WO2013152199A1 - Multi-lens led-array optic system - Google Patents

Multi-lens led-array optic system Download PDF

Info

Publication number
WO2013152199A1
WO2013152199A1 PCT/US2013/035287 US2013035287W WO2013152199A1 WO 2013152199 A1 WO2013152199 A1 WO 2013152199A1 US 2013035287 W US2013035287 W US 2013035287W WO 2013152199 A1 WO2013152199 A1 WO 2013152199A1
Authority
WO
WIPO (PCT)
Prior art keywords
lighting apparatus
led
lens
leds
light
Prior art date
Application number
PCT/US2013/035287
Other languages
French (fr)
Inventor
Kurt S. Wilcox
Bernd Keller
Ted LOWES
Peter S. Andrews
Christopher Strom
Original Assignee
Cree, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/441,540 external-priority patent/US9255686B2/en
Application filed by Cree, Inc. filed Critical Cree, Inc.
Priority to EP13772520.6A priority Critical patent/EP2834556B1/en
Publication of WO2013152199A1 publication Critical patent/WO2013152199A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/08Refractors for light sources producing an asymmetric light distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/008Combination of two or more successive refractors along an optical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • This invention relates generally to the field of LED lighting apparatus and, more particularly, to the field of LED-based optical systems for use in LED lighting fixtures for which there are particular light-distribution requirements, such as what is sometimes referred to as preferential-side light distribution - for roadway light fixtures and the like.
  • LEDs light-emitting diodes
  • HID high- intensity discharge
  • fixtures for roadway lighting an application in which the fixtures are generally placed along roadway edges while light distribution is desired along a significant portion of roadway length and, of course, on the roadway itself - generally to the exclusion of significant light off the roadway.
  • Providing roadway light from light fixtures along the roadway may be referred to as "preferential-side” illumination.
  • preferential-side illumination it is desirable to minimize the use of large complex reflectors and/or varying orientations of multiple light sources to achieve desired illumination patterns.
  • Achieving preferential-side illumination, or other desired illumination patterns, by means of LED-based optical systems, particularly without resorting to large complex reflectors or other complex means is highly desirable.
  • the present invention is a multi-lens LED-array optical system and improved LED-based lighting apparatus which satisfies all of the above-noted objects and purposes.
  • One aspect of this invention is a lighting apparatus for preferential-side illumination from an LED light emitter having an axis, the apparatus having a first lens over the emitter and a second lens over the first lens, the first and second lenses having certain characteristics.
  • the invention includes optical surfaces as follows: (1) a first optical surface which is a first-lens outer surface configured to refract light from the emitter; (2) a second optical surface which is a second-lens inner surface spaced from the first optical surface and having (a) a refracting portion surrounding the first optical surface and including front and back sectors configured differently from one another, and (b) a reflecting portion around the back sector, the reflecting portion positioned to receive light refracted by the back sector for total internal reflection (TIR) toward the preferential side; and (3) a third optical surface which is a second-lens outer surface configured to refract light from the second optical surface toward the preferential side.
  • TIR total internal reflection
  • the first lens is configured such that the first optical surface refracts LED-emitted light toward the preferential side.
  • the first optical surface is shaped for refraction of LED-emitted light toward the preferential side, while in others of such embodiments, the first optical surface has a centerline offset from the emitter axis toward the preferential side. In embodiments of the latter type, the first optical surface may be shaped for refraction of LED-emitted light toward the preferential side.
  • the front sector of the refracting portion of the second optical surface has a substantially smooth surface configuration extending to the juncture of the front and back sectors.
  • the back sector of the refracting portion of the second optical surface include at least a pair of surface portions transverse to each other.
  • the back sector of the refracting portion of the second optical surface includes at least a pair of surface portions transverse to each other.
  • the emitter includes an LED light source that includes a submount having an LED-populated area which has an aspect ratio greater than 1 , and an array of LEDs on the LED-populated area, and the first lens is on the submount over the LED-populated area.
  • the aspect ratio may be at least about 1.25, or even at least about 1.5, and even as much as at least about 2.
  • the LED-populated area is preferably rectangular.
  • the term "LED-populated area” means an area ⁇ i.e., an area on the submount) the outer boundaries of which include the outermost edges of the outermost LEDs (of the LED array) in any direction.
  • the term “aspect ratio” means the ratio of the maximum cross-dimension of the LED-populated area to the maximum of the cross-dimensions orthogonal thereto.
  • emitter axis means the line orthogonal to the plane defined by the LED-populated area and passing through the geometric center of the minimum-area rectangle bounding the LED-populated area, i.e., the center of the rectangle of minimum area which includes all of the LED-populated area.
  • Another aspect of this invention is lighting apparatus for preferential-side illumination, that includes: (1) a plurality of arrays of light-emitting diodes (LEDs) spaced along a circuit board, each array having first and second maximum cross- dimensions orthogonal to one another, the first maximum cross-dimension being greater than the second maximum cross-dimension, and each LED array defining a light-emission axis; (2) a plurality of first lenses each over a corresponding array of LEDs, each first lens having an outer surface configured to refract light from its corresponding LED array; and (3) a plurality of second lenses each spaced over a corresponding one of the first lenses, each second lens having (a) an inner surface configured to direct light toward the preferential side from its corresponding first-lens outer surface, and (b) an outer surface configured to refract light toward the preferential side from the inner surface.
  • LEDs light-emitting diodes
  • each first lens preferably refracts LED-emitted light toward the preferential side.
  • each first lens is shaped for refraction of LED-emitted light toward the preferential side.
  • the outer surface of each first lens has a centerline offset from the corresponding light-emission axis toward the preferential side; in these embodiments, the outer surface of the first lens directs LED-emitted light toward the preferential side.
  • each first lens be overmolded over its corresponding LED array, forming what is sometimes referred to as an LED package.
  • the plurality of LED arrays are mounted on a common submount. In certain other embodiments, LED array is on a submount and each of the submounts is mounted on the circuit board.
  • the plurality of second lenses are portions of a one- piece lensing member.
  • the spacing and arrangement of the LEDs on each LED-populated area may be such that the total LED area is at least about one-third of the LED-populated area. More specifically, the spacing and arrangement of the LEDs may be such that the total LED area is at least about two- thirds of the LED-populated area, or even as much as at least about 90% of the LED- populated area.
  • total LED area means the sum of the submount areas immediately beneath each of the LEDs of the LED array.
  • the spacing between LEDs of the array is no more than about 1 millimeter (mm), or as little as no more than about 0.5 mm, or in some cases no more than about 0.1 mm. In some instances, the spacing is no more than about 0.075 mm, and even no more than about 0.05 mm.
  • Another aspect of this invention is a lighting apparatus comprising (1) a plurality of arrays of light-emitting diodes (LEDs) spaced along a circuit board, each array having first and second maximum cross-dimensions orthogonal to one another, the first maximum cross-dimension being greater than the second maximum cross- dimension, and each LED array defining a light-emission axis; (2) a plurality of first lenses each over a corresponding array of LEDs, each first lens having an outer surface configured to refract light from its corresponding LED array; and (3) a plurality of second lenses each spaced over a corresponding one of the first lenses, each second lens having an inner surface and an outer surface which is configured to refract light from the inner surface.
  • LEDs light-emitting diodes
  • the plurality of LED arrays may be mounted to a submount, each to a common submount or, more particularly, each LED on its own submount, with each of the submounts being mounted on the circuit board.
  • each first lens may be overmolded over each LED array.
  • the plurality of second lenses may be portions of a one-piece lensing member.
  • Another aspect of this invention is a lighting apparatus for preferential-side illumination, the apparatus including an LED light emitter having an axis, comprising:
  • first lens over the emitter and configured to direct LED-emitted light toward the preferential side
  • second lens spaced over the first lens and configured to further direct the light toward the preferential side
  • the first lens will have an outer surface configured to direct LED-emitted light toward the preferential side.
  • the first lens has a centerline which is offset from the emitter axis toward the preferential side, and the first lens may have an outer surface configured to direct LED-emitted light toward the preferential side.
  • Still another aspect of this invention is a lighting apparatus including (1) a plurality of arrays of LEDs spaced along a circuit board, each array having first and second maximum cross-dimensions orthogonal to one another, the first maximum cross-dimension being greater than the second maximum cross-dimension, and each LED array defining a light-emission axis; and (2) a plurality of lenses each over a corresponding array of LEDs, each lens having an outer surface configured to refract light from its corresponding LED array.
  • Yet another aspect of this invention is a lighting apparatus including (1) an LED light source including a submount having an LED-populated area which has an aspect ratio greater than 1, the LED-populated area having an array of LEDs thereon,
  • first lens on the submount over the LED array and having an outer surface configured to refract light from the LED array
  • second lens spaced over the first lens the second lens having an inner surface and an outer surface which is configured to refract light from the inner surface
  • Another aspect of this invention is lighting apparatus for preferential-side illumination, the apparatus including an LED light source with an axis and having an asymmetric primary lens over the LED light source and an asymmetric secondary lens spaced over the primary lens.
  • asymmetric refers to a lens shape which is not rotationally symmetric about any axis perpendicular to its base plane.
  • Types of asymmetric lenses include without limitation bilaterally symmetric lenses.
  • FIGURE 1 is an enlarged cross-sectional perspective view of one embodiment of the inventive lighting apparatus.
  • FIGURE 2 is a perspective view of the lighting apparatus including a plurality of the optical systems of FIGURE 1.
  • FIGURE 3 is an enlarged perspective view of an embodiment of the inventive LED package including an array of eight LEDs and an asymmetric primary lens overmolded over the LED array.
  • FIGURE 4 is a cross-sectional side view of the LED package of FIGURE 3.
  • FIGURE 5 is an enlarged plan view of the LED package of FIGURE 3.
  • FIGURE 6 is an enlarged plan view of the LED array of the LED package of FIGURE 3 and showing main dimensions of the LED array.
  • FIGURES 7and 8 are enlarged plan views of alternative LED arrays according to the present invention and having asymmetric shapes.
  • FIGURES 9 andlO are enlarged plan views of yet more alternative LED arrays each configured according to the present invention.
  • FIGURE 11 is a perspective view of a plurality of LED light sources of this invention on a common submount.
  • FIGURE 12 is an enlarged perspective view of an embodiment of the inventive LED package including an array of forty-eight LEDs and an asymmetric primary lens overmolded over the LED array.
  • FIGURE 13 is a transparent outer-surface perspective view of a single-piece lensing member.
  • FIGURE 14 is a transparent inner-surface perspective view of a single-piece lensing member of FIGURE 13.
  • FIGURE 15 is a non-transparent outer-surface perspective view of the single- piece lensing member of FIGURE 13.
  • FIGURE 16 is a non-transparent outer-surface plan view of the single-piece lensing member of FIGURE 13.
  • FIGURE 17 is a non-transparent back view of the single-piece lensing member of FIGURE 13.
  • FIGURE 18 is a non-transparent side view of the single-piece lensing member of FIGURE 13.
  • FIGURE 19 is an enlarged non-transparent cross-sectional side view of the optical system of FIGURE 1.
  • FIGURE 20 is an enlarged perspective view of another embodiment of the inventive lighting apparatus including an inventive optical system with a
  • FIGURE 21 is an enlarged non-transparent cross-sectional side view of the optical system of FIGURE 19.
  • FIGURE 22 is an enlarged transparent plan view of the lighting apparatus of FIGURE 19.
  • FIGURE 23 is an enlarged transparent cross-sectional side view of the optical system of FIGURE 19.
  • FIGURE 24 is an enlarged cross-sectional side view of the lighting apparatus of FIGURE 19 showing LED-light refraction toward the preferential side and the secondary lens as a separate piece.
  • FIGURE 25 is an enlarged cross-sectional perspective view of the lighting apparatus of FIGURE 25 showing second-lens direction of LED light which is emitted toward a non-preferential side.
  • FIGURE 26 is an enlarged fragmentary cross-sectional side view of the lighting apparatus of FIGURE 25.
  • FIGURE 27 is an enlarged plan view of still another alternative configuration of an LED array according to the present invention.
  • FIGURE 27A is an exemplary illustration of outer boundaries of an LED- populated area of the LED array of FIGURE 27.
  • FIGURE 27B is an exemplary illustration of location of an emitter axis of
  • LED array of FIGURE 27 is an exemplary illustration of two orthogonal maximum cross-dimensions for the purpose of determination of an aspect ratio of an LED-populated area of FIGURE 27A.
  • FIGURE 28 is a transparent outer-surface perspective view of an alternative embodiment of the secondary lens.
  • FIGURE 29 is a transparent inner-surface perspective view of the secondary lens of FIGURE 28.
  • FIGURE 30 is a non-transparent outer-surface plan view of the lens of FIGURE 28.
  • FIGURE 31 is a non-transparent inner-surface plan view of the secondary lens of FIGURE 28.
  • FIGURE 32 is a front-to-back sectional view of the lens of FIGURE 28 and illustrating forward and rearward light distributions.
  • FIGURE 33 is a side-to-side sectional view of the lens of FIGURE 28 and illustrating lateral light distribution.
  • FIGURE 34 is a two-dimensional ISO plot of illumination intensity distribution by the lens of FIGURE 28 on an illuminated surface substantially normal to the emitter axis.
  • FIGURE 35 is a polar intensity distribution in a plane which includes the emitter axis, illustrating light directed as shown in FIGURE 33.
  • FIGURE 36 is a polar intensity distribution in a plane which includes the emitter axis and is substantially orthogonal the plane of FIGURE 35, illustrating light directed as shown in FIGURE 32.
  • FIGURES 1-26 illustrate a multi-lens LED-array optical system of improved LED-based lighting apparatus.
  • FIGURE 1 shows lighting apparatus 10 for illumination toward a preferential side 2 from an LED light emitter 20 having an axis 21.
  • Lighting apparatus 10 has a first lens 30 over emitter 20 and a second lens 40 over first lens 30.
  • the first lens is also sometimes referred to as a "primary" lens; and the second lens is also sometimes referred to as a "secondary" lens.
  • Lighting apparatus 10 includes a first optical surface 31, a second optical surface 50 and a third optical surface 43.
  • First optical surface 31 is an outer surface 32 of first lens 30 and is configured to refract light from emitter 20.
  • Second optical surface 50 is an inner surface 41 of second lens 40.
  • Second optical surface 50 is spaced from first optical surface 31 and has a refracting portion 51 and a reflecting portion 54, as best seen in FIGURES 1, 2, 13 and 14 and 19-25.
  • FIGURES 1, 2 and 19 best show refracting portion 51 surrounding first optical surface 31 and including front sector 52 and back sector 53 configured differently from one another.
  • Reflecting portion 54 is around back sector 53 and is positioned to receive light refracted by the back sector 53 for total internal reflection (TIR) toward the preferential side 2.
  • TIR total internal reflection
  • third optical surface 43 is a second-lens outer surface 42 configured to refract light from second optical surface 50 toward the preferential side 2.
  • FIGURES 1-7 illustrate first lens 30 as configured such that first optical surface 31 refracts LED-emitted light toward preferential side 2.
  • FIGURES 1-5 show first optical surface 31 shaped for refraction of LED-emitted light toward the preferential side 2.
  • FIGURES 3-7 show first optical surface 31 having a centerline 33 offset from emitter axis 21 toward preferential side 2.
  • FIGURES 1-5 show LED emitters 20 which have both first optical surface 31 having its centerline 33 offset from emitter axis 21 toward preferential side 2 and also being shaped for refraction of LED-emitted light toward preferential side 2.
  • FIGURES 1, 13, 14 and 19 best illustrate that front sector 52 of refracting portion 51 of second optical surface 50 has a substantially smooth surface
  • emitter 20 includes an LED light source that includes a submount 22 having an array of LEDs 24 on an LED-populated area 23 which has an aspect ratio greater than 1.
  • LED-populated area 23 also has a first maximum cross-dimension 15 and a second maximum cross-dimension 16 orthogonal to one another, first maximum cross-dimension 15 being greater than second maximum cross-dimension 16.
  • FIGURES 3 and 4 best show first lens 30 on submount 22 and overmolded over LED-populated area 23.
  • FIGURES 5-12 and 27 illustrate various configurations of LED-populated areas 23a-h with aspect ratios of at least about 1.25, at least about 1.5 and at least about 2.
  • FIGURES 3-6 show LED emitter 20a including rectangular LED-populated area 23 a with eight LEDs 14 arranged in two rows of four LEDs 14 in each row. In FIGURE 6, dimensions are indicated in millimeters in brackets, the first maximum cross dimension being [2.08], i.e., 2.08 millimeters, and are indicated in inches under the brackets.
  • FIGURE 12 shows LED emitter 20g including forty-eight LEDs 14 arranged in four rows of twelve LEDs 14 in each row. The aspect ratios of LED- populated area 23a is about 2 and aspect ratio of LED-populated area 23g is about 3.
  • FIGURES 7 and 8 illustrate LED arrays 23b and 23 c with LEDs 14 arranged in asymmetric configurations each having aspect ratio greater than 1.
  • FIGURE 27A illustrates an example of outer boundaries of LED-populated area 23h.
  • FIGURE 27B is an exemplary illustration of two orthogonal maximum cross-dimensions for the purpose of determination of an aspect ratio of a particular LED-populated area 23.
  • FIGURE 27B is also an exemplary illustration of a position of emitter axis 21 passing through geometric center 21a of minimum-area rectangle 21b bounding LED-populated area 23.
  • FIGURES 6-10 also show that the spacing and arrangement of the LEDs 14 on each LED-populated area 23 is such that the total LED area is at least about one-third of LED-populated area 23, as seen in FIGURES 8 and 27.
  • the spacing and arrangement of the LEDs 14 are such that the total LED area is at least about two- thirds of LED-populated area 23b.
  • the spacing and arrangement of the LEDs 14 are such that the total LED area is at least about 90% of LED-populated areas 23a, 23d and 23e.
  • FIGURE 8 shows the spacing between LEDs 14 of array 24c is about 0.1 mm.
  • the spacing between LEDs 14 of array 24a is about 0.075 mm.
  • the spacing between LEDs 14 of array 24d is about 0.05 mm.
  • FIGURE 2 further illustrates another aspect of this invention which is lighting apparatus 100 which includes a plurality of LED arrays 24 spaced along a circuit board 11, a plurality of first lenses 30 each over a corresponding LED array 24, and a plurality of second lenses 40 each spaced over a corresponding one of first lenses 30.
  • FIGURE 2 also shows each first lens configured to refract LED-emitted light toward preferential side 2 with outer surface 32 of each first lens 30 being shaped for refraction of LED-emitted light toward preferential side 2, as best shown in FIGURES 3 and 4, and having centerline 33 offset from corresponding light-emission axis 21 toward preferential side 2, as shown in FIGURES 4-6.
  • each of LED emitters 20 is in the form of what is sometimes referred to as an LED package which includes LED array 24 on submount 22a and first lens 30 overmolded on submount 22a over its corresponding LED array 24.
  • FIGURE 2 further shows each of submounts 22a mounted on circuit board 11.
  • FIGURE 11 illustrates a plurality of LED arrays 24 mounted on a common submount 22 and a plurality of first lenses 30 overmolded on submount 22 over a respective one of LED arrays 24.
  • FIGURES 2 and 13-18 show the plurality of second lenses as portions of a one-piece lensing member 44.
  • One-piece lensing member 44 including a set of alignment protrusions 45 extending from a circuit-board-adjacent surface 46 of lensing member 44, best seen in FIGURES 2, 13 and 14.
  • circuit board 11 has a set of alignment holes formed in an LED-supporting surface 13 of circuit board 11 complementary to set alignment protrusions 45.
  • Alignment protrusions 45 and alignment holes are engaged to accurately align secondary lenses 40 over their corresponding primary lenses 30.
  • protrusions 45 are first and second protrusions 451 and 452 extending from a circuit-board-adjacent surface 46 of lensing member 44, and that alignment holes defined by circuit board Hare first and second holes 121 and 122.
  • First hole 121 is complementary in shape to first protrusion 451 to fix the position of lensing member 44 along circuit board 11.
  • Second hole 122 receives second protrusion 452 to prevent rotation of lensing member 44 about first protrusion 451.
  • Second 122 hole is elongate along a line extending between first and second holes 121 and 122 which facilitates engagement of the alignment features 45 and 121.
  • FIGURES 20-26 illustrate an alternative embodiment of lighting apparatus
  • Lens 10b which includes a hemispheric primary lens 30b and a separate-piece secondary lens 410 configured for refracting light from primary lens 30 toward preferential side 2 and creating an asymmetric illumination pattern such as type III or type IV light distribution patterns used for roadway lighting, as established by The Illumination Engineering Society (IES).
  • Lens 410 has an inner surface 41b spaced from first optical surface 3 lb and has a refracting portion 5 lb and a reflecting portion 54b.
  • FIGURES 20 and 22 best show refracting portion 51b surrounding first optical surface 31b and including front sector 52b and back sector 53b configured differently from one another. Reflecting portion 54b is around back sector 53b.
  • FIGURES 24-26 illustrate that reflecting portion 54b is positioned to receive light refracted by the back sector 53b for total internal reflection (TIR) toward outer surface 42b. It is seen in FIGURES 20, 24-26 that outer surface 42b is configured to further direct light from inner surface 41b toward preferential side.
  • Lens 410 is described in more detail in the parent Application Serial No. 12/475,194, filed May 29, 2009, contents of which are incorporated herein by reference.
  • FIGURES 1 and 19 best illustrate lighting apparatus 10 for preferential-side illumination with first lens 30 configured to direct LED-emitted light toward preferential side 2 and second lens 40 configured to further direct the light toward preferential side 2.
  • first (or primary) lens 30 and second (or secondary) lens 40 are shown as having asymmetric shapes with preferential direction being a one side direction with respect to emitter axis 21.
  • FIGURES 28-36 illustrate yet another alternative embodiment of lighting apparatus 10c with a separate-piece secondary lens 411 configured for directing a majority of light from primary lens 30c into an elongate distribution 3 with some lateral light along the sides of elongate distribution 3, as illustrated in FIGURES 34- 36, such that preferential side 2a are opposite sides along a longitudinal axial plane extending through emitter axis 21 and creating an non-rotationally symmetric elongate illumination pattern which is bilaterally symmetric in two main orthogonal directions.
  • the illumination pattern produced by lens 411 is useful for tall elongate passageways such as warehouse aisles.
  • Lens 411 has an inner surface 41c spaced from primary lens surface 30c and has a refracting surface portion 51c and a reflecting surface portion 54c.
  • FIGURES 28, 29 and 31 best show refracting portion 51c surrounding primary lens 30c and including front and back portions 52c and a pair of opposite lateral portions 53c, front and back portions 52c being substantially orthogonal to and extending between lateral portions 52c.
  • Reflecting portion 54c substantially surrounds refracting surface portion 51c.
  • FIGURES 32 and 33 illustrate that reflecting portion 54c is positioned to receive substantially all forward and rearward light (best shown in FIGURE 32) and a portion of lateral light (best shown in FIGURE 33).
  • Reflective surface portion 54c is configured for total internal reflection (TIR) of the received light toward outer surface 42c. It is also seen in FIGURES 32 and 33 that outer surface 42c receives light from refracting inner surface 51c and from reflecting surface 54c and forms elongate light distribution 3 (shown in FIGURES 34-36) by refracting such received light.
  • Lens 411 is described in more detail in Application Serial No. 13/408,882, filed February 29, 2012, contents of which are incorporated herein by reference.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

Lighting apparatus (10) having a first lens (30) over the LED emitter (20) and a second lens (40) over the first lens, and including: a first optical surface (31) which is a first-lens outer surface (32) configured to refract light from the emitter; a second optical surface (50) which is a second-lens inner surface (41) spaced from the first optical surface; and a third optical surface (43) which is a second-lens outer surface (42) configured to refract light from the second optical surface toward a preferential side (2). One embodiment includes asymmetric primary and secondary lenses.

Description

MULTI-LENS LED- ARRAY OPTIC SYSTEM
FIELD OF THE INVENTION
This invention relates generally to the field of LED lighting apparatus and, more particularly, to the field of LED-based optical systems for use in LED lighting fixtures for which there are particular light-distribution requirements, such as what is sometimes referred to as preferential-side light distribution - for roadway light fixtures and the like.
BACKGROUND OF THE INVENTION
In recent years, the use of light-emitting diodes (LEDs) for various common lighting purposes has increased, and this trend has accelerated as advances have been made in LEDs, LED arrays, and specific components. Indeed, lighting applications which previously had typically been served by fixtures using what are known as high- intensity discharge (HID) lamps are now being served by LED lighting fixtures. Such lighting applications include, among a good many others, roadway lighting, factory lighting, parking lot lighting, and commercial building lighting.
In many of such products, achieving high levels of illumination over large areas with specific light-distribution requirements is particularly important. One pertinent example is fixtures for roadway lighting, an application in which the fixtures are generally placed along roadway edges while light distribution is desired along a significant portion of roadway length and, of course, on the roadway itself - generally to the exclusion of significant light off the roadway.
Providing roadway light from light fixtures along the roadway may be referred to as "preferential-side" illumination. In such situations it is desirable to minimize the use of large complex reflectors and/or varying orientations of multiple light sources to achieve desired illumination patterns. Achieving preferential-side illumination, or other desired illumination patterns, by means of LED-based optical systems, particularly without resorting to large complex reflectors or other complex means is highly desirable. SUMMARY OF THE INVENTION
The present invention is a multi-lens LED-array optical system and improved LED-based lighting apparatus which satisfies all of the above-noted objects and purposes.
One aspect of this invention is a lighting apparatus for preferential-side illumination from an LED light emitter having an axis, the apparatus having a first lens over the emitter and a second lens over the first lens, the first and second lenses having certain characteristics. The invention includes optical surfaces as follows: (1) a first optical surface which is a first-lens outer surface configured to refract light from the emitter; (2) a second optical surface which is a second-lens inner surface spaced from the first optical surface and having (a) a refracting portion surrounding the first optical surface and including front and back sectors configured differently from one another, and (b) a reflecting portion around the back sector, the reflecting portion positioned to receive light refracted by the back sector for total internal reflection (TIR) toward the preferential side; and (3) a third optical surface which is a second-lens outer surface configured to refract light from the second optical surface toward the preferential side.
In certain embodiments, the first lens is configured such that the first optical surface refracts LED-emitted light toward the preferential side. In some of such embodiments, the first optical surface is shaped for refraction of LED-emitted light toward the preferential side, while in others of such embodiments, the first optical surface has a centerline offset from the emitter axis toward the preferential side. In embodiments of the latter type, the first optical surface may be shaped for refraction of LED-emitted light toward the preferential side.
In certain embodiments, the front sector of the refracting portion of the second optical surface has a substantially smooth surface configuration extending to the juncture of the front and back sectors. In such situations, it is preferred that the back sector of the refracting portion of the second optical surface include at least a pair of surface portions transverse to each other.
In some embodiments, the back sector of the refracting portion of the second optical surface includes at least a pair of surface portions transverse to each other. In some embodiments, the emitter includes an LED light source that includes a submount having an LED-populated area which has an aspect ratio greater than 1 , and an array of LEDs on the LED-populated area, and the first lens is on the submount over the LED-populated area. The aspect ratio may be at least about 1.25, or even at least about 1.5, and even as much as at least about 2. The LED-populated area is preferably rectangular.
As used herein, the term "LED-populated area" means an area {i.e., an area on the submount) the outer boundaries of which include the outermost edges of the outermost LEDs (of the LED array) in any direction. As used herein, the term "aspect ratio" means the ratio of the maximum cross-dimension of the LED-populated area to the maximum of the cross-dimensions orthogonal thereto.
As used herein, the term "emitter axis" means the line orthogonal to the plane defined by the LED-populated area and passing through the geometric center of the minimum-area rectangle bounding the LED-populated area, i.e., the center of the rectangle of minimum area which includes all of the LED-populated area.
Another aspect of this invention is lighting apparatus for preferential-side illumination, that includes: (1) a plurality of arrays of light-emitting diodes (LEDs) spaced along a circuit board, each array having first and second maximum cross- dimensions orthogonal to one another, the first maximum cross-dimension being greater than the second maximum cross-dimension, and each LED array defining a light-emission axis; (2) a plurality of first lenses each over a corresponding array of LEDs, each first lens having an outer surface configured to refract light from its corresponding LED array; and (3) a plurality of second lenses each spaced over a corresponding one of the first lenses, each second lens having (a) an inner surface configured to direct light toward the preferential side from its corresponding first-lens outer surface, and (b) an outer surface configured to refract light toward the preferential side from the inner surface.
In such embodiments, each first lens preferably refracts LED-emitted light toward the preferential side. In some of such embodiments, each first lens is shaped for refraction of LED-emitted light toward the preferential side. In others of such embodiments, the outer surface of each first lens has a centerline offset from the corresponding light-emission axis toward the preferential side; in these embodiments, the outer surface of the first lens directs LED-emitted light toward the preferential side.
It most embodiments of this invention, each first lens be overmolded over its corresponding LED array, forming what is sometimes referred to as an LED package.
In certain embodiments, the plurality of LED arrays are mounted on a common submount. In certain other embodiments, LED array is on a submount and each of the submounts is mounted on the circuit board.
In certain embodiments, the plurality of second lenses are portions of a one- piece lensing member.
Referring again to the LED-populated areas, the spacing and arrangement of the LEDs on each LED-populated area may be such that the total LED area is at least about one-third of the LED-populated area. More specifically, the spacing and arrangement of the LEDs may be such that the total LED area is at least about two- thirds of the LED-populated area, or even as much as at least about 90% of the LED- populated area.
As used herein, the term "total LED area" means the sum of the submount areas immediately beneath each of the LEDs of the LED array.
In certain embodiments, the spacing between LEDs of the array is no more than about 1 millimeter (mm), or as little as no more than about 0.5 mm, or in some cases no more than about 0.1 mm. In some instances, the spacing is no more than about 0.075 mm, and even no more than about 0.05 mm.
Another aspect of this invention is a lighting apparatus comprising (1) a plurality of arrays of light-emitting diodes (LEDs) spaced along a circuit board, each array having first and second maximum cross-dimensions orthogonal to one another, the first maximum cross-dimension being greater than the second maximum cross- dimension, and each LED array defining a light-emission axis; (2) a plurality of first lenses each over a corresponding array of LEDs, each first lens having an outer surface configured to refract light from its corresponding LED array; and (3) a plurality of second lenses each spaced over a corresponding one of the first lenses, each second lens having an inner surface and an outer surface which is configured to refract light from the inner surface. As already noted, the plurality of LED arrays may be mounted to a submount, each to a common submount or, more particularly, each LED on its own submount, with each of the submounts being mounted on the circuit board. And, as noted, each first lens may be overmolded over each LED array. And, as also noted above, the plurality of second lenses may be portions of a one-piece lensing member.
Another aspect of this invention is a lighting apparatus for preferential-side illumination, the apparatus including an LED light emitter having an axis, comprising:
(1) a first lens over the emitter and configured to direct LED-emitted light toward the preferential side; and (2) a second lens spaced over the first lens and configured to further direct the light toward the preferential side.
In certain of such embodiments, the first lens will have an outer surface configured to direct LED-emitted light toward the preferential side. In others of such embodiments, the first lens has a centerline which is offset from the emitter axis toward the preferential side, and the first lens may have an outer surface configured to direct LED-emitted light toward the preferential side.
Still another aspect of this invention is a lighting apparatus including (1) a plurality of arrays of LEDs spaced along a circuit board, each array having first and second maximum cross-dimensions orthogonal to one another, the first maximum cross-dimension being greater than the second maximum cross-dimension, and each LED array defining a light-emission axis; and (2) a plurality of lenses each over a corresponding array of LEDs, each lens having an outer surface configured to refract light from its corresponding LED array.
Yet another aspect of this invention is a lighting apparatus including (1) an LED light source including a submount having an LED-populated area which has an aspect ratio greater than 1, the LED-populated area having an array of LEDs thereon,
(2) a first lens on the submount over the LED array and having an outer surface configured to refract light from the LED array, and (3) a second lens spaced over the first lens, the second lens having an inner surface and an outer surface which is configured to refract light from the inner surface.
Another aspect of this invention is lighting apparatus for preferential-side illumination, the apparatus including an LED light source with an axis and having an asymmetric primary lens over the LED light source and an asymmetric secondary lens spaced over the primary lens.
The term "asymmetric," as used herein with respect to lenses, when unmodified by any further limiting description, refers to a lens shape which is not rotationally symmetric about any axis perpendicular to its base plane. Types of asymmetric lenses include without limitation bilaterally symmetric lenses.
In descriptions of the invention, including in the claims below, the terms "comprising," "including" and "having" (each in their various forms) and the term "with" are each to be understood as being open-ended, rather than limiting, terms.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGURE 1 is an enlarged cross-sectional perspective view of one embodiment of the inventive lighting apparatus.
FIGURE 2 is a perspective view of the lighting apparatus including a plurality of the optical systems of FIGURE 1.
FIGURE 3 is an enlarged perspective view of an embodiment of the inventive LED package including an array of eight LEDs and an asymmetric primary lens overmolded over the LED array.
FIGURE 4 is a cross-sectional side view of the LED package of FIGURE 3. FIGURE 5 is an enlarged plan view of the LED package of FIGURE 3.
FIGURE 6 is an enlarged plan view of the LED array of the LED package of FIGURE 3 and showing main dimensions of the LED array.
FIGURES 7and 8 are enlarged plan views of alternative LED arrays according to the present invention and having asymmetric shapes.
FIGURES 9 andlO are enlarged plan views of yet more alternative LED arrays each configured according to the present invention.
FIGURE 11 is a perspective view of a plurality of LED light sources of this invention on a common submount.
FIGURE 12 is an enlarged perspective view of an embodiment of the inventive LED package including an array of forty-eight LEDs and an asymmetric primary lens overmolded over the LED array. FIGURE 13 is a transparent outer-surface perspective view of a single-piece lensing member.
FIGURE 14 is a transparent inner-surface perspective view of a single-piece lensing member of FIGURE 13.
FIGURE 15 is a non-transparent outer-surface perspective view of the single- piece lensing member of FIGURE 13.
FIGURE 16 is a non-transparent outer-surface plan view of the single-piece lensing member of FIGURE 13.
FIGURE 17 is a non-transparent back view of the single-piece lensing member of FIGURE 13.
FIGURE 18 is a non-transparent side view of the single-piece lensing member of FIGURE 13.
FIGURE 19 is an enlarged non-transparent cross-sectional side view of the optical system of FIGURE 1.
FIGURE 20 is an enlarged perspective view of another embodiment of the inventive lighting apparatus including an inventive optical system with a
hemispherical first optical surface and asymmetric second and third optical surfaces.
FIGURE 21 is an enlarged non-transparent cross-sectional side view of the optical system of FIGURE 19.
FIGURE 22 is an enlarged transparent plan view of the lighting apparatus of FIGURE 19.
FIGURE 23 is an enlarged transparent cross-sectional side view of the optical system of FIGURE 19.
FIGURE 24 is an enlarged cross-sectional side view of the lighting apparatus of FIGURE 19 showing LED-light refraction toward the preferential side and the secondary lens as a separate piece.
FIGURE 25 is an enlarged cross-sectional perspective view of the lighting apparatus of FIGURE 25 showing second-lens direction of LED light which is emitted toward a non-preferential side.
FIGURE 26 is an enlarged fragmentary cross-sectional side view of the lighting apparatus of FIGURE 25. FIGURE 27 is an enlarged plan view of still another alternative configuration of an LED array according to the present invention.
FIGURE 27A is an exemplary illustration of outer boundaries of an LED- populated area of the LED array of FIGURE 27.
FIGURE 27B is an exemplary illustration of location of an emitter axis of
LED array of FIGURE 27, and is an exemplary illustration of two orthogonal maximum cross-dimensions for the purpose of determination of an aspect ratio of an LED-populated area of FIGURE 27A.
FIGURE 28 is a transparent outer-surface perspective view of an alternative embodiment of the secondary lens.
FIGURE 29 is a transparent inner-surface perspective view of the secondary lens of FIGURE 28.
FIGURE 30 is a non-transparent outer-surface plan view of the lens of FIGURE 28.
FIGURE 31 is a non-transparent inner-surface plan view of the secondary lens of FIGURE 28.
FIGURE 32 is a front-to-back sectional view of the lens of FIGURE 28 and illustrating forward and rearward light distributions.
FIGURE 33 is a side-to-side sectional view of the lens of FIGURE 28 and illustrating lateral light distribution.
FIGURE 34 is a two-dimensional ISO plot of illumination intensity distribution by the lens of FIGURE 28 on an illuminated surface substantially normal to the emitter axis.
FIGURE 35 is a polar intensity distribution in a plane which includes the emitter axis, illustrating light directed as shown in FIGURE 33.
FIGURE 36 is a polar intensity distribution in a plane which includes the emitter axis and is substantially orthogonal the plane of FIGURE 35, illustrating light directed as shown in FIGURE 32.
DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS
FIGURES 1-26 illustrate a multi-lens LED-array optical system of improved LED-based lighting apparatus. FIGURE 1 shows lighting apparatus 10 for illumination toward a preferential side 2 from an LED light emitter 20 having an axis 21. Lighting apparatus 10 has a first lens 30 over emitter 20 and a second lens 40 over first lens 30. The first lens is also sometimes referred to as a "primary" lens; and the second lens is also sometimes referred to as a "secondary" lens. Lighting apparatus 10 includes a first optical surface 31, a second optical surface 50 and a third optical surface 43. First optical surface 31 is an outer surface 32 of first lens 30 and is configured to refract light from emitter 20. Second optical surface 50 is an inner surface 41 of second lens 40.
Second optical surface 50 is spaced from first optical surface 31 and has a refracting portion 51 and a reflecting portion 54, as best seen in FIGURES 1, 2, 13 and 14 and 19-25.
FIGURES 1, 2 and 19 best show refracting portion 51 surrounding first optical surface 31 and including front sector 52 and back sector 53 configured differently from one another. Reflecting portion 54 is around back sector 53 and is positioned to receive light refracted by the back sector 53 for total internal reflection (TIR) toward the preferential side 2. It is seen in FIGURES 1, 2 and 13-25 that third optical surface 43 is a second-lens outer surface 42 configured to refract light from second optical surface 50 toward the preferential side 2.
FIGURES 1-7 illustrate first lens 30 as configured such that first optical surface 31 refracts LED-emitted light toward preferential side 2. FIGURES 1-5 show first optical surface 31 shaped for refraction of LED-emitted light toward the preferential side 2. FIGURES 3-7 show first optical surface 31 having a centerline 33 offset from emitter axis 21 toward preferential side 2. FIGURES 1-5 show LED emitters 20 which have both first optical surface 31 having its centerline 33 offset from emitter axis 21 toward preferential side 2 and also being shaped for refraction of LED-emitted light toward preferential side 2.
FIGURES 1, 13, 14 and 19 best illustrate that front sector 52 of refracting portion 51 of second optical surface 50 has a substantially smooth surface
configuration extending to juncture 55 of front and back sectors 52 and 53. It is also seen in these FIGURES that back sector 53 includes a pair of surface portions 53a and 53b transverse to each other. FIGURES 3-12 show that emitter 20 includes an LED light source that includes a submount 22 having an array of LEDs 24 on an LED-populated area 23 which has an aspect ratio greater than 1. LED-populated area 23 also has a first maximum cross-dimension 15 and a second maximum cross-dimension 16 orthogonal to one another, first maximum cross-dimension 15 being greater than second maximum cross-dimension 16.
FIGURES 3 and 4 best show first lens 30 on submount 22 and overmolded over LED-populated area 23.
FIGURES 5-12 and 27 illustrate various configurations of LED-populated areas 23a-h with aspect ratios of at least about 1.25, at least about 1.5 and at least about 2. FIGURES 3-6 show LED emitter 20a including rectangular LED-populated area 23 a with eight LEDs 14 arranged in two rows of four LEDs 14 in each row. In FIGURE 6, dimensions are indicated in millimeters in brackets, the first maximum cross dimension being [2.08], i.e., 2.08 millimeters, and are indicated in inches under the brackets. FIGURE 12 shows LED emitter 20g including forty-eight LEDs 14 arranged in four rows of twelve LEDs 14 in each row. The aspect ratios of LED- populated area 23a is about 2 and aspect ratio of LED-populated area 23g is about 3.
FIGURES 7 and 8 illustrate LED arrays 23b and 23 c with LEDs 14 arranged in asymmetric configurations each having aspect ratio greater than 1.
FIGURE 27A illustrates an example of outer boundaries of LED-populated area 23h. FIGURE 27B is an exemplary illustration of two orthogonal maximum cross-dimensions for the purpose of determination of an aspect ratio of a particular LED-populated area 23. FIGURE 27B is also an exemplary illustration of a position of emitter axis 21 passing through geometric center 21a of minimum-area rectangle 21b bounding LED-populated area 23.
FIGURES 6-10 also show that the spacing and arrangement of the LEDs 14 on each LED-populated area 23 is such that the total LED area is at least about one-third of LED-populated area 23, as seen in FIGURES 8 and 27. In FIGURE 7, the spacing and arrangement of the LEDs 14 are such that the total LED area is at least about two- thirds of LED-populated area 23b. In FIGURES 6, 9 and 10, the spacing and arrangement of the LEDs 14 are such that the total LED area is at least about 90% of LED-populated areas 23a, 23d and 23e. FIGURE 8 shows the spacing between LEDs 14 of array 24c is about 0.1 mm. In FIGURE 6, the spacing between LEDs 14 of array 24a is about 0.075 mm. And, in FIGURE 9 the spacing between LEDs 14 of array 24d is about 0.05 mm.
FIGURE 2 further illustrates another aspect of this invention which is lighting apparatus 100 which includes a plurality of LED arrays 24 spaced along a circuit board 11, a plurality of first lenses 30 each over a corresponding LED array 24, and a plurality of second lenses 40 each spaced over a corresponding one of first lenses 30.
FIGURE 2 also shows each first lens configured to refract LED-emitted light toward preferential side 2 with outer surface 32 of each first lens 30 being shaped for refraction of LED-emitted light toward preferential side 2, as best shown in FIGURES 3 and 4, and having centerline 33 offset from corresponding light-emission axis 21 toward preferential side 2, as shown in FIGURES 4-6. In FIGURE 2, each of LED emitters 20 is in the form of what is sometimes referred to as an LED package which includes LED array 24 on submount 22a and first lens 30 overmolded on submount 22a over its corresponding LED array 24. FIGURE 2 further shows each of submounts 22a mounted on circuit board 11.
FIGURE 11 illustrates a plurality of LED arrays 24 mounted on a common submount 22 and a plurality of first lenses 30 overmolded on submount 22 over a respective one of LED arrays 24.
FIGURES 2 and 13-18 show the plurality of second lenses as portions of a one-piece lensing member 44. One-piece lensing member 44 including a set of alignment protrusions 45 extending from a circuit-board-adjacent surface 46 of lensing member 44, best seen in FIGURES 2, 13 and 14. It is also seen in FIGURE 2 that circuit board 11 has a set of alignment holes formed in an LED-supporting surface 13 of circuit board 11 complementary to set alignment protrusions 45.
Alignment protrusions 45 and alignment holes are engaged to accurately align secondary lenses 40 over their corresponding primary lenses 30.
It is also seen in FIGURES 2, 13 and 14 that protrusions 45 are first and second protrusions 451 and 452 extending from a circuit-board-adjacent surface 46 of lensing member 44, and that alignment holes defined by circuit board Hare first and second holes 121 and 122. First hole 121 is complementary in shape to first protrusion 451 to fix the position of lensing member 44 along circuit board 11. Second hole 122 receives second protrusion 452 to prevent rotation of lensing member 44 about first protrusion 451. Second 122 hole is elongate along a line extending between first and second holes 121 and 122 which facilitates engagement of the alignment features 45 and 121.
FIGURES 20-26 illustrate an alternative embodiment of lighting apparatus
10b which includes a hemispheric primary lens 30b and a separate-piece secondary lens 410 configured for refracting light from primary lens 30 toward preferential side 2 and creating an asymmetric illumination pattern such as type III or type IV light distribution patterns used for roadway lighting, as established by The Illumination Engineering Society (IES). Lens 410 has an inner surface 41b spaced from first optical surface 3 lb and has a refracting portion 5 lb and a reflecting portion 54b. FIGURES 20 and 22 best show refracting portion 51b surrounding first optical surface 31b and including front sector 52b and back sector 53b configured differently from one another. Reflecting portion 54b is around back sector 53b.
FIGURES 24-26 illustrate that reflecting portion 54b is positioned to receive light refracted by the back sector 53b for total internal reflection (TIR) toward outer surface 42b. It is seen in FIGURES 20, 24-26 that outer surface 42b is configured to further direct light from inner surface 41b toward preferential side. Lens 410 is described in more detail in the parent Application Serial No. 12/475,194, filed May 29, 2009, contents of which are incorporated herein by reference.
FIGURES 1 and 19 best illustrate lighting apparatus 10 for preferential-side illumination with first lens 30 configured to direct LED-emitted light toward preferential side 2 and second lens 40 configured to further direct the light toward preferential side 2. Both first (or primary) lens 30 and second (or secondary) lens 40 are shown as having asymmetric shapes with preferential direction being a one side direction with respect to emitter axis 21.
FIGURES 28-36 illustrate yet another alternative embodiment of lighting apparatus 10c with a separate-piece secondary lens 411 configured for directing a majority of light from primary lens 30c into an elongate distribution 3 with some lateral light along the sides of elongate distribution 3, as illustrated in FIGURES 34- 36, such that preferential side 2a are opposite sides along a longitudinal axial plane extending through emitter axis 21 and creating an non-rotationally symmetric elongate illumination pattern which is bilaterally symmetric in two main orthogonal directions. The illumination pattern produced by lens 411 is useful for tall elongate passageways such as warehouse aisles. Lens 411 has an inner surface 41c spaced from primary lens surface 30c and has a refracting surface portion 51c and a reflecting surface portion 54c.
FIGURES 28, 29 and 31 best show refracting portion 51c surrounding primary lens 30c and including front and back portions 52c and a pair of opposite lateral portions 53c, front and back portions 52c being substantially orthogonal to and extending between lateral portions 52c. Reflecting portion 54c substantially surrounds refracting surface portion 51c.
FIGURES 32 and 33 illustrate that reflecting portion 54c is positioned to receive substantially all forward and rearward light (best shown in FIGURE 32) and a portion of lateral light (best shown in FIGURE 33). Reflective surface portion 54c is configured for total internal reflection (TIR) of the received light toward outer surface 42c. It is also seen in FIGURES 32 and 33 that outer surface 42c receives light from refracting inner surface 51c and from reflecting surface 54c and forms elongate light distribution 3 (shown in FIGURES 34-36) by refracting such received light. Lens 411 is described in more detail in Application Serial No. 13/408,882, filed February 29, 2012, contents of which are incorporated herein by reference.
While the principles of the invention have been shown and described in connection with specific embodiments, it is to be understood that such embodiments are by way of example and are not limiting.

Claims

1. Lighting apparatus for preferential-side illumination from an LED light emitter having an axis, the apparatus having a first lens over the emitter and a second lens over the first lens, the apparatus comprising:
• a first optical surface which is a first-lens outer surface configured to
refract light from the emitter;
• a second optical surface which is a second-lens inner surface spaced from the first optical surface and which includes:
· a refracting portion surrounding the first optical surface and including front and back sectors configured differently from one another; and • a reflecting portion around the back sector, the reflecting portion
positioned to receive light refracted by the back sector for total internal reflection (TIR) toward the preferential side; and
· a third optical surface which is a second- lens outer surface configured to refract light from the second optical surface toward the preferential side.
2. The lighting apparatus of claim 1 wherein the first lens is configured such that the first optical surface refracts LED-emitted light toward the preferential side.
3. The lighting apparatus of claim 2 wherein the first optical surface is shaped for refraction of LED-emitted light toward the preferential side.
4. The lighting apparatus of claim 2 wherein the first optical surface has a centerline which is offset from the emitter axis toward the preferential side.
5. The lighting apparatus of claim 4 wherein the first optical surface is shaped for refraction of LED-emitted light toward the preferential side.
6. The lighting apparatus of claim 1 wherein the front sector of the refracting portion of the second optical surface has a substantially smooth surface configuration extending to the juncture of the front and back sectors.
7. The lighting apparatus of claim 6 wherein the back sector of the refracting portion of the second optical surface includes at least a pair of surface portions transverse to each other.
8. The lighting apparatus of claim 1 wherein the back sector of the refracting portion of the second optical surface includes at least a pair of surface portions transverse to each other.
9. The lighting apparatus of claim 1 wherein:
• the emitter includes an LED light source which includes a submount having an LED-populated area which has an aspect ratio greater than 1 , and an array of LEDs on the LED-populated area; and
• the first lens is on the submount over the LED-populated area.
10. The lighting apparatus of claim 9 wherein the aspect ratio is at least about
1.25.
11. The lighting apparatus of claim 10 wherein the aspect ratio is at least about 1.5.
12. The lighting apparatus of claim 11 wherein the aspect ratio is at least about 2.
13. The lighting apparatus of claim 9 wherein the LED-populated area is rectangular.
14. Lighting apparatus for preferential-side illumination, comprising:
• a plurality of arrays of light-emitting diodes (LEDs) spaced along a circuit board, each array having first and second maximum cross-dimensions orthogonal to one another, the first cross-dimension being greater than the second cross-dimension, and each LED array defining a light-emission axis;
• a plurality of first lenses each over a corresponding array of LEDs, each first lens having an outer surface configured to refract light from its corresponding LED array; and
• a plurality of second lenses each spaced over a corresponding one of the first lenses, each second lens having:
• an inner surface configured to direct light toward the preferential side from its corresponding first-lens outer surface; and
• an outer surface configured to refract light toward the preferential side from the inner surface.
15. The lighting apparatus of claim 14 wherein each first lens refracts LED- emitted light toward the preferential side.
16. The lighting apparatus of claim 15 wherein each first lens is shaped for refraction of LED-emitted light toward the preferential side.
17. The lighting apparatus of claim 15 wherein the outer surface of each first lens has a centerline which is offset from the corresponding light-emission axis toward the preferential side.
18. The lighting apparatus of claim 17 wherein the outer surface of each first lens directs LED-emitted light toward the preferential side.
19. The LED light source of claim 14 wherein each first lens is overmolded over each LED array.
20. The lighting apparatus of claim 14 wherein the inner surface of each second lens includes:
• a refracting portion surrounding the first-lens outer surface and including front and back sectors each configured differently from each other; and a reflecting portion around the back sector and receiving light refracted by the back sector for total internal reflection (TIR) toward the preferential side.
21. The lighting apparatus of claim 20 wherein the back sector of the refracting portion of the inner surface of the second lens includes at least a pair of surface portions transverse to each other.
22. The lighting apparatus of claim 20 wherein the front sector of the refracting portion of the inner surface of the second lens has a substantially smooth surface configuration extending to the juncture of the front and back sectors.
23. The lighting apparatus of claim 14 wherein the plurality of LED arrays are mounted on a common submount.
24. The lighting apparatus of claim 14 wherein each LED array is on a submount and each of the submounts is mounted on the circuit board.
25. The lighting apparatus of claim 14 wherein the plurality of second lenses are portions of a one-piece lensing member.
26. The lighting apparatus of claim 14 wherein the ratio of the first maximum cross-dimension to the second maximum cross-dimension of each LED array is at least about 1.25.
27. The lighting apparatus of claim 26 wherein the ratio is at least about 1.5.
28. The lighting apparatus of claim 27 wherein the ratio is at least about 2.
29. The lighting apparatus of claim 14 wherein each LED array occupies an LED-populated area with the spacing and arrangement of the LEDs being such that the total LED area is at least about one-third of the LED-populated area.
30. The lighting apparatus of claim 29 wherein the spacing and arrangement of the LEDs are such that the total LED area is at least about two-thirds of the LED- populated area.
31. The lighting apparatus of claim 30 wherein the spacing and arrangement of the LEDs are such that the total LED area at least about 90% of the LED-populated area.
32. The lighting apparatus of claim 29 wherein the spacing between LEDs is no more than about 1 millimeter.
33. The lighting apparatus of claim 32 wherein the spacing between LEDs is no more than about 0.5 millimeters.
34. The lighting apparatus of claim 33 wherein the spacing between LEDs is no more than about 0.1 millimeters.
35. The lighting apparatus of claim 34 wherein the spacing between LEDs is no more than about 0.075 millimeters.
36. The lighting apparatus of claim 35 wherein the spacing between the LEDs is no more than about 0.05 millimeters.
37. Lighting apparatus comprising:
• a plurality of arrays of light-emitting diodes (LEDs) spaced along a circuit board, each array having first and second maximum cross-dimensions orthogonal to one another, the first maximum cross-dimension being greater than the second maximum cross-dimension, and each LED array defining a light-emission axis;
• a plurality of first lenses each over a corresponding array of LEDs, each first lens having an outer surface configured to refract light from its corresponding LED array; and
· a plurality of second lenses each spaced over a corresponding one of the first lenses, each second lens having an inner surface and an outer surface which is configured to refract light from the inner surface.
38. The lighting apparatus of claim 37 wherein the plurality of LED arrays are mounted on a common submount.
39. The lighting apparatus of claim 37 wherein each LED array is on a submount and each of the submounts is mounted on the circuit board.
40. The LED light source of claim 37 wherein each first lens is overmolded over each LED array.
41. The lighting apparatus of claim 37 wherein the ratio of the first maximum cross-dimension to the second maximum cross-dimension of each LED array is at least about 1.25.
42. The lighting apparatus of claim 41 wherein the ratio is at least about 1.5.
43. The lighting apparatus of claim 42 wherein the ratio is at least about 2.
44. The lighting apparatus of claim 37 wherein each LED array has a rectangular configuration.
45. The lighting apparatus of claim 37 wherein each LED array occupies an LED-populated area with the spacing and arrangement of the LEDs being such that the total LED area is at least about one-third of the LED-populated area.
46. The lighting apparatus of claim 45 wherein the spacing and arrangement of the LEDs are such that the total LED area is at least about two-thirds of the LED- populated area.
47. The lighting apparatus of claim 46 wherein the spacing and arrangement of the LEDs are such that the total LED area is about 90% of the LED-populated area.
48. The lighting apparatus of claim 45 wherein the spacing between LEDs is no more than about 1 millimeter.
49. The lighting apparatus of claim 48 wherein the spacing between LEDs is no more than about 0.5 millimeters.
50. The lighting apparatus of claim 49 wherein the spacing between LEDs is no more than about 0.1 millimeters.
51. The lighting apparatus of claim 50 wherein the spacing between LEDs is no more than about 0.075 millimeters.
52. The lighting apparatus of claim 51 wherein the spacing between the LEDs is no more than about 0.05 millimeters.
53. The lighting apparatus of claim 37 wherein the plurality of second lenses are portions of a one-piece lensing member.
54. Lighting apparatus for preferential-side illumination, the apparatus including an LED light emitter having an axis, the apparatus comprising:
• a first lens over the emitter and configured to direct LED-emitted light toward the preferential side; and
• a second lens spaced over the first lens and configured to further direct the light toward the preferential side.
55. The lighting apparatus of claim 54 wherein the first lens has an outer surface configured to direct LED-emitted light toward the preferential side.
56. The lighting apparatus of claim 54 wherein the first lens has a centerline which is offset from the emitter axis toward the preferential side.
57. The lighting apparatus of claim 56 wherein the first lens has an surface configured to direct LED-emitted light toward the preferential side.
58. The lighting apparatus of claim 54 wherein the second lens includes:
• an inner surface configured to preferentially direct light from the first- lens outer surface; and
• an outer surface configured to direct light toward the preferential side from the inner surface.
59. The lighting apparatus of claim 58 wherein the inner surface of the second lens includes:
• a refracting portion surrounding the first lens and including front and back sectors configured differently from one another; and
• a reflecting portion around the back sector, the reflecting portion
positioned to receive light refracted by the back sector for total internal reflection (TIR) toward the preferential side.
60. The lighting apparatus of claim 59 wherein the back sector of the refracting portion of the second lens includes at least a pair of surface portions transverse to each other.
61. The lighting apparatus of claim 60 wherein the front sector of the refracting portion of the second lens has a substantially smooth surface configuration extending to the juncture of the front and back sectors.
62. The lighting apparatus of claim 54 wherein:
• the emitter includes an LED light source which includes a submount having an LED-populated area which has an aspect ratio greater than 1 , and an array of LEDs on the LED-populated area; and
• the first lens is on the submount over the LED-populated area.
63. The lighting apparatus of claim 62 wherein the aspect ratio is at least about 1.25.
64. The lighting apparatus of claim 63 wherein the aspect ratio is at least about 1.5.
65. The lighting apparatus of claim 64 wherein the aspect ratio is at least about 2.
66. Lighting apparatus comprising:
• a plurality of arrays of light-emitting diodes (LEDs) spaced along a circuit board, each array having first and second maximum cross-dimensions orthogonal to one another, the first maximum cross-dimension being greater than the second maximum cross-dimension, and each LED array defining a light-emission axis; and
• a plurality of lenses each over a corresponding array of LEDs, each lens having an outer surface configured to refract light from its corresponding LED array.
67. The lighting apparatus of claim 66 wherein the plurality of LED arrays are mounted on a common submount.
68. The lighting apparatus of claim 66 wherein each LED array is on a submount and each of the submounts is mounted on the circuit board.
69. The lighting apparatus of claim 66 wherein the lens is configured to direct LED-emitted light toward the preferential side.
70. The lighting apparatus of claim 69 wherein the lens has a centerline which is offset from the light-emission axis toward the preferential side.
71. The lighting apparatus of claim 69 wherein the lens has an outer surface configured to direct LED-emitted light toward the preferential side.
72. The lighting apparatus of claim 69 wherein the lens over each LED array is a first lens, and the lighting apparatus further including a plurality of second lenses each spaced over a corresponding one of the first lenses, each second lens having:
• an inner surface configured to direct light toward the preferential side from the first-lens outer surface; and
• an outer surface configured to refract light toward the preferential side from the inner surface.
73. The LED light source of claim 70 wherein each first lens is overmolded over each LED array.
74. The lighting apparatus of claim 72 wherein the inner surface of each second lens includes:
• a refracting portion surrounding the first lens and including front and back sectors configured differently from one another; and · a reflecting portion around the back sector, the reflecting portion
positioned to receive light refracted by the back sector for total internal reflection (TIR) toward the preferential side.
75. The lighting apparatus of claim 74 wherein the back sector of the refracting portion includes at least a pair of surface portions transverse to each other.
76. The lighting apparatus of claim 75 wherein the front sector of the refracting portion of the second lens has a substantially smooth surface configuration extending to the juncture of the front and back sectors.
77. The lighting apparatus of claim 72 wherein the plurality of second lenses are portions of a one-piece lensing member.
78. The lighting apparatus of claim 66 wherein:
· the plurality of lenses are primary lenses each over a corresponding LED array;
• the lighting apparatus further includes a one-piece lensing member over the circuit board and including a plurality of secondary lenses each spaced over a corresponding one of the primary lenses.
79. The lighting apparatus of claim 66 wherein the ratio of the first maximum cross-dimension to the second maximum cross-dimension is at least about 1.25.
80. The lighting apparatus of claim 79 wherein the ratio is at least about 1.5.
81. The lighting apparatus of claim 80 wherein the ratio is at least about 2.
82. Lighting apparatus comprising:
• an LED light source including a submount having an LED-populated area which has an aspect ratio greater than 1 , the LED-populated area having an array of LEDs thereon;
• a first lens on the submount over the LED array and having an outer
surface configured to refract light from the LED array; and
• a second lens spaced over the first lens, the second lens having an inner surface and an outer surface which is configured to refract light from the inner surface.
83. The LED light source of claim 82 wherein the first lens is overmolded on the submount.
84. The lighting apparatus of claim 82 wherein:
• the LED array defines a light-emission axis;
• the inner surface of the second lens includes:
• a refracting portion surrounding the first lens; and
• a reflecting portion positioned to receive light refracted by the refracting portion for total internal reflection (TIR) of such light toward the second-lens outer surface.
85. The lighting apparatus of claim 84 wherein the refracting portion of the second-lens inner surface includes front and back sectors configured differently from one another.
86. The lighting apparatus of claim 85 wherein the reflecting portion partially surrounds the refracting portion to receive light refracted by the back sector, the front sector refracting light toward the outer surface.
87. The lighting apparatus of claim 82 wherein the spacing and arrangement of the LEDs are such that the total LED area is at least about one-third of the LED- populated area.
88. The lighting apparatus of claim 87 wherein the spacing and arrangement of the LEDs are such that the total LED area is at least about two-thirds of the LED- populated area.
89. The lighting apparatus of claim 88 wherein the spacing and arrangement of the LEDs are such that the total LED area is about 90% of the LED-populated area.
90. The lighting apparatus of claim 87 wherein the spacing between LEDs is no more than about 0.1 millimeters.
91. The Lighting apparatus of claim 90 wherein the spacing between LEDs is no more than about 0.075 millimeters.
92. The lighting apparatus of claim 91 wherein the spacing between the LEDs is no more than about 0.05 millimeters.
93. The lighting apparatus of claim 82 wherein the aspect ratio is at least about 1.25.
94. The lighting apparatus of claim 93 wherein the aspect ratio is at least about 1.5.
95. The lighting apparatus of claim 94 wherein the aspect ratio is at least about 2.
96. The lighting apparatus of claim 82 wherein the LED-populated area is rectangular.
97. Lighting apparatus for preferential-side illumination, the apparatus including an LED light source having an axis, the apparatus comprising:
• an asymmetric primary lens over the LED light source; and
• an asymmetric secondary lens spaced over the primary lens.
98. The lighting apparatus of claim 97 wherein the primary lens has an outer surface shaped to direct LED-emitted light toward the preferential side.
99. The lighting apparatus of claim 97 wherein the primary lens has a centerline which is offset from the axis toward the preferential side.
100. The lighting apparatus of claim 99 wherein the primary lens has an outer surface shaped to direct LED-emitted light toward the preferential side.
101. The lighting apparatus of claim 97 wherein the secondary lens includes:
• an inner surface shaped to preferentially direct light from the first-lens outer surface; and
• an outer surface shaped to direct light from the inner surface toward the preferential side.
102. The lighting apparatus of claim 101 wherein the inner surface of the secondary lens includes:
• a refracting portion surrounding the primary lens and including front and back sectors configured differently from one another; and
• a reflecting portion around the back sector, the reflecting portion
positioned to receive light refracted by the back sector for total internal reflection (TIR) toward the preferential side.
103. The lighting apparatus of claim 97 wherein the primary lens is overmolded on a submount.
104. The lighting apparatus of claim 97 comprising a plurality of LED light sources each including a submount and each submount mounted on a common circuit board.
105. The lighting apparatus of claim 97 wherein:
• the LED light source which includes a submount having an LED-populated area which has an aspect ratio greater than 1, and an array of LEDs on the LED-populated area; and
• the primary lens is on the submount over the LED-populated area.
106. The lighting apparatus of claim 105 wherein the aspect ratio is at least about 1.25.
107. The lighting apparatus of claim 106 wherein the aspect ratio is at least about 1.5.
108. The lighting apparatus of claim 107 wherein the aspect ratio is at about 2.
109. The lighting apparatus of claim 105 wherein the primary lens is overmolded on the submount.
PCT/US2013/035287 2012-04-06 2013-04-04 Multi-lens led-array optic system WO2013152199A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13772520.6A EP2834556B1 (en) 2012-04-06 2013-04-04 Multi-lens led-array optic system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/441,540 2012-04-06
US13/441,540 US9255686B2 (en) 2009-05-29 2012-04-06 Multi-lens LED-array optic system

Publications (1)

Publication Number Publication Date
WO2013152199A1 true WO2013152199A1 (en) 2013-10-10

Family

ID=49301047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/035287 WO2013152199A1 (en) 2012-04-06 2013-04-04 Multi-lens led-array optic system

Country Status (2)

Country Link
EP (1) EP2834556B1 (en)
WO (1) WO2013152199A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2924345A1 (en) * 2014-03-28 2015-09-30 Swarco Futurit Verkehrssignalsysteme Ges.m.b.H. Lighting devices with asymmetrical light distribution
WO2016071845A1 (en) * 2014-11-06 2016-05-12 Philips Lighting Holding B.V. Asymmetric lens and linear lighting apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100039810A1 (en) * 2008-08-14 2010-02-18 Cooper Technologies Company LED Devices for Offset Wide Beam Generation
US7821023B2 (en) * 2005-01-10 2010-10-26 Cree, Inc. Solid state lighting component
US20100302786A1 (en) 2008-05-23 2010-12-02 Ruud Lighting, Inc. Lens with controlled backlight management
US20130223060A1 (en) 2012-02-29 2013-08-29 Ruud Lighting, Inc. Lens for Primarily-Elongate Light Distribution

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006111805A1 (en) * 2005-04-16 2006-10-26 Acol Technologies Sa Optical light source having displaced axes
US7766509B1 (en) * 2008-06-13 2010-08-03 Lumec Inc. Orientable lens for an LED fixture
US7891835B2 (en) * 2008-07-15 2011-02-22 Ruud Lighting, Inc. Light-directing apparatus with protected reflector-shield and lighting fixture utilizing same
CN102032526B (en) * 2009-09-30 2013-08-07 富准精密工业(深圳)有限公司 LED module
CN201593753U (en) * 2010-01-12 2010-09-29 雷笛克光学股份有限公司 Asymmetrical LED lens for street lamp
DE102010014289B4 (en) * 2010-04-08 2014-03-27 Trilux Gmbh & Co. Kg Light module and luminaire with light module
US20120051047A1 (en) * 2010-08-30 2012-03-01 Edison Opto Corporation Street lamp

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7821023B2 (en) * 2005-01-10 2010-10-26 Cree, Inc. Solid state lighting component
US20100302786A1 (en) 2008-05-23 2010-12-02 Ruud Lighting, Inc. Lens with controlled backlight management
US20100039810A1 (en) * 2008-08-14 2010-02-18 Cooper Technologies Company LED Devices for Offset Wide Beam Generation
US20130223060A1 (en) 2012-02-29 2013-08-29 Ruud Lighting, Inc. Lens for Primarily-Elongate Light Distribution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2924345A1 (en) * 2014-03-28 2015-09-30 Swarco Futurit Verkehrssignalsysteme Ges.m.b.H. Lighting devices with asymmetrical light distribution
WO2016071845A1 (en) * 2014-11-06 2016-05-12 Philips Lighting Holding B.V. Asymmetric lens and linear lighting apparatus

Also Published As

Publication number Publication date
EP2834556B1 (en) 2017-08-02
EP2834556A1 (en) 2015-02-11
EP2834556A4 (en) 2015-12-23

Similar Documents

Publication Publication Date Title
US9689552B2 (en) Multi-lens LED-array optic system
EP2435756B1 (en) Lens with controlled backlight management
US7810963B2 (en) Light emitting diode module with improved light distribution uniformity
US9217854B2 (en) Lens with controlled light refraction
US7866837B2 (en) Skew light illumination lens device
KR101260910B1 (en) Solid-state light source and vehicle lamp system using it
US9410674B2 (en) LED lens
US9689554B1 (en) Asymmetric area lighting lens
US9416926B2 (en) Lens with inner-cavity surface shaped for controlled light refraction
US9541258B2 (en) Lens for wide lateral-angle distribution
EP3169547B1 (en) Vehicle lighting module
US20100165640A1 (en) Optical member of lighting device
KR20100116628A (en) Lighting module, lamp and lighting method
US9523479B2 (en) LED lens
CN114787555A (en) Lamp for a motor vehicle comprising a light guide
US9423096B2 (en) LED lighting apparatus
EP2834556B1 (en) Multi-lens led-array optic system
CN104302973B (en) For the lens of wide lateral angles distribution
AU2013204682B2 (en) Lens with controlled backlight management
WO2013043743A1 (en) Led retrofit lighting fixture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013772520

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013772520

Country of ref document: EP