WO2013151038A1 - Light-resistant plastic sheet and method of fabricating same - Google Patents

Light-resistant plastic sheet and method of fabricating same Download PDF

Info

Publication number
WO2013151038A1
WO2013151038A1 PCT/JP2013/060066 JP2013060066W WO2013151038A1 WO 2013151038 A1 WO2013151038 A1 WO 2013151038A1 JP 2013060066 W JP2013060066 W JP 2013060066W WO 2013151038 A1 WO2013151038 A1 WO 2013151038A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
plastic sheet
resistant plastic
sws
nanometers
Prior art date
Application number
PCT/JP2013/060066
Other languages
French (fr)
Japanese (ja)
Inventor
博基 杉山
拓也 上野
俊允 高岡
Original Assignee
ナルックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012256371A external-priority patent/JP2013218272A/en
Application filed by ナルックス株式会社 filed Critical ナルックス株式会社
Publication of WO2013151038A1 publication Critical patent/WO2013151038A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00317Production of lenses with markings or patterns
    • B29D11/00346Production of lenses with markings or patterns having nanosize structures or features, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining

Definitions

  • the present invention relates to a light-resistant plastic sheet having high resistance to light, particularly laser light in a wavelength region including a blue laser, and a manufacturing method thereof.
  • Plastics are inexpensive and have excellent moldability, so they are used in a wide range of fields including optical elements.
  • the polymer constituting the plastic may be destroyed, resulting in white turbidity and deformation.
  • problems such as an increase in aberration occur. Therefore, for example, in the case of an optical element for a blue laser (wavelength is 405 nanometers), measures such as forming a protective film on the surface of the optical element have been taken (for example, Patent Document 1).
  • the manufacturing process becomes complicated and the manufacturing cost increases.
  • the above method can be applied to a small optical element, but cannot be applied to a plastic sheet having a large surface area.
  • the light-resistant plastic sheet according to the first aspect of the present invention is provided with a grating having a pitch smaller than the wavelength of visible light and a height of 50 nanometers or more on at least one surface.
  • the light-resistant plastic sheet according to the first aspect of the present invention has high resistance to light, particularly laser light in a wavelength region including a blue laser.
  • the manufacturing process of the light-resistant plastic sheet according to the present invention is simple and low in cost, and can increase the surface area.
  • the light-resistant plastic sheet according to the first embodiment of the first aspect of the present invention has a transmittance change of 2% or less before and after irradiation with a laser beam having a wavelength of 405 nanometers for 1000 hours under an irradiation condition of 60 mW / mm 2.
  • the laser resistance is as follows.
  • the ratio of the height to the pitch is 0.5 or less.
  • the ratio of the grating height of the light-resistant plastic sheet to the grating pitch that is, the aspect ratio is 0.5 or less.
  • the light-resistant plastic sheet according to the third embodiment of the first aspect of the present invention is provided with the lattice on both sides.
  • the light resistance is further improved as compared with the case where the grating is provided on one surface.
  • the light-resistant plastic sheet according to the fourth embodiment of the first aspect of the present invention has a lens shape on at least one surface.
  • the light-resistant plastic sheet according to this embodiment can be used as a lens having light resistance.
  • the method for producing a light-resistant plastic sheet according to the second aspect of the present invention produces a light-resistant plastic sheet in which a grating having a pitch smaller than the wavelength of visible light and a height of 50 nanometers or more is provided on at least one surface.
  • This is a method for producing a light-resistant plastic sheet. The method comprises the steps of producing a sub-wavelength structure pattern, transferring the sub-wavelength structure pattern to the surface of the metal plate by electroforming technology, attaching the metal plate to the surface of a roll, Transferring the sub-wavelength structure pattern onto the surface of the plastic sheet by moving it in contact with a roll.
  • a light-resistant plastic sheet having a large surface area can be produced by a simple production process.
  • the optical element according to the third aspect of the present invention is an optical element in which the light-resistant plastic sheet according to the first aspect of the present invention is attached to at least a part of the surface.
  • a light-resistant optical element can be obtained by a simple manufacturing process.
  • the inventor of the present invention gives a so-called sub-wavelength structure (hereinafter also referred to as SWS) having a grating pitch of a wavelength or less on the surface of a plastic sheet, and thereby laser light in a wavelength region including a blue laser.
  • SWS sub-wavelength structure
  • SWS has been conventionally used for antireflection and polarization control, for example.
  • the SWS for preventing reflection was either formed by injection molding on the surface of the optical element (Patent 4206447) or directly formed by etching (Japanese Patent Laid-Open No. 2001-272505).
  • the SWS for controlling polarization was one formed of multilayer materials having different refractive indexes (Japanese Patent Laid-Open No. 2006-330105).
  • FIG. 1 is a diagram for explaining SWS.
  • the pitch a of the grating 101 is smaller than the wavelength of visible light, and is 300 nanometers or less as an example.
  • the depth (height) b of the lattice 101 is 50 nanometers or more.
  • the ratio of the grating height to the grating pitch that is, the aspect ratio is smaller than that of the antireflection SWS or the polarization control SWS, as described later with respect to the embodiment, resistance to light can be obtained.
  • the SWS is formed on a 2 mm thick plastic sheet, the surface is irradiated with laser light under predetermined conditions, and the amount of change in transmittance before and after laser irradiation is observed, thereby making the plastic sheet resistant to laser light. Experiments were conducted to investigate.
  • Table 1 shows the results of this experiment.
  • ZEONEX 350R is a trade name and is a light-resistant plastic material made of a cycloolefin polymer.
  • ACRYPET VH001 is a trade name and is a plastic material made of polymethyl methacrylate resin and not light-resistant.
  • the fine structure indicates SWS.
  • FIG. 2 is a graph showing the transmittance change amount before and after laser irradiation of the plastic sheets of Example 1, Example 2, and Comparative Example 1.
  • FIG. The material of the plastic sheet of Example 1, Example 2, and Comparative Example 1 is ZEONEX 350R.
  • SWS having a lattice pitch of 300 nanometers and a lattice height of 140 nanometers was formed on the laser irradiation side surface, and SWS having a lattice pitch of 300 nanometers and a lattice height of 110 nanometers was formed on the opposite surface. Is.
  • SWS having a lattice pitch of 260 nanometers and a lattice height of 184 nanometers is formed only on the surface on the laser irradiation side.
  • No SWS was formed on the surface of the plastic sheet of Comparative Example 1.
  • the plastic sheets of Example 1, Example 2, and Comparative Example 1 were irradiated with laser light having a wavelength of 405 nanometers at a power density of 287 mW / mm 2 for 200 hours under a constant temperature condition of 75 ° C.
  • the transmittance change amounts of the plastic sheets of Example 1, Example 2, and Comparative Example 1 were 0.87%, 1.78%, and 6.89%, respectively.
  • a small amount of change in transmittance indicates that the optical characteristics of the plastic sheet are not changed, and therefore the resistance to laser light is high.
  • the resistance to laser light of the plastic sheets of Examples 1 and 2 in which SWS was formed on at least one side was significantly improved.
  • lattice provided here on both surfaces of the plastic sheet of Example 1 is 0.5 or less. It should be noted that sufficient light resistance can be obtained as described above even when the aspect ratio is 0.5 or less.
  • FIG. 3 is a diagram illustrating the transmittance change amount before and after laser irradiation of the plastic sheets of Example 3 and Comparative Example 2.
  • the material of the plastic sheet of Example 3 and Comparative Example 2 is ZEONEX350R.
  • SWS having a lattice pitch of 300 nanometers and a lattice height of 140 nanometers was formed on the laser irradiation side surface, and SWS having a lattice pitch of 300 nanometers and a lattice height of 110 nanometers was formed on the opposite surface.
  • No SWS was formed on the surface of the plastic sheet of Comparative Example 2.
  • the plastic sheets of Example 3 and Comparative Example 2 were irradiated with laser light having a wavelength of 405 nanometers at a power density of 60 mW / mm 2 under a constant temperature condition of 75 ° C. for 1000 hours.
  • the transmittance change amounts of the plastic sheets of Example 3 and Comparative Example 2 were 0.87% and 7.68%, respectively.
  • the resistance to laser light of the plastic sheet of Example 3 in which SWS was formed on both sides was significantly improved.
  • lattice provided here on both surfaces of the plastic sheet of Example 3 is 0.5 or less. It should be noted that sufficient light resistance can be obtained as described above even when the aspect ratio is 0.5 or less.
  • Example 3 in Comparative Examples 1 and 2, in Example 3, it reduced the power density of the laser from 287mW / mm 2 to 60 mW / mm 2.
  • the integrated light amount of the laser in Examples 1 and 2 is 57400 mWh / mm 2
  • the integrated light amount of the laser in Example 3 is 60000 mWh / mm 2, which is substantially the same. As described above, substantially the same result was obtained even when the power density of the laser was changed.
  • the material of the plastic sheet of Example 4 is ZEONEX 350R.
  • SWS having a lattice pitch of 300 nanometers and a lattice height of 140 nanometers was formed on the laser irradiation side surface, and SWS having a lattice pitch of 300 nanometers and a lattice height of 110 nanometers was formed on the opposite surface.
  • the plastic sheet of Example 4 was irradiated with laser light having a wavelength of 405 nanometers at a power density of 287 mW / mm 2 for 400 hours under a constant temperature condition of 75 ° C.
  • the transmittance change amount of the plastic sheet of Example 4 was 3.95%.
  • lattice provided here on both surfaces of the plastic sheet of Example 4 is 0.5 or less here. It should be noted that sufficient light resistance can be obtained as described above even when the aspect ratio is 0.5 or less.
  • the lattice shape was broken. During laser irradiation, it is considered that the lattice shape is less likely to collapse as the lattice height increases. From this, it is presumed that by increasing the grating height, for example, by setting the aspect ratio to 1 or more, it is possible to further increase the resistance to laser light.
  • FIG. 4 is a graph showing the transmittance change amount before and after laser irradiation of the plastic sheets of Example 5 and Comparative Example 3.
  • the material of the plastic sheet of Example 5 and Comparative Example 3 is Acripet VH001.
  • SWS with a lattice pitch of 300 nanometers and a lattice height of 267 nanometers was formed on the laser irradiation side surface, and SWS with a lattice pitch of 300 nanometers and a lattice height of 80 nanometers was formed on the opposite surface. Is. SWS was not formed on the surface of the plastic sheet of Comparative Example 3.
  • the plastic sheets of Example 3 and Comparative Example 2 were irradiated with laser light having a wavelength of 405 nanometers at a power density of 287 mW / mm 2 for 200 hours under a constant temperature condition of 75 ° C.
  • the transmittance change amounts of the plastic sheets of Example 5 and Comparative Example 3 were 22.2% and 56.1%, respectively. Since ACRYPET VH001 is not a light-resistant material, for example, the transmittance change amount in Example 5 is larger than the transmittance change amount in Example 1.
  • the resistance to laser light of the plastic sheet of Example 5 in which SWS is formed on both sides is significantly improved as compared with the plastic sheet of Comparative Example 3 in which no SWS is formed on either side.
  • the present invention is also effective for a plastic sheet made of a material that is not light resistant.
  • the light resistance of the plastic sheet according to the present invention was verified using blue laser light having a wavelength of 405 nanometers.
  • blue laser light having a wavelength of 405 nanometers is used is that plastics are generally not particularly resistant to blue to ultraviolet light. Since the light-resistant plastic sheet according to the present invention has high resistance to blue laser light, it is considered to have high resistance to light in a wide wavelength range including light in the blue to ultraviolet range. Therefore, the light-resistant plastic sheet according to the present invention can be advantageously used for light resistance not only for blue laser light but also for light in a wide wavelength range.
  • FIG. 5 is a flowchart showing an example of a method for producing a light-resistant plastic sheet of the present invention.
  • step S010 in FIG. 5 a SWS pattern having a predetermined size is manufactured.
  • FIG. 6 is a diagram for explaining an example of a method for producing the SWS pattern.
  • a substrate 201 made of, for example, a metal such as nickel, a semi-metal such as silicon, or a non-metal such as quartz glass is prepared.
  • a resist 203 is applied on the substrate 201.
  • the resist 203 is partially exposed by an electron beam according to the SWS pattern.
  • the exposed resist is developed according to the SWS pattern.
  • an SWS pattern is formed on the substrate 201 by etching.
  • step S020 in FIG. 5 the SWS pattern of the substrate is transferred onto a thin metal plate by electroforming technology.
  • the thickness of the metal plate is 0.2 to 0.3 millimeters.
  • a thin metal plate is attached to the surface of the forming roll.
  • the roll diameter is 40 mm and the width is 30 mm
  • a metal plate of 126 mm ⁇ 30 mm is required when the entire width of the roll is used for forming.
  • a smaller metal plate may be attached to the roll surface without a gap.
  • the SWS pattern can be transferred to the surface of the plastic sheet by moving the plastic sheet while being in contact with the roll.
  • the plastic sheet is heated in advance.
  • the roll itself may be heated to increase the transfer rate.
  • the SWS pattern can be formed on a wide surface of the plastic sheet.
  • the SWS pattern can be formed on both surfaces of the plastic sheet by passing the plastic sheet between two rolls to which a metal plate having the SWS pattern is attached. Furthermore, a plastic sheet having a larger area can be obtained by bonding the plastic sheets thus produced.
  • the plastic sheet provided with SWS according to the present invention can also be manufactured by injection molding or press molding using a mold.
  • the thickness of the plastic sheet provided with the SWS according to the present invention is specifically 0.2 to 1 millimeter.
  • the plastic sheet of the present invention is not limited to this thickness range, and the same light resistance can be obtained even in a film shape of 0.2 mm or less or a plate shape of 1 mm or more.
  • the plastic sheet provided with SWS according to the present invention can be used by being attached to the surface of the optical element by welding or the like in order to protect the optical element made of plastic from light. Alternatively, insert molding may be used.
  • plastic sheet provided with SWS according to the present invention can be used as a plate-like independent optical element.
  • the plastic sheet provided with the SWS according to the present invention can be used for a wide range of applications requiring resistance to ultraviolet light or blue laser.
  • it can be used for a sheet for a greenhouse, an acrylic plate for a show window, a product cover exposed to outdoor ultraviolet light, a protective sheet for a photovoltaic power generation panel, a protective sheet for a blue optical element, and the like.
  • the present invention can be expected to prolong the product life. Further, by welding the light-resistant plastic sheet according to the present invention to an acrylic plate, it can be used outdoors for a long time, and a show window with higher strength can be manufactured. Further, by using the light-resistant plastic sheet according to the present invention, it is possible to enhance the light resistance of a product cover that is used outdoors and requires transparency in terms of design and function.
  • the blue optical element has a reduced transmittance due to long-time light irradiation, but it can be used for a longer time by being integrated with the light-resistant plastic sheet according to the present invention.

Abstract

Provided is a light-resistant plastic sheet which is easy to manufacture and inexpensive, with which it is possible to increase the surface area, and which is highly resistant to light, particularly laser beams of a wavelength region including blue light lasers. A light-resistant plastic sheet according to the present invention has disposed, on at least one face, a lattice with a pitch (a) which is smaller than visible light wavelengths, and a height (b) which is 50nm or longer.

Description

耐光性プラスチックシート及びその製造方法Light-resistant plastic sheet and manufacturing method thereof
 本発明は、光、特に青色レーザを含む波長域のレーザ光に対して高い耐性を有する耐光性プラスチックシート及びその製造方法に関する。 The present invention relates to a light-resistant plastic sheet having high resistance to light, particularly laser light in a wavelength region including a blue laser, and a manufacturing method thereof.
 プラスチックは安価で成形性に優れるので、光学素子をはじめ広い分野で使用されている。しかし、プラスチックは、青色乃至紫外域の光にさらされると、プラスチックを構成する高分子が破壊され、白濁や変形が生じる場合がある。特に、光学素子の場合には、収差の増大などの問題を生じる。そこで、たとえば、青色レーザ(波長は405ナノメータ)用の光学素子の場合には、光学素子の表面に保護膜を形成するなどの対策がとられていた(たとえば、特許文献1)。しかし、光学素子の表面に保護膜を形成するためには、製造工程が複雑となり、製造コストも上昇する。また、上記の方法は、小型の光学素子に適用することはできるが、表面積の大きなプラスチックシートに適用することはできない。 Plastics are inexpensive and have excellent moldability, so they are used in a wide range of fields including optical elements. However, when a plastic is exposed to light in the blue to ultraviolet region, the polymer constituting the plastic may be destroyed, resulting in white turbidity and deformation. In particular, in the case of an optical element, problems such as an increase in aberration occur. Therefore, for example, in the case of an optical element for a blue laser (wavelength is 405 nanometers), measures such as forming a protective film on the surface of the optical element have been taken (for example, Patent Document 1). However, in order to form a protective film on the surface of the optical element, the manufacturing process becomes complicated and the manufacturing cost increases. In addition, the above method can be applied to a small optical element, but cannot be applied to a plastic sheet having a large surface area.
特開2012-27412号公報JP 2012-27412 A
 したがって、製造工程が簡単でコストが低く、表面積を大きくすることのできるプラスチックシートであって、光、特に青色レーザを含む波長域のレーザ光に対して高い耐性を有する耐光性プラスチックシートに対するニーズがある。 Therefore, there is a need for a light-resistant plastic sheet that is simple in manufacturing process, low in cost, and capable of increasing the surface area, and has high resistance to light, particularly laser light in a wavelength region including a blue laser. is there.
 本発明の第1の態様による耐光性プラスチックシートは、少なくとも一つの面に、可視光の波長より小さなピッチで、高さが50ナノメータ以上の格子を設けている。 The light-resistant plastic sheet according to the first aspect of the present invention is provided with a grating having a pitch smaller than the wavelength of visible light and a height of 50 nanometers or more on at least one surface.
 本発明の第1の態様による耐光性プラスチックシートは、光、特に青色レーザを含む波長域のレーザ光に対して高い耐性を有する。また、本発明による耐光性プラスチックシートの製造工程は簡単でコストが低く、表面積を大きくすることができる。 The light-resistant plastic sheet according to the first aspect of the present invention has high resistance to light, particularly laser light in a wavelength region including a blue laser. In addition, the manufacturing process of the light-resistant plastic sheet according to the present invention is simple and low in cost, and can increase the surface area.
 本発明の第1の態様の第1の実施形態による耐光性プラスチックシートは、60mW/mmの照射条件で、波長405ナノメータのレーザ光を1000時間照射した前後の透過率の変化が2%以下であるようなレーザ耐性を有する。 The light-resistant plastic sheet according to the first embodiment of the first aspect of the present invention has a transmittance change of 2% or less before and after irradiation with a laser beam having a wavelength of 405 nanometers for 1000 hours under an irradiation condition of 60 mW / mm 2. The laser resistance is as follows.
 本発明の第1の態様の第2の実施形態による耐光性プラスチックシートは、前記ピッチに対する前記高さの比が0.5以下である。 In the light-resistant plastic sheet according to the second embodiment of the first aspect of the present invention, the ratio of the height to the pitch is 0.5 or less.
 反射防止用格子や偏光制御用格子などと異なり、耐光性プラスチックシートの、格子ピッチに対する格子高さの比、すなわち、アスペクト比は、0.5以下であっても、十分な耐光性が得られる。 Unlike antireflection gratings, polarization control gratings, etc., sufficient light resistance can be obtained even if the ratio of the grating height of the light-resistant plastic sheet to the grating pitch, that is, the aspect ratio is 0.5 or less. .
 本発明の第1の態様の第3の実施形態による耐光性プラスチックシートは、前記格子を両面に設けている。 The light-resistant plastic sheet according to the third embodiment of the first aspect of the present invention is provided with the lattice on both sides.
 本実施形態によれば、格子を一方の面に設けた場合よりも耐光性がさらに向上する。 According to this embodiment, the light resistance is further improved as compared with the case where the grating is provided on one surface.
 本発明の第1の態様の第4の実施形態による耐光性プラスチックシートは、少なくとも一つの面に、レンズ形状を備えている。 The light-resistant plastic sheet according to the fourth embodiment of the first aspect of the present invention has a lens shape on at least one surface.
 本実施形態による耐光性プラスチックシートは、耐光性を有するレンズとして使用することができる。 The light-resistant plastic sheet according to this embodiment can be used as a lens having light resistance.
 本発明の第2の態様による耐光性プラスチックシートの製造方法は、少なくとも一つの面に、可視光の波長より小さなピッチで、高さが50ナノメータ以上の格子を設けた、耐光性プラスチックシートを製造する耐光性プラスチックシートの製造方法である。本方法は、サブ波長構造パターンを製作するステップと、サブ波長構造パターンを電鋳技術により金属板の表面に転写するステップと、前記金属板をロールの表面に貼り付けるステップと、プラスチックシートを前記ロールと接触させながら移動させることによって、前記プラスチックシートの表面にサブ波長構造パターンを転写するステップと、を含む。 The method for producing a light-resistant plastic sheet according to the second aspect of the present invention produces a light-resistant plastic sheet in which a grating having a pitch smaller than the wavelength of visible light and a height of 50 nanometers or more is provided on at least one surface. This is a method for producing a light-resistant plastic sheet. The method comprises the steps of producing a sub-wavelength structure pattern, transferring the sub-wavelength structure pattern to the surface of the metal plate by electroforming technology, attaching the metal plate to the surface of a roll, Transferring the sub-wavelength structure pattern onto the surface of the plastic sheet by moving it in contact with a roll.
 本態様によれば、簡単な製造工程によって表面積の大きな耐光性プラスチックシートを製造することができる。 According to this embodiment, a light-resistant plastic sheet having a large surface area can be produced by a simple production process.
 本発明の第3の態様による光学素子は、本発明の第1の態様による耐光性プラスチックシートを少なくとも表面の一部に貼り付けた光学素子である。 The optical element according to the third aspect of the present invention is an optical element in which the light-resistant plastic sheet according to the first aspect of the present invention is attached to at least a part of the surface.
 本態様によれば、簡単な製造工程により耐光性の光学素子が得られる。 According to this aspect, a light-resistant optical element can be obtained by a simple manufacturing process.
SWS(サブ波長構造)を説明するための図である。It is a figure for demonstrating SWS (sub wavelength structure). 実施例1、実施例2及び比較例1のプラスチックシートのレーザ照射前後の透過率変化量を示す図である。It is a figure which shows the transmittance | permeability change amount before and behind laser irradiation of the plastic sheet of Example 1, Example 2, and Comparative Example 1. FIG. 実施例3及び比較例2のプラスチックシートのレーザ照射前後の透過率変化量を示す図である。It is a figure which shows the transmittance | permeability change amount before and behind laser irradiation of the plastic sheet of Example 3 and Comparative Example 2. FIG. 実施例5及び比較例3のプラスチックシートのレーザ照射前後の透過率変化量を示す図である。It is a figure which shows the transmittance | permeability change amount before and behind laser irradiation of the plastic sheet of Example 5 and Comparative Example 3. 本発明の耐光性プラスチックシートの製造方法の一例を示す流れ図である。It is a flowchart which shows an example of the manufacturing method of the light-resistant plastic sheet of this invention. SWS(サブ波長構造)パターンの製作方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of SWS (sub wavelength structure) pattern.
 本発明の発明者は、プラスチックシートの表面に、格子ピッチが波長以下である、いわゆるサブ波長構造(Sub-Wavelength Structure、以下SWSとも呼称する)を付与すると、青色レーザを含む波長域のレーザ光に対する耐性が著しく向上するという新たな知見を得た。 The inventor of the present invention gives a so-called sub-wavelength structure (hereinafter also referred to as SWS) having a grating pitch of a wavelength or less on the surface of a plastic sheet, and thereby laser light in a wavelength region including a blue laser. The new finding that the resistance to is significantly improved.
 SWSは、従来、たとえば、反射防止用や偏光制御用などに使用されていた。反射防止用のSWSは、光学素子の表面に射出成形によって形成されるもの(特許4206447)や、エッチングで直接形成されるもの(特開2001-272505)であった。偏光制御用のSWSは、屈折率の異なる多層の材料から形成されるもの(特開2006-330105)などであった。 SWS has been conventionally used for antireflection and polarization control, for example. The SWS for preventing reflection was either formed by injection molding on the surface of the optical element (Patent 4206447) or directly formed by etching (Japanese Patent Laid-Open No. 2001-272505). The SWS for controlling polarization was one formed of multilayer materials having different refractive indexes (Japanese Patent Laid-Open No. 2006-330105).
 しかし、SWSが、光、特に青色レーザを含む波長域のレーザ光に対する耐性を向上させるために使用されることはなかった。最初に、上記の新たな知見について説明する。 However, SWS has never been used to improve resistance to light, particularly laser light in a wavelength region including a blue laser. First, the new findings will be described.
 図1は、SWSを説明するための図である。格子101のピッチaは、可視光の波長よりも小さく、一例として、300ナノメータ以下である。格子101の深さ(高さ)bは、一例として50ナノメータ以上である。 FIG. 1 is a diagram for explaining SWS. The pitch a of the grating 101 is smaller than the wavelength of visible light, and is 300 nanometers or less as an example. As an example, the depth (height) b of the lattice 101 is 50 nanometers or more.
 ここで、格子ピッチに対する格子高さの比、すなわちアスペクト比は、後で実施例に関して説明するように、反射防止用SWSや偏光制御用SWSよりも小さくとも光に対する耐性が得られる。 Here, even if the ratio of the grating height to the grating pitch, that is, the aspect ratio is smaller than that of the antireflection SWS or the polarization control SWS, as described later with respect to the embodiment, resistance to light can be obtained.
 厚さ2ミリメータのプラスチックシート上にSWSを形成し、その面に所定の条件でレーザ光を照射し、レーザ照射前後の透過率の変化量を観測することにより、プラスチックシートのレーザ光に対する耐性を調査するための実験を実施した。 The SWS is formed on a 2 mm thick plastic sheet, the surface is irradiated with laser light under predetermined conditions, and the amount of change in transmittance before and after laser irradiation is observed, thereby making the plastic sheet resistant to laser light. Experiments were conducted to investigate.
 表1は、この実験の結果を示す表である。表1において、ZEONEX350Rは、商品名であり、シクロオレフィンポリマーからなる、耐光性のプラスチック材料である。アクリペット VH001は、商品名であり、ポリメタクリル酸メチル樹脂からなる、耐光性ではないプラスチック材料である。また、表1において、微細構造は、SWSを指す。 Table 1 shows the results of this experiment. In Table 1, ZEONEX 350R is a trade name and is a light-resistant plastic material made of a cycloolefin polymer. ACRYPET VH001 is a trade name and is a plastic material made of polymethyl methacrylate resin and not light-resistant. In Table 1, the fine structure indicates SWS.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図2は、実施例1、実施例2及び比較例1のプラスチックシートのレーザ照射前後の透過率変化量を示す図である。実施例1、実施例2及び比較例1のプラスチックシートの材料は、ZEONEX350Rである。実施例1のプラスチックシートは、格子ピッチ300ナノメータ、格子高さ140ナノメータのSWSをレーザ照射側の面に形成し、格子ピッチ300ナノメータ、格子高さ110ナノメータのSWSを反対側の面に形成したものである。実施例2のプラスチックシートは、格子ピッチ260ナノメータ、格子高さ184ナノメータのSWSをレーザ照射側の面にのみ形成したものである。比較例1のプラスチックシートの面には、SWSを形成しなかった。実施例1、実施例2及び比較例1のプラスチックシートに対しては、75℃の恒温条件において波長405ナノメータのレーザ光を、287mW/mmのパワー密度で200時間照射した。実施例1、実施例2及び比較例1のプラスチックシートの透過率変化量は、それぞれ0.87%、1.78%及び6.89%であった。透過率変化量が小さいことは、プラスチックシートの光学特性が変化していないこと、したがって、レーザ光に対する耐性が高いことを示す。いずれの面にもSWSを形成しなかった比較例1のプラスチックシートと比較して、少なくとも一面にSWSを形成した実施例1及び2のプラスチックシートのレーザ光に対する耐性は著しく向上している。 FIG. 2 is a graph showing the transmittance change amount before and after laser irradiation of the plastic sheets of Example 1, Example 2, and Comparative Example 1. FIG. The material of the plastic sheet of Example 1, Example 2, and Comparative Example 1 is ZEONEX 350R. In the plastic sheet of Example 1, SWS having a lattice pitch of 300 nanometers and a lattice height of 140 nanometers was formed on the laser irradiation side surface, and SWS having a lattice pitch of 300 nanometers and a lattice height of 110 nanometers was formed on the opposite surface. Is. In the plastic sheet of Example 2, SWS having a lattice pitch of 260 nanometers and a lattice height of 184 nanometers is formed only on the surface on the laser irradiation side. No SWS was formed on the surface of the plastic sheet of Comparative Example 1. The plastic sheets of Example 1, Example 2, and Comparative Example 1 were irradiated with laser light having a wavelength of 405 nanometers at a power density of 287 mW / mm 2 for 200 hours under a constant temperature condition of 75 ° C. The transmittance change amounts of the plastic sheets of Example 1, Example 2, and Comparative Example 1 were 0.87%, 1.78%, and 6.89%, respectively. A small amount of change in transmittance indicates that the optical characteristics of the plastic sheet are not changed, and therefore the resistance to laser light is high. Compared with the plastic sheet of Comparative Example 1 in which no SWS was formed on either side, the resistance to laser light of the plastic sheets of Examples 1 and 2 in which SWS was formed on at least one side was significantly improved.
 なお、ここで実施例1のプラスチックシートの両面に付与した格子のアスペクト比は、0.5以下である。アスペクト比が0.5以下であっても、上述のように十分な耐光性が得られる点に留意すべきである。 In addition, the aspect ratio of the grating | lattice provided here on both surfaces of the plastic sheet of Example 1 is 0.5 or less. It should be noted that sufficient light resistance can be obtained as described above even when the aspect ratio is 0.5 or less.
 図3は、実施例3及び比較例2のプラスチックシートのレーザ照射前後の透過率変化量を示す図である。実施例3及び比較例2のプラスチックシートの材料は、ZEONEX350Rである。実施例3のプラスチックシートは、格子ピッチ300ナノメータ、格子高さ140ナノメータのSWSをレーザ照射側の面に形成し、格子ピッチ300ナノメータ、格子高さ110ナノメータのSWSを反対側の面に形成したものである。比較例2のプラスチックシートの面には、SWSを形成しなかった。実施例3及び比較例2のプラスチックシートに対しては、75℃の恒温条件において波長405ナノメータのレーザ光を、60mW/mmのパワー密度で1000時間照射した。実施例3及び比較例2のプラスチックシートの透過率変化量は、それぞれ0.87%及び7.68%であった。いずれの面にもSWSを形成しなかった比較例2のプラスチックシートと比較して、両面にSWSを形成した実施例3のプラスチックシートのレーザ光に対する耐性は著しく向上している。 FIG. 3 is a diagram illustrating the transmittance change amount before and after laser irradiation of the plastic sheets of Example 3 and Comparative Example 2. The material of the plastic sheet of Example 3 and Comparative Example 2 is ZEONEX350R. In the plastic sheet of Example 3, SWS having a lattice pitch of 300 nanometers and a lattice height of 140 nanometers was formed on the laser irradiation side surface, and SWS having a lattice pitch of 300 nanometers and a lattice height of 110 nanometers was formed on the opposite surface. Is. No SWS was formed on the surface of the plastic sheet of Comparative Example 2. The plastic sheets of Example 3 and Comparative Example 2 were irradiated with laser light having a wavelength of 405 nanometers at a power density of 60 mW / mm 2 under a constant temperature condition of 75 ° C. for 1000 hours. The transmittance change amounts of the plastic sheets of Example 3 and Comparative Example 2 were 0.87% and 7.68%, respectively. Compared to the plastic sheet of Comparative Example 2 in which no SWS was formed on either side, the resistance to laser light of the plastic sheet of Example 3 in which SWS was formed on both sides was significantly improved.
 なお、ここで実施例3のプラスチックシートの両面に付与した格子のアスペクト比は、0.5以下である。アスペクト比が0.5以下であっても、上述のように十分な耐光性が得られる点に留意すべきである。 In addition, the aspect ratio of the grating | lattice provided here on both surfaces of the plastic sheet of Example 3 is 0.5 or less. It should be noted that sufficient light resistance can be obtained as described above even when the aspect ratio is 0.5 or less.
 なお、実施例1及び2と比較して、実施例3においては、レーザのパワー密度を287mW/mmから60mW/mmに減少させた。このとき、実施例1及び2におけるレーザの積算光量は、57400mWh/mm、実施例3におけるレーザの積算光量は、60000mWh/mmであり、ほぼ同じである。このようにレーザのパワー密度を変化させてもほぼ同様の結果が得られた。 Incidentally, in Comparative Examples 1 and 2, in Example 3, it reduced the power density of the laser from 287mW / mm 2 to 60 mW / mm 2. At this time, the integrated light amount of the laser in Examples 1 and 2 is 57400 mWh / mm 2 , and the integrated light amount of the laser in Example 3 is 60000 mWh / mm 2, which is substantially the same. As described above, substantially the same result was obtained even when the power density of the laser was changed.
 実施例4のプラスチックシートの材料は、ZEONEX350Rである。実施例4のプラスチックシートは、格子ピッチ300ナノメータ、格子高さ140ナノメータのSWSをレーザ照射側の面に形成し、格子ピッチ300ナノメータ、格子高さ110ナノメータのSWSを反対側の面に形成したものである。実施例4のプラスチックシートに対しては、75℃の恒温条件において波長405ナノメータのレーザ光を、287mW/mmのパワー密度で400時間照射した。実施例4のラスチックシートの透過率変化量は、3.95%であった。 The material of the plastic sheet of Example 4 is ZEONEX 350R. In the plastic sheet of Example 4, SWS having a lattice pitch of 300 nanometers and a lattice height of 140 nanometers was formed on the laser irradiation side surface, and SWS having a lattice pitch of 300 nanometers and a lattice height of 110 nanometers was formed on the opposite surface. Is. The plastic sheet of Example 4 was irradiated with laser light having a wavelength of 405 nanometers at a power density of 287 mW / mm 2 for 400 hours under a constant temperature condition of 75 ° C. The transmittance change amount of the plastic sheet of Example 4 was 3.95%.
 なお、ここで実施例4のプラスチックシートの両面に付与した格子のアスペクト比は、0.5以下である。アスペクト比が0.5以下であっても、上述のように十分な耐光性が得られる点に留意すべきである。 In addition, the aspect ratio of the grating | lattice provided here on both surfaces of the plastic sheet of Example 4 is 0.5 or less here. It should be noted that sufficient light resistance can be obtained as described above even when the aspect ratio is 0.5 or less.
 レーザ照射後に実施例4のプラスチックシートのSWSを顕微鏡で観察すると、格子形状が崩れていた。レーザ照射の際に、格子高さが大きいほど格子形状は崩れにくいと考えられる。このことから、格子高さをより大きくすることにより、たとえば、アスペクト比を1以上とすることで、レーザ光に対する耐性をさらに高めることができると推定される。 When the SWS of the plastic sheet of Example 4 was observed with a microscope after laser irradiation, the lattice shape was broken. During laser irradiation, it is considered that the lattice shape is less likely to collapse as the lattice height increases. From this, it is presumed that by increasing the grating height, for example, by setting the aspect ratio to 1 or more, it is possible to further increase the resistance to laser light.
 図4は、実施例5及び比較例3のプラスチックシートのレーザ照射前後の透過率変化量を示す図である。実施例5及び比較例3のプラスチックシートの材料は、アクリペット VH001である。実施例5のプラスチックシートは、格子ピッチ300ナノメータ、格子高さ267ナノメータのSWSをレーザ照射側の面に形成し、格子ピッチ300ナノメータ、格子高さ80ナノメータのSWSを反対側の面に形成したものである。比較例3のプラスチックシートの面には、SWSを形成しなかった。実施例3及び比較例2のプラスチックシートに対しては、75℃の恒温条件において波長405ナノメータのレーザ光を、287mW/mmのパワー密度で200時間照射した。実施例5及び比較例3のプラスチックシートの透過率変化量は、それぞれ22.2%及び56.1%であった。アクリペット VH001は耐光性の材料ではないので、たとえば、実施例1の場合の透過率変化量と比較して実施例5の場合の透過率変化量は大きくなっている。しかし、いずれの面にもSWSを形成しなかった比較例3のプラスチックシートと比較して、両面にSWSを形成した実施例5のプラスチックシートのレーザ光に対する耐性は著しく向上している。このように、本発明は、耐光性ではない材料から構成されるプラスチックシートに対しても有効である。 FIG. 4 is a graph showing the transmittance change amount before and after laser irradiation of the plastic sheets of Example 5 and Comparative Example 3. The material of the plastic sheet of Example 5 and Comparative Example 3 is Acripet VH001. In the plastic sheet of Example 5, SWS with a lattice pitch of 300 nanometers and a lattice height of 267 nanometers was formed on the laser irradiation side surface, and SWS with a lattice pitch of 300 nanometers and a lattice height of 80 nanometers was formed on the opposite surface. Is. SWS was not formed on the surface of the plastic sheet of Comparative Example 3. The plastic sheets of Example 3 and Comparative Example 2 were irradiated with laser light having a wavelength of 405 nanometers at a power density of 287 mW / mm 2 for 200 hours under a constant temperature condition of 75 ° C. The transmittance change amounts of the plastic sheets of Example 5 and Comparative Example 3 were 22.2% and 56.1%, respectively. Since ACRYPET VH001 is not a light-resistant material, for example, the transmittance change amount in Example 5 is larger than the transmittance change amount in Example 1. However, the resistance to laser light of the plastic sheet of Example 5 in which SWS is formed on both sides is significantly improved as compared with the plastic sheet of Comparative Example 3 in which no SWS is formed on either side. Thus, the present invention is also effective for a plastic sheet made of a material that is not light resistant.
 上記の実験においては波長405ナノメータの青色レーザ光を使用して本発明によるプラスチックシートの耐光性を検証した。波長405ナノメータの青色レーザ光を使用したのは、プラスチックが一般的に青色乃至紫外域の光に対して特に耐性が低いためである。本発明による耐光性プラスチックシートは、青色レーザ光に対して高い耐性を有するので、青色乃至紫外域の光を含む広い波長範囲の光に対対しても高い耐性を有すると考えられる。したがって、本発明による耐光性プラスチックシートは、青色レーザ光のみならず、広い波長範囲の光に対して耐光性に関して有利に使用することができる。 In the above experiment, the light resistance of the plastic sheet according to the present invention was verified using blue laser light having a wavelength of 405 nanometers. The reason why blue laser light having a wavelength of 405 nanometers is used is that plastics are generally not particularly resistant to blue to ultraviolet light. Since the light-resistant plastic sheet according to the present invention has high resistance to blue laser light, it is considered to have high resistance to light in a wide wavelength range including light in the blue to ultraviolet range. Therefore, the light-resistant plastic sheet according to the present invention can be advantageously used for light resistance not only for blue laser light but also for light in a wide wavelength range.
 つぎに、本発明の耐光性プラスチックシートの製造方法について説明する。 Next, a method for producing the light-resistant plastic sheet of the present invention will be described.
 図5は、本発明の耐光性プラスチックシートの製造方法の一例を示す流れ図である。 FIG. 5 is a flowchart showing an example of a method for producing a light-resistant plastic sheet of the present invention.
 図5のステップS010において、所定の大きさのSWSパターンを製作する。 In step S010 in FIG. 5, a SWS pattern having a predetermined size is manufactured.
 図6は、SWSパターンの製作方法の一例を説明するための図である。 FIG. 6 is a diagram for explaining an example of a method for producing the SWS pattern.
 図6の(a)において、たとえば、ニッケルなどの金属やシリコンなどの半金属、石英ガラスなどの非金属から形成される基板201を準備する。 6A, a substrate 201 made of, for example, a metal such as nickel, a semi-metal such as silicon, or a non-metal such as quartz glass is prepared.
 図6の(b)において、基板201上にレジスト203を塗布する。 In FIG. 6B, a resist 203 is applied on the substrate 201.
 図6の(c)において、電子ビームによってレジスト203を、SWSのパターンにしたがって部分的に露光する。 6 (c), the resist 203 is partially exposed by an electron beam according to the SWS pattern.
 図6の(d)において、SWSのパターンにしたがって露光したレジストを現像する。 6 (d), the exposed resist is developed according to the SWS pattern.
 図6の(e)において、エッチングを行うことにより、基板201にSWSパターンを形成する。 6 (e), an SWS pattern is formed on the substrate 201 by etching.
 図5のステップS020において、基板のSWSパターンを電鋳技術によって薄い金属板上に転写する。ここで、金属板の厚さは、一例として、0.2乃至0.3ミリメータである。 In step S020 in FIG. 5, the SWS pattern of the substrate is transferred onto a thin metal plate by electroforming technology. Here, as an example, the thickness of the metal plate is 0.2 to 0.3 millimeters.
 図5のステップS030において、薄い金属板を成形用ロール表面に貼り付ける。たとえば、ロールの直径を40ミリメータ、幅を30ミリメータとすると、ロールの幅全体を成形に使用する場合には、126mm×30mmの金属板が必要となる。この大きさの金属板を製作するのが困難な場合には、より小さな金属板をロール面に隙間なく貼り付けてもよい。また、ロールの幅の一部のみに金属板を貼り付けてもよい。 In step S030 in FIG. 5, a thin metal plate is attached to the surface of the forming roll. For example, if the roll diameter is 40 mm and the width is 30 mm, a metal plate of 126 mm × 30 mm is required when the entire width of the roll is used for forming. When it is difficult to manufacture a metal plate of this size, a smaller metal plate may be attached to the roll surface without a gap. Moreover, you may affix a metal plate only to a part of width | variety of a roll.
 図5のステップS040において、プラスチックシートをロールと接触させながら移動させることによって、プラスチックシートの表面にSWSのパターンを転写することができる。この場合にプラスチックシートは予め加熱しておく。さらに、転写率を上げるために、ロール自体を加熱してもよい。ロールによって、プラスチックシートに連続的にSWSパターンを転写することにより、プラスチックシートの広い面にSWSを形成することができる。SWSパターンを備えた金属板を貼り付けた2個のロールの間にプラスチックシートを通すことによって、プラスチックシートの両面にSWSパターンを形成することができる。さらにこのようにして製作したプラスチックシートを張り合わせることにより、より広い面積のプラスチックシートが得られる。 In step S040 in FIG. 5, the SWS pattern can be transferred to the surface of the plastic sheet by moving the plastic sheet while being in contact with the roll. In this case, the plastic sheet is heated in advance. Further, the roll itself may be heated to increase the transfer rate. By continuously transferring the SWS pattern to the plastic sheet using a roll, the SWS can be formed on a wide surface of the plastic sheet. The SWS pattern can be formed on both surfaces of the plastic sheet by passing the plastic sheet between two rolls to which a metal plate having the SWS pattern is attached. Furthermore, a plastic sheet having a larger area can be obtained by bonding the plastic sheets thus produced.
 上記において、ロール成形によってSWSを備えた広い面積のプラスチックシートを製造する方法を説明した。本発明によるSWSを備えたプラスチックシートは、金型を使用した射出成形やプレス成形によっても製造することができる。 In the above, a method for producing a wide area plastic sheet provided with SWS by roll forming has been described. The plastic sheet provided with SWS according to the present invention can also be manufactured by injection molding or press molding using a mold.
 本発明によるSWSを備えたプラスチックシートの厚さは、具体的に、0.2乃至1ミリメータである。ただし、本発明のプラスチックシートは、この厚さの範囲に限定されることなく、0.2ミリメートル以下のフィルム状、または1ミリメートル以上のプレート状であっても同様の耐光性が得られる。 The thickness of the plastic sheet provided with the SWS according to the present invention is specifically 0.2 to 1 millimeter. However, the plastic sheet of the present invention is not limited to this thickness range, and the same light resistance can be obtained even in a film shape of 0.2 mm or less or a plate shape of 1 mm or more.
 本発明によるSWSを備えたプラスチックシートは、プラスチックからなる光学素子を光から保護するために光学素子の面に溶着などで貼り付けて使用することができる。またはインサート成形を用いてもよい。 The plastic sheet provided with SWS according to the present invention can be used by being attached to the surface of the optical element by welding or the like in order to protect the optical element made of plastic from light. Alternatively, insert molding may be used.
 また、本発明によるSWSを備えたプラスチックシートは、プレート状の独立した光学素子としても使用することができる。 Also, the plastic sheet provided with SWS according to the present invention can be used as a plate-like independent optical element.
 さらに、本発明によるSWSを備えたプラスチックシートは、より一般的に、紫外光や青色レーザに対する耐性を要求される広い用途に使用することができる。たとえば、ビニールハウス用シート、ショーウィンドウ用のアクリル板、屋外紫外光に暴露される製品カバー、太陽光発電パネル用保護シート、青色光学素子用保護シートなどに使用することができる。 Furthermore, the plastic sheet provided with the SWS according to the present invention can be used for a wide range of applications requiring resistance to ultraviolet light or blue laser. For example, it can be used for a sheet for a greenhouse, an acrylic plate for a show window, a product cover exposed to outdoor ultraviolet light, a protective sheet for a photovoltaic power generation panel, a protective sheet for a blue optical element, and the like.
 本発明をビニールハウスなど屋外で使うシート品に適用することで製品の長寿命化が期待できる。また本発明による耐光性プラスチックシートをアクリル板に溶着することで長時間屋外使用が可能で、より強度の高いショーウィンドウが製造可能である。また、本発明による耐光性プラスチックシートを使用することにより、屋外で使用され、意匠性や機能面から透明性が必要な製品カバーの耐光性を高めることができる。青色光学素子は長時間の光照射により透過率が下がってしまうが、本発明による耐光性プラスチックシートと一体化することでより長時間の使用が可能となる。 ¡By applying the present invention to a sheet product used outdoors such as a greenhouse, it can be expected to prolong the product life. Further, by welding the light-resistant plastic sheet according to the present invention to an acrylic plate, it can be used outdoors for a long time, and a show window with higher strength can be manufactured. Further, by using the light-resistant plastic sheet according to the present invention, it is possible to enhance the light resistance of a product cover that is used outdoors and requires transparency in terms of design and function. The blue optical element has a reduced transmittance due to long-time light irradiation, but it can be used for a longer time by being integrated with the light-resistant plastic sheet according to the present invention.
101…格子、201…基板、203…レジスト 101 ... Grating, 201 ... Substrate, 203 ... Resist

Claims (7)

  1.  少なくとも一つの面に、可視光の波長より小さなピッチで、高さが50ナノメータ以上の格子を設けた、耐光性プラスチックシート。 A light-resistant plastic sheet in which a grating having a height of 50 nanometers or more is provided on at least one surface with a pitch smaller than the wavelength of visible light.
  2.  60mW/mmの照射条件で、波長405ナノメータのレーザ光を1000時間照射した前後の透過率の変化が2%以下であるようなレーザ耐性を有する請求項1に記載の耐光性プラスチックシート。 2. The light-resistant plastic sheet according to claim 1, having a laser resistance such that a change in transmittance before and after irradiation with a laser beam having a wavelength of 405 nanometers for 1000 hours under an irradiation condition of 60 mW / mm 2 is 2% or less.
  3.  前記ピッチに対する前記高さの比が0.5以下である請求項1または2に記載の耐光性プラスチックシート。 The light-resistant plastic sheet according to claim 1 or 2, wherein a ratio of the height to the pitch is 0.5 or less.
  4.  前記格子を両面に設けた請求項1から3のいずれかに記載の耐光性プラスチックシート。 The light-resistant plastic sheet according to any one of claims 1 to 3, wherein the lattice is provided on both sides.
  5.  少なくとも一つの面に、レンズ形状を備えた請求項1から4のいずれかに記載の耐光性プラスチックシート。 The light-resistant plastic sheet according to any one of claims 1 to 4, wherein a lens shape is provided on at least one surface.
  6.  少なくとも一つの面に、可視光の波長より小さなピッチで、高さが50ナノメータ以上の格子を設けた、耐光性プラスチックシートを製造する耐光性プラスチックシートの製造方法であって、
     サブ波長構造パターンを製作するステップと、
     サブ波長構造パターンを電鋳技術により金属板の表面に転写するステップと、
     前記金属板をロールの表面に貼り付けるステップと、
     プラスチックシートを前記ロールと接触させながら移動させることによって、前記プラスチックシートの表面にサブ波長構造パターンを転写するステップと、
    を含む耐光性プラスチックシートの製造方法。
    A light-resistant plastic sheet manufacturing method for manufacturing a light-resistant plastic sheet, wherein a grating having a pitch smaller than the wavelength of visible light and a height of 50 nanometers or more is provided on at least one surface,
    Producing a subwavelength structure pattern;
    Transferring the subwavelength structure pattern to the surface of the metal plate by electroforming technology;
    Attaching the metal plate to the surface of the roll;
    Transferring the subwavelength structure pattern to the surface of the plastic sheet by moving the plastic sheet in contact with the roll; and
    For producing a light-resistant plastic sheet.
  7.  請求項1から5のいずれかに記載の耐光性プラスチックシートを少なくとも表面の一部に貼り付けた光学素子。 An optical element in which the light-resistant plastic sheet according to any one of claims 1 to 5 is attached to at least a part of the surface.
PCT/JP2013/060066 2012-04-04 2013-04-02 Light-resistant plastic sheet and method of fabricating same WO2013151038A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261620104P 2012-04-04 2012-04-04
US61/620,104 2012-04-04
JP2012-256371 2012-11-22
JP2012256371A JP2013218272A (en) 2012-04-04 2012-11-22 Light resistance plastic sheet and manufacturing method of the method

Publications (1)

Publication Number Publication Date
WO2013151038A1 true WO2013151038A1 (en) 2013-10-10

Family

ID=49300519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060066 WO2013151038A1 (en) 2012-04-04 2013-04-02 Light-resistant plastic sheet and method of fabricating same

Country Status (1)

Country Link
WO (1) WO2013151038A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005010231A (en) * 2003-06-16 2005-01-13 Dainippon Printing Co Ltd Rugged pattern forming material, rugged pattern receiving body, rugged pattern forming method, transfer foil, and optical component
JP2005010230A (en) * 2003-06-16 2005-01-13 Dainippon Printing Co Ltd Rugged pattern forming material, rugged pattern receiving body, rugged pattern forming method, transfer foil, and optical component
JP2006178147A (en) * 2004-12-22 2006-07-06 Pentax Corp Subwavelength structure optical element highly-precise and excellent in durability and moisture resistance
JP2009162965A (en) * 2008-01-04 2009-07-23 Toshiba Corp Forming method for reflection preventing structure, and reflection preventing structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005010231A (en) * 2003-06-16 2005-01-13 Dainippon Printing Co Ltd Rugged pattern forming material, rugged pattern receiving body, rugged pattern forming method, transfer foil, and optical component
JP2005010230A (en) * 2003-06-16 2005-01-13 Dainippon Printing Co Ltd Rugged pattern forming material, rugged pattern receiving body, rugged pattern forming method, transfer foil, and optical component
JP2006178147A (en) * 2004-12-22 2006-07-06 Pentax Corp Subwavelength structure optical element highly-precise and excellent in durability and moisture resistance
JP2009162965A (en) * 2008-01-04 2009-07-23 Toshiba Corp Forming method for reflection preventing structure, and reflection preventing structure

Similar Documents

Publication Publication Date Title
TWI467252B (en) Wire grid type polarizer and manufacturing method thereof
CN101313234B (en) Method for manufacturing diffraction grid
CN111033118B (en) Diffraction light guide plate and method for manufacturing diffraction light guide plate
US20060072194A1 (en) Wire grid polarizer and fabrication method thereof
Li et al. Sapphire-based Fresnel zone plate fabricated by femtosecond laser direct writing and wet etching
Cong et al. Fabricating subwavelength dot-matrix surface structures of molybdenum by transient correlated actions of two-color femtosecond laser beams
US10151863B2 (en) Optical grating
WO2013161767A1 (en) Optical device
US9726804B2 (en) Light guide plate and method of manufacturing the same, and backlight module
JP2008107720A (en) Polarizer and its manufacturing method
JP7127931B2 (en) Diffraction light guide plate and method for manufacturing diffraction light guide plate
JP2017026701A5 (en)
US20090267245A1 (en) Transmission Type Optical Element
US20070146885A1 (en) Polarization phase difference plate
Liu et al. Optical film for LED with triangular-pyramidal array using size-reducible embossing method
KR20090058729A (en) Hybrid micro lens array and manufacturing method thereof
WO2013151038A1 (en) Light-resistant plastic sheet and method of fabricating same
JP2013218272A (en) Light resistance plastic sheet and manufacturing method of the method
US20130264729A1 (en) Method for Manufacturing Mold Assembly of Multi-Functional Light Guide Plate and its Application
JP2008046428A (en) Method for manufacturing optical element having fine rugged pattern on surface
WO2015166851A1 (en) Optical element manufacturing method
WO2012124809A1 (en) Manufacturing method for diffraction grating sheet, diffraction grating sheet, and window glass
US20210132276A1 (en) Polymer infrared polarizer
KR101500167B1 (en) Fabricating method for antireflection layer with antireflection grating pattern nanostructure and fabricating method for optical element with antireflection layer
JP5948686B2 (en) Optical element and mounting method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13773012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13773012

Country of ref document: EP

Kind code of ref document: A1