WO2013147485A1 - Method for preparing xylylenediamine - Google Patents

Method for preparing xylylenediamine Download PDF

Info

Publication number
WO2013147485A1
WO2013147485A1 PCT/KR2013/002481 KR2013002481W WO2013147485A1 WO 2013147485 A1 WO2013147485 A1 WO 2013147485A1 KR 2013002481 W KR2013002481 W KR 2013002481W WO 2013147485 A1 WO2013147485 A1 WO 2013147485A1
Authority
WO
WIPO (PCT)
Prior art keywords
xylylenediamine
xylene
phthalonitrile
ammonia
reaction
Prior art date
Application number
PCT/KR2013/002481
Other languages
French (fr)
Korean (ko)
Inventor
이상득
안병성
이현주
주인범
조민식
김석수
Original Assignee
코오롱인더스트리 주식회사
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사, 한국과학기술연구원 filed Critical 코오롱인더스트리 주식회사
Publication of WO2013147485A1 publication Critical patent/WO2013147485A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/02Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of hydrogen atoms by amino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/84Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/26Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring
    • C07C211/27Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring having amino groups linked to the six-membered aromatic ring by saturated carbon chains
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/86Separation

Definitions

  • the present invention relates to a method for producing xylylenediamines by hydrogenating phthalonitriles obtained by ammoxidation of xylenes.
  • Xylylenediamine is useful as a raw material of polyamide resins, epoxy curing agents, or intermediates for isocyanate production, and is synthesized by ammoxidation of xylene to synthesize phthalonitrile and hydrogenation of the phthalonitrile.
  • a method of preparing xylylenediamine comprising a hydrogenation step of synthesizing xylylenediamine by hydrogenating phthalonitrile, and a xylylenediamine purification step of recovering xylylenediamine by distilling and extracting a hydrogenation product.
  • MGC has been proposed in US Pat. No.
  • 0168474 is characterized by adding ammonia to dissolve the molten phthalonitrile and removing the low boiling point material from the phthalonitrile trapped in the organic solvent to dissolve the high boiling point insoluble components and then hydrogenating.
  • BASF also proposes a process for preparing xylylenediamine similar to MGC in U.S. Pat.Nos. 7,323,598, 7,363,610, 7,528,284 and 7,541,497, which discloses N-methyl-2-pyrrolidone ( NMP) is used as a phthalonitrile collection solvent.
  • NMP N-methyl-2-pyrrolidone
  • the production method characterized in that the reaction product gas of the ammonia oxidation reaction of xylene in direct contact with the organic solvent in the absorption tower to dissolve and recover the phthalonitrile in the organic solvent
  • the organic solvent, unreacted xylene, tolunitrile (tolunitrile), which is an intermediate of the ammonia oxidation reaction, in the phthalonitrile capture step is accompanied by a considerable amount of exhaust gas and has a problem of flowing out to the top of the absorption tower.
  • the problem to be solved by the present invention is a method of synthesizing the corresponding phthalonitrile through ammonia oxidation of xylene, and to produce a xylylenediamine by hydrogenating the synthesized phthalonitrile, there is almost no loss of organic solvent
  • the present invention provides a method for producing an economical xylylenediamine that is easy to recover, unreacted xylene and tolunitrile, and the process is simple.
  • the present invention provides a method for producing xylylenediamine from xylene
  • step (3) The reaction product gas of the ammonia oxidation reaction remaining after the phthalonitrile was precipitated by step (2) was cooled, condensed water, xylene and tolunitrile in the reaction product gas, and the organic layer separated Xylene and tolunitrile recovery step for reuse as a raw material of the ammonia oxidation step of step (1);
  • xylylene comprising the step of purifying xylylenediamine to obtain high purity xylylenediamine by separating ammonia, organic solvent and heavy water from the hydrogenation product containing xylylenediamine obtained in step (4) Provided are methods for preparing diamines.
  • the catalyst of step (1) is made of vanadium (V), chromium (Cr), antimony (Sb), molybdenum (Mo), iron (Fe) and tungsten (W) It may be an oxide of one or more metals selected from the group, and the oxygen-containing gas may be air containing oxygen, air diluted with an inert gas, or oxygen.
  • the cooling of the step (2) is preferably performed at a sublimation temperature range of 80 °C to phthalonitrile
  • the organic solvent of the step (2) is an aromatic hydrocarbon, saturated alicyclic Hydrocarbons, heterocyclic compounds, aromatic nitriles, heteronitriles, imidazoles, tolunitriles, methylbenzylamines, xylylenediamines, N-methyl-2-pyrrolidone (NMP), mesitylene and water silica It may be selected from the group consisting of.
  • the cooling in step (3) may be performed in a range of 0 ° C to 50 ° C, and the hydrogenation of step (4) is performed under a catalyst, in a range of 40 ° C to 150 ° C.
  • Temperature and a pressure in the range of 3 to 30 MPa, and the catalyst used for the hydrogenation of step (4) is preferably a nickel or cobalt-containing catalyst.
  • the ammonia separated in the step (5) is recycled by recycling to the hydrogenation step of the step (4), the organic solvent separated in the step (5) is the (2 Can be recycled to the phthalonitrile recovery step.
  • the xylylenediamine production method according to the present invention can be easily recovered from the reaction product gas of the ammonia oxidation reaction, and thus can be reused as a reaction raw material, and it is environmentally friendly by reducing the loss of organic solvents. And economical.
  • FIG. 1 is a schematic diagram of a case of carrying out the method according to the present invention.
  • FIG. 2 is a schematic diagram of a reactor used for ammonooxidation according to an embodiment of the present invention.
  • the present invention relates to a method for producing phthalonitrile from xylene, in which the reaction product gas synthesized by the ammonia oxidation reaction of xylene is cooled to sublimate phthalonitrile and precipitated selectively, and tolunitrile is added together with xylene.
  • the yield of phthalonitrile is improved compared to the case of using only xylene, and ammonia is added to the phthalonitrile solution dissolved in the organic solvent, and when hydrogenated, the conversion rate of phthalonitrile of 99% or more and Based on the fact that xylylenediamine can be synthesized in a yield of 97% or more, and the yield of cyanobenzylamine, a by-product that is difficult to separate because of similar boiling point to xylylenediamine, can be controlled to 500 ppm or less.
  • xylylenediamine can be synthesized in a yield of 97% or more
  • the yield of cyanobenzylamine, a by-product that is difficult to separate because of similar boiling point to xylylenediamine can be controlled to 500 ppm or less.
  • step (3) The reaction product gas of the ammonia oxidation reaction remaining after the phthalonitrile was precipitated by step (2) was cooled, condensed water, xylene and tolunitrile in the reaction product gas, and the organic layer separated Xylene and tolunitrile recovery step for reuse as a raw material of the ammonia oxidation step of step (1);
  • step (4) purifying the xylylenediamine to obtain high purity xylylenediamine by separating ammonia, organic solvent and heavy water from the hydrogenation product containing xylylenediamine obtained in step (4).
  • known a fixed bed catalyst or a fluidized bed catalyst may be used for the ammonia oxidation, and in particular, vanadium (V), chromium (Cr), antimony (Sb), molybdenum (Mo), iron (
  • An oxide catalyst of at least one metal selected from the group consisting of Fe) and tungsten (W) is preferred, and as the reaction raw material, at least one material selected from the group consisting of xylene, ammonia and oxygen-containing gas may be supplied.
  • the xylene is at least one xylene compound selected from the group consisting of o-xylene (o-xylene), m-xylene (m-xylene) and p-xylene (p-xylene), the phthalonitrile prepared therefrom is o At least one phthalonitrile selected from the group consisting of o-phthalonitrile, isophthalonitrile, and terephthalonitrile, in particular
  • the process according to the command is, by supplying the raw material of xylene m- xylene is more preferable for the production of isophthaloyl nitrile.
  • the amount of xylene supplied in the reaction raw material used in step (1) is 0.01 to 1.0 kg / (h ⁇ kg-catalyst) (mass flow rate per unit time of xylene supplied per unit mass (kg) of catalyst charged to the reactor (kg / h)), more preferably in the range of 0.03 to 0.3 kg / (h ⁇ kg-catalyst), the yield of phthalonitrile is good within the xylene feed range. It is also possible to replace a portion of xylene with tolunitrile and to supply it with a mixture of xylene and tolunitrile, and the concentration of tolunitrile in the mixture is not particularly limited, but 50 wt% or less is suitable.
  • the supply amount of ammonia in the reaction raw material used in step (1) may be 2 to 30 moles with respect to 1 mole of xylene, but the yield of phthalonitrile is better at 2 to 15 moles, and the oxygen-containing gas contains oxygen It may be one air, air diluted with an inert gas, or oxygen, and the amount of oxygen supplied in the oxygen-containing gas may be 3 moles or more with respect to 1 mole of xylene, but preferably 3 to 30 moles, more preferably 3 It is 10 mol, and the yield of phthalonitrile is favorable and a publication yield is high.
  • the reaction of step (1) may be carried out at a temperature range of 300 ° C to 500 ° C, preferably at a temperature of 350 ° C to 470 ° C and a pressure of normal pressure to 300 kPa, within the temperature and pressure range
  • the conversion of xylene in is good, and by-products such as carbon dioxide, hydrogen cyanide and benzonitrile can be suppressed to produce phthalonitrile in high yield.
  • the reaction product gas generated in step (1) is composed of phthalonitrile, unreacted xylene, tolunitrile, water vapor, ammonia, air, carbon dioxide, and the like. Although it may be carried out in the sublimation temperature range of the deronitrile, a temperature of 10 ° C. lower than the sublimation temperature of the phthalonitrile is more preferable.
  • a cooling device for depositing phthalonitrile may be a coil type heat exchanger or a cylindrical heat exchanger.
  • the organic solvent of step (2) is aromatic hydrocarbon, alicyclic hydrocarbon, heterocyclic compound, aromatic nitrile, heterocyclic nitrile, imidazole, tolunitrile, methyl Benzylamines, xylylenediamines, N-methyl-2-pyrrolidone, mesitylene and water silicate; and may be selected from the group consisting of imidazoles, methylbenzylamines, and xylyl Rendiamines are more preferable, and the solvent is a substance having high solubility in phthalonitrile or produced in xylylenediamine manufacturing process, and is inert to hydrogenation of phthalonitrile and is not separated. It has the advantage of being used directly.
  • the cooling of the step (3) may be in the range of 0 °C to 50 °C, it is more preferable to be carried out in the range of 5 °C to 40 °C because it can increase the recovery rate of xylene and tolunitrile, lower the energy cost is economical
  • the condensate condensed in step (3) may be separated into an organic layer composed mainly of xylene and tolunitrile and a water layer composed mainly of water, and the organic layer may be used as a reaction material in the ammonia oxidation step.
  • the hydrogenation reaction of step (4) may be performed in a fixed bed reactor filled with a catalyst or a multi-tube reactor capable of heat exchange, and when using a fixed bed reactor, a cooler is required along with the circulation of the reaction product to remove the heat of reaction. do.
  • the hydrogenation of step (4) can be carried out under a catalyst, a temperature in the range of 40 °C to 150 °C, and a pressure in the range of 3 to 30 MPa, a temperature in the range of 60 °C to 130 °C, and It is preferably carried out under a pressure in the range of 5 to 15 MPa, and the catalyst used for the hydrogenation of step (4) may be a nickel or cobalt-containing catalyst, mainly used in a form supported on a support, and step (4)
  • the phthalonitrile used for the hydrogenation of is at least one phthalonitrile selected from the group consisting of o-phthalonitrile, isophthalonitrile and terephthalonitrile.
  • the supply amount of the phthalonitrile of the step (4) may be 0.01 to 1.0 kg / (h kg-catalyst), wind
  • the yield of xylylenediamine in the phthalonitrile supply range is preferably in the range of 0.03 to 0.3 kg / (h ⁇ kg-catalyst), and the supply amount of ammonia is 0.5 to 50% by weight based on 1 weight of phthalonitrile.
  • the hydrogenation of step (4) is ammonia, organic It contains low boiling materials, such as a solvent, xylylenediamine, and high boiling materials.
  • step (5) can be carried out through a distillation or evaporation process, both batch or continuous.
  • a conventional distillation column such as a packed column or a multistage column, may be used.
  • low ammonia and organic solvents such as ammonia are first separated into a column top, followed by xylylenediamine.
  • the column top is separated and purified, the heavy water can be removed to the bottom of the column, the distillation process can be carried out at normal pressure or less, it is preferable that the pressure of 0.03 MPa or less, if the distillation pressure is out of the above range xylylene High decomposition products are formed by the decomposition and polymerization of the diamine, and the recovery rate of xylylenediamine is lowered.
  • the ammonia oxidation of m-xylene was carried out using a tubular reactor with two reaction zones shown in FIG. 2. 38 g and 54 g of vanadium containing catalyst were charged to the first and second reaction zones of the tubular reactor having an outer diameter of 25.4 mm, respectively. The reaction was carried out by supplying 9.0 g / h of m-xylene, ammonia and air to the first reaction zone of the reactor, and supplying only air to the second reaction zone. The molar ratio of ammonia to m-xylene supplied to the first reaction zone was 4, and the molar ratio of oxygen was 2.
  • the amount of air supplied to the second reaction zone was 175% of the amount of air supplied to the first reaction zone (molar ratio of oxygen to m-xylene supplied to the first reaction zone was 3.5).
  • Reactor cooling used a molten salt bath. At a molten salt temperature of 383 ° C., the hot spot temperature of the first reaction zone was 418 ° C., the hot spot temperature of the second reaction zone was 431 ° C., and the reaction pressure was atmospheric pressure.
  • the reaction product gas of the ammonia oxidation reaction was passed through the first heat exchanger in which the refrigerant at 100 ° C. was circulated and the second heat exchanger in which the refrigerant at 10 ° C. was circulated.
  • the first heat exchanger isophthalonitrile was precipitated in the solid state
  • the second heat exchanger the condensate was separated into an organic layer composed mainly of xylene and intermediate m-tolunitrile and a water layer composed mainly of water. It became.
  • An isophthalonitrile solution dissolved in 1-methyl imidazole was fed to a tubular reactor having an outer diameter of 25.4 mm filled with 100 g of cobalt containing catalyst at a flow rate of 30 g / h.
  • the reactor was also fed with ammonia at a rate of 12 g / h.
  • the reaction pressure was 8 MPa and the reaction temperature was 105 ° C.
  • the yield of m-xylylenediamine was 98%.
  • the hydrogenation product was separated using a batch distillation apparatus. Low abundances such as ammonia and 1-methyl imidazole were first separated and removed, and then m-xylylenediamine was recovered to the top.
  • the recovered m-xylylenediamine had a purity of 99.9% or more, and contained 300 ppm of 3-cyanobenzylamine and 50 ppm of isophthalonitrile as impurities.
  • Isophthalonitrile synthesis was carried out in the same ammonia oxidation reactor as in Example 1. However, instead of m-xylene, a mixture of 72 mol% m-xylene and 28 mol% m-tolunitrile was fed to the reactor. At a melt salt temperature of 385 ° C., the hot spot temperature of the first reaction zone was 434 ° C., the hot spot temperature of the second reaction zone was 418 ° C., and the reaction pressure was atmospheric pressure.
  • the reaction product gas of the ammonia oxidation reaction was passed through a heat exchanger in which a refrigerant at 100 ° C. was circulated and a heat exchanger in which a refrigerant at 10 ° C. was circulated.
  • Analysis of the contents captured by the two heat exchangers showed that 71.4 moles of isophthalonitrile were produced with respect to 100 moles of m-xylene and m-tolunitrile mixtures, 13.6 moles of m-tolunitrile and 1.5 m-xylene 1.5. The mole was recovered.

Abstract

The present invention relates to a method for preparing xylylenediamine from xylene, the economical and eco-friendly method comprising: cooling a reaction-produced gas produced from an ammoxidation reaction in order to selectively deposit phthalonitrile; and easily collecting unreacted xylene, tolunitrile, and ammonia and reusing same as reacting raw materials, thereby improving process yield.

Description

크실릴렌디아민의 제조방법Method for preparing xylylenediamine
본 발명은 크실렌 (xylenes)을 가암모니아 산화 (ammoxidation)시켜 얻은 프탈로니트릴 (phthalonitriles)을 수소화하여 크실릴렌디아민 (xylylenediamines)을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing xylylenediamines by hydrogenating phthalonitriles obtained by ammoxidation of xylenes.
크실릴렌디아민은 폴리아미드 수지, 에폭시 경화제의 원료 또는 이소시아네이트 제조용 중간체로서 유용하며, 크실렌을 가암모니아 산화반응 (ammoxidation)시켜 프탈로니트릴을 합성하고, 상기 프탈로니트릴을 수소화하여 합성된다.Xylylenediamine is useful as a raw material of polyamide resins, epoxy curing agents, or intermediates for isocyanate production, and is synthesized by ammoxidation of xylene to synthesize phthalonitrile and hydrogenation of the phthalonitrile.
종래에 크실릴렌디아민을 제조하는데 있어서, 일본의 미쓰비시가스케미칼 (MGC)은 미국특허공보 제6,476,269호에서 크실렌을 암모니아 및 산소와 반응시켜 프탈로니트릴이 주생성물인 반응생성가스를 합성하는 가암모니아 산화반응 단계, 가암모니아 산화반응의 반응생성가스를 흡수탑 등의 장치를 이용하여 유기용매에 직접 접촉시켜 프탈로니트릴을 선택적으로 유기용매에 용해하여 회수하는 프탈로니트릴 포집 단계, 유기용매에 포집된 프탈로니트릴을 수소화하여 크실릴렌디아민을 합성하는 수소화반응 단계, 그리고 수소화반응 생성물을 증류 및 추출하여 크실릴렌디아민을 회수하는 크실릴렌디아민 정제 단계를 포함하는 크실릴렌디아민 제조방법을 제안하고 있고, MGC는 미국특허공보 제6,646,163호에서 크실렌의 가암모니아 산화반응 단계, 유기용매에 의한 프탈로니트릴 포집 단계, 유기용매에 포집된 프탈로니트릴에서 고비점의 불순물을 1차 분리하여 제거하고 유기용매를 포함한 저비점 물질을 2차 분리하여 제거하는 프탈로니트릴 정제 단계, 정제 프탈로니트릴의 수소화에 의한 크실릴렌디아민의 합성 단계를 포함하는 크실릴렌디아민 제조방법을 제안하고 있으며, 미국특허공보 제7,915,452호와 미국특허공개공보 제2010/0168474호에도 상기 미국특허공보 제6,646,163호와 유사한 방법을 제시하고 있다. 다만 미국특허공보 제7,915,452호는 유기용매에 포집된 프탈로니트릴에서 고비점 불순물은 분리하지 않고 유기용매를 포함한 저비점 물질만 분리하여 제거한 후 수소화하는 것을 특징으로 하고 있고, 미국특허공개공보 제2010/0168474호는 유기용매에 포집된 프탈로니트릴에서 저비점 물질을 분리하여 제거한 용융 프탈로니트릴에 액체 암모니아를 가해 용해시키고 고비점의 불용성분을 분리한 후 수소화하는 것을 특징으로 하고 있다. 또한, BASF는 미국특허공보 제7,323,598호, 제7,363,610호, 제7,528,284호 및 제7,541,497호에서 MGC와 유사한 크실릴렌디아민 제조방법을 제안하고 있으며, 이 특허들은 N-메틸-2-피롤리돈 (NMP)을 프탈로니트릴 포집용매로 사용하는 것을 특징으로 하고 있다. Conventionally, in preparing xylylenediamine, Mitsubishi Chemical Co., Ltd. of Japan (MGC), in US Pat. No. 6,476,269, reacts xylene with ammonia and oxygen to ammonia to synthesize a reaction product gas in which phthalonitrile is the main product. Phtharonitrile capture step in which the reaction product gas of the oxidation reaction and ammonia oxidation reaction is directly contacted with the organic solvent by using an absorption tower or the like to selectively dissolve and recover phthalonitrile in the organic solvent. A method of preparing xylylenediamine comprising a hydrogenation step of synthesizing xylylenediamine by hydrogenating phthalonitrile, and a xylylenediamine purification step of recovering xylylenediamine by distilling and extracting a hydrogenation product. MGC has been proposed in US Pat. No. 6,646,163 for ammonia oxidation of xylene, organic Phtharonitrile capture step by solvent, phthalonitrile purification step to remove high boiling point impurities from phthalonitrile collected in organic solvent by primary separation and secondary separation to remove low boiling point material including organic solvent A method for preparing xylylenediamine, which comprises the step of synthesizing xylylenediamine by hydrogenation of tallowonitrile, has been proposed. A similar method is presented. However, U.S. Patent No. 7,915,452 does not separate high-boiling impurities from phthalonitrile collected in an organic solvent, but separates and removes only low-boiling substances including an organic solvent, and then hydrogenates them. No. 0168474 is characterized by adding ammonia to dissolve the molten phthalonitrile and removing the low boiling point material from the phthalonitrile trapped in the organic solvent to dissolve the high boiling point insoluble components and then hydrogenating. BASF also proposes a process for preparing xylylenediamine similar to MGC in U.S. Pat.Nos. 7,323,598, 7,363,610, 7,528,284 and 7,541,497, which discloses N-methyl-2-pyrrolidone ( NMP) is used as a phthalonitrile collection solvent.
상기의 크실릴렌디아민 제조방법들과 같이, 크실렌의 가암모니아 산화반응의 반응생성가스를 흡수탑에서 유기용매에 직접 접촉시켜 프탈로니트릴을 용해하여 회수하는 것을 특징으로 하는 제조방법들은 유기용매에 의한 프탈로니트릴 포집 단계에서 유기용매, 미반응 크실렌, 가암모니아 산화반응의 중간체인 톨루니트릴 (tolunitrile) 등이 상당량 배가스에 수반되어 흡수탑의 상부로 유출되는 문제점을 가지고 있다. 배가스에서 유기용매와 크실렌, 톨루니트릴을 회수할 수는 있으나, 회수한 혼합물에서 유기용매와 원료로 재사용할 수 있는 크실렌 및 톨루니트릴을 경제적으로 분리하는 것은 매우 어렵기 때문에 유기용매 등을 함유한 배가스는 소각 등의 방법을 이용하여 처리한 후 대기로 방출시킬 수밖에 없는 단점이 있다.Like the xylylenediamine production method described above, the production method, characterized in that the reaction product gas of the ammonia oxidation reaction of xylene in direct contact with the organic solvent in the absorption tower to dissolve and recover the phthalonitrile in the organic solvent The organic solvent, unreacted xylene, tolunitrile (tolunitrile), which is an intermediate of the ammonia oxidation reaction, in the phthalonitrile capture step is accompanied by a considerable amount of exhaust gas and has a problem of flowing out to the top of the absorption tower. Although organic solvents, xylenes and tolunitriles can be recovered from the flue-gas, it is very difficult to economically separate xylenes and tolunitriles, which can be reused as organic solvents and raw materials, from the recovered mixture. One flue gas has a disadvantage that it can only be released to the atmosphere after treatment by incineration and the like.
본 발명이 해결하고자 하는 과제는 크실렌의 가암모니아 산화반응을 통해 대응하는 프탈로니트릴을 합성하고, 합성된 프탈로니트릴을 수소화하여 크실릴렌디아민을 제조하는 방법으로써, 유기용매의 손실이 거의 없고, 미반응 크실렌 및 톨루니트릴의 회수가 용이하며, 공정이 단순한 경제적인 크실릴렌디아민을 제조하는 방법을 제공하는 것이다.The problem to be solved by the present invention is a method of synthesizing the corresponding phthalonitrile through ammonia oxidation of xylene, and to produce a xylylenediamine by hydrogenating the synthesized phthalonitrile, there is almost no loss of organic solvent The present invention provides a method for producing an economical xylylenediamine that is easy to recover, unreacted xylene and tolunitrile, and the process is simple.
본 발명은 상기 과제를 해결하기 위하여, 크실렌으로부터 크실릴렌디아민을 제조하는 방법에 있어서, In order to solve the above problems, the present invention provides a method for producing xylylenediamine from xylene,
(1) 크실렌을 촉매 하에서 암모니아 및 산소함유가스와 반응시켜 프탈로니트릴을 함유하는 반응생성가스를 제조하는 가암모니아 산화반응 단계;(1) an ammonia oxidation step of reacting xylene with ammonia and an oxygen-containing gas under a catalyst to produce a reaction product gas containing phthalonitrile;
(2) 상기 가암모니아 산화반응의 반응생성가스를 냉각하여 프탈로니트릴을 선택적으로 석출시킨 후, 석출된 프탈로니트릴을 유기용매로 용해하는 프탈로니트릴 회수 단계;(2) phthalonitrile recovery step of cooling the reaction gas of the ammonia oxidation reaction to selectively precipitate phthalonitrile, and then dissolve the precipitated phthalonitrile with an organic solvent;
(3) 상기 (2)단계에 의해서 프탈로니트릴이 석출되고 남은 가암모니아 산화반응의 반응생성가스를 냉각하여, 상기 반응생성가스 중의 물, 크실렌 및 톨루니트릴을 응축시키고, 층분리된 유기층을 상기 (1)단계의 가암모니아 산화반응 단계의 원료로 재이용하는 크실렌 및 톨루니트릴 회수 단계;(3) The reaction product gas of the ammonia oxidation reaction remaining after the phthalonitrile was precipitated by step (2) was cooled, condensed water, xylene and tolunitrile in the reaction product gas, and the organic layer separated Xylene and tolunitrile recovery step for reuse as a raw material of the ammonia oxidation step of step (1);
(4) 상기 (2)단계에서 얻은 프탈로니트릴이 용해된 용액에 액체 암모니아를 첨가한 후, 수소화하여 크실릴렌디아민을 합성하는 수소화반응 단계; 및(4) a hydrogenation step of adding liquid ammonia to the phthalonitrile-dissolved solution obtained in step (2) and then hydrogenating to synthesize xylylenediamine; And
(5) 상기 (4)단계에서 얻은 크실릴렌디아민을 함유하는 수소화반응 생성물에서 암모니아, 유기용매 및 고비물을 분리하여 고순도 크실릴렌디아민을 얻는 크실릴렌디아민 정제 단계를 포함하는 크실릴렌디아민의 제조방법을 제공한다.(5) xylylene comprising the step of purifying xylylenediamine to obtain high purity xylylenediamine by separating ammonia, organic solvent and heavy water from the hydrogenation product containing xylylenediamine obtained in step (4) Provided are methods for preparing diamines.
본 발명의 일 구현예에 따르면, 상기 (1) 단계의 상기 촉매는 바나듐 (V), 크롬 (Cr), 안티모니 (Sb), 몰리브덴 (Mo), 철 (Fe) 및 텅스텐 (W)으로 이루어진 군으로부터 선택된 하나 이상의 금속의 산화물일 수 있으며, 상기 산소함유가스는 산소를 함유한 공기, 불활성 가스로 희석된 공기 또는 산소일 수 있다.According to one embodiment of the invention, the catalyst of step (1) is made of vanadium (V), chromium (Cr), antimony (Sb), molybdenum (Mo), iron (Fe) and tungsten (W) It may be an oxide of one or more metals selected from the group, and the oxygen-containing gas may be air containing oxygen, air diluted with an inert gas, or oxygen.
본 발명의 다른 일 구현예에 따르면, 상기 (2) 단계의 냉각은 80℃ 내지 프탈로니트릴의 승화온도 범위에서 수행되는 것이 바람직하며, 상기 (2) 단계의 유기용매는 방향족 탄화수소, 포화지환족 탄화수소, 헤테로고리 화합물, 방향족 니트릴, 헤테로고리 니트릴, 이미다졸류, 톨루니트릴류, 메틸벤질아민류, 크실릴렌디아민류, N-메틸-2-피롤리돈 (NMP), 메시틸렌 및 수도규멘으로 이루어진 군으로부터 선택될 수 있다.According to another embodiment of the present invention, the cooling of the step (2) is preferably performed at a sublimation temperature range of 80 ℃ to phthalonitrile, the organic solvent of the step (2) is an aromatic hydrocarbon, saturated alicyclic Hydrocarbons, heterocyclic compounds, aromatic nitriles, heteronitriles, imidazoles, tolunitriles, methylbenzylamines, xylylenediamines, N-methyl-2-pyrrolidone (NMP), mesitylene and water silica It may be selected from the group consisting of.
본 발명의 또 다른 일 구현예에 따르면, 상기 (3) 단계의 냉각은 0℃ 내지 50℃ 범위에서 수행될 수 있으며, 상기 (4) 단계의 수소화반응은 촉매하, 40℃ 내지 150℃ 범위의 온도, 및 3 내지 30 MPa 범위의 압력하에서 수행될 수 있고, 상기 (4) 단계의 수소화반응에 사용되는 촉매는 니켈 또는 코발트 함유 촉매인 것이 바람직하다.According to another embodiment of the present invention, the cooling in step (3) may be performed in a range of 0 ° C to 50 ° C, and the hydrogenation of step (4) is performed under a catalyst, in a range of 40 ° C to 150 ° C. Temperature and a pressure in the range of 3 to 30 MPa, and the catalyst used for the hydrogenation of step (4) is preferably a nickel or cobalt-containing catalyst.
본 발명의 또 다른 일 구현예에 따르면, 상기 (5) 단계에서 분리한 암모니아는 상기 (4) 단계의 수소화반응 단계로 순환시켜 재이용하고, 상기 (5) 단계에서 분리한 유기용매는 상기 (2) 단계의 프탈로니트릴 회수 단계로 순환시켜 재이용될 수 있다.According to another embodiment of the present invention, the ammonia separated in the step (5) is recycled by recycling to the hydrogenation step of the step (4), the organic solvent separated in the step (5) is the (2 Can be recycled to the phthalonitrile recovery step.
본 발명에 따른 크실릴렌디아민 제조방법은, 가암모니아 산화반응의 반응생성가스로부터 미반응 크실렌 및 톨루니트릴을 쉽게 회수할 수 있으므로 반응원료로 재사용할 수 있고, 유기용매의 손실을 줄임으로써 친환경적이고 경제적이다.The xylylenediamine production method according to the present invention can be easily recovered from the reaction product gas of the ammonia oxidation reaction, and thus can be reused as a reaction raw material, and it is environmentally friendly by reducing the loss of organic solvents. And economical.
도 1은 본 발명에 따른 방법을 수행하는 경우에 대한 개략도이다.1 is a schematic diagram of a case of carrying out the method according to the present invention.
도 2는 본 발명의 실시예에 따른 가암모니아 산화반응에 사용한 반응기의 개략도이다.2 is a schematic diagram of a reactor used for ammonooxidation according to an embodiment of the present invention.
이하, 본 발명의 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명은 크실렌으로부터 프탈로니트릴을 제조하는 방법에 있어서, 크실렌의 가암모니아 산화반응에 의해 합성된 반응생성가스를 냉각하면 프탈로니트릴이 승화하여 선택적으로 석출되고, 톨루니트릴을 크실렌과 함께 가암모니아 산화반응의 원료로 사용하면, 크실렌만 사용할 경우에 비하여 프탈로니트릴의 수율이 향상되며, 유기용매에 용해시킨 프탈로니트릴 용액에 암모니아를 첨가하고, 수소화하면 99% 이상의 프탈로니트릴의 전환률 및 97% 이상의 수율로 크실릴렌디아민을 합성할 수 있고, 크실릴렌디아민과 비점이 유사하여 분리하기 어려운 부산물인 시아노벤질아민 (cyanobenzylamine)의 수율을 500 ppm 이하로 제어할 수 있다는 사실에 기초하여 착안된 것이다.The present invention relates to a method for producing phthalonitrile from xylene, in which the reaction product gas synthesized by the ammonia oxidation reaction of xylene is cooled to sublimate phthalonitrile and precipitated selectively, and tolunitrile is added together with xylene. When used as a raw material for the ammonia oxidation reaction, the yield of phthalonitrile is improved compared to the case of using only xylene, and ammonia is added to the phthalonitrile solution dissolved in the organic solvent, and when hydrogenated, the conversion rate of phthalonitrile of 99% or more and Based on the fact that xylylenediamine can be synthesized in a yield of 97% or more, and the yield of cyanobenzylamine, a by-product that is difficult to separate because of similar boiling point to xylylenediamine, can be controlled to 500 ppm or less. Was conceived.
본 발명에 따른 크실릴렌디아민의 제조방법은,Method for producing xylylenediamine according to the present invention,
(1) 크실렌을 촉매 하에서 암모니아 및 산소함유가스와 반응시켜 프탈로니트릴을 함유하는 반응생성가스를 제조하는 가암모니아 산화반응 단계;(1) an ammonia oxidation step of reacting xylene with ammonia and an oxygen-containing gas under a catalyst to produce a reaction product gas containing phthalonitrile;
(2) 상기 가암모니아 산화반응의 반응생성가스를 냉각하여 프탈로니트릴을 선택적으로 석출시킨 후, 석출된 프탈로니트릴을 유기용매로 용해하는 프탈로니트릴 회수 단계;(2) phthalonitrile recovery step of cooling the reaction gas of the ammonia oxidation reaction to selectively precipitate phthalonitrile, and then dissolve the precipitated phthalonitrile with an organic solvent;
(3) 상기 (2)단계에 의해서 프탈로니트릴이 석출되고 남은 가암모니아 산화반응의 반응생성가스를 냉각하여, 상기 반응생성가스 중의 물, 크실렌 및 톨루니트릴을 응축시키고, 층분리된 유기층을 상기 (1)단계의 가암모니아 산화반응 단계의 원료로 재이용하는 크실렌 및 톨루니트릴 회수 단계;(3) The reaction product gas of the ammonia oxidation reaction remaining after the phthalonitrile was precipitated by step (2) was cooled, condensed water, xylene and tolunitrile in the reaction product gas, and the organic layer separated Xylene and tolunitrile recovery step for reuse as a raw material of the ammonia oxidation step of step (1);
(4) 상기 (2)단계에서 얻은 프탈로니트릴이 용해된 용액에 액체 암모니아를 첨가한 후, 수소화하여 크실릴렌디아민을 합성하는 수소화반응 단계; 및(4) a hydrogenation step of adding liquid ammonia to the phthalonitrile-dissolved solution obtained in step (2) and then hydrogenating to synthesize xylylenediamine; And
(5) 상기 (4)단계에서 얻은 크실릴렌디아민을 함유하는 수소화반응 생성물에서 암모니아, 유기용매 및 고비물을 분리하여 고순도 크실릴렌디아민을 얻는 크실릴렌디아민 정제 단계를 포함한다.(5) purifying the xylylenediamine to obtain high purity xylylenediamine by separating ammonia, organic solvent and heavy water from the hydrogenation product containing xylylenediamine obtained in step (4).
상기 (1) 단계에서, 상기 가암모니아 산화반응에는 공지의 고정층 촉매 또는 유동층 촉매가 사용될 수 있으며, 특히, 바나듐 (V), 크롬 (Cr), 안티모니 (Sb), 몰리브덴 (Mo), 철 (Fe) 및 텅스텐 (W)으로 이루어진 군으로부터 선택된 하나 이상의 금속의 산화물 촉매가 바람직하고, 반응원료로는 크실렌, 암모니아 및 산소함유가스로 이루어진 군으로부터 선택된 적어도 하나의 물질이 공급될 수 있으며, 이때, 상기 크실렌은 o-크실렌 (o-xylene), m-크실렌 (m-xylene) 및 p-크실렌 (p-xylene)으로 이루어진 군으로부터 선택된 적어도 하나의 크실렌 화합물이고, 이로부터 제조되는 프탈로니트릴은 o-프탈로니트릴 (o-phthalonitrile), 이소프탈로니트릴 (isophthalonitrile), 및 테레프탈로니트릴 (terephthalonitrile)로 이루어진 군으로부터 선택된 적어도 하나의 프탈로니트릴이며, 특히, 본 발명에 따른 방법은, 원료 크실렌으로 m-크실렌을 공급하여 이소프탈로니트릴을 제조하는데 더욱 바람직하다.In the step (1), known a fixed bed catalyst or a fluidized bed catalyst may be used for the ammonia oxidation, and in particular, vanadium (V), chromium (Cr), antimony (Sb), molybdenum (Mo), iron ( An oxide catalyst of at least one metal selected from the group consisting of Fe) and tungsten (W) is preferred, and as the reaction raw material, at least one material selected from the group consisting of xylene, ammonia and oxygen-containing gas may be supplied. The xylene is at least one xylene compound selected from the group consisting of o-xylene (o-xylene), m-xylene (m-xylene) and p-xylene (p-xylene), the phthalonitrile prepared therefrom is o At least one phthalonitrile selected from the group consisting of o-phthalonitrile, isophthalonitrile, and terephthalonitrile, in particular The process according to the command is, by supplying the raw material of xylene m- xylene is more preferable for the production of isophthaloyl nitrile.
상기 (1) 단계에 사용된 반응원료 중 크실렌의 공급량은 0.01 내지 1.0 kg/(hㆍkg-촉매)(반응기에 충전한 촉매 단위 질량 (kg) 당 공급되는 크실렌의 단위 시간당 질량 유량 (kg/h))인 것이 바람직한데, 더욱 바람직하게는 0.03 내지 0.3 kg/(hㆍkg-촉매) 범위인 것이 크실렌 공급량 범위 내에서 프탈로니트릴의 수율이 양호하다. 또한, 크실렌의 일부를 톨루니트릴로 대체하여 크실렌과 톨루니트릴의 혼합물로 공급하는 것도 가능하며, 혼합물 중 톨루니트릴의 농도는 특별히 제한이 없으나, 50 wt% 이하가 적당하다.The amount of xylene supplied in the reaction raw material used in step (1) is 0.01 to 1.0 kg / (h · kg-catalyst) (mass flow rate per unit time of xylene supplied per unit mass (kg) of catalyst charged to the reactor (kg / h)), more preferably in the range of 0.03 to 0.3 kg / (h · kg-catalyst), the yield of phthalonitrile is good within the xylene feed range. It is also possible to replace a portion of xylene with tolunitrile and to supply it with a mixture of xylene and tolunitrile, and the concentration of tolunitrile in the mixture is not particularly limited, but 50 wt% or less is suitable.
상기 (1) 단계에 사용된 반응원료 중 암모니아의 공급량은 크실렌 1 몰에 대하여 2 내지 30 몰일 수 있으나, 2 내지 15 몰에서 프탈로니트릴의 수율이 더욱 양호하고, 상기 산소함유가스는 산소를 함유한 공기, 불활성 가스로 희석된 공기 또는 산소일 수 있으며, 산소함유가스에 포함되어 공급되는 산소의 양은 크실렌 1 몰에 대하여 3 몰 이상일 수 있으나, 바람직하게는 3 내지 30 몰, 더욱 바람직하게는 3 내지 10 몰인 것이 프탈로니트릴의 수율이 양호하고 공시수율이 높다.The supply amount of ammonia in the reaction raw material used in step (1) may be 2 to 30 moles with respect to 1 mole of xylene, but the yield of phthalonitrile is better at 2 to 15 moles, and the oxygen-containing gas contains oxygen It may be one air, air diluted with an inert gas, or oxygen, and the amount of oxygen supplied in the oxygen-containing gas may be 3 moles or more with respect to 1 mole of xylene, but preferably 3 to 30 moles, more preferably 3 It is 10 mol, and the yield of phthalonitrile is favorable and a publication yield is high.
상기 (1) 단계의 반응은 300℃ 내지 500℃ 온도 범위에서 수행될 수 있으며, 바람직하게는 350℃ 내지 470℃의 온도 및 상압 내지 300 kPa의 압력하에서 수행될 수 있는데, 상기 온도 및 압력 범위 내에서 크실렌의 전환률이 양호하고, 이산화탄소, 시안화수소 및 벤조니트릴 등과 같은 부산물이 억제되어 프탈로니트릴을 고수율로 제조할 수 있다.The reaction of step (1) may be carried out at a temperature range of 300 ° C to 500 ° C, preferably at a temperature of 350 ° C to 470 ° C and a pressure of normal pressure to 300 kPa, within the temperature and pressure range The conversion of xylene in is good, and by-products such as carbon dioxide, hydrogen cyanide and benzonitrile can be suppressed to produce phthalonitrile in high yield.
상기 (1) 단계에서 생성된 반응생성가스는, 프탈로니트릴, 미반응 크실렌, 톨루니트릴, 수증기, 암모니아, 공기, 이산화탄소 등으로 구성되어 있으며, 상기 (2) 단계의 냉각은 80℃ 내지 프탈로니트릴의 승화온도 범위에서 수행될 수 있으나, 100℃ 내지 프탈로니트릴의 승화온도 보다 10℃ 낮은 온도가 좀 더 바람직하며, 프탈로니트릴을 석출하기 위한 냉각장치로는 코일형 열교환기, 원통형 열교환기 등이 있으나 특별히 제한이 없고, (2) 단계의 유기용매로는 방향족 탄화수소, 지환족 탄화수소, 헤테로고리 화합물 (heterocyclic compound), 방향족 니트릴, 헤테로고리 니트릴, 이미다졸류, 톨루니트릴류, 메틸벤질아민류, 크실릴렌디아민류, N-메틸-2-피롤리돈, 메시틸렌 및 수도규멘으로 이루어진 군 중에서 선택될 수 있으며, 이미다졸류, 메틸벤질아민류, 크실릴렌디아민류가 좀 더 바람직한데, 상기 용매는 프탈로니트릴에 대한 용해도가 높거나, 크실릴렌디아민 제조공정에서 생성되는 물질이며, 프탈로니트릴의 수소화 반응에 비활성이므로 분리하지 않고 수소화 반응의 용매로 직접 사용할 수 있는 장점을 가진다.The reaction product gas generated in step (1) is composed of phthalonitrile, unreacted xylene, tolunitrile, water vapor, ammonia, air, carbon dioxide, and the like. Although it may be carried out in the sublimation temperature range of the deronitrile, a temperature of 10 ° C. lower than the sublimation temperature of the phthalonitrile is more preferable. A cooling device for depositing phthalonitrile may be a coil type heat exchanger or a cylindrical heat exchanger. The organic solvent of step (2) is aromatic hydrocarbon, alicyclic hydrocarbon, heterocyclic compound, aromatic nitrile, heterocyclic nitrile, imidazole, tolunitrile, methyl Benzylamines, xylylenediamines, N-methyl-2-pyrrolidone, mesitylene and water silicate; and may be selected from the group consisting of imidazoles, methylbenzylamines, and xylyl Rendiamines are more preferable, and the solvent is a substance having high solubility in phthalonitrile or produced in xylylenediamine manufacturing process, and is inert to hydrogenation of phthalonitrile and is not separated. It has the advantage of being used directly.
상기 (3) 단계의 냉각은 0℃ 내지 50℃ 범위일 수 있으며, 5℃ 내지 40℃ 범위에서 수행되는 되는 것이 크실렌 및 톨루니트릴의 회수율을 높이고, 에너지 비용을 낮출 수 있어 경제적이므로 좀 더 바람직하고, (3) 단계에서 응축된 응축액은 크실렌과 톨루니트릴이 주성분인 유기층과 물이 주성분인 물층으로 층 분리될 수 있으며, 상기 유기층은 가암모니아 산화반응 단계에 반응원료로 사용이 가능하다.The cooling of the step (3) may be in the range of 0 ℃ to 50 ℃, it is more preferable to be carried out in the range of 5 ℃ to 40 ℃ because it can increase the recovery rate of xylene and tolunitrile, lower the energy cost is economical In addition, the condensate condensed in step (3) may be separated into an organic layer composed mainly of xylene and tolunitrile and a water layer composed mainly of water, and the organic layer may be used as a reaction material in the ammonia oxidation step.
상기 (4) 단계의 수소화반응은, 촉매가 충전된 고정층 반응기 또는 열교환이 가능한 다관 반응기에서 수행될 수 있으며, 고정층 반응기를 사용하는 경우, 반응열을 제거하기 위해 반응생성물의 순환과 더불어 냉각기를 필요로 한다. The hydrogenation reaction of step (4) may be performed in a fixed bed reactor filled with a catalyst or a multi-tube reactor capable of heat exchange, and when using a fixed bed reactor, a cooler is required along with the circulation of the reaction product to remove the heat of reaction. do.
본 발명에 따른, 상기 (4) 단계의 수소화반응은 촉매하, 40℃ 내지 150℃ 범위의 온도, 및 3 내지 30 MPa 범위의 압력하에서 수행될 수 있으며, 60℃ 내지 130℃ 범위의 온도, 및 5 내지 15 MPa 범위의 압력하에서 수행되는 것이 바람직하고, 상기 (4) 단계의 수소화반응에 사용되는 촉매는 니켈 또는 코발트 함유 촉매일 수 있으며, 주로 지지체에 담지된 형태로 사용되고, 상기 (4) 단계의 수소화반응에 사용되는 프탈로니트릴은 o-프탈로니트릴, 이소프탈로니트릴 및 테레프탈로니트릴로 이루어진 군으로부터 선택된 적어도 하나의 프탈로니트릴이며, 특히, 본 발명에 따른 방법은, 프탈로니트릴로 이소프탈로니트릴을 공급하여 m-크실릴렌디아민을 제조하는데 더욱 바람직하고, 상기 (4) 단계의 프탈로니트릴의 공급량은 0.01 내지 1.0 kg/(hㆍkg-촉매)일 수 있으며, 바람직하게는 0.03 내지 0.3 kg/(hㆍkg-촉매) 범위인 것이 프탈로니트릴 공급량 범위 내에서 크실릴렌디아민의 수율이 양호하고, 암모니아의 공급량은 프탈로니트릴 1 중량에 대하여 0.5 내지 50 중량일 수 있으나, 바람직하게는 1 내지 10 중량인 것이 이러한 암모니아 공급량 범위 내에서 부반응이 억제되고 크실릴렌디아민의 수율이 양호하며, 본 발명에 따른, 상기 (4) 단계의 수소화반응은 암모니아, 유기용매 등의 저비물, 크실릴렌디아민 및 고비물을 함유하고 있다.According to the invention, the hydrogenation of step (4) can be carried out under a catalyst, a temperature in the range of 40 ℃ to 150 ℃, and a pressure in the range of 3 to 30 MPa, a temperature in the range of 60 ℃ to 130 ℃, and It is preferably carried out under a pressure in the range of 5 to 15 MPa, and the catalyst used for the hydrogenation of step (4) may be a nickel or cobalt-containing catalyst, mainly used in a form supported on a support, and step (4) The phthalonitrile used for the hydrogenation of is at least one phthalonitrile selected from the group consisting of o-phthalonitrile, isophthalonitrile and terephthalonitrile. It is more preferable to prepare m-xylylenediamine by supplying a tonitrile, and the supply amount of the phthalonitrile of the step (4) may be 0.01 to 1.0 kg / (h kg-catalyst), wind The yield of xylylenediamine in the phthalonitrile supply range is preferably in the range of 0.03 to 0.3 kg / (h · kg-catalyst), and the supply amount of ammonia is 0.5 to 50% by weight based on 1 weight of phthalonitrile. It may be, but preferably 1 to 10 by weight in the ammonia supply range side reaction is suppressed and the yield of xylylenediamine is good, according to the present invention, the hydrogenation of step (4) is ammonia, organic It contains low boiling materials, such as a solvent, xylylenediamine, and high boiling materials.
상기 (5) 단계의 정제는, 증류 또는 증발 과정을 거쳐 수행될 수 있으며, 회분식 또는 연속식 모두 가능하다. 상기 증류과정에는 충전탑, 다단탑 등 통상의 증류탑이 사용될 수 있으며, 증류탑을 이용하여 크실릴렌디아민을 분리하는 경우, 암모니아와 유기용매 등 저비물이 먼저 탑정으로 분리되고, 이어서 크실릴렌디아민이 탑정으로 분리ㆍ정제되고, 고비물은 탑저로 제거될 수 있으며, 상기 증류과정은 상압 이하에서 이루어질 수 있으며, 0.03 MPa 이하의 압력인 것이 바람직한데, 증류 압력이 상기 범위를 벗어나면 크실릴렌디아민의 분해 및 중합에 의해 고비물이 형성되며, 크실릴렌디아민의 회수율이 낮아진다.Purification of step (5) can be carried out through a distillation or evaporation process, both batch or continuous. In the distillation process, a conventional distillation column, such as a packed column or a multistage column, may be used. When the xylylenediamine is separated using a distillation tower, low ammonia and organic solvents such as ammonia are first separated into a column top, followed by xylylenediamine. The column top is separated and purified, the heavy water can be removed to the bottom of the column, the distillation process can be carried out at normal pressure or less, it is preferable that the pressure of 0.03 MPa or less, if the distillation pressure is out of the above range xylylene High decomposition products are formed by the decomposition and polymerization of the diamine, and the recovery rate of xylylenediamine is lowered.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to preferred embodiments in order to help the understanding of the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited thereto.
실시예 1.Example 1.
도 1에 나타낸 공정흐름에 따라 가암모니아 산화반응, 프탈로니트릴 회수, 크실렌 및 톨루니트릴 회수, 수소화반응, 크실릴렌디아민 정제 실험을 수행하였다.Ammonia oxidation, phthalonitrile recovery, xylene and tolunitrile recovery, hydrogenation, and xylylenediamine purification experiments were performed according to the process flow shown in FIG. 1.
m-크실렌의 가암모니아 산화반응은 도 2에 나타낸 반응구역이 2개인 관형 반응기를 사용하여 실시하였다. 외경 25.4 mm인 관형 반응기의 제 1 반응구역과 제 2 반응구역에 각각 38 g과 54 g의 바나듐 함유 촉매를 충전하였다. 반응기의 제 1 반응구역에는 9.0 g/h의 m-크실렌, 암모니아 및 공기를 공급하고, 제 2 반응구역에는 공기만을 공급하여 반응을 수행하였다. 제 1 반응구역에 공급한 m-크실렌 대비 암모니아의 몰비는 4, 산소의 몰비는 2이었다. 제 2 반응구역에 공급한 공기량은 제 1 반응구역에 공급한 공기량의 175% (제 1 반응구역에 공급한 m-크실렌 대비 산소의 몰비는 3.5)이었다. 반응기 냉각은 용융염 욕조 (bath)를 사용하였다. 용융염 온도 383℃에서 제 1 반응구역의 열점 온도는 418℃, 제 2 반응구역의 열점 온도는 431℃이었고, 반응압력은 상압이었다.The ammonia oxidation of m-xylene was carried out using a tubular reactor with two reaction zones shown in FIG. 2. 38 g and 54 g of vanadium containing catalyst were charged to the first and second reaction zones of the tubular reactor having an outer diameter of 25.4 mm, respectively. The reaction was carried out by supplying 9.0 g / h of m-xylene, ammonia and air to the first reaction zone of the reactor, and supplying only air to the second reaction zone. The molar ratio of ammonia to m-xylene supplied to the first reaction zone was 4, and the molar ratio of oxygen was 2. The amount of air supplied to the second reaction zone was 175% of the amount of air supplied to the first reaction zone (molar ratio of oxygen to m-xylene supplied to the first reaction zone was 3.5). Reactor cooling used a molten salt bath. At a molten salt temperature of 383 ° C., the hot spot temperature of the first reaction zone was 418 ° C., the hot spot temperature of the second reaction zone was 431 ° C., and the reaction pressure was atmospheric pressure.
가암모니아 산화반응의 반응생성가스는 100℃의 냉매가 순환되는 첫 번째 열교환기와 10℃의 냉매가 순환되는 두 번째 열교환기에 차례로 통과시켰다. 첫 번째 열교환기에는 이소프탈로니트릴이 고체상태로 석출되었고, 두 번째 열교환기에는 크실렌 및 중간체 m-톨루니트릴 (m-tolunitrile)이 주성분인 유기층과 물이 주성분인 물층으로 층분리된 응축액이 포집되었다. 2개의 열교환기에 포집된 내용물을 분석한 결과, 반응원료인 m-크실렌 100 몰에 대해 이소프탈로니트릴 61.0 몰과 m-톨루니트릴 16.6 몰이 생성되었고, m-크실렌 3.7 몰이 회수되었다. 첫 번째 열교환기에 포집된 이소프탈로니트릴은 유기용매인 1-메틸 이미다졸에 용해시켜 회수하였다. 1-메틸 이미다졸의 온도는 60℃, 사용량은 중량비로 이소프탈로니트릴의 약 4배이었다.The reaction product gas of the ammonia oxidation reaction was passed through the first heat exchanger in which the refrigerant at 100 ° C. was circulated and the second heat exchanger in which the refrigerant at 10 ° C. was circulated. In the first heat exchanger, isophthalonitrile was precipitated in the solid state, and in the second heat exchanger, the condensate was separated into an organic layer composed mainly of xylene and intermediate m-tolunitrile and a water layer composed mainly of water. It became. Analysis of the contents captured by the two heat exchangers produced 61.0 moles of isophthalonitrile and 16.6 moles of m-tolunitrile with respect to 100 moles of m-xylene as a reaction material, and 3.7 moles of m-xylene were recovered. Isophthalonitrile collected in the first heat exchanger was recovered by dissolving in 1-methyl imidazole, an organic solvent. The temperature of 1-methyl imidazole was 60 degreeC and the usage-amount was about 4 times of isophthalonitrile by weight ratio.
1-메틸 이미다졸에 녹인 이소프탈로니트릴 용액을 코발트 함유 촉매 100 g이 충전된 외경 25.4 mm의 관형 반응기에 30 g/h의 유량으로 공급하였다. 또한 반응기에는 암모니아도 12 g/h의 속도로 공급하였다. 반응 압력은 8 MPa, 반응 온도는 105℃이었다. 반응생성물을 분석한 결과, m-크실릴렌디아민의 수율은 98%이었다.An isophthalonitrile solution dissolved in 1-methyl imidazole was fed to a tubular reactor having an outer diameter of 25.4 mm filled with 100 g of cobalt containing catalyst at a flow rate of 30 g / h. The reactor was also fed with ammonia at a rate of 12 g / h. The reaction pressure was 8 MPa and the reaction temperature was 105 ° C. As a result of analyzing the reaction product, the yield of m-xylylenediamine was 98%.
수소화반응 생성물은 회분증류장치를 이용하여 분리하였다. 암모니아, 1-메틸 이미다졸 등 저비물을 먼저 분리ㆍ제거한 후, m-크실릴렌디아민을 탑정으로 회수하였다. 회수한 m-크실릴렌디아민의 순도는 99.9% 이상이었으며, 불순물로 3-시아노벤질아민 300 ppm, 이소프탈로니트릴 50 ppm이 함유되어 있었다.The hydrogenation product was separated using a batch distillation apparatus. Low abundances such as ammonia and 1-methyl imidazole were first separated and removed, and then m-xylylenediamine was recovered to the top. The recovered m-xylylenediamine had a purity of 99.9% or more, and contained 300 ppm of 3-cyanobenzylamine and 50 ppm of isophthalonitrile as impurities.
실시예 2.Example 2.
실시예 1과 동일한 가암모니아 산화 반응기에서 이소프탈로니트릴 합성반응을 수행하였다. 단, m-크실렌 대신 m-크실렌이 72 mol%이고 m-톨루니트릴이 28 mol%인 혼합물을 반응기에 공급하였다. 용융염 온도 385℃에서 제1 반응구역의 열점 온도는 434℃, 제2 반응구역의 열점 온도는 418℃이었고, 반응압력은 상압이었다. Isophthalonitrile synthesis was carried out in the same ammonia oxidation reactor as in Example 1. However, instead of m-xylene, a mixture of 72 mol% m-xylene and 28 mol% m-tolunitrile was fed to the reactor. At a melt salt temperature of 385 ° C., the hot spot temperature of the first reaction zone was 434 ° C., the hot spot temperature of the second reaction zone was 418 ° C., and the reaction pressure was atmospheric pressure.
가암모니아 산화반응의 반응생성가스는 100℃의 냉매가 순환되는 열교환기와 10℃의 냉매가 순환되는 열교환기에 차례로 통과시켰다. 2개의 열교환기에 포집된 내용물을 분석한 결과, 반응원료인 m-크실렌과 m-톨루니트릴 혼합물 100 몰에 대해 이소프탈로니트릴은 71.4 몰이 생성되었고, m-톨루니트릴 13.6 몰과 m-크실렌 1.5 몰이 회수되었다.The reaction product gas of the ammonia oxidation reaction was passed through a heat exchanger in which a refrigerant at 100 ° C. was circulated and a heat exchanger in which a refrigerant at 10 ° C. was circulated. Analysis of the contents captured by the two heat exchangers showed that 71.4 moles of isophthalonitrile were produced with respect to 100 moles of m-xylene and m-tolunitrile mixtures, 13.6 moles of m-tolunitrile and 1.5 m-xylene 1.5. The mole was recovered.

Claims (10)

  1. 크실렌으로부터 크실릴렌디아민을 제조하는 방법에 있어서, In the method for producing xylylenediamine from xylene,
    (1) 크실렌을 촉매 하에서 암모니아 및 산소함유가스와 반응시켜 프탈로니트릴을 함유하는 반응생성가스를 제조하는 가암모니아 산화반응 단계;(1) an ammonia oxidation step of reacting xylene with ammonia and an oxygen-containing gas under a catalyst to produce a reaction product gas containing phthalonitrile;
    (2) 상기 가암모니아 산화반응의 반응생성가스를 냉각하여 프탈로니트릴을 선택적으로 석출시킨 후, 석출된 프탈로니트릴을 유기용매로 용해하는 프탈로니트릴 회수 단계;(2) phthalonitrile recovery step of cooling the reaction gas of the ammonia oxidation reaction to selectively precipitate phthalonitrile, and then dissolve the precipitated phthalonitrile with an organic solvent;
    (3) 상기 (2)단계에 의해서 프탈로니트릴이 석출되고 남은 가암모니아 산화반응의 반응생성가스를 냉각하여, 상기 반응생성가스 중의 물, 크실렌 및 톨루니트릴을 응축시키고, 층분리된 유기층을 상기 (1)단계의 가암모니아 산화반응 단계의 원료로 재이용하는 크실렌 및 톨루니트릴 회수 단계;(3) The reaction product gas of the ammonia oxidation reaction remaining after the phthalonitrile was precipitated by step (2) was cooled, condensed water, xylene and tolunitrile in the reaction product gas, and the organic layer separated Xylene and tolunitrile recovery step for reuse as a raw material of the ammonia oxidation step of step (1);
    (4) 상기 (2)단계에서 얻은 프탈로니트릴이 용해된 용액에 액체 암모니아를 첨가한 후, 수소화하여 크실릴렌디아민을 합성하는 수소화반응 단계; 및(4) a hydrogenation step of adding liquid ammonia to the phthalonitrile-dissolved solution obtained in step (2) and then hydrogenating to synthesize xylylenediamine; And
    (5) 상기 (4)단계에서 얻은 크실릴렌디아민을 함유하는 수소화반응 생성물에서 암모니아, 유기용매 및 고비물을 분리하여 고순도 크실릴렌디아민을 얻는 크실릴렌디아민 정제 단계를 포함하는 크실릴렌디아민의 제조방법.(5) xylylene comprising the step of purifying xylylenediamine to obtain high purity xylylenediamine by separating ammonia, organic solvent and heavy water from the hydrogenation product containing xylylenediamine obtained in step (4) Process for the preparation of diamines.
  2. 제 1항에 있어서, 상기 (1) 단계의 촉매는 바나듐 (V), 크롬 (Cr), 안티모니 (Sb), 몰리브덴 (Mo), 철 (Fe) 및 텅스텐 (W)으로 이루어진 군으로부터 선택된 하나 이상의 금속의 산화물인 것을 특징으로 하는 크실릴렌디아민의 제조방법.According to claim 1, wherein the catalyst of step (1) is one selected from the group consisting of vanadium (V), chromium (Cr), antimony (Sb), molybdenum (Mo), iron (Fe) and tungsten (W) It is an oxide of the above metal, The manufacturing method of xylylenediamine.
  3. 제 1항에 있어서, 상기 (1) 단계의 산소함유가스는 산소를 함유한 공기, 불활성 가스로 희석된 공기 또는 산소인 것을 특징으로 하는 크실릴렌디아민의 제조방법.The method for producing xylylenediamine according to claim 1, wherein the oxygen-containing gas of step (1) is air containing oxygen, air diluted with an inert gas, or oxygen.
  4. 제 1항에 있어서, 상기 (2) 단계의 냉각은 80℃ 내지 프탈로니트릴의 승화온도 범위에서 수행되는 것을 특징으로 하는 크실릴렌디아민의 제조방법.The method for preparing xylylenediamine according to claim 1, wherein the cooling in the step (2) is performed at a sublimation temperature range of 80 ° C to phthalonitrile.
  5. 제 1항에 있어서, 상기 (2) 단계의 유기용매는 방향족 탄화수소, 포화지환족 탄화수소, 헤테로고리 화합물, 방향족 니트릴, 헤테로고리 니트릴, 이미다졸류, 톨루니트릴류, 메틸벤질아민류, 크실릴렌디아민류, N-메틸-2-피롤리돈 (NMP), 메시틸렌 및 수도규멘으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 크실릴렌디아민의 제조방법.The organic solvent of claim 1, wherein the organic solvent of step (2) is an aromatic hydrocarbon, a saturated alicyclic hydrocarbon, a heterocyclic compound, an aromatic nitrile, a heterocyclic nitrile, imidazoles, tolunitriles, methylbenzylamines or xylylenes. Diamines, N-methyl-2-pyrrolidone (NMP), mesitylene and the manufacturing method of xylylenediamine characterized by the above-mentioned.
  6. 제 1항에 있어서, 상기 (3) 단계의 냉각은 0℃ 내지 50℃ 범위에서 수행되는 것을 특징으로 하는 크실릴렌디아민의 제조방법.The method for preparing xylylenediamine according to claim 1, wherein the cooling in step (3) is performed in a range of 0 ° C to 50 ° C.
  7. 제 1항에 있어서, 상기 (4) 단계의 수소화반응은 촉매하, 40℃ 내지 150℃ 범위의 온도, 및 3 내지 30 MPa 범위의 압력하에서 수행되는 것을 특징으로 하는 크실릴렌디아민의 제조방법.The method of claim 1, wherein the hydrogenation of step (4) is carried out under a catalyst, at a temperature in the range of 40 ° C to 150 ° C, and at a pressure in the range of 3 to 30 MPa.
  8. 제 7항에 있어서, 상기 촉매는 니켈 또는 코발트 함유 촉매인 것을 특징으로 하는 크실릴렌디아민의 제조방법.8. The process for producing xylylenediamine according to claim 7, wherein the catalyst is a nickel or cobalt-containing catalyst.
  9. 제1항에 있어서, 상기 (5) 단계에서 분리한 암모니아는 상기 (4) 단계의 수소화반응 단계로 순환시켜 재이용하고, 상기 (5) 단계에서 분리한 유기용매는 상기 (2) 단계의 프탈로니트릴 회수 단계로 순환시켜 재이용하는 것을 특징으로 하는 크실릴렌디아민의 제조방법.According to claim 1, wherein the ammonia separated in the step (5) is recycled by recycling to the hydrogenation step of the step (4), the organic solvent separated in the step (5) is phthalate of step (2) A method for producing xylylenediamine, which is recycled by circulating in a nitrile recovery step.
  10. 제1항에 있어서, 상기 크실렌은 o-크실렌 (o-xylene), m-크실렌 (m-xylene) 및 p-크실렌 (p-xylene)으로 이루어진 군으로부터 선택된 적어도 하나의 크실렌 화합물이고, 상기 프탈로니트릴은 o-프탈로니트릴, 이소프탈로니트릴 및 테레프탈로니트릴로 이루어진 군으로부터 선택된 적어도 하나의 프탈로니트릴 화합물이며, 상기 크실릴렌디아민은 o-크실릴렌디아민, m-크실릴렌디아민 및 p-크실릴렌디아민으로 이루어진 군으로부터 선택된 적어도 하나의 크실릴렌디아민인 것을 특징으로 하는 크실릴렌디아민의 제조방법.The method of claim 1, wherein the xylene is at least one xylene compound selected from the group consisting of o-xylene (o-xylene), m-xylene (m-xylene) and p-xylene (p-xylene), Nitrile is at least one phthalonitrile compound selected from the group consisting of o-phthalonitrile, isophthalonitrile and terephthalonitrile, said xylylenediamine being o-xylylenediamine, m-xylylenediamine and p At least one xylylenediamine selected from the group consisting of xylylenediamine.
PCT/KR2013/002481 2012-03-27 2013-03-26 Method for preparing xylylenediamine WO2013147485A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0031195 2012-03-27
KR1020120031195A KR101399572B1 (en) 2012-03-27 2012-03-27 Method for producing xylylenediamines

Publications (1)

Publication Number Publication Date
WO2013147485A1 true WO2013147485A1 (en) 2013-10-03

Family

ID=49260667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002481 WO2013147485A1 (en) 2012-03-27 2013-03-26 Method for preparing xylylenediamine

Country Status (2)

Country Link
KR (1) KR101399572B1 (en)
WO (1) WO2013147485A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862202A (en) * 1973-07-16 1975-01-21 Sun Research Development Terephthalonitrile process
WO2006001298A1 (en) * 2004-06-23 2006-01-05 Mitsubishi Gas Chemical Company, Inc. Process for producing highly purified xylylenediamine
KR20080033480A (en) * 2005-08-02 2008-04-16 바스프 에스이 Process for preparing xylylenediamine by continuous hydrogenation of phthalonitrile
US7528284B2 (en) * 2003-09-10 2009-05-05 Basf Aktiengesellschaft Method for producing xylylenediamine (XDA)
JP4532491B2 (en) * 2003-09-10 2010-08-25 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing xylylenediamine (XDA)

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862202A (en) * 1973-07-16 1975-01-21 Sun Research Development Terephthalonitrile process
US7528284B2 (en) * 2003-09-10 2009-05-05 Basf Aktiengesellschaft Method for producing xylylenediamine (XDA)
JP4532491B2 (en) * 2003-09-10 2010-08-25 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing xylylenediamine (XDA)
WO2006001298A1 (en) * 2004-06-23 2006-01-05 Mitsubishi Gas Chemical Company, Inc. Process for producing highly purified xylylenediamine
JP4858168B2 (en) * 2004-06-23 2012-01-18 三菱瓦斯化学株式会社 Method for producing high purity xylylenediamine
KR20080033480A (en) * 2005-08-02 2008-04-16 바스프 에스이 Process for preparing xylylenediamine by continuous hydrogenation of phthalonitrile

Also Published As

Publication number Publication date
KR20130109457A (en) 2013-10-08
KR101399572B1 (en) 2014-05-27

Similar Documents

Publication Publication Date Title
KR100747383B1 (en) Method for producing xylylenediamine
US6646163B2 (en) Method for producing high purity xylylenediamine
US7323597B2 (en) Method for the production of diaminoxylene by continuous hydrogenation of liquid phthalonitrile
MXPA05013788A (en) A process for preparing 4-aminodiphenylamine.
CN101768083B (en) Production method of xylylenediamine
WO2006001298A1 (en) Process for producing highly purified xylylenediamine
US7368610B2 (en) Preparation of xylylenediamine (XDA)
JP5017755B2 (en) Method for producing high purity xylylenediamine
JP4406645B2 (en) Process for the production of xylylenediamine by continuous hydrogenation of liquid phthalonitrile
US7528284B2 (en) Method for producing xylylenediamine (XDA)
WO2013077543A1 (en) Method for preparing phthalonitriles
WO2013147485A1 (en) Method for preparing xylylenediamine
CN108299245B (en) Synthesis process of N, N' -bis (3-dimethylaminopropyl) urea
KR100725683B1 (en) Method of purifying isophthalonitrile
JP4747417B2 (en) Method for producing nitrile compound
US20080262266A1 (en) Method for the Production of Xylyendiamine
JP6806290B1 (en) Method for producing xylylenediamine
JP2003238512A (en) Method for producing polynitrile compound
CN118047696A (en) Method and device for synthesizing dinitrile product from nylon acid and/or nylon acid ester
JPS60228446A (en) Recovery of aromatic amine
CN107353250A (en) A kind of synthetic method of lorcaserin
JPS60190740A (en) Preparation of aromatic diamine
JPH0237909B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769502

Country of ref document: EP

Kind code of ref document: A1