WO2013152422A1 - Pumpless, fanless electrolyte-circulation system - Google Patents

Pumpless, fanless electrolyte-circulation system Download PDF

Info

Publication number
WO2013152422A1
WO2013152422A1 PCT/CA2013/000333 CA2013000333W WO2013152422A1 WO 2013152422 A1 WO2013152422 A1 WO 2013152422A1 CA 2013000333 W CA2013000333 W CA 2013000333W WO 2013152422 A1 WO2013152422 A1 WO 2013152422A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
pumpless
fanless
circulation system
set forth
Prior art date
Application number
PCT/CA2013/000333
Other languages
French (fr)
Inventor
Qiang Zhou
Yong Zhou
Yu He
Jason LOFTUS
Jonathan ZHOU
Shaojiu Wang
Original Assignee
Hyroad Hydrogen Solutions Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyroad Hydrogen Solutions Inc. filed Critical Hyroad Hydrogen Solutions Inc.
Publication of WO2013152422A1 publication Critical patent/WO2013152422A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates, generally, to a pumpless, fanless fluid-circulation system and, particularly, to an electrolyte-circulation system as, for example, a part of a hydrogen generator for use on-board a vehicle with an internal-combustion engine for increased fuel efficiency of and reduced emission from the engine.
  • a hydrogen generator on-board the vehicle. Electricity from the vehicle is used for electrolysis, thus producing the hydrogen.
  • the process of electrolysis in general, generates heat, and normally the known generator requires a cooling system to cool electrolytes of the generator and, in turn, prevent them from overheating.
  • the cooling system includes generally, among other structural elements, a pump that circulates the electrolytes, and a fan is required to cool them.
  • the pump and fan are critical components of the cooling system and add significant complexity and cost to it.
  • the invention overcomes the problems in the related art in a pumpless, fanless electrolyte-circulation system.
  • the system comprises an electrolyzer core that generates hydrogen and oxygen gases and includes a water electrolyzer having a plurality of electrolytic serial clusters connected substantially in parallel with each other and assembled into respective sealed reaction cells.
  • Each of the electrolytic serial clusters includes a plurality of electrolytic cells.
  • An electrolyte container includes a plurality of electrolytes in form of a concentration and is substantially separated from and connected to the electrolyzer core with a supply tube and a return tube.
  • a frame is substantially resistant to the concentration and separates a plurality of electrodes.
  • Releasing of the gases brings the electrolytes in the electrolyzer core out of the electrolyzer core through the supply tube into the electrolyte container.
  • the return tube allows each of the electrolytes to enter the electrolyzer core such that the electrolyte is forced to circulate by a releasing force of the gases.
  • Advantages of the pumpless, fanless electrolyte-circulation system of the invention is that it can be a cooling system of a hydrogen generator, prevents an electrolyte from overheating and cools the electrolyte, is less complex and costly than the known cooling system, and does not include a pump or fan.
  • FIG. 1 is a block diagram showing one embodiment of a pumpless, fanless electrolyte-circulation system of the invention.
  • a pumpless, fanless electrolyte- circulation system according to the invention is generally indicated at 10.
  • the system 10 can be employed with a hydrogen generator (not shown) adapted to be mounted on a vehicle (not shown) according to the related art as described above [vehicular applications in which an internal-combustion engine (not shown) is the primary motive-power source].
  • a generator is merely an example of one type of hydrogen generator in connection with which the system 10 can be employed and, thus, there are other types of hydrogen generator suitable for such employment (such as stationary power-generation applications).
  • the system 10 can be employed in connection with any suitable application to prevent an electrolyte from overheating and cool the electrolyte.
  • the system 10 comprises, in general, an electrolyzer core, generally indicated at 12, that generates hydrogen and oxygen gases and includes a water electrolyzer, generally indicated at 14.
  • the water electrolyzer 14 has a plurality of electrolytic serial clusters, generally indicated at 16, connected substantially in parallel with each other and assembled into respective sealed reaction cells, generally indicated at 18.
  • Each of the electrolytic serial clusters 16 includes a plurality of electrolytic cells, generally indicated at 20.
  • An electrolyte container 22 includes a plurality of electrolytes, generally indicated at 24, in form of a concentration 24 and is substantially separated from and connected to the electrolyzer core 12 with a supply tube 26 and a return tube 28.
  • a frame 30 is substantially resistant to the concentration 24 and separates a plurality of electrodes 32.
  • Releasing of the gases brings the electrolytes 24 in the electrolyzer core 12 out of the electrolyzer core 12 through the supply tube 26 into the electrolyte container 22.
  • the return tube 28 allows each of the electrolytes 24 to enter the electrolyzer core 12 such that the electrolyte 24 is forced to circulate by a releasing force of the gases.
  • the concentration 24 is of potassium hydroxide.
  • the system 10 also includes a controlling module, generally indicated at 34, adapted to power the system 10 "on” and “off according to at least one pre-defined parameter for a respective value collected from the controlling module 34.
  • the controlling module 34 is adapted to power the system 10 according to a plurality of such parameters.
  • the controlling module 34 also includes at least one of a pressure sensor 36, a fluid-level sensor 38, a temperature sensor 40, and an amperage sensor 42.
  • the controlling module 34 includes all of the sensors 36, 38, 40, 42 and is adapted to power the system 10 "on” and “off according to pre-defined parameters for respective values collected from the pressure, fluid-level, temperature, and amperage sensors 36, 38, 40, 42.
  • system 10 in general, has the following details:
  • the supply tube 26 defines a diameter of the supply tube 26 of substantially one-eighth inch
  • the supply tube 26 is adapted to generate an output of the gases from substantially 0.3 L/min to substantially 1.8 L/min;
  • Each of the electrodes 32 defines a size of the electrode 32 of substantially 4-1/4 inches by substantially 9-1/4 inches;
  • Output of the gases from the electrolyzer core 12 is substantially at least one of: 1.6 L/min at 25 amp and 12 VDC; 1.0 L/min at 15 amp and 12 VDC; 0.72 L/min at 12.5 amp and 12 VDC; and 0.22 L/min at 7 amp and 12VDC (in an embodiment, the output is all of these).
  • controlling module 34 has the following details:
  • Pressure in the system 10 is controlled such that, for example, the controlling module 34 powers the system 10 "off when the pressure sensor 36 reads a pre-set value of the pressure (e.g., greater than substantially 1 Pa);
  • the fluid- level sensor 38 reads a current level of a fluid (electrolytes) such that, for example, the controlling module 34 powers the system 10 "off when the fluid-level sensor 38 reads a pre-set value of the level;
  • the temperature sensor 40 ensures that the system 10 operates within a pre-set range of temperature such that, for example, the controlling module 34 powers the system 10 "off when the temperature sensor 40 reads a pre-set minimum value of the temperature (e.g., substantially less than 20° C) or pre-set maximum value of the temperature (e.g., substantially greater than 85° C); and 4)
  • the amperage sensor 42 ensures that the system 10 operates properly according to a pre-set range of power that the system 10 draws from a power supply (not shown) (e.g., the vehicle).
  • the system 10 in general, and each of the electrolyzer core 12, water electrolyzer 14, electrolytic serial clusters 16, sealed reaction cells 18, electrolytic cells 20, electrolyte container 22, electrolytes 24, supply tube 26, return tube 28, frame 30, electrodes 32, controlling module 34, pressure sensor 36, fluid-level sensor 38, temperature sensor 40, and amperage sensor 42, in particular, can have any suitable shape, size, and structure and structural relationship with any of the other structural elements of the system 10.
  • the water electrolyzer 14 can have any suitable number of electrolytic serial clusters 16, each of the electrolytic serial clusters 16 can include any suitable number of electrolytic cells 20, the electrolyte container 22 can include any suitable number of electrolytes 24, the frame 30 can separate any suitable number of electrodes 32, and the controlling module 34 can power the system 10 according to any suitable number and kind of parameters. It should also be appreciated that the concentration 24 can be any suitable concentration. It should be so appreciated that the controlling module 34 can include any combination of the pressure, fluid-level, temperature, and/or amperage sensors 36, 38, 40, 42.
  • the supply tube 26 can generate an output of the gases of any suitable rate. It should also be appreciated that spacing of any suitable size can be defined between electrodes 32 that are adjacent to each other. It should also be appreciated that output of the gases from the electrolyzer core 12 can be any suitable rate at any suitable magnitude of current and power. It should also be appreciated that pressure in the system 10 can be controlled in any suitable manner such that the controlling module 34 powers the system 10 "off when the pressure sensor 36 reads any suitable pre-set value of the pressure. It should also be appreciated that the controlling module 34 can power the system 10 "off when the fluid-level sensor 38 reads any suitable pre-set value of the level.
  • the temperature sensor 40 can ensure that the system 10 operates within any suitable pre-set range of temperature such that the controlling module 34 powers the system 10 "off when the temperature sensor 40 reads any suitable pre-set minimum value or pre-set maximum value of the temperature.
  • the amperage sensor 42 can ensure that the system 10 operates properly according to any suitable pre-set range of power that the system 10 draws from the power supply. It should also be appreciated that the system 10 can draw power from any suitable source.
  • the system 10 can function as a cooling system of a hydrogen generator. Also, the system 10 prevents the electrolyte 24 from overheating and cools the electrolyte 24. Furthermore, the system 10 is less complex and costly than cooling systems known in the related art. In addition, the system 10 does not include a pump or fan.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

A pumpless, fanless electrolyte-circulation system (10) comprises an electrolyzer core (12) that generates hydrogen and oxygen gases and includes a water electrolyzer (14) having a plurality of electrolytic serial clusters (16) connected substantially in parallel with each other and assembled into respective sealed reaction cells (18). Each of the electrolytic serial clusters (16) includes a plurality of electrolytic cells (20). An electrolyte container (22) includes a plurality of electrolytes (24) in form of a concentration (24) and is substantially separated from and connected to the electrolyzer core (12) with a supply tube (26) and return tube (28). A frame (30) is substantially resistant to the concentration (24) and separates a plurality of electrodes (32). Releasing of the gases brings the electrolytes (24) in the electrolyzer core (12) out of the electrolyzer core (12) through the supply tube (26) into the electrolyte container (22). The return tube (28) allows each of the electrolytes (24) to enter the electrolyzer core (12) such that the electrolyte (24) is forced to circulate by a releasing force of the gases.

Description

PUMPLESS, FANLESS ELECTROLYTE-CIRCULATION SYSTEM
BACKGROUND OF INVENTION
1. Field of Invention
[0001] The invention relates, generally, to a pumpless, fanless fluid-circulation system and, particularly, to an electrolyte-circulation system as, for example, a part of a hydrogen generator for use on-board a vehicle with an internal-combustion engine for increased fuel efficiency of and reduced emission from the engine.
2. Description of Related Art
[0002] It is known to reduce operating costs, increase fuel efficiency, and/or reduce emission of an internal-combustion engine of a vehicle equipped with a catalytic converter by using fuel-processing capabilities to assist the engine. For example, hydrogen has been considered as a potentially suitable fuel source for the engine, primarily because of potential of hydrogen, as either a primary fuel or an additive to the fuel, for it to reduce a number and amount of toxic emission in comparison to such an engine fuelled by only gasoline, diesel, or other hydrocarbon-based fuels.
[0003] Toward that end, it is known to employ a hydrogen generator on-board the vehicle. Electricity from the vehicle is used for electrolysis, thus producing the hydrogen. The process of electrolysis, in general, generates heat, and normally the known generator requires a cooling system to cool electrolytes of the generator and, in turn, prevent them from overheating. The cooling system includes generally, among other structural elements, a pump that circulates the electrolytes, and a fan is required to cool them. However, the pump and fan are critical components of the cooling system and add significant complexity and cost to it.
[0004] Thus, there is a need in the related art for a cooling system of, say, a hydrogen generator, that prevents an electrolyte from overheating and cools the electrolyte and is less complex and costly than the known cooling system. More specifically, there is a need in the related art for such a system that prevents the electrolyte from overheating without a pump and cools the electrolyte without a fan. SUMMARY OF INVENTION
[0005] The invention overcomes the problems in the related art in a pumpless, fanless electrolyte-circulation system. The system comprises an electrolyzer core that generates hydrogen and oxygen gases and includes a water electrolyzer having a plurality of electrolytic serial clusters connected substantially in parallel with each other and assembled into respective sealed reaction cells. Each of the electrolytic serial clusters includes a plurality of electrolytic cells. An electrolyte container includes a plurality of electrolytes in form of a concentration and is substantially separated from and connected to the electrolyzer core with a supply tube and a return tube. A frame is substantially resistant to the concentration and separates a plurality of electrodes. Releasing of the gases brings the electrolytes in the electrolyzer core out of the electrolyzer core through the supply tube into the electrolyte container. The return tube allows each of the electrolytes to enter the electrolyzer core such that the electrolyte is forced to circulate by a releasing force of the gases.
[0006] Advantages of the pumpless, fanless electrolyte-circulation system of the invention is that it can be a cooling system of a hydrogen generator, prevents an electrolyte from overheating and cools the electrolyte, is less complex and costly than the known cooling system, and does not include a pump or fan.
[0007] Other objects, features, and advantages of the pumpless, fanless electrolyte-circulation system of the invention are readily appreciated as the same becomes better understood while the subsequent detailed description of embodiments thereof is read taken in conjunction with the accompanying drawing thereof.
BRIEF DESCRIPTION OF FIGURE OF DRAWING OF INVENTION
[0008] FIG. 1 is a block diagram showing one embodiment of a pumpless, fanless electrolyte-circulation system of the invention.
DETAILED DESCRIPTION OF EMBODIMENT(S) OF INVENTION.
[0009] Referring now specifically to Figure 1, a pumpless, fanless electrolyte- circulation system according to the invention is generally indicated at 10. It should be appreciated by those having ordinary skill in the related art that the system 10 can be employed with a hydrogen generator (not shown) adapted to be mounted on a vehicle (not shown) according to the related art as described above [vehicular applications in which an internal-combustion engine (not shown) is the primary motive-power source]. It should also be appreciated that such a generator is merely an example of one type of hydrogen generator in connection with which the system 10 can be employed and, thus, there are other types of hydrogen generator suitable for such employment (such as stationary power-generation applications). It should also be appreciated that the system 10 can be employed in connection with any suitable application to prevent an electrolyte from overheating and cool the electrolyte.
[0010] Still referring to Figure 1, the system 10 comprises, in general, an electrolyzer core, generally indicated at 12, that generates hydrogen and oxygen gases and includes a water electrolyzer, generally indicated at 14. The water electrolyzer 14 has a plurality of electrolytic serial clusters, generally indicated at 16, connected substantially in parallel with each other and assembled into respective sealed reaction cells, generally indicated at 18. Each of the electrolytic serial clusters 16 includes a plurality of electrolytic cells, generally indicated at 20. An electrolyte container 22 includes a plurality of electrolytes, generally indicated at 24, in form of a concentration 24 and is substantially separated from and connected to the electrolyzer core 12 with a supply tube 26 and a return tube 28. A frame 30 is substantially resistant to the concentration 24 and separates a plurality of electrodes 32. Releasing of the gases brings the electrolytes 24 in the electrolyzer core 12 out of the electrolyzer core 12 through the supply tube 26 into the electrolyte container 22. The return tube 28 allows each of the electrolytes 24 to enter the electrolyzer core 12 such that the electrolyte 24 is forced to circulate by a releasing force of the gases.
[0011] More specifically, the concentration 24 is of potassium hydroxide. The system 10 also includes a controlling module, generally indicated at 34, adapted to power the system 10 "on" and "off according to at least one pre-defined parameter for a respective value collected from the controlling module 34. In one embodiment of the system 10, the controlling module 34 is adapted to power the system 10 according to a plurality of such parameters. The controlling module 34 also includes at least one of a pressure sensor 36, a fluid-level sensor 38, a temperature sensor 40, and an amperage sensor 42. In one embodiment, the controlling module 34 includes all of the sensors 36, 38, 40, 42 and is adapted to power the system 10 "on" and "off according to pre-defined parameters for respective values collected from the pressure, fluid-level, temperature, and amperage sensors 36, 38, 40, 42.
[0012] In one embodiment, the system 10, in general, has the following details:
1) The supply tube 26 defines a diameter of the supply tube 26 of substantially one-eighth inch;
2) The supply tube 26 is adapted to generate an output of the gases from substantially 0.3 L/min to substantially 1.8 L/min;
3) Each of the electrodes 32 defines a size of the electrode 32 of substantially 4-1/4 inches by substantially 9-1/4 inches;
4) Spacing of substantially one-quarter inch is defined between electrodes 32 that are adjacent to each other; and
5) Output of the gases from the electrolyzer core 12 is substantially at least one of: 1.6 L/min at 25 amp and 12 VDC; 1.0 L/min at 15 amp and 12 VDC; 0.72 L/min at 12.5 amp and 12 VDC; and 0.22 L/min at 7 amp and 12VDC (in an embodiment, the output is all of these).
[0013] In one embodiment, the controlling module 34, in particular, has the following details:
1) Pressure in the system 10 is controlled such that, for example, the controlling module 34 powers the system 10 "off when the pressure sensor 36 reads a pre-set value of the pressure (e.g., greater than substantially 1 Pa);
2) The fluid- level sensor 38 reads a current level of a fluid (electrolytes) such that, for example, the controlling module 34 powers the system 10 "off when the fluid-level sensor 38 reads a pre-set value of the level;
3) The temperature sensor 40 ensures that the system 10 operates within a pre-set range of temperature such that, for example, the controlling module 34 powers the system 10 "off when the temperature sensor 40 reads a pre-set minimum value of the temperature (e.g., substantially less than 20° C) or pre-set maximum value of the temperature (e.g., substantially greater than 85° C); and 4) The amperage sensor 42 ensures that the system 10 operates properly according to a pre-set range of power that the system 10 draws from a power supply (not shown) (e.g., the vehicle).
[0014] It should be appreciated by those having ordinary skill in the related art that the system 10, in general, and each of the electrolyzer core 12, water electrolyzer 14, electrolytic serial clusters 16, sealed reaction cells 18, electrolytic cells 20, electrolyte container 22, electrolytes 24, supply tube 26, return tube 28, frame 30, electrodes 32, controlling module 34, pressure sensor 36, fluid-level sensor 38, temperature sensor 40, and amperage sensor 42, in particular, can have any suitable shape, size, and structure and structural relationship with any of the other structural elements of the system 10. It should also be appreciated that the water electrolyzer 14 can have any suitable number of electrolytic serial clusters 16, each of the electrolytic serial clusters 16 can include any suitable number of electrolytic cells 20, the electrolyte container 22 can include any suitable number of electrolytes 24, the frame 30 can separate any suitable number of electrodes 32, and the controlling module 34 can power the system 10 according to any suitable number and kind of parameters. It should also be appreciated that the concentration 24 can be any suitable concentration. It should be so appreciated that the controlling module 34 can include any combination of the pressure, fluid-level, temperature, and/or amperage sensors 36, 38, 40, 42.
[0015] It should be appreciated by those having ordinary skill in the related art that the supply tube 26 can generate an output of the gases of any suitable rate. It should also be appreciated that spacing of any suitable size can be defined between electrodes 32 that are adjacent to each other. It should also be appreciated that output of the gases from the electrolyzer core 12 can be any suitable rate at any suitable magnitude of current and power. It should also be appreciated that pressure in the system 10 can be controlled in any suitable manner such that the controlling module 34 powers the system 10 "off when the pressure sensor 36 reads any suitable pre-set value of the pressure. It should also be appreciated that the controlling module 34 can power the system 10 "off when the fluid-level sensor 38 reads any suitable pre-set value of the level. It should also be appreciated that the temperature sensor 40 can ensure that the system 10 operates within any suitable pre-set range of temperature such that the controlling module 34 powers the system 10 "off when the temperature sensor 40 reads any suitable pre-set minimum value or pre-set maximum value of the temperature. It should also be appreciated that the amperage sensor 42 can ensure that the system 10 operates properly according to any suitable pre-set range of power that the system 10 draws from the power supply. It should also be appreciated that the system 10 can draw power from any suitable source.
[0016] The system 10 can function as a cooling system of a hydrogen generator. Also, the system 10 prevents the electrolyte 24 from overheating and cools the electrolyte 24. Furthermore, the system 10 is less complex and costly than cooling systems known in the related art. In addition, the system 10 does not include a pump or fan.
[0017] The system 10 has been described above in an illustrative manner. It is to be understood that the terminology that has been used above is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the system 10 are possible in light of the above teachings. Therefore, within the scope of the appended claims, the system 10 may be practiced other than as it is specifically described above.

Claims

What is claimed is:
1. A pumpless, fanless electrolyte-circulation system (10) comprises:
an electrolyzer core (12) that generates hydrogen and oxygen gases and includes a water electrolyzer (14) having a plurality of electrolytic serial clusters (16) connected substantially in parallel with each other and assembled into respective sealed reaction cells (18) and each of which includes a plurality of electrolytic cells (20);
an electrolyte container (22) that includes a plurality of electrolytes (24) in form of a concentration (24) and is substantially separated from and connected to said electrolyzer core (12) with a supply tube (26) and a return tube (28); and
a frame (30) that is substantially resistant to said concentration (24) and separates a plurality of electrodes (32), wherein releasing of said gases brings said electrolytes (24) in said electrolyzer core (12) out of said electrolyzer core (12) through said supply tube (26) into said electrolyte container (22) and said return tube (28) allows each of said electrolytes (24) to enter said electrolyzer core (12) such that said electrolyte (24) is forced to circulate by a releasing force of said gases.
2. A pumpless, fanless electrolyte-circulation system (10) as set forth in claim 1, wherein said concentration (24) is of potassium hydroxide.
3. A pumpless, fanless electrolyte-circulation system (10) as set forth in claim 1, wherein said system (10) comprises further a controlling module (34) adapted to power the system (10) "on" and "off according to at least one pre-defined parameter for a respective value collected from said controlling module (34).
4. A pumpless, fanless electrolyte-circulation system (10) as set forth in claim 3, wherein said controlling module (34) includes at least one of a pressure sensor (36), a fluid-level sensor (38), a temperature sensor (40), and an amperage sensor (42).
5. A pumpless, fanless electrolyte-circulation system (10) as set forth in claim 4, wherein said controlling module (34) is adapted to power the system (10) "on" and "off according to said pre-defined parameter for said respective value collected from at least one of said pressure, fluid-level, temperature, and amperage sensors (36), (38), (40), (42).
6. A pumpless, fanless electrolyte-circulation system (10) as set forth in claim 1, wherein said supply tube (26) defines a diameter of said supply tube (26) of substantially one-eighth inch.
7. A pumpless, fanless electrolyte-circulation system (10) as set forth in claim 1 , wherein said supply tube (26) is adapted to generate an output of said gases from substantially 0.3 L/min to substantially 1.8 L/min.
8. A pumpless, fanless electrolyte-circulation system (10) as set forth in claim 1, wherein each of said electrodes (32) defines a size of said electrode (32) of substantially 4-1/4 inches by substantially 9-1/4 inches.
9. A pumpless, fanless electrolyte-circulation system (10) as set forth in claim 1, wherein spacing of substantially one-quarter inch is defined between said electrodes (32) that are adjacent to each other.
10. A pumpless, fanless electrolyte-circulation system (10) as set forth in claim 1, wherein output of said gases from said electrolyzer core (12) is substantially at least one of 1.6 L/min at 25 amp and 12 VDC; 1.0 L/min at 15 amp and 12 VDC; 0.72 L/min at 12.5 amp and 12 VDC; and 0.22 L/min at 7 amp and 12VDC.
11. A pumpless, fanless electrolyte-circulation system (10) as set forth in claim 10, wherein output of said gases from said electrolyzer core (12) is substantially 1.6 L/min at 25 amp and 12 VDC; 1.0 L/min at 15 amp and 12 VDC; 0.72 L/min at 12.5 amp and 12 VDC; and 0.22 L/min at 7 amp and 12VDC.
12. A pumpless, fanless electrolyte-circulation system (10) as set forth in claim 3, wherein pressure in said system (10) is controlled.
13. A pumpless, fanless electrolyte-circulation system (10) as set forth in claim 12, wherein said controlling module (34) powers said system (10) "off when said pressure sensor (36) reads a pre-set value of the pressure.
14. A pumpless, fanless electrolyte-circulation system (10) as set forth in claim 13, wherein said pre-set value is greater than substantially 1 Pa.
15. A pumpless, fanless electrolyte-circulation system (10) as set forth in claim 3, wherein said fluid-level sensor (38) reads a current level of said electrolytes (24) such that said controlling module (34) powers said system (10) "off when said fluid- level sensor (38) reads a pre-set value of said level.
16. A pumpless, fanless electrolyte-circulation system (10) as set forth in claim 3, wherein said temperature sensor (40) ensures that said system (10) operates within a pre-set range of temperature.
17. A pumpless, fanless electrolyte-circulation system (10) as set forth in claim 16, wherein said controlling module (34) powers said system (10) "off when said temperature sensor (40) reads either of a pre-set minimum value of the temperature and pre-set maximum value of the temperature.
18. A pumpless, fanless electrolyte-circulation system (10) as set forth in claim 17, wherein said pre-set minimum value of the temperature is less than substantially -20° C and said pre-set maximum value of the temperature is greater than substantially 85° C.
19. A pumpless, fanless electrolyte-circulation system (10) as set forth in claim 1, wherein said amperage sensor (42) ensures that said system (10) operates properly according to a pre-set range of power that said system (10) draws from a power supply.
20. A pumpless, fanless electrolyte-circulation system (10) as set forth in claim 1, wherein said system (10) draws power from a vehicle employing said system (10).
PCT/CA2013/000333 2012-04-10 2013-04-08 Pumpless, fanless electrolyte-circulation system WO2013152422A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/442,986 US20130264195A1 (en) 2012-04-10 2012-04-10 Pumpless, fanless electrolyte-circulation system
US13/442,986 2012-04-10

Publications (1)

Publication Number Publication Date
WO2013152422A1 true WO2013152422A1 (en) 2013-10-17

Family

ID=49291440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2013/000333 WO2013152422A1 (en) 2012-04-10 2013-04-08 Pumpless, fanless electrolyte-circulation system

Country Status (2)

Country Link
US (1) US20130264195A1 (en)
WO (1) WO2013152422A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021102405A1 (en) * 2019-11-21 2021-05-27 Ohmium International, Inc. Modular systems for hydrogen generation and methods of operating thereof
TW202132623A (en) 2019-11-21 2021-09-01 美商歐米恩國際公司 Electrochemical devices, modules, and systems for hydrogen generation and methods of operating thereof
US10626513B1 (en) * 2019-12-27 2020-04-21 Haiming Li Water electrolysis hydrogen production plant with a pumpless water supply system and process flow method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0099693B1 (en) * 1982-07-06 1987-02-04 Asahi Kasei Kogyo Kabushiki Kaisha Electrolytic cell with ion exchange membrane
US6080290A (en) * 1997-01-03 2000-06-27 Stuart Energy Systems Corporation Mono-polar electrochemical system with a double electrode plate
US6375812B1 (en) * 2000-03-13 2002-04-23 Hamilton Sundstrand Corporation Water electrolysis system
WO2011010251A1 (en) * 2009-07-22 2011-01-27 Green On Demand Gmbh System for on demand hydrogen production and delivery of hydrogen to an internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4048046A (en) * 1976-06-16 1977-09-13 The B. F. Goodrich Company Electrolytic cell design
IT1122699B (en) * 1979-08-03 1986-04-23 Oronzio De Nora Impianti RESILIENT ELECTRIC COLLECTOR AND SOLID ELECTROLYTE ELECTROCHEMISTRY INCLUDING THE SAME
US4425215A (en) * 1982-09-27 1984-01-10 Henes Products Corp. Gas generator
US6036827A (en) * 1997-06-27 2000-03-14 Lynntech, Inc. Electrolyzer
US6332434B1 (en) * 1998-06-29 2001-12-25 Fatpower Inc. Hydrogen generating apparatus and components therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0099693B1 (en) * 1982-07-06 1987-02-04 Asahi Kasei Kogyo Kabushiki Kaisha Electrolytic cell with ion exchange membrane
US6080290A (en) * 1997-01-03 2000-06-27 Stuart Energy Systems Corporation Mono-polar electrochemical system with a double electrode plate
US6375812B1 (en) * 2000-03-13 2002-04-23 Hamilton Sundstrand Corporation Water electrolysis system
WO2011010251A1 (en) * 2009-07-22 2011-01-27 Green On Demand Gmbh System for on demand hydrogen production and delivery of hydrogen to an internal combustion engine

Also Published As

Publication number Publication date
US20130264195A1 (en) 2013-10-10

Similar Documents

Publication Publication Date Title
CN102597327B (en) The generating mixed gas of hydrogen and oxygen and the internal combustion engine of this device of use
JP5977352B2 (en) Hydrogen replenishment system for generating hydrogen on demand for internal combustion engines
US8163142B1 (en) Hydrogen system for internal combustion engine
US9070826B2 (en) Accumulated type thermoelectric generator for vehicle
US20180171870A1 (en) Electrocatalytic system for reducing pullution and fuel consumption
KR102608784B1 (en) Real-time risk detection electrolyser system
EP3216897A1 (en) Automobile hydrogen and oxygen generator
WO2013152422A1 (en) Pumpless, fanless electrolyte-circulation system
KR101181045B1 (en) Cooling water reservoir tank for hybrid electric vehicle
CN105514464A (en) Temperature control system and method of DC-DC boost converter of fuel cell car
CN211295280U (en) Hydrogen fuel cell, engine and automobile
CN103078125B (en) A kind of water-cooled enclosed type fuel cell pile
CN101929385A (en) Automobile carbon removing machine
CN106627219A (en) Electric-energy supplying system of electric automobile and control method thereof
JP2009227115A (en) Mobile body for transporting automobile
US20120145280A1 (en) Apparatus for injecting coolant for fuel cell vehicle
US20160181633A1 (en) Complex fuel cell stack with hydrogen storage unit
US20160036080A1 (en) System for fuel cell vehicle
CA2911084C (en) Method for controlling fuel cell vehicles and fuel cell vehicles
CN101901920B (en) Vehicle PEMFC (Proton Exchange Membrane Fuel Cell) temperature control system
CN107429637A (en) Vehicle emissions reduction system
CN206022554U (en) Fuel cell system in for unmanned plane
JP2014151664A (en) Fuel cell vehicle and mounting method on vehicle
CA2859848C (en) Electrolysis device with feed water circuit
JP2014189839A (en) Electrolysis system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/02/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13775505

Country of ref document: EP

Kind code of ref document: A1