WO2013151102A9 - Solar cell array testing system - Google Patents

Solar cell array testing system Download PDF

Info

Publication number
WO2013151102A9
WO2013151102A9 PCT/JP2013/060236 JP2013060236W WO2013151102A9 WO 2013151102 A9 WO2013151102 A9 WO 2013151102A9 JP 2013060236 W JP2013060236 W JP 2013060236W WO 2013151102 A9 WO2013151102 A9 WO 2013151102A9
Authority
WO
WIPO (PCT)
Prior art keywords
string
delay
strings
signal
reflected signal
Prior art date
Application number
PCT/JP2013/060236
Other languages
French (fr)
Japanese (ja)
Other versions
WO2013151102A1 (en
Inventor
小澤 淳
Original Assignee
株式会社システム・ジェイディー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社システム・ジェイディー filed Critical 株式会社システム・ジェイディー
Publication of WO2013151102A1 publication Critical patent/WO2013151102A1/en
Publication of WO2013151102A9 publication Critical patent/WO2013151102A9/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell array inspection system. That is, the present invention relates to an inspection system for inspecting a solar cell array for the presence of a failure or other defects.
  • Photovoltaic power generation has entered an era of mass diffusion, and various types of solar cells have been developed and commercialized.
  • the mainstream is solar cells using silicon (Si), but the development of lower-cost, longer-life non-silicon type solar cells is also progressing. That is, single crystal silicon type and polycrystalline silicon type so-called crystal type modules have been mainstream.
  • amorphous silicon type so-called thin-film modules, compound-based and organic modules that do not use silicon (also called thin-film systems), which are expensive and use less silicon is in demand.
  • Non-silicon type modules are also increasing rapidly. And it is expected to become a future trend.
  • a so-called IV method As an inspection method for such a solar cell array, first, an inspection method for measuring a current and a voltage flowing in a string that is actually generating power and finding a defect such as a failure in a string unit, a so-called IV method can be mentioned. .
  • an inspection method exclusively for solar cell arrays has been developed and used. In other words, during non-power generation, a so-called TDR method, in which an outgoing signal is transmitted to a string and a reflected signal from the string is received and a failure such as a failure is judged by comparing the waveforms of both signals, is also put into practical use. ing.
  • TDR type inspection device can further identify faults in module units from the string unit.
  • numerical values of the degree of failure can be grasped by waveform comparison.
  • TDR inspection apparatus examples include those disclosed in the following Patent Document 1 and Patent Document 2.
  • serial wiring can be inspected, but parallel wiring cannot. That is, the TDR type inspection apparatus determines a defect such as a failure based on the comparison of the waveform of the outgoing signal and the reflected signal.
  • the inspection can be performed only when all the solar cell arrays to be inspected are of the serial wiring type. That is, inspection is possible only when all the strings and modules constituting the solar cell array are connected in series.
  • the solar cell array is a parallel wiring type, the inspection is impossible.
  • the reflected signals are input and received in an overlapping manner, so it is impossible to determine which string is reflected from which string or which module or module is defective. .
  • the above-mentioned parallel wiring type is the mainstream in the solar cell array using the compound type and organic type modules including the amorphous silicon type thin film type described above.
  • the reason for this is that, because of the electrical characteristics, the power generation tendency per module is high voltage and low current, so that all of them are of the parallel wiring type in order to increase the current value.
  • Conventional TDR inspection devices are limited to use only in series wiring type, and it has been pointed out that they cannot be used in parallel wiring type solar cell arrays.
  • the solar cell array inspection system of the present invention has been made to solve the above-described problems of the prior art.
  • a parallel wiring type solar cell array can be inspected by the TDR method, and secondly, this can be realized easily and easily in terms of cost, and thirdly, a surge countermeasure effect
  • the purpose is to propose a solar cell array inspection system that can be expected.
  • a first aspect of the present invention is a solar cell array inspection system that determines whether or not there is a failure or other malfunction in a solar cell array in which a plurality of strings including one or more modules are connected in parallel. And it has an inspection device and a delay means.
  • the inspection apparatus determines whether or not there is a defect individually for each string based on the emission signal to each string and the reflection signal from each string.
  • the delay means sets a priori relationship in time series for each of the strings with respect to one or both of the outgoing signal and the reflected signal, so that the reflected signal from each of the strings is sent to the inspection device. It functions to make it input sequentially.
  • a second aspect of the present invention is an inspection system according to the first aspect, and the inspection apparatus includes an application unit, an actual measurement unit, and a determination unit.
  • the application unit transmits an emission signal to each string via a cable.
  • the actual measurement unit receives a reflected signal reflected and reflected from the abnormal point of each string via the cable.
  • the discriminating unit discriminates the presence / absence of a defect individually for each of the strings based on a waveform comparison between the outgoing signal and the reflected signal.
  • the delay means includes a delay circuit, and is interposed in the cable. The reflected signal from each string is input to and received by the actual measurement unit of the inspection apparatus in series for each string.
  • the delay unit is connected to at least the second and subsequent strings of the cable after being branched in parallel toward the strings. Is intervened. Then, the delay constant of the delay means is such that the arrival time of one or both of the outgoing signal and the reflected signal between each string and the actual measurement unit of the inspection apparatus is made different for each string, so that each string has a different arrival time. It is characterized by comprising values that sequentially set a priori relationship in time series.
  • an inspection system for discriminating whether or not there is a failure or a malfunction with respect to a solar cell array in which a plurality of strings each having one or more modules are connected in parallel.
  • An application unit that applies a signal; an actual measurement unit that actually measures a reflected signal from the string; and a determination unit that determines whether or not the solar cell array has failed or malfunctioned based on the reflected signal.
  • the inspection system further includes delay means for delaying the arrival of the reflected signal and setting a prior relationship of the reflected signals.
  • a fifth aspect of the present invention is the inspection system according to the fourth aspect, wherein the application unit is connected to a point farther from the string than a branch point of the plurality of strings connected in parallel.
  • the delay means is connected between the branch point and at least one of the plurality of strings, and delays either one or both of the emission signal and the reflection signal to the measurement unit.
  • the arrival of the reflected signal is delayed.
  • the delay unit is configured to transmit a reflected signal from the point closest to the actual measurement unit of the string to which the delay unit is connected to the actual measurement unit.
  • the reflected signal is delayed so that the shortest arrival time after delay is later than the non-delay longest arrival time of the reflected signal from the point farthest from the actual measurement unit of the string to which the delay means is not connected to the actual measurement unit.
  • the inspection system comprising a plurality of the delay means connected to the different strings, and the delay time of each delay means is the shortest arrival after the delay. It is greater than the time difference between the time and the non-delayed longest arrival time.
  • the present invention comprises such means, the following is achieved.
  • the inspection apparatus can individually determine which string has an abnormal point and a failure or other malfunction occurs. (6) This is easily realized with a simple inspection system by providing a delay circuit in the cable of the string and using only one inspection apparatus. (7) It should be noted that this inspection system is also effective as a surge countermeasure because the components of the delay circuit are burned out when the current or voltage suddenly rises due to lightning or the like. (8) Now, the solar cell array inspection system of the present invention exhibits the following effects.
  • a parallel wiring type solar cell array can be inspected by the TDR method.
  • a delay unit is interposed in a string cable connected in parallel. Therefore, for the reflected signal from each string, the prior relationship is set in time series, and sequentially received by the inspection device in series. Unlike the above-described conventional TDR inspection apparatus of this type, the reflected signals from the strings are not received in an overlapping manner, and it is possible to accurately determine which module of which string has a defect. . Therefore, according to the inspection system of the present invention, parallel wiring type crystal modules, strings, solar cell arrays, parallel wiring type amorphous silicon thin film systems, compound systems, organic modules, strings, solar The battery array can be inspected. The presence or absence of these failures and other problems can be reliably determined by the TDR method, It is possible to take necessary measures such as repair and replacement for strings and modules in which defects are found.
  • the solar cell array inspection system of the present invention can inspect a parallel wiring type solar cell array by the TDR method. This is realized by providing delay means including a known delay circuit in the cable of the string and using one inspection device. Unlike the above-described conventional TDR inspection apparatus of this type, the present invention is realized without the necessity of attaching or sequentially connecting a plurality of strings. Therefore, the configuration is simplified correspondingly, and the configuration cost is excellent. Further, the inspection does not require labor and time, and the man-hour cost is excellent.
  • each string cable is provided with a delay means using a delay circuit. Therefore, for example, when the current or voltage suddenly rises due to lightning or the like, the components forming the delay circuit are burned out at that moment. As a result, surge current and surge voltage can be reduced and cut off, and damage to the entire solar cell array, such as failure and destruction, can be minimized. As described above, the effects exerted by the present invention are remarkably large, such as all the problems existing in this type of conventional example are solved.
  • FIG. 2 is an explanatory diagram of a circuit configuration
  • (2) is an arrival time of an outgoing signal in the circuit
  • FIG. 3 is a time chart of an example of a return time of a reflected signal in the circuit.
  • FIG. 3 is a block diagram illustrating a configuration of a delay circuit of a delay unit for explaining the embodiment for carrying out the invention, in which FIG. 1A shows an example thereof, and FIG. 2B shows another example.
  • FIG. 1A is a block diagram of a circuit.
  • FIG. 2 is a block diagram of this type of conventional circuit. It is a perspective explanatory view of an example of a solar power generation system.
  • the chip constituting the module 3 can be configured with a single pn junction, a plurality of pn junctions connected in series, a plurality of pn junctions connected in parallel, and so on. is there.
  • the electric power generated and output by the solar cell array 7, that is, the direct current generated based on the photoelectric effect of the pn junction of the module 3 is transmitted from each string 1 to the cable 6 (see also FIG. 1 (1)). ), Reaching the power conditioner 5 via the relay terminal box 4.
  • the alternating current converted from the direct current by the power conditioner 5 is consumed by the load 9 after passing through the distribution board 8.
  • Surplus power is purchased through the power meter 10 to the commercial power system of the power company.
  • the module 3 may be referred to as a solar cell, and the string 1 may be referred to as a solar panel or a solar module.
  • the overview of solar power generation is as above.
  • the inspection system 12 of the present invention will be described.
  • the inspection system 12 determines whether or not there is a failure or other malfunction in the solar cell array 7 in which the plurality of strings 1 including one or more modules 3 are connected in parallel. And it has the inspection apparatus 11 and the delay means 13.
  • the inspection apparatus 11 individually determines the presence or absence of a defect for each string 1 based on the emission signal to each string 1 and the reflection signal from each string 1.
  • the inspection apparatus 11 includes an application unit 14, an actual measurement unit 15, and a determination unit 16.
  • the application unit 14 outputs and transmits an emission signal to each string 1 via the cable 6.
  • the actual measurement unit 15 inputs and receives a reflected signal reflected and reflected from the abnormal point C of each string 1 via the cable 6.
  • the discriminating unit 16 discriminates the presence or absence of defects individually for each string 1 based on the waveform comparison between the outgoing signal and the reflected signal.
  • the outline of the inspection apparatus 11 is as described above.
  • FIG. 1 (1), FIG. 3 (1), and the like Such an inspection apparatus 11 will be described in more detail with reference to FIG. 1 (1), FIG. 3 (1), and the like.
  • one inspection device 11 of this inspection system 12 is used, and is connected to the cable 6 via a switch 17 that is normally open (disconnected) and switched to closed (continuous) when used.
  • a portable type inspection device 11 is also possible instead of such a fixed type, and in the case of the portable type, it is connected to the cable 6 in use.
  • 3 is a switch provided between the relay terminal box 4 and the power conditioner 5 and is normally closed (continuous), but is switched to open (disconnected) at the time of inspection.
  • the inspection device 11 of the illustrated example is provided between the relay terminal box 4 and the power conditioner 5 independently of each other.
  • the relay terminal box 4 and the power conditioner are not limited to the illustrated example. 5 may be attached. However, it is connected to the cable 6 before being branched in parallel toward each string 1.
  • the application unit 14 of the inspection apparatus 11 is typically composed of a pulse generator, generates a pulse wave, and outputs, transmits, and applies an emission signal as an input signal to each string 1 to be inspected.
  • the actual measurement unit 15 of the inspection apparatus 11 is made of, for example, an oscilloscope, and inputs, receives, and measures a reflected signal that is reflected and reflected from the abnormal point C of the string 1 corresponding to the outgoing signal.
  • the abnormal point C means a part that causes a failure or other trouble with respect to the string 1 and the module 3. It does not mean a connection point or a reflection point that other systems have.
  • a microcomputer of the control unit 19 is typically used, and its CPU performs a predetermined process based on a stored program.
  • the determination unit 16 of the inspection apparatus 11 will be described in further detail.
  • the discriminating unit 16 compares the output signal from the applying unit 14 to the inspection target string 1 and the reflected signal from the abnormal point C of the string 1 via the actual measurement unit 15 as inspection data. Typically, total data comparison of both pulse waves is performed. Then, based on the waveform difference according to the abnormal point C of the string 1, that is, the position of the defective part, the waveform difference according to the type of inconvenient content, etc., the defective position is specified for each module 3, and the degree of the defect is also a numerical value. Be grasped. By the way, such a data comparison includes a case where the reflected signal at the normal time is compared with the reflected signal at the time of inspection.
  • the description of comparing the output signal to the string 1 and the reflected signal from the string 1 includes the reflected signal from the string 1 in the past normal state (the output signal to the string 1). And a case where the reflected signal from the string 1 at the time of actual inspection is compared is also included as a part thereof.
  • the determination unit 16 diagnoses and determines the presence or absence of a failure such as a disconnection or other defects with respect to the string 1 to be inspected, and obtains an inspection result.
  • the specific inspection procedure for each string 1 will be described later. Details of the inspection apparatus 11 are as described above.
  • the delay means 13 sets a chronological relationship between each of the strings 1 connected in parallel for each of the strings 1 connected in parallel with respect to one or both of the outgoing signal and the reflected signal. It functions to sequentially input the reflected signal to the inspection apparatus 11.
  • the reflected signal from each string 1 is input to and received by the actual measurement unit 15 of the inspection apparatus 11 sequentially in series for each generated string 1.
  • the delay means 13 the following three types can be considered.
  • the delay means 13 is a first type in which only the outgoing signal to each string 1 is given a delay to set a prior relationship with others.
  • first type delay means 13 the reflected signals from each string 1 are sequentially input to the inspection apparatus 11 individually.
  • second type delay means 13 a second type in which only the reflected signal from each string 1 is given a delay to set a prior relationship with others.
  • second type delay means 13 the reflected signals from the respective strings 1 are sequentially input to the inspection apparatus 11 in the same manner as in the first type.
  • the reflected signals from the respective strings 1 are sequentially input to the inspection apparatus 11 in the same manner as in the first type and the second type.
  • the first type, second type, or third type of delay means 13 is between the at least second and subsequent strings 1 with respect to the cable 6 after being branched in parallel toward each string 1.
  • Such parallel branch portions of the cable 6 are usually arranged in the relay terminal box 4 (see FIG. 3 (1)) or in the power conditioner 5.
  • the delay means 13 is interposed between each of the strings 1 with respect to the cable 6 after being branched in parallel in this way. Typically, it is interposed in the cable 6 immediately after the parallel branch.
  • the delay means 13 is interposed in all the cables 6 after being branched in parallel in the illustrated example.
  • the delay means 13 is interposed in each of the two cables 6 after being branched in parallel.
  • the delay means 13 is interposed in each of the four cables 6 after being branched in parallel.
  • the purpose of the delay means 13 is to set the chronological relationship between each signal in time series. From this point of view, it is possible not to provide the delay means 13 for the cable 6 of the string 1 that is first in time series, that is, set to the shortest time without being delayed.
  • the delay means 13 is as described above.
  • the delay constant D set for each of the delay means 13 of the inspection system 12 will be described with reference to FIG.
  • the delay constant D is a value that sequentially sets the prior relationship in time series between the signals. That is, a different predetermined value is set for each.
  • the outline of the delay constant D is as described above.
  • the arrival time of the outgoing signal from the application unit 14 of the inspection apparatus 11 to each place is expressed as shown in FIG.
  • the delay means 13 1, 13 the arrival time of the emitted signals of up to 2, respectively T. 13 1 and T.W. 13 is represented by 2.
  • this arrival time T.I. 13 1 and T. 13 2 that is, (A) in the figure, is mainly determined by the wiring length of each cable 6 from the application section 14 of the inspection apparatus 11 to the delay means 13 1 and 13 2 .
  • the wiring from the application unit 14 to ⁇ delay means 13 1, and the wiring from the application unit 14 to ⁇ delay means 13 may differ, in that case, delay constant D 1, D 2 When setting, the amount is added or subtracted.
  • the string 1 As follows. Arrival time T. of the outgoing signal from the application unit 14 of the inspection device 11 to the starting point 20 1 ⁇ String 1 1 20 1, the T. a time to reach delay unit 13 1 To 13 1, and those in the delay time T 1, that view is determined by the delay constant D 1 of the delay means 13 1 (B), was added. The delay constant D 1 and the delay time T 1, 0 even soluble (i.e., possible that the delay means 13 1 is not provided). And for string 1 1, the exit signal of the arrival time to the start point 20 1 T. The arrival time T. of the outgoing signal from 20 1 to the end point 21 1 .
  • the reflected signal is generated in response reflected.
  • the string 1 2 as follows. Arrival time T. of the outgoing signal from the application unit 14 of the inspection apparatus 11 to the beginning 20 2 ⁇ string 1 2 20 2, the T. a time to reach delay unit 13 2 To 13 2, and that the delay time T 2 which is determined by the delay constant D 2 of the delay means 13 2, it was added.
  • (D) shows the arrival time T. of the outgoing signal to the end point 21 1 of the previous string 1 1 . 21 1, arrival time T.
  • the return time of the reflected signal is represented as shown in FIG. That is, the output signal transmitted and transmitted from the application unit 14 of the inspection apparatus 11 is reflected and reflected by the abnormal points C 1 and C 2 of the strings 1 1 and 1 2 to be inspected, and is again measured by the measurement unit of the inspection apparatus 11.
  • the return time until it is input to 15 and received is as follows. First, when there is an abnormal point C 1 somewhere in the string 1 1 , the return time is T.I. 20 1 ⁇ 2 to T.W. It is expressed as 21 1 ⁇ 2.
  • the delay constants D 1 and D 2 of the delay means 13 1 and 13 2 are equal to T.D. 21 1 ⁇ 2 ⁇ T. It is set to be 20 2 ⁇ 2. That is, the return time T. of the reflected signal when the abnormal point C 1 exists at the end point 21 1 of the string 1 1 . 21 1 than ⁇ 2, resulting time of the reflected signal when there is abnormal point C 5 to the starting point 20 2 strings 1 2 T. 20 2 ⁇ 2 is set to be longer and slower.
  • T.I. 21 n ⁇ 2 ⁇ T for strings 1 connected in parallel, in general, T.I. 21 n ⁇ 2 ⁇ T.
  • the delay constants D 1 and D 2 are sequentially set so as to be 20 n + 1 ⁇ 2.
  • n is a positive integer.
  • the delay means is the point where the shortest arrival time after the delay of the reflected signal from the point closest to the string measurement unit to which the delay unit is connected is the farthest from the string measurement unit to which the delay unit is not connected.
  • the reflected signal is delayed so as to be later than the non-delayed longest arrival time of the reflected signal from to the actual measurement unit.
  • there is no abnormal point C for the string 1 and a reflected signal may not be generated.
  • there is still another abnormal point C for the outgoing signal after passing through as a transmitted wave, so that a second reflected signal is generated, and further 3 reflected signals, 4th reflected signals, etc. may be generated.
  • the delay means 13 is of the third type described above. That is, it is assumed that both the outgoing signal and the reflected signal are given a delay at the same time.
  • the above-described first type and second type delay means 13 are of course possible without depending on such illustrated examples. That is, a type in which only one of the outgoing signal and the reflected signal is delayed can be considered. Specific examples of the delay constant D are as described above.
  • the delay means 13 first exerts a delay effect for delaying the signal by a predetermined time with respect to the outgoing signal and reflected signal such as a pulse wave, but with respect to the direct current generated and output by the module 3 of the string 1. Must have no resistance component. Therefore, as the delay means 13, the delay circuit 22 shown in FIG. 2A and the delay circuit 22 shown in FIG. The example shown in FIG. 2A is used for both the outgoing signal and the reflected signal as the delay circuit 22 of the third-type delay means 13 described above. On the other hand, in the example shown in FIG.
  • the delay means 13 can be configured without being restricted by the voltage and current of the solar cell array 7, so that not only the third type but also the first type. It can be used as the first type or the second type. That is, it is possible to use a device that targets only the outgoing signal or the reflected signal.
  • the delay line (delay line) 23 is used as the delay circuit 22 is representative. That is, the delay circuit 22 of the delay means 13 includes a coil 24 and a capacitor 25, and includes a circuit including an inductance L and / or a capacitance C.
  • the capacitance C of the capacitor 25 may change. Therefore, it is important to reliably ground the capacitor 25 in this illustrated example. Further, a capacitor 25 having a withstand voltage in consideration of the output of the string 1 is used.
  • a delay means 13 using various known delay circuits 22 using a semiconductor or a clock timer in combination with switches 26 and 27 is also conceivable. That is, the switch 26 provided on the cable 6 after the parallel branch is normally closed (continuous), and a large current flows during normal power generation and output, whereas it is switched to open (disconnected) when performing the inspection. .
  • the switch 27 provided in the cable 28 further branched in parallel to the delay circuit 22 with respect to the cable 6 is normally opened (disconnected) at the time of power generation and output, but is closed (continuous) at the time of inspection. Is switched to.
  • Such control of the switches 26 and 27 is performed by the above-described control unit 19 by remote operation using, for example, wireless or wired (dedicated line or power line). If the switch 27 is provided before and after the delay circuit 22 regardless of the illustrated example, the protection of the delay circuit 22 is further ensured.
  • the illustrated example has an advantage that various delay circuits 22 can be freely selected because a large current does not flow through the delay circuit 22. Further, when there is a risk of lightning strike, there is an advantage that lightning damage can be minimized by controlling all the switches 26 and 27 to be opened (disconnected).
  • the delay circuit 22 is as described above.
  • the inspection system 12 for the solar cell array 7 of the present invention is configured as described above. Therefore, it becomes as follows. (1) In the solar cell array 7, a plurality of strings 1 including at least one module 3 are connected in parallel. Thus, the generated and output power is converted from direct current to alternating current via the relay terminal box 4 and the power conditioner 5, and is supplied to demand (see FIG. 4).
  • the inspection apparatus 11 of this inspection system 12 consists of a TDR system. That is, an output signal is output and transmitted from the application unit 14 to each string 1 to be inspected via the cable 6, and a reflected signal reflected and reflected from the abnormal point C of the string 1 is measured by the actual measurement unit 15. And received (see (1) in FIG. 1, (1) in FIG. 3, etc.). And in the discrimination
  • the delay means 13 is interposed in the cable 6 of the string 1 connected in parallel ((1) in FIG. 1, (1) in FIG. 2, (2) ) Refer to Figure, (1) Figure in Figure 3). Then, by interposing the delay means 13 having predetermined different delay constants D, the leading and trailing relations are set in time series for each string 1 with respect to the reflected signal reflected and reflected from the abnormal point C of each string 1. The Further, the delay time of each delay means 13 can be sequentially input without overlapping the reflected signals by setting the time difference between the shortest arrival time after delay and the non-delay longest arrival time.
  • each reflected signal is sequentially reduced, input, and received by the actual measurement unit 15 of the inspection apparatus 11 in series for each generated string 1 (see FIG. 3 (1)). Although it is a reflected signal from the string 1 connected in parallel, it is possible to clearly distinguish which string 1 is from. A situation in which the reflected signals overlap and are reduced, input, or received is avoided.
  • the determination unit 16 of the inspection apparatus 11 can determine which string 1 has the abnormal point C, and that a failure or other malfunction has occurred (FIG. 1 (1), (See (1) in FIG. 3). Although the strings 1 are connected in parallel, it is possible to easily determine which string 1 has the abnormal point C and is defective.
  • the inspection system 12 inspects the parallel wiring type solar cell array 7, that is, the string 1 in this way by the TDR method. This is realized by providing the cable 6 to each string 1 with a delay line 23 and other known delay circuits 22 and using one inspection device 11. That is, it is easily realized by the inspection system 12 having a simple configuration (see FIG. 1 (1) and FIG. 3 (1)).
  • the inspection system 12 includes the delay means 13 using the delay circuit 22 in the cable 6 of the string 1 as described above. Therefore, for example, when the current or voltage suddenly increases due to lightning strikes or the like, the components forming the delay circuit 22 (for example, the coil 24 and the capacitor 25 in the example of FIG. 2 (1), the example of FIG. 2 (2)). Then, the switch 26 and the switch 27) immediately burn out. Therefore, this inspection system 12 is also effective as a countermeasure against surge current and surge voltage.
  • the operation of the present invention is as described above.

Landscapes

  • Photovoltaic Devices (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

Proposed is a solar cell array testing system firstly capable of testing a parallel wiring type by a TDR system, secondly capable of being simply and easily obtained while being excellent in cost, and thirdly capable of being also expected to have an anti-surge effect. The testing system (12) identifies the presence or absence of a failure and other troubles of a solar cell array in which a plurality of strings (1) equipped with one or more modules (3) are connected in parallel. The testing system (12) has a testing device (11) and a delay means (13). Based on an outgoing signal to each of the strings (1) and a reflected signal from each of the strings (1), the testing device (11) separately identifies the presence or absence of a trouble of each of the strings (1). The delay means (13) sets the respective strings (1) to have a time-sequential front and rear relationship with each other with respect to either one of or both of the outgoing signal and the reflected signal and thereby sequentially inputs the reflected signals from the respective strings (1) to the testing device (11).

Description

太陽電池アレイの検査システムSolar cell array inspection system
 本発明は、太陽電池アレイの検査システムに関する。すなわち、太陽電池アレイについて、故障,その他の不具合の有無を検査する、検査システムに関するものである。 The present invention relates to a solar cell array inspection system. That is, the present invention relates to an inspection system for inspecting a solar cell array for the presence of a failure or other defects.
 《技術的背景》
 太陽光発電(PV)は、大量普及時代を迎えており、様々な種類の太陽電池が開発,商品化されている。
 現在の所、主流となっているのは、シリコン(Si)を使った太陽電池だが、より低コスト,長寿命の非シリコンタイプの太陽電池の開発も、進展しつつある。
 すなわち、単結晶シリコン型や多結晶シリコン型いわゆる結晶系のモジュールが、従来より主流となっていた。しかしながら最近は、高価であり需要が切迫しているシリコンの使用量が少ない、アモルファスシリコン型いわゆる薄膜系のモジュールや、シリコンを使用しない化合物系,有機系のモジュール(これらも薄膜系と称されることもある)等々、非シリコンタイプのモジュールも急増しつつある。そして、今後のトレンドとなると目されている。
《Technical background》
Photovoltaic power generation (PV) has entered an era of mass diffusion, and various types of solar cells have been developed and commercialized.
At present, the mainstream is solar cells using silicon (Si), but the development of lower-cost, longer-life non-silicon type solar cells is also progressing.
That is, single crystal silicon type and polycrystalline silicon type so-called crystal type modules have been mainstream. However, these days, amorphous silicon type so-called thin-film modules, compound-based and organic modules that do not use silicon (also called thin-film systems), which are expensive and use less silicon, is in demand. Non-silicon type modules are also increasing rapidly. And it is expected to become a future trend.
 他方、設置件数が増加し大量普及時代へと突入している太陽光発電については、故障,その他の不具合発生が多々報告されており、その早期発見が要請されている。
 すなわち、太陽光発電の太陽電池アレイの構成要素であるストリングそしてモジュールについて、断線,クラック,ハンダ不良等が発生し、発電量が低下することが多々あった。その要因としては、施工不良、経年劣化、台風・地震・小動物による被害、等々が考えられる。
 いずれにしても、故障等の不具合発生の早期発見、つまり性能低下したストリングの早期診断が、最近大きなテーマとなってきている。早期発見,早期診断できれば、その修理等の対策を即取ることも可能となる。
On the other hand, with regard to photovoltaic power generation, the number of installations has increased and entered the mass diffusion era, many failures and other malfunctions have been reported, and early detection is required.
That is, disconnection, cracks, solder defects, and the like have occurred in the strings and modules that are constituent elements of a solar cell array for photovoltaic power generation, and the amount of power generation often decreases. Possible causes include poor construction, deterioration over time, damage from typhoons, earthquakes, small animals, and so on.
In any case, early detection of malfunctions such as failures, that is, early diagnosis of degraded strings has become a major theme recently. If early detection and early diagnosis can be performed, it is possible to immediately take measures such as repair.
 《従来技術》
 このような太陽電池アレイの検査方式としては、まず、実際に発電中のストリングに流れる電流や電圧を測定し、もってストリング単位で、故障等の不具合を発見する検査方式、いわゆるIV方式が挙げられる。
 これに対し最近、太陽電池アレイ専用の検査方式も開発,使用されている。すなわち、非発電時において、ストリングに出射信号を送信すると共に、ストリングからの反射信号を受信し、もって両信号の波形比較により、故障等の不具合を判定する検査方式、いわゆるTDR方式も実用化されている。
 TDR方式の検査装置は、IV方式に比べ、ストリング単位から更に進んでモジュール単位での不具合特定が可能、更には、不具合程度の数値把握も波形比較により可能、非発電時に実施可能なので天候の影響も受けず夜間も検査可能、屋根に登ることが不要、等々の利点がある。
 このようにTDR方式の検査装置は不具合点が特定できるので、不良モジュールのみの交換が容易であると共に、確実なアレイ管理が行え、しかも作業者の安全も向上する。
<Conventional technology>
As an inspection method for such a solar cell array, first, an inspection method for measuring a current and a voltage flowing in a string that is actually generating power and finding a defect such as a failure in a string unit, a so-called IV method can be mentioned. .
On the other hand, recently, an inspection method exclusively for solar cell arrays has been developed and used. In other words, during non-power generation, a so-called TDR method, in which an outgoing signal is transmitted to a string and a reflected signal from the string is received and a failure such as a failure is judged by comparing the waveforms of both signals, is also put into practical use. ing.
Compared with IV method, TDR type inspection device can further identify faults in module units from the string unit. In addition, numerical values of the degree of failure can be grasped by waveform comparison. There are advantages such as being able to inspect at night without having to go up, no need to climb the roof.
As described above, since the TDR type inspection apparatus can identify a defect, it is easy to replace only a defective module, and reliable array management can be performed, and the safety of the operator is improved.
 このようなTDR方式の検査装置としては、例えば、次の特許文献1,特許文献2に示されたものが挙げられる。
特開2011-35000号公報 特開2009-21341号公報
Examples of such a TDR inspection apparatus include those disclosed in the following Patent Document 1 and Patent Document 2.
JP 2011-35000 A JP 2009-21341 A
 ところで、このようなTDR方式の検査装置については、従来、次の問題が指摘されていた。
 《第1の問題点》
 第1に、直列配線は検査可能であるが、並列配線は検査不能である。すなわちTDR方式の検査装置は、出射信号と反射信号の波形比較に基づき故障等の不具合を判定するので、従来は、検査対象の太陽電池アレイが全て直列配線タイプの場合のみ、検査可能である。つまり、太陽電池アレイを構成するストリングやモジュールが、すべて直列配線されている場合のみ、検査可能となる。
 他方、太陽電池アレイが並列配線タイプの場合は、検査不能となっていた。複数のストリングやモジュールが並列配線されている場合は、反射信号が重なり合って入力,受信されるので、どのストリングからの反射信号なのか、どのストリングやモジュールの不具合なのか、判別不能となってしまう。
By the way, the following problems have been pointed out with respect to such a TDR inspection apparatus.
<First problem>
First, serial wiring can be inspected, but parallel wiring cannot. That is, the TDR type inspection apparatus determines a defect such as a failure based on the comparison of the waveform of the outgoing signal and the reflected signal. Conventionally, the inspection can be performed only when all the solar cell arrays to be inspected are of the serial wiring type. That is, inspection is possible only when all the strings and modules constituting the solar cell array are connected in series.
On the other hand, when the solar cell array is a parallel wiring type, the inspection is impossible. When multiple strings or modules are wired in parallel, the reflected signals are input and received in an overlapping manner, so it is impossible to determine which string is reflected from which string or which module or module is defective. .
 さて、前述した結晶系のモジュールを使用した太陽電池アレイについては、上述した直列配線タイプのものと、並列配線タイプのものとがある。
 これに対し、前述したアモルファスシリコン型の薄膜系を含め、化合物系,有機系等のモジュール使用した太陽電池アレイは、上述した並列配線タイプが主流となっている。
 この理由は、電気特性上、1モジュールあたりの発電傾向が、高電圧,低電流であるため、電流値を稼ぐ目的から、すべて並列配線タイプとなっていた。
 従来のTDR方式の検査装置は、使用が、直列配線タイプのみに限定されており、並列配線タイプの太陽電池アレイには、使用できないという問題が指摘されていた。
Now, solar cell arrays using the above-described crystalline modules are classified into the above-described series wiring type and parallel wiring type.
On the other hand, the above-mentioned parallel wiring type is the mainstream in the solar cell array using the compound type and organic type modules including the amorphous silicon type thin film type described above.
The reason for this is that, because of the electrical characteristics, the power generation tendency per module is high voltage and low current, so that all of them are of the parallel wiring type in order to increase the current value.
Conventional TDR inspection devices are limited to use only in series wiring type, and it has been pointed out that they cannot be used in parallel wiring type solar cell arrays.
 《第2の問題点》
 上述にも拘らず、従来のTDR方式の検査装置を、並列配線タイプの太陽電池アレイに使用する場合は、図3の(2)図に示したように、検査装置2を並列分岐された各ストリング1毎にそれぞれ付設したり、検査に際し順次接続して行くことを要していた。
 これらについては、検査装置2の台数が増え、その分だけ構成がコスト高となったり、検査に手間取り煩わしく時間を要し、その分だけ工数がコスト高となる、という問題が指摘されていた。
 なお図3の(2)図中、3はモジュール、4は中継端子箱、5はパワーコンディショナ、6はケーブルである。
<< Second problem >>
In spite of the above, when the conventional TDR inspection device is used for a parallel wiring type solar cell array, as shown in FIG. It was necessary to attach each string 1 or connect sequentially for inspection.
For these, the number of inspection devices 2 has increased, and the cost of the configuration has been increased accordingly, or the troublesome time required for inspection has been pointed out, and the man-hours have been increased accordingly.
In FIG. 3B, 3 is a module, 4 is a relay terminal box, 5 is a power conditioner, and 6 is a cable.
 《本発明について》
 本発明の太陽電池アレイの検査システムは、このような実情に鑑み、上記従来技術の課題を解決すべくなされたものである。
 そして本発明は、第1に、並列配線タイプの太陽電池アレイをTDR方式で検査可能であり、第2に、しかもこれが簡単容易に、コスト面に優れて実現でき、第3に、サージ対策効果も期待できる、太陽電池アレイの検査システムを提案することを、目的とする。
<< About the present invention >>
In view of such a situation, the solar cell array inspection system of the present invention has been made to solve the above-described problems of the prior art.
In the present invention, firstly, a parallel wiring type solar cell array can be inspected by the TDR method, and secondly, this can be realized easily and easily in terms of cost, and thirdly, a surge countermeasure effect The purpose is to propose a solar cell array inspection system that can be expected.
 本発明の第1の観点は、1個以上のモジュールを備えた複数のストリングが、並列接続された太陽電池アレイについて、故障,その他の不具合の有無を判別する太陽電池アレイの検査システムである。そして、検査装置と遅延手段とを有してなる。
 該検査装置は、各該ストリングへの出射信号と、各該ストリングからの反射信号とに基づき、各該ストリングについて個別に不具合の有無を判別する。
 該遅延手段は、出射信号および反射信号のいずれか一方又は双方について、各該ストリング毎に相互間で時系列的に先後関係を設定し、もって、各該ストリングからの反射信号を、該検査装置に順次入力させるべく機能すること、を特徴とする。
A first aspect of the present invention is a solar cell array inspection system that determines whether or not there is a failure or other malfunction in a solar cell array in which a plurality of strings including one or more modules are connected in parallel. And it has an inspection device and a delay means.
The inspection apparatus determines whether or not there is a defect individually for each string based on the emission signal to each string and the reflection signal from each string.
The delay means sets a priori relationship in time series for each of the strings with respect to one or both of the outgoing signal and the reflected signal, so that the reflected signal from each of the strings is sent to the inspection device. It functions to make it input sequentially.
 本発明の第2の観点は、第1の観点の検査システムであって、該検査装置は、印加部,実測部,判別部を備えている。
 そして該印加部は、ケーブルを介し各該ストリングに対し出射信号を、送信する。該実測部は、該ケーブルを介し各該ストリングの異常点から応答反射される反射信号を、受信する。該判別部は、各該ストリング毎に、それぞれの出射信号と反射信号との波形比較に基づき、個別に不具合の有無を判別する。
 該遅延手段は遅延回路よりなり、該ケーブルに介装されており、各該ストリングからの反射信号を、各該ストリング別に順次直列的に、該検査装置の実測部に入力,受信させること、を特徴とする。
 本発明の第3の観点は、第2の観点の検査システムであって、該遅延手段は、各該ストリングに向け並列分岐された後の該ケーブルについて、少なくとも2本目以降の該ストリングとの間に介装される。
 そして、該遅延手段の遅延定数は、各該ストリングと該検査装置の実測部間の出射信号と反射信号の一方又は双方について、到達時間を各該ストリング毎に長短異ならしめ、もって信号相互間で時系列に順次先後関係を設定する値よりなること、を特徴とする。
 本発明の第4の観点は、1個以上のモジュールを備えた複数のストリングが並列接続された太陽電池アレイについて、故障や不具合の有無を判別する検査システムであって、複数の前記ストリングに出射信号を印加する印加部と、前記ストリングからの反射信号を実測する実測部と、前記反射信号に基づいて前記太陽電池アレイの故障や不具合の有無を判別する判別部とを備え、前記実測部への前記反射信号の到達を遅延させて、複数の前記反射信号の先後関係を設定する遅延手段をさらに備える、検査システムである。
 本発明の第5の観点は、第4の観点の検査システムであって、前記印加部は、並列に接続された前記複数のストリングの分岐点よりも前記ストリングから遠い点に接続されており、前記遅延手段は、前記分岐点と前記複数のストリングのうちの少なくとも1つとの間に接続されており、前記出射信号と前記反射信号のいずれか一方又は双方について遅延させることにより前記実測部への前記反射信号の到達を遅延させる。
 本発明の第6の観点は、第5の観点の検査システムであって、前記遅延手段は、当該遅延手段が接続されたストリングの前記実測部に最も近い点から前記実測部への反射信号の遅延後最短到達時刻が、当該遅延手段が接続されていないストリングの前記実測部から最も遠い点から前記実測部への反射信号の非遅延最長到達時刻よりも遅くなるように反射信号を遅延させる。
 本発明の第7の観点は、第6の観点の検査システムであって、互いに異なる前記ストリングに接続される前記遅延手段を複数備え、各前記遅延手段が遅延させる時間は、前記遅延後最短到達時刻と前記非遅延最長到達時刻の時間差以上である。
A second aspect of the present invention is an inspection system according to the first aspect, and the inspection apparatus includes an application unit, an actual measurement unit, and a determination unit.
The application unit transmits an emission signal to each string via a cable. The actual measurement unit receives a reflected signal reflected and reflected from the abnormal point of each string via the cable. The discriminating unit discriminates the presence / absence of a defect individually for each of the strings based on a waveform comparison between the outgoing signal and the reflected signal.
The delay means includes a delay circuit, and is interposed in the cable. The reflected signal from each string is input to and received by the actual measurement unit of the inspection apparatus in series for each string. Features.
According to a third aspect of the present invention, there is provided the inspection system according to the second aspect, wherein the delay unit is connected to at least the second and subsequent strings of the cable after being branched in parallel toward the strings. Is intervened.
Then, the delay constant of the delay means is such that the arrival time of one or both of the outgoing signal and the reflected signal between each string and the actual measurement unit of the inspection apparatus is made different for each string, so that each string has a different arrival time. It is characterized by comprising values that sequentially set a priori relationship in time series.
According to a fourth aspect of the present invention, there is provided an inspection system for discriminating whether or not there is a failure or a malfunction with respect to a solar cell array in which a plurality of strings each having one or more modules are connected in parallel. An application unit that applies a signal; an actual measurement unit that actually measures a reflected signal from the string; and a determination unit that determines whether or not the solar cell array has failed or malfunctioned based on the reflected signal. The inspection system further includes delay means for delaying the arrival of the reflected signal and setting a prior relationship of the reflected signals.
A fifth aspect of the present invention is the inspection system according to the fourth aspect, wherein the application unit is connected to a point farther from the string than a branch point of the plurality of strings connected in parallel. The delay means is connected between the branch point and at least one of the plurality of strings, and delays either one or both of the emission signal and the reflection signal to the measurement unit. The arrival of the reflected signal is delayed.
According to a sixth aspect of the present invention, there is provided the inspection system according to the fifth aspect, wherein the delay unit is configured to transmit a reflected signal from the point closest to the actual measurement unit of the string to which the delay unit is connected to the actual measurement unit. The reflected signal is delayed so that the shortest arrival time after delay is later than the non-delay longest arrival time of the reflected signal from the point farthest from the actual measurement unit of the string to which the delay means is not connected to the actual measurement unit.
According to a seventh aspect of the present invention, there is provided the inspection system according to the sixth aspect, comprising a plurality of the delay means connected to the different strings, and the delay time of each delay means is the shortest arrival after the delay. It is greater than the time difference between the time and the non-delayed longest arrival time.
 《作用等について》
 本発明は、このような手段よりなるので、次のようになる。
 (1)この太陽電池アレイでは、複数のストリングが並列接続されている。
 (2)そして、この検査システムの検査装置では、各ストリングとの間で、分岐,伝播された出射信号が送信されると共に異常点からの反射信号が受信され、もって波形比較に基づき、故障,その他の不具合の有無が判定される。
 (3)さて、この検査システムでは、ストリングのケーブルに遅延手段が介装されており、各ストリングからの反射信号について、時系列的に先後関係が設定される。
 (4)そこで各反射信号は、ストリング別に順次直列的に検査装置に受信され、反射信号が重なり合って受信される事態は、回避される。
 (5)従って検査装置は、どのストリングについて異常点があり、故障,その他の不具合が発生しているのかを、個別に判別可能となる。
 (6)そしてこれは、ストリングのケーブルに遅延回路を設けると共に、1台の検査装置の使用のみにより、簡単な検査システムにて容易に実現される。
 (7)なお、この検査システムは、落雷等により電流や電圧が急上昇した場合は、遅延回路の部品が焼損等するので、サージ対策としても有効である。
 (8)さてそこで、本発明の太陽電池アレイの検査システムは、次の効果を発揮する。
<About the action>
Since the present invention comprises such means, the following is achieved.
(1) In this solar cell array, a plurality of strings are connected in parallel.
(2) In the inspection apparatus of this inspection system, the outgoing signal that has been branched and propagated between each string is transmitted and the reflected signal from the abnormal point is received. The presence or absence of other defects is determined.
(3) Now, in this inspection system, the delay means is interposed in the cable of the string, and the prior relationship is set in time series with respect to the reflected signal from each string.
(4) Therefore, the reflected signals are sequentially received by the inspection device serially for each string, and the situation where the reflected signals are received in an overlapping manner is avoided.
(5) Therefore, the inspection apparatus can individually determine which string has an abnormal point and a failure or other malfunction occurs.
(6) This is easily realized with a simple inspection system by providing a delay circuit in the cable of the string and using only one inspection apparatus.
(7) It should be noted that this inspection system is also effective as a surge countermeasure because the components of the delay circuit are burned out when the current or voltage suddenly rises due to lightning or the like.
(8) Now, the solar cell array inspection system of the present invention exhibits the following effects.
 《第1の効果》
 第1に、並列配線タイプの太陽電池アレイを、TDR方式で検査可能である。本発明の太陽電池アレイの検査システムでは、並列接続されたストリングのケーブルに、遅延手段を介装してなる。
 もって、各ストリングからの反射信号について、時系列的に先後関係が設定され、順次直列的に検査装置に受信される。前述したこの種従来技術のTDR方式の検査装置のように、各ストリングからの反射信号が重なり合って受信されることはなく、どのストリングのどのモジュールに不具合が存するかが、正確に判別可能となる。
 従って、本発明の検査システムによると、並列配線タイプの結晶系のモジュール,ストリング,太陽電池アレイ、および、並列配線タイプのアモルファスシリコン型の薄膜系を始め化合物系,有機系のモジュール,ストリング,太陽電池アレイについて、検査実施可能となる。
 これらの故障,その他の不具合の有無を、TDR方式により確実に判別可能となり、
不具合の発見されたストリング,モジュールについて、修理,交換等の必要な対策を取ることが可能となる。
<< First effect >>
First, a parallel wiring type solar cell array can be inspected by the TDR method. In the inspection system for a solar cell array of the present invention, a delay unit is interposed in a string cable connected in parallel.
Therefore, for the reflected signal from each string, the prior relationship is set in time series, and sequentially received by the inspection device in series. Unlike the above-described conventional TDR inspection apparatus of this type, the reflected signals from the strings are not received in an overlapping manner, and it is possible to accurately determine which module of which string has a defect. .
Therefore, according to the inspection system of the present invention, parallel wiring type crystal modules, strings, solar cell arrays, parallel wiring type amorphous silicon thin film systems, compound systems, organic modules, strings, solar The battery array can be inspected.
The presence or absence of these failures and other problems can be reliably determined by the TDR method,
It is possible to take necessary measures such as repair and replacement for strings and modules in which defects are found.
 《第2の効果》
 第2に、しかもこれは簡単容易で、コスト面に優れて実現される。本発明の太陽電池アレイの検査システムは、このように、並列配線タイプの太陽電池アレイをTDR方式で検査可能である。そしてこれは、ストリングのケーブルに、公知の遅延回路よりなる遅延手段を設けると共に、1台の検査装置を使用することにより、実現される。
 前述したこの種従来技術のTDR方式の検査装置のように、複数の各ストリング毎にそれぞれ付設したり、順次接続したりすることを要せず、実現される。もって、その分だけ構成が簡単化され、構成コスト面に優れている。又、検査に手間や時間を要することもなく、工数コスト面にも優れている。
<< Second effect >>
Secondly, this is simple and easy and is realized with good cost. Thus, the solar cell array inspection system of the present invention can inspect a parallel wiring type solar cell array by the TDR method. This is realized by providing delay means including a known delay circuit in the cable of the string and using one inspection device.
Unlike the above-described conventional TDR inspection apparatus of this type, the present invention is realized without the necessity of attaching or sequentially connecting a plurality of strings. Therefore, the configuration is simplified correspondingly, and the configuration cost is excellent. Further, the inspection does not require labor and time, and the man-hour cost is excellent.
 《第3の効果》
 第3に、更にサージ対策効果も、期待できるようになる。本発明の太陽電池アレイの検査システムは、各ストリングのケーブルに、遅延回路を用いた遅延手段を設けてなる。
 そこで、例えば落雷その他により電流や電圧が急上昇した場合は、その瞬間、遅延回路を形成する部品が、焼損等する。もって、サージ電流,サージ電圧を緩和,遮断することができ、太陽電池アレイ全体については、故障,破壊等の被害を最小限に食い止めることができる。
 このように、この種従来例に存した課題がすべて解決される等、本発明の発揮する効果は、顕著にして大なるものがある。
《Third effect》
Thirdly, a surge countermeasure effect can be expected. In the solar cell array inspection system of the present invention, each string cable is provided with a delay means using a delay circuit.
Therefore, for example, when the current or voltage suddenly rises due to lightning or the like, the components forming the delay circuit are burned out at that moment. As a result, surge current and surge voltage can be reduced and cut off, and damage to the entire solar cell array, such as failure and destruction, can be minimized.
As described above, the effects exerted by the present invention are remarkably large, such as all the problems existing in this type of conventional example are solved.
本発明に係る太陽電池アレイの検査システムについて、発明を実施するための形態の説明に供し、(1)図は、回路の構成説明図、(2)図は、同回路における出射信号の到達時間の一例タイムチャート、(3)図は、同回路における反射信号の帰着時間の一例のタイムチャートである。The inspection system for a solar cell array according to the present invention is provided for explanation of an embodiment for carrying out the invention. (1) FIG. 2 is an explanatory diagram of a circuit configuration, and (2) is an arrival time of an outgoing signal in the circuit. FIG. 3 is a time chart of an example of a return time of a reflected signal in the circuit. 同発明を実施するための形態の説明に供し、遅延手段の遅延回路の構成ブロック図であり、(1)図は、その一例を示し、(2)図は、他の例を示す。FIG. 3 is a block diagram illustrating a configuration of a delay circuit of a delay unit for explaining the embodiment for carrying out the invention, in which FIG. 1A shows an example thereof, and FIG. 2B shows another example. 同発明を実施するための形態の説明に供し、(1)図は、回路のブロック図である。(2)図は、この種従来例の回路のブロック図である。For explanation of the mode for carrying out the invention, FIG. 1A is a block diagram of a circuit. (2) FIG. 2 is a block diagram of this type of conventional circuit. 太陽光発電システムの一例の斜視説明図である。It is a perspective explanatory view of an example of a solar power generation system.
 以下、本発明を実施するための形態について、詳細に説明する。
 《太陽光発電について》
 まず、本発明の前提となる太陽光発電(PV)の概要について、図4を参照して説明する。
 太陽光発電の主要部を構成する直流側の太陽電池アレイ7は、屋根等の屋外に設置される。そして、複数の(図示例では4本の)ストリング1が並列接続されており、各ストリング1は、通常は、それぞれ直列接続された複数(図示例では6個)のモジュール3を、備えている。
 なおこれによらず、1個のストリング1が、1個のモジュール3から構成されることも、可能である。又、モジュール3を構成するチップについて、1個のpn接合部からなる構成、複数個のpn接合部が直列接続された構成、複数個のpn接合部が並列接続された構成、等々も可能である。
 太陽電池アレイ7で発電,出力された電力、すなわち、モジュール3のpn接合部の光電効果に基づき生成された直流電流は、各ストリング1からケーブル6にて(図1の(1)図も参照)、中継端子箱4を経由して、パワーコンディショナ5に達する。
 パワーコンディショナ5で直流電流から変換された交流電流は、分電盤8を経由した後、負荷9にて消費される。余剰電力は、電力計10を介し、電力会社の商用電力系統に買取られる。なお、モジュール3がソーラーセルと称され、ストリング1がソーラーパネル,ソーラーモジュールと称されることもある。
 太陽光発電の概要については、以上のとおり。
Hereinafter, embodiments for carrying out the present invention will be described in detail.
《About photovoltaic power generation》
First, the outline | summary of the photovoltaic power generation (PV) used as the premise of this invention is demonstrated with reference to FIG.
The direct-current side solar cell array 7 constituting the main part of the photovoltaic power generation is installed outdoors such as a roof. A plurality (four in the illustrated example) of the strings 1 are connected in parallel, and each string 1 normally includes a plurality (six in the illustrated example) of modules 3 connected in series. .
Independently of this, one string 1 can be composed of one module 3. Also, the chip constituting the module 3 can be configured with a single pn junction, a plurality of pn junctions connected in series, a plurality of pn junctions connected in parallel, and so on. is there.
The electric power generated and output by the solar cell array 7, that is, the direct current generated based on the photoelectric effect of the pn junction of the module 3 is transmitted from each string 1 to the cable 6 (see also FIG. 1 (1)). ), Reaching the power conditioner 5 via the relay terminal box 4.
The alternating current converted from the direct current by the power conditioner 5 is consumed by the load 9 after passing through the distribution board 8. Surplus power is purchased through the power meter 10 to the commercial power system of the power company. The module 3 may be referred to as a solar cell, and the string 1 may be referred to as a solar panel or a solar module.
The overview of solar power generation is as above.
 《検査装置11の概要について》
 以下、本発明の検査システム12について説明する。まず、この検査システム12の検査装置11について、図3の(1)図,図1の(1)図等を参照して、説明する。
 検査システム12は、上述したように1個以上のモジュール3を備えた複数のストリング1が、並列接続された太陽電池アレイ7について、故障,その他の不具合の有無を判別する。そして、検査装置11と遅延手段13とを、有している。
 検査装置11は、各ストリング1への出射信号と、各ストリング1からの反射信号とに基づき、各ストリング1について、それぞれ個別に不具合の有無を判別する。そして検査装置11は、印加部14,実測部15,判別部16を備えている。
 印加部14は、ケーブル6を介し各ストリング1に対し出射信号を、出力,送信する。実測部15は、ケーブル6を介し各ストリング1の異常点Cから応答反射される反射信号を、入力,受信する。判別部16は、各ストリング1毎に、それぞれの出射信号と反射信号との波形比較に基づき、個別に不具合の有無を判別する。
 検査装置11の概要については、以上のとおり。
<< About the outline of the inspection apparatus 11 >>
Hereinafter, the inspection system 12 of the present invention will be described. First, the inspection apparatus 11 of the inspection system 12 will be described with reference to FIG. 3 (1), FIG. 1 (1), and the like.
As described above, the inspection system 12 determines whether or not there is a failure or other malfunction in the solar cell array 7 in which the plurality of strings 1 including one or more modules 3 are connected in parallel. And it has the inspection apparatus 11 and the delay means 13.
The inspection apparatus 11 individually determines the presence or absence of a defect for each string 1 based on the emission signal to each string 1 and the reflection signal from each string 1. The inspection apparatus 11 includes an application unit 14, an actual measurement unit 15, and a determination unit 16.
The application unit 14 outputs and transmits an emission signal to each string 1 via the cable 6. The actual measurement unit 15 inputs and receives a reflected signal reflected and reflected from the abnormal point C of each string 1 via the cable 6. The discriminating unit 16 discriminates the presence or absence of defects individually for each string 1 based on the waveform comparison between the outgoing signal and the reflected signal.
The outline of the inspection apparatus 11 is as described above.
 《検査装置11の詳細について》
 このような検査装置11について、図1の(1)図,図3の(1)図等を参照して、更に詳述する。
 まず、この検査システム12の検査装置11は、1台用いられており、常開(断)で、使用に際し閉(続)に切換えられるスイッチ17を介し、ケーブル6に接続されている。
 なお、このような固定式ではなく、持ち運び式の検査装置11も勿論可能であり、持ち運び式の場合は、使用に際しケーブル6に接続される。図3の(1)図中18は、中継端子箱4とパワーコンディショナ5間に設けられたスイッチであり、常閉(続)だが、検査に際し開(断)に切換えられる。
 又、図示例の検査装置11は、中継端子箱4やパワーコンディショナ5と独立して、両者間に設けられているが、このような図示例によらず、中継端子箱4やパワーコンディショナ5に付設してもよい。但し、各ストリング1に向け並列分岐される前のケーブル6に対して、接続される。
<< Details of Inspection Device 11 >>
Such an inspection apparatus 11 will be described in more detail with reference to FIG. 1 (1), FIG. 3 (1), and the like.
First, one inspection device 11 of this inspection system 12 is used, and is connected to the cable 6 via a switch 17 that is normally open (disconnected) and switched to closed (continuous) when used.
Of course, a portable type inspection device 11 is also possible instead of such a fixed type, and in the case of the portable type, it is connected to the cable 6 in use. 3 is a switch provided between the relay terminal box 4 and the power conditioner 5 and is normally closed (continuous), but is switched to open (disconnected) at the time of inspection.
In addition, the inspection device 11 of the illustrated example is provided between the relay terminal box 4 and the power conditioner 5 independently of each other. However, the relay terminal box 4 and the power conditioner are not limited to the illustrated example. 5 may be attached. However, it is connected to the cable 6 before being branched in parallel toward each string 1.
 検査装置11の印加部14は、代表的にはパルスジェネレータよりなり、パルス波を生成して、検査対象の各ストリング1に対し出射信号を、入力信号として出力,送信,印加する。
 検査装置11の実測部15は、例えばオシロスコープよりなり、出射信号に対応してストリング1の異常点Cから応答反射される反射信号を、入力,受信,実測する。これらの具体的構成については、前述した従来技術の他、各種の公知例が知られている。
 なお異常点Cとは、ストリング1そしてモジュール3について、故障,その他の不具合の原因となった箇所を、意味する。接続点,その他の系が自ずともっている反射点を、意味するものではない。
 検査装置11の判別部16としては、制御部19のマイクロコンピュータが代表的に使用され、そのCPUが、格納されたプログラムに基づき、定められた処理を実施する。
The application unit 14 of the inspection apparatus 11 is typically composed of a pulse generator, generates a pulse wave, and outputs, transmits, and applies an emission signal as an input signal to each string 1 to be inspected.
The actual measurement unit 15 of the inspection apparatus 11 is made of, for example, an oscilloscope, and inputs, receives, and measures a reflected signal that is reflected and reflected from the abnormal point C of the string 1 corresponding to the outgoing signal. Regarding these specific configurations, various known examples are known in addition to the above-described conventional technology.
The abnormal point C means a part that causes a failure or other trouble with respect to the string 1 and the module 3. It does not mean a connection point or a reflection point that other systems have.
As the determination unit 16 of the inspection apparatus 11, a microcomputer of the control unit 19 is typically used, and its CPU performs a predetermined process based on a stored program.
 検査装置11の判別部16について、更に詳述する。判別部16は、印加部14からの検査対象のストリング1への出射信号と、同ストリング1の異常点Cからの実測部15を経由した反射信号とが、検査データとして波形比較される。
 代表的には、両パルス波のトータル的データ比較が行われる。そして、ストリング1の異常点Cつまり不具合箇所の位置に応じた波形差違や、不都合内容の種類に応じた波形差違等に基づき、モジュール3単位で不具合位置が特定されると共に、その不具合程度も数値把握される。
 ところで、このようなデータ比較には、正常時の反射信号と検査時の反射信号とを、比較するケースも含まれる。
 すなわち本明細書において、ストリング1への出射信号とストリング1からの反射信号とを比較する、との記載内容には、過去の正常時におけるストリング1からの反射信号(ストリング1への出射信号に対応し、同等と解される)と、実際の検査時におけるストリング1からの反射信号とを、比較するケースも、その一環として包含される。
 これらにより、判別部16において、検査対象のストリング1について、断線等の故障,その他の不具合の有無が診断,判定されて、検査結果が得られる。なお、各ストリング1毎の具体的検査手順については、後述のとおり。
 検査装置11の詳細については、以上のとおり。
The determination unit 16 of the inspection apparatus 11 will be described in further detail. The discriminating unit 16 compares the output signal from the applying unit 14 to the inspection target string 1 and the reflected signal from the abnormal point C of the string 1 via the actual measurement unit 15 as inspection data.
Typically, total data comparison of both pulse waves is performed. Then, based on the waveform difference according to the abnormal point C of the string 1, that is, the position of the defective part, the waveform difference according to the type of inconvenient content, etc., the defective position is specified for each module 3, and the degree of the defect is also a numerical value. Be grasped.
By the way, such a data comparison includes a case where the reflected signal at the normal time is compared with the reflected signal at the time of inspection.
That is, in this specification, the description of comparing the output signal to the string 1 and the reflected signal from the string 1 includes the reflected signal from the string 1 in the past normal state (the output signal to the string 1). And a case where the reflected signal from the string 1 at the time of actual inspection is compared is also included as a part thereof.
As a result, the determination unit 16 diagnoses and determines the presence or absence of a failure such as a disconnection or other defects with respect to the string 1 to be inspected, and obtains an inspection result. The specific inspection procedure for each string 1 will be described later.
Details of the inspection apparatus 11 are as described above.
 《遅延手段13について》
 次に、本発明の検査システム12の遅延手段13について、説明する。まず、その概要について、図1の(1)図,図3の(1)図等を参照して、説明する。
 遅延手段13は、前述した出射信号および反射信号のいずれか一方又は双方について、並列接続された各ストリング1毎に、相互間で時系列的に先後関係を設定し、もって、各ストリング1からの反射信号を、検査装置11に順次入力させるべく機能する。各ストリング1からの反射信号を、発生した各ストリング1別に、順次直列的に検査装置11の実測部15に、入力,受信させる。
 このような遅延手段13としては、次の3つのタイプが考えられる。まず(1)、遅延手段13が、各ストリング1への出射信号のみについて、遅延を与えて他と先後関係を設定する第1タイプ。このような第1タイプの遅延手段13により、各ストリング1からの反射信号が、順次個別に検査装置11に入力されるようになる。
 次に(2)、各ストリング1からの反射信号のみについて、遅延を与えて他と先後関係を設定する第2タイプ。このような第2タイプの遅延手段13により、第1タイプと同様、各ストリング1からの反射信号が、順次個別に検査装置11に入力されるようになる。
 更に(3)、各ストリング1への出射信号と、各ストリング1からの反射信号の双方について、遅延を与えて他と先後関係を設定する第3タイプ。このような第3タイプの遅延手段13によっても、第1タイプや第2タイプと同様に、各ストリング1からの反射信号が、順次個別に検査装置11に入力されるようになる。
<< About the delay means 13 >>
Next, the delay means 13 of the inspection system 12 of the present invention will be described. First, the outline will be described with reference to FIG. 1 (1), FIG. 3 (1), and the like.
The delay means 13 sets a chronological relationship between each of the strings 1 connected in parallel for each of the strings 1 connected in parallel with respect to one or both of the outgoing signal and the reflected signal. It functions to sequentially input the reflected signal to the inspection apparatus 11. The reflected signal from each string 1 is input to and received by the actual measurement unit 15 of the inspection apparatus 11 sequentially in series for each generated string 1.
As such a delay means 13, the following three types can be considered. First (1), the delay means 13 is a first type in which only the outgoing signal to each string 1 is given a delay to set a prior relationship with others. By such first type delay means 13, the reflected signals from each string 1 are sequentially input to the inspection apparatus 11 individually.
Next, (2), a second type in which only the reflected signal from each string 1 is given a delay to set a prior relationship with others. By such second type delay means 13, the reflected signals from the respective strings 1 are sequentially input to the inspection apparatus 11 in the same manner as in the first type.
Further, (3) a third type in which both the outgoing signal to each string 1 and the reflected signal from each string 1 are given a delay and set a prior relationship with others. Also by the third type delay means 13, the reflected signals from the respective strings 1 are sequentially input to the inspection apparatus 11 in the same manner as in the first type and the second type.
 そして、このような第1タイプ,第2タイプ,又は第3タイプの遅延手段13は、各ストリング1に向け並列分岐された後のケーブル6について、少なくとも2本目以降のストリング1との間に、介装される。
 すなわちケーブル6は、一端側が、各ストリング1に接続されると共に、他端側が、パワーコンディショナ5に接続されるが、各ストリング1の並列関係に対応すべく、途中で並列分岐される。このようなケーブル6の並列分岐箇所は、通常、中継端子箱4内(図3の(1)図を参照)や、パワーコンディショナ5内に配置される。
 そして遅延手段13は、このように並列分岐された後のケーブル6について、それぞれのストリング1との間に、介装される。代表的には、並列分岐直後のケーブル6に介装される。
 ところで遅延手段13は、図示例では、並列分岐された後の各ケーブル6すべてについて、介装されている。図1の(1)図の例では、並列分岐された後の2本のケーブル6について、それぞれに、遅延手段13が介装されている。図3の(1)図の例では、並列分岐された後の4本のケーブル6について、それぞれに、遅延手段13が介装されている。
 これらに対し、並列分岐された後の各ケーブル6の内、1本については、遅延手段13を介装しない構成も可能である。すなわち、遅延手段13の目的は、各信号について相互間で、時系列的に先後関係を設定する点にある。このような観点からは、時系列的に最も先となる、つまり遅延させられることなく最短時間に設定されるストリング1のケーブル6については、遅延手段13を設けないことも、可能である。
 遅延手段13については、以上のとおり。
Then, the first type, second type, or third type of delay means 13 is between the at least second and subsequent strings 1 with respect to the cable 6 after being branched in parallel toward each string 1. Intervened.
That is, the cable 6 is connected to each string 1 at one end and connected to the power conditioner 5 at the other end, but is branched in parallel on the way to correspond to the parallel relationship of the strings 1. Such parallel branch portions of the cable 6 are usually arranged in the relay terminal box 4 (see FIG. 3 (1)) or in the power conditioner 5.
The delay means 13 is interposed between each of the strings 1 with respect to the cable 6 after being branched in parallel in this way. Typically, it is interposed in the cable 6 immediately after the parallel branch.
By the way, the delay means 13 is interposed in all the cables 6 after being branched in parallel in the illustrated example. In the example of FIG. 1A, the delay means 13 is interposed in each of the two cables 6 after being branched in parallel. In the example of FIG. 3 (1), the delay means 13 is interposed in each of the four cables 6 after being branched in parallel.
On the other hand, a configuration in which the delay means 13 is not provided for one of the cables 6 after being branched in parallel is also possible. In other words, the purpose of the delay means 13 is to set the chronological relationship between each signal in time series. From this point of view, it is possible not to provide the delay means 13 for the cable 6 of the string 1 that is first in time series, that is, set to the shortest time without being delayed.
The delay means 13 is as described above.
 《遅延定数Dの概要について》
 次に、このような検査システム12の遅延手段13に関し、それぞれ設定される遅延定数Dについて、図1を参照して説明する。
 上述に鑑み、各遅延手段13の遅延定数Dに基づき、各ストリング1と検査装置11の実測部15との間の、出射信号と反射信号の一方又は双方について、到達時間が、各ストリング1毎に長短異なるようになる。
 もって遅延定数Dは、信号相互間で、時系列に順次先後関係を設定する値となる。つまり、各々について異なった所定の値が設定される。
 遅延定数Dの概要については、以上のとおり。
<< Overview of Delay Constant D >>
Next, the delay constant D set for each of the delay means 13 of the inspection system 12 will be described with reference to FIG.
In view of the above, on the basis of the delay constant D of each delay means 13, the arrival time for one or both of the outgoing signal and the reflected signal between each string 1 and the actual measurement unit 15 of the inspection apparatus 11 is determined for each string 1. It will be different in length.
Accordingly, the delay constant D is a value that sequentially sets the prior relationship in time series between the signals. That is, a different predetermined value is set for each.
The outline of the delay constant D is as described above.
 《遅延定数Dの具体例について》
 次に、このような検査システム12の遅延手段13の遅延定数Dの具体例について、図1を参照して詳細に説明する。
 まず、図1の(1)図に示した例では、2個のストリング1,1が並列接続されており、1本のケーブル6の線路が、2本のケーブル6,6の線路に分岐されると共に、それぞれに遅延手段13、13が介装されている。両ストリング1,1は、それぞれ少なくとも1個のモジュール3、図示例では直列接続された複数個のモジュール3,3を、備えている。
 そして、ストリング1の始点を20、ストリング1の終点を21とし、ストリング1の始点を20、ストリング1の終点を21とする。又、遅延手段13,13の遅延定数を、それぞれD,Dとする。なお前提として、この遅延手段13,13は、前述した第3タイプとする。つまり、出射信号と反射信号の双方について、共に同時間の遅延を与えて他と先後関係を設定する、第3タイプよりなる。
<< Specific Example of Delay Constant D >>
Next, a specific example of the delay constant D of the delay means 13 of the inspection system 12 will be described in detail with reference to FIG.
First, in the example shown in (1) figure 1, two string 1 1, 1 2 are connected in parallel, one line of cable 6, the two cables 61, the 6 2 While branching to the line, delay means 13 1 and 13 2 are interposed in each line. Both strings 1 1 and 1 2 each include at least one module 3, in the illustrated example, a plurality of modules 3 1 and 3 2 connected in series.
The start point of the string 1 1 is 20 1 , the end point of the string 1 1 is 21 1 , the start point of the string 1 2 is 20 2 , and the end point of the string 1 2 is 21 2 . Further, the delay constant of the delay means 13 1, 13 2, respectively, and D 1, D 2. Note assumption, the delay unit 13 1, 13 2, and the third type described above. In other words, both of the outgoing signal and the reflected signal are of the third type in which a delay is given at the same time to set a prior relationship with others.
[規則91に基づく訂正 17.09.2013] 
 次に図示例において、検査装置11の印加部14から~出射信号の各所への到達時間は、図1の(2)図のように表わされる。
 まず、遅延手段13,13までの出射信号の到達時間は、それぞれT.13やT.13で表わされる。そして、この到達時間T.13やT.13、つまり図中(A)は、検査装置11の印加部14から~遅延手段13,13までの、それぞれのケーブル6の配線長によって、主に決定される。
 なお、印加部14から~遅延手段13までの配線長と、印加部14から~遅延手段13までの配線長とが、異なる場合もあるが、その場合は、遅延定数D,Dの設定に際し、その分が加減算される。
[Correction based on Rule 91 17.09.2013]
Next, in the illustrated example, the arrival time of the outgoing signal from the application unit 14 of the inspection apparatus 11 to each place is expressed as shown in FIG.
First, the delay means 13 1, 13 the arrival time of the emitted signals of up to 2, respectively T. 13 1 and T.W. 13 is represented by 2. And this arrival time T.I. 13 1 and T. 13 2 , that is, (A) in the figure, is mainly determined by the wiring length of each cable 6 from the application section 14 of the inspection apparatus 11 to the delay means 13 1 and 13 2 .
Note that the wiring from the application unit 14 to ~ delay means 13 1, and the wiring from the application unit 14 to ~ delay means 13 2, but may differ, in that case, delay constant D 1, D 2 When setting, the amount is added or subtracted.
[規則91に基づく訂正 17.09.2013] 
 次に、図1の(2)図において、ストリング1については、次のとおり。検査装置11の印加部14から~ストリング1の始点20までの出射信号の到達時間T.20は、遅延手段13までの到達時間である上記T.13に対し、遅延手段13の遅延定数Dによって決定される遅延時間Tつまり図中(B)を、加算したものとなる。なお、遅延定数Dそして遅延時間Tは、0でも可(つまり、この遅延手段13は設けないことも可能)。
 そしてストリング1について、始点20までの出射信号の到達時間T.20から~終点21までの出射信号の到達時間T.21までの間に、異常点Cがあると、つまり図中(C)中のどこかに異常点Cがあると、応答反射して反射信号が発生する。
 そして、図1の(2)図において、ストリング1については、次のとおり。検査装置11の印加部14から~ストリング1の始点20までの出射信号の到達時間T.20は、遅延手段13までの到達時間である上記T.13に対し、遅延手段13の遅延定数Dによって決定される遅延時間Tを、加算したものとなる。
 図中(D)は、先のストリング1の終点21までの出射信号の到達時間T.21と、このストリング1の始点20までの出射信号の到達時間T.20との間の時差,タイムラグを示す。このようなタイムラグ(D)が発生するように、遅延手段13,13の遅延定数D,Dが、それぞれ設定される。つまり、T.21<T.20となるように、D,Dが設定される。
 そしてストリング1について、始点20までの出射信号の到達時間T.20から~終点21までの出射信号の到達時間T.21までの間に、異常点Cがあると、つまり図中(E)中のどこかに異常点Cがあると、応答反射して反射信号が発生する。
[Correction based on Rule 91 17.09.2013]
Next, in (2) of FIG. 1, the string 1 1, as follows. Arrival time T. of the outgoing signal from the application unit 14 of the inspection device 11 to the starting point 20 1 ~ String 1 1 20 1, the T. a time to reach delay unit 13 1 To 13 1, and those in the delay time T 1, that view is determined by the delay constant D 1 of the delay means 13 1 (B), was added. The delay constant D 1 and the delay time T 1, 0 even soluble (i.e., possible that the delay means 13 1 is not provided).
And for string 1 1, the exit signal of the arrival time to the start point 20 1 T. The arrival time T. of the outgoing signal from 20 1 to the end point 21 1 . Until 21 1, as defective points C 1, that is if there is somewhere anomalies C 1 in in FIG. (C), the reflected signal is generated in response reflected.
Then, in (2) of FIG. 1, the string 1 2, as follows. Arrival time T. of the outgoing signal from the application unit 14 of the inspection apparatus 11 to the beginning 20 2 ~ string 1 2 20 2, the T. a time to reach delay unit 13 2 To 13 2, and that the delay time T 2 which is determined by the delay constant D 2 of the delay means 13 2, it was added.
In the figure, (D) shows the arrival time T. of the outgoing signal to the end point 21 1 of the previous string 1 1 . 21 1, arrival time T. of the outgoing signal to the start point 20 2 of this string 1 2 Time difference between the 20 2, showing a time lag. The delay constants D 1 and D 2 of the delay units 13 1 and 13 2 are set so that such a time lag (D) occurs. That is, T.M. 21 1 <T. D 1 and D 2 are set so as to be 20 2 .
And for string 1 2, outgoing signal time to reach the starting point 20 2 T. 20 of the emission signal from 1 to ~ endpoint 21 2 arrival time T. Until 21 2, when there is abnormal point C 2, that is, when there is somewhere anomalies C 2 in in FIG. (E), in response reflected the reflected signal is generated.
[規則91に基づく訂正 17.09.2013] 
 さてそこで、図示例において反射信号の帰着時間は、一例として、図1の(3)図のように表わされる。
 すなわち、検査装置11の印加部14から出力,送信された出射信号が、検査対象であるストリング1,1の異常点C,Cで応答反射されて、再び検査装置11の実測部15に入力,受信されるまでの帰着時間は、次のようになる。
 まず、ストリング1のどこかに異常点Cがある場合、その帰着時間は、T.20×2 ~ T.21×2と表わされる。つまり、(A)×2+(B)×2 ~ (A)×2+(B)×2+(C)×2まで、と表わされる。
 又、ストリング1のどこかに異常点Cがある場合、その帰着時間は、T.20×2 ~ T.21×2、と表わされる。つまり、(A)×2+(B)×2+(C)×2+(D)×2から ~ (A)×2+(B)×2+(C)×2+(D)×2+(E)×2まで、と表わされる。
[Correction based on Rule 91 17.09.2013]
Now, in the illustrated example, the return time of the reflected signal is represented as shown in FIG.
That is, the output signal transmitted and transmitted from the application unit 14 of the inspection apparatus 11 is reflected and reflected by the abnormal points C 1 and C 2 of the strings 1 1 and 1 2 to be inspected, and is again measured by the measurement unit of the inspection apparatus 11. The return time until it is input to 15 and received is as follows.
First, when there is an abnormal point C 1 somewhere in the string 1 1 , the return time is T.I. 20 1 × 2 to T.W. It is expressed as 21 1 × 2. That is, (A) × 2 + (B) × 2 to (A) × 2 + (B) × 2 + (C) × 2 are represented.
Further, if there is somewhere anomalies C 2 of string 1 2, the return time, T. 20 2 × 2 to T.W. 21 2 × 2. That is, from (A) × 2 + (B) × 2 + (C) × 2 + (D) × 2 to (A) × 2 + (B) × 2 + (C) × 2 + (D) × 2 + (E) × 2 .
 そして、遅延手段13,13の遅延定数D,Dは、T.21×2 < T.20×2となるように、設定される。
 すなわち、ストリング1の終点21に異常点Cがあった場合の反射信号の帰着時間T.21×2よりも、ストリング1の始点20に異常点Cがあった場合の反射信号の帰着時間T.20×2の方が、長く遅くなるように設定される。
 なお第1に、複数並列接続されるストリング1について、一般的には、T.21×2<T.20n+1×2となるように、遅延定数D,Dが順次設定されることになる。nは正の整数。
 例えば、遅延手段は、遅延手段が接続されたストリングの実測部に最も近い点から実測部への反射信号の遅延後最短到達時刻が、遅延手段が接続されていないストリングの実測部から最も遠い点から実測部への反射信号の非遅延最長到達時刻よりも遅くなるように反射信号を遅延させる。
 なお第2に、ストリング1について異常点Cがなく、反射信号が発生しないこともある。又、異常点Cがあり反射信号が発生した後、透過波となって通過した後の出射信号について、更に別の異常点Cがあり、もって第2の反射信号が発生したり、更には第3の反射信号,第4の反射信号,・・・・・等が、発生することもある。
 なお第3に、以上説明した図1の図示例は、遅延手段13が前述した第3タイプよりなることを、前提とする。
 つまり、出射信号と反射信号の双方について、共に同時間の遅延を与えることを、前提とする。しかし、このような図示例によらず、前述した第1タイプや第2タイプの遅延手段13も、勿論可能である。つまり、出射信号と反射信号のいずれか一方についてのみ、遅延を与えるタイプも、考えられる。
 遅延定数Dの具体例については、以上のとおり。
The delay constants D 1 and D 2 of the delay means 13 1 and 13 2 are equal to T.D. 21 1 × 2 <T. It is set to be 20 2 × 2.
That is, the return time T. of the reflected signal when the abnormal point C 1 exists at the end point 21 1 of the string 1 1 . 21 1 than × 2, resulting time of the reflected signal when there is abnormal point C 5 to the starting point 20 2 strings 1 2 T. 20 2 × 2 is set to be longer and slower.
First, for strings 1 connected in parallel, in general, T.I. 21 n × 2 <T. The delay constants D 1 and D 2 are sequentially set so as to be 20 n + 1 × 2. n is a positive integer.
For example, the delay means is the point where the shortest arrival time after the delay of the reflected signal from the point closest to the string measurement unit to which the delay unit is connected is the farthest from the string measurement unit to which the delay unit is not connected. The reflected signal is delayed so as to be later than the non-delayed longest arrival time of the reflected signal from to the actual measurement unit.
Second, there is no abnormal point C for the string 1 and a reflected signal may not be generated. Further, after the reflected signal is generated due to the presence of the abnormal point C, there is still another abnormal point C for the outgoing signal after passing through as a transmitted wave, so that a second reflected signal is generated, and further 3 reflected signals, 4th reflected signals, etc. may be generated.
Thirdly, the example of FIG. 1 described above assumes that the delay means 13 is of the third type described above.
That is, it is assumed that both the outgoing signal and the reflected signal are given a delay at the same time. However, the above-described first type and second type delay means 13 are of course possible without depending on such illustrated examples. That is, a type in which only one of the outgoing signal and the reflected signal is delayed can be considered.
Specific examples of the delay constant D are as described above.
 《遅延回路22について》
 次に、このような検査システム12の遅延手段13を構成する遅延線23、その他の遅延回路22について、図2を参照して説明する。
 この遅延手段13は、まず、パルス波等の出射信号や反射信号に対しては、信号を所定時間だけ遅らせる遅延効果を発揮するが、ストリング1のモジュール3で発電,出力された直流に対しては、抵抗成分を持たないものでなければならない。
 そこで遅延手段13としては、図2の(1)図に示した遅延回路22や、(2)図に示した遅延回路22が考えられる。
 図2の(1)図に示した例は、前述した第3タイプの遅延手段13の遅延回路22として、出射信号と反射信号の双方を対象に、使用される。これに対し、図2の(2)図に示した例は、太陽電池アレイ7の電圧や電流に制約を受けずに、遅延手段13を構成することができるため、第3タイプのみならず第1タイプや第2タイプとしても、使用可能である。つまり、出射信号又は反射信号のみを対象とする様な工夫も使用可能である。
<< About the delay circuit 22 >>
Next, the delay line 23 and other delay circuits 22 constituting the delay means 13 of the inspection system 12 will be described with reference to FIG.
The delay means 13 first exerts a delay effect for delaying the signal by a predetermined time with respect to the outgoing signal and reflected signal such as a pulse wave, but with respect to the direct current generated and output by the module 3 of the string 1. Must have no resistance component.
Therefore, as the delay means 13, the delay circuit 22 shown in FIG. 2A and the delay circuit 22 shown in FIG.
The example shown in FIG. 2A is used for both the outgoing signal and the reflected signal as the delay circuit 22 of the third-type delay means 13 described above. On the other hand, in the example shown in FIG. 2B, the delay means 13 can be configured without being restricted by the voltage and current of the solar cell array 7, so that not only the third type but also the first type. It can be used as the first type or the second type. That is, it is possible to use a device that targets only the outgoing signal or the reflected signal.
 まず、図2の(1)図に示した例について述べる。このように、遅延回路22として遅延線(ディレイライン)23を用いる例が、代表的である。すなわち、この遅延手段13の遅延回路22は、コイル24やコンデンサ25で構成されており、インダクタンスL及び/又はキャパシタンスCを含んだ回路よりなる。
 なお太陽電池アレイ7の場合は、金属製フレーム枠や架台が施工上、グランドに落ちてないことが多々あるが、その場合はコンデンサ25のキャパシタンスCが変化してしまう虞がある。そこで、この図示例について、コンデンサ25の接地を確実に行うことが、重要となる。又、ストリング1の出力に鑑みた耐圧を有するコンデンサ25が使用される。
First, the example shown in FIG. 2 (1) will be described. As described above, an example in which the delay line (delay line) 23 is used as the delay circuit 22 is representative. That is, the delay circuit 22 of the delay means 13 includes a coil 24 and a capacitor 25, and includes a circuit including an inductance L and / or a capacitance C.
In the case of the solar cell array 7, there are many cases in which the metal frame frame or pedestal is not dropped to the ground in construction, but in that case, the capacitance C of the capacitor 25 may change. Therefore, it is important to reliably ground the capacitor 25 in this illustrated example. Further, a capacitor 25 having a withstand voltage in consideration of the output of the string 1 is used.
 次に、図2の(2)図に示した例について述べる。この例のように、半導体やクロックタイマを利用した公知の各種遅延回路22を、スイッチ26,27と組み合わせて用いた遅延手段13も、考えられる。
 すなわち、並列分岐後のケーブル6に設けられたスイッチ26は、常閉(続)よりなり、常時の発電,出力時において大電流が流れるのに対し、検査実施時は開(断)に切換えられる。これに対し、ケーブル6に対し遅延回路22へと更に並列分岐されたケーブル28に設けられたスイッチ27は、発電,出力時は常開(断)よりなるが、検査実施時は閉(続)に切換えられる。
 このようなスイッチ26,27の制御は、前述した制御部19により、例えば、無線又は有線(専用線や電力線)を利用して遠隔操作により行われる。なおスイッチ27は、図示例によらず遅延回路22の前後に設けると、遅延回路22の保護がより確実化する。
 この図示例は、遅延回路22に大電流が流れないので、各種の遅延回路22を自由に選択可能である、という利点がある。更に、落雷の危険がある際は、すべてのスイッチ26,27を開(断)に切換え制御することにより、落雷被害を最小限化可能という利点もある。
 遅延回路22については、以上のとおり。
Next, the example shown in FIG. 2 (2) will be described. As in this example, a delay means 13 using various known delay circuits 22 using a semiconductor or a clock timer in combination with switches 26 and 27 is also conceivable.
That is, the switch 26 provided on the cable 6 after the parallel branch is normally closed (continuous), and a large current flows during normal power generation and output, whereas it is switched to open (disconnected) when performing the inspection. . On the other hand, the switch 27 provided in the cable 28 further branched in parallel to the delay circuit 22 with respect to the cable 6 is normally opened (disconnected) at the time of power generation and output, but is closed (continuous) at the time of inspection. Is switched to.
Such control of the switches 26 and 27 is performed by the above-described control unit 19 by remote operation using, for example, wireless or wired (dedicated line or power line). If the switch 27 is provided before and after the delay circuit 22 regardless of the illustrated example, the protection of the delay circuit 22 is further ensured.
The illustrated example has an advantage that various delay circuits 22 can be freely selected because a large current does not flow through the delay circuit 22. Further, when there is a risk of lightning strike, there is an advantage that lightning damage can be minimized by controlling all the switches 26 and 27 to be opened (disconnected).
The delay circuit 22 is as described above.
 《作用等》
 本発明の太陽電池アレイ7の検査システム12は、以上説明したように構成されている。そこで、以下のようになる。
 (1)太陽電池アレイ7では、少なくとも1個以上のモジュール3を備えたストリング1が複数、並列接続されている。
 もって発電,出力された電力が、中継端子箱4やパワーコンディショナ5を経由し、直流から交流に変換されて、需要に供される(図4を参照)。
《Action etc.》
The inspection system 12 for the solar cell array 7 of the present invention is configured as described above. Therefore, it becomes as follows.
(1) In the solar cell array 7, a plurality of strings 1 including at least one module 3 are connected in parallel.
Thus, the generated and output power is converted from direct current to alternating current via the relay terminal box 4 and the power conditioner 5, and is supplied to demand (see FIG. 4).
 (2)そして、この検査システム12の検査装置11は、TDR方式よりなる。すなわち、検査対象である各ストリング1との間でケーブル6を介し、印加部14から出射信号が出力,送信されると共に、ストリング1の異常点Cから応答反射された反射信号が、実測部15に入力,受信される(図1の(1)図,図3の(1)図等を参照)。
 そして、検査装置11の判別部16において、出射信号と反射信号との波形比較に基づき、故障,その他の不具合の有無が判定される。
(2) And the inspection apparatus 11 of this inspection system 12 consists of a TDR system. That is, an output signal is output and transmitted from the application unit 14 to each string 1 to be inspected via the cable 6, and a reflected signal reflected and reflected from the abnormal point C of the string 1 is measured by the actual measurement unit 15. And received (see (1) in FIG. 1, (1) in FIG. 3, etc.).
And in the discrimination | determination part 16 of the test | inspection apparatus 11, the presence or absence of a failure and other malfunctions is determined based on waveform comparison with an emitted signal and a reflected signal.
 (3)さて、この検査システム12では、並列接続されたストリング1のケーブル6に、遅延手段13が介装されている(図1の(1)図,図2の(1)図,(2)図,図3の(1)図等を参照)。
 そして、所定の異なる遅延定数Dを備えた遅延手段13を介装したことにより、各ストリング1の異常点Cから応答反射される反射信号について、ストリング1毎に時系列的に先後関係が設定される。
 また、各遅延手段13が遅延させる時間は、遅延後最短到達時刻と非遅延最長到達時刻の時間差以上とすることにより、反射信号が重なることなく順次入力させることができる。
(3) Now, in this inspection system 12, the delay means 13 is interposed in the cable 6 of the string 1 connected in parallel ((1) in FIG. 1, (1) in FIG. 2, (2) ) Refer to Figure, (1) Figure in Figure 3).
Then, by interposing the delay means 13 having predetermined different delay constants D, the leading and trailing relations are set in time series for each string 1 with respect to the reflected signal reflected and reflected from the abnormal point C of each string 1. The
Further, the delay time of each delay means 13 can be sequentially input without overlapping the reflected signals by setting the time difference between the shortest arrival time after delay and the non-delay longest arrival time.
 (4)そこで各反射信号は、発生したストリング1別に、順次直列的に検査装置11の実測部15に、帰着,入力,受信される(図3の(1)図を参照)。
 並列接続されたストリング1からの反射信号ではあるが、どのストリング1からのものであるかが、明確に区別可能となる。反射信号が重なり合って、帰着,入力,受信される事態は、回避される。
(4) Therefore, each reflected signal is sequentially reduced, input, and received by the actual measurement unit 15 of the inspection apparatus 11 in series for each generated string 1 (see FIG. 3 (1)).
Although it is a reflected signal from the string 1 connected in parallel, it is possible to clearly distinguish which string 1 is from. A situation in which the reflected signals overlap and are reduced, input, or received is avoided.
 (5)従って、検査装置11の判別部16は、どのストリング1について異常点Cがあり、故障,その他の不具合が発生しているのかを、判別可能となる(図1の(1)図,図3の(1)図等を参照)。
 ストリング1が並列接続されてはいるものの、どのストリング1に異常点Cが存し不具合なのかを、容易に判別できるようになる。
(5) Accordingly, the determination unit 16 of the inspection apparatus 11 can determine which string 1 has the abnormal point C, and that a failure or other malfunction has occurred (FIG. 1 (1), (See (1) in FIG. 3).
Although the strings 1 are connected in parallel, it is possible to easily determine which string 1 has the abnormal point C and is defective.
 (6)この検査システム12は、このように並列配線タイプの太陽電池アレイ7つまりストリング1を、TDR方式で検査する。
 そしてこれは、各ストリング1へのケーブル6に、遅延線23,その他公知の遅延回路22を設けると共に、1台の検査装置11を使用することにより、実現される。つまり、簡単な構成の検査システム12にて、容易に実現される(図1の(1)図,図3の(1)図を参照)。
(6) The inspection system 12 inspects the parallel wiring type solar cell array 7, that is, the string 1 in this way by the TDR method.
This is realized by providing the cable 6 to each string 1 with a delay line 23 and other known delay circuits 22 and using one inspection device 11. That is, it is easily realized by the inspection system 12 having a simple configuration (see FIG. 1 (1) and FIG. 3 (1)).
 (7)なお、この検査システム12は、このように、ストリング1のケーブル6に、遅延回路22を用いた遅延手段13を設けてなる。
 そこで、例えば落雷その他により電流や電圧が急上昇した場合は、遅延回路22を形成する部品(例えば、図2の(1)図の例ではコイル24やコンデンサ25、図2の(2)図の例では、スイッチ26やスイッチ27)が、即焼損等するようになる。
 もって、この検査システム12は、サージ電流,サージ電圧対策としても効果的である。
 本発明の作用等については、以上の通り。
(7) The inspection system 12 includes the delay means 13 using the delay circuit 22 in the cable 6 of the string 1 as described above.
Therefore, for example, when the current or voltage suddenly increases due to lightning strikes or the like, the components forming the delay circuit 22 (for example, the coil 24 and the capacitor 25 in the example of FIG. 2 (1), the example of FIG. 2 (2)). Then, the switch 26 and the switch 27) immediately burn out.
Therefore, this inspection system 12 is also effective as a countermeasure against surge current and surge voltage.
The operation of the present invention is as described above.
  1 ストリング
  1ストリング
  1ストリング
  2 検査装置(従来例)
  3 モジュール
  3モジュール
  3モジュール
  4 中継端子箱
  5 パワーコンディショナ
  6 ケーブル
  6ケーブル
  6ケーブル
  7 太陽電池アレイ
  8 分電盤
  9 負荷
 10 電力計
 11 検査装置(本発明)
 12 検査システム
 13 遅延手段
 13遅延手段
 13遅延手段
 14 印加部
 15 実測部
 16 判別部
 17 スイッチ
 18 スイッチ
 19 制御部
 20始点
 20始点
 21終点
 21終点
 22 遅延回路
 23 遅延線(ディレイライン)
 24 コイル
 25 コンデンサ
 26 スイッチ
 27 スイッチ
 28 ケーブル
  C 異常点
  C異常点
  C異常点
  D 遅延定数
  D遅延定数
  D遅延定数
  T 遅延時間
  T遅延時間
  T遅延時間
1 string 1 1 string 1 2 string 2 inspection device (conventional example)
3 module 3 1 module 3 2 module 4 relay terminal box 5 power conditioner 6 cable 6 1 cable 6 2 cable 7 solar cell array 8 distribution board 9 load 10 wattmeter 11 inspection device (present invention)
DESCRIPTION OF SYMBOLS 12 Inspection system 13 Delay means 13 1 Delay means 13 2 Delay means 14 Application part 15 Actual measurement part 16 Discrimination part 17 Switch 18 Switch 19 Control part 20 1 Start point 20 2 Start point 21 1 End point 21 2 End point 22 Delay circuit 23 Delay line (Delay line)
24 coil 25 capacitor 26 switch 27 switch 28 cable C abnormal point C 1 abnormal point C 2 abnormal point D delay constant D 1 delay constant D 2 delay constant T delay time T 1 delay time T 2 delay time

Claims (7)

  1.  1個以上のモジュールを備えた複数のストリングが並列接続された太陽電池アレイについて、故障,その他の不具合の有無を判別する検査システムであって、検査装置と遅延手段とを有しており、
     該検査装置は、各該ストリングへの出射信号と、各該ストリングからの反射信号とに基づき、各該ストリングについて個別に不具合の有無を判別し、
     該遅延手段は、出射信号および反射信号のいずれか一方又は双方について、各該ストリング毎に相互間で時系列的に先後関係を設定し、もって、各該ストリングからの反射信号を、該検査装置に順次入力させるべく機能すること、を特徴とする太陽電池アレイの検査システム。
    A solar cell array in which a plurality of strings each having one or more modules are connected in parallel, is an inspection system for determining the presence or absence of a failure or other malfunction, and includes an inspection device and a delay unit.
    The inspection apparatus determines whether or not there is a defect individually for each string based on the emission signal to each string and the reflected signal from each string,
    The delay means sets a priori relationship in time series for each of the strings with respect to one or both of the outgoing signal and the reflected signal, so that the reflected signal from each of the strings is sent to the inspection device. The solar cell array inspection system is characterized in that it functions so as to be input sequentially.
  2.  請求項1において、該検査装置は、印加部,実測部,判別部を備えており、該印加部は、ケーブルを介し各該ストリングに対し出射信号を、送信し、
     該実測部は、該ケーブルを介し各該ストリングの異常点から応答反射される反射信号を、受信し、該判別部は、各該ストリング毎に、それぞれの出射信号と反射信号との波形比較に基づき、個別に不具合の有無を判別し、
     該遅延手段は遅延回路よりなり、該ケーブルに介装されており、各該ストリングからの反射信号を、各該ストリング別に順次直列的に、該検査装置の実測部に入力,受信させること、を特徴とする太陽電池アレイの検査システム。
    In Claim 1, this inspection device is provided with an application part, an actual measurement part, and a discriminating part, and this application part transmits an outgoing signal to each of these strings via a cable,
    The actual measurement unit receives a reflected signal that is reflected and reflected from the abnormal point of each string via the cable, and the discriminating unit performs waveform comparison between the output signal and the reflected signal for each string. Based on the individual, determine whether there is a defect,
    The delay means includes a delay circuit, and is interposed in the cable. The reflected signal from each string is input to and received by the actual measurement unit of the inspection apparatus in series for each string. A solar cell array inspection system.
  3.  請求項2において、該遅延手段は、各該ストリングに向け並列分岐された後の該ケーブルについて、少なくとも2本目以降の該ストリングとの間に介装され、
     該遅延手段の遅延定数は、各該ストリングと該検査装置の実測部間の出射信号と反射信号の一方又は双方について、到達時間を各該ストリング毎に長短異ならしめ、もって信号相互間で時系列に順次先後関係を設定する値よりなること、を特徴とする太陽電池アレイの検査システム。
    In Claim 2, the delay means is interposed between at least the second and subsequent strings of the cable after being branched in parallel toward the strings,
    The delay constant of the delay means is such that the arrival time of one or both of the outgoing signal and the reflected signal between each string and the actual measurement unit of the inspection apparatus is made different for each string, and thus the time series between the signals is different. The inspection system for a solar cell array, comprising: a value for sequentially setting a first and a second relationship.
  4.  1個以上のモジュールを備えた複数のストリングが並列接続された太陽電池アレイについて、故障や不具合の有無を判別する検査システムであって、複数の前記ストリングに出射信号を印加する印加部と、前記ストリングからの反射信号を実測する実測部と、前記反射信号に基づいて前記太陽電池アレイの故障や不具合の有無を判別する判別部とを備え、
     前記実測部への前記反射信号の到達を遅延させて、複数の前記反射信号の先後関係を設定する遅延手段をさらに備える、検査システム。
    A solar cell array in which a plurality of strings each including one or more modules are connected in parallel, is an inspection system that determines the presence or absence of a failure or a malfunction, and an application unit that applies an emission signal to the plurality of strings; An actual measurement unit that actually measures the reflected signal from the string, and a determination unit that determines the presence or absence of a failure or malfunction of the solar cell array based on the reflected signal,
    An inspection system, further comprising delay means for delaying arrival of the reflected signal to the actual measurement unit and setting a prior relationship of the plurality of reflected signals.
  5.  前記印加部は、並列に接続された前記複数のストリングの分岐点よりも前記ストリングから遠い点に接続されており、
     前記遅延手段は、前記分岐点と前記複数のストリングのうちの少なくとも1つとの間に接続されており、前記出射信号と前記反射信号のいずれか一方又は双方について遅延させることにより前記実測部への前記反射信号の到達を遅延させる、請求項4記載の検査システム。
    The application unit is connected to a point farther from the string than a branch point of the plurality of strings connected in parallel;
    The delay means is connected between the branch point and at least one of the plurality of strings, and delays either one or both of the emission signal and the reflection signal to the measurement unit. The inspection system according to claim 4, wherein arrival of the reflected signal is delayed.
  6.  前記遅延手段は、当該遅延手段が接続されたストリングの前記実測部に最も近い点から前記実測部への反射信号の遅延後最短到達時刻が、当該遅延手段が接続されていないストリングの前記実測部から最も遠い点から前記実測部への反射信号の非遅延最長到達時刻よりも遅くなるように反射信号を遅延させる、請求項5記載の検査システム。 The delay means has a shortest arrival time after delay of a reflected signal from the point closest to the actual measurement section of the string to which the delay means is connected to the actual measurement section of the string to which the delay means is not connected. The inspection system according to claim 5, wherein the reflected signal is delayed so as to be later than a non-delay longest arrival time of the reflected signal from the point farthest to the actual measurement unit.
  7.  互いに異なる前記ストリングに接続される前記遅延手段を複数備え、
     各前記遅延手段が遅延させる時間は、前記遅延後最短到達時刻と前記非遅延最長到達時刻の時間差以上である、請求項6記載の検査システム。
    A plurality of the delay means connected to the different strings;
    The inspection system according to claim 6, wherein the delay time of each of the delay means is equal to or greater than the time difference between the shortest arrival time after delay and the non-delay longest arrival time.
PCT/JP2013/060236 2012-04-03 2013-04-03 Solar cell array testing system WO2013151102A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012084447A JP5205530B1 (en) 2012-04-03 2012-04-03 Solar cell array inspection system
JP2012-084447 2012-04-03

Publications (2)

Publication Number Publication Date
WO2013151102A1 WO2013151102A1 (en) 2013-10-10
WO2013151102A9 true WO2013151102A9 (en) 2014-01-09

Family

ID=48713067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060236 WO2013151102A1 (en) 2012-04-03 2013-04-03 Solar cell array testing system

Country Status (2)

Country Link
JP (1) JP5205530B1 (en)
WO (1) WO2013151102A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6611435B2 (en) * 2015-01-15 2019-11-27 日東工業株式会社 Abnormality detection system for photovoltaic power generation facilities
JP6520771B2 (en) * 2016-03-11 2019-05-29 オムロン株式会社 Failure detection device for solar cell and solar power generation system
JP6702168B2 (en) 2016-12-14 2020-05-27 オムロン株式会社 Solar power generation system inspection device and inspection method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3416461B2 (en) * 1997-05-30 2003-06-16 キヤノン株式会社 Solar battery charge control device
JP3754898B2 (en) * 2000-02-29 2006-03-15 キヤノン株式会社 Collector box for photovoltaic power generation, photovoltaic power generation apparatus and control method
JP2002091586A (en) * 2000-09-19 2002-03-29 Canon Inc Solar light power generating device and its controlling method
JP2007333468A (en) * 2006-06-13 2007-12-27 Nissan Motor Co Ltd Cable diagnosis device and method
JP4780416B2 (en) * 2007-07-11 2011-09-28 独立行政法人産業技術総合研究所 Solar cell array fault diagnosis method
JP5097908B2 (en) * 2007-07-24 2012-12-12 英弘精機株式会社 Abnormality detection device for solar power generation system
JP5205345B2 (en) * 2009-07-29 2013-06-05 株式会社システム・ジェイディー Failure diagnosis system, failure diagnosis apparatus, failure diagnosis method, program, and storage medium
JP5196589B2 (en) * 2009-12-11 2013-05-15 株式会社システム・ジェイディー Failure diagnosis system, failure diagnosis apparatus, failure diagnosis method, program, and storage medium

Also Published As

Publication number Publication date
JP5205530B1 (en) 2013-06-05
JP2013214631A (en) 2013-10-17
WO2013151102A1 (en) 2013-10-10

Similar Documents

Publication Publication Date Title
US8446043B1 (en) Photovoltaic array systems, methods, and devices and improved diagnostics and monitoring
US20230324935A1 (en) System and method for arc detection and intervention in solar energy systems
US8773156B2 (en) Measurement of insulation resistance of configurable photovoltaic panels in a photovoltaic array
JP4780416B2 (en) Solar cell array fault diagnosis method
US10615743B2 (en) Active and passive monitoring system for installed photovoltaic strings, substrings, and modules
JP6075997B2 (en) Fault diagnosis method for solar power generation system
JP4604250B2 (en) Solar cell array fault diagnosis method
US10381838B2 (en) Power control system with fault detection and data retention for energy generation systems
Spagnolo et al. A review of IR thermography applied to PV systems
WO2017212757A1 (en) Failure diagnostic method and failure diagnostic device of solar cell string
Takashima et al. Disconnection detection using earth capacitance measurement in photovoltaic module string
EP2725372B1 (en) System and method of determination of connectivity resistance of power generating component
JP5205530B1 (en) Solar cell array inspection system
JP5463469B2 (en) Solar cell array inspection equipment
JP2013175662A (en) Photovoltaic power generation system and diagnostic method therefor
KR102543338B1 (en) The BIPV Solar System That Can Detect Early Failure Preparing Accidents And Efficiently Generate Electric Power
JP5380646B1 (en) Junction box, failure diagnosis system, program, recording medium, and failure diagnosis method
KR102451644B1 (en) Connection Panel of Solar Power Generation System And Circuit Control Method of Connection Panel
JP2013251581A (en) Inspection device of solar cell array
US20200162023A1 (en) Active and passive monitoring system for installed photovoltaic strings, substrings, and modules
CN107947739A (en) A kind of photovoltaic panel fault location system and method based on switch matrix
JP6214845B1 (en) Failure diagnosis method and failure diagnosis device for solar cell string
Mudau et al. String fault finding on the single axis tracker photovoltaic plant
Unarine et al. String Fault Finding on the Single Axis Tracker Photovoltaic Plant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13772112

Country of ref document: EP

Kind code of ref document: A1