activation of the complement system produced by the Feet of etanercept (Horiuchi et al., 2010) would be avoided.
  • Glycosaminoglycans mediate retention of the poxvirus type I inferred binding protein at the cell surface to locally block inferred antiviral responses.
  • Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Nati Acad Sci USA 100: 1885-1890.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to a fusion polypeptide that comprises (1) a SECRET chemokine-binding domain of a viral protein selected from CrmB, CrmD, SCP-1, SCP-2 and SCP-3, a functional homologue, derivative or fragment thereof, covalently bonded to (2) a polypeptide sequence thereof or of different origin from the SECRET domain, in which the SECRET chemokine-binding domain of said fusion polypeptide binds to the cell surface via a glycosaminoglycan (GAG) present on said cell surface. The invention furthermore also relates to the use of said polypeptide in the treatment of autoimmune and inflammatory diseases and in the production of antibodies for treating adverse effects arising from vaccination with vaccinia virus or the pathological condition caused by the poxvirus and monkeypox virus.

Description

UNIÓN A GLICOSAMINOGLICANOS DE PROTEÍNAS CON DOMINIO SECRET CODIFICADAS POR POXVIRUS  UNION TO GLYCOSAMINOGLYCANS OF PROTEINS WITH SECRET DOMAIN CODED BY POXVIRUS
Esta invención se refiere a la capacidad de unir glicosaminoglicanos (GAGs) del dominio de unión a quimioquinas SECRET (smallpox virus-encoded chemokine receptor) presente en los receptores del factor necrosante de tumores (TNFRs) denominados cytokine response modifier B y D (CrmB y CrmD) y en las proteínas denominadas SECRET-containing proteins 1 , 2 y 3 (SCP-1 , SCP-2 y SCP-3) codificadas por poxvirus, y por homólogos, derivados o fragmentos de estos, para incrementar las propiedades inmunomoduladoras de las proteínas con dominio SECRET. También se refiere a polipéptidos de fusión, composiciones farmacológicas y a ensayos que utilicen las proteínas de la invención. ESTADO DE LA TÉCNICA This invention relates to the ability to bind glycosaminoglycans (GAGs) of the SECRET chemokine-binding domain (smallpox virus-encoded chemokine receptor) present in tumor necrotizing factor (TNFRs) receptors called cytokine response modifier B and D (CrmB and CrmD) and in the proteins called SECRET-containing proteins 1, 2 and 3 (SCP-1, SCP-2 and SCP-3) encoded by poxvirus, and by homologues, derivatives or fragments thereof, to increase the immunomodulatory properties of proteins with SECRET domain. It also refers to fusion polypeptides, pharmacological compositions and assays using the proteins of the invention. STATE OF THE TECHNIQUE
Las citoquinas, como parte importante en la regulación de una respuesta antiviral efectiva, constituyen la forma de comunicación entre los componentes celulares encargados de acabar con la infección. La convivencia con el hospedador a lo largo de años de evolución ha permitido a los poxvirus captar genes de sus hospedadores para adaptarlos en su propio beneficio. Así, estos virus son capaces de expresar versiones virales solubles de receptores (viroceptores) o de citoquinas (viroquinas) con el fin de manipular la regulación de la respuesta anti-viral para garantizar su expansión en el organismo. Al mismo tiempo, los poxvirus expresan proteínas sin similitud de secuencia con algún componente celular conocido pero con funciones específicas de unión e inhibición de citoquinas (Alcami, 2003). Cytokines, as an important part in the regulation of an effective antiviral response, constitute the form of communication between the cellular components responsible for ending the infection. Living with the host over years of evolution has allowed poxviruses to capture genes from their hosts to adapt them for their own benefit. Thus, these viruses are capable of expressing soluble viral versions of receptors (viroceptors) or cytokines (viroquines) in order to manipulate the regulation of the anti-viral response to guarantee its expansion in the organism. At the same time, poxviruses express proteins without sequence similarity with any known cellular component but with specific cytokine binding and inhibition functions (Alcami, 2003).
El factor de necrosis tumoral α (TNF ) se activa poco después de que un virus infecte a su hospedador para poner en marcha la respuesta mediante la inducción de quimioquinas (CKs), moléculas de adhesión y otras citoquinas y regulando o tomando parte en los mecanismos efectores de las células del sistema inmunológico para eliminar las células infectadas lo antes posible. Es una molécula esencial para el establecimiento de una respuesta celular, o Th1 , efectiva frente a una infección viral y, por ello, los poxvirus han adoptado elegantes estrategias para bloquear esta citoquina (Cunnion, 1999). The tumor necrosis factor α (TNF) is activated shortly after a virus infects its host to start the response by inducing chemokines (CKs), adhesion molecules and other cytokines and regulating or taking part in the mechanisms effectors of the cells of the Immune system to remove infected cells as soon as possible. It is an essential molecule for the establishment of a cellular response, or Th1, effective against a viral infection and, therefore, poxviruses have adopted elegant strategies to block this cytokine (Cunnion, 1999).
La expresión de homólogos solubles de los receptores celulares del TNF (vTNFRs), es una de estas estrategias virales. Hasta la fecha se han descrito cuatro vTNFRs diferentes, los modificadores de la respuesta de citoquinas B (CrmB), CrmC, CrmD y CrmE. Las distintas especies de poxvirus expresan de manera diferencial estos vTNFRs. CrmB y CrmD, a diferencia de CrmC y CrmE, contienen un dominio C-terminal que inhibe la actividad in vitro de algunas CKs. Este dominio fue descrito por primera vez en nuestro laboratorio y se denominó SECRET por smallpox virus encoded chemokine receptor. Así, CrmB y CrmD poseen una doble actividad, anti-TNF y anti-CKs. Además, el dominio SECRET forma parte también de 3 proteínas secretadas codificadas por poxvirus, denominadas SECRET domain-containing proteins 1 , 2 y 3 (SCP- 1 , SCP-2 y SCP-3) (Alejo y cois. 2006). Los genes que codifican los dominios SECRET se enecuentran en el virus vaccinia (VACV), virus ectromelia (ECTV), virus cowpox (CPXV) o virus de la viruela (VARV). The expression of soluble homologs of TNF cell receptors (vTNFRs) is one of these viral strategies. To date, four different vTNFRs have been described, the modifiers of the cytokine response B (CrmB), CrmC, CrmD and CrmE. Different species of poxvirus differentially express these vTNFRs. CrmB and CrmD, unlike CrmC and CrmE, contain a C-terminal domain that inhibits the in vitro activity of some CKs. This domain was first described in our laboratory and was named SECRET by smallpox virus encoded chemokine receptor. Thus, CrmB and CrmD have a double activity, anti-TNF and anti-CKs. In addition, the SECRET domain is also part of 3 secreted proteins encoded by poxvirus, called SECRET domain-containing proteins 1, 2 and 3 (SCP-1, SCP-2 and SCP-3) (Alejo and cois. 2006). The genes encoding SECRET domains are found in vaccinia virus (VACV), ectromelia virus (ECTV), cowpox virus (CPXV) or smallpox virus (VARV).
En la clínica existen receptores solubles del factor necrosante de tumores (TNF) y anticuerpos monoclonales humanizados anti-TNF para el tratamiento de alteraciones inflamatorias. La patente ES 2315037 describe el uso del dominio C-terminal (CTD) de los receptores del factor necrosante de tumores (TNFR) codificados por poxvirus y denominados "cytokine response modifier B y D" (CrmB y CrmD), y por homólogos, derivados o fragmentos de estos para modular la actividad de las quimioquinas y para incrementar las propiedades inmunomoduladoras de los TNFRs. También se refiere a polipéptidos de fusión, composiciones farmacológicas y a ensayos que utilicen las proteínas de la invención. Esta invención protege el uso de un nuevo dominio de unión a quimioquinas (denominado SECRET), presente en poxvirus, para aumentar la capacidad anti-inflamatoria de los TNFRs que se utilizan en la clínica como medicamento anti-inflamatorio. Los glicosaminoglicanos (GAGs) son polisacáridos unidos a un núcleo proteico con un alto grado de sulfatación y carga. Se encuentran en la superficie celular y en la matriz extracelular y participan en importantes procesos biológicos como son la proliferación celular, morfogénesis, migración, patogénesis viral y unión de factores de crecimiento y citoquinas (Handel y cois., 2005). Por ejemplo, la unión de CKs a los GAGs es fundamental en la formación de gradientes quimiotácticos que guían la migración linfocitaria (Proudfoot y cois., 2003). In the clinic there are soluble tumor necrotizing factor (TNF) receptors and humanized anti-TNF monoclonal antibodies for the treatment of inflammatory disorders. Patent ES 2315037 describes the use of the C-terminal domain (CTD) of tumor necrotizing factor (TNFR) receptors encoded by poxvirus and called "cytokine response modifier B and D" (CrmB and CrmD), and by homologues, derivatives or fragments thereof to modulate chemokine activity and to increase the immunomodulatory properties of TNFRs. It also refers to fusion polypeptides, pharmacological compositions and assays using the proteins of the invention. This invention protects the use of a new chemokine binding domain (called SECRET), present in poxvirus, to increase the anti-inflammatory capacity of TNFRs used in the clinic as an anti-inflammatory medication. Glycosaminoglycans (GAGs) are polysaccharides attached to a protein nucleus with a high degree of sulfation and charge. They are found on the cell surface and in the extracellular matrix and participate in important biological processes such as cell proliferation, morphogenesis, migration, viral pathogenesis and union of growth factors and cytokines (Handel et al., 2005). For example, the binding of CKs to GAGs is essential in the formation of chemotactic gradients that guide lymphocyte migration (Proudfoot et al., 2003).
Algunas proteínas de modulación inmunológica de poxvirus, como el receptor soluble de interferón de VACV, B18 (Montanuy y cois., 201 1 ), o el ortólogo de A41 en ECTV, E163 (Ruiz-Arguello y cois., 2008), son capaces de unirse a la superficie celular mediante la interacción con GAGs. De esta manera, consiguen aumentar su concentración local entorno a los receptores de las citoquinas con las que interaccionan. Al tratarse de una estrategia extendida entre las proteínas de modulación inmunológica de poxvirus, se ha estudiado la posible unión de CrmD a estos polisacáridos de superficie. A este respecto, se ha descubierto que CrmD, a través de su dominio SECRET, es capaz de interaccionar con GAGs con alta afinidad y bloquear el efecto del TNF en las superficies celulares. Some immune modulation proteins of poxvirus, such as the soluble VACV interferon receptor, B18 (Montanuy et al., 201 1), or the ortholog of A41 in ECTV, E163 (Ruiz-Arguello et al., 2008), are capable of joining the cell surface by interacting with GAGs. In this way, they manage to increase their local concentration around the cytokine receptors with which they interact. As it is an extended strategy among poxvirus immune modulation proteins, the possible binding of CrmD to these surface polysaccharides has been studied. In this regard, it has been discovered that CrmD, through its SECRET domain, is able to interact with GAGs with high affinity and block the effect of TNF on cell surfaces.
El TNFa se encuentra detrás de la patogénesis de numerosos trastornos inflamatorios sufridos por millones de personas en todo el mundo. Enfermedades como la artritis reumatoide, psoriasis, vasculitis, artritis crónica juvenil, espondilitis anquilosante o la enfermedad de Crohn están siendo tratadas mediante inhibidores del TNFa con cierto grado de éxito (Wong y cois., 2008). Hoy en día existen cinco medicamentos aprobados para la clínica: Etanercept, adalimumab, infliximab, certolizumab y golimumab (Tak y Kalden, 201 1 ). Todos, excepto etanercept, consisten en la aplicación de anticuerpos anti-TNF de distinta naturaleza. Etanercept es una versión soluble de un dímero del TNFR2 fusionado a una porción Fe de una IgG humana. Etanercept, adalimumab y infliximab son los tratamientos más extendidos entre la población mundial con 500.000, 370.000 y 1 .136.000 pacientes respectivamente (Tak y Kalden, 201 1 ). BREVE DESCRIPCIÓN DE LA INVENCIÓN TNFa is behind the pathogenesis of numerous inflammatory disorders suffered by millions of people worldwide. Diseases such as rheumatoid arthritis, psoriasis, vasculitis, juvenile chronic arthritis, ankylosing spondylitis or Crohn's disease are being treated by TNFa inhibitors with some degree of success (Wong et al., 2008). Today there are five drugs approved for the clinic: Etanercept, adalimumab, infliximab, certolizumab and golimumab (Tak and Kalden, 201 1). All, except etanercept, consist of the application of anti-TNF antibodies of different nature. Etanercept is a soluble version of a TNFR2 dimer fused to a Fe portion of a human IgG. Etanercept, adalimumab and infliximab are the most widespread treatments among the world population with 500,000, 370,000 and 1,136,000 patients respectively (Tak and Kalden, 201 1). BRIEF DESCRIPTION OF THE INVENTION
La presente invención demuestra que el dominio SECRET, además de inhibir quimioquinas, se une a la superficie celular a través de glicosaminoglicanos (GAGs). De esta manera, gracias a este dominio SECRET los TNFRs virales pueden incrementar su concentración local en torno a los receptores celulares de sus ligandos y así llevar a cabo sus funciones inhibitorias de manera más eficaz. The present invention demonstrates that the SECRET domain, in addition to inhibiting chemokines, binds to the cell surface through glycosaminoglycans (GAGs). In this way, thanks to this SECRET domain, viral TNFRs can increase their local concentration around the cellular receptors of their ligands and thus carry out their inhibitory functions more efficiently.
Los TNFRs solubles utilizados en clínica, para mejorar su estabilidad, están fusionados a una porción Fe de inmunoglobulinas humanas, de lo que sin embargo se pueden derivar efectos secundarios adversos como resultado de la activación del sistema del complemento. Esta fusión a la porción Fe permite el transporte de los TNFRs por el torrente sanguíneo unidos a los receptores celulares de regiones Fe. La fusión del dominio SECRET a estos TNFRs, llevaría a estos inhibidores del TNF a la superficie celular, donde verían aumentada su concentración local y estabilidad, pudiendo transportarse unidos a los GAGs de superficie pero sin activar el sistema del complemento. The soluble TNFRs used in clinical practice, to improve their stability, are fused to a Fe portion of human immunoglobulins, from which however adverse side effects can be derived as a result of complement system activation. This fusion to the Fe portion allows the transport of TNFRs through the bloodstream bound to the cellular receptors of Fe regions. The fusion of the SECRET domain to these TNFRs, would lead these TNF inhibitors to the cell surface, where their concentration would be increased local and stability, being able to be transported together to the surface GAGs but without activating the complement system.
La presente invención identifica una nueva propiedad del dominio SECRET no descrita en otras patentes relacionadas, para el desarrollo de terapias anti-TNF más eficaces y con menores efectos adversos. Esta propiedad de unirse a GAGs de superficie se podría incorporar a los TNFRs humanos utilizados en la clínica. The present invention identifies a new property of the SECRET domain not described in other related patents, for the development of more effective anti-TNF therapies and with less adverse effects. This property of joining surface GAGs could be incorporated into the human TNFRs used in the clinic.
Esta nueva propiedad del dominio SECRET, hace que este domino de receptores de TNF virales pueda ser fusionado a receptores solubles utilizados para el tratamiento de enfermedades autoinmunes o inflamatorias, como es el caso de los medicamentos anti-TNF, para llevar a estos inhibidores a la superficie celular. De esta manera se consigue un medicamento de mayor estabilidad y acción a nivel local. La presente invención se refiere a la capacidad de unión a GAGs del dominio SECRET de los vTNFRs CrmB o CrmD y SCPs (SCP-1 , SCP-2 y SCP-3), incluyendo homólogos funcionales, derivados y fragmentos de todos ellos para incrementar las estabilidad y las propiedades inmunomoduladoras de estas proteínas. This new property of the SECRET domain, makes this domain of viral TNF receptors can be fused to soluble receptors used for the treatment of autoimmune or inflammatory diseases, as is the case of anti-TNF drugs, to take these inhibitors to the cell surface In this way, a medicine with greater stability and action at the local level is achieved. The present invention relates to the ability to bind to GAGs of the SECRET domain of the CrmB or CrmD vTNFRs and SCPs (SCP-1, SCP-2 and SCP-3), including functional homologues, derivatives and fragments thereof to increase stability and immunomodulatory properties of these proteins.
La presente invención se refiere también a la capacidad de unión a GAGs del dominio SECRET de los vTNFRs CrmB o CrmD y SCPs (SCP-1 , SCP-2 y SCP- 3), incluyendo homólogos funcionales, derivados y fragmentos de todos ellos para incrementar las estabilidad y las propiedades inmunomoduladoras de vTNFRs fusionados a ellos. The present invention also relates to the ability to bind to GAGs of the SECRET domain of CrmB or CrmD vTNFRs and SCPs (SCP-1, SCP-2 and SCP-3), including functional homologues, derivatives and fragments thereof to increase the stability and immunomodulatory properties of vTNFRs fused to them.
La presente invención también tiene como objeto de protección un polipéptido de fusión que comprende un dominio SECRET o homólogo del dominio SECRET descrito en la presente invención, donde dicho dominio SECRET u homólogo está fusionado a una secuencia polipeptídica del mismo o de diferente origen. The present invention also has as a protection object a fusion polypeptide comprising a SECRET domain or homologue of the SECRET domain described in the present invention, wherein said SECRET domain or homologue is fused to a polypeptide sequence of the same or different origin.
La presente invención también tiene como objeto de protección un polinucleótido que comprende una secuencia que codifica el dominio SECRET o un homologo del dominio SECRET, descrita en la presente invención, o para un polipéptido de fusión descrito en la presente invención. Otro objeto de la presente invención es un vector viral o plásmido de expresión que comprende un polinucleótido descrito en la presente invención. The present invention also has as a protection object a polynucleotide comprising a sequence encoding the SECRET domain or a homologue of the SECRET domain, described in the present invention, or for a fusion polypeptide described in the present invention. Another object of the present invention is a viral vector or expression plasmid comprising a polynucleotide described in the present invention.
La presente invención también hace referencia a una composición farmacéutica que comprende el dominio SECRET y/o un homólogo del dominio SECRET descrito en la presente invención y/o un polipéptido de fusión descrito en la presente invención y/o un cassette de expresión y/o un vector viral descrito en la presente invención para su uso en el aumento de la actividad inmunomoduladora mediante unión a GAGs in vivo. The present invention also refers to a pharmaceutical composition comprising the SECRET domain and / or a homologue of the SECRET domain described in the present invention and / or a fusion polypeptide described in the present invention and / or an expression cassette and / or a viral vector described in the present invention for use in increasing immunomodulatory activity by binding to GAGs in vivo.
Por último, la presente invención tiene como objeto de protección el uso de la capacidad de unión a GAGs del dominio SECRET y/o un homologo del dominio SECRET tal y como se describe en la presente invención y/o un polipéptido de fusión tal y como se describe en la presente invención y/o un cassette de expresión y/o un vector viral tal y como se describe en la presente invención en la elaboración de un medicamento para el tratamiento de enfermedades antiinflamatorias. Finally, the present invention has as an object of protection the use of the GAG binding capacity of the SECRET domain and / or a homologue of the SECRET domain as described in the present invention and / or a fusion polypeptide as It is described in the present invention and / or an expression cassette and / or a viral vector as described in the present invention in the preparation of a medicament for the treatment of anti-inflammatory diseases.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Los poxvirus codifican receptores solubles que inhiben las funciones proinflamatorias del factor necrosante de tumores (vTNFRs). Algunos de estos vTNFRs como CrmB o CrmD, presentan además un dominio denominado SECRET capaz de inhibir la función quimiotáctica de algunas quimioquinas. La capacidad del dominio SECRET de aumentar la capacidad anti-inflamatoria de los TNFRs humanos está protegida por una patente anterior de nuestro laboratorio, un aspecto que estamos explorando a través de un proyecto TRACE del MICINN y cuya patente está siendo financiada por la empresa Genetrix. Poxviruses encode soluble receptors that inhibit the proinflammatory functions of tumor necrotizing factor (vTNFRs). Some of these vTNFRs, such as CrmB or CrmD, also have a domain called SECRET capable of inhibiting the chemotactic function of some chemokines. The ability of the SECRET domain to increase the anti-inflammatory capacity of human TNFRs is protected by a previous patent of our laboratory, an aspect that we are exploring through a TRACE project of MICINN and whose patent is being funded by the Genetrix company.
En la presente invención, mediante experimentos de unión a heparina y ensayos de citometría de unión a distintos tipos celulares hemos observado que CrmB y CrmD son capaces de interaccionar con los glicosaminoglicanos (GAGs) de superficie mediante su dominio SECRET ya que otros vTNFRs como CrmE y CrmC, carentes de este dominio, no lo hacen. Sin embargo, cuando fusionamos el dominio SECRET a CrmC conseguimos una proteína que se une de manera eficaz a la superficie de las células. Hemos comprobado también, mediante ensayos de citotoxicidad, que CrmD es capaz de unir y bloquear TNF mientras permanece unido a la superficie de las células. Por otra parte, aunque en la secuencia del dominio SECRET, no existe un motivo de unión a GAGs evidente, hemos definido experimentalmente algunos de los aminoácidos implicados en la interacción. In the present invention, by means of heparin binding experiments and binding cytometry assays to different cell types we have observed that CrmB and CrmD are capable of interacting with surface glycosaminoglycans (GAGs) through their SECRET domain since other vTNFRs such as CrmE and CrmC, lacking this domain, do not. However, when we fuse the SECRET domain to CrmC we get a protein that effectively binds to the surface of the cells. We have also verified, through cytotoxicity assays, that CrmD is capable of binding and blocking TNF while remaining attached to the cell surface. On the other hand, although in the sequence of the SECRET domain, there is no obvious reason for binding to GAGs, we have experimentally defined some of the amino acids involved in the interaction.
Esta capacidad de unirse a GAGs no es única de estos vTNFRs entre las moléculas con funciones de modulación inmunológica de poxvirus. De hecho, el receptor soluble viral de interferón B18 o el inhibidor de quimioquinas A41 L también son capaces de unirse a estas moléculas, con lo que puede tratarse de una característica importante a la hora de bloquear agentes proinflamatorios. This ability to bind to GAGs is not unique to these vTNFRs among molecules with immune modulation functions of poxvirus. In fact, the soluble viral interferon B18 receptor or the A41 L chemokine inhibitor are also able to bind to these molecules, which can be an important feature in blocking proinflammatory agents.
Significativamente, debido a que en la secuencia de aminoácidos del dominio SECRET no se pueden predecir sitios de unión a GAGs utilizando herramientas informáticas disponibles, esta propiedad no se puede predecir. Significantly, because in the amino acid sequence of the SECRET domain, GAGs binding sites cannot be predicted using available computer tools, this property cannot be predicted.
Un aspecto de la invención se relaciona con un polipéptido de fusión que comprende: One aspect of the invention relates to a fusion polypeptide comprising:
- un dominio de unión a quimioquinas SECRET de una proteína viral seleccionada entre CrmB, CrmD, SCP-1 , SCP-2 y SCP-3, un homólogo funcional, derivado o fragmento del mismo, covalentemente unido a - una secuencia polipeptídica del mismo o diferente origen que el dominio SECRET,  - a SECRET chemokine binding domain of a viral protein selected from CrmB, CrmD, SCP-1, SCP-2 and SCP-3, a functional homologue, derivative or fragment thereof, covalently linked to - a polypeptide sequence thereof or different origin than the SECRET domain,
donde el dominio de unión a quimioquinas SECRET de dicho polipéptido de fusión se une a la superficie celular a través de un glicosaminoglicano (GAG) presente en dicha superficie celular. En el contexto de la presente invención los términos quimioquinas y quimiocinas son equivalentes y pueden emplearse indistintamente para referirse a la misma molécula. wherein the SECRET chemokine binding domain of said fusion polypeptide binds to the cell surface through a glycosaminoglycan (GAG) present on said cell surface. In the context of the present invention the terms chemokines and chemokines are equivalent and can be used interchangeably to refer to the same molecule.
Dentro del contexto de la presente invención se contemplan un homólogo funcional, derivado o fragmento del mismo dominio de unión a quimioquinas SECRET (también denominado 'dominio SECRET en la presente descripción) de una proteína viral seleccionada entre CrmB, CrmD, SCP-1 , SCP-2 y SCP-3. Como entiende el experto en la materia, dichos homólogos, derivados o fragmentos poseerán la misma capacidad funcional que dominio de unión a quimioquinas SECRET, es decir, la capacidad de unirse a la superficie celular a través de un glicosaminoglicano (GAG) presente en dicha superficie celular. Ensayos para comprobar la capacidad de unión a GAG de los homólogos, derivados o fragmentos del dominio de unión a quimioquinas SECRET se describen en los ejemplos de la presente solicitud de patente. Within the context of the present invention, a functional homologue, derivative or fragment of the same SECRET chemokine binding domain (also referred to as' SECRET domain in the present description) of a viral protein selected from CrmB, CrmD, SCP-1, SCP is contemplated -2 and SCP-3. As the person skilled in the art understands, said homologs, derivatives or fragments will possess the same functional capacity as SECRET chemokine binding domain, that is, the ability to bind to the cell surface through a glycosaminoglycan (GAG) present on said surface. mobile. Tests to verify the GAG binding capacity of homologs, derivatives or fragments of the SECRET chemokine binding domain are described in the examples of the present patent application.
En una realización particular, el dominio de unión a quimioquinas SECRET presenta una secuencia de aminoácidos con al menos un 80% de homología con una secuencia de aminoácidos seleccionada del grupo que consiste en SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 y SEQ ID NO: 20. En la presente invención se entiende que los términos homología e identidad de secuencia tienen el mismo significado y son empleados indistintamente a lo largo de la presente descripción. Así, se entiende por "identidad" o "identidad de secuencia" al grado de similitud entre dos secuencias de nucleótidos o aminoácidos obtenido mediante el alineamiento de las dos secuencias. Dependiendo del número de residuos comunes entre las secuencias alineadas, se obtendrá un grado de identidad expresado en tanto por ciento. El grado de identidad entre dos secuencias de aminoácidos puede determinarse por métodos convencionales, por ejemplo, mediante algoritmos estándar de alineamiento de secuencias conocidos en el estado de la técnica, como por ejemplo BLAST [Altschul S.F. et al. Basic local alignment search tool. J Mol Biol. 1990 Oct 5; 215(3):403-10]. Los programas BLAST, por ejemplo, BLASTN, BLASTX, and TBLASTX, BLASTP and TBLASTN, son de dominio público en la página web de The National Center for Biotechonology Information (NCBI). In a particular embodiment, the SECRET chemokine binding domain has an amino acid sequence with at least 80% homology with an amino acid sequence selected from the group consisting of SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 and SEQ ID NO: 20. In the present invention It is understood that the terms homology and sequence identity have the same meaning and are used interchangeably throughout this description. Thus, "identity" or "sequence identity" is understood as the degree of similarity between two nucleotide or amino acid sequences obtained by aligning the two sequences. Depending on the number of common residues between the aligned sequences, a degree of identity expressed as a percentage will be obtained. The degree of identity between two amino acid sequences can be determined by conventional methods, for example, by standard sequence alignment algorithms known in the state of the art, such as BLAST [Altschul SF et al. Basic local alignment search tool. J Mol Biol. 1990 Oct 5; 215 (3): 403-10]. The BLAST programs, for example, BLASTN, BLASTX, and TBLASTX, BLASTP and TBLASTN, are in the public domain on the website of The National Center for Biotechonology Information (NCBI).
El experto en la materia entiende que cambios en la secuencia de nucleótidos de los genes que dan lugar a sustituciones conservativas de aminoácidos en posiciones no críticas para la funcionalidad de la proteína, son cambios evolutivamente neutros que no afectan a su estructura global ni a su funcionalidad. En una realización particular, el tanto por ciento de identidad u homología corresponde al tanto por ciento de aminoácidos o nucleótidos comunes entre las dos secuencias con respecto al alineamiento global de la proteína, es decir, con respecto al alineamiento de la longitud completa de ambas secuencias. The person skilled in the art understands that changes in the nucleotide sequence of genes that give rise to conservative amino acid substitutions at positions not critical to protein functionality, are evolutionarily neutral changes that do not affect their overall structure or functionality. . In a particular embodiment, the percent identity or homology corresponds to the percent of common amino acids or nucleotides between the two sequences with respect to the overall alignment of the protein, that is, with respect to the alignment of the full length of both sequences. .
En una realización más particular, la secuencia de aminoácidos presenta, al menos, un 85, 90, 95, 99 o 100% de homología con la secuencias seleccionadas del grupo que consiste en SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 y SEQ ID NO: 20. In a more particular embodiment, the amino acid sequence has at least 85, 90, 95, 99 or 100% homology with the sequences selected from the group consisting of SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 and SEQ ID NO: 20.
En otra realización preferida, el dominio de unión a quimioquinas SECRET presenta una secuencia de aminoácidos seleccionada del grupo que consiste en SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 y SEQ ID NO: 20. Una realización preferida de la presente invención se refiere a la capacidad de unión a GAGs del dominio SECRET de CrmB descrita anteriormente, donde el dominio SECRET de CrmB comprende la SEQ ID N° 26 o SEQ ID N° 28. Otra realización de la presente invención hace referencia a la capacidad de unión a GAGs del dominio SECRET de CrmD descrita anteriormente, donde el dominio SECRET de CrmD comprende la SEQ ID N° 22 o SEQ ID N° 24. In another preferred embodiment, the SECRET chemokine binding domain has an amino acid sequence selected from the group consisting of SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO : 6, SEQ ID NO: 8, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 and SEQ ID NO: 20. A preferred embodiment of the present invention relates to the GAG binding capacity of the SECRET domain of CrmB described above, where the SECRET domain of CrmB comprises SEQ ID No. 26 or SEQ ID No. 28. Another embodiment of the present invention refers to the GAG binding capacity of the SECRET domain of CrmD described above, where the SECRET domain of CrmD comprises SEQ ID No. 22 or SEQ ID No. 24.
Otra realización particular de la presente invención hace referencia a la capacidad de unión a GAGs del dominio SECRET de SCPs: SCP-1 , SCP-2 o SCP-3 descrita anteriormente, donde los dominios SECRET comprenden cualquiera de las secuencias: SEQ ID N° 6, SEQ ID N° 8, SEQ ID N° 14, SEQ ID N° 16, SEQ ID N° 18 o SEQ ID N° 20. Another particular embodiment of the present invention refers to the ability to GAGs of the SECRET domain of SCPs: SCP-1, SCP-2 or SCP-3 described above, where the SECRET domains comprise any of the sequences: SEQ ID No. 6, SEQ ID No. 8, SEQ ID No. 14, SEQ ID No. 16, SEQ ID No. 18 or SEQ ID No. 20.
En una realización particular del polipéptido de fusión descrito anteriormente, el dominio SECRET está covalentemente unido o fusionado a una secuencia polipeptídica, en donde dicha secuencia polipeptídica es el receptor del factor necrosante de tumores viral (vTNFRs). En otra realización todavía más particular, la secuencia polipeptídica es el dominio N-terminal de unión al factor necrosante tumoral (TNF) de los vTNFRs. En otra realización particular, la secuencia polipeptídica es el receptor del factor necrosante de tumores humano (hTNFRs). In a particular embodiment of the fusion polypeptide described above, the SECRET domain is covalently bound or fused to a polypeptide sequence, wherein said polypeptide sequence is the recipient of the viral tumor necrotizing factor (vTNFRs). In another even more particular embodiment, the polypeptide sequence is the N-terminal domain of tumor necrotizing factor (TNF) binding of vTNFRs. In another particular embodiment, the polypeptide sequence is the human tumor necrotizing factor receptor (hTNFRs).
En otro aspecto, la presente invención se relaciona con un polinucleótido que codifica un polipéptido de fusión tal como se ha definido en la presente descripción. En otro aspecto, se relaciona con un vector viral o plásmido de expresión que comprende un polinucleótido que codifica un polipéptido de fusión tal como se ha definido en la presente descripción. In another aspect, the present invention relates to a polynucleotide encoding a fusion polypeptide as defined in the present description. In another aspect, it relates to a viral vector or expression plasmid comprising a polynucleotide encoding a fusion polypeptide as defined herein.
Otro objeto preferente de la presente invención es una composición farmacéutica que comprende un polipéptido de fusión, un polinucleótido o un vector viral o plásmido de expresión tal como se han definido en la presente descripción. Preferentemente, la presente invención también hace referencia a dicha composición farmacéutica, que comprende además un inmunosupresor o una sustancia anti-inflamatoria adicional. Another preferred object of the present invention is a pharmaceutical composition comprising a fusion polypeptide, a polynucleotide or a viral vector or expression plasmid as defined in the present description. Preferably, the present invention also refers to said pharmaceutical composition, further comprising an immunosuppressant or an additional anti-inflammatory substance.
En otro aspecto, la invención se relaciona con el uso de la composición farmacéutica según se ha definido en la presente descripción para su uso como anti-inflamatorio. In another aspect, the invention relates to the use of the pharmaceutical composition as defined in the present description for use as an anti-inflammatory.
En otro aspecto, la invención se relaciona con el uso del polipéptido de fusión, el polinucleótido que codifica dicho polipéptido de fusión o el vector viral o plásmido de expresión que comprende dicho polinucleótido, en la elaboración de un medicamento para el tratamiento de enfermedades autoinmunes o inflamatorias. In another aspect, the invention relates to the use of the fusion polypeptide, the polynucleotide encoding said fusion polypeptide or the viral vector or expression plasmid comprising said polynucleotide, in the preparation of a medicament for the treatment of autoimmune diseases or inflammatory
Otro objeto preferente de la presente invención es el uso del dominio SECRET y/o un homólogo del dominio SECRET o una secuencia de aminoácidos con al menos un 80% de homología con una secuencia de aminoácidos seleccionada del grupo que consiste en SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 y SEQ ID NO: 20, para la obtención de anticuerpos específicos inhibidores de la capacidad de unión a GAGs del dominio SECRET. Another preferred object of the present invention is the use of the SECRET domain and / or a homologue of the SECRET domain or an amino acid sequence with at least 80% homology with an amino acid sequence selected from the group consisting of SEQ ID NO: 26 , SEQ ID NO: 28, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 and SEQ ID NO: 20, to obtain specific antibodies inhibiting the ability to bind to GAGs of the SECRET domain.
En otro aspecto, la invención se relaciona con un anticuerpo obtenido según la presente invención. Preferentemente, la presente invención también hace referencia al uso de los anticuerpos descritos anteriormente en la fabricación de un medicamento para el tratamiento de los efectos adversos causados por la vacunación con el virus vaccinia o de la patología causada en el hombre por el virus de la viruela o virus relacionados (virus monkeypox). La vacunación con el virus vaccinia puede causar efectos adversos y complicaciones en la persona vacunada, como eccema, miocarditis, vaccinia progresiva o generalizada, o encefalitis, que pueden dar lugar a la muerte del individuo. La vacunación clásica con el virus vaccinia está contraindicada en individuos con inmunodeficiencias, como aquéllos infectados con el virus de la inmunodeficiencia humana, por alto riesgo de vaccinia progresica o generalizada. La patología causada por la infección con virus virulentos (virus de la viruela o virus monkeypox) es debida a una infección generalizada con altos niveles de replicación viral en órganos internos y en la piel que puede llevar a la muerte del individuo. El empleo de anticuerpos específicos del dominio SECRET neutraliza la actividad biológica de estas proteínas virales y su interacción con GAGs, reduciendo la capacidad del virus de bloquear el sistema inmune y permitiendo que el sistema inmune controle más eficazmente la replicación del virus en el individuo infectado. El tratamiento con estos anticuerpos neutralizantes limitaría la replicación del virus vaccinia utilizado en vacunaciones, reduciendo los efectos adversos de la vacunación, y de los virus virulentos (virus de la viruela y virus monkeypox), reduciendo la patología y mortalidad causada por estos virus virulentos. In another aspect, the invention relates to an antibody obtained according to the present invention. Preferably, the present invention also refers to the use of the antibodies described above in the manufacture of a medicament for the treatment of adverse effects caused by vaccination with vaccinia virus or of the pathology caused in man by smallpox virus. or related viruses (monkeypox virus). Vaccination with the vaccinia virus can cause adverse effects and complications in the vaccinated person, such as eczema, myocarditis, progressive or generalized vaccinia, or encephalitis, which can result in the death of the individual. The classic vaccination with the vaccinia virus is contraindicated in individuals with immunodeficiencies, such as those infected with the human immunodeficiency virus, because of the high risk of progressive or generalized vaccinia. The pathology caused by infection with virulent viruses (smallpox virus or monkeypox virus) is due to a generalized infection with high levels of viral replication in internal organs and in the skin that can lead to the death of the individual. The use of antibodies specific to the SECRET domain neutralizes the biological activity of these viral proteins and their interaction with GAGs, reducing the ability of the virus to block the immune system and allowing the immune system to control virus replication more effectively in the infected individual. Treatment with these neutralizing antibodies would limit the replication of the vaccinia virus used in vaccinations, reducing the adverse effects of vaccination, and virulent viruses (smallpox virus and monkeypox virus), reducing the pathology and mortality caused by these virulent viruses.
En otro aspecto, la invención se relaciona con el uso de un dominio de unión a quimioquinas SECRET de una proteína viral seleccionada entre CrmB, CrmD, SCP-1 , SCP-2 y SCP-3, un homólogo funcional, derivado o fragmento de mismo, en la fabricación de un medicamento para el tratamiento de enfermedades autoinmunes o inflamatorias, caracterizado porque dicho dominio SECRET es capaz de unirse a un glicosaminoglicano (GAG). In another aspect, the invention relates to the use of a SECRET chemokine binding domain of a viral protein selected from CrmB, CrmD, SCP-1, SCP-2 and SCP-3, a functional homologue, derivative or fragment thereof. , in the manufacture of a medicament for the treatment of autoimmune or inflammatory diseases, characterized in that said SECRET domain is capable of binding to a glycosaminoglycan (GAG).
En una realización particular, el dominio de unión a quimioquinas SECRET presenta una secuencia de aminoácidos con un 80% de homología con una secuencia de aminoácidos seleccionada del grupo que consiste en SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 y SEQ ID NO: 20. In a particular embodiment, the SECRET chemokine binding domain has an amino acid sequence with 80% homology with an amino acid sequence selected from the group consisting of SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 and SEQ ID NO: 20.
En otra realización particular, la secuencia de aminoácidos de un dominio de unión a quimioquinas SECRET presenta una secuencia de aminoácidos seleccionada del grupo que consiste en SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 y SEQ ID NO: 20. In another particular embodiment, the amino acid sequence of a SECRET chemokine binding domain has an amino acid sequence selected from the group consisting of SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 and SEQ ID NO: 20.
En otra realización particular, la secuencia de aminoácidos del dominio SECRET de CrmB es SEQ ID NO: 26 o SEQ ID NO: 28. In another particular embodiment, the amino acid sequence of the SECRET domain of CrmB is SEQ ID NO: 26 or SEQ ID NO: 28.
En otra realización particular, la secuencia de aminoácidos del dominio SECRET de CrmD es SEQ ID NO: 22 o SEQ ID NO: 24. En otra realización particular, la secuencia de aminoácidos del dominio SECRET de SPC-1 es SEQ ID NO: 6 o SEQ ID NO: 8, de SPC-2 es SEQ ID NO: 18 o SEQ ID NO: 20, y de SPC-3 es SEQ ID NO: 14 o SEQ ID NO: 16. In another particular embodiment, the amino acid sequence of the SECRET domain of CrmD is SEQ ID NO: 22 or SEQ ID NO: 24. In another particular embodiment, the amino acid sequence of the SECRET domain of SPC-1 is SEQ ID NO: 6 or SEQ ID NO: 8, of SPC-2 is SEQ ID NO: 18 or SEQ ID NO: 20, and of SPC-3 is SEQ ID NO: 14 or SEQ ID NO: 16.
En una realización particular, dicho medicamento incrementa la estabilidad y/o las propiedades inmunomoduladoras de al menos una proteína seleccionada entre CrmB, CrmD, SCP-1 , SCP-2 y SCP-3. La interacción con GAGs permite a la proteína pegarse a la superficie celular y estar menos expuesta a proteasas circulantes en los tejidos y el torrente sanguíneo, aumentando su estabilidad. La retención de las proteínas en el tejido inflamado le permite actuar durante tiempos más prolongados e inhibir más eficazmente la respuesta inflamatoria, potenciando sus propiedades inmunomoduladoras. In a particular embodiment, said medicament increases the stability and / or immunomodulatory properties of at least one protein selected from CrmB, CrmD, SCP-1, SCP-2 and SCP-3. The interaction with GAGs allows the protein to stick to the cell surface and be less exposed to circulating proteases in the tissues and bloodstream, increasing its stability. The retention of proteins in the inflamed tissue allows it to act for longer periods and more effectively inhibit the inflammatory response, enhancing its immunomodulatory properties.
En otra realización particular, el dominio SECRET, su homólogo funcional, derivado o fragmento está fusionado al menos a un vTNFR, o a un anticuerpo humanizado anti-TNF. In another particular embodiment, the SECRET domain, its functional counterpart, derivative or fragment is fused to at least one vTNFR, or to a humanized anti-TNF antibody.
En otra realización particular, el dominio SECRET, su homólogo funcional, derivado o fragmento está fusionado al dominio N-terminal de unión a TNF del vTNFR. In another particular embodiment, the SECRET domain, its functional counterpart, derivative or fragment is fused to the TNF-binding N-terminal domain of vTNFR.
En otra realización particular, el vTNFR es CrmB o CrmD. En otra realización particular, el dominio SECRET, su homólogo funcional, derivado o fragmento está fusionado al menos a un hTNFR. In another particular embodiment, the vTNFR is CrmB or CrmD. In another particular embodiment, the SECRET domain, its functional counterpart, derivative or fragment is fused to at least one hTNFR.
En otra realización particular, el medicamento comprende un inmunosupresor o una sustancia anti-inflamatoria adicional. In another particular embodiment, the medicament comprises an immunosuppressant or an additional anti-inflammatory substance.
En otra realización particular, el medicamento comprende al menos un anticuerpo específico inhibidor de la capacidad de unión a GAG del dominio SECRET. In another particular embodiment, the medicament comprises at least one specific antibody inhibiting the GAG binding capacity of the SECRET domain.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Las siguientes figuras y ejemplos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following figures and examples are provided by way of illustration, and are not intended to be limiting of the present invention.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
FIGURA 1. CrmD se une a GAGs con alta afinidad. A) Cinética mediante SPR de la unión de CrmD a un chip acoplado con 50 RUs de heparina. Se inyectaron distintas concentraciones de CrmD purificado (0-300nM) sobre un chip acoplado con 50 RUs de heparina a 30 μΙ/min. Los sensorgramas se alinearon y ajustaron a un modelo global de Langmuir 1 : 1. Se presentan las constantes de asociación (Ka), disociación (Kd) y afinidad (KD), junto con los errores estándar (EE). B) Competición de la unión de CrmD a heparina mediante GAGs solubles. Se incubaron concentraciones crecientes de distintos GAGs solubles (0-1 .000 Mg/ml), heparina ( · ), CSA (■), CSB ( ) y HS ( X), con 50nM de CrmD durante 15 min a 4°C, antes de pasar las mezclas sobre el chip de heparina. Se recogió la respuesta máxima en el equilibrio y se representaron los datos en porcentaje en relación a la respuesta detectada en ausencia de GAGs solubles. FIGURE 1. CrmD binds to GAGs with high affinity. A) Kinetics by SPR of the binding of CrmD to a chip coupled with 50 RUs of heparin. Different concentrations of purified CrmD (0-300nM) were injected onto a chip coupled with 50 RUs of heparin at 30 μΙ / min. The sensorgrams were aligned and adjusted to a global Langmuir 1: 1 model. The association (Ka), dissociation (Kd) and affinity (KD) constants are presented, along with the standard errors (EE). B) Competition of CrmD binding to heparin by soluble GAGs. Increasing concentrations of different soluble GAGs (0-1,000 Mg / ml), heparin (·), CSA (■), CSB () and HS (X) were incubated with 50nM CrmD for 15 min at 4 ° C, before passing the mixtures on the heparin chip. The maximum response in the equilibrium was collected and the percentage data was represented in relation to the response detected in absence of soluble GAGs.
FIGURA 2. CrmD se une a heparina y a la superficie celular a través del dominio SECRET. A) Ensayo de unión a heparina mediante SPR. 300 nM de las proteínas purificadas CrmD, CrmD163 y CRD-CrmD, se inyectaron a 10 μΙ/min sobre chips de heparina. Se muestran los sensorgramas obtenidos para cada construcción. Las flechas invertidas indican el inicio y el fin de la inyección. B) Ensayo de unión a la superficie de células MOLT4 y L929 mediante citometría. 200 nM de las proteínas purificadas, vCCI de CPXV, E163 de ECTV, B18 de VACV, y CrmD, CrmD163 y CRD-CrmD de ECTV se incubaron con 300.000 células en hielo durante 30 min. Tras sucesivos lavados, se detectó la proteína retenida en la superficie mediante un anticuerpo de ratón anti-His (1 :400) seguido de un secundano apropiado conjugado con Alexa488 (1 :500). Se muestra la señal fluorescente (FL1 :anti-mouseAlexa488) respecto al total de eventos analizados en porcentaje en muestras incubadas sin (gris) o con (blanco) proteína recombinante. FIGURE 2. CrmD binds to heparin and to the cell surface through the SECRET domain. A) Heparin binding assay by SPR. 300 nM of the purified proteins CrmD, CrmD163 and CRD-CrmD, were injected at 10 μΙ / min on heparin chips. The sensorgrams obtained for each construction are shown. The inverted arrows indicate the start and end of the injection. B) Surface binding assay of MOLT4 and L929 cells by cytometry. 200 nM of the purified proteins, vCCI of CPXV, E163 of ECTV, B18 of VACV, and CrmD, CrmD163 and CRD-CrmD of ECTV were incubated with 300,000 cells on ice for 30 min. After successive washing, the protein retained on the surface was detected by an anti-His mouse antibody (1: 400) followed by an appropriate secundane conjugated to Alexa488 (1: 500). The fluorescent signal (FL1: anti-mouseAlexa488) is shown with respect to the total of events analyzed in percentage in samples incubated without (gray) or with (white) recombinant protein.
FIGURA 3. CrmD y CrmD163 se unen a la superficie celular gracias a su interacción con GAGs. Se incubaron 300.000 células CHO-K1 (expresión normal de GAGs), CHO-745 (expresión reducida de GAGs) y CHO-618 (sin GAGs) con 200 nM de las proteínas CrmD, CrmD163 y CRD-CrmD durante 30 min a 4°C. Tras varios lavados, las células fueron incubadas con una dilución 1 :400 del anticuerpo de ratón anti-His para marcar la proteína retenida y se detectó mediante un anticuerpo secundario anti-ratón conjugado con Alexa488 (1 :500). Se recogieron 20.000 eventos de cada muestra que fueron analizadas por el programa informático FlowJo. El área bajo la curva indica la fluorescencia respecto al total de eventos analizados, en porcentaje, de células incubadas sin (gris) o con (blanco) proteína recombinante. FIGURA 4. Los vTNFRs con dominio SECRET son capaces de unirse a la superficie celular. Se realizó un ensayo de unión a la superficie de células L929 de las proteínas purificadas, CrmB_VARV, CrmE_CPXV, CrmC_CPXV y una construcción CrmC-secret. Este ensayo se analizó tanto por citometría e flujo (A) como por inmunofluorescencia (B). A) Se muestra la fluorescencia (60x), respecto al total de eventos en porcentaje, en muestras incubadas con las distintas proteínas recombinantes indicadas (blanco) o sin proteína (gris). B) Los cubreobjetos sobre los que se sembraron las células L929 fueron incubados con 100 nM de cada proteína durante 1 hora a 4°C antes de la fijación con 4% PFA durante 30 minutos a RT. Se utilizaron los mismos anticuerpos que para la citometría de flujo pero con una dilución 1 :500 del anticuerpo anti-His y 1 :900 para el secundario conjugado con Alexa 488. Los cubreobjetos fueron montados y las muestras se analizaron mediante un microscopio Axioskop 2 Plus (Zeiss). FIGURE 3. CrmD and CrmD163 bind to the cell surface thanks to their interaction with GAGs. 300,000 CHO-K1 cells (normal GAG expression), CHO-745 (reduced GAG expression) and CHO-618 (without GAGs) were incubated with 200 nM of the CrmD, CrmD163 and CRD-CrmD proteins for 30 min at 4 ° C. After several washes, the cells were incubated with a 1: 400 dilution of the anti-His mouse antibody to label the retained protein and was detected by a secondary anti-mouse antibody conjugated to Alexa488 (1: 500). 20,000 events were collected from each sample that were analyzed by the FlowJo software. The area under the curve indicates the fluorescence with respect to the total analyzed events, in percentage, of cells incubated without (gray) or with (white) recombinant protein. FIGURE 4. The vTNFRs with SECRET domain are capable of binding to the cell surface. A L929 cell surface binding assay of purified proteins, CrmB_VARV, CrmE_CPXV, CrmC_CPXV and a CrmC-secret construction. This assay was analyzed both by cytometry and flow (A) and by immunofluorescence (B). A) The fluorescence (60x), with respect to the total events in percentage, is shown in samples incubated with the different recombinant proteins indicated (white) or without protein (gray). B) The coverslips on which the L929 cells were seeded were incubated with 100 nM of each protein for 1 hour at 4 ° C before fixation with 4% PFA for 30 minutes at RT. The same antibodies were used as for flow cytometry but with a 1: 500 dilution of the anti-His antibody and 1: 900 for the secondary conjugated with Alexa 488. The coverslips were assembled and the samples were analyzed by means of an Axioskop 2 Plus microscope. (Zeiss)
FIGURA 5. CrmD unido a GAGs puede interaccionar e inhibir el mTNFa. A)FIGURE 5. CrmD bound to GAGs can interact and inhibit mTNFa. TO)
Ensayo mediante SPR en el que 100 nM de mTNFa se inyectaron a Ι ΟμΙ/min sobre un chip de heparina antes o después de pasar sobre el chip 500 nM de CrmD (azul) o B18 de VACV (verde), sin haber regenerado la superficie. Los triángulos invertidos indican el inicio y el fin de la inyección de proteína recombinante y el comienzo de la inyección de mTNFa. B) Experimento de precipitación con resina de agarosa-heparina (HepAg). 400 nM de CrmD, CRD- CrmD y B18 de VACV fueron incubados con una resina de heparina durante 1 h. Tras los lavados, las resinas se incubaron con 400nM de mTNFa durante 30 min adicionales y se analizó la presencia de proteína recombinante y mTNFa mediante westem blot C) Ensayo de citotoxicidad de mTNFa sobre células L929. Para la unión a células, las proteínas, hTNFR2, CRD-CrmD, CrmC CrmC-SECRET y CrmD (10 Mg/ml), se incubaron sobre 30.000 células L929 durante 30 minutos a 37°C. Esas mismas condiciones se repitieron para la incubación en solución de las proteínas con el mTNFa. Las mezclas se añadieron posteriormente sobre células L929. Las muestras se analizaron por triplicado y se muestran las medias y las desviaciones estándar de la supervivencia en porcentaje en relación a los valores recogidos en ausencia de mTNFa. FIGURA 6. Expresión de los mutantes GAG1 -4 y ensayos unión a células.SPR test in which 100 nM of mTNFa was injected at Ι ΟμΙ / min on a heparin chip before or after passing on the 500 nM CrmD (blue) or B18 VACV (green) chip, without regenerating the surface . Inverted triangles indicate the start and end of recombinant protein injection and the start of mTNFa injection. B) Precipitation experiment with agarose-heparin resin (HepAg). 400 nM of CrmD, CRD-CrmD and B18 of VACV were incubated with a heparin resin for 1 h. After washing, the resins were incubated with 400nM mTNFa for an additional 30 min and the presence of recombinant protein and mTNFa was analyzed by westem blot C) Cytotoxicity test of mTNFa on L929 cells. For cell binding, proteins, hTNFR2, CRD-CrmD, CrmC CrmC-SECRET and CrmD (10 Mg / ml), were incubated on 30,000 L929 cells for 30 minutes at 37 ° C. These same conditions were repeated for incubation in solution of the proteins with the mTNFa. The mixtures were subsequently added on L929 cells. The samples were analyzed in triplicate and the means and standard deviations of survival in percentage are shown in relation to the values collected in the absence of mTNFa. FIGURE 6. Expression of GAG1 -4 mutants and cell binding assays.
A) Gel teñido con azul de Coomasie que muestra ~500 ng de cada uno de los mutantes GAG1 -4 expresados mediante baculovirus recombinantes y purificados por cromatografía de afinidad Ni-NTA. B) Ensayo de unión a la superficie de células CHO-K1 mediante citometría de flujo. Se incubaron 200 nM de cada uno de los mutantes (GAG1 :rojo, GAG2:morado, GAG3:azul, GAG4:verde) y de CrmD (negro) con 300.000 células. Se recogieron 10.000 eventos mediante un citómetro FACS Cantoll y se analizaron con el programa informático FlowJo. Se muestra la fluorescencia de cada muestra respecto al total de eventos analizados en porcentaje. La curva en gris marca la señal de fluorescencia de células incubadas en ausencia de proteína. A) Coomasie blue stained gel showing ~ 500 ng of each of the GAG1-4 mutants expressed by recombinant baculovirus and purified by Ni-NTA affinity chromatography. B) Surface binding assay of CHO-K1 cells by flow cytometry. 200 nM of each of the mutants (GAG1: red, GAG2: purple, GAG3: blue, GAG4: green) and CrmD (black) were incubated with 300,000 cells. 10,000 events were collected using a Cantoll FACS cytometer and analyzed with the FlowJo software. The fluorescence of each sample is shown with respect to the total events analyzed in percentage. The gray curve marks the fluorescence signal of cells incubated in the absence of protein.
FIGURA 7. Las mutantes GAG1 -4 inhiben la migración eficientemente.FIGURE 7. GAG1 -4 mutants inhibit migration efficiently.
Experimento de quimiotaxis en transwell con células MOLT4. Se preincubaron cantidades crecientes de los mutantes GAG1 -4 y CrmD con 70 nM de mCCL25. Se muestra la migración media, junto con su desviación estándar, de cada una de las muestras analizadas por triplicado, en porcentaje respecto a la migración en ausencia de proteína recombinante. Para normalizar se utilizaron los datos tomados en ausencia de CK. Chemotaxis experiment in transwell with MOLT4 cells. Increasing amounts of the GAG1 -4 and CrmD mutants were pre-incubated with 70 nM of mCCL25. The average migration is shown, together with its standard deviation, of each of the samples analyzed in triplicate, in percentage of the migration in the absence of recombinant protein. To normalize the data taken in the absence of CK were used.
FIGURA 8. Alineamientos de Secuencias - CLUSTAL W (1 .82) "múltiple sequence alignment" FIGURE 8. Sequence Alignments - CLUSTAL W (1 .82) "multiple sequence alignment"
FIGURA 9. Alineamientos de Secuencias - CLUSTAL W (1 .82) "múltiple sequence alignment (CrmB / CrmD)" FIGURE 9. Sequence Alignments - CLUSTAL W (1 .82) "multiple sequence alignment (CrmB / CrmD)"
FIGURA 10. Alineamientos de Secuencias - CLUSTAL W (1 .82) "múltiple sequence alignment (CTDs)" FIGURE 10. Sequence Alignments - CLUSTAL W (1 .82) "multiple sequence alignment (CTDs)"
EJEMPLOS Los siguientes ejemplos específicos que se proporcionan en este documento de patente sirven para ¡lustrar la naturaleza de la presente invención. Estos ejemplos se incluyen solamente con fines ilustrativos y no han de ser interpretados como limitaciones a la invención que aquí se reivindica. Por tanto, los ejemplos descritos más adelante ¡lustran la invención sin limitar el campo de aplicación de la misma. EXAMPLES The following specific examples provided in this patent document serve to illustrate the nature of the present invention. These examples are included for illustrative purposes only and should not be construed as limitations on the invention claimed herein. Therefore, the examples described below illustrate the invention without limiting its scope.
EJEMPLO 1 : Materiales y métodos EXAMPLE 1: Materials and methods
Líneas celulares  Cell lines
La generación, amplificación y titulación de los stocks de baculovirus recombinantes se realizaron en células de insecto Spodoptera frugiperda Sf9 adherentes mantenidas en cultivo en medio TC100 (Gibco) suplementado con 10% de suero fetal bovino (FCS, Sigma), 2 mM de L-glutamina (Sigma) y antibióticos, 100 g/ml de una mezcla de antibióticos penicilina-estreptomicina (Sigma) y 25 g/ml de gentamicina (Sigma). La expresión de proteína recombinante se hizo en células de insecto H¡5 en suspensión, mantenidas en medio Express Five (Gibco) con 8 mM de L-glutamina y antibióticos. Ambas líneas celulares se cultivaron a 27°C.  The generation, amplification and titration of the recombinant baculovirus stocks were carried out in adherent Spodoptera frugiperda Sf9 insect cells maintained in culture in TC100 medium (Gibco) supplemented with 10% bovine fetal serum (FCS, Sigma), 2 mM of L- glutamine (Sigma) and antibiotics, 100 g / ml of a mixture of penicillin-streptomycin antibiotics (Sigma) and 25 g / ml of gentamicin (Sigma). Recombinant protein expression was done in H5 insect cells in suspension, maintained in Express Five medium (Gibco) with 8 mM L-glutamine and antibiotics. Both cell lines were cultured at 27 ° C.
Las líneas celulares, L929 (fibroblastos de ratón) se mantuvieron en cultivo a 37°C, 95% HR y 5% C02 en medio DMEM (Gibco) suplementado con 10% FCS, 2 mM de L-glutamina y antibióticos. Estas células se utilizaron para los experimentos de citotoxicidad del TNF . The cell lines, L929 (mouse fibroblasts) were maintained in culture at 37 ° C, 95% RH and 5% C02 in DMEM medium (Gibco) supplemented with 10% FCS, 2 mM L-glutamine and antibiotics. These cells were used for the cytotoxicity experiments of TNF.
Las células MOLT4 usadas en los ensayos de quimiotaxis, se crecieron en medio RPMI 1640 (MP Biomedicals) suplementado con 10% FCS, 2 mM de L- glutamina y antibióticos, a 37°C, 95% HR y 5% C02. The MOLT4 cells used in the chemotaxis assays were grown in RPMI 1640 medium (MP Biomedicals) supplemented with 10% FCS, 2 mM L-glutamine and antibiotics, at 37 ° C, 95% RH and 5% C02.
Para los ensayos relacionados con el análisis de la unión de las proteínas a superficies celulares, se utilizaron las líneas derivadas de ovario de hámster, CHO-K1 y sus mutantes para la expresión de GAGs en superficie, CHO-618 (mutación en la enzima galactosiltransferasa) y CHO-745 (mutación en la enzima xilosiltransferasa). Estas líneas se crecieron en medio DMEM: F12- HAM (Gibco), 1 : 1 (v/v), debidamente suplementado con 10% de FCS, 2 mM de L-glutamina y antibióticos, a 37°C, 95% HR y 5% C02. For assays related to the analysis of protein binding to cell surfaces, lines derived from hamster ovary were used, CHO-K1 and its mutants for the expression of surface GAGs, CHO-618 (mutation in the enzyme galactosyltransferase) and CHO-745 (mutation in the enzyme xylosyltransferase). These lines were grown in DMEM medium: F12-HAM (Gibco), 1: 1 (v / v), duly supplemented with 10% FCS, 2 mM L-glutamine and antibiotics, at 37 ° C, 95% RH and 5% C02.
Clonajes Cloning
El gen E6 de ECTV Naval que codifica para la proteína CrmD (1 -320), se amplificó mediante la reacción en cadena de la polimerasa (PCR) del vector pMS1 utilizando los oligonucleótidos 5'CrmD34 y 3'CrmD33 incorporando las dianas de BamHI y Xhol en 5' y 3', respectivamente. Así, se subclonó sin su péptido señal (21 -320) en el vector pFastBad , previamente digerido con BamHI y Xhol, de forma que el gen quedó en fase de lectura con el péptido señal de la melitina en 5' y con los tags V5 y 6xHis en 3' para facilitar su purificación por cromatografía de afinidad. El plásmido resultante de la ligación se nombró pSP3. La misma estrategia se siguió para el clonaje en este vector del dominio SECRET de CrmD, CrmD163 (CrmD163-320) utilizando los oligonucleótidos 5'CrmD36 y el 3'CrmD33, generándose así el plásmido pSP4. Igualmente, para el clonaje de la forma corta del dominio N-terminal de CrmD, CRD-CrmD (CrmD21 -151 ), en el vector pFastBad , se utilizaron los oligonucleótidos CrmD34 y CrmD87 para extraer el gen por PCR del molde pMS1. Tras la ligación del producto de PCR en el vector digerido con BamHI y Xhol se obtuvo el plásmido pSP6. The E6 Naval ECTV gene encoding the CrmD protein (1-320) was amplified by polymerase chain reaction (PCR) of the pMS1 vector using the 5 ' CrmD34 and 3 ' CrmD33 oligonucleotides incorporating the BamHI and Xhol in 5 ' and 3 ' , respectively. Thus, it was subcloned without its signal peptide (21-320) in the pFastBad vector, previously digested with BamHI and Xhol, so that the gene was in reading phase with the 5 ' melitin signal peptide and with V5 tags and 6xHis in 3 ' to facilitate its purification by affinity chromatography. The plasmid resulting from ligation was named pSP3. The same strategy was followed for cloning in this vector of the SECRET domain of CrmD, CrmD163 (CrmD163-320) using oligonucleotides 5 ' CrmD36 and 3 ' CrmD33, thus generating plasmid pSP4. Likewise, for cloning the short form of the N-terminal domain of CrmD, CRD-CrmD (CrmD21-151), in the vector pFastBad, oligonucleotides CrmD34 and CrmD87 were used to extract the PCR gene from the pMS1 template. After ligation of the PCR product in the vector digested with BamHI and Xhol, plasmid pSP6 was obtained.
Un procedimiento similar se siguió para clonar en el vector pFastBad los otros vTNFRs, CrmE de CPXV cepa Elephantpox, CrmC de CPXV cepa Brighton Red y CrmB de VARV cepa Bangladesh 1975. Los genes correspondientes se amplificaron por PCR a partir de construcciones preexistentes en el laboratorio, mediante una pareja de oligonucleótidos (Tabla 1 ) que añadiesen la diana BamHI en 5'y Xhol en 3'para posteriormente clonarlos en el pFastBad de la misma manera que lo anteriormente explicado. Las construcciones resultantes se denominaron pSP8, pSP9 y pSP12, respectivamente. A similar procedure was followed to clone in the pFastBad vector the other vTNFRs, CrmE of CPXV strain Elephantpox, CrmC of CPXV strain Brighton Red and CrmB of VARV strain Bangladesh 1975. The corresponding genes were amplified by PCR from pre-existing constructs in the laboratory. , by a pair of oligonucleotides (Table 1) that added the BamHI target in 5 ' and Xhol in 3 ' and then cloned into the pFastBad of the same way as explained above. The resulting constructs were called pSP8, pSP9 and pSP12, respectively.
La construcción pSP24, para la expresión mediante baculovirus de una proteína CrmC fusionada al dominio SECRET de CrmD, se generó extrayendo por PCR el gen correspondiente del plásmido pSP22, que contenía esta fusión clonada en el vector pMS30. Para ello se utilizaron los oligonucleotidos 5'CrmC-Sp BamHI y CrmD33 y pSP22 como molde. Seguidamente, se subclonó el producto de PCR en el vector pFastBad en las dianas BamHI y Xhol. Todos los oligonucleotidos utilizados para las construcciones anteriores se listan en la Tabla 1 . The pSP24 construct, for baculovirus expression of a CrmC protein fused to the SECRET domain of CrmD, was generated by PCR extracting the corresponding plasmid pSP22 gene, which contained this fusion cloned into the pMS30 vector. For this, the 5 ' CrmC-Sp BamHI and CrmD33 and pSP22 oligonucleotides were used as a template. Next, the PCR product was subcloned into the pFastBad vector on the BamHI and Xhol targets. All oligonucleotides used for the above constructs are listed in Table 1.
Tabla 1. Lista de oligonucleotidos utilizados para la generación de las distintas construcciones. Se indica el nombre y la secuencia (5' a 3') de los distintos oligonucleotidos utilizados. Se señala también la construcción final y la proteína que se expresó en cada plásmido. En la secuencia se subraya los sitios de restricción Xhol (CTCGAG) o BamHI (GGATCC) que se incorporaron para el clonaje. Table 1. List of oligonucleotides used for the generation of the different constructions. The name and sequence (5 'to 3') of the different oligonucleotides used are indicated. The final construction and the protein expressed in each plasmid are also noted. The sequence underlines the Xhol restriction sites (CTCGAG) or BamHI (GGATCC) that were incorporated for cloning.
Oligonucleótido Secuencia ConstrucProteína ción  Oligonucleotide Sequence ConstrucProteína tion
CrmD33 GCGCTCGAGGCATCTCTTTCA pSP3 CrmD ECTV  CrmD33 GCGCTCGAGGCATCTCTTTCA pSP3 CrmD ECTV
CAATCATTTGG  CAATCATTTGG
CrmD34 GCGGGATCCGATGTTCCGTAT pSP3 CrmD  CrmD34 GCGGGATCCGATGTTCCGTAT pSP3 CrmD
ACACCCATTAATGGG  ACACCCATTAATGGG
CrmD36 GCGGGATCCTTTAACAGCATA pSP4 CrmD 163  CrmD36 GCGGGATCCTTTAACAGCATA pSP4 CrmD 163
GATGTAGAAATTAATATGTATC C  GATGTAGAAATTAATATGTATC C
CrmD87 G C G CTC G AG G C AC ATATTAC A pSP6 CRD-CrmD  CrmD87 G C G CTC G AG G C AC ATATTAC A pSP6 CRD-CrmD
TCTC CTTTAG ATG  TCTC CTTTAG ATG
5'CrmE- GGCGGATCCATGAAATGTGAA pSP8 CrmE CPXV SP BamHI CAAGGTGTCTC  5'CrmE- GGCGGATCCATGAAATGTGAA pSP8 CrmE CPXV SP BamHI CAAGGTGTCTC
3'CrmE- GGCCTCGAGGTCCTTGTCATT pSP8 CrmE CPXV SP Xhol GGTTTACATTGATCAG  3'CrmE- GGCCTCGAGGTCCTTGTCATT pSP8 CrmE CPXV SP Xhol GGTTTACATTGATCAG
5'CrmC-Sp C C C G G ATC C G ATATAC CTACT pSP9 CrmC CPXV BamHI TCGTCACTGCC  5'CrmC-Sp C C C G G ATC C G ATATAC CTACT pSP9 CrmC CPXV BamHI TCGTCACTGCC
3'CrmC-Sp GCGCTCGAGGCATTACATTTA pSP9 CrmC CPXV Xhol GATAGTTTGCATGG  3'CrmC-Sp GCGCTCGAGGCATTACATTTA pSP9 CrmC CPXV Xhol GATAGTTTGCATGG
5'CrmB VARV- GCGGGATCCGCACCGTATACA pSP12 CrmB VARV Sp BamHI CCACCCAATGG 3'CrmB VARV- GCGCTCGAGGCTAAAAAGCG pSP12 CrmB VARV5'CrmB VARV- GCGGGATCCGCACCGTATACA pSP12 CrmB VARV Sp BamHI CCACCCAATGG 3'CrmB VARV- GCGCTCGAGGCTAAAAAGCG pSP12 CrmB VARV
Sp Xhol GGTGGGTTTGG Sp Xhol GGTGGGTTTGG
Los mutantes puntuales de CrmD se realizaron utilizando el kit Quik Change Lightning Site-Directed Mutagenesis Kit (Agilent Technologies). Este kit permite realizar mutaciones dirigidas siguiendo un protocolo sencillo. Brevemente, tomando como molde el vector pSP3 (CrmD en pFastBad ) en el que se encuentra clonado el gen diana, se realizó una PCR con dos oligonucleótidos complementarios que contienen la mutación deseada. De esta manera se copió todo el vector incorporando la mutación. A continuación, se digirió con la enzima Dpnl el DNA original que, por encontrarse metilado, es susceptible a la digestión y se transformaron bacterias ultracompetentes XLI Gold. Finalmente, se comprobó la incorporación de la mutación por secuenciación del DNA extraído de colonias individuales. En la Tabla 2 se muestra la lista de oligonucleótidos utilizados para la generación de los mutantes puntuales de CrmD para la unión a GAGs. Point CrmD mutants were made using the Quik Change Lightning Site-Directed Mutagenesis Kit (Agilent Technologies). This kit allows to carry out targeted mutations following a simple protocol. Briefly, based on the pSP3 vector (CrmD in pFastBad) in which the target gene is cloned, a PCR was performed with two complementary oligonucleotides containing the desired mutation. In this way the entire vector was copied incorporating the mutation. Next, the original DNA was digested with the Dpnl enzyme which, being methylated, is susceptible to digestion and transformed XLI Gold ultracompetent bacteria. Finally, the incorporation of the mutation was verified by sequencing the DNA extracted from individual colonies. Table 2 shows the list of oligonucleotides used for the generation of specific CrmD mutants for binding to GAGs.
TABLA 2. Oligonucleótidos utilizados para la mutagénesis de CrmD. Se indican el nombre de la proteína muíante, la mutación incorporada, el nombre del oligonucleótido y la secuencia (5' a 3') con los residuos que difieren de la secuencia original resaltados en rojo. TABLE 2. Oligonucleotides used for CrmD mutagenesis. The name of the mutant protein, the incorporated mutation, the name of the oligonucleotide and the sequence (5 'to 3') are indicated with residues that differ from the original sequence highlighted in red.
proteína mutación Oligonusecuencia protein mutation Oligonsequence
cleótido  cleotide
GAG1 K245A CrmD97 GCAGTGCAAGATTAATCTAGAATCGCAT  GAG1 K245A CrmD97 GCAGTGCAAGATTAATCTAGAATCGCAT
GTAATTCTGGAAGAGAATCTAGA GTAATTCTGGAAGAGAATCTAGA
GAG1 K245A CrmD98 TCTAGATTCTCTTCCAGAATTACATGCGA GAG1 K245A CrmD98 TCTAGATTCTCTTCCAGAATTACATGCGA
TTCTAGATTAATCTTGCACTGC TTCTAGATTAATCTTGCACTGC
GAG2 R250A/R CrmD99 AGATTAATCTAGAAATCAAATGTAATTCT GAG2 R250A / R CrmD99 AGATTAATCTAGAAATCAAATGTAATTCT
253A G G AG C AG AATCTG C AC AACTAAC AC C C A  253A G G AG C AG AATCTG C AC AACTAAC AC C C A
CGACGAAG CGACGAAG
GAG2 R250A/R CrmD 100 CTTCGTCGTGGGTGTTAGTTGTGCAGAT GAG2 R250A / R CrmD 100 CTTCGTCGTGGGTGTTAGTTGTGCAGAT
253A TCTGCTCCAGAATTACATTTGATTTCTAG  253A TCTGCTCCAGAATTACATTTGATTTCTAG
ATTAATCT ATTAATCT
GAG3 K177A CrmD101 GTAGAAATTAATATGTATCCTGTTAACGC GAG3 K177A CrmD101 GTAGAAATTAATATGTATCCTGTTAACGC
GACCTCTTGTAATTCGAGTATAGGAAG GACCTCTTGTAATTCGAGTATAGGAAG
GAG3 K177A CrmD 102 CTTCCTATACTCGAATTACAAGAGGTCGC GAG3 K177A CrmD 102 CTTCCTATACTCGAATTACAAGAGGTCGC
GTTAACAGGATACATATTAA I I I CTAC GTTAACAGGATACATATTAA I I I CTAC
GAG4 K218A CrmD 103 TCTTTATTCGAGATTACTATTCAGTCGTT G ATG C ACTAG C AACTTC AG GTTT GAG4 K218A CrmD 103 TCTTTATTCGAGATTACTATTCAGTCGTT G ATG C ACTAG C AACTTC AG GTTT
GAG4 K218A CrmD104 AAACCTGAAGTTGCTAGTGCATCAACGA  GAG4 K218A CrmD104 AAACCTGAAGTTGCTAGTGCATCAACGA
CTGAATAGTAATCTCCAATAAAGA  CTGAATAGTAATCTCCAATAAAGA
Generación de baculovirus recombinantes Generation of recombinant baculovirus
Los baculovirus recombinantes se generaron utilizando el sistema de expresión Bac-to-Bac (Invitrogen) siguiendo las instrucciones del fabricante. Brevemente, los genes clonados en el vector pFastBad se pueden integrar en bácmidos del genoma del baculovirus bajo la actividad del promotor de la polihedrina mediante la transformación de células DHI Obac competentes tras un proceso de transposición. El DNA de los bácmidos recombinantes así obtenidos, se purificó y se transfectó con cellfectine (Invitrogen) en células de insecto Sf9 siguiendo las instrucciones del fabricante. Los baculovirus recombinantes se recogieron a las 72 h post-transfección de los sobrenadantes de las células transfectadas. Estos virus se denominaron PO (pase 0) y se guardaron a 4°C y en oscuridad. Posteriormente, estos PO se titularon y se amplificaron en un solo paso mediante la infección de células Sf9 a muy baja multiplicidad de infección (moi = 0,01 -0,05 unidad formadora de placa (ufp)/cel) con el fin de generar un stock de baculovirus recombinante de alto título (superior a 5 x 107 ufp/ml) para la expresión de proteína recombinante.  Recombinant baculoviruses were generated using the Bac-to-Bac expression system (Invitrogen) following the manufacturer's instructions. Briefly, the genes cloned into the pFastBad vector can be integrated into bacilli of the baculovirus genome under the activity of the polyhedrin promoter by transforming competent Obac DHI cells after a transposition process. The DNA of the recombinant bacmids thus obtained was purified and transfected with cellfectine (Invitrogen) in Sf9 insect cells following the manufacturer's instructions. Recombinant baculoviruses were collected at 72 h post-transfection of the supernatants of the transfected cells. These viruses were called PO (pass 0) and were stored at 4 ° C and in the dark. Subsequently, these POs were titrated and amplified in one step by infection of Sf9 cells at a very low multiplicity of infection (moi = 0.01-0.05 plaque forming unit (pfu) / cel) in order to generate a stock of high-titre recombinant baculovirus (greater than 5 x 10 7 pfu / ml) for recombinant protein expression.
Expresión y purificación de proteínas recombinantes Expression and purification of recombinant proteins
Se infectaron células de insecto H¡5 a alta moi (moi = 2-5 ufp/cel) con los baculovirus recombinantes correspondientes. A las 72 h postinfección se recogieron los sobrenadantes de la infección (100 mi) y se clarificaron mediante dos centrifugaciones sucesivas durante 5 min a 1 .200 rpm y 40 min a 6000 rpm, respectivamente. Posteriormente, se concentraron utilizando el sistema Stirred Ultrafiltration Cell 8200 (Amicon) hasta obtener un volumen final de 2,5 mi empleando membranas YM (Millipore) de un tamaño de diámetro de poro para un peso molecular límite (MWCO) de 10.000 Da. Los sobrenadantes así concentrados, se filtraron con filtros de 0,22 μηι y se dializaron en "tampón de unión" (50 mM fosfato sódico (pH 7,4), 300 mM NaCI, 10 mM imidazol) empleando columnas de gel filtración PD10 (Amersham Biosciences). La proteína se purificó mediante cromatografía de afinidad a níquel (resina Níquel-NTA, Qiagen). Para ello, los sobrenadantes concentrados y dializados se incubaron en "tampón de unión" durante 1 h a 4°C con 0,5 mi de resina por cada 100 mi de sobrenadante inicial. A continuación, la resina se montó en columna (Poly-Prep, Bio-Rad) y se lavó con 40 mi de "tampón de lavado" (50 mM fosfato sódico (pH 7,4), 300 mM NaCI, 20 mM imidazol) para eliminar proteínas unidas ¡nespecíficamente. Tras ello, se procedió a eluir la proteína de interés mediante "tampón de elución" con concentraciones crecientes de imidazol (60, 100 y 250 mM) en 50 mM fosfato sódico (pH 7,4), 300 mM NaCI. La proteína se recogió en fracciones de 0,5 mi cada una y se analizó mediante electroforesis en gel de poliacrilamida con dodecilsulfato sódico (SDS-PAGE) y tinción con azul de Coomassie. Posteriormente, se juntaron las fracciones con mayor grado de pureza y cantidad de proteína, se concentraron y se dializaron en PBS utilizando micro columnas Vivaspin 500 (Sartorius) con un MWCO de 10.000 Da. Finalmente, la concentración exacta de los stocks de proteína obtenidos se determinó mediante BCA (BCA protein assay kit, Pierce) y densitometría respecto a sendas calibraciones con BSA (Sigma). H5 insect cells were infected at high moi (moi = 2-5 pfu / cel) with the corresponding recombinant baculoviruses. At 72 h post-infection the supernatants of the infection (100 ml) were collected and clarified by two successive centrifugations for 5 min at 1,200 rpm and 40 min at 6000 rpm, respectively. Subsequently, they were concentrated using the Stirred Ultrafiltration Cell 8200 (Amicon) system to obtain a final volume of 2.5 ml using YM membranes (Millipore) of a pore diameter size for a molecular weight limit (MWCO) of 10,000 Da. The supernatants thus concentrated were filtered with 0.22 μηι filters and dialyzed in "binding buffer" (50 mM sodium phosphate (pH 7.4), 300 mM NaCI, 10 mM imidazole) using PD10 filtration gel columns ( Amersham Biosciences). The protein was purified by nickel affinity chromatography (Nickel-NTA resin, Qiagen). For this, the concentrated and dialyzed supernatants were incubated in "binding buffer" for 1 h at 4 ° C with 0.5 ml of resin per 100 ml of initial supernatant. Then, the resin was mounted on a column (Poly-Prep, Bio-Rad) and washed with 40 ml of "wash buffer" (50 mM sodium phosphate (pH 7.4), 300 mM NaCI, 20 mM imidazole) to remove bound proteins specifically. After that, the protein of interest was eluted by "elution buffer" with increasing concentrations of imidazole (60, 100 and 250 mM) in 50 mM sodium phosphate (pH 7.4), 300 mM NaCI. The protein was collected in fractions of 0.5 ml each and analyzed by polyacrylamide gel electrophoresis with sodium dodecyl sulfate (SDS-PAGE) and Coomassie blue staining. Subsequently, the fractions with the highest degree of purity and amount of protein were pooled, concentrated and dialyzed in PBS using Vivaspin 500 (Sartorius) micro columns with a MWCO of 10,000 Da. Finally, the exact concentration of the protein stocks obtained was determined by BCA (BCA protein assay kit, Pierce) and densitometry with respect to both calibrations with BSA (Sigma).
Resonancia de los plasmones de superficie Resonance of surface plasmons
Se generó un chip acoplado con heparina biotinilada (Calbiochem). Se acoplaron 2.000 RUs de estreptavidina (Sigma), diluida en acetato pH 4,0 a 0,2 mg/ml, en un chip CM4 mediante el sistema de inmobilización covalente por aminas en las dos celdas del chip. Se bloquearon los sitios activos de la matriz con etanolamina 1 M pH 8,5 y seguidamente, se pasaron 5 g/ml de heparina biotinilada diluida en HBS-EP con 300 mM de NaCI por una de las dos celdas. La otra celda, en la que sólo se acopló estreptavidina, se utilizó como control de uniones inespecíficas. De esta manera, se consiguieron capturar 50 RUs de heparina de forma prácticamente irreversible debido a la altísima afinidad de la interacción estreptavidina-biotina (KD~10-14 M). Para analizar la afinidad por la heparina, se pasaron distintas concentraciones de proteína recombinante purificada en tampón HBS-EP, regenerando posteriormente el chip con inyecciones de 1 min con 2 M MgCI2. Los sensorgramas se normalizaron y ajustaron a un modelo de Langmuir 1 :1 para determinar las constantes de afinidad mediante el paquete informático Bioevaluation 3.2. A chip coupled with biotinylated heparin (Calbiochem) was generated. 2,000 RUs of streptavidin (Sigma), diluted in acetate pH 4.0 to 0.2 mg / ml, were coupled into a CM4 chip by the covalent immobilization system by amines in the two cells of the chip. The active sites of the matrix were blocked with 1 M ethanolamine pH 8.5 and then 5 g / ml of biotinylated heparin diluted in HBS-EP with 300 mM NaCI was passed through one of the two cells. The other cell, in which only streptavidin was coupled, was used as a control for nonspecific junctions. In this way, 50 RUs of heparin were captured almost irreversibly due to the high affinity of the streptavidin-biotin interaction (KD ~ 10-14 M). To analyze the affinity for heparin, different concentrations of purified recombinant protein in HBS-EP buffer were passed, subsequently regenerating the chip with injections of 1 min with 2M MgCl2. The sensorgrams were standardized and adjusted to a Langmuir 1: 1 model to determine the affinity constants using the Bioevaluation 3.2 software package.
Se evaluó la especificidad de la interacción CrmD-heparina mediante un ensayo de competición con GAGs solubles, heparina, heparan-sulfato (HS) y condroitin sulfato A (CSA) y B (CSB) (Sigma). Para ello, se preincubó la proteína CrmD (30 nM), diluida en HBS-EP, con cantidades crecientes de los distintos GAGs solubles, en hielo durante 15 min. La mezcla se pasó por el chip de heparina y se recogió la respuesta en el equilibrio para cada muestra. Se analizó el porcentaje del aumento de señal en cada muestra respecto al valor obtenido para la proteína CrmD en ausencia de GAGs solubles. The specificity of the CrmD-heparin interaction was evaluated by a competition assay with soluble GAGs, heparin, heparan sulfate (HS) and chondroitin sulfate A (CSA) and B (CSB) (Sigma). For this, the CrmD protein (30 nM), diluted in HBS-EP, with increasing amounts of the various soluble GAGs, was pre-incubated on ice for 15 min. The mixture was passed through the heparin chip and the equilibrium response was collected for each sample. The percentage of the signal increase in each sample was analyzed with respect to the value obtained for the CrmD protein in the absence of soluble GAGs.
Citometría de flujo Flow cytometry
Se analizó la unión de proteína recombinante a la superficie de las líneas celulares, L929, MOLT4 y mutantes de células CHO para la expresión de GAGs en superficie, CHO-K1 , CHO-618 y CHO-745. Las células CHO-K1 tienen una expresión normal de GAGs en superficie, sin embargo, las células CHO-745 no sintetizan HS ni CS y las CHO-618 carecen absolutamente de cualquier tipo de GAGs en superficie (Zhang y cois., 2006). Se incubaron 300.000 células con 200 nM de proteína en 50 μΙ de PBS-staining (PBS suplementado con 1 % FCS y 1 % BSA) durante 30 min en hielo. Para detectar las proteínas en la superficie, se incubó durante 20 min con una dilución 1 :400 en PBS-staining del anticuerpo de ratón monoclonal anti-PentaHis (Qiagen) seguida del mareaje con un anticuerpo secundario anti-mouse conjugado con Alexa488 (Invitrogen) a 1 :500 en PBS-staining en oscuridad durante 20 min. Se recogieron 10.000 eventos en un citómetro FACSCantoll (BD Bioscience) y se analizaron en el programa informático FlowJo 7.2.2 (Treestar). Inmunofluorescencia The binding of recombinant protein to the surface of the cell lines, L929, MOLT4 and CHO cell mutants for the expression of surface GAGs, CHO-K1, CHO-618 and CHO-745 was analyzed. CHO-K1 cells have a normal expression of surface GAGs, however, CHO-745 cells do not synthesize HS or CS and CHO-618 absolutely lack any type of surface GAGs (Zhang et al., 2006). 300,000 cells were incubated with 200 nM protein in 50 μΙ of PBS-staining (PBS supplemented with 1% FCS and 1% BSA) for 30 min on ice. To detect surface proteins, it was incubated for 20 min with a 1: 400 dilution in PBS-staining of the anti-PentaHis monoclonal mouse antibody (Qiagen) followed by the marking with a secondary anti-mouse antibody conjugated to Alexa488 (Invitrogen) at 1: 500 in PBS-staining in darkness for 20 min. 10,000 events were collected on a FACSCantoll cytometer (BD Bioscience) and analyzed in the FlowJo 7.2.2 software (Treestar). Immunofluorescence
Se utilizaron células L929 sembradas en confluencia en cubreobjetos previamente lavados con etanol y expuestos a luz UV. Las células se incubaron con 150 μΙ de 200 nM de la proteína recombinante en PBS-staining durante 30 min a 4°C y después se fijaron con 4% de PFA en PBS a temperatura ambiente (RT). Se lavaron los cubres tres veces y se procedió al bloqueo de los sitios inespecíficos incubando con PBS suplementado con 5% FCS durante 15 min a RT. Para detectar la proteína en superficie se utilizó una dilución 1 :600 en PBS suplementado con 1 % FCS del anticuerpo monoclonal de ratón anti-V5 (Invitrogen) seguido del mareaje con un anticuerpo secundario anti-ratón conjugado con Alexa488 (Invitrogen) diluido 1 :900 en PBS suplementado con 1 % FCS. Para el montaje, se pasaron los cubres secuencialmente por PBS, agua y etanol y se colocaron sobre los portaobjetos con una gota de medio de montaje Prolong (Invitrogen). Las muestras se observaron y analizaron mediante un microscopio de fluorescencia Axioskop2 plus (Zeiss) acoplado a una cámara Coolsnap FX (Roper Scientific) controlada por el software MetaVue 5.07 (Molecular Devices).  L929 cells seeded at confluence were used on coverslips previously washed with ethanol and exposed to UV light. The cells were incubated with 150 μΙ of 200 nM of the recombinant protein in PBS-staining for 30 min at 4 ° C and then fixed with 4% PFA in PBS at room temperature (RT). The covers were washed three times and the nonspecific sites were blocked by incubating with PBS supplemented with 5% FCS for 15 min at RT. To detect the surface protein, a 1: 600 dilution in PBS supplemented with 1% FCS of the anti-V5 mouse monoclonal antibody (Invitrogen) was used followed by marking with a secondary anti-mouse antibody conjugated to Alexa488 (Invitrogen) diluted 1: 900 in PBS supplemented with 1% FCS. For assembly, the covers were passed sequentially through PBS, water and ethanol and placed on the slides with a drop of Prolong mounting medium (Invitrogen). The samples were observed and analyzed by means of an Axioskop2 plus (Zeiss) fluorescence microscope coupled to a Coolsnap FX camera (Roper Scientific) controlled by MetaVue 5.07 software (Molecular Devices).
Precipitación con resina de heparina Precipitation with heparin resin
Las proteínas recombinantes utilizadas para este ensayo se incubaron en presencia o ausencia de TNFa, durante 1 h a RT en agitación rotatoria con 20 μΙ de una resina de heparina acoplada a agarosa (50%, v/v) en 400 μΙ de tampón de unión (PBS suplementado con 0,2% FCS). Tras ese tiempo se recuperaron las esferas de agarosa centrifugando 1 min a 13.000 rpm. Se decantaron los sobrenadantes y las esferas se lavaron con tampón de unión tres veces. La proteína unida se eluyó de la resina añadiendo 25 μΙ de tampón de carga para SDS-PAGE e hirviendo la muestra durante 5 min. Las proteínas se detectaron mediante inmunoelectrotransferencia (Western blot) con los anticuerpos anti-PentaHis (1 :2.000) (Qiagen) y anti-TNF (1 : 1 .000) (R&D Systems) y los secundarios conjugados con peroxidasa anti-ratón (1 :5.000) (GE Healthcare) y anti-cabra (1 : 1 .000) (R&D Systems), respectivamente. Ensayos de citotoxicidad con TNFa The recombinant proteins used for this assay were incubated in the presence or absence of TNFa, for 1 h at RT under rotational agitation with 20 μΙ of an agarose-coupled heparin resin (50%, v / v) in 400 μΙ of binding buffer ( PBS supplemented with 0.2% FCS). After that time the agarose spheres were recovered by centrifuging 1 min at 13,000 rpm. The supernatants were decanted and the spheres were washed with binding buffer three times. The bound protein was eluted from the resin by adding 25 μΙ of loading buffer for SDS-PAGE and boiling the sample for 5 min. Proteins were detected by immunoblotting (Western blot) with anti-PentaHis (1: 2,000) (Qiagen) and anti-TNF (1: 1,000) (R&D Systems) antibodies and secondary anti-mouse peroxidase conjugates (1 : 5,000) (GE Healthcare) and anti-goat (1: 1, 000) (R&D Systems), respectively. Cytotoxicity assays with TNFa
Para valorar la actividad in vitro de las distintas construcciones de CrmD, se llevaron a cabo experimentos de citotoxicidad en células L929, una línea de fibroblastos de ratón, siguiendo un protocolo puesto a punto en el laboratorio (Alejo y cois., 2006). Para ello, se incubó 6 pM de TNFa de ratón en ausencia o presencia de 10ug/ml de proteína recombinante. Tras 1 h de incubación a 37°C en DMEM suplementado con 2% FBS, se añadió la mezcla sobre células L929 sembradas el día antenor en placas M96 a 10.000 células/pocilio. Para acelerar el efecto citotóxico de la citoquina empleada en cada caso, se añadió a las células el inhibidor de la transcripción, actinomicina D (Sigma), a una concentración final de 4 g/ml. Para evaluar si efectivamente, las proteínas retenidas en la superficie celular podían inhibir la acción del TNFa, se repitió el experimento incubando previamente las proteínas con las células. Tras 30 minutos de incubación y los procedentes lavados con medio fresco, se añadió el TNFa en las mismas condiciones que lo explicado anteriormente.  To assess the in vitro activity of the different CrmD constructs, cytotoxicity experiments were carried out on L929 cells, a line of mouse fibroblasts, following a protocol set up in the laboratory (Alejo et al., 2006). For this, 6 pM of mouse TNFa was incubated in the absence or presence of 10ug / ml of recombinant protein. After 1 h of incubation at 37 ° C in DMEM supplemented with 2% FBS, the mixture was added on L929 cells seeded the day before in M96 plates at 10,000 cells / well. To accelerate the cytotoxic effect of the cytokine used in each case, the transcription inhibitor, actinomycin D (Sigma), was added to the cells at a final concentration of 4 g / ml. To assess whether the proteins retained on the cell surface could effectively inhibit the action of TNFa, the experiment was repeated by previously incubating the proteins with the cells. After 30 minutes of incubation and those from washed with fresh medium, TNFa was added under the same conditions as explained above.
Tras 18 h de incubación, se midió la viabilidad celular añadiendo 20 μΙ por pocilio de Cell Titter AQueous One Solution (Promega) y determinando la absorbancia a 492 nm en un lector de placas Sunrise (Tecan). After 18 h of incubation, cell viability was measured by adding 20 μΙ per well of Cell Titter AQueous One Solution (Promega) and determining the absorbance at 492 nm in a Sunrise plate reader (Tecan).
Ensayos de quimiotaxis Chemotaxis Assays
Con el objetivo de evaluar la capacidad anti-CK de CrmD y otras proteínas recombinantes, se realizaron experimentos de inhibición de la migración inducida por CKs en transwell (Zaballos y cois., 1999).  With the objective of evaluating the anti-CK capacity of CrmD and other recombinant proteins, CKs-induced migration inhibition experiments were performed in transwell (Zaballos et al., 1999).
El día del ensayo se recogieron las células MOLT4 en crecimiento exponencial y, tras lavarlas con PBS, se resuspendieron a 10 x 106 células/ml en RPMI suplementado con 0,1 % de FCS. Para estos ensayos se utilizaron placas M96 en transwell (Neuroprobe). En los pocilios inferiores se incubó la CK CCL25 en ausencia o presencia de cantidades crecientes de proteína purificada en RPMI suplementado con 0, 1 % FCS, a 37°C durante 30 min. Se colocó la membrana sobre la placa y se repartieron 25μΙ de la suspensión de células en cada uno de los compartimentos superiores. Tras 3-4 h de migración a 37 °C, se lavaron las células restantes de los compartimentos superiores con PBS y se centrifugaron las placas dos min a 1 .000 rpm antes de retirar la membrana. Se cuantificó el número de células que atravesaron la membrana hacia los pocilios inferiores donde se encontraba la CK añadiendo 5 μΙ/pocillo de Cell Titter AQueous One Solution (Promega) y midiendo la absorbancia a 492 nm. Los resultados se representaron como el porcentaje en relación a la migración en ausencia de proteína recombinante. Los datos se normalizaron previamente con la absorbancia en ausencia de CK. On the test day MOLT4 cells were harvested in exponential growth, and after washing with PBS, resuspended at 10 x 10 6 cells / ml in RPMI supplemented with 0.1% FCS. For these tests, M96 plates were used in transwell (Neuroprobe). In the lower wells the CK CCL25 was incubated in the absence or presence of increasing amounts of purified protein in RPMI supplemented with 0.1% FCS, at 37 ° C for 30 min. The membrane was placed on the plate and 25μΙ of the cell suspension was distributed in each of the upper compartments. After 3-4 h of migration at 37 ° C, the remaining cells of the upper compartments were washed with PBS and the plates were centrifuged two min at 1000 rpm before removing the membrane. The number of cells that crossed the membrane into the lower wells where the CK was located was quantified by adding 5 μΙ / well of Cell Titter AQueous One Solution (Promega) and measuring the absorbance at 492 nm. The results were represented as the percentage in relation to migration in the absence of recombinant protein. Data were previously normalized with absorbance in the absence of CK.
Resultados Results
Dominios SECRET codificados por poxvirus que interaccionan con GAGs Los genes y proteínas virales que incluyen un domino SECRET de unión a quimioquinas con la capacidad de unirse a GAGs consisten en las siguientes secuencias (ver Listado de Secuencias): SECRET domains encoded by poxviruses that interact with GAGs Viral genes and proteins that include a SECRET chemokine-binding domain with the ability to bind to GAGs consist of the following sequences (see Sequence Listing):
- CrmD de CPXV: gen V221 (SEQ ID No 1 ) y proteína (SEQ ID No 2)  - CPXV CrmD: V221 gene (SEQ ID No 1) and protein (SEQ ID No 2)
- CrmD de ECTV: gen E3 (SEQ ID No 3) y proteína (SEQ ID No 4)  - ECTV CrmD: E3 gene (SEQ ID No 3) and protein (SEQ ID No 4)
- Dominio SECRET de SCP-1 de ECTV: gen E12 (SEQ ID No 5) y proteína (SEQ ID No 6) - ECTV SCP-1 SECRET domain: E12 gene (SEQ ID No 5) and protein (SEQ ID No 6)
- Dominio SECRET de SCP-1 de CPXV: gen V014 (SEQ ID No 7) y proteína (SEQ ID No 8)  - SECRET domain of SCP-1 of CPXV: gene V014 (SEQ ID No 7) and protein (SEQ ID No 8)
- CrmB de VARV: gen G2R (SEQ ID No 9) y proteína (SEQ ID No 10)  - VARV CrmB: G2R gene (SEQ ID No 9) and protein (SEQ ID No 10)
- CrmB de CPXV: gen V005 (SEQ ID No 1 1 ) y proteína (SEQ ID No 12)- CPXV CrmB: V005 gene (SEQ ID No. 1 1) and protein (SEQ ID No. 12)
- Dominio SECRET de SCP-3 de CPXV: gen V218 (SEQ ID No 13) y proteína (SEQ ID No 14) - SECRET domain of SCP-3 of CPXV: gene V218 (SEQ ID No 13) and protein (SEQ ID No 14)
- Dominio SECRET de SCP-3 de VACV: gen VACWR206 (SEQ ID No 15) y proteína (SEQ ID No 16)  - VACV SCP-3 SECRET domain: VACWR206 gene (SEQ ID No 15) and protein (SEQ ID No 16)
- Dominio SECRET de SCP-2 de VACV: gen VACWR189 (SEQ ID No 17) y proteína (SEQ ID No 18) - Dominio SECRET de SCP-2 de ECTV: gen E184 (SEQ ID No 19) y proteína (SEQ ID No 20) - VACV SCP-2 SECRET domain: VACWR189 gene (SEQ ID No 17) and protein (SEQ ID No 18) - ECTV SCP-2 SECRET domain: E184 gene (SEQ ID No 19) and protein (SEQ ID No 20)
- Dominio SECRET de CrmD de CPXV: gen (SEQ ID No 21 ) y proteína (SEQ ID No 22)  - SECRET domain of CPXV CrmD: gene (SEQ ID No 21) and protein (SEQ ID No 22)
- Dominio SECRET de CrmD de ECTV: gen (SEQ ID No 23) y proteína (SEQ ID No 24) - SECRET domain of ECTV CrmD: gene (SEQ ID No 23) and protein (SEQ ID No 24)
- Dominio SECRET de CrmB de CPXV: gen (SEQ ID No 25) y proteína (SEQ ID No 26)  - CPXV CrmB SECRET domain: gene (SEQ ID No 25) and protein (SEQ ID No 26)
- Dominio SECRET de CrmB de VARV: gen (SEQ ID No 27) y proteína (SEQ ID No 28)  - VARV CrmB SECRET domain: gene (SEQ ID No 27) and protein (SEQ ID No 28)
Diferentes alineamientos de secuencia mostrando la homología de  Different sequence alignments showing the homology of
aminoácidos se muestran en los Alineamientos de Secuencias. Amino acids are shown in Sequence Alignments.
CrmD se une a GAGs con alta afinidad CrmD joins GAGs with high affinity
Primeramente, se analizó la posible interacción de CrmD a GAGs mediante estudios de SPR con chips de hepanna. Se acoplaron 50 RUs de hepanna biotinilada a chips CM4 en los que previamente se habían inmovilizado 2.000 RUs de streptavidina. Seguidamente, se inyectó sobre el chip 300 nM de CrmD recombinante en buffer HBS-EP observándose una respuesta muy significativa e indicativa de una fuerte unión entre CrmD y la hepanna. De hecho, se calculó la afinidad de esta interacción CrmD-heparina, inyectando distintas concentraciones de CrmD sobre el chip, obteniendo una constante de afinidad KD= 3,30 nM (Figura 1A) lo que la sitúa en el mismo orden que las interacciones de B18 (Montanuy y cois., 201 1 ) y E163 (Ruiz-Arguello y cois., 2008) con hepanna. First, the possible interaction of CrmD to GAGs was analyzed by SPR studies with hepanna chips. 50 RUs of biotinylated hepanna were coupled to CM4 chips in which 2,000 RUs of streptavidin had previously been immobilized. Then, 300 nM of recombinant CrmD in HBS-EP buffer was injected onto the chip, observing a very significant response and indicative of a strong bond between CrmD and hepanna. In fact, the affinity of this CrmD-heparin interaction was calculated, injecting different concentrations of CrmD on the chip, obtaining an affinity constant KD = 3.30 nM (Figure 1A) which places it in the same order as the interactions of B18 (Montanuy et al., 201 1) and E163 (Ruiz-Arguello et al., 2008) with hepanna.
Se estudió también la especificidad de la interacción de CrmD con GAGs realizando experimentos de competición en los que la unión de CrmD al chip de heparina se compitió con concentraciones crecientes de distintos GAGs solubles. La heparina soluble fue la que presentó mejor eficacia a la hora de inhibir la unión de CrmD a la superficie. Sin embargo tanto el HS como el CSA y el CSB, con menor grado de sulfatación, bloquearon también la interacción CrmD-heparina de manera dosis dependiente aunque con peor eficiencia que la heparina. Mientras que con menos de Ι μς/ηιΙ de heparina se consiguió inhibir el 50% de la unión de CrmD a la superficie, se necesitaron al menos 10Mg/ml de CSA, CSB o HS para bloquear el 50% de la interacción (Figura 1 B). No se encontraron diferencias significativas entre HS, CSA y CSB. Estos datos sugieren que CrmD es capaz de interaccionar con distintos tipos de GAGs pero presenta una mayor afinidad por la heparina. The specificity of the interaction of CrmD with GAGs was also studied by performing competition experiments in which the binding of CrmD to the heparin chip was competed with increasing concentrations of different soluble GAGs. Soluble heparin was the one that presented the best efficacy in inhibiting the binding of CrmD to the surface. However, both HS and CSA and CSB, with a lower degree of sulfation, also blocked the interaction CrmD-heparin in a dose-dependent manner although with worse efficiency than heparin. While with less than Ιμς / ηιΙ of heparin it was possible to inhibit 50% of the CrmD binding to the surface, at least 10Mg / ml of CSA, CSB or HS was needed to block 50% of the interaction (Figure 1 B). No significant differences were found between HS, CSA and CSB. These data suggest that CrmD is able to interact with different types of GAGs but has a greater affinity for heparin.
CrmD interacciona con GAGs a través del dominio SECRET CrmD interacts with GAGs through the SECRET domain
Se ha demostrado que CrmD es capaz de interaccionar con GAGs, lo que potencialmente le atribuiría la capacidad de unirse a las superficies celulares o a la matriz extracelular. Con el fin de conocer si esta interacción con GAGs estaba mediada por uno u otro dominio o si por el contrario era una propiedad de la proteína completa, se inyectaron 300 nM de las proteínas recombinantes CRD-CrmD y CrmD163 sobre el chip de heparina. La proteína CrmD163, que contiene el dominio SECRET, fue capaz de interaccionar con heparina, sin embargo, para CRD-CrmD no se detectó unión (Figura 2A). CrmD has been shown to be able to interact with GAGs, which would potentially attribute the ability to bind to cell surfaces or the extracellular matrix. In order to know if this interaction with GAGs was mediated by one domain or another or if it was a property of the complete protein, 300 nM of the CRD-CrmD and CrmD163 recombinant proteins were injected onto the heparin chip. The CrmD163 protein, which contains the SECRET domain, was able to interact with heparin, however, for CRD-CrmD no binding was detected (Figure 2A).
Las superficies celulares son ricas en GAGs. Para confirmar que la unión a GAGs de CrmD y CrmD163, permitía a estas proteínas retenerse en las superficies celulares, se utilizó un ensayo de citometría de flujo en el que se incubaron 200 nM de las distintas proteínas recombinantes con células L929 y MOLT4. Como se puede ver en la figura 2B, sólo CrmD y CrmD163 quedaron retenidos en la superficie de estas dos líneas celulares, mientras que no se detectó la presencia de CRD-CrmD. Las proteínas E163 y B18 se muestran como controles positivos de la interacción con la superficie y vCCI como control negativo. Cellular surfaces are rich in GAGs. To confirm that the binding to GAGs of CrmD and CrmD163, allowed these proteins to be retained on cell surfaces, a flow cytometry assay was used in which 200 nM of the different recombinant proteins were incubated with L929 and MOLT4 cells. As can be seen in Figure 2B, only CrmD and CrmD163 were retained on the surface of these two cell lines, while the presence of CRD-CrmD was not detected. The E163 and B18 proteins are shown as positive controls of the interaction with the surface and vCCI as a negative control.
Con el fin de confirmar que la interacción de CrmD con la superficie celular estaba mediada por GAGs, se realizó un experimento de citometría de flujo similar al anterior en el que se utilizaron tres líneas celulares con distinto patrón de expresión de GAGs en superficie (Figura 3): i) células CHO-K1 que presentan un 40-70% de HS y un 30-55% de CS , ¡i) células CHO-745 con una expresión de GAGs reducida y iii) la línea CHO-618 que carece completamente de GAGs. Como se muestra en la Figura 43, mientras que CrmD y CrmD163, pero no CRD-CrmD, se unieron a la superficie de células CHO-K1 , ninguna de las proteínas se retuvo en la superficie de células CHO-745 o CHO-618. Estos resultados corroboraron que CrmD es capaz de unirse a los GAGs presentes en las membranas celulares y que lo hace a través del dominio SECRET. In order to confirm that the interaction of CrmD with the cell surface was mediated by GAGs, a flow cytometry experiment similar to the previous one was performed in which three cell lines with different surface pattern of GAGs expression were used (Figure 3 ): i) CHO-K1 cells that they have 40-70% of HS and 30-55% of CS, i) CHO-745 cells with reduced GAG expression and iii) the CHO-618 line that completely lacks GAGs. As shown in Figure 43, while CrmD and CrmD163, but not CRD-CrmD, bound to the surface of CHO-K1 cells, none of the proteins were retained on the surface of CHO-745 or CHO-618 cells. These results corroborated that CrmD is capable of binding to the GAGs present in cell membranes and that it does so through the SECRET domain.
Se llevó a cabo un experimento similar para la unión a células L929 utilizando los cuatro vTNFRs distintos purificados, CrmD_ECTV, CrmB_VARV, CrmC_CPXV y CrmE_CPXV. Como se ve en la Figura 4, sólo CrmB_VARV y CrmD_ECTV se unieron a células CHO-K1 mientras que CrmC_CPXV y CrmE_CPXV, carentes del dominio SECRET, como era de esperar, no quedaron retenidas (Figura 4A). Sin embargo, una construcción generada en baculovirus que expresaba CrmC fusionada al SECRET de CrmD (CrmC-SECRET) sí que interaccionó con la superficie de estas células (Figura 4A). Este mismo resultado se confirmó realizando una inmunofluorescencia de células L929 incubadas con 200 nM de cada vTNFR. Se observó marca fluorescente sólo en aquellas células que fueron incubadas con CrmD_ECTV, CrmB_VARV o CrmC-SECRET (Figura 4B). De esta manera, se pudo concluir que los vTNFRs, CrmD y CrmB, se unen a GAGs gracias a su dominio de unión a CKs SECRET. A similar experiment was performed for binding to L929 cells using the four different purified vTNFRs, CrmD_ECTV, CrmB_VARV, CrmC_CPXV and CrmE_CPXV. As seen in Figure 4, only CrmB_VARV and CrmD_ECTV joined CHO-K1 cells while CrmC_CPXV and CrmE_CPXV, lacking SECRET domain, as expected, were not retained (Figure 4A). However, a baculovirus-generated construct expressing CrmC fused to the CrmD SECRET (CrmC-SECRET) did interact with the surface of these cells (Figure 4A). This same result was confirmed by performing an immunofluorescence of L929 cells incubated with 200 nM of each vTNFR. Fluorescent label was observed only in those cells that were incubated with CrmD_ECTV, CrmB_VARV or CrmC-SECRET (Figure 4B). In this way, it could be concluded that the vTNFRs, CrmD and CrmB, join GAGs thanks to their binding domain to CKs SECRET.
Mediante la unión a GAGs, CrmD puede interaccionar con TNFoc en la superficie celular By binding to GAGs, CrmD can interact with TNFoc on the cell surface
Para conocer si el CrmD unido a GAGs es capaz de interaccionar con TNF se utilizaron dos aproximaciones distintas, un ensayo por SPR y una precipitación con heparina acoplada a una resina de agarosa. Mediante SPR, se comprobó que el mTNFa fue capaz de interaccionar con CrmD previamente unido a la superficie de heparina. Se inyectaron 300 nM de CrmD sobre el chip de heparina y sin regenerar la superficie se pasaron 100 nM de mTNFa. Se observó un aumento en la señal al inyectar el mTNFa que no se detectó cuando se pasó la citoquina tras la unión de 300 nM de B18 de VACV, una proteína no relevante para la unión de mTNFa pero que sí se une GAGs (Figura 5A). Por tanto, CrmD puede interaccionar simultáneamente con mTNFa y con GAGs. To know if CrmD linked to GAGs is capable of interacting with TNF, two different approaches were used, a SPR test and a precipitation with heparin coupled to an agarose resin. Through SPR, it was found that mTNFa was able to interact with CrmD previously bound to the heparin surface. 300 nM CrmD was injected onto the heparin chip and without regenerating the surface 100 were passed nM of mTNFa. An increase in the signal was observed when injecting the mTNFa that was not detected when the cytokine was passed after the binding of 300 nM of VACV B18, a protein not relevant for the binding of mTNFa but which does bind GAGs (Figure 5A) . Therefore, CrmD can interact simultaneously with mTNFa and with GAGs.
Estos resultados se confirmaron mediante una precipitación con una resina de agarosa-heparina. Esta resina se incubó durante 1 h con 200 nM de B18 de VACV, CRD-CrmD y CrmD. Tras esta incubación y los lavados correspondientes se añadió a la resina 200 nM de mTNFa y se analizaron las muestras mediante western blot para detectar la presencia de mTNFa y de la proteína recombinante. Como se muestra en la Figura 5B, CrmD (línea 4) y B18 de VACV (línea 9), pero no CRD-CrmD (línea 6), se unieron a la resina y además el mTNFa quedó retenido sólo en la resina previamente incubada con CrmD (línea 4) (Figura 5B). These results were confirmed by precipitation with an agarose-heparin resin. This resin was incubated for 1 h with 200 nM B18 of VACV, CRD-CrmD and CrmD. After this incubation and the corresponding washes 200 mM of mTNFa was added to the resin and the samples were analyzed by western blot to detect the presence of mTNFa and the recombinant protein. As shown in Figure 5B, CrmD (line 4) and B18 of VACV (line 9), but not CRD-CrmD (line 6), were bound to the resin and also the mTNFa was retained only in the resin previously incubated with CrmD (line 4) (Figure 5B).
Con el fin de conocer también si esta interacción de CrmD con mTNFa en superficie, era además efectiva para bloquear los efectos de la citoquina, se realizó un experimento de citotoxicidad con células L929 con una variación. Las proteínas a estudiar, CrmD, CRD-CrmD, CrmC, CrmC-SECRET y hTNFR2 se incubaron previamente sobre las células a 10 g/ml. Tras una serie de lavados se añadió una cantidad activa de mTNFa (6 pM) y a las 16 h se comprobó la viabilidad celular. Como control, se repitieron las condiciones de este experimento pero preincubando las proteínas recombinantes con mTNFa y añadiendo la mezcla sobre células L929 después de 1 h. Se observó que, efectivamente, en solución, todas las proteínas inhibieron la muerte celular. Sin embargo, sólo CrmD y la proteína CrmC-SECRET se retuvieron tras los lavados en la superficie de las células pudiendo interaccionar posteriormente con el mTNFa inhibiendo su efecto (Figura 5C). Estos resultados sugieren que la unión de CrmD con GAGs no interfiere con la unión del TNFa y que, de esta manera, CrmD puede inhibir el TNF en la superficie de las células. Además, al añadir el dominio SECRET a CrmC se consiguió una proteína (CrmC-SECRET) capaz de retenerse en la membrana celular y proteger del efecto citotóxico posterior del mTNFa. In order to also know if this interaction of CrmD with mTNFa on the surface was also effective in blocking the effects of cytokine, a cytotoxicity experiment was performed with L929 cells with a variation. The proteins to be studied, CrmD, CRD-CrmD, CrmC, CrmC-SECRET and hTNFR2 were previously incubated on the cells at 10 g / ml. After a series of washes an active amount of mTNFa (6 pM) was added and at 16 h the cell viability was checked. As a control, the conditions of this experiment were repeated but pre-incubating the recombinant proteins with mTNFa and adding the mixture on L929 cells after 1 h. It was observed that, effectively, in solution, all proteins inhibited cell death. However, only CrmD and the CrmC-SECRET protein were retained after washing on the surface of the cells and could subsequently interact with the mTNFa inhibiting its effect (Figure 5C). These results suggest that the binding of CrmD with GAGs does not interfere with the binding of TNFa and that, in this way, CrmD can inhibit TNF on the surface of cells. In addition, adding a SECRET domain to CrmC achieved a protein. (CrmC-SECRET) capable of retaining on the cell membrane and protecting against the subsequent cytotoxic effect of mTNFa.
Identificación de residuos implicados en la unión a GAGs presentes en el dominio SECRET Identification of residues involved in binding to GAGs present in the SECRET domain
Se han definido dos secuencias consenso para la unión a GAGs, -XBBBXXBX- y -XBBXBX-, donde B es un residuo básico y X un residuo hidropático (Hileman y cois., 1998). Sin embargo, existe una gran diversidad en los motivos existentes en las proteínas de unión a GAGs. Se pueden encontrar este tipo de motivos en la secuencia de algunas proteínas de unión a GAGs como B18 de VACV (Montanuy y cois., 201 1 ) o E163 de ECTV (Ruiz-Arguello y cois., 2008).  Two consensus sequences have been defined for binding to GAGs, -XBBBXXBX- and -XBBXBX-, where B is a basic residue and X is a hydropathic residue (Hileman et al., 1998). However, there is great diversity in the motifs in GAG binding proteins. These types of motifs can be found in the sequence of some GAG-binding proteins such as B18 from VACV (Montanuy et al., 201 1) or E163 from ECTV (Ruiz-Arguello et al., 2008).
Por su parte, en la secuencia del dominio SECRET no se pueden identificar motivos similares que pudiesen estar mediando la interacción de GAGs. Para conocer las bases moleculares de la interacción de CrmD con GAGs, se construyeron cuatro mutantes puntuales en los que uno o varios residuos básicos se cambiaron por alaninas. Estos cuatro mutantes se denominaron GAG1 (K245A), GAG2 (R250A/R253A), GAG3 (K177A) y GAG4 (K177A/K218A) y se expresaron mediante el sistema de baculovirus (Figura 6A). On the other hand, in the sequence of the SECRET domain, similar motifs that could be mediating the interaction of GAGs cannot be identified. To know the molecular basis of the interaction of CrmD with GAGs, four point mutants were constructed in which one or several basic residues were changed to alanines. These four mutants were named GAG1 (K245A), GAG2 (R250A / R253A), GAG3 (K177A) and GAG4 (K177A / K218A) and were expressed by the baculovirus system (Figure 6A).
Con estos mutantes purificados se realizaron experimentos de unión a células con la línea celular CHO-K1 . 200 nM de cada muíante y de CrmD como control, se incubaron con células CHO-K1 a 4°C durante 30 min. Como se muestra en la Figura 6B, los mutantes GAG3 y GAG4 se unieron a la superficie celular con un grado similar que CrmD, mientras que la retención de la proteína GAG1 se vio claramente afectada y el muíante GAG2 apenas interaccionó con la superficie de las células CHO-K1 . Esíe resulíado sugiere que los residuos K245, R250 y R253 , esíán involucrados en el esfablecimienfo de los contactos con las cargas negativas de los GAGs de superficie. Se comprobó que los cambios de aminoácidos generados en los mutantes GAG1 , GAG2, GAG3 y GAG4, no afectaban a la actividad anti-CK del dominio SECRET. Para ello, se realizó un experimento de quimiotaxis in vitro en el que se preincubaron concentraciones crecientes de estos mutantes (GAG1 -4) con 70 nM de mCCL25. Se comparó la capacidad de inhibir la migración de células MOLT4 en estas condiciones, de cada muíante respecto a la proteína CrmD. Tanto GAG1 , GAG2, GAG3 como GAG4 inhibieron la migración inducida por mCCL25 de manera comparable a la proteína CrmD, reduciéndola al 50% o menos cuando se incubaron con 140 nM (relación molar 1 :2) de las proteínas recombinantes con la CK (Figura 7). De esta manera, se demostró que los residuos mutagenizados en los mutantes GAG1 -4 no están implicados en la interacción con CKs. Por lo tanto, se ha generado un muíante, GAG2, incapaz de unirse a las superficies celulares pero que no iníerfiere con la acíividad aníi- CK de CrmD. With these purified mutants, cell binding experiments were performed with the CHO-K1 cell line. 200 nM of each mutant and CrmD as a control, were incubated with CHO-K1 cells at 4 ° C for 30 min. As shown in Figure 6B, the GAG3 and GAG4 mutants bound to the cell surface with a degree similar to CrmD, while retention of the GAG1 protein was clearly affected and the GAG2 mutant barely interacted with the cell surface. CHO-K1. This result suggests that residues K245, R250 and R253, are involved in the swelling of the contacts with the negative charges of the surface GAGs. It was found that the amino acid changes generated in the GAG1, GAG2, GAG3 and GAG4 mutants did not affect the anti-CK activity of the SECRET domain. For this, an in vitro chemotaxis experiment was performed in which increasing concentrations of these mutants (GAG1-4) were pre-incubated with 70 nM of mCCL25. The ability to inhibit the migration of MOLT4 cells under these conditions of each mutant with respect to the CrmD protein was compared. Both GAG1, GAG2, GAG3 and GAG4 inhibited mCCL25-induced migration in a manner comparable to CrmD protein, reducing it to 50% or less when incubated with 140 nM (1: 2 molar ratio) of recombinant proteins with CK (Figure 7). In this way, it was shown that mutagenized residues in the GAG1-4 mutants are not involved in the interaction with CKs. Therefore, a mutant, GAG2, has been generated, unable to bind to cell surfaces but not inerting with the anivity of CrmD.
De esía manera, medianfe la mutación R250A/R253A (GAG2) se ha generado una versión de CrmD que presenta la misma capacidad de bloquear el TNF y las CKs en suspensión que la proteína parental, pero que carece de los residuos implicados para la interacción con GAGs y consecuente retención en la superficie celular. Thus, by means of the R250A / R253A (GAG2) mutation, a CrmD version has been generated that has the same ability to block TNF and CKs in suspension as the parental protein, but lacks the residues involved for interaction with GAGs and consequent retention on the cell surface.
Discusión Discussion
Datos previos del laboratorio, aportan al dominio SECRET una gran importancia en la evasión del sistema inmunológico llevada a cabo por CrmD. Siempre en un contexto de infección en el que el TNFa esté inhibido. La eliminación de este dominio anti-CK, da como resultado un ECTV RevCRDs con una atenuación de cinco órdenes de magnitud respecto a ECTV RevCrmD. Dado que ECTV expresa otras proteínas con capacidades anti-CKs (E163, vCCI, SCP2 y SCP3), resulta sorprendente que la eliminación de un dominio que sólo bloquea un pequeño grupo de CKs, tenga un efecto tan drástico sobre la virulencia de ECTV. Por ello, se podría esperar que la adición de este dominio anti-CKs a una proteína con actividad anti-TNF podría suponer una ventaja sustancial para el virus. La acción del dominio SECRET parece tener que ver con la función anti-TNFa de CrmD pero no se observó una cooperatividad positiva en la unión de los distintos ligandos y ambos dominios son estructural y funcionalmente independientes. Previous data from the laboratory, provide the SECRET domain with great importance in the evasion of the immune system carried out by CrmD. Always in a context of infection in which TNFa is inhibited. The elimination of this anti-CK domain, results in an ECTV RevCRDs with an attenuation of five orders of magnitude with respect to ECTV RevCrmD. Since ECTV expresses other proteins with anti-CKs capabilities (E163, vCCI, SCP2 and SCP3), it is surprising that the removal of a domain that only blocks a small group of CKs has such a dramatic effect on the virulence of ECTV. Therefore, one might expect the addition of this Anti-CKs domain to a protein with anti-TNF activity could be a substantial advantage for the virus. The action of the SECRET domain seems to have to do with the anti-TNFa function of CrmD but no positive cooperativity was observed in the binding of the different ligands and both domains are structurally and functionally independent.
Sin embargo, hemos descubierto que el dominio SECRET es capaz de interaccionar con GAGs de superficie con gran afinidad. Además, gracias a esta nueva función del dominio SECRET, CrmD puede inhibir la acción del TNFa en la membrana celular, próximo a los receptores de la citoquina. Mediante la interacción con GAGs, CrmD no sólo podría conseguir aumentar su estabilidad in vivo, sino que también le permitiría aumentar su concentración en torno a los TNFRs celulares. Al mismo tiempo, su gran afinidad por los GAGs le podrían permitir a CrmD desplazar a las CKs de las superficies impidiendo la formación de los gradientes quimiotácticos, una estrategia utilizada, por ejemplo, por la proteína E163 para interferir con las funciones de las CKs (Ruiz- Arguello y cois., 2008). However, we have discovered that the SECRET domain is capable of interacting with surface GAGs with great affinity. In addition, thanks to this new function of the SECRET domain, CrmD can inhibit the action of TNFa on the cell membrane, close to the cytokine receptors. By interacting with GAGs, CrmD could not only increase its stability in vivo, but also allow it to increase its concentration around cellular TNFRs. At the same time, its great affinity for GAGs could allow CrmD to displace CKs from surfaces preventing the formation of chemotactic gradients, a strategy used, for example, by the E163 protein to interfere with the functions of CKs ( Ruiz- Arguello et al., 2008).
Aunque no existe un motivo de unión a GAGs en la secuencia de aminoácidos de CrmD, hemos definido algunos residuos en la secuencia del dominio SECRET importantes para la unión a GAGs, K245, R250 y R253. Although there is no reason for binding to GAGs in the amino acid sequence of CrmD, we have defined some residues in the sequence of the SECRET domain important for binding to GAGs, K245, R250 and R253.
Desde otro punto de vista, el TNFa es una molécula implicada en algunos desórdenes inflamatorios crónicos tales como la artritis reumatoide o la enferemedad de Crohn. Los nuevos tratamientos clínicos se basan en el uso de fármacos biológicos que consisten en anticuerpos recombinantes (infliximab, adalimumab) o, más recientemente, moléculas menos inmunogénicas, como etanercept que consiste en un dímero del dominio extracelular del TNFR2 fusionada a un fragmento Fe humano. En consonancia a lo observado en la patogénesis de ECTV, es probable que además del TNFa, las CKs jueguen un papel importante en el desarrollo de la enfermedad, por lo tanto, previsiblemente, la adición de un dominio SECRET a etanercept podría potenciar el efecto anti-inflamatorio de esta molécula, gracias al efecto anti-CK. Por otro lado, una de la funciones del fragmento Fe es la de garantizar la estabilidad y el transporte del fármaco, gracias a su interacción con los receptores celulares de Fe, en el organismo. Un dominio SECRET podría remplazar con éxito estas dos funciones de la porción Fe, aportando estabilidad y transporte de la molécula gracias a su interacción con los GAGs en las superficies celulares. Además, de esta forma, se evitarían algunos efectos secundarios debidos a la activación del sistema del complemento producida por el Fe de etanercept (Horiuchi y cois., 2010). From another point of view, TNFa is a molecule involved in some chronic inflammatory disorders such as rheumatoid arthritis or Crohn's disease. The new clinical treatments are based on the use of biological drugs consisting of recombinant antibodies (infliximab, adalimumab) or, more recently, less immunogenic molecules, such as etanercept consisting of a dimer of the TNFR2 extracellular domain fused to a human Fe fragment. In line with what was observed in the pathogenesis of ECTV, it is likely that in addition to TNFa, CKs play an important role in the development of the disease, therefore, predictably, the addition of a SECRET domain to etanercept could enhance the anti-inflammatory effect of this molecule, thanks to the anti-CK effect. On the other hand, one of the functions of the Fe fragment is to guarantee the stability and transport of the drug, thanks to its interaction with the Fe cell receptors, in the body. A SECRET domain could successfully replace these two functions of the Fe portion, providing stability and transport of the molecule thanks to its interaction with GAGs on cell surfaces. In addition, in this way, some side effects due to activation of the complement system produced by the Feet of etanercept (Horiuchi et al., 2010) would be avoided.
BIBLIOGRAFÍA BIBLIOGRAPHY
Alcami, A. 2003. Viral mimicry of cytokines, chemokines y their receptors. Nat Rev Immunol 3:36-50. Alcami, A. 2003. Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol 3: 36-50.
Alejo, A., M.B. Ruiz-Arguello, Y. Ho, V.P. Smith, M. Saraiva, y A. Alcami. 2006. A chemokine-binding domain in the tumor necrosis factor receptor from varióla (smallpox) virus. Proc Nati Acad Sci U S A 103:5995-6000. Alejo, A., M.B. Ruiz-Arguello, Y. Ho, V.P. Smith, M. Saraiva, and A. Alcami. 2006. A chemokine-binding domain in the tumor necrosis receptor factor from variola (smallpox) virus. Proc Nati Acad Sci U S 103: 5995-6000.
Cunnion, K.M. 1999. Tumor necrosis factor receptors encoded by poxviruses. Mol Genet Metab 67:278-282. Cunnion, K.M. 1999. Tumor necrosis factor receptors encoded by poxviruses. Mol Genet Metab 67: 278-282.
Handel, T.M., Z. Johnson, S.E. Crown, E.K. Lau, y A.E. Proudfoot. 2005. Regulation of protein function by glycosaminoglycans-as exemplified by chemokines. Annu Rev Biochem 74:385-410. Handel, T.M., Z. Johnson, S.E. Crown, E.K. Lau, and A.E. Proudfoot 2005. Regulation of protein function by glycosaminoglycans-as exemplified by chemokines. Annu Rev Biochem 74: 385-410.
Hileman, R.E., J.R. Fromm, J.M. Weiler, y R.J. Linhardt. 1998. Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. Bioessays 20: 156-167. Hileman, R.E., J.R. Fromm, J.M. Weiler, and R.J. Linhardt 1998. Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. Bioessays 20: 156-167.
Ho uchi, T., H. Mitoma, S. Harashima, H. Tsukamoto, y T. Shimoda. 2010. Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology (Oxford) 49: 1215-1228. Ho uchi, T., H. Mitoma, S. Harashima, H. Tsukamoto, and T. Shimoda. 2010. Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology (Oxford) 49: 1215-1228.
Montanuy, I., A. Alejo, y A. Alcami. 201 1 . Glycosaminoglycans medíate retention of the poxvirus type I inferieron binding protein at the cell surface to locally block inferieron antiviral responses. Faseb J 25: 1960-1971 . Proudfoot, A.E., T.M. Handel, Z. Johnson, E.K. Lau, P. LiWang, I. Clark-Lewis, F. Borlat, T.N. Wells, y M.H. Kosco-Vilbois. 2003. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Nati Acad Sci U S A 100: 1885-1890. Montanuy, I., A. Alejo, and A. Alcami. 201 1. Glycosaminoglycans mediate retention of the poxvirus type I inferred binding protein at the cell surface to locally block inferred antiviral responses. Phase J 25: 1960-1971. Proudfoot, AE, TM Handel, Z. Johnson, EK Lau, P. LiWang, I. Clark-Lewis, F. Borlat, TN Wells, and MH Kosco-Vilbois. 2003. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Nati Acad Sci USA 100: 1885-1890.
Ruiz-Arguello, M.B., V.P. Smith, G.S. Campanella, F. Baleux, F. Arenzana- Seisdedos, A.D. Luster, y A. Alcami. 2008. An ectromelia virus protein that interacts with chemokines through their glycosaminoglycan binding domain. J Virol 82:917-926. Ruiz-Arguello, M.B., V.P. Smith, G.S. Campanella, F. Baleux, F. Arenzana- Seisdedos, A.D. Luster, and A. Alcami. 2008. An ectromelia virus protein that interacts with chemokines through their glycosaminoglycan binding domain. J Virol 82: 917-926.
Tak, P.P., y J.R. Kalden. 201 1 . Advances in rheumatology: new targeted therapeutics. Arthritis Res Ther 13 Suppl 1 :S5. Tak, P.P., and J.R. Kalden 201 1. Advances in rheumatology: new targeted therapeutics. Arthritis Res Ther 13 Suppl 1: S5.
Wong, M., D. Ziring, Y. Korin, S. Desai, S. Kim, J. Lin, D. Gjertson, J. Braun, E. Reed, y R.R. Singh. 2008. TNFalpha blockade in human diseases: mechanisms and future directions. Clin Immunol 126: 121 -136. Wong, M., D. Ziring, Y. Korin, S. Desai, S. Kim, J. Lin, D. Gjertson, J. Braun, E. Reed, and R.R. Singh. 2008. TNFalpha blockade in human diseases: mechanisms and future directions. Clin Immunol 126: 121-136.
Zaballos, A., J. Gutiérrez, R. Varona, C. Ardavin, y G. Márquez. 1999. Cutting edge: identification of the orphan chemokine receptor GPR-9-6 as CCR9, the receptor for the chemokine TECK. J Immunol 162:5671 -5675. Zhang, L, R. Lawrence, B.A. Frazier, y J.D. Esko. 2006. CHO glycosylation mutants: proteoglycans. Methods Enzymol 416:205-221 . Zaballos, A., J. Gutiérrez, R. Varona, C. Ardavin, and G. Márquez. 1999. Cutting edge: identification of the orphan chemokine receiver GPR-9-6 as CCR9, the receiver for the chemokine TECK. J Immunol 162: 5671-5675. Zhang, L, R. Lawrence, B.A. Frazier, and J.D. Esko 2006. CHO glycosylation mutants: proteoglycans. Methods Enzymol 416: 205-221.

Claims

REIVINDICACIONES
1 . Polipéptido de fusión que comprende: one . Fusion polypeptide comprising:
- un dominio de unión a quimioquinas SECRET de una proteína viral seleccionada entre CrmB, CrmD, SCP-1 , SCP-2 y SCP-3, un homólogo funcional, derivado o fragmento del mismo, covalentemente unido a - a SECRET chemokine binding domain of a viral protein selected from CrmB, CrmD, SCP-1, SCP-2 and SCP-3, a functional homologue, derivative or fragment thereof, covalently linked to
- una secuencia polipeptídica del mismo o diferente origen que el dominio SECRET, - a polypeptide sequence of the same or different origin as the SECRET domain,
donde el dominio de unión a quimioquinas SECRET de dicho polipéptido de fusión se une a la superficie celular a través de un glicosaminoglicano (GAG) presente en dicha superficie celular.  wherein the SECRET chemokine binding domain of said fusion polypeptide binds to the cell surface through a glycosaminoglycan (GAG) present on said cell surface.
2. Polipéptido según la reivindicación 1 , en el que el dominio de unión a quimioquinas SECRET presenta una secuencia de aminoácidos con al menos un 80% de homología con una secuencia de aminoácidos seleccionada del grupo que consiste en SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 y SEQ ID NO: 20. 2. A polypeptide according to claim 1, wherein the SECRET chemokine binding domain has an amino acid sequence with at least 80% homology with an amino acid sequence selected from the group consisting of SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 and SEQ ID NO: twenty.
3. Polipéptido según la reivindicación 2, en el que el dominio de unión a quimioquinas SECRET presenta una secuencia de aminoácidos seleccionada del grupo que consiste en SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 y SEQ ID NO: 20. 3. Polypeptide according to claim 2, wherein the SECRET chemokine binding domain has an amino acid sequence selected from the group consisting of SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 22, SEQ ID NO : 24, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 and SEQ ID NO: 20.
4. Polipéptido según la reivindicación 1 , en el que el dominio SECRET de CrmB es SEQ ID NO: 26 o SEQ ID NO: 28. 4. Polypeptide according to claim 1, wherein the SECRET domain of CrmB is SEQ ID NO: 26 or SEQ ID NO: 28.
5. Polipéptido según la reivindicación 1 , en el que la secuencia de aminoácidos del dominio SECRET de CrmD es SEQ ID NO: 22 o SEQ ID NO: 24. 5. Polypeptide according to claim 1, wherein the amino acid sequence of the SECRET domain of CrmD is SEQ ID NO: 22 or SEQ ID NO: 24.
6. Polipéptido según la reivindicación 1 , en el que la secuencia de aminoácidos del dominio SECRET de SPC-1 es SEQ ID NO: 6 o SEQ ID NO: 8, de SPC-2 es SEQ ID NO: 18 o SEQ ID NO: 20, y de SPC-3 es SEQ ID NO: 14 o SEQ ID NO: 16. 6. Polypeptide according to claim 1, wherein the amino acid sequence of the SECRET domain of SPC-1 is SEQ ID NO: 6 or SEQ ID NO: 8, of SPC-2 is SEQ ID NO: 18 or SEQ ID NO: 20, and of SPC-3 is SEQ ID NO: 14 or SEQ ID NO: 16.
7. Polipéptido de fusión según cualquiera de las reivindicaciones 1 a 6, en el que la secuencia polipeptídica es el receptor del factor necrosante de tumores viral (vTNFRs). 7. Fusion polypeptide according to any one of claims 1 to 6, wherein the polypeptide sequence is the recipient of the viral tumor necrotizing factor (vTNFRs).
8. Polipéptido de fusión según la reivindicación 7, en el que la secuencia polipeptídica es el dominio N-terminal de unión al factor necrosante tumoral (TNF) de los receptores del factor necrosante de tumores viral (vTNFRs). 8. Fusion polypeptide according to claim 7, wherein the polypeptide sequence is the N-terminal domain of tumor necrotizing factor (TNF) binding of viral tumor necrotizing factor receptors (vTNFRs).
9. Polipéptido de fusión según cualquiera de las reivindicaciones 1 a 6, en el que la secuencia polipeptídica es el receptor del factor necrosante de tumores humano (hTNFRs). 9. Fusion polypeptide according to any one of claims 1 to 6, wherein the polypeptide sequence is the human tumor necrotizing factor receptor (hTNFRs).
10. Un polinucleótido que codifica un polipéptido de fusión según cualquiera de las reivindicaciones 1 a 9. 10. A polynucleotide encoding a fusion polypeptide according to any one of claims 1 to 9.
1 1 . Un vector viral o plásmido de expresión que comprende un polinucleótido según la reivindicación 10. eleven . A viral vector or expression plasmid comprising a polynucleotide according to claim 10.
12. Uso de un polipéptido de fusión según cualquiera de las reivindicaciones 1 a 9, un polinucleótido según la reivindicación 10 o un vector viral o plásmido de expresión según la reivindicación 1 1 , en la elaboración de un medicamento para el tratamiento de enfermedades autoinmune o inflamatorias. 12. Use of a fusion polypeptide according to any one of claims 1 to 9, a polynucleotide according to claim 10 or a viral vector or expression plasmid according to claim 1, in the preparation of a medicament for the treatment of autoimmune diseases or inflammatory
13. Composición farmacéutica que comprende un polipéptido de fusión según cualquiera de las reivindicaciones 1 a 9, un polinucleótido según la reivindicación 10, o un vector viral o plásmido de expresión según la reivindicación 1 1 . 13. Pharmaceutical composition comprising a fusion polypeptide according to any one of claims 1 to 9, a polynucleotide according to the claim 10, or a viral vector or expression plasmid according to claim 1 1.
14. Composición según la reivindicación 13, que comprende, además, un inmunosupresor o un compuesto anti-inflamatorio. 14. Composition according to claim 13, further comprising an immunosuppressant or an anti-inflammatory compound.
15. Uso de un dominio de unión a quimioquinas SECRET o una secuencia de aminoácidos con al menos un 80% de homología con una secuencia de aminoácidos seleccionada del grupo que consiste en SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 6, SEQ ID NO: 8,15. Use of a SECRET chemokine binding domain or an amino acid sequence with at least 80% homology with an amino acid sequence selected from the group consisting of SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO : 22, SEQ ID NO: 24, SEQ ID NO: 6, SEQ ID NO: 8,
SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 y SEQ ID NO: 20, para la obtención de anticuerpos específicos inhibidores de la capacidad de unión a GAGs del dominio SECRET. SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18 and SEQ ID NO: 20, to obtain specific antibodies that inhibit GAGs binding capacity of the SECRET domain.
16. Un anticuerpo obtenido según la reivindicación 15. 16. An antibody obtained according to claim 15.
17. Uso de los anticuerpos descritos en la reivindicación 16, en la fabricación de un medicamento para el tratamiento de los efectos adversos causados por la vacunación con el virus vaccinia o de la patología causada por el virus de la viruela y virus monkeypox. 17. Use of the antibodies described in claim 16, in the manufacture of a medicament for the treatment of adverse effects caused by vaccination with vaccinia virus or the pathology caused by smallpox virus and monkeypox virus.
PCT/ES2013/070232 2012-04-11 2013-04-11 Glycosaminoglycan-binding of proteins with secret domain encoded by poxvirus WO2013153250A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201230540A ES2429639B1 (en) 2012-04-11 2012-04-11 Glycosaminoglycan binding of proteins with SECRET domain encoded by poxvirus
ESP201230540 2012-04-11

Publications (1)

Publication Number Publication Date
WO2013153250A1 true WO2013153250A1 (en) 2013-10-17

Family

ID=49327152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070232 WO2013153250A1 (en) 2012-04-11 2013-04-11 Glycosaminoglycan-binding of proteins with secret domain encoded by poxvirus

Country Status (2)

Country Link
ES (1) ES2429639B1 (en)
WO (1) WO2013153250A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464938A (en) * 1990-04-09 1995-11-07 Immunex Corporation Isolated viral protein TNF antagonists
WO2000071150A1 (en) * 1999-05-20 2000-11-30 Human Genome Sciences, Inc. Tumor necrosis factor receptor 5
WO2003038440A2 (en) * 2001-10-30 2003-05-08 Cambridge University Technical Services Limited Chemokine binding molecules
ES2315037A1 (en) * 2004-09-02 2009-03-16 Antonio Alcami Pertejo Chemokine binding activity of viral tnf receptors and related proteins

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464938A (en) * 1990-04-09 1995-11-07 Immunex Corporation Isolated viral protein TNF antagonists
WO2000071150A1 (en) * 1999-05-20 2000-11-30 Human Genome Sciences, Inc. Tumor necrosis factor receptor 5
WO2003038440A2 (en) * 2001-10-30 2003-05-08 Cambridge University Technical Services Limited Chemokine binding molecules
ES2315037A1 (en) * 2004-09-02 2009-03-16 Antonio Alcami Pertejo Chemokine binding activity of viral tnf receptors and related proteins

Also Published As

Publication number Publication date
ES2429639B1 (en) 2014-09-11
ES2429639A1 (en) 2013-11-15

Similar Documents

Publication Publication Date Title
US7696309B2 (en) Protease resistant mutants of stromal cell derived factor-1 in the repair of tissue damage
US11578427B2 (en) Designed ankyrin repeat domains with altered surface residues
US20130053322A1 (en) Hsa-related compositions and methods of use
AU2013271445B2 (en) Modified fibronectin fragments or variants and uses thereof
KR20150023957A (en) Designed ankyrin repeat proteins binding to platelet-derived growth factor
KR20110136825A (en) Mirac proteins
CN108129566A (en) Target high-affinity C- type single domain antibodies of mesothelin and preparation method and application
PT2040728E (en) Fkbp-l and uses thereof as inhibitors of angiogenesis
CN113444710A (en) ACE2-Fc fusion protein and application thereof
ES2372388T3 (en) COMPLEXES OF GROWTH FACTORS AND MODULATION OF MIGRATION AND CELL GROWTH.
BR112013016980B1 (en) ANTI-CANCER FUSION PROTEIN
KR20160005950A (en) Fusion protein comprising targeting moiety, cleavage site, and cell membrane penetrating domain, and use thereof
AU2012306826B2 (en) Endostatin mutants with mutations at ATP binding sites
AU2018351209B2 (en) Mutant of H3N2 subtype influenza virus hemagglutinin protein and use thereof
BR112021008832A2 (en) MININUCLEOsome CORE PROTEINS AND USE IN NUCLEIC ACID DISTRIBUTION
WO2016138625A1 (en) Trail membrane-penetrating peptide-like mutant mur6, preparation method therefor, and application thereof
CN115785232A (en) Fusion protein for preventing or treating coronavirus infection, spike protein nanoparticle and application thereof
JP2007527206A (en) Peptabody for cancer treatment
CA2458565A1 (en) New angiogenesis inhibitors based on soluble cd44 receptor hyaluronic acid binding domain
JP2729712B2 (en) Functional polypeptide
WO2013153250A1 (en) Glycosaminoglycan-binding of proteins with secret domain encoded by poxvirus
JP6050319B2 (en) Protein backbone modules that enhance the binding affinity and binding specificity of active polypeptides
AU2008256550B2 (en) VEGF-D mutants and their use
US10428132B2 (en) Tumor necrosis factor-related apoptosis-inducing ligand variant, as well as a preparation method and use thereof
KR101466875B1 (en) The therapy for autoimmune disease using minicircle vector designed to express TNFR2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13775658

Country of ref document: EP

Kind code of ref document: A1