WO2013152693A1 - 蜂窝状金属丝网 - Google Patents

蜂窝状金属丝网 Download PDF

Info

Publication number
WO2013152693A1
WO2013152693A1 PCT/CN2013/073771 CN2013073771W WO2013152693A1 WO 2013152693 A1 WO2013152693 A1 WO 2013152693A1 CN 2013073771 W CN2013073771 W CN 2013073771W WO 2013152693 A1 WO2013152693 A1 WO 2013152693A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb
wire mesh
wire
mesh
screen
Prior art date
Application number
PCT/CN2013/073771
Other languages
English (en)
French (fr)
Inventor
魏志凌
高小平
张炜平
Original Assignee
昆山允升吉光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山允升吉光电科技有限公司 filed Critical 昆山允升吉光电科技有限公司
Priority to KR1020147031427A priority Critical patent/KR101987173B1/ko
Priority to JP2015504851A priority patent/JP6050889B2/ja
Publication of WO2013152693A1 publication Critical patent/WO2013152693A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/14Details
    • B41F15/34Screens, Frames; Holders therefor
    • B41F15/36Screens, Frames; Holders therefor flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/24Stencils; Stencil materials; Carriers therefor

Definitions

  • the present invention relates to a honeycomb wire mesh.
  • Increasing the conversion efficiency of solar cells is a major goal of solar cell research.
  • selecting a suitable printing stencil can also improve the conversion efficiency of the battery.
  • the traditional masks include metal masks. Template, composite mask.
  • the material of the metal type mask is generally a nickel-based alloy; and the composite type mask is relatively complicated, and includes a screen and a photosensitive material applied to the surface of the screen.
  • Chinese patent CN101241956 reports a method for manufacturing a large-area nano-thin film solar cell, which is characterized in that: the single-cell DSSC is strip-shaped, and the strip-shaped single DSSC is connected in series to form a large-area solar cell by using a corrosion-resistant interconnect strip.
  • a protective barrier layer is disposed on both sides of the corrosion interconnecting strip, or a low-resistance grid electrode prepared by a mesh printing method, and a protective film is coated on the surface of the low-resistance grid electrode, and then a low-resistance grid electrode covered with a protective film is used.
  • a plurality of strip-shaped single-cell DSSCs are connected in parallel to form a large-area solar cell, and a large-area solar cell side glass is provided with a filling tank on the contact surface of the TC0, and is pumped from the filling tank at a filling tank at one end of the large-area solar battery. After the electrolyte and dye, break the infusion tank and seal.
  • Cigar patent CN102336051A discloses a solar cell screen printing device, which comprises a printing blade, an auxiliary blade, a returning knife and a printing screen, which are characterized in that two baffle structures are mounted on the printing screen on both sides of the edge of the printing blade.
  • the baffle structure is mainly composed of a baffle surface, a baffle frame and a mounting frame; the bottom of the baffle surface can be separated from the mesh surface or bonded by a flexible material; the edge of the returning knife and the printing blade and the auxiliary blade are The baffle surface is in seamless contact; the printing head drives the scraper and the returning knife to slide in contact with the baffle surface, so that the slurry moves in the range surrounded by the baffle surfaces, the scraper and the returning knife, so that the slurry is not oriented Flowing on both sides.
  • Chinese Patent CN202058761U discloses a screen printing crystalline silicon solar cell positive silver screen, comprising: a silicon wafer, a main gate line, a chamfering, a sub-gate line, and a main gate line and a sub-gate line on the silicon wafer.
  • the main gate line and the sub-gate line Straight setting, chamfering on the silicon wafer, can effectively spread the front electrode grid line on the surface of the silicon wafer, increase the coverage area, and effectively collect the photocurrent, thereby improving the efficiency of the cell.
  • Chinese patent CN101969082A discloses a solar cell manufacturing process combining two mesh printing and engraving, which is used for manufacturing a solar cell with two printing electrodes, which comprises a groove process and two printing processes, and the groove process is :
  • the groove is formed in the electrode grid line area on the surface of the silicon wafer to form an etching groove in the electrode grid line region;
  • the two printing processes are: a.
  • the first printing electrode the printed electrode slurry is filled into the etching groove and dried. Forming a first layer of electrodes in the etching groove;
  • printing the second time electrode printing the electrode on the outer surface of the first layer electrode to form a second layer electrode on the surface of the surface electrode of the silicon wafer.
  • the screen constituting the conventional composite type reticle is a woven type wire mesh or a polyester net or the like, and such a screen may cause a sizing effect of the final formed reticle due to the characteristics of the woven type warp and weft joints, such as: uneven sizing;
  • a sizing effect of the final formed reticle due to the characteristics of the woven type warp and weft joints, such as: uneven sizing;
  • this operation does not completely avoid the adverse effects of the warp and weft nodes.
  • the present invention mainly proposes a screen for this problem, which better solves the above problems.
  • the technical problem to be solved by the present invention is that in the prior art precision printing technology, the wire mesh structure used is unstable and the mechanical strength of the wire mesh is low, and the present invention provides a new honeycomb wire mesh which has structural stability. , the advantage of higher mechanical strength.
  • a honeycomb screen characterized in that the screen is a honeycomb structure in which polygonal arrays are connected to each other, and the polygon constituting the screen honeycomb structure is Positive six polygons.
  • a preferred technical solution is that a non-normal hexagonal array region is disposed on the positive hexagonal array to form a specific pattern, and a regular hexagonal array is passed between The regular hexagons are connected, and the non-normal hexagonal edges are used as the bridge lines to connect the corners of the regular hexagon.
  • a preferred technical solution is that the wire diameter rl of the bridge wire and the wire diameter r2 of the wire mesh constituting the regular hexagonal region are in the range of 10 um rl r2 80 um; the number of meshes forming the regular hexagonal region For 100 ⁇ 800 mesh.
  • the wire diameter rl of the bridge wire (51) and the wire diameter r2 of the wire mesh line (52) constituting the regular hexagonal region are in the range of 15 um ⁇ rl ⁇ r 2 ⁇ 40 um; the mesh number of the regular hexagonal region is 200 to 400 Head.
  • the grid line diameter constituting the honeycomb wire mesh pattern area is uniform; the honeycomb wire mesh line is a continuous non-woven type.
  • the diameter of the wire mesh of the pattern area on the honeycomb wire mesh is not larger than the wire diameter of the wire of the non-pattern area; the remaining wire diameter of the wire in the pattern area on the honeycomb wire mesh is uniform or the thickness of the two ends is thin.
  • the structure of the honeycomb wire mesh is integrally formed, the surface is smooth, and there is no weaving type warp and weft node; the honeycomb wire mesh is made by electroforming It is made of pure nickel or nickel-based alloy.
  • a preferred technical solution is that the grid lines of the honeycomb wire mesh pattern area are uniform in diameter; and the force buffer zone and the side hole connected to the buffer zone are disposed on the periphery of the non-mesh area;
  • the honeycomb wire mesh wire is a continuous non-woven type.
  • the honeycomb wire mesh has a mesh size of 200 to 450 mesh, a wire diameter of 15 to 30 um, and a thickness of 15 to 30 um; and the remaining wire mesh diameter of the pattern area on the honeycomb wire mesh is not larger than the wire mesh of the non-graphic area. Wire diameter; the remaining wire mesh of the graphic area on the honeycomb wire mesh is uniform in diameter or thin in both ends.
  • honeycomb wire mesh is integrally formed, the surface is smooth, and there is no woven type warp and weft node.
  • the honeycomb wire mesh is produced by an electroforming process and is made of a pure nickel material or a nickel-based alloy material.
  • the present invention also includes a mask made of the above-described honeycomb wire mesh, characterized in that the opening size of the pattern area of the mask is not larger than the size of the missing line of the screen line of the corresponding pattern on the honeycomb wire.
  • a preferred technical solution is that the pattern formed by the missing grid lines of the honeycomb wire mesh is a set of mutually parallel lines corresponding to the fine grid lines of the mask.
  • the honeycomb wire mesh provided by the invention has the following advantages: 1.
  • the honeycomb wire mesh is obtained by an electroforming process, and has the characteristics of smooth surface, no braided longitude and latitude, and solar energy produced by the same.
  • the battery electrode printing screen is evenly smeared during printing; 2.
  • the honeycomb wire mesh has a grid line in the direction corresponding to the fine grid line of the corresponding solar cell electrode printing screen, and the grid line is reduced. The honeycomb wire mesh hinders the printing paste.
  • Non-woven type wire mesh the surface of the wire mesh is smooth, and the mask plate made thereof does not cause damage to the mask plate due to unevenness of the surface during the cleaning and wiping process.
  • the screen can be designed according to the needs of different opening ratio, wire mesh diameter and wire mesh shape to ensure the good sizing effect of the wire mesh while ensuring the life of the wire mesh.
  • the solar cell electrode printing screen plate further prepared by the honeycomb wire mesh can print a silicon solar cell electrode grid line structure with superior "aspect ratio", which is advantageous for collecting current of the solar cell sheet. And transmission, thereby correspondingly improving the conversion efficiency of the solar cell.
  • Figure 1 is a schematic view showing the overall structure of a honeycomb wire mesh.
  • Figure 2 is a partially enlarged schematic view of the wire mesh of Figure 1.
  • Fig. 3 is a schematic view showing the overall structure of the screen provided with a special grid structure.
  • FIG. 4 is a partially enlarged schematic view of a screen having a preset pattern.
  • Figure 5 is a partially enlarged schematic view of Figure 4.
  • Figure 6 is a schematic view showing the structure of a honeycomb screen.
  • Figure 7 is a schematic view showing the structure of a honeycomb screen.
  • Figure 8 is a schematic view showing the structure of a honeycomb screen.
  • Figure 9 is a schematic view showing the structure of a honeycomb screen.
  • Figure 10 is a schematic view of the surface of the screen coated with a layer of photopolymer.
  • III is a partial area of the screen of the preset pattern; 31 is a line.
  • Fig. 4 41 is a non-positive hexagonal region; 42 is a graphical partial region.
  • R1 is the width dimension of the non-positive hexagonal region.
  • the invention is further illustrated by the following specific examples.
  • a honeycomb wire mesh as shown in Fig. 1, the wire mesh is a honeycomb structure composed of a polygonal array.
  • 1 is a schematic view showing an overall structure of the screen
  • FIG. 2 is an enlarged schematic view showing a portion I of FIG. 1 (ie, a portion of the screen body), and the polygon constituting the screen honeycomb structure is a regular hexagonal polygon.
  • the design is so stable that the mechanical strength of the screen is large.
  • FIG. 3 is a schematic view showing another overall structure of a screen provided with a special grid structure on the basis of the above-mentioned screen, wherein the special grid structure forms a figure on the screen body, as shown in FIG.
  • one such pattern is a set of line structures, i.e., the pattern is obtained from an array of lines 31.
  • Fig. 4 is a partially enlarged schematic view showing the screen having the predetermined pattern, which corresponds to the portion III in Fig. 3, and the non-rear hexagonal region 41 shown in the drawing corresponds to the line 31 in Fig. 3.
  • the non-normal hexagonal region 41 is derived from at least one other set of graphic arrays.
  • the portion 42 in FIG. 4 is further enlarged as shown in FIG. 5.
  • the non-normal hexagonal region 41 is connected by a set of bridges arranged in a regular pattern and connecting adjacent two regular hexagonal regions. 51 and the boundary of a part of the regular hexagon.
  • the bridge 51 is a set of equally spaced parallel bridges.
  • the head and tail of the bridge 51 are connected to the corners of the regular hexagon.
  • a honeycomb wire mesh is a honeycomb structure in which polygonal arrays are connected to each other, and a polygon constituting the wire mesh honeycomb structure is a regular hexagonal polygon.
  • the other structure is the same as that of the embodiment 1.
  • a honeycomb wire mesh is a honeycomb structure in which polygonal arrays are connected to each other, and a polygon constituting the wire mesh honeycomb structure is a regular hexagonal polygon.
  • the main structure is basically the same as that of Embodiment 1.
  • the schematic diagram of the structure of the honeycomb screen is different in that: the connection position of the bridge and the hexagon is different or two adjacent regular hexagons need to be connected. The relative positions of the areas are different.
  • the honeycomb wire mesh is an electroformed flat metal plate body made of a nickel-based alloy material; a regular hexagonal region of the outer edge of the wire mesh, and a wire diameter of the wire mesh diameter relative to the middle portion The size is large, and the edge of the regular hexagon is connected with a side hole structure for fixing.
  • a honeycomb wire mesh is a honeycomb structure in which polygonal arrays are connected to each other, and a polygon constituting the wire mesh honeycomb structure is a regular hexagonal polygon.
  • the main structure is substantially the same as that of Embodiment 1.
  • the schematic diagram of the structure of the honeycomb mesh is different in that: the connection position of the bridge and the hexagon is different or two adjacent regular hexagons to be connected are required. The relative positions of the areas are different.
  • a honeycomb wire mesh is a honeycomb structure in which polygonal arrays are connected to each other, and a polygon constituting the wire mesh honeycomb structure is a regular hexagonal polygon.
  • 8 is a schematic structural view of the honeycomb wire mesh, and the main structure thereof is basically the same as that of the embodiment 1, and the difference is that the bridges constituting the non-normal hexagonal region are in a non-perpendicular relationship with the main body of the regular hexagonal region.
  • the honeycomb wire mesh is an electroformed flat metal plate body made of a nickel metal material.
  • the regular hexagonal region of the outer edge of the screen has a mesh wire diameter dimension larger than that of the intermediate portion, and has a side hole structure for fixing to the regular hexagonal edge.
  • a honeycomb wire mesh is a honeycomb structure in which polygonal arrays are connected to each other, and a polygon constituting the wire mesh honeycomb structure is a regular hexagonal polygon.
  • Fig. 9 is a schematic view showing the structure of the honeycomb wire mesh, and the main structure thereof is basically the same as that of the embodiment 1, and the difference is that the bridge forming the non-normal hexagonal region has a non-perpendicular relationship with the main body of the regular hexagonal region.
  • the honeycomb wire mesh is an electroformed flat metal plate body made of a nickel metal material.
  • the regular hexagonal region of the outer edge of the screen has a wire diameter of a screen which is larger than a wire diameter of the intermediate portion, and has a side hole structure for fixing to the edge of the regular hexagon.
  • a layer of photopolymer is pressed on the basis of the structure shown in FIG. 8, and the photopolymer is distributed on the regular hexagonal region and part of the non-normal hexagonal region of the screen.
  • the grid area is connected to the non-mesh area, the non-mesh area is disposed at the periphery of the grid area, and the grid area is composed of two sets of mutually orthogonal grid lines
  • the intermediate portion of the mesh area of the honeycomb wire mesh is provided with a pattern area, wherein the pattern is formed by the deletion of the wire mesh line in the horizontal or vertical direction by the honeycomb wire mesh; the honeycomb wire mesh has no
  • the woven type warp and weft joints are integrally formed and have a smooth surface, that is, the honeycomb wire mesh is formed into a continuous non-woven type.
  • the honeycomb wire mesh has a mesh number of 330 mesh and a mesh wire diameter of 20 um.
  • the thickness is 25um.
  • FIG. 3 is a partially enlarged schematic view of the honeycomb wire mesh force buffering strip, the wire diameter of the buffer zone is changed according to a certain change rule, and the law described in this embodiment is as shown in FIG.
  • the outer edge of the 40um wire is connected to the edge area of the mesh. This design allows the mesh to withstand the tension provided by the outside when it is tight.
  • a honeycomb wire mesh having the same basic structure as that of Embodiment 1, and the transformed portion thereof is as follows:
  • the net mesh has a mesh size of 400 mesh, the mesh wiring diameter is 25 ⁇ m, and the mesh cloth has a thickness of 20 ⁇ m.
  • honeycomb wire mesh also has the following structural changes:
  • the honeycomb wire mesh is provided with a pattern, and the pattern described in this embodiment is a set of mutually parallel lines 4a, as shown in FIG. Fig. 5 is an enlarged schematic view showing a portion I I I in Fig. 4, and 5a in Fig. 5 is a line 4a shown in Fig. 4, and a lateral grid line is absent at 5a.
  • Figure 6 is an enlarged schematic view of the portion IV of Figure 5, in which the remaining wire mesh diameter in the pattern area of the missing grid line has the following regularity: Honeycomb wire mesh body wire diameter rl> Graphic area internal wire mesh wire end line The diameter r4> the wire diameter r5 of the middle portion of the inner screen wire in the graphic area; the remaining wire diameter of the screen area of the missing grid line may be as follows: As shown in Fig. 7, the wire diameter of the wire inside the graphic area The size is uniform, and there is a wire diameter r6 of the internal wire mesh of the honeycomb wire mesh body diameter rl pattern area.
  • Figure 8 is a partial schematic view of the mask after coating a masking material on the honeycomb wire mesh (corresponding to the portion shown in Figure 5), as shown in the opening of the mask.
  • the screen wire 8a in one direction acts as a bridge. Comparing Fig. 5 and Fig. 8 are: the opening size of the missing area of the honeycomb wire mesh line Rl. The opening size of the field.
  • Such a design can reduce the coating difficulty factor of the mask material of the mask, and since the screen line has only one direction at the opening, relatively less bridging reduces the influence on the printing paste, and the blanking of the mask can be ensured. The effect is good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Printing Plates And Materials Therefor (AREA)

Abstract

一种蜂窝状金属丝网,所述丝网为多边形阵列相互连接构成的蜂窝状结构,所述多边形阵列相互连接构成特定图案,构成所述丝网蜂窝状结构的多边形为正六多边形;所述正六边形阵列之间通过非正六边形相连,非正六边形的边作为桥线,连接正六边形的角点。该技术方案解决了现有精密印刷技术中所用丝网结构不稳定、丝网的机械强度低的问题。

Description

蜂窝状金属丝网 技术领域
本发明涉及本发明具体涉及一种蜂窝状金属丝网。
背景技术
随着经济的快速发展, 能源的消耗量越来越大, 煤和石油等不可再生资源的储存量日益 减少, 这促使人们对新能源 (如核能、 太阳能、 风能、 生物质能、 地热能、 海洋能、 氢能 等) 的不断探索。 其中, 作为地球上许多能量的来源, 太阳能在新能源的研究中占据了重要 的地位, 太阳能电池就是太阳能应用的一个核心代表。
提高太阳能电池的转化效率是目前太阳能电池研究的一个主要目标, 除了对电池基片材 料的选择、 基片制作工艺的改善外, 选择合适的印刷网板也能提高电池的转化效率。
随着电子行业及各相关行业的崛起, 精密印刷及小尺寸封装的应用也日益广泛, 在精密 印刷及小尺寸封装的环节中一般会涉及到掩模板的应用, 传统的掩模板包括金属型掩模板、 复合型掩模板。 目前金属型掩模板的材质一般为镍基合金; 而复合型掩模板构成相对较为复 杂, 其包括丝网以及涂覆于丝网表面的感光物质。
中国专利 CN101241956 报道了一种大面积纳米薄膜太阳能电池的制造方法, 其特征在 于: 单体 DSSC制成条状, 采用耐腐蚀互连条将条状的单体 DSSC串联成大面积太阳能电池, 耐腐蚀互连条两侧分别设保护隔层, 或采用网布印刷法制备的低电阻栅网电极, 并在低电阻 栅网电极表面覆盖保护膜, 然后采用覆盖有保护膜的低电阻栅网电极将多个条状的单体 DSSC 并联成大面积的太阳能电池, 大面积太阳能电池一侧玻璃与 TC0 的接触面设一灌注 槽, 并在大面积太阳能电池一端的灌注槽, 从灌注槽泵入电解质和染料后, 折断灌注槽, 然 后进行密封。
中国专利 CN102336051A 公开了一种太阳能电池网布印刷装置, 包括印刷刮刀、 辅助刮 刀、 回料刀、 印刷网版, 其特征是在印刷网版上紧靠印刷刮刀边缘两侧安装两个挡板结构, 其中挡板结构主要由挡板面、 挡板框架和安装架组成; 挡板面的底部与网布面可分体式接触 或者通过柔性材料黏结; 回料刀和印刷刮刀及辅助刮刀的边缘与挡板面无缝接触; 印刷机头 带动刮刀和回料刀与挡板面接触滑动, 使浆料在两侧挡板面、 刮刀和回料刀围成的范围内运 动, 实现浆料不向两侧流动。
中国专利 CN202058761U 公开了一种网布印刷晶体硅太阳能电池正银网版, 包括: 硅 片、 主栅线、 倒角、 副栅线、 所述的硅片上设有主栅线和副栅线, 所述的主栅线和副栅线垂 直设置, 在所述的硅片上设有倒角, 可以将正面电极栅线在硅片表面进行有效的扩展, 增加 覆盖面积, 将光电流进行有效的收集, 从而改善了电池片的效率。
中国专利 CN101969082A 公开了一种两次网布印刷与刻槽结合的太阳能电池制造工艺, 用于制造一种两次印刷电极的太阳能电池, 包含有刻槽工艺和两次印刷工艺, 刻槽工艺为: 在硅片表面的电极栅线区域刻槽, 使电极栅线区域形成蚀槽; 两次印刷工艺为: a、 第一次 印刷电极: 将印刷的电极浆料填入蚀槽并进行烘干, 在蚀槽中形成第一层电极; b、 第二次 印刷电极: 在第一层电极外表面印刷电极, 使硅片表面电极栅线区域形成第二层电极。
构成传统复合型掩模板的丝网为编织型金属丝网或聚酯网等, 此类丝网由于编织型经 纬节点的特性会导致最终成型掩模板的下浆效果, 如: 下浆不均; 在实际掩模板的制作过程 中, 往往需要先对丝网进行压挤, 从而尽量减少编织型丝网的这种效应。 但既如此操作并无 法完全避免经纬节点带来的不良效果。
本发明主要是针对此问题提出一种丝网, 较好的解决以上所述问题。
发明内容
本发明所要解决的技术问题是现有精密印刷技术中, 所用丝网结构不稳定, 丝网的机械 强度低的问题, 本发明提供一种新的蜂窝状金属丝网, 该丝网具有结构稳定, 机械强度较高 的优点。
为解决上述技术问题, 本发明采用的技术方案如下: 一种蜂窝状丝网, 其特征在于所述 丝网为多边形阵列相互连接构成的蜂窝状结构, 构成所述丝网蜂窝状结构的多边形为正六多 边形。
上述技术方案中, 优选的技术方案为, 其上设置有非正六边形阵列区域, 所述非正六边 阵列形区域在所述正六多边形阵列上构成构成特定图案, 正六边形阵列之间通过非正六边形 相连, 非正六边形的边作为桥线, 连接正六边形的角点。
上述技术方案中, 优选的技术方案为, 所述桥线的线径 rl 与构成所述正六边形区域的 丝网线的线径 r2 尺寸范围为 10um rl r2 80um; 构成正六边形区域的目数为 100〜800 目。 桥线 (51 ) 的线径 rl 与构成所述正六边形区域的丝网线 (52 ) 的线径 r2 尺寸范围为 15um^rl ^r2^40um; 构成正六边形区域的目数为 200〜400目。
构成所述蜂窝状金属丝网图形区域的网格线线径均匀; 所述蜂窝状金属丝网线为连贯无 编织型。 蜂窝状金属丝网上图形区域的丝网线线径不大于非图形区域的丝网线线径; 所述蜂 窝状金属丝网上图形区域剩余的丝网线线径均匀或两头粗中间细。 所述蜂窝状金属丝网的结 构为一体成型, 表面光滑, 无编织型的经纬节点; 所述蜂窝状金属丝网是通过电铸工艺制 得, 其材质为纯镍材料或镍基合金材料。
上述技术方案中, 优选的技术方案为, 构成所述蜂窝状金属丝网图形区域的网格线线径 均匀; 在非网格区的外围设有受力缓冲带及与缓冲带相连的边孔带; 所述蜂窝状金属丝网丝 网线为连贯无编织型。 所述蜂窝状金属丝网目数为 200〜450 目, 线径尺寸为 15〜30um, 厚 度为 15〜30um; 蜂窝状金属丝网上图形区域剩余的丝网线线径不大于非图形区域的丝网线 线径; 所述蜂窝状金属丝网上图形区域剩余的丝网线线径均匀或两头大粗中间细。 优选的技 术方案为, 所述蜂窝状金属丝网的结构为一体成型, 表面光滑, 无编织型的经纬节点。 所述 蜂窝状金属丝网是通过电铸工艺制得, 其材质为纯镍材料或镍基合金材料。
本发明还包括一种采用上述蜂窝状金属丝网制得的掩模板, 其特征在于所述掩模板图形 区域的开口尺寸不大于所述蜂窝状金属丝网上对应图形的丝网线缺失区域的尺寸。
上述技术方案中, 优选的技术方案为, 蜂窝状金属丝网所述缺失网格线构成的图形为一 组相互平行的线条, 其与掩模板的细栅线相对应。
本发明提供的蜂窝状金属丝网, 其具有以下优点: 1、 所述蜂窝状金属丝网是通过电铸 工艺制得, 其具有表面平整、 无编制型经纬节点的特性, 通过其制作的太阳能电池电极印刷 网板在印刷时下浆均匀; 2、 所述蜂窝状金属丝网在相应的太阳能电池电极印刷网板的细栅 线对应的区域无细栅线所在方向上的网格线, 减少了蜂窝状金属丝网对印刷浆料的阻碍作 用。
非编织型的金属丝网, 丝网表面光滑, 其制成的掩模板在清洗擦拭过程中不会由于表面 的凹凸不平造成掩模板的损伤。 丝网可以根据需要设计不同的开孔率、 丝网线径尺寸及丝网 线形状, 在保证丝网有较好的下浆效果的同时亦可保证丝网的寿命。
基于以上的优点, 所述蜂窝状金属丝网进一步制得的太阳能电池电极印刷网板可以印刷 "高宽比"较优的硅太阳能电池电极栅线结构, 其有利于太阳能电池片对电流的收集及传 输, 从而相应的提高了太阳能电池片的转化效率。 附图说明
图 1为蜂窝状金属丝网整体结构示意图。
图 2为图 1中金属丝网的局部放大示意图。
图 3为设置有特殊网格结构的丝网整体结构示意图。
图 4为有预设图形的丝网的局部放大示意图。
图 5为图 4中局部放大示意图。 图 6为蜂窝状丝网的结构示意图。
图 7为蜂窝状丝网的结构示意图。
图 8为蜂窝状丝网的结构示意图。
图 9为蜂窝状丝网的结构示意图。
图 10为丝网表面涂覆一层感光聚合物后的示意图。
图 1中, I为网格区; II为非网格区。
图 3中, III为预设图形的丝网的局部区域; 31为线条。
图 4中, 41为非正六边形区域; 42为图形局部区域。
图 5中, 41为非正六边形区域; 51为桥连; 52为正六边形区域的丝网线;
图 7中, R1为非正六边形区域的宽度尺寸。
图 10中, R1为非正六边形区域的宽度尺寸; R2为镂空长条的开口尺寸。 下面通过具体实施例对本发明作进一步的阐述。
具体实施方式
【实施例 1】
一种蜂窝状金属丝网, 如图 1所示, 所述丝网为多边形阵列构成的蜂窝状结构。 图 1所 示为所述丝网的一种整体结构示意图, 图 2所示为图 1中 I部分 (即丝网主体局部) 的放大 示意图, 构成所述丝网蜂窝状结构的多边形为正六多边形, 如此设计结构稳定, 使得丝网的 机械强度大。
图 3 所示为在以上所述丝网的基础上设置有特殊网格结构的另一种丝网整体结构示意 图, 所述的特网格结构在所述丝网主体上构成图形, 如图 3所示, 一种所述图形为若干组线 条结构, 即图形由线条 31阵列得到。
图 4所示为所述有预设图形的丝网的局部放大示意图, 其对应与图 3中的 III部分, 图 中所示非正六边形区域 41对应于图 3中的线条 31。 非正六边形区域 41 由至少一组其它形 式的图形阵列而来。 将图 4中的局部 42进一步放大即为图 5, 如图 5所示, 非正六边形区 域 41由一组按一定规律排布且将相邻的两正六边形区域连接起来的的桥连 51及部分正六边 形的边界构成。 进一步, 如图 5所示, 所述桥连 51 为一组等间距平行的桥连, 作为优选, 桥连 51的首尾与正六边形的角点相连。
桥连 51 的线径 rl 与构成所述正六边形区域的丝网线 52 的线径 r2尺寸为: rl=13, r2=80, 构成正六边形区域的目数为 200目。 【实施例 2】
一种蜂窝状金属丝网, 为多边形阵列相互连接构成的蜂窝状结构, 构成所述丝网蜂窝状 结构的多边形为正六多边形。 其他结构和实施例 1相同。
桥连 51 的线径 rl 与构成所述正六边形区域的丝网线 52 的线径 r2尺寸为: rl=15, r2=40, 构成正六边形区域的目数为 400 目。 通过配合调整线径尺寸及丝网目数可以控制合 理的开孔率及丝网的机械强度, 从而满足其下一步用途的不同规格要求。
【实施例 3】
一种蜂窝状金属丝网, 为多边形阵列相互连接构成的蜂窝状结构, 构成所述丝网蜂窝状 结构的多边形为正六多边形。 其主体结构和实施例 1基本一致, 如图 6所示, 所述蜂窝状丝 网的结构示意图, 不同点在于: 桥连与六边形的连接位置不同或需要连接的两相邻正六边形 区域的相对位置不同。
所述蜂窝状丝网为电铸成型的平面金属型板体, 其材质为镍基合金材料; 所述丝网的外 缘的正六边形区域, 其丝网线线径尺寸相对中间区域的线径尺寸大, 与正六边形边缘相接有 用于固定的边孔结构。
【实施例 4】
一种蜂窝状金属丝网, 为多边形阵列相互连接构成的蜂窝状结构, 构成所述丝网蜂窝状 结构的多边形为正六多边形。 其主体结构和实施例 1基本一致, 如图 7所示, 所述蜂窝状丝 网的结构示意图, 不同点在于: 桥连与六边形的连接位置不同或需要连接的两相邻正六边形 区域的相对位置不同。
【实施例 5】
一种蜂窝状金属丝网, 为多边形阵列相互连接构成的蜂窝状结构, 构成所述丝网蜂窝状 结构的多边形为正六多边形。 图 8为所述蜂窝状丝网的结构示意图, 其主体结构和实施例 1 基本一致, 其不同点在于: 构成非正六边形区域的桥连与正六边形区域主体为非垂直关系。
所述蜂窝状丝网为电铸成型的平面金属型板体, 其材质为镍金属材料。 所述丝网的外缘 的正六边形区域, 其丝网线线径尺寸相对中间区域的线径尺寸大, 与正六边形边缘相接有用 于固定的边孔结构。 【实施例 6】
一种蜂窝状金属丝网, 为多边形阵列相互连接构成的蜂窝状结构, 构成所述丝网蜂窝状 结构的多边形为正六多边形。 图 9为所述蜂窝状丝网的结构示意图, 其主体结构和实施例 1 基本一致, 其不同点在于: 构成非正六边形区域的桥连与正六边形区域主体为非垂直关系。 所述蜂窝状丝网为电铸成型的平面金属型板体, 其材质为镍金属材料。 所述丝网的外缘的正 六边形区域, 其丝网线线径尺寸相对中间区域的线径尺寸大, 与正六边形边缘相接有用于固 定的边孔结构。
【实施例 7】
一种蜂窝状金属丝网, 其结构与实施例 4基本相同, 如图 10所示, 所述丝网表面涂覆 一层感光聚合物后的示意图。 其对应于图 7所示区域结构, 即图 10所示结构是在图 7所示 结构的基础上涂覆或压贴一层感光聚合物, 其感光聚合物分布在丝网的正六边形区域及部分 非正六边形区域上, 未涂覆或压贴感光聚合物的区域形成带有桥连的长条形开口, 如图 10 中所示关系有: 镂空长条的开口尺寸 R2 其对应的非正六边形区域的宽度尺寸 Rl, R2=20um, Rl=300um。
【实施例 8】
一种蜂窝状金属丝网, 其结构与实施例 5基本相同, 所述丝网表面涂覆一层感光聚合物 后的示意图。 其对应于图 8所示区域结构, 即是在图 8所示结构的基础上压贴一层感光聚合 物, 其感光聚合物分布在丝网的正六边形区域及部分非正六边形区域上, 未涂覆或压贴感光 聚合物的区域形成带有桥连的长条形开口, 如图 10中所示关系有: 镂空长条的开口尺寸 R2 其对应的非正六边形区域的宽度尺寸 Rl, R2=30um, Rl=150um。
【实施例 9】
一种蜂窝状金属丝网, 其结构与实施例 9基本相同, 所述丝网表面涂覆一层感光聚合物 后的示意图。 其对应于图 9所示区域结构, 即是在图 9所示结构的基础上压贴一层感光聚合 物, 其感光聚合物分布在丝网的正六边形区域及部分非正六边形区域上, 未涂覆或压贴感光 聚合物的区域形成带有桥连的长条形开口, 所示尺寸关系有: 镂空长条的开口尺寸 R2 其 对应的非正六边形区域的宽度尺寸 Rl, 即 R2=30um, Rl=150um。 【实施例 10】
包括网格区、 非网格区, 所述网格区与非网格区相连, 所述非网格区设置在网格区的周 边, 所述网格区由两组相互垂直的网格线组构成, 所述蜂窝状金属丝网的网格区中间区域设 置有图案区域, 所述图案是由蜂窝状金属丝网沿横向或纵向上丝网线的缺失构成; 所述蜂窝 状金属丝网无编织型的经纬节点, 其结构为一体成型, 表面光滑, 即构成所述蜂窝状金属丝 网线为连贯无编织型。
图 2为所述金属丝网的局部放大示意图, 其由相互交错的丝网线 la构成, 本实施例中 所述蜂窝状金属丝网的目数为 330目, 网布线径为 20um, 丝网布的厚度为 25um。
图 3所示为所述蜂窝状金属丝网受力缓冲带的局部放大示意图, 所述缓冲带的线径尺寸 由按一定变化规律变化, 本实施例所述规律如图 3所示, 由蜂窝状金属丝网中间至边缘的线 径尺寸逐步增大, 即 rl〈r2〈r3, 如: rl=20um, r2=30um, r3=40um。 如图 1 所示, 线径为 40um 的外边与网布的边孔区域相连。 如此设计可使得网布在绷紧受力时能更好的承受外界 提供的拉力。
【实施例 11】
一种蜂窝状金属丝网, 其基本架构和实施例 1相同, 其变换的部分如下: 网布的目数为 400目, 网布线径为 25um, 丝网布的厚度为 20um。
在此基础上, 所述蜂窝状金属丝网还有以下结构改动:
所述蜂窝状金属丝网上设置有图案, 本实施例所述的图案为一组相互平行的线条 4a, 如图 4所示。 图 5所示为图 4中 I I I部分的放大示意图, 图 5中的 5a即为图 4中所示线条 4a, 5a处缺少横向的网格线。
图 6所示为图 5中 IV部分的放大示意图, 在缺失网格线的图形区域剩余的丝网线线径 有如下规律: 蜂窝状金属丝网主体线径 rl〉图形区域内部丝网线的两端线径 r4〉图形区域内 部丝网线中间区域的线径 r5 ; 所述缺失网格线的图形区域剩余的丝网线线径以可以是以下 规律: 如图 7 所示, 图形区域内部的丝网线线径尺寸均匀, 且有蜂窝状金属丝网主体线径 rl 图形区域内部丝网线的线径 r6。 图 8所示的是在本蜂窝状金属丝网上涂布一层掩模物质后的掩模板局部示意图 (与图 5 所示部分相对应), 如图所示所述掩模板的开口中仅存在一个方向的丝网线 8a, 其起到桥连 的作用, 比较图 5、 图 8有: 蜂窝状金属丝网线缺失区域的开口尺寸 Rl 掩模板图形对应区 域的开口尺寸。 如此设计, 可以降低掩模板的掩模物质的涂覆难度系数, 且由于开口处丝网 线只有一个方向上, 相对较少的桥连减少了对印刷浆料的影响, 可以保证掩模板的下料效果 好。
尽管已经示出和描述了本发明的实施例, 本领域的普通技术人员可以理解: 在不脱离本 发明的原理和宗旨的情况下可以对这些实施例进行多种变化、 修改、 替换和变型, 本发明的 范围由权利要求及其等同物限定。

Claims

权利要求书
1、 一种蜂窝状丝网, 其特征在于所述丝网为多边形阵列相互连接构成的蜂窝状结构, 构成所述丝网蜂窝状结构的多边形为正六多边形。
2、 根据权利要求 1 所述的蜂窝状丝网, 其上设置有非正六边形阵列区域, 所述非正六 边阵列形区域在所述正六多边形阵列上构成特定图案, 正六边形阵列之间通过非正六边形相 连, 非正六边形的边作为桥线, 连接正六边形的角点。
3、 根据权利要求 1所述的蜂窝状丝网, 其特征在于所述桥线的线径 rl与构成所述正六 边形区域的丝网线的线径 r2尺寸范围为 10Um rl r2 80um; 构成正六边形区域的目数为 100〜800目。
4、 根据权利要求 1所述的蜂窝状丝网, 其特征在于桥线 (51 ) 的线径 rl与构成所述正 六边形区域的丝网线 (52) 的线径 r2尺寸范围为 15Um rl r2 40um; 构成正六边形区域 的目数为 200〜400目。
5、 根据权利要求 1 所述的蜂窝状丝网, 其特征在于构成所述蜂窝状金属丝网图形区域 的网格线线径均匀; 所述蜂窝状金属丝网线为连贯无编织型。
6、 根据权利要求 2所述的蜂窝状丝网, 其特征在于蜂窝状金属丝网上图形区域的丝网 线线径不大于非图形区域的丝网线线径; 所述蜂窝状金属丝网上图形区域剩余的丝网线线径 均匀或两头粗中间细。
7、 根据权利要求 1 所述的蜂窝状丝网, 其特征在于所述蜂窝状金属丝网的结构为一体 成型, 表面光滑, 无编织型的经纬节点;
8、 根据权利要求 7 所述的蜂窝状丝网, 其特征在于所述蜂窝状金属丝网是通过电铸工 艺制得, 其材质为纯镍材料或镍基合金材料。
PCT/CN2013/073771 2012-04-10 2013-04-07 蜂窝状金属丝网 WO2013152693A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147031427A KR101987173B1 (ko) 2012-04-10 2013-04-07 벌집형 금속 스크린
JP2015504851A JP6050889B2 (ja) 2012-04-10 2013-04-07 ハチの巣状ワイヤメッシュ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210102078.5 2012-04-10
CN201210102078.5A CN103358671B (zh) 2012-04-10 2012-04-10 蜂窝状金属丝网

Publications (1)

Publication Number Publication Date
WO2013152693A1 true WO2013152693A1 (zh) 2013-10-17

Family

ID=49327097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073771 WO2013152693A1 (zh) 2012-04-10 2013-04-07 蜂窝状金属丝网

Country Status (5)

Country Link
JP (1) JP6050889B2 (zh)
KR (1) KR101987173B1 (zh)
CN (1) CN103358671B (zh)
TW (2) TWM462881U (zh)
WO (1) WO2013152693A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020016624A1 (en) * 2018-07-16 2020-01-23 Saati S.P.A. Asymmetric metal screen for fine line screen printing and screen for printing fine lines comprising said metal screen

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105436476B (zh) * 2014-09-18 2018-12-28 仓和股份有限公司 液态金属网布及其制造方法
TWI615287B (zh) * 2015-06-30 2018-02-21 太陽能電池正銀電極可設計型印刷鋼版結構
TWI644803B (zh) * 2017-01-09 2018-12-21 倉和股份有限公司 Screen structure of finger electrode for screen printing solar cell and manufacturing method thereof
TWI695516B (zh) * 2018-11-19 2020-06-01 財團法人工業技術研究院 雙面太陽能電池及其背面電極結構

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2613408A1 (de) * 1975-11-10 1977-05-12 Iten K Ag Siebdruckschablone
JP2010023253A (ja) * 2008-07-16 2010-02-04 Bonmaaku:Kk マスクの印刷パターン開口用のメッシュ、マスク、2層構造マスク、メッシュパターンデータの作成方法、マスク製造方法及び2層構造マスク製造方法
CN202685523U (zh) * 2012-04-10 2013-01-23 昆山允升吉光电科技有限公司 开孔可调的平面丝网及其组成的印刷网版
CN202782137U (zh) * 2012-05-14 2013-03-13 昆山允升吉光电科技有限公司 一种具有组合结构的丝目网
CN202986318U (zh) * 2012-04-10 2013-06-12 昆山允升吉光电科技有限公司 蜂窝状金属丝网

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0363053B1 (en) * 1988-10-06 1998-01-14 Gpt Limited Asynchronous time division switching arrangement and a method of operating same
CH684527A5 (de) * 1992-08-18 1994-10-14 Juerg Holderegger Verfahren zur Herstellung eines flexiblen und dimensionsstabilen Schablonenträgers für den Siebdruck.
JPH0852951A (ja) * 1994-08-12 1996-02-27 Fuchigami Micro:Kk 開孔率の良いメッシュ及びその製造方法並びにそれを利用したスクリーン版
JP2005219381A (ja) * 2004-02-06 2005-08-18 Nitto Denko Corp スクリーン印刷用マスクおよびそれを用いた配線回路基板の製造方法
CN201128268Y (zh) * 2007-12-17 2008-10-08 山东同大镍网有限公司 印刷圆网
JP2010017887A (ja) 2008-07-08 2010-01-28 Fuchigami Micro:Kk メッシュシート及びメッシュシートの製造方法
JP2010023254A (ja) * 2008-07-16 2010-02-04 Bonmaaku:Kk マスクの印刷パターン開口用のメッシュ、メッシュパターンデータの作成方法、マスク、2層構造マスク、マスク製造方法及び2層構造マスク製造方法
DE102009024877A1 (de) * 2009-06-09 2010-12-23 Nb Technologies Gmbh Siebdruckform
CN102214725A (zh) * 2010-04-01 2011-10-12 无锡尚德太阳能电力有限公司 一种太阳电池用印刷网版及生产太阳电池的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2613408A1 (de) * 1975-11-10 1977-05-12 Iten K Ag Siebdruckschablone
JP2010023253A (ja) * 2008-07-16 2010-02-04 Bonmaaku:Kk マスクの印刷パターン開口用のメッシュ、マスク、2層構造マスク、メッシュパターンデータの作成方法、マスク製造方法及び2層構造マスク製造方法
CN202685523U (zh) * 2012-04-10 2013-01-23 昆山允升吉光电科技有限公司 开孔可调的平面丝网及其组成的印刷网版
CN202986318U (zh) * 2012-04-10 2013-06-12 昆山允升吉光电科技有限公司 蜂窝状金属丝网
CN202782137U (zh) * 2012-05-14 2013-03-13 昆山允升吉光电科技有限公司 一种具有组合结构的丝目网

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020016624A1 (en) * 2018-07-16 2020-01-23 Saati S.P.A. Asymmetric metal screen for fine line screen printing and screen for printing fine lines comprising said metal screen

Also Published As

Publication number Publication date
TWI572493B (zh) 2017-03-01
CN103358671A (zh) 2013-10-23
TW201341204A (zh) 2013-10-16
TWM462881U (zh) 2013-10-01
JP6050889B2 (ja) 2016-12-21
KR20150020168A (ko) 2015-02-25
KR101987173B1 (ko) 2019-06-10
CN103358671B (zh) 2017-06-06
JP2015514029A (ja) 2015-05-18

Similar Documents

Publication Publication Date Title
TWI615280B (zh) 金屬網布及採用該金屬網布製得的掩膜版
CN202782135U (zh) 用于制作太阳能电池片印刷网版的平面丝网
WO2013152693A1 (zh) 蜂窝状金属丝网
CN202573247U (zh) 金属网布
CN102615951B (zh) 金属丝网
CN202782136U (zh) 印刷网版
CN103358669A (zh) 用于制作太阳能电池片印刷网版的平面丝网
CN202782134U (zh) 金属丝网
CN103361680B (zh) 电铸平面丝网
CN202782133U (zh) 丝网平版
CN202685523U (zh) 开孔可调的平面丝网及其组成的印刷网版
CN202428773U (zh) 一种太阳能复合网版
CN103358667B (zh) 开孔可调的平面丝网及其组成的印刷网版
CN202986318U (zh) 蜂窝状金属丝网
CN102717591B (zh) 丝网平版
CN202576611U (zh) 电铸平面丝网
CN103171256B (zh) 太阳能电池电极印刷掩模版及其制造方法
CN101556980A (zh) 高效太阳能硅片电池的印刷方法
CN103192619B (zh) 一种太阳能电池片的印刷方法
CN103358668B (zh) 丝 网
CN111640818B (zh) 一种太阳能电池导电电极线的分布和制造方法
CN103358670B (zh) 印刷网版
CN202986317U (zh) 丝网及其制作的掩模板
CN111332006A (zh) 一种全开口太阳能印刷版及其复合结构
TWM442582U (en) Solar cell electrode screen printing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504851

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147031427

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13775803

Country of ref document: EP

Kind code of ref document: A1