WO2013152642A1 - 基于跳频的信道映射的方法和装置 - Google Patents

基于跳频的信道映射的方法和装置 Download PDF

Info

Publication number
WO2013152642A1
WO2013152642A1 PCT/CN2013/071929 CN2013071929W WO2013152642A1 WO 2013152642 A1 WO2013152642 A1 WO 2013152642A1 CN 2013071929 W CN2013071929 W CN 2013071929W WO 2013152642 A1 WO2013152642 A1 WO 2013152642A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
label
node
working
working channel
Prior art date
Application number
PCT/CN2013/071929
Other languages
English (en)
French (fr)
Inventor
刘培
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13776101.1A priority Critical patent/EP2824863B1/en
Publication of WO2013152642A1 publication Critical patent/WO2013152642A1/zh
Priority to US14/510,773 priority patent/US9154183B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/715Interference-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7143Arrangements for generation of hop patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/7156Arrangements for sequence synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/715Interference-related aspects
    • H04B2001/7154Interference-related aspects with means for preventing interference

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for channel mapping based on frequency hopping. Background technique
  • frequency hopping technology is used to solve the interference problem in the network.
  • the entire communication frequency band is divided into at least two working channels; after using the frequency hopping technology, the network and the device can perform hopping between different working channels according to the frequency hopping pattern and the frequency hopping sequence, that is, changing the network. And the working channel of the device.
  • all nodes included in the network operate on the same channel in one channel hopping period.
  • all nodes in the network also perform frequency hopping synchronously, that is, change the working channel of the network.
  • Embodiments of the present invention provide a method and apparatus for channel mapping based on frequency hopping, such that all nodes included in a network operate on multiple channels, and when one of the channels is interfered, performance degradation of all nodes is avoided, and the network is reduced. Performance is affected.
  • a method for channel mapping based on frequency hopping comprising:
  • the identifier of the node, and corresponding to The time parameter of the current superframe calculates the working channel label of the node
  • a device for frequency hopping based channel mapping comprising:
  • a calculating unit configured to calculate a working channel label of the node according to the number of working channels of the node in the frequency hopping mode, the identifier of the node, and the time parameter corresponding to the current superframe;
  • a determining unit configured to determine a working channel according to the working channel label
  • An execution unit configured to perform data transmission on the working channel within the current superframe.
  • the method and device for frequency-hopping-based channel mapping provided by the embodiments of the present invention, after using the foregoing solution, all nodes included in the network work on multiple channels, and when one channel is interfered, the performance of all nodes is avoided. Declining, reducing network performance is affected.
  • FIG. 1 is a flowchart of a method for frequency hopping based channel mapping according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a frame format of a beacon frame according to the embodiment
  • FIG. 3 is a flowchart of a method for mapping a node to a frequency hopping based channel mapping on all channels in a network according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of channel division in a network according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a method for mapping frequency-based channel mapping on a channel other than an agreed channel and an alternate channel by mapping a node to a network according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of an apparatus for channel mapping based on frequency hopping according to an embodiment of the present disclosure.
  • the embodiment provided below can be applied to a frequency hopping communication system, and the frequency hopping communication system is based on superframe synchronization and has a plurality of devices and channels.
  • the embodiment is not limited to the frequency hopping communication system, and can be any frequency hopping communication system that is well known to those skilled in the art and meets the above conditions.
  • it can be a micro power wireless communication system, and details are not described herein.
  • the method for superframe synchronization is not limited in the embodiment, and is a technique well known to those skilled in the art, and details are not described herein again.
  • the main operation is in the 433 MHz and 470 to 51 0 MHz frequency bands, and the nodes are allocated in a dense application scenario and a complex and varied community electromagnetic environment, and the frequency band is mainly affected by Unpredictable interference such as automotive electronics, and mutual interference of neighbor networks, the reliability of data interaction is severely tested.
  • the entire frequency band is divided into multiple working channels, each working channel operates on different sub-bands, and in the case of supporting frequency hopping, the network and devices are allowed on these channels. Synchronous frequency hopping is performed to reduce burst interference.
  • the specific frequency hopping method allows the network to perform synchronous frequency hopping according to a certain frequency hopping pattern or frequency modulation sequence in the CFP phase.
  • the working frequency band is not limited in the embodiment, and may be set according to actual needs, and details are not described herein again.
  • nodes mapped on the channel are subject to interference, since all nodes are allocated on the same working channel, therefore, all nodes in the network Both are subject to interference, resulting in a significant drop in network performance.
  • the embodiments of the present invention can effectively avoid the above problems.
  • the hopping pattern or the hopping sequence provided by the embodiment is the basis of the node hopping, and is a technique well known to those skilled in the art, and details are not described herein again.
  • the embodiment provides a method for channel mapping based on frequency hopping, as shown in FIG. 1 , which may include the following steps:
  • the superframe is mainly composed of BP (beacon Per iod, beacon period), active period, and inactive period.
  • the inactive period is the dormant phase, and the node enters the dormant state during the inactive phase, thereby achieving the purpose of power saving.
  • the network communicates during the active period, and the active period can be divided into CAP (Content ion Acces s Per iod) and CFP (Content ion Free Per iod).
  • the BP phase is mainly used for synchronizing the nodes in the network, and broadcasts part of the network information.
  • the Coord ina tor broadcasts the beacon frame.
  • the specific frame format of the beacon frame is shown in Figure 2.
  • the sequence number is a sequence number value identifying the superframe, which is initialized to a random number, and each time a beacon frame is generated, the superframe sequence number is incremented by one, and the cyclic use is allowed.
  • MHR Medium Acces s Control header, MAC frame header
  • GTS Guaranteed Time S lot
  • MFR MAC footer
  • MAC medium acces s cont rol , Media Access Control
  • FCS Full Check Sequence, ⁇ j3 ⁇ 4 check sequence
  • the coordinator allocates the nodes included in the network to at least two working channels respectively, and ensures that any one of the working channels is included. Fewer nodes reduce the number of interfered nodes when a channel is interfered. Specifically, the coordinator calculates the working channel label of the node according to the number of working channels of the node in the frequency hopping mode, the identifier of the node, and the time parameter corresponding to the current superframe.
  • the coordinator allocates the working channel of the node as the working channel corresponding to the working channel label.
  • the node uses the allocated working channel for data transmission, that is, performs data transmission on the working channel, so that the network can not only solve the interference problem through frequency hopping technology, but also When a channel is interfered, the number of interfered nodes is reduced, thereby reducing the magnitude of network performance degradation.
  • all the nodes included in the network work on multiple channels, and when one of the channels is interfered, the performance degradation of all nodes is avoided, and the performance of the network is reduced.
  • This embodiment provides another method for channel mapping based on frequency hopping.
  • the working channel that the node can allocate is all the channels included in the network. As shown in FIG. 3, the following steps can be included:
  • the working channel label of the node is mainly concentrated on 4 33MHz or 470MHz to 51 0MHz, there are a large number of unpredictable interferences such as neighbor networks and automotive electronics.
  • the coordinator allocates the nodes included in the network to at least two working channels respectively, and ensures that any one of the working channels is included. Fewer nodes reduce the number of interfered nodes when a channel is interfered.
  • the network Since in the network based on micro-power wireless meter reading, the star topology is used, the network is strictly synchronized in the time domain, that is, all nodes of the whole network implement synchronization and resource allocation based on the superframe structure. In addition, nodes in the network are assigned different network addresses when they access the network.
  • the standard protocol divides the entire frequency band into multiple channels according to the channel bandwidth. Among them, the letter of appointment The channel is used to transmit common data; the alternate channel is an alternate channel for the agreed channel.
  • the coordinator calculates the working channel label of the node according to the number of working channels of the node in the frequency hopping mode, the identifier of the node, and the time parameter corresponding to the current superframe.
  • the determination of the working channel of each node is performed by using the existing parameters to perform the operation by itself, without signaling, and does not increase the network overhead.
  • the network For each node in the network, when the node initially enters the network, the network will assign a network address to the node, which is used for the address when the node communicates in the network. For the same network, each of the networks The addresses of the nodes are random and unique.
  • the working channel label of the node is calculated according to the formula (S + mod N, where S is a time parameter corresponding to the current superframe; is an identifier of the node; W is the number of working channels of the node in the frequency hopping mode Further, the time parameter corresponding to the current superframe may be a sequence label of the current superframe; the identifier of the node may be a network address value of the node.
  • the working channel number calculated according to the formula (S + mod N is 6 , where mod is the remainder. Since the network address of each node is different and has random Sex, so the nodes in the network are randomly and evenly distributed on each channel. Further, since the frame sequence number of each superframe is changing, the working channel of each node is also performed on different superframes. The hopping can overcome random interference and burst interference more effectively. Moreover, since the parameters in all formulas are known, there is no need to exchange and update through signaling, thus saving network overhead.
  • S and S is not limited, and may be set according to actual needs, and details are not described herein again.
  • ⁇ in the above formula may be a value of a 16-bit short address.
  • the network address value of the node uses the value of the network address assigned in this manner. 302, 4, determining the working channel according to the working channel label.
  • the coordinator determines the working channel according to the working channel label, that is, the coordinator allocates the working channel of the node as the working channel corresponding to the corresponding working channel label.
  • the number of all working channels included in the network of the node in the frequency hopping mode, or the number of working channels of the standby channel and the reserved channel included in the network in the frequency hopping mode of the node is not limited.
  • step 302 if the number of all working channels is included in the network in the frequency hopping mode of the node, in step 302, the working channel number calculated according to the formula (S + mod N is 6, The working channel of the node is assigned to the corresponding working channel numbered 6. 303. In the current superframe, data transmission is performed on the working channel.
  • the node uses the allocated working channel for data transmission, that is, performs data transmission on the working channel, so that the network can not only solve the interference problem through frequency hopping technology, but also When a channel is interfered, the number of interfered nodes is reduced, thereby reducing the magnitude of network performance degradation.
  • the node determines the working channel according to the known parameters, and does not need to be notified by signaling, and does not increase the network overhead.
  • This embodiment provides another method for frequency hopping based channel mapping. The method does not map the node to the reserved channel and the alternate channel. As shown in FIG. 5, the following steps may be included. :
  • the working frequency band is mainly concentrated on 433MHz or 470MHz to 51 0MHz, there are a large number of unpredictable interferences such as neighbor networks and automotive electronics.
  • the coordinator allocates the nodes included in the network to at least two working channels respectively, ensuring that any one working channel contains less The node, when a channel is interfered, reduces the number of interfered nodes.
  • the network Since in the network based on micro-power wireless meter reading, the star topology is used, the network is strictly synchronized in the time domain, that is, all nodes of the whole network implement synchronization and resource allocation based on the superframe structure. In addition, the nodes in the network are assigned different network addresses when they access the network.
  • the standard protocol divides the entire frequency band into multiple channels according to the channel bandwidth. Wherein, the appointment channel is used to transmit common data; the alternate channel is an alternate channel of the agreed channel.
  • the coordinator calculates the working channel label of the node according to the number of working channels of the node in the frequency hopping mode, the identifier of the node, and the time parameter corresponding to the current superframe.
  • the determination of the working channel of each node is performed by using the existing parameters to perform the operation by itself, without signaling, and does not increase the network overhead.
  • the network For each node in the network, when the node initially enters the network, the network will assign a network address to the node, which is used for the address when the node communicates in the network. For the same network, each of the networks The addresses of the nodes are random and unique.
  • the working channel label of the node is calculated.
  • is the identifier of the node
  • W is the node in the network in the frequency hopping mode except the standby The number of channels and other working channels outside the agreed channel.
  • the time parameter corresponding to the current superframe may be the sequence label of the current superframe; the identifier of the node may be the network address value of the node.
  • the network addresses of each node are different and random, nodes in the network are randomly and evenly distributed on each channel. Further, since the frame sequence number of each superframe is changing, the working channel of each node also performs hopping on different superframes, which can more effectively overcome random interference and burst interference. Moreover, since the parameters in all formulas are known, there is no need to interact and update through signaling, thus saving network overhead. Further optionally, the ⁇ in the above formula may be a value of a 16-bit short address.
  • the node's network address value is the value of the network address assigned in that way.
  • the node since the reserved channel and the alternate channel are not included, the node is not allocated to the reserved channel and the standby channel, so that the reserved channel and the alternate channel can be used. Transfer public data.
  • the device determines whether the working channel label is greater than or equal to the label of the agreed channel in the network, and the label of the alternate channel. If the working channel label is greater than or equal to any one of the label of the agreed channel and the label of the alternate channel, step 503 is performed; When the channel label is greater than or equal to the label of the agreed channel and the label of the alternate channel, step 504 is performed; if the working channel label is smaller than the label of the reserved channel and the label of the alternate channel, step 505 is performed.
  • the preset value is the difference between adjacent working channel labels in the network.
  • the working channel is marked with an adjacent difference of 1 or more.
  • the label of the agreed channel is 3, and the label of the alternate channel is 6, that is, the preset value is 1.
  • the working channel number calculated according to the formula (S + mod N is 4, since 4 is greater than 3, That is, the calculated label is larger than the label of the agreed channel, and since ⁇ does not include the agreed channel and the alternate channel, the channel of the label 4 calculated at this time actually corresponds to the channel of label 5, and the calculated Standard No. 4 plus 1 and the working channel of the node is assigned to the working channel labeled 5.
  • the label of the working channel is an integer with a difference of 1 and greater than or equal to 0, and the label of the reserved channel is 3, and the label of the alternate channel is 6, that is, the preset value is 1.
  • the working channel number is 5, since 5 is greater than 3, then the channel of the label 5 calculated at this time actually corresponds to the channel of the label 6, and the calculated label 5 is added. 1 . Since, the label 6 is the label of the alternate channel, the label 5 calculated at this time actually corresponds to the channel of the label 7, and then 6 forces are used. 1 , the working channel of the node is assigned the label 7 The working channel.
  • the preset value and the label of the channel are not limited, and may be set according to actual needs. For example, the preset value may be: 1, 2, or 3, etc., and details are not described herein again.
  • the label of the working channel is an integer with a difference of 1 and greater than 0, and the label of the reserved channel is 3, and the label of the alternate channel is 6, that is, the preset value is 1.
  • the formula (S + mod N calculated working channel number is 6, since the label 6 is the label of the alternate channel, then the channel of the label 6 calculated at this time actually corresponds to the channel of the label 8, which will be calculated
  • the label 6 is incremented by two, which is 8, and then the working channel of the node is assigned to the working channel numbered 8. Step 506 is performed.
  • step 302 Allocate a working channel of the node as a working channel corresponding to the corresponding working channel label.
  • the working channel of the node is allocated as the corresponding working channel labeled 6. 506. Perform data transmission on the working channel in the current superframe.
  • the node uses the allocated working channel for data transmission, that is, performs data transmission on the working channel, so that the network can not only solve the interference problem through frequency hopping technology, but also When a channel is interfered, the number of interfered nodes is reduced, thereby reducing the magnitude of network performance degradation.
  • the node determines the working channel according to the known parameters, and does not need to be notified by signaling, and does not increase the network overhead.
  • the present embodiment provides an apparatus for channel mapping based on frequency hopping.
  • the apparatus may be, but not limited to, a coordinator.
  • the apparatus includes: a calculating unit 61, a determining unit 62, and an executing unit 63.
  • the calculating unit 61 includes: a calculating module 61 1 .
  • the determining unit 62 includes: a first assigning module 621 and a second assigning module 622.
  • the calculating unit 6 1 is configured to calculate a working channel label of the node according to the number of working channels of the node in the frequency hopping mode, the identifier of the node, and the time parameter corresponding to the current superframe.
  • the calculation module 61 1 is configured to calculate a working channel label of the node according to the formula (S + mod N).
  • the time parameter corresponding to the current superframe may be the sequence label of the current superframe; the identifier of the node may be the network address value of the node.
  • the determining unit 62 is configured to determine a working channel according to the working channel label.
  • the number of all working channels included in the network in the frequency hopping mode of the node or the number of working channels except the standby channel and the agreed channel included in the network in the frequency hopping mode of the node.
  • there are an agreed channel and an alternate channel in the network In order to make the agreed channel and the alternate channel are used for transmitting common data, the working channel of the node is not allocated as the reserved channel and the standby channel.
  • may be the number of working channels in the network including the alternate channel and the agreed channel. If the number of working channels including the alternate channel and the agreed channel is included in the network in the frequency hopping mode, the determining unit further includes the following modules:
  • the first allocating module 621 is configured to: if the working channel label is greater than or equal to any one of the label of the agreed channel and the label of the alternate channel, accumulate the working channel label by a preset value until the accumulated working channel label is not equal to the agreed channel. a label of the label or the alternate channel, and the channel corresponding to the accumulated working channel label is determined as the working channel;
  • the second allocation module 622 is configured to: when the working channel label is greater than or equal to the label of the agreed channel and the label of the alternate channel, accumulate the working channel label by a preset value twice until the accumulated working channel label is not equal to the label of the agreed channel. Or the label of the alternate channel, which is determined as the working channel by the channel corresponding to the twice accumulated working channel label.
  • the preset value is the difference between adjacent working channel labels in the network.
  • can be a 16-bit short address value.
  • the executing unit 63 is configured to perform data transmission on the working channel in the current superframe. After the nodes included in the network are respectively allocated to at least two working channels, the node uses the allocated working channel for data transmission, that is, the execution unit performs data transmission on the working channel, so that the network can not only solve the interference by frequency hopping technology. The problem, when a channel is interfered, the number of interfered nodes, thus reducing the extent of network performance degradation.
  • the node determines the working channel according to the known parameters, and does not need to be notified by signaling, and does not increase the network overhead.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a hard disk or optical disk or the like includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种基于跳频的信道映射的方法和装置。涉及通信技术领域。解决了当网络中包含的有所有节点的工作信道受到干扰时,导致网络中的所有节点的性能均下降,进而导致网络性能下降幅度较大的问题。具体可以包括以下步骤:根据节点在跳频模式下的工作信道的数量、节点的标识、以及对应于当前超帧的时间参数计算节点的工作信道标号;根据工作信道标号确定工作信道;在当前超帧内,在工作信道上执行数据传输。可以应用于节点的信道映射中。

Description

基于跳频的信道映射的方法和装置
本申请要求于 2012 年 4 月 9 日提交中国专利局、 申请号为 201210101770.6、 发明名称为"基于跳频的信道映射的方法和装置 "的中国专利 申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域, 尤其涉及基于跳频的信道映射的方法和装置。 背景技术
在微功率无线通信网络和系统中, 由于工作在非授权频段, 因此, 面临的 干扰问题比较严重,使得在实际应用中经常因为干扰带来相对较差的通信质量 和性能。
在现有技术中, 釆用跳频技术来解决网络中的干扰问题。
具体的, 根据协议, 整个通信频段被划分为至少两个工作信道; 釆用跳频 技术后,网络和设备可以根据跳频图案和跳频序列在不同的工作信道间进行跳 变, 即改变网络和设备的工作信道。 在这种方式下, 网络包含的所有节点均在 一个信道跳变周期内工作于同一信道上, 当网络进行跳频时, 网络中的所有节 点也同步进行跳频, 即改变网络的工作信道。
在实现上述信道跳频的过程中,当网络中包含的有所有节点工作在同一信 道, 而该信道受到干扰时, 导致网络中的所有节点的性能下降, 进而导致网络 性能大幅度下降。
发明内容
本发明的实施例提供一种基于跳频的信道映射的方法、装置,使得网络中 包含的有所有节点工作在多个信道,在其中一个信道受到干扰时,避免所有节 点的性能下降, 减少网络性能所受影响。
为达到上述目的, 本发明的实施例釆用如下技术方案:
一种基于跳频的信道映射的方法, 包括:
根据节点在跳频模式下的工作信道的数量、所述节点的标识、 以及对应于 当前超帧的时间参数计算节点的工作信道标号;
才艮据所述工作信道标号确定工作信道;
在所述当前超帧内, 在所述工作信道上执行数据传输。
一种基于跳频的信道映射的装置, 包括:
计算单元, 用于根据节点在跳频模式下的工作信道的数量、所述节点的标 识、 以及对应于当前超帧的时间参数计算节点的工作信道标号;
确定单元, 用于 4艮据所述工作信道标号确定工作信道;
执行单元, 用于在所述当前超帧内, 在所述工作信道上执行数据传输。 本发明实施例提供的基于跳频的信道映射的方法、装置,釆用上述方案后, 使得网络中包含的有所有节点工作在多个信道, 在其中一个信道受到干扰时, 避免所有节点的性能下降, 减少网络性能所受影响。 附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所 需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本实施例提供的一种基于跳频的信道映射的方法流程图;
图 2为本实施例提供的信标帧的帧格式示意图;
图 3 为本实施例提供的一种将节点映射到网络中所有信道上的基于跳频 的信道映射的方法流程图;
图 4为本实施例提供的网络中信道划分的示意图;
图 5为本实施例提供的一种将节点映射到网络中,除约定信道和备用信道 外的其他信道上的基于跳频的信道映射的方法流程图;
图 6为本实施例提供的一种基于跳频的信道映射的装置结构示意图。 具体实施方式 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
为了更清楚的描述下面的实施例,首先对网络通过跳频技术应对干扰的问 题进行简单描述。
下面提供的实施例可以应用于跳频通信系统,且该跳频通信系统是基于超 帧同步的, 并且具有多个设备和信道。
实施例对跳频通信系统不作限定, 可以为本领域技术人员熟知的,且满足 上述条件的任意跳频通信系统, 例如, 可以为微功率无线通信系统, 在此不再 赘述。
实施例对超帧同步的方法不作限定, 为本领域技术人员熟知的技术,在此 不再赘述。
作为实施例中的一种实施方式, 对于微功率无线通信系统, 主要工作在 433MHz和 470至 51 0MHz频段, 节点被分配于密集的应用场景和复杂多变的小 区电磁环境下, 该频段主要受到汽车电子等不可预知的干扰, 以及邻居网络的 相互干扰, 数据交互的可靠性受到严峻考验。
在 470至 51 0MHz工作频段上, 根据协议, 整个频段被划分为多个工作信 道, 每个工作信道工作在不同的子频段上, 在支持跳频的情况下, 允许网络和 设备在这些信道上同步进行跳频, 从而减小突发干扰。 在多超帧结构下, 具体 跳频方法是在 CFP阶段允许网络按照一定跳频图案或调频序列进行同步跳频。
实施例对工作频段不作限定,可以根据实际需要进行设定,在此不再赘述。 在现有技术中, 当映射有节点的工作信道受到较大干扰时, 映射在该信道 上的节点均会受到干扰, 由于, 所有节点均被分配在同一工作信道上, 因此, 网络中所有节点都受到干扰, 导致网络性能大幅度下降。 本发明实施例可有效 避免上述问题。 实施例提供的跳频图案或跳频序列为节点跳频的依据,为本领域技术人员 熟知的技术, 在此不再赘述。
现有技术中, 由于网络中的所有节点均被分配到同一个信道上,使得当该 信道受到较大干扰时, 网络中的所有节点的性能均下降, 进而导致网络的性能 下降的幅度较大。
实施例一
为了解决上述问题, 本实施例提供一种基于跳频的信道映射的方法,如图 1所示, 可以包括以下步骤:
101、 根据节点在跳频模式下的工作信道的数量、 节点的标识、 以及对应 于当前超帧的时间参数计算节点的工作信道标号。
超帧主要由 BP ( Beacon Per iod, 信标期)、 活跃期、 和非活跃期 3部分 组成, 非活跃期为休眠阶段, 节点在非活跃期进入休眠状态, 从而实现省电的 目的。 网络在活跃期进行通信, 活跃期又可以分为 CAP ( Content ion Acces s Per iod, 竟争接入期)和 CFP ( Content ion Free Per iod , 非竟争期)。
其中, BP 阶段主要用于网络中各节点同步, 并且广播部分网络信息, 网 络协调器(Coord ina tor )会广播信标帧, 信标帧的具体帧格式如图 2。 其中, 序列号是标识本超帧的一个序号值, 其初始化为一个随机数,每生成一个信标 帧, 并将超帧序列号加 1 , 允许循环使用。
其中, 图 2 中: MHR ( Medium Acces s Control header , MAC帧头); GTS ( Guaranteed Time S lot,保证的时隙) ; MFR (MAC footer , MAC 帧尾); MAC (medium acces s cont rol , 媒体访问控制); FCS (Frame Check Sequence, †j¾ 校验序列)。
为了避免当包含有节点的工作信道受到较大干扰,该信道中的所有节点均 受到干扰, 则协调器将网络中包含的节点分别分配到至少两个工作信道上,保 证任意一个工作信道上包含较少的节点, 当某信道受到干扰时, 降低了受干扰 节点的数量。 具体的, 协调器根据节点在跳频模式下的工作信道的数量、 节点的标识、 以及对应于当前超帧的时间参数计算节点的工作信道标号。
102、 4艮据工作信道标号确定工作信道。
协调器将节点的工作信道分配为工作信道标号对应的工作信道。
1 03、 在当前超帧内, 在工作信道上执行数据传输。
在将网络中包含的节点分别分配到至少两个工作信道后,节点使用分配的 工作信道进行数据传输, 即在工作信道上执行数据传输,使得网络不仅可以通 过跳频技术来解决干扰问题, 同时, 当某信道受到干扰时, 减小了受干扰的节 点的数量, 从而减小了网络性能下降的幅度。
釆用上述方案后,使得网络中包含的有所有节点工作在多个信道,在其中 一个信道受到干扰时, 避免所有节点的性能下降, 减少网络性能所受影响。
实施例二
本实施例提供另一种基于跳频的信道映射的方法,该方法节点可分配的工 作信道为网络中包含的所有信道, 如图 3所示, 可以包括以下步骤:
301、 根据公式 (S + mod N计算节点的工作信道标号。 作为实施例的一种实施方式,在微功率无线通信网络中, 特别是微功率无 线抄表和智能家居系统, 工作频段主要集中在 4 33MHz或 470MHz至 51 0MHz , 存在大量如邻居网络和汽车电子等大量的不可预知的干扰。
为了避免当包含有节点的工作信道受到较大干扰,该信道中的所有节点均 受到干扰, 则协调器将网络中包含的节点分别分配到至少两个工作信道上,保 证任意一个工作信道上包含较少的节点, 当某信道受到干扰时, 降低了受干扰 节点的数量。
由于在基于微功率无线抄表的网络中, 釆用了星形拓朴, 网络在时域上是 严格同步的, 即全网所有节点基于超帧结构实现同步和资源分配。 另外, 网内 节点在入网时都分配了不同的网络地址。在 470— 51 0MHz的工作频段上, 如图 4所示, 标准协议将按照信道带宽, 将整个频段分为多个信道。 其中, 约定信 道用于传输公共数据; 备用信道是约定信道的备用信道。
具体的, 协调器根据节点在跳频模式下的工作信道的数量、 节点的标识、 以及对应于当前超帧的时间参数计算节点的工作信道标号。 同时在该方法中, 每个节点的工作信道的确定都是利用已有的参数自行进行运算来进行确定,无 需信令通知, 并不增加网络开销。
对网络中的每个节点,在节点初始入网时, 网络将会为节点分配一个网络 地址, 该网络地址用于节点在网络中进行通信时地址, 对于同一个网络而言, 网络中的每个节点的地址都是随机而且唯一的。
进一步可选的, 根据公式 (S + mod N计算节点的工作信道标号。 其中, S为对应于当前超帧的时间参数; 为节点的标识; W为节点在跳 频模式下的工作信道的数量。 进一步的,对应于当前超帧的时间参数可以为当前超帧的序列标号; 节点 的标识可以为节点的网络地址数值。
作为本实施例的一种实施方式。 当 =1 ; ^=255263; N=9时, 根据公式 (S + mod N计算出的工作信道标号为 6 , 其中, mod为取余。 由于每个节点的网络地址是不同的, 而且具有随机性, 所以网络中的节点 被随机的均匀分配在每个信道上。进一步, 由于每个超帧的帧序列号在发生变 化, 所以, 每个节点的工作信道在不同的超帧上也在进行跳变, 可以更加有效 地克服随机干扰和突发干扰。 并且, 由于所有公式中的参数都是已知的, 无需 通过信令进行交互和更新, 所以, 节约了网络开销。
本实施例对 S、 的取值不作限定, 可以根据实际需要进行设定, 在 此不再赘述。
进一步可选的, 上述公式中的 ^可以为 1 6位短地址的数值。
如果网络釆用其他网络协议为节点分配网络地址,则节点的网络地址值釆 用该方式分配的网络地址的数值。 302、 4艮据工作信道标号确定工作信道。
协调器根据工作信道标号确定工作信道,即协调器将节点的工作信道分配 为相应的工作信道标号对应的工作信道。
进一步可选的, 可以为节点在跳频模式下的网络中包含的所有工作信道 的数量、或节点在跳频模式下的网络中包含的除备用信道和约定信道的工作信 道的数量。
作为实施例的一种实施方式,若 ^为节点在跳频模式下的网络中包含所有 工作信道的数量, 则步骤 302 中, 根据公式 (S + mod N计算出的工作信道标 号为 6 , 则节点的工作信道分配为相应的标号为 6的工作信道。 303、 在当前超帧内, 在工作信道上执行数据传输。
在将网络中包含的节点分别分配到至少两个工作信道后,节点使用分配的 工作信道进行数据传输, 即在工作信道上执行数据传输,使得网络不仅可以通 过跳频技术来解决干扰问题, 同时, 当某信道受到干扰时, 减小了受干扰的节 点的数量, 从而减小了网络性能下降的幅度。
釆用上述方案后,使得网络中包含的有所有节点工作在多个信道,在其中 一个信道受到干扰时, 避免所有节点的性能下降, 减少网络性能所受影响。 同 时, 节点时根据已知的参数确定工作信道的, 不需要以信令的方式通知, 并不 增加网络开销。
实施例三
在网络中,存在约定信道和备用信道, 本实施例提供另一基于跳频的信道 映射的方法, 该方法不将节点映射到约定信道和备用信道上, 如图 5所示, 可 以包括以下步骤:
501、 根据公式 (S + mod N计算节点的工作信道标号。 作为实施例的一种实施方式,在微功率无线通信网络中, 特别是微功率无 线抄表和智能家居系统, 工作频段主要集中在 433MHz或 470MHz至 51 0MHz , 存在大量如邻居网络和汽车电子等大量的不可预知的干扰。 为了避免当包含有节点的工作信道受到较大干扰,该信道中的所有节点均 受到干扰, 则协调器将网络中包含的节点分别分配到至少两个工作信道,保证 任意一个工作信道包含较少的节点, 当某信道受到干扰时, 降低了受干扰节点 的数量。
由于在基于微功率无线抄表的网络中, 釆用了星形拓朴, 网络在时域上是 严格同步的, 即全网所有节点基于超帧结构实现同步和资源分配。 另外, 网内 节点在入网时都分配了不同的网络地址。在 470— 51 0MHz的工作频段上, 如图 4所示, 标准协议将按照信道带宽, 将整个频段分为多个信道。 其中, 约定信 道用于传输公共数据; 备用信道是约定信道的备用信道。
具体的, 协调器根据节点在跳频模式下的工作信道的数量、 节点的标识、 以及对应于当前超帧的时间参数计算节点的工作信道标号。 同时在该方法中, 每个节点的工作信道的确定都是利用已有的参数自行进行运算来进行确定,无 需信令通知, 并不增加网络开销。
对网络中的每个节点,在节点初始入网时, 网络将会为节点分配一个网络 地址, 该网络地址用于节点在网络中进行通信时地址, 对于同一个网络而言, 网络中的每个节点的地址都是随机而且唯一的。
进一步可选的, 根据公式 (S + mod N计算节点的工作信道标号。 其中, 为对应于当前超帧的时间参数; ^为节点的标识; W为节点在跳 频模式下的网络中除备用信道和约定信道外的其他工作信道的数量。
进一步的,对应于当前超帧的时间参数可以为当前超帧的序列标号; 节点 的标识可以为节点的网络地址数值。
由于每个节点的网络地址是不同的, 而且具有随机性, 所以网络中的节点 被随机的均匀分配在每个信道上。进一步, 由于每个超帧的帧序列号在发生变 化, 所以, 每个节点的工作信道在不同的超帧上也在进行跳变, 可以更加有效 地克服随机干扰和突发干扰。 并且, 由于所有公式中的参数都是已知的, 无需 通过信令进行交互和更新, 所以, 节约了网络开销。 进一步可选的, 上述公式中的 ^可以为 1 6位短地址的数值。
如果网络釆用其他网络协议为节点分配网络地址,则节点的网络地址值釆 用该方式分配的网络地址的数值。
502、 判断工作信道标号是否大于等于网络中的约定信道的标号、 和备用 信道的标号。
作为实施例的一种实施方式, 本实施例中, 由于 中不包含约定信道、 和 备用信道, 因此, 节点不被分配到约定信道、 和备用信道上, 以便约定信道、 和备用信道可以用于传输公共数据。
当根据公式 (S + mod N计算出的工作信道标号为约定信道标号、 或备用 信道标号时, 则不能查询到与之对应的信道, 会造成分配失败, 为了避免由于 上述原因造成分配失败,协调器判断工作信道标号是否大于等于网络中的约定 信道的标号、 和备用信道的标号。 若工作信道标号大于等于约定信道的标号和备用信道的标号中任意一项 时, 则执行步骤 503 ; 若工作信道标号大于等于约定信道的标号和备用信道的 标号时, 则执行步骤 504 ; 若工作信道标号小于约定信道的标号和备用信道的 标号时, 则执行步骤 505。
503、 将工作信道标号累加预设数值, 直到经过累加的工作信道标号不等 于约定信道的标号或备用信道的标号,将经过累加的工作信道标号对应的信道 确定为工作信道。
预设数值为网络中相邻的工作信道标号之间的差值。
作为实施例的一种实施方式,工作信道的标号为相邻差值为 1的大于等于
0的整数, 且约定信道的标号为 3 , 备用信道的标号为 6, 即预设数值为 1 , 当 根据公式 (S + mod N计算出的工作信道标号为 4时, 由于, 4大于 3 , 即计算 出的标号大于约定信道的标号, 又由于, ^中不包含约定信道、 和备用信道, 则此时计算出的标号 4的信道实际上对应的是标号 5的信道,则将计算出的标 号 4加 1 , 并将节点的工作信道分配为标号为 5的工作信道。 作为实施例的一种实施方式,工作信道的标号为相邻差值为 1的大于等于 0的整数, 且约定信道的标号为 3 , 备用信道的标号为 6, 即预设数值为 1 , 当 根据公式 (S + mod N计算出的工作信道标号为 5时, 由于, 5大于 3 , 则此时 计算出的标号 5的信道实际上对应的是标号 6的信道,将计算出的标号 5加 1 , 又由于, 标号 6为备用信道的标号, 则此时计算出的标号 5实际上对应的是标 号 7的信道,则再将 6力。 1 ,即将节点的工作信道分配为标号为 7的工作信道。 本实施例对预设数值、及信道的标号不作限定, 可以根据实际需要进行设 定, 例如, 预设数值可以为: 1、 或 2、 或 3等, 在此不再赘述。
执行步骤 506。
504、 将工作信道标号累加两倍的预设数值, 直到经过累加的工作信道标 号不等于约定信道的标号或备用信道的标号,将经过两倍累加的工作信道标号 对应的信道确定为工作信道。
作为实施例的一种实施方式,工作信道的标号为相邻差值为 1的大于等于 0的整数, 且约定信道的标号为 3 , 备用信道的标号为 6 , 即预设数值为 1 , 当 根据公式 (S + mod N计算出的工作信道标号为 6时, 由于, 标号 6为备用信 道的标号, 则此时计算出的标号 6的信道实际上对应的是标号 8的信道,将计 算出的标号 6 累加两倍的 1 , 即为 8 , 然后将节点的工作信道分配为标号为 8 的工作信道。 执行步骤 506。
505、 将节点的工作信道分配为相应的工作信道标号对应的工作信道。 作为实施例的一种实施方式, 步骤 302 中, 根据公式(S + mod N计算出 的工作信道标号为 6 , 则节点的工作信道分配为相应的标号为 6的工作信道。 506、 在当前超帧内, 在工作信道上执行数据传输。
在将网络中包含的节点分别分配到至少两个工作信道后,节点使用分配的 工作信道进行数据传输, 即在工作信道上执行数据传输,使得网络不仅可以通 过跳频技术来解决干扰问题, 同时, 当某信道受到干扰时, 减小了受干扰的节 点的数量, 从而减小了网络性能下降的幅度。
釆用上述方案后,使得网络中包含的有所有节点工作在多个信道,在其中 一个信道受到干扰时, 避免所有节点的性能下降, 减少网络性能所受影响。 同 时, 节点时根据已知的参数确定工作信道的, 不需要以信令的方式通知, 并不 增加网络开销。
实施例四
本实施例提供一种基于跳频的信道映射的装置,该装置可以为但不限于协 调器, 如图 6所示, 包括: 计算单元 61、 确定单元 62、 执行单元 6 3。
具体的, 计算单元 61包括: 计算模块 6 1 1。
确定单元 62包括: 第一分配模块 621、 第二分配模块 622。
其中, 计算单元 6 1 , 用于根据节点在跳频模式下的工作信道的数量、 节 点的标识、 以及对应于当前超帧的时间参数计算节点的工作信道标号。
具体的, 计算模块 61 1 , 用于根据公式 (S + mod N计算节点的工作信道标 号。
其中, 为对应于当前超帧的时间参数; ^为节点的标识; W为节点在跳 频模式下的工作信道的数量。
进一步的,对应于当前超帧的时间参数可以为当前超帧的序列标号; 节点 的标识可以为节点的网络地址数值。
确定单元 62 , 用于根据工作信道标号确定工作信道。
进一步可选的, 可以为节点在跳频模式下的网络中包含的所有工作信道 的数量、或节点在跳频模式下的网络中包含的除备用信道和约定信道的工作信 道的数量。 进一步可选的, 网络中存在约定信道、 和备用信道, 为了使约定信道、 和 备用信道用于传输公共数据, 因此不将节点的工作信道分配为约定信道、和备 用信道上。 ^可以为网络中包含除备用信道和约定信道的工作信道的数量。 若 ^为节点在跳频模式下的网络中包含除备用信道和约定信道的工作信 道的数量, 则确定单元还包括以下模块:
第一分配模块 621 , 用于若工作信道标号大于等于约定信道的标号和备用 信道的标号中任意一项, 则将工作信道标号累加预设数值, 直到经过累加的工 作信道标号不等于约定信道的标号或备用信道的标号,将经过累加的工作信道 标号对应的信道确定为工作信道;
第二分配模块 622 , 用于若工作信道标号大于等于约定信道的标号和备用 信道的标号, 则将工作信道标号累加两倍的预设数值, 直到经过累加的工作信 道标号不等于约定信道的标号或备用信道的标号,将经过两倍累加的工作信道 标号对应的信道确定为工作信道。
预设数值为网络中相邻的工作信道标号之间的差值。
进一步可选的, ^可以为 16位短地址的数值。 执行单元 63 , 用于在当前超帧内, 在工作信道上执行数据传输。 在将网络中包含的节点分别分配到至少两个工作信道后,节点使用分配后 的工作信道进行数据传输, 即执行单元在工作信道上执行数据传输,使得网络 不仅可以通过跳频技术来解决干扰问题, 同时当某信道受到干扰时, 受干扰的 节点的数量, 从而减小了网络性能下降的幅度。
釆用上述方案后,使得网络中包含的有所有节点工作在多个信道,在其中 一个信道受到干扰时, 避免所有节点的性能下降, 减少网络性能所受影响。 同 时, 节点时根据已知的参数确定工作信道的, 不需要以信令的方式通知, 并不 增加网络开销。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发 明可借助软件加必需的通用硬件的方式来实现, 当然也可以通过硬件,但很多 情况下前者是更佳的实施方式。基于这样的理解, 本发明的技术方案本质上或 者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软 件产品存储在可读取的存储介质中, 如计算机的软盘, 硬盘或光盘等, 包括若 干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备 等)执行本发明各个实施例所述的方法。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于 此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到 变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应 所述以权利要求的保护范围为准。

Claims

权 利 要 求
1、 一种基于跳频的信道映射的方法, 其特征在于, 包括:
根据节点在跳频模式下的工作信道的数量、所述节点的标识、 以及对应于 当前超帧的时间参数计算节点的工作信道标号;
4艮据所述工作信道标号确定工作信道;
在所述当前超帧内, 在所述工作信道上执行数据传输。
2、 根据权利要求 1所述的基于跳频的信道映射的方法, 其特征在于, 所 述根据节点在跳频模式下的工作信道的数量、所述节点的标识、 以及对应于当 前超帧的时间参数计算节点的工作信道标号包括:
根据公式 (S + mod N计算节点的工作信道标号; 其中, 为所述对应于当 前超帧的时间参数; ^为所述节点的标识; W为所述节点在跳频模式下的工作 信道的数量。
3、 根据权利要求 2所述的基于跳频的信道映射的方法, 其特征在于, 所 述对应于当前超帧的时间参数为当前超帧的序列标号;所述节点的标识为所述 节点的网络地址数值。
4、 根据权利要求 1 - 3中任一项所述的基于跳频的信道映射的方法, 其特 征在于,所述节点在跳频模式下的工作信道的数量为节点在跳频模式下的网络 中除备用信道和约定信道外的其他工作信道的数量。
5、 根据权利要求 4所述的信道映射的方法, 其特征在于, 根据所述工作 信道标号确定工作信道包括:
若所述工作信道标号大于等于约定信道的标号和备用信道的标号中任意 一项, 则将所述工作信道标号累加预设数值, 直到经过累加的工作信道标号不 等于约定信道的标号或备用信道的标号,将所述经过累加的工作信道标号对应 的信道确定为工作信道;
若所述工作信道标号大于等于约定信道的标号和备用信道的标号,则将所 述工作信道标号累加两倍的预设数值,直到经过累加的工作信道标号不等于约 定信道的标号或备用信道的标号,将所述经过两倍累加的工作信道标号对应的 信道确定为工作信道;
所述预设数值为网络中相邻的工作信道标号之间的差值。
6、 一种基于跳频的信道映射的装置, 其特征在于, 包括:
计算单元, 用于根据节点在跳频模式下的工作信道的数量、所述节点的标 识、 以及对应于当前超帧的时间参数计算节点的工作信道标号;
确定单元, 用于 4艮据所述工作信道标号确定工作信道;
执行单元, 用于在所述当前超帧内, 在所述工作信道上执行数据传输。
7、 根据权利要求 6所述的基于跳频的信道映射的装置, 其特征在于, 所 述计算单元包括:
计算模块, 用于根据公式 (S + mod N计算节点的工作信道标号; 其中, 为所述对应于当前超帧的时间参数; ^为所述节点的标识; 为所述节点在跳 频模式下的工作信道的数量。
8、 根据权利要求 7所述的基于跳频的信道映射的装置, 其特征在于, 所 述对应于当前超帧的时间参数为当前超帧的序列标号;所述节点的标识为所述 节点的网络地址数值。
9、 根据权利要求 6-8中任一项所述的基于跳频的信道映射的装置, 其特 征在于,所述节点在跳频模式下的工作信道的数量为节点在跳频模式下的网络 中除备用信道和约定信道外的其他工作信道的数量。
1 0、 根据权利要求 9所述的基于跳频的信道映射的装置, 其特征在于, 所 述确定单元包括:
第一分配模块,用于若所述工作信道标号大于等于约定信道的标号和备用 信道的标号中任意一项, 则将所述工作信道标号累加预设数值, 直到经过累加 的工作信道标号不等于约定信道的标号或备用信道的标号,将所述经过累加的 工作信道标号对应的信道确定为工作信道;
第二分配模块,用于若所述工作信道标号大于等于约定信道的标号和备用 信道的标号, 则将所述工作信道标号累加两倍的预设数值, 直到经过累加的工 作信道标号不等于约定信道的标号或备用信道的标号,将所述经过两倍累加的 工作信道标号对应的信道确定为工作信道;
所述预设数值为网络中相邻的工作信道标号之间的差值。
PCT/CN2013/071929 2012-04-09 2013-02-27 基于跳频的信道映射的方法和装置 WO2013152642A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13776101.1A EP2824863B1 (en) 2012-04-09 2013-02-27 Method and apparatus for channel mapping based on frequency hopping
US14/510,773 US9154183B2 (en) 2012-04-09 2014-10-09 Method and apparatus for channel mapping based on frequency hopping

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210101770.6A CN102624510B (zh) 2012-04-09 2012-04-09 基于跳频的信道映射的方法和装置
CN201210101770.6 2012-04-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/510,773 Continuation US9154183B2 (en) 2012-04-09 2014-10-09 Method and apparatus for channel mapping based on frequency hopping

Publications (1)

Publication Number Publication Date
WO2013152642A1 true WO2013152642A1 (zh) 2013-10-17

Family

ID=46564203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071929 WO2013152642A1 (zh) 2012-04-09 2013-02-27 基于跳频的信道映射的方法和装置

Country Status (4)

Country Link
US (1) US9154183B2 (zh)
EP (1) EP2824863B1 (zh)
CN (1) CN102624510B (zh)
WO (1) WO2013152642A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105337637A (zh) * 2014-06-06 2016-02-17 富士通株式会社 节点和通信系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102624510B (zh) 2012-04-09 2015-01-21 华为技术有限公司 基于跳频的信道映射的方法和装置
CN104754041A (zh) * 2015-03-11 2015-07-01 酷派软件技术(深圳)有限公司 一种物联网通信方法及相关设备
DE102019209528A1 (de) * 2019-06-28 2020-12-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Effiziente signalisierung von sprungmustern in zugewiesenen ressourcen
CN110418389B (zh) * 2019-07-26 2020-12-11 珠海中慧微电子有限公司 一种能源计量网络的抄表方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1247654A (zh) * 1996-12-23 2000-03-15 艾利森电话股份有限公司 信道跳变通信系统的访问技术
CN102036286A (zh) * 2010-12-31 2011-04-27 重庆邮电大学 一种基于确定性调度的无线传感器网络信道评估方法
CN102122973A (zh) * 2010-01-08 2011-07-13 中国科学院沈阳自动化研究所 面向分簇无线传感器网络的两级自适应跳频方法
CN102624510A (zh) * 2012-04-09 2012-08-01 华为技术有限公司 基于跳频的信道映射的方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19755831A1 (de) * 1997-12-16 1999-06-17 Cit Alcatel Verfahren zur Erzeugung einer Funkfrequenzsprungfolge für eine Funkkommunikation, Funkvorrichtung und Funkkommunikationssystem dafür
GB9918250D0 (en) * 1999-08-04 1999-10-06 Koninkl Philips Electronics Nv Generating a cyclic sequence of frequencies
US7701858B2 (en) * 2003-07-17 2010-04-20 Sensicast Systems Method and apparatus for wireless communication in a mesh network
US8385322B2 (en) * 2007-07-30 2013-02-26 Innovative Wireless Technologies, Inc. Distributed ad hoc network protocol using synchronous shared beacon signaling
CN101286932B (zh) * 2008-03-05 2011-05-18 中国科学院嘉兴无线传感网工程中心 无线传感网的多频点通信方法
CN102332936B (zh) * 2010-07-13 2014-07-16 韩国电子通信研究院 在基于信标的无线个人域网中管理信道资源的装置和方法
CN102857327B (zh) 2012-04-16 2014-12-03 华为技术有限公司 一种数据传输方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1247654A (zh) * 1996-12-23 2000-03-15 艾利森电话股份有限公司 信道跳变通信系统的访问技术
CN102122973A (zh) * 2010-01-08 2011-07-13 中国科学院沈阳自动化研究所 面向分簇无线传感器网络的两级自适应跳频方法
CN102036286A (zh) * 2010-12-31 2011-04-27 重庆邮电大学 一种基于确定性调度的无线传感器网络信道评估方法
CN102624510A (zh) * 2012-04-09 2012-08-01 华为技术有限公司 基于跳频的信道映射的方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105337637A (zh) * 2014-06-06 2016-02-17 富士通株式会社 节点和通信系统
CN105337637B (zh) * 2014-06-06 2018-11-16 富士通株式会社 节点和通信系统

Also Published As

Publication number Publication date
EP2824863A4 (en) 2015-02-25
US9154183B2 (en) 2015-10-06
CN102624510A (zh) 2012-08-01
EP2824863B1 (en) 2019-06-19
US20150023396A1 (en) 2015-01-22
EP2824863A1 (en) 2015-01-14
CN102624510B (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
JP6385342B2 (ja) 周期的資源を割り当てるシステムおよび方法
US9025585B2 (en) Apparatus and method for allocating time slots to nodes without contention in wireless network
US9008149B2 (en) Synchronous access method, and communication device and system in frequency hopping radio communication
JP6591534B2 (ja) ワイヤレス通信ネットワークにおける効率的なリソース割振りのためのシステムおよび方法
EP2819480B1 (en) Method and system for scheduling and access point and station
KR101117684B1 (ko) 저속 무선 네트워크에서 QoS 및 다중 링크 연결을 위한 슈퍼프레임 구성 방법 및 장치
EP3014941B1 (en) System and method for ofdma resource management in wlan
WO2013152642A1 (zh) 基于跳频的信道映射的方法和装置
JP2009246955A (ja) 無線通信ネットワークのタイムスロット共有プロトコル
KR100962533B1 (ko) 개인무선통신 네트워크에서 분산방식 매체접근제어자원할당 방법 및 장치
WO2013166715A1 (zh) 资源管理的方法和装置、小带宽用户设备以及用户设备
CN111107617A (zh) 自组网中的数据发送及接收方法、装置、终端、存储介质
US10582535B2 (en) Contention based access channel signaling
WO2019010808A1 (zh) 传输控制方法及装置
Al-Nidawi et al. Impact of mobility on the IoT MAC infrastructure: IEEE 802.15. 4e TSCH and LLDN platform
Li et al. A cluster based on-demand multi-channel MAC protocol for wireless multimedia sensor networks
KR20120131348A (ko) 응급 데이터 처리가 가능한 무선 신체 통신 망에서의 맥 프로토콜 및 이를 이용한 무선 네트워크 통신 방법
WO2014036964A1 (zh) 一种多时隙或子帧资源的处理方法及装置
WO2021208736A1 (zh) 无线局域网中的信道指示方法和装置
WO2015176270A1 (zh) 网络设备及资源分配方法
CN112969233A (zh) 基于tdma的信道资源分配方法、装置及可读存储介质
Gaurav et al. A Survey: Hybrid Medium Access Control Protocol for M2M Communication
WO2015139254A1 (zh) 一种数据传输方法及站点
CN104768178A (zh) 心跳发送的方法及系统
US10880825B1 (en) Infrastructure aided neighbor awareness networking for 802.11ax and mixed mode networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13776101

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013776101

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE