WO2013149815A1 - Isoliersystem mit endenglimmschutz und verfahren zur herstellung des endenglimmschutzes - Google Patents

Isoliersystem mit endenglimmschutz und verfahren zur herstellung des endenglimmschutzes Download PDF

Info

Publication number
WO2013149815A1
WO2013149815A1 PCT/EP2013/055557 EP2013055557W WO2013149815A1 WO 2013149815 A1 WO2013149815 A1 WO 2013149815A1 EP 2013055557 W EP2013055557 W EP 2013055557W WO 2013149815 A1 WO2013149815 A1 WO 2013149815A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating system
particles
corona shielding
end corona
semiconducting
Prior art date
Application number
PCT/EP2013/055557
Other languages
English (en)
French (fr)
Inventor
Steffen Lang
Friedhelm Pohlmann
Christian Staubach
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2013149815A1 publication Critical patent/WO2013149815A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/40Windings characterised by the shape, form or construction of the insulation for high voltage, e.g. affording protection against corona discharges

Definitions

  • the invention relates to an insulation system with Endenglimmschutz and a method for producing a Endenglimmschutzes which suppresses the formation of potential differences.
  • turbogenerator For a high-voltage machine, such as a turbo-generator in a power plant for generating electrical energy, high efficiency and high availability are required. As a rule, this results in high mechanical, thermal and electrical stress on the turbogenerator components.
  • the turbogenerator has, in particular, a stator winding to which a particularly high requirement with regard to strength and reliability is set.
  • the stator winding has a conductor electrically insulated with the main insulation, which is mounted in a groove provided in the laminated core.
  • the stator is subjected to thermal cycling which, due to differential thermal expansion rates of the conductor and main insulation, can create stresses in the main insulation.
  • a localized detachment of the main insulation of the conductor may occur, whereby cavities between the main insulation and the conductor arise in which partial discharges can ignite.
  • the partial discharges may damage the main lead insulation, whereby the turbogenerator would not be operable.
  • the Nutausbergen conventionally before the head with its main insulation, where the interface between the conductor and the main insulation is arranged.
  • IPS internal potential control
  • a further interface is formed between the main insulation and the laminated core, which is also exposed to a high electrical interface stress. Therefore, a low conductivity and grounded external corona (AGS) shield is attached to the main insulation.
  • the outer corona shield has a short longitudinal extent along the main insulation, so that in the region of the main insulation, in which the outer corona shield no longer extends, another boundary surface is formed with the ambient air.
  • an end corona protection (EGS) is provided here.
  • the end corona shield is formed with a material which, when the voltage, i. electric field strength, has a decreasing electrical resistance. As a result, the potential degradation is equalized at the interface, whereby the Endenglimmschutz works as a potential control.
  • An end corona protection is known from a semiconducting lacquer or a semiconducting tape mainly based on silicon carbide.
  • the goal of the potential control is the tangential potential build-up along the surface of the main insulation should be uniformized and, ideally, linearized. This is achieved if the same amount of stress is always built up per unit of length along the winding bar by placing the lacquer or the tape as an in
  • the current density-field strength characteristic usually has an S-shaped profile, wherein it is attempted to set the operating point of the Endglimmtikes in the region of the inflection point of the S-shaped curve. In the region of the inflection point, the course of the characteristic curve is essentially linear and characterized by its slope when the current density-field strength characteristic is plotted twice logarithmically.
  • the end corona shielding is formed by a tape or varnish applied to the main insulation, the tape or varnish being formed by a polymer matrix in which particles of silicon carbide or other semiconductive fillers are embedded.
  • the resitive end corona protection systems are made by applying one or more semiconductive layers of different lengths, which are applied as a tape or painted as a paint with a brush.
  • the final corona protection is applied by hand.
  • tape application a slight irregularity in the overlap of the individual tape layers or a slight irregularity in the tape tension causes a large variation in the local resistance surface.
  • local field peaks occur at the overlap transitions where partial discharges are preferred.
  • brushing, brushing, printing during the coating process and the number of string repetitions result in large fluctuations in the EGS resistance coating. All of these application parameters are very differently pronounced from person to person.
  • the object of the present invention is therefore to provide an insulation system with end corona protection in which the semiconductive layers of the end corona protection are optimized with respect to the potential differences.
  • the object and object of the present invention is therefore an insulation system on a generator winding rod with end corona protection, the end corona shield being made of a sprayable material and having a uniform and homogeneous surface.
  • the subject of the invention is a method for applying teilleit changedem material as Endenglimmtik, wherein the material is sprayed on.
  • teilleit changed material as Endenglimmtik, wherein the material is sprayed on.
  • General knowledge of the invention is that not only the resistance of the semiconductive materials is adjustable by the new fillers, but in particular by the coating of the particles with metal oxide of different dopings, the abrasiveness of the material is low, so that it can be sprayed. As spraying a material is called, the little abrasive and low viscosity, possibly with
  • Solvent is added.
  • metal oxides are used, which are softer (on the moss' see hardness scales below) and less abrasive.
  • the semiconducting material is uniformly applied by robot to the main insulation of generator winding bars. This results in uniformly thick and homogeneous surfaces in which a linear assembly and disassembly of the potential is optimally possible.
  • the semiconductive material is applied as an aerosol.
  • the procedure is preferably as follows: doping of a metal oxide with at least one doping element; Providing a plurality of platelet-shaped particles; Coating the particles with the doped metal oxide; Introducing the coated particles into a carrier matrix such that the final corona shielding material is formed by the carrier matrix with the particles, wherein the metal oxide and the doping element be chosen such that the current density field strength characteristic of the final corona protection material has the slope at the design point.
  • An inventive Endglimmstoff for a high voltage machine has the Endenglimmschutzmaterial.
  • a correspondingly adapted current density-field strength characteristic is required depending on the characteristics of an insulation system of the high-voltage machine, in particular at the design point.
  • a predetermined desired material characteristic can be realized by the doped metal oxide.
  • the materials used, namely the doping element and the metal oxide, as well as their crystal sizes and production parameters jointly determine the slope of the double logarithmically applied current density field strength characteristic at the design point.
  • the doping level is further preferably selected such that the amount of doping element in the metal oxide is between 0 and 30 wt. % lies.
  • the amount of the doping element in the metal oxide By the amount of the doping element in the metal oxide, the specific electrical resistance of the final corona protective material can be advantageously adjusted.
  • the particle mass concentration of the particles in the carrier matrix is chosen such that the final corona protective material is above the percolation threshold. In this case, it is preferred that the particle mass concentration of the particles is more than 25% by weight. From this specific particle mass concentration in the carrier matrix, the final corona protective material is above the percussion threshold and the surface resistance of the final corona protective material hardly changes with increasing particle mass concentration. As a result, the Endglimmtikmaterial is hardly subject to fluctuations in the surface resistance, which is thus well reproducible.
  • the preferred platelet-shaped particles have, for example, a diameter of 2 to 15 ⁇ m, in particular in the range from 3 to ⁇ and more preferably from 4 to 7 ⁇ .
  • the thickness of the platelets is in the nanometer range, that is to say for example in the range from 100 to 900 nm, in particular from 150 to 700 nm and particularly preferably in the range of 300 nm.
  • the platelet-shaped particles preferably have a crystalline fraction.
  • the crystallinity of the particles and the dimensions of the particles, the resistance of the material can be adjusted.
  • the crystallinity of the particles can be differentiated between coarse-crystalline and fine-crystalline. This distinction depends on the size of the crystal. The following relationship applies: The more finely crystalline the particles, the more grain boundaries per unit length result and the higher the resistance.
  • the particles are preferably made of mica and / or an undoped metal oxide, in particular aluminum oxide. Due to the preferably planar structure of the particles, an improved contacting of the partially conductive particles with one another is achieved.
  • the particle-coating metal oxide is selected from the group: metal oxide in binary and tertiary mixed phase, in particular tin oxide, zinc oxide,
  • Zinc stannate, titanium oxide, lead oxide is preferably selected from the group: antimony, indium, cadmium.
  • coated particles when introduced into the carrier matrix, they are preferably mixed with a solvent, as a result of which evaporation of the solvent in the carrier matrix results in the formation of convection currents with which the
  • Particles are aligned in the carrier matrix. This leads advantageously to an optimal contacting of the particles with each other. Furthermore, due to the planar geometry of the Particle undesirable sedimentation of the particles in the carrier matrix achieved.
  • the carrier matrix used is preferably an electrically insulating temperature-stable matrix.
  • thermosets and / or thermoplastics can be used.
  • Suitable solvents are, for example, DMF, 2-butanone, acetone and 1-butanol.
  • the end corona protective material produced by the method according to the invention has a specifically set current density-field strength characteristic with a specifically set gradient in the design point when the current density-field strength characteristic is plotted twice logarithmically.
  • advantageously operational requirements can be realized in the design of the end corona protection with the final corona protective material.
  • a reduction in the control of the electrical resistance, of cross sensitivities is advantageously achieved with the end corona protection according to the invention.
  • the end corona protection according to the invention advantageously has a high long-term temperature resistance.
  • the Endenglimmschutz is provided for the high-voltage machine with the shortest possible length, although the Endenglimmschutz causes an advantageous potential control.
  • the end corona shield according to the invention can advantageously be made short in the longitudinal direction of a winding bar of the high-voltage machine.
  • Spray application preferably by an automated spray application:
  • a reproducible EGS resistor pad can be created. It is possible to produce a homogeneous EGS resistance coating that reduces hotspots (increases the thermal life) and reduces the number of partial discharges (increasing the electrical life).
  • the doping level is further preferably selected such that the amount of doping element in the metal oxide is between 0 and 30 wt. % lies.
  • the amount of the doping element in the metal oxide By the amount of the doping element in the metal oxide, the specific electrical resistance of the final corona protective material can be advantageously adjusted.
  • the resulting semi-conductive end corona protection material serves as a coating for the particles, which in turn are used as a filler in the carrier matrix.
  • the doping level in the metal oxide according to a further embodiment may be in mol% up to 5 mol%, preferably up to 3 mol% and especially preferably between 0.1 and 4 mol%.
  • the invention relates to an insulation system with Endenglimmtik and a method for producing a Endenglimmtikes which suppresses the formation of potential differences. By means of a material composition of the semiconducting material, which allows spraying, the material is sprayed, for example, by robots.

Abstract

Die Erfindung betrifft ein Isoliersystem mit Endenglimmschutz und ein Verfahren zum Herstellen eines Endenglimmschutzes das die Ausbildung von Potentialunterschieden unterdrückt. Durch eine Materialzusammensetzung des halbleitenden Materials, die Versprühen ermöglicht, wird das Material beispielsweise automatisiert durch Roboter, versprüht.

Description

Isoliersystem mit Endenglimmschutz und Verfahren zur Herstel- lung des Endenglimmschutzes
Die Erfindung betrifft ein Isoliersystem mit Endenglimmschutz und ein Verfahren zum Herstellen eines Endenglimmschutzes das die Ausbildung von Potentialunterschieden unterdrückt.
Für eine Hochspannungsmaschine, wie beispielsweise einen Turbogenerator in einem Kraftwerk zur Erzeugung von elektrischer Energie, sind ein hoher Wirkungsgrad und eine hohe Verfügbarkeit gefordert. Daraus resultiert in der Regel eine hohe me- chanische, thermische und elektrische Beanspruchung der Bauteile des Turbogenerators. Der Turbogenerator weist insbesondere eine Ständerwicklung auf, an die eine besonders hohe Anforderung bezüglich Festigkeit und Zuverlässigkeit gestellt ist. Insbesondere ist das Isoliersystem der Ständerwicklung an der Grenzfläche zwischen der Hauptisolierung und dem
Blechpaket der Ständerwicklung durch eine hohe thermische, thermomechanische , dynamische und elektromechanische Betriebsbeanspruchung stark belastet, wodurch das Risiko einer Beschädigung des Isoliersystems der Ständerwicklung durch Teilentladung hoch ist.
Die Ständerwicklung weist einen mit der Hauptisolierung elektrisch isolierten Leiter auf, der in einer Nut gelagert ist, die in dem Blechpaket vorgesehenen ist. Beim Betrieb des Turbogenerators ist der Ständer einer thermischen Wechselbeanspruchung ausgesetzt, wodurch hervorgerufen durch unterschiedliche Wärmeausdehnungsgeschwindigkeiten von dem Leiter und der Hauptisolierung mechanische Spannungen in der Hauptisolierung erzeugt werden können. Dadurch bedingt kann ein örtlich begrenztes Ablösen der Hauptisolierung von dem Leiter auftreten, wodurch Hohlräume zwischen der Hauptisolierung und dem Leiter entstehen, in denen Teilentladungen zünden können. Die Teilentladungen können zu einer Beschädigung der Haupt- isolierung führen, wodurch der Turbogenerator nicht betreibbar wäre. An den Nutaustritten steht herkömmlich der Leiter mit seiner Hauptisolierung vor, wo die Grenzfläche zwischen dem Leiter und der Hauptisolierung angeordnet ist. Bei ent- sprechend hoher elektrischer Spannung in dem Leiter, insbesondere beim An- und Abfahren des Turbogenerators, kann eine Gleitentladung an der Grenzfläche zünden. Dies führt zu einer hohen elektrischen Grenzflächenbeanspruchung, wodurch die elektrische Dauerfestigkeit der Ständerwicklung herabgesetzt ist. Abhilfe schafft das Vorsehen einer Innenpotentialsteue- rung (IPS), die an der Grenzfläche zwischen dem Leiter und der Hauptisolierung vorgesehen ist. Die Innenpotentialsteue- rung ist elektrisch schwach leitend und stellt dadurch sicher, dass bei den thermomechanisch bedingten Hohlräumen zwi- sehen der Hauptisolierung und dem Leiter keine elektrischen Teilentladungen entstehen können.
Ferner ist zwischen der Hauptisolierung und dem Blechpaket eine weitere Grenzfläche ausgebildet, die ebenfalls einer ho- hen elektrischen Grenzflächenbeanspruchung ausgesetzt ist. Deshalb ist auf der Hauptisolierung ein schwach leitfähiger und geerdeter Außenglimmschutz (AGS) angebracht. Herkömmlich hat der Außenglimmschutz entlang der Hauptisolierung eine kurze Längserstreckung, so dass im Bereich der Hauptisolie- rung, in dem der Außenglimmschutz sich nicht mehr erstreckt, mit der Umgebungsluft eine weitere Grenzfläche ausgebildet ist. Um die elektrische Grenzflächenbeanspruchung an dieser Grenzfläche herabzusetzen ist hier ein Endenglimmschutz (EGS) vorgesehen. Der Endenglimmschutz ist mit einem Material aus- gebildet, das bei zunehmender Spannung, d.h. elektrischer Feldstärke, einen abnehmenden elektrischen Widerstand hat. Dadurch ist der Potentialabbau an der Grenzfläche vergleichmäßigt, wodurch der Endenglimmschutz als eine Potentialsteuerung funktioniert.
Ein Endenglimmschutz ist von einem halbleitenden Lack oder einem halbleitenden Band vorwiegend auf der Basis von Siliziumkarbid bekannt. Ziel der Potentialsteuerung ist es, den tangentialen Potentialaufbau entlang der Oberfläche der Hauptisolierung zu vergleichmäßigen und im Idealfall zu line- arisieren. Dies wird dann erreicht, wenn pro Längeneinheit entlang des Wicklungsstabs immer derselbe Spannungsbetrag aufgebaut wird, indem der Lack oder das Band als ein in
Längsrichtung des Wicklungsstabs ortabhängiger und spannungs - abhängiger Widerstandsbelag hergestellt ist. Insbesondere werden für den Endenglimmschutz Materialien verwendet, deren elektrische Leitfähigkeit sich mit der elektrischen Feldstär- ke erhöht. Dadurch wird das Feld aus problematischen Bereichen des Wicklungsstabs mit insbesondere hoher Feldstärke verdrängt. Eine Kenngröße für die nichtlineare elektrische Leitfähigkeit des Materials ist die Stromdichte-Feldstärke- Kennlinie. Die Stromdichte-Feldstärke-Kennlinie hat in der Regel einen S-förmigen Verlauf, wobei versucht wird, den Betriebspunkt des Endenglimmschutzes im Bereich des Wendepunkts der S-förmigen Kurve zu legen. Im Bereich des Wendepunkts ist der Verlauf der Kennlinie im Wesentlichen linear und durch ihre Steigung charakterisiert, wenn die Stromdichte- Feldstärke-Kennlinie doppelt logarithmisch aufgetragen ist.
Herkömmlich ist der Endenglimmschutz von einem auf die Hauptisolierung aufgebrachten Band oder Lack gebildet, wobei das Band oder der Lack von einer Polymermatrix gebildet ist, in die Partikel aus Siliziumkarbid oder anderen halbleitenden Füllstoffe eingebettet sind.
Die resitiven EndenglimmschutzSysteme werden durch das Aufbringen einer oder mehrerer halbleitender Schichten unterschiedlicher Länge hergestellt, wobei diese als Band appliziert werden oder als Lack mit einem Pinsel aufgestrichen werden. Bei allen heute bekannten Applikations-Verfahren wird der Endenglimmschutz händisch appliziert. Im Falle der Bandapplikation bewirkt eine leichte Unregelmäßigkeit in der Überlappung der einzelnen Bandlagen oder eine leichte Unregelmäßigkeit im Bandzug eine große Schwankung im lokalen Wi- derstandsbelag . Zudem entstehen an den Überlappungsübergängen lokale Feldüberhöhungen an denen es bevorzugt zu Teilentladungen kommt. Insbesondere bei der manuellen Applikationsmethode resultieren durch Pinselführung, Streichrichtung, Druck während des Streichvorgangs und die Anzahl der Streichwieder- holungen starke Schwankungen im EGS-Widerstandsbelag . All diese Applikationsparameter sind hierbei von Mensch zu Mensch sehr unterschiedlich stark ausgeprägt.
Als Konsequenz werden aktuelle EndenglimmschutzSysteme mit einem großen Sicherheitsspielraum konstruiert, wodurch die Optimierung des Systems gering bleibt.
Aufgabe der vorliegenden Erfindung ist es daher, ein Isoliersystem mit Endenglimmschutz zu schaffen, bei dem die halb- leitfähigen Schichten des Endenglimmschutzes hinsichtlich der Potentialunterschiede optimiert sind.
Lösung der Aufgabe und Gegenstand der vorliegenden Erfindung ist daher ein Isoliersystem an einem Generatorwicklungsstab mit Endenglimmschutz, wobei der Endenglimmschutz aus einem versprühbaren Material ist und eine gleichmäßige und homogene Oberfläche hat. Außerdem ist Gegenstand der Erfindung ein Verfahren zum Aufbringen von teilleitfähigem Material als Endenglimmschutz, wobei das Material aufgesprüht wird. Allgemeine Erkenntnis der Erfindung ist, dass durch die neuen Füllstoffe nicht nur der Widerstand der halbleitenden Materialien einstellbar ist, sondern insbesondere durch die Be- schichtung der Partikel mit Metalloxid verschiedener Dotie- rungen die Abrasivität des Materials gering ist, so dass es versprühbar ist. Als versprühbar wird dabei ein Material bezeichnet, das wenig abrasiv und niedrigviskos, eventuell mit
Lösungsmittel versetzt ist. Statt des bisher eingesetzten harten und abrasiven Siliziumkarbids werden gemäß der Erfin- dung beispielsweise Metalloxide eingesetzt, die weicher (auf der Moos' sehen Härteskale weiter unten) und weniger abrasiv sind .
Nach einer Ausführungsform der Erfindung wird das halbleiten- de Material mittels Roboter gleichmäßig auf die Hauptisolation von Generatorwicklungsstäben appliziert. Dadurch entstehen gleichmäßig dicke und homogene Oberflächen, in denen ein linearer Auf- und Abbau des Potentials optimal ermöglicht wird. Nach einer bevorzugten Ausführungsform der Erfindung wird das halbleitfähige Material als Aerosol appliziert.
Die Applikation des Materials als Band, wie nach dem Stand der Technik bekannt, besitzt auf Grund von Wicklungsüberlap- pungen Potentialunterschiede, die bei PrüfSpannungen zu Teilentladungen führen können. Durch ein Aufsprühen des Materials werden diese Nachteile behoben, da durch Aufsprühen eine glatte EGS-Oberfläche entsteht, die keine Potentialunterschiede durch Überlappung zeigt .
Bei der Herstellung des halbleitenden versprühbaren Materials wird bevorzugt wie folgt vorgegangen: Dotieren eines Metalloxids mit mindestens einem Dotierungselement; Bereitstellen einer Mehrzahl von plättchenförmigen Partikeln; Beschichten der Partikel mit dem dotierten Metalloxid; Einbringen der beschichteten Partikel in eine Trägermatrix, so dass von der Trägermatrix mit den Partikeln das Endenglimmschutzmaterial gebildet wird, wobei das Metalloxid und das Dotierungselement derart gewählt werden, dass die Stromdichte-Feldstärke- Kennlinie des Endenglimmschutzmaterials im Designpunkt die Steigung hat. Ein erfindungsgemäßer Endenglimmschutz für eine Hochspannungsmaschine weist das Endenglimmschutzmaterial auf. Beim Entwurf des Endenglimmschutzes wird in Abhängigkeit der Eigenschaften eines Isoliersystems der Hochspannungsmaschine eine entsprechend angepasste Stromdichte-Feldstärke-Kennlinie gefordert, insbesondere im Designpunkt. Eine so vorgegebene Materialwunschkennlinie kann durch das dotierte Metalloxid realisiert werden. Hierbei legen die verwendeten Materialien, nämlich das Dotierungselement und das Metalloxid, sowie deren Kristallgrößen und Herstellungsparameter gemeinsam die Stei- gung der doppelt logarithmisch aufgetragenen Stromdichte- Feldstärke-Kennlinie im Designpunkt fest.
Der Dotierungsgrad wird ferner bevorzugt derart gewählt, dass die Menge an dem Dotierungselement in dem Metalloxid zwischen 0 und 30 Gew- . % liegt. Durch die Menge des Dotierungselements in dem Metalloxid kann der spezifische elektrische Widerstand des Endenglimmschutzmaterials vorteilhaft eingestellt werden.
Ferner ist es bevorzugt, dass die Partikelmassenkonzentration der Partikel in der Trägermatrix derart gewählt wird, dass das Endenglimmschutzmaterial oberhalb der Perkulationsschwel - le ist. Hierbei ist es bevorzugt, dass die Partikelmassenkonzentration der Partikel bei mehr als 25 Gew.% liegt Ab dieser bestimmten Partikelmassenkonzentration in der Trägermatrix befindet sich das Endenglimmschutzmaterial oberhalb der Per- kulationsschwelle und der Oberflächenwiderstand des Endenglimmschutzmaterials ändert sich kaum mit steigender Partikelmassenkonzentration. Dadurch unterliegt das Endenglimmschutzmaterial kaum Schwankungen im Oberflächenwiderstand, der dadurch gut reproduzierbar ist.
Die bevorzugt plättchenförmigen Partikel haben beispielsweise einen Durchmesser von 2 bis 15 μιτι, insbesondere im Bereich von 3 bis ΙΟμιτι und besonders bevorzugt von 4 bis 7 μιτι. Die Dicke der Plättchen liegt im Nanometerbereich, also beispielsweise im Bereich von 100 bis 900 nm, insbesondere von 150 bis 700 nm und insbesondere bevorzugt im Bereich von 300nm.
Es können auch mehrere Fraktionen von Partikel mit verschiedenen Dimensionen vorliegen. Bevorzugt haben die plättchenförmigen Partikel einen kristallinen Anteil .
Durch die Dotierung, der Kristallinität der Partikel und die Dimensionen der Partikel lässt sich der Widerstand des Mate- rials einstellen. Die Kristallinität der Partikel lässt sich zwischen grobkristallin und feinkristallin unterscheiden. Diese Unterscheidung richtet sich nach der Größe des Kristalls. Dabei gilt folgender Zusammenhang: Je feinkristalliner die Partikel desto mehr Korngrenzen pro Längeneinheit ergeben sich und desto höher ist der Widerstand.
Die Partikel sind bevorzugt aus Glimmer und/oder einem undotiertem Metalloxid, insbesondere Aluminiumoxid. Durch die bevorzugt planare Struktur der Partikel wird eine verbesserte Kontaktierung der teilleitfähigen Partikel untereinander erreicht. Bevorzugtermaßen wird das die Partikel beschichtende Metalloxid aus der Gruppe gewählt: Metalloxid in binärer und tertiärer Mischphase, insbesondere Zinnoxid, Zinkoxid,
Zinkstannat, Titanoxid, Bleioxid. Das Dotierungselement wird bevorzugt aus der Gruppe gewählt: Antimon, Indium, Cadmium.
Außerdem wird beim Einbringen der beschichteten Partikel in die Trägermatrix diese bevorzugt mit einem Lösungsmittel versetzt, wodurch beim Verdunsten des Lösungsmittels in der Trä- germatrix Konvektionsströme sich ausbilden, mit denen die
Partikel in der Trägermatrix ausgerichtet werden. Dies führt vorteilhaft zu einer optimalen Kontaktierung der Partikel untereinander. Des Weiteren ist durch die planare Geometrie der Partikel ein unerwünschtes Sedimentieren der Partikel in der Trägermatrix erzielt.
Als Trägermatrix wird bevorzugt eine elektrisch isolierende temperaturstabile Matrix gewählt. Beispielsweise können Duroplaste und/oder Thermoplasten eingesetzt werden. Beispielsweise kommen Polysiloxane, Polysilazane , Phenolharze, Epoxidharze und ähnliches. Als Lösungsmittel eignen sich beispielsweise DMF, 2-Butanon, Aceton und 1- Butanol .
Dadurch ist es vorteilhaft erreicht, dass das mit dem erfindungsgemäßen Verfahren hergestellte Endenglimmschutzmaterial eine gezielt eingestellte Stromdichte-Feldstärke-Kennlinie mit einer gezielt eingestellten Steigung im Designpunkt hat, wenn die Stromdichte-Feldstärke-Kennlinie doppelt logarithmisch aufgetragen ist. Dadurch können vorteilhaft betriebsbedingte Vorgaben bei dem Entwurf des Endenglimmschutzes mit dem Endenglimmschutzmaterial realisiert werden. Ferner ist mit dem erfindungsgemäßen Endenglimmschutz vorteilhaft eine Reduktion der Steuerung des elektrischen Widerstands, von Querempfindlichkeiten (Temperatur, Herstellungs - und Verar- beitungsprozess , thermomechanische Einflussgrößen) erreicht. Außerdem weist der erfindungsgemäße Endenglimmschutz vorteilhaft eine hohe Dauertemperaturbeständigkeit auf. Durch die gezielt einstellbare Stromdichte-Feldstärke-Kennlinie ist es möglich, dass der Endenglimmschutz für die Hochspannungsmaschine mit möglichst kurzer Baulänge versehen ist, obwohl der Endenglimmschutz eine vorteilhafte Potentialsteuerung bewirkt. Dadurch kann der erfindungsgemäße Endenglimmschutz vorteilhaft in Längsrichtung eines Wicklungsstabs der Hochspannungsmaschine kurz ausgeführt sein. Es ergeben sich eine ganze Reihe von Vorteilen durch eine
Sprühapplikation, bevorzugt durch eine automatisierte Sprühapplikation : Insbesondere kann ein reproduzierbarer EGS-Widerstandsbelag geschaffen werden. Dabei ist es möglich einen homogenen EGS- Widerstandsbelag herzustellen, der zur Reduzierung von Hot- Spots (Erhöhung der thermischen Lebensdauer) führt und auch die Reduzierung von Teilentladungen (Erhöhung der elektrischen Lebensdauer) zur Folge hat.
Insbesondere ist es möglich, die lokale Schichtdicke reproduzierbar einstellbar durch zeilenartiges Aufsprühen zu reali- sieren. Dabei ergibt sich insbesondere eine Verbesserung der thermischen und elektrischen Eigenschaften.
Der Dotierungsgrad wird ferner bevorzugt derart gewählt, dass die Menge an dem Dotierungselement in dem Metalloxid zwischen 0 und 30 Gew- . % liegt. Durch die Menge des Dotierungselements in dem Metalloxid kann der spezifische elektrische Widerstand des Endenglimmschutzmaterials vorteilhaft eingestellt werden. Das dadurch entstandene teilleitfähige Endenglimmschutzmate- rial dient als Beschichtung für die Partikel, die wiederum als ein Füllstoff in der Trägermatrix eingesetzt werden. Der Dotierungsgrad im Metalloxid kann nach einer weiteren Ausführungsform in Mol% bis zu 5 Mol%, bevorzugt bis zu 3 Mol% und insbesondere bevorzugt zwischen 0,1 und 4 Mol% liegen. Die Erfindung betrifft ein Isoliersystem mit Endenglimmschutz und ein Verfahren zum Herstellen eines Endenglimmschutzes das die Ausbildung von Potentialunterschieden unterdrückt. Durch eine Materialzusammensetzung des halbleitenden Materials, die Versprühen ermöglicht, wird das Material beispielsweise auto- matisiert durch Roboter, versprüht.

Claims

Patentansprüche / Patent Claims
1. Isoliersystem an einem Generatorwicklungsstab mit En- denglimmschutz , wobei der Endenglimmschutz aus einem versprühbaren Material, das halbleitend ist und eine gleichmäßige und homogene Oberfläche bildet.
2. Isoliersystem nach Anspruch 1, dadurch gekennzeichnet, dass das versprühbare halbleitende Material eine poly- merisierbare Komponente als Trägermatrix und einen
Füllstoff hat.
3. Isoliersystem nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Trägermatrix Du- roplaste und/oder Thermoplasten, insbesondere Polysilo- xane, Polysilazane , Phenolharze, Epoxidharze umfasst.
4. Isoliersystem nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das halbleitende Material Lösungsmittel, insbesondere Dimethylformamid, 2-
Butanon, Aceton und/oder 1-Butanol, umfasst.
5. Isoliersystem nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das halbleitende Material als Aerosol beim Versprühen vorliegt.
6. Isoliersystem nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das halbleitende Material als Füllstoff zumindest eine Fraktion an Partikel, ins- besondere plättchenförmigen Partikel umfasst.
7 . Isoliersystem nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass Partikel im Füllstoff kristallin vorliegen.
8. Isoliersystem nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass Partikel beschichtet vorliegen .
9. Isoliersystem nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Beschichtung der Partikel eine Dotierung hat.
10. Isoliersystem nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Dotierung im Bereich kleiner 5 Mol%, insbesondere im Bereich kleiner 3 Mol% liegt .
11. Verfahren zum Aufbringen von teilleitfähigem Material als Endenglimmschutz , wobei das Material aufgesprüht wird .
12. Verfahren nach Anspruch 11, das automatisiert erfolgt.
PCT/EP2013/055557 2012-04-04 2013-03-18 Isoliersystem mit endenglimmschutz und verfahren zur herstellung des endenglimmschutzes WO2013149815A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201210205563 DE102012205563A1 (de) 2012-04-04 2012-04-04 Isoliersystem mit Endenglimmschutz und Verfahren zur Herstellung des Endenglimmschutzes
DE102012205563.0 2012-04-04

Publications (1)

Publication Number Publication Date
WO2013149815A1 true WO2013149815A1 (de) 2013-10-10

Family

ID=48139886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/055557 WO2013149815A1 (de) 2012-04-04 2013-03-18 Isoliersystem mit endenglimmschutz und verfahren zur herstellung des endenglimmschutzes

Country Status (2)

Country Link
DE (1) DE102012205563A1 (de)
WO (1) WO2013149815A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016188831A1 (de) * 2015-05-26 2016-12-01 Siemens Aktiengesellschaft Widerstandsbelag für einen glimmschutz einer elektrischen maschine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014226097A1 (de) * 2014-12-16 2016-06-16 Siemens Aktiengesellschaft Glimmschutzmaterial mit einstellbarem Widerstand
AT518664B1 (de) 2016-04-22 2017-12-15 Trench Austria Gmbh HGÜ-Luftdrosselspule und Verfahren zur Herstellung
EP3462463A1 (de) * 2017-09-28 2019-04-03 Siemens Aktiengesellschaft Isolationssystem, isolationsstoff und isolationsmaterial zur herstellung des isolationssystems
DE102018202058A1 (de) * 2018-02-09 2019-08-14 Siemens Aktiengesellschaft Formulierung zur Herstellung eines Isolationssystems, elektrische Maschine und Verfahren zur Herstellung eines Isolationssystems
DE102018202061A1 (de) 2018-02-09 2019-08-14 Siemens Aktiengesellschaft Isolation, elektrische Maschine und Verfahren zur Herstellung der Isolation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000013191A1 (de) * 1998-08-28 2000-03-09 Siemens Aktiengesellschaft Glimmschutzband
WO2001048895A1 (de) * 1999-12-28 2001-07-05 Alstom (Switzerland) Ltd. Verfahren zur herstellung einer hochwertigen isolierung von elektrischen leitern oder leiterbündeln rotierender elektrischer maschinen mittels sprühsintern
EP2362399A1 (de) * 2010-02-26 2011-08-31 Siemens Aktiengesellschaft Verfahren zum Herstellen eines Endenglimmschutzmaterials und ein Endenglimmschutz mit dem Endenglimmschutzmaterial

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000013191A1 (de) * 1998-08-28 2000-03-09 Siemens Aktiengesellschaft Glimmschutzband
WO2001048895A1 (de) * 1999-12-28 2001-07-05 Alstom (Switzerland) Ltd. Verfahren zur herstellung einer hochwertigen isolierung von elektrischen leitern oder leiterbündeln rotierender elektrischer maschinen mittels sprühsintern
EP2362399A1 (de) * 2010-02-26 2011-08-31 Siemens Aktiengesellschaft Verfahren zum Herstellen eines Endenglimmschutzmaterials und ein Endenglimmschutz mit dem Endenglimmschutzmaterial

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016188831A1 (de) * 2015-05-26 2016-12-01 Siemens Aktiengesellschaft Widerstandsbelag für einen glimmschutz einer elektrischen maschine
CN107646163A (zh) * 2015-05-26 2018-01-30 西门子公司 用于电机的电晕屏蔽的防护覆层
CN107646163B (zh) * 2015-05-26 2020-06-12 西门子公司 用于电机的电晕屏蔽的防护覆层

Also Published As

Publication number Publication date
DE102012205563A1 (de) 2013-10-10

Similar Documents

Publication Publication Date Title
EP2362399B1 (de) Verfahren zum Herstellen eines Endenglimmschutzmaterials und ein Endenglimmschutz mit dem Endenglimmschutzmaterial
WO2013149815A1 (de) Isoliersystem mit endenglimmschutz und verfahren zur herstellung des endenglimmschutzes
EP1811633A1 (de) Statorwicklung einer rotierenden elektrischen Maschine sowie ein Verfahren zur Herstellung einer solchen Statorwicklung
DE19963491A1 (de) Verfahren zur Herstellung einer hochwertigen Isolierung von elektrischen Leitern oder Leiterbündeln rotierender elektrischer Maschinen mittels Sprühsintern
DE102011083409A1 (de) Isoliersysteme mit verbesserter Teilentladungsbeständigkeit, Verfahren zur Herstellung dazu
DE102015209594A1 (de) Widerstandsbelag für einen Glimmschutz einer elektrischen Maschine
EP3080819B1 (de) Glimmschutzsystem, insbesondere aussenglimmschutzsystem für eine elektrische maschine
WO2017134040A1 (de) Schirmring für eine transformatorspule
EP2740197B1 (de) Elektrische leitungseinrichtung, endenglimmschutzanordnung und verfahren zum herstellen eines endenglimmschutzes
WO2012152580A2 (de) Verfahren zum herstellen eines elektrischen isolationssystems für eine elektrische maschine
EP0898806A1 (de) Trägerkörper für eine elektrische wicklung und verfahren zur herstellung eines glimmschutzes
WO2013143895A2 (de) Glimmschutzwerkstoff für eine elektrische maschine
EP0898804B1 (de) Elektrischer leiter, anordnung elektrischer leiter sowie verfahren zur isolation eines elektrischen leiters einer elektrischen grossmaschine
EP1995850A1 (de) Endenglimmschutzanordnung
EP2803131B1 (de) Glimmschutz
DE102012205048A1 (de) Endenglimmschutzvorrichtung und Verfahren zum Herstellen einer wärmeleitfähigen Schicht auf einem Endenglimmschutz
EP2907225B1 (de) Verfahren und vorrichtung zum ausbilden eines glimmschutzes sowie wicklungsstab mit einem solchen glimmschutz
EP3688774B1 (de) Isolationssystem, isolationsstoff und isolationsmaterial zur herstellung des isolationssystems
WO2016045844A1 (de) Glimmschutzsystem für eine elektrische maschine
DE112016006770T5 (de) Elektrische Rotationsmaschine
WO2002075902A1 (de) Verfahren zum herstellen eines leiterstabes
EP3175536B1 (de) Glimmschutzsystem und elektrische maschine
EP3218908B1 (de) Glimmschutzmaterial mit einstellbarem widerstand
DE102021209276A1 (de) Glimmschutzsystem, elektrische Maschine und Verwendung des Glimmschutzsystems in einer elektrischen Maschine
EP2764519B1 (de) Verfahren zur herstellung eines glimmschutzes, schnellhärtendes glimmschutzsystem und elektrische maschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13716971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13716971

Country of ref document: EP

Kind code of ref document: A1