WO2013147338A1 - Method for manufacturing oxide dispersion-strengthened platinum-gold alloy powder using dry method - Google Patents

Method for manufacturing oxide dispersion-strengthened platinum-gold alloy powder using dry method Download PDF

Info

Publication number
WO2013147338A1
WO2013147338A1 PCT/KR2012/002243 KR2012002243W WO2013147338A1 WO 2013147338 A1 WO2013147338 A1 WO 2013147338A1 KR 2012002243 W KR2012002243 W KR 2012002243W WO 2013147338 A1 WO2013147338 A1 WO 2013147338A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum
alloy powder
powder
plasma
gold
Prior art date
Application number
PCT/KR2012/002243
Other languages
French (fr)
Korean (ko)
Inventor
윤원규
양승호
박재성
김태훈
연병훈
Original Assignee
희성금속 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 희성금속 주식회사 filed Critical 희성금속 주식회사
Priority to JP2015503086A priority Critical patent/JP2015516512A/en
Publication of WO2013147338A1 publication Critical patent/WO2013147338A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof

Definitions

  • the present invention provides an oxide dispersion strengthened platinum material which is widely used in places where high strength is required for platinum devices (dissolving devices, crucibles, bushings, etc.) used in glass related industries.
  • the present invention relates to a platinum alloy powder manufacturing method for, in particular, to create a platinum alloy powder using an environmentally friendly plasma method.
  • oxide dispersion-enhanced platinum alloys having excellent high temperature strength characteristics have been used as materials mainly used in glass-related industries.
  • platinum material in which oxides are formed and dispersed using elements such as zirconium (Zr), samarium (Sm), yttrium (Y), europium (Eu), and hafnium (Hf), which are superior in oxidizing power to platinum.
  • the platinum material containing these oxides has no grain growth and little deformation even when used for a long time at a high temperature of 1200 or more, and recrystallization is hindered by the oxide, resulting in elongated crystal grains.
  • Zr zirconium
  • Sm samarium
  • Y yttrium
  • Eu europium
  • Hf hafnium
  • the present invention relates to a method for producing a platinum-gold alloy powder using a dry method for producing a platinum material dispersed with an oxide, and introduces the world's first environmentally friendly plasma method instead of the conventional dry method using a conventional wet method and vacuum melting.
  • the purpose is to produce an alloy powder of the final high purity through powder production and post-heat treatment.
  • a platinum alloy ingot is prepared by adding gold, which is a target composition to platinum, as an alloying element, and a platinum-gold alloy powder is prepared by using plasma, followed by atmospheric heat treatment to produce a high purity platinum-gold alloy powder. It aims to do it.
  • a platinum-gold alloy ingot of a target composition is prepared by adding gold, which is a target composition to platinum, in a vacuum atmosphere or an inert gas (Ar, N 2 ) atmosphere as an alloying element, and using a thermal plasma, a platinum-gold alloy.
  • gold which is a target composition to platinum
  • a vacuum atmosphere or an inert gas (Ar, N 2 ) atmosphere as an alloying element
  • a thermal plasma a platinum-gold alloy.
  • the high purity platinum-gold alloy powder for the production of oxide dispersion-enhanced platinum material having uniform properties by removing and classifying impurities in the powder by using a queue treatment.
  • the recently known dry method has the advantage that it is easier to control the content than the wet method and to produce a platinum material having a high temperature strength, but the cost is increased due to the complicated processes such as grinding and degassing to prepare powder. And lowering of purity.
  • the present invention in the production of platinum-gold alloy powder used for the oxide dispersion-enhanced platinum material by introducing an environmentally friendly plasma, rather than the conventional wet and dry method, it is possible to manufacture the platinum alloy powder in a short time, queue processing Through this, there is an advantage that high purity platinum alloy powder can be manufactured. Through this, it is possible to reduce the cost in the production of high purity platinum alloy powder, and to manufacture the oxide dispersion-enhanced platinum material having high strength at high temperature.
  • 1 is a FESEM image of a Pt-Au-Zr powder prepared by plasma.
  • 3 is a graph showing the results of particle size analysis on the Pt-Au-Zr powder after plasma and heat treatment.
  • the vacuum melting method is applied to the preparation of the ingot of the platinum-gold-oxide alloy, and the platinum alloy powder is subjected to the thermal plasma process.
  • internal oxidation is performed to prevent initial vaporization of the gold material, a powder is prepared using an environmentally friendly plasma, and a high purity powder is produced through a final heat treatment.
  • a method of producing a high purity platinum alloy powder for producing an oxide dispersion-enhanced platinum material comprising: adding a target composition of gold (Au) as an alloying element to pure platinum to produce a platinum alloy ingot; initial vaporization of the gold material
  • the step of forming a plasma to produce a platinum alloy powder, and the platinum-gold-oxide alloy powder is subjected to heat treatment to prepare a high purity platinum-gold alloy powder .
  • a platinum-gold-oxide alloy ingot is prepared by adding an alloying element of the target composition to pure platinum.
  • the content of gold (Au), which is the alloying element added is characterized in that 3 to 6wt%
  • the amount of the metal element added as the alloying element for the oxide is characterized in that 0.5wt% to 0.9wt%. If it exceeds 1 wt%, the oxide dispersion strengthening effect of the alloying element is increased, resulting in a decrease in workability. Therefore, the amount of the alloying element and the alloying element is characterized by improving the workability while maximizing the dispersion strengthening effect.
  • the prepared platinum alloy ingot is oxidized to the inside and outside of the ingot through an internal oxidation process, and then the ingot is set inside the plasma chamber.
  • molybdenum (Mo), tungsten (W) and platinum may be used, and platinum, which is the same material as that of the raw material, is most preferable for producing a high purity powder.
  • Molybdenum (Mo), tungsten (W), copper (Cu), graphite, and the like can be used as the mold material in which the ingot is set and usable for forming the melt. It is important to maintain high purity and minimize contamination by the mold, and it is important to select a mold that is easy to remove the contamination even if contamination is caused by the mold. To this end, carbon, which is preferably easy to remove, is advantageous, and more preferably, it is most preferable to use a platinum mold that does not affect purity even if contaminated.
  • a vacuum system was used to reduce the pressure to a level of 10 ⁇ 1 torr, and after adjusting the reaction gas input and the working vacuum, electric power was applied to form a plasma.
  • a mixed gas such as Ar, N 2 , CH 4 , Ar + H 2 , and Ar + N 2 may be used, but Ar is most preferably used.
  • the reaction gas content is preferably added at less than 1.5% to 3%. It is preferable to add it, because when it is 1% or less, the effect of increasing the powder production rate cannot be expected, and when it is 5% or more, the possibility of remaining in the powder is high.
  • Vacuum control is performed using other cooling gases attached to the equipment or by using a vacuum control valve.
  • the manufactured power is preferably 15 to 50 kw or less. If the power is 15 kw or less, there is a limitation in the production of scattering powder, and is performed at 50 kw or less in consideration of the stability of the equipment.
  • the atmosphere is preferably an atmosphere or an oxygen atmosphere, in order to utilize a mechanism in which fine carbon is bonded and gasified and removed with oxygen at a high temperature of 500 or more.
  • the heat treatment temperature is preferably 600 to 1200 and 1 to 4 hours. If the temperature is 600 or less and less than 1 hour, the remaining carbon is not likely to be sufficiently removed. If the temperature is 1200 or more and a long time of 4 hours or more, the produced powder is likely to aggregate.
  • Powder size control is important for showing uniform characteristics of the oxide dispersion-enhanced platinum material, so it is preferable to consider the powder use yield and the properties of the platinum material.
  • ingot 800 gr was prepared by adding 3N5 grade platinum and 4N grade Au 3N grade Zr.
  • Pt-Au-Zr powder was prepared using a plasma equipment.
  • the prepared ingot is oxidized in an internal oxidation furnace, and then the ingot manufactured in the carbon mold is set, and the distance to the plasma torch is adjusted, and the pressure is reduced to 10 -2 torr using a vacuum pump attached to the plasma equipment.
  • the Ar was formed as a reaction gas to form a plasma
  • Table 1 shows the production process conditions of the platinum alloy powder using the plasma.
  • FIG. 1 FESEM image analysis of the Pt-Au-Zr powder prepared by the plasma is shown in FIG. Fine powder is also observed in the prepared powder, but coarse powder of several tens of micrometers is also observed (FIG. 1).
  • the powder was prepared by contaminating carbon by the use of graphite mold to produce a black powder.
  • the final platinum alloy powder was prepared by performing a heat treatment at 800 to 2 hours for carbon removal.
  • Au content is 4.35 wt%
  • Zr content is 0.2162 wt%
  • total impurity content is 251 ppm
  • Pt purity is not less than 3N8. It was possible to manufacture a high purity platinum alloy powder.
  • the present invention relates to a method for producing a platinum-gold alloy powder using a dry method for producing a platinum material in which oxides are dispersed, and introduces the world's first environmentally friendly plasma method instead of the conventional dry method using a conventional wet method and vacuum melting.
  • the purpose is to make the final high purity alloy powder through powder production and post heat treatment.
  • a platinum alloy ingot is prepared by adding gold, which is a target composition to platinum, as an alloying element, and a platinum-gold alloy powder is prepared by using plasma, followed by atmospheric heat treatment to produce a high purity platinum-gold alloy powder. It aims to do it.

Abstract

The present invention relates to a method for manufacturing platinum alloy powder used to manufacture oxide dispersion-strengthened platinum materials. The objective of the present invention is to overcome the disadvantages of existing wet and dry methods for manufacturing platinum alloy powder, such as environmental pollution problems including wastewater treatment due to the use of acids, a complicated manufacturing process, high manufacturing costs, and a long manufacturing time. To this end, the present invention obtains fine and highly-purified platinum alloy powder which is prepared by: manufacturing a platinum alloy ingot by adding an alloy element for a target composition to platinum; manufacturing platinum alloy powder using an environmentally friendly plasma process; obtaining fine and highly-purified platinum alloy powder using and performing heat treatment and classification.

Description

건식법을 이용한 산화물 분산강화형 백금-금 합금 분말의 제조방법Method for producing oxide-dispersed platinum-gold alloy powder by dry method
본 발명은, 유리(glass) 관련 산업에 사용되는 백금 장치류(용해장치, 크루서블(Crucible), 부싱(Bushing) 등) 등에 고강도가 요구되는 곳에 많이 사용되어지고 있는 산화물 분산강화형 백금재료 제조를 위한 백금 합금분말 제조방법에 관한 것으로, 상세하게는 친환경 공법인 플라즈마를 이용한 백금 합금 분말을 만드는 것을 목적으로 한다.Industrial Applicability The present invention provides an oxide dispersion strengthened platinum material which is widely used in places where high strength is required for platinum devices (dissolving devices, crucibles, bushings, etc.) used in glass related industries. The present invention relates to a platinum alloy powder manufacturing method for, in particular, to create a platinum alloy powder using an environmentally friendly plasma method.
종래부터 주로 유리(Glass) 관련 산업에 사용되는 재료로서 고온 강도 특성이 우수한 산화물 분산강화형 백금 합금이 이용되고 있다.Conventionally, oxide dispersion-enhanced platinum alloys having excellent high temperature strength characteristics have been used as materials mainly used in glass-related industries.
특히, 평판 디스플레이 산업의 성장과 함께 LCD용 글라스(Glass) 수요가 폭발적으로 증가되고 있는 추세이며, 이와 더불어 LCD용 고품질 글라스 수요 증가에 따른 LCD 제조용 소재 및 장치에 사용되는 백금의 수요도 크게 증가되고 있다. 이러한 고품질의 글라스를 제조하기 위해서는 기존 백금에 비해 몇배 향상된 강도의 백금소재가 요구되는데, 백금의 강도를 증가시키기 위해 종래에는 백금에 금(Au), 로듐(Rh) 등을 합금화하여, 고용 강화시킨 백금소재가 많이 사용되어 왔으나, 고용 강화원소로 사용된 합금원소가 고비용이며 합금성분에 따라 착색된다는 단점이 있으므로, 최근에는 이러한 합금보다 가격이 매우 저렴하고 고온강도가 우수한 산화물 분산 강화형 백금소재로 대체되고 있는 추세이다.In particular, with the growth of the flat panel display industry, the demand for LCD glass has exploded. In addition, the demand for platinum used in LCD manufacturing materials and devices has increased greatly due to the increased demand for high quality glass for LCD. have. Platinum material of several times improved strength is required to manufacture such high-quality glass, and in order to increase the strength of platinum, conventionally, alloys of platinum (Au), rhodium (Rh), and the like are strengthened to solid solution. Although platinum materials have been used a lot, alloy elements used as solid solution strengthening elements are expensive and colored according to alloying components. In recent years, these materials are very inexpensive and have high temperature strength. The trend is being replaced.
합금시 사용되는 산화물 로는 백금에 비해 산화력이 우수한 지르코늄(Zr), 사마륨(Sm), 이트륨(Y), 유로퓸(Eu), 하프늄(Hf) 등의 원소를 이용하여 산화물을 형성 및 분산시킨 백금재료가 개발되고 있는데, 이들 산화물을 함유한 백금재료는 1200 이상의 고온에서 장시간 사용해도 결정립의 성장이 없고 변형이 적으며, 산화물에 의해 재결정이 방해되어 연신된 결정립을 갖게 되어 높은 고온 크립 강도를 나타내는 것으로 알려져 있다.As an oxide used for alloying, platinum material in which oxides are formed and dispersed using elements such as zirconium (Zr), samarium (Sm), yttrium (Y), europium (Eu), and hafnium (Hf), which are superior in oxidizing power to platinum. The platinum material containing these oxides has no grain growth and little deformation even when used for a long time at a high temperature of 1200 or more, and recrystallization is hindered by the oxide, resulting in elongated crystal grains. Known.
본 발명은 산화물을 분산시킨 백금소재를 제조하기 위한 건식법을 이용한 백금-금 합금 분말 제조방법에 관한 것으로, 종래의 습식공법 및 진공용해를 이용한 종래의 건식공법이 아닌 세계 최초로 친환경적인 플라즈마 공법을 도입하여 분말 제조 및 후열처리 등을 통하여 최종 고순도의 합금 분말을 만드는데 목적이 있다.The present invention relates to a method for producing a platinum-gold alloy powder using a dry method for producing a platinum material dispersed with an oxide, and introduces the world's first environmentally friendly plasma method instead of the conventional dry method using a conventional wet method and vacuum melting. The purpose is to produce an alloy powder of the final high purity through powder production and post-heat treatment.
이를 해결하기 위해, 백금에 목적조성인 금을 합금원소로 첨가하여 백금합금 잉곳을 제조하고, 플라즈마를 이용하여 백금-금 합금 분말을 제조 후, 대기 열처리를 행하여 고순도의 백금-금 합금 분말을 제조하는 것을 목적으로 한다.In order to solve this problem, a platinum alloy ingot is prepared by adding gold, which is a target composition to platinum, as an alloying element, and a platinum-gold alloy powder is prepared by using plasma, followed by atmospheric heat treatment to produce a high purity platinum-gold alloy powder. It aims to do it.
본 발명은, 진공분위기 또는 불활성 Gas(Ar, N2) 분위기에서 백금에 목적조성인 금을 합금원소로 첨가하여 목적 조성의 백금-금 합금 잉곳을 제조하고, 열플라즈마를 이용하여 백금-금 합금 분말을 제조하며, 대기열처리를 이용한 분말 내 불순물을 제거 및 분급을 행하여 균일한 특성을 갖는 산화물 분산강화형 백금소재의 제조를 위한 고순도의 백금-금 합금분말을 제조하는 것을 특징으로 한다.In the present invention, a platinum-gold alloy ingot of a target composition is prepared by adding gold, which is a target composition to platinum, in a vacuum atmosphere or an inert gas (Ar, N 2 ) atmosphere as an alloying element, and using a thermal plasma, a platinum-gold alloy. To prepare a powder, it is characterized in that the high purity platinum-gold alloy powder for the production of oxide dispersion-enhanced platinum material having uniform properties by removing and classifying impurities in the powder by using a queue treatment.
습식법을 적용하여 분말을 제조시 미세 분말 제조가 가능하나 제조 기간이 길고 강산을 사용하기 때문에 폐액 등 관리 및 취급에 어려움이 있으며 합금원소의 함량제어가 어렵다. It is possible to produce fine powder when wet powder is applied, but it is difficult to manage and handle waste liquids because of the long production period and use of strong acid, and it is difficult to control the content of alloying elements.
또한, 최근에 알려진 건식법의 경우에도 습식법에 비해 함량제어가 용이하고 높은 고온강도를 갖는 백금 소재의 제조가 가능하다는 장점이 있으나, 분말을 제조하는데 분쇄 및 탈가스 처리등의 공정이 복잡하여 비용 증가 및 순도 저하의 단점이 있다. In addition, the recently known dry method has the advantage that it is easier to control the content than the wet method and to produce a platinum material having a high temperature strength, but the cost is increased due to the complicated processes such as grinding and degassing to prepare powder. And lowering of purity.
그러나, 본 발명은 산화물 분산강화형 백금소재에 사용되는 백금-금 합금 분말을 제조하는데 있어 기존의 습식 및 건식공법이 아닌 친환경적인 플라즈마를 도입하여 단시간에 백금합금분말제조가 가능하고, 대기열처리를 통해 고순도의 백금 합금 분말제조가 가능하다는 장점이 있다. 이를 통해 고순도의 백금 합금 분말을 제조하는데 있어 비용절감이 가능하고, 고온에서 높은 강도를 갖는 산화물 분산강화형 백금소재 제조가 가능하다.However, the present invention, in the production of platinum-gold alloy powder used for the oxide dispersion-enhanced platinum material by introducing an environmentally friendly plasma, rather than the conventional wet and dry method, it is possible to manufacture the platinum alloy powder in a short time, queue processing Through this, there is an advantage that high purity platinum alloy powder can be manufactured. Through this, it is possible to reduce the cost in the production of high purity platinum alloy powder, and to manufacture the oxide dispersion-enhanced platinum material having high strength at high temperature.
도 1은, 플라즈마에 의해 제조된 Pt-Au-Zr 분말에 대한 FESEM 이미지이다.1 is a FESEM image of a Pt-Au-Zr powder prepared by plasma.
도 2는, Pt-Au-Zr 분말의 열처리 후 분말에 대한 FESEM 이미지이다.2 is a FESEM image of the powder after heat treatment of the Pt-Au-Zr powder.
도 3은, 플라즈마 및 열처리후 Pt-Au-Zr 분말에 대한 입도분석 결과를 나타내는 도면이다.3 is a graph showing the results of particle size analysis on the Pt-Au-Zr powder after plasma and heat treatment.
산화물 분산강화형 백금 소재 제조를 위한 백금-금 합금 분말을 제조하는데 있어서, 백금-금-산화물용 합금의 잉곳을 제조하는 단계에 진공 용해법을 적용하고, 백금합금 분말을 열플라즈마 공정을 통하여 백금합금 분말을 제조시 금 소재의 초기 기화를 방지하기 위하여 내부산화를 실시하고, 친환경 공법인 플라즈마를 이용하여 분말을 제조하고, 최종 열처리를 통해 고순도의 분말을 제조하는 것을 특징으로 한다.In the production of platinum-gold alloy powder for the production of oxide dispersion-enhanced platinum material, the vacuum melting method is applied to the preparation of the ingot of the platinum-gold-oxide alloy, and the platinum alloy powder is subjected to the thermal plasma process. In preparing the powder, internal oxidation is performed to prevent initial vaporization of the gold material, a powder is prepared using an environmentally friendly plasma, and a high purity powder is produced through a final heat treatment.
산화물 분산강화형 백금소재를 제조하기 위한 고순도의 백금 합금 분말을 제조하는 방법으로, 순수백금에 목적조성인 금(Au)을 합금원소로 첨가하여 백금합금 잉곳을 제조하는 단계, 금 소재의 초기 기화를 방지하기 위하여 내부산화를 실시하는 단계, 플라즈마를 형성시켜 백금합금 분말을 제조하는 단계, 및 백금-금-산화물 합금 분말에 열처리를 실시하여 고순도의 백금-금 합금 분말을 제조하는 단계로 구성된다.A method of producing a high purity platinum alloy powder for producing an oxide dispersion-enhanced platinum material, comprising: adding a target composition of gold (Au) as an alloying element to pure platinum to produce a platinum alloy ingot; initial vaporization of the gold material In order to prevent the internal oxidation, the step of forming a plasma to produce a platinum alloy powder, and the platinum-gold-oxide alloy powder is subjected to heat treatment to prepare a high purity platinum-gold alloy powder .
이하, 상기공정단계에 대해 상세하게 설명한다.Hereinafter, the process steps will be described in detail.
먼저, 순수백금에 목적조성의 합금원소를 첨가하여 백금-금-산화물 합금 잉곳을 제조한다. 첨가되는 합금원소인 금(Au)의 함량은 3 내지 6wt% 인 것을 특징으로 하며, 산화물용 합금원소로 첨가되는 금속원소의 양은 0.5 wt% 내지 0.9 wt%인 것을 특징으로 한다. 1 wt%를 초과하는 경우 합금원소의 산화물 분산 강화효과가 커져 가공성이 저하되는 단점이 있다. 따라서 상기의 합금 원소 및 합금 원소의 양은 분산강화 효과를 극대화하면서 가공성을 좋게 하는데 특징이 있다. 또한, 이들 원소는 백금에 비해 산화성이 우수하여, 대기 중에서 용해할 경우 산화 및 기화에 의해 목적조성의 함량제어가 어려우므로 진공 또는 불활성 분위기에서 백금합금 잉곳을 제조하는 것이 바람직하다.First, a platinum-gold-oxide alloy ingot is prepared by adding an alloying element of the target composition to pure platinum. The content of gold (Au), which is the alloying element added, is characterized in that 3 to 6wt%, the amount of the metal element added as the alloying element for the oxide is characterized in that 0.5wt% to 0.9wt%. If it exceeds 1 wt%, the oxide dispersion strengthening effect of the alloying element is increased, resulting in a decrease in workability. Therefore, the amount of the alloying element and the alloying element is characterized by improving the workability while maximizing the dispersion strengthening effect. In addition, since these elements are superior in oxidizing property to platinum, and when dissolved in the air, it is difficult to control the content of the target composition by oxidation and vaporization, and therefore, it is preferable to prepare the platinum alloy ingot in a vacuum or inert atmosphere.
제조된 백금합금 잉곳을 내부산화 공정을 통하여 잉곳 내부 및 외부까지 산화를 시킨 후 잉곳을 플라즈마 챔버 내부에 세팅 한다.The prepared platinum alloy ingot is oxidized to the inside and outside of the ingot through an internal oxidation process, and then the ingot is set inside the plasma chamber.
플라즈마 처리 전에 챔버 내부를 세정 하고, 챔버 내부 Carbon 몰드에 백금합금잉곳을 세팅 후, 플라즈마 토치와 잉곳간의 거리를 조정한다. 적용 가능한 음극 재료로는, 몰리브덴(Mo), 텅스텐(W), 백금이 가능하며, 원료와 동일 재질인 백금을 사용하는 것이 고순도 분말을 제조하는데 가장 바람직하다. 잉곳이 세팅되고, 용탕 형성을 위해 사용가능한 몰드 재료로는 몰리브덴(Mo), 텅스텐(W), 구리(Cu), 그라파이트(Graphite) 등이 사용가능하다. 고순도를 유지하고 몰드에 의한 오염을 최소화하는 것이 중요하며, 몰드에 의해 오염이 발생되더라도 오염의 제거가 용이한 몰드를 선택하는 것이 중요하다. 이를 위해, 바람직하게는 제거가 용이한 카본(Carbon)이 유리하며, 더욱 바람직하게는 오염이 되더라도 순도에 영향을 미치지 않는 백금 몰드를 사용하는 것이 가장 바람직하다.Clean the inside of the chamber before the plasma treatment, set the platinum alloy ingot on the carbon mold inside the chamber, and adjust the distance between the plasma torch and the ingot. As the applicable negative electrode material, molybdenum (Mo), tungsten (W) and platinum may be used, and platinum, which is the same material as that of the raw material, is most preferable for producing a high purity powder. Molybdenum (Mo), tungsten (W), copper (Cu), graphite, and the like can be used as the mold material in which the ingot is set and usable for forming the melt. It is important to maintain high purity and minimize contamination by the mold, and it is important to select a mold that is easy to remove the contamination even if contamination is caused by the mold. To this end, carbon, which is preferably easy to remove, is advantageous, and more preferably, it is most preferable to use a platinum mold that does not affect purity even if contaminated.
플라즈마 장비내부를 감압하고, 플라즈마를 형성시켜 분말을 제조한다.Depressurize the inside of the plasma equipment, and form a plasma to produce a powder.
플라즈마를 형성시키기 위해 진공 시스템을 이용하여 10-1 torr 수준으로 감압하고, 반응가스 투입 및 작업 진공도를 조절 후 전력을 인가하여 플라즈마를 형성시킨다. 사용되는 반응 가스는 Ar, N2, CH4, Ar+H2, Ar+N2등의 혼합가스 사용이 가능하나, Ar을 사용하는 것이 가장 바람직하다. 분말 제조 속도 증가를 위해 Ar가스에 N2, H2를 일부 함유 시 반응가스 함량은 1.5% 내지 3% 미만으로 투입하는 것이 바람직하다. 투입하는 것이 바람직한데, 이는 1% 이하일 경우에는 분말 제조속도 증가 효과를 기대할 수 없으며, 5% 이상일 경우에는 분말내 잔존될 가능성이 높기 때문이다. 작업진공도는 대략 45 ~ 700 torr에서 작업하는 것이 바람직한데 45 torr 이하일 경우 백금합금 잉곳에 직접적인 열전달이 어렵고, 700 torr 이상일 경우에는 펌프의 배기 능력이 저하되어 용해 중 불순물의 제거가 어려울 수 있기 때문이다. 진공도 조절은 장비에 부착된 기타 냉각가스를 이용하거나 진공도 제어 밸브를 이용하여 작업을 진행 한다. In order to form a plasma, a vacuum system was used to reduce the pressure to a level of 10 −1 torr, and after adjusting the reaction gas input and the working vacuum, electric power was applied to form a plasma. As the reaction gas used, a mixed gas such as Ar, N 2 , CH 4 , Ar + H 2 , and Ar + N 2 may be used, but Ar is most preferably used. In order to increase the powder production rate, when N 2 and H 2 are partially contained in the Ar gas, the reaction gas content is preferably added at less than 1.5% to 3%. It is preferable to add it, because when it is 1% or less, the effect of increasing the powder production rate cannot be expected, and when it is 5% or more, the possibility of remaining in the powder is high. It is desirable to work at about 45 to 700 torr, because if it is less than 45 torr, it is difficult to directly transfer heat to the platinum alloy ingot, and if it is above 700 torr, the exhaust capacity of the pump may be lowered, which may make it difficult to remove impurities during melting. . Vacuum control is performed using other cooling gases attached to the equipment or by using a vacuum control valve.
플라즈마를 형성 후 플라즈마 전력을 증가시키게 되면 용탕이 형성되고, 용탕의 온도가 증가하여 기화온도 이상의 용탕은 기화 및 냉각되어 분말이 제조되거나, 주위 분위기 및 반응가스 압력에 의한 비산에 의해서도 분말이 제조된다. 이때 제조되는 전력은 15 내지 50 kw 이하가 바람직한데, 15 kw 이하일 경우 전력이 낮아 비산 분말 제조에 제약이 있으며, 장비의 안정성을 고려하여 50 kw 이하에서 실시한다.When plasma power is increased after plasma formation, a molten metal is formed, and the temperature of the molten metal is increased, so that the molten metal above the vaporization temperature is vaporized and cooled to produce a powder, or the powder is also produced by scattering by the ambient atmosphere and the reaction gas pressure. . At this time, the manufactured power is preferably 15 to 50 kw or less. If the power is 15 kw or less, there is a limitation in the production of scattering powder, and is performed at 50 kw or less in consideration of the stability of the equipment.
플라즈마에 의해 제조된 백금합금 분말의 경우 그라파이트 몰드 사용에 의해 용탕 형성시 Carbon 용융 및 기화도 발생되므로, 이를 제거하여 고순도의 백금 분말을 얻기 위해 열처리를 통해 카본(Carbon)을 제거하여 고순도의 백금 분말을 얻고 분급을 통하여 일정한 크기를 갖는 백금 분말을 제조한다. In the case of the platinum alloy powder produced by plasma, carbon melting and vaporization also occurs when the molten metal is formed by using a graphite mold. Thus, the carbon powder is removed by heat treatment to obtain a platinum powder of high purity by removing the carbon powder. To obtain a platinum powder having a constant size through classification.
열처리의 경우, 분위기는 대기 또는 산소분위기가 바람직한데, 이는 미세한 카본이 500 이상의 고온에서 산소와 결합 및 가스화 되어 제거되는 메카니즘을 이용하기 위함이다. 열처리 온도는 600 내지 1200 및 1 내지 4 시간 동안 열처리를 하는 것이 바람직하다. 온도가 600 이하이고 1 시간 이하로 짧을 경우 잔존한 카본(Carbon)이 충분히 제거되지 않을 가능성이 높고, 온도가 1200 이상 높고 4 시간 이상의 장시간일 경우 제조된 분말이 응집될 가능성이 높다. In the case of heat treatment, the atmosphere is preferably an atmosphere or an oxygen atmosphere, in order to utilize a mechanism in which fine carbon is bonded and gasified and removed with oxygen at a high temperature of 500 or more. The heat treatment temperature is preferably 600 to 1200 and 1 to 4 hours. If the temperature is 600 or less and less than 1 hour, the remaining carbon is not likely to be sufficiently removed. If the temperature is 1200 or more and a long time of 4 hours or more, the produced powder is likely to aggregate.
카본성분이 제거된 백금 합금 분말에 대해서 표준체를 이용하여 원하는 크기의 분말 제어가 가능하다. 분말 크기 제어는 산화물 분산강화형 백금소재의 균일한 특성을 나타내는데 중요하므로, 분말 사용 수율과 백금소재의 특성을 고려하여 선택하는 것이 바람직하다. It is possible to control the powder of the desired size using a standard body for the platinum alloy powder from which the carbon component is removed. Powder size control is important for showing uniform characteristics of the oxide dispersion-enhanced platinum material, so it is preferable to consider the powder use yield and the properties of the platinum material.
[실시예 1]Example 1
진공 고주파 유도 용해로를 이용하여 Pt-5wt%Au-0.3wt%Zr 잉곳을 제조하기 위해 3N5급의 백금과 4N급의 Au 3N급의 Zr을 투입하여 잉곳 800 gr을 제조하였다. 제조된 잉곳에 대해, 플라즈마 장비를 이용하여 Pt-Au-Zr 분말을 제조하였다.In order to manufacture Pt-5wt% Au-0.3wt% Zr ingot using a vacuum high frequency induction furnace, ingot 800 gr was prepared by adding 3N5 grade platinum and 4N grade Au 3N grade Zr. For the prepared ingot, Pt-Au-Zr powder was prepared using a plasma equipment.
분말 제조공정 으로는 제조된 잉곳을 내부 산화로에서 산화시킨 후 Carbon 몰드 내에 제조된 잉곳을 세팅하고, 플라즈마 토치와의 거리를 조절 후 플라즈마 장비에 부착된 진공펌프를 이용하여 10-2 torr까지 감압 후 Ar을 반응가스로 하여 플라즈마를 형성시켜, 분말을 제조하였으며 플라즈마를 이용한 백금합금 분말의 제조공정조건을 표 1에 나타내었다.In the powder manufacturing process, the prepared ingot is oxidized in an internal oxidation furnace, and then the ingot manufactured in the carbon mold is set, and the distance to the plasma torch is adjusted, and the pressure is reduced to 10 -2 torr using a vacuum pump attached to the plasma equipment. After the Ar was formed as a reaction gas to form a plasma, a powder was prepared. Table 1 shows the production process conditions of the platinum alloy powder using the plasma.
표 1
공정항목 공정조건-실시예
1단계(저전력) 2단계(고전력)
인가된 플라즈마 출력(kw) 15 50
플라즈마용 가스 조성 Ar Ar+N2
가스유량(L/min) 30 20(Ar)/10(N2)
기타 가스유량(조성)(L/min) 160(N2) 160(N2)
Table 1
Process item Process condition-Example
Tier 1 (Low Power) Stage 2 (high power)
Applied Plasma Output (kw) 15 50
Gas for plasma Furtherance Ar Ar + N 2
Gas flow rate (L / min) 30 20 (Ar) / 10 (N2)
Other gas flow rate (composition) (L / min) 160 (N2) 160 (N2)
플라즈마에 의해 제조된 Pt-Au-Zr 분말에 대한 FESEM 이미지 분석결과를 도 1에 나타내었다. 제조된 분말은 미세한 분말도 관찰되고 있으나, 수십 마이크로미터의 조대한 분말도 관찰된다(도 1). 제조된 분말은 그라파이트 몰드 사용에 의해 카본이 오염되어 검은색의 분말이 제조되었는데, 카본 제거를 위해 800에서 2 시간 대기 열처리를 실시하여 최종 백금합금 분말을 제조하였다.FESEM image analysis of the Pt-Au-Zr powder prepared by the plasma is shown in FIG. Fine powder is also observed in the prepared powder, but coarse powder of several tens of micrometers is also observed (FIG. 1). The powder was prepared by contaminating carbon by the use of graphite mold to produce a black powder. The final platinum alloy powder was prepared by performing a heat treatment at 800 to 2 hours for carbon removal.
제조된 분말에 대한 카본 유무를 확인하기 위해 열처리 전후 EDS 및 Cabon 분석기를 이용한 분석 결과를 표 2에 나타내었으며, 열처리 후 분말 이미지를 도 2에 나타내었다.In order to confirm the presence or absence of carbon for the powder, the analysis results using EDS and Cabon analyzer before and after heat treatment are shown in Table 2, and the powder image after heat treatment is shown in FIG. 2.
표 2
항목(단위 wt%) 열처리전 열처리후
EDS 분석 60.2 5.2
Carbon 분석 0.157 0.020
TABLE 2
Item (wt%) Before heat treatment After heat treatment
EDS Analysis 60.2 5.2
Carbon analysis 0.157 0.020
대기 열처리를 통하여 카본이 제거되는 것을 확인 하였으며, 최종 대기 열처리 된 분말을 45 표준체를 이용하여 분말 분급을 실시 하였으며,분말 크기를 파악하기 위해 입도분석을 실시한 결과를 도 3에 나타내었으며, 플라즈마 및 대기 열처리에 의해 제조된 최종 백금 합금 분말의 중심입도는 31.3 크기를 보이고 있었다. It was confirmed that carbon was removed through the air heat treatment, and the final air heat-treated powder was subjected to powder classification using 45 standard bodies. The results of the particle size analysis to determine the powder size are shown in FIG. The final particle size of the final platinum alloy powder prepared by the heat treatment showed a size of 31.3.
제조된 백금 합금 분말에 대한 순도 확인 및 Zr 함량 확인을 위해 ICP 분석을 실시한 결과, Au 함량은 4.35 wt%, Zr 함량은 0.2162 wt%, 불순물 총 함량은 251 ppm으로 Zr을 제외한 Pt 순도는 3N8 이상으로 고순도의 백금합금 분말제조가 가능하였다.As a result of ICP analysis to confirm purity and Zr content of the prepared platinum alloy powder, Au content is 4.35 wt%, Zr content is 0.2162 wt%, total impurity content is 251 ppm, and Pt purity is not less than 3N8. It was possible to manufacture a high purity platinum alloy powder.
본 발명은 산화물을 분산시킨 백금소재를 제조하기 위한 건식법을 이용한 백금-금 합금 분말 제조방법에 관한 것으로, 종래의 습식공법 및 진공용해를 이용한 종래의 건식공법이 아닌 세계 최초로 친환경적인 플라즈마 공법을 도입하여 분말 제조 및 후 열처리 등을 통하여 최종 고순도의 합금 분말을 만드는데 목적이 있다.The present invention relates to a method for producing a platinum-gold alloy powder using a dry method for producing a platinum material in which oxides are dispersed, and introduces the world's first environmentally friendly plasma method instead of the conventional dry method using a conventional wet method and vacuum melting. The purpose is to make the final high purity alloy powder through powder production and post heat treatment.
이를 해결하기 위해, 백금에 목적조성인 금을 합금원소로 첨가하여 백금합금 잉곳을 제조하고, 플라즈마를 이용하여 백금-금 합금 분말을 제조 후, 대기 열처리를 행하여 고순도의 백금-금 합금 분말을 제조하는 것을 목적으로 한다.In order to solve this problem, a platinum alloy ingot is prepared by adding gold, which is a target composition to platinum, as an alloying element, and a platinum-gold alloy powder is prepared by using plasma, followed by atmospheric heat treatment to produce a high purity platinum-gold alloy powder. It aims to do it.

Claims (8)

  1. 분산강화형 백금 재료를 제조하기 위한 고순도의 백금 합금 분말을 제조함에 있어서, 순수백금에 목적조성의 합금원소를 첨가하여 백금합금 잉곳을 제조하는 단계; 제조된 잉곳을 내부 산화열처리 공정을 진행하는 단계; 백금 합금잉곳을 플라즈마 장비 내부에 세팅하는 단계; 플라즈마 장비 내부를 감압하고, 플라즈마를 형성시켜 백금합금 분말을 제조하는 단계; 및 백금합금 분말에 열처리를 실시하여 고순도의 백금합금 분말을 제조하는 단계로 구성되는 것을 특징으로 하는 산화물 분산강화형 백금-금 합금 분말의 제조방법.In preparing a high purity platinum alloy powder for producing a dispersion-enhanced platinum material, adding a alloying element of the target composition to pure platinum to prepare a platinum alloy ingot; Performing an internal oxidation heat treatment process on the manufactured ingot; Setting a platinum alloy ingot inside the plasma equipment; Pressure-reducing the inside of the plasma equipment and forming a plasma to prepare a platinum alloy powder; And performing a heat treatment on the platinum alloy powder to prepare a platinum alloy powder of high purity.
  2. 제 1항에 있어서,The method of claim 1,
    상기 백금합금 잉곳을 제조하는 단계에 첨가되는 합금원소는 지르코늄(Zr), 사마륨(Sm), 이트륨(Y), 유로퓸(Eu), 하프늄(Hf) 중에서 선택된 어느 하나인 것을 특징으로 하는 산화물 분산강화형 백금-금 합금 분말의 제조방법.The alloying element added to the step of manufacturing the platinum alloy ingot is any one selected from zirconium (Zr), samarium (Sm), yttrium (Y), europium (Eu), hafnium (Hf) oxide dispersion strengthening Method for producing type platinum-gold alloy powder.
  3. 제 1항 또는 제 2항에 있어서, The method according to claim 1 or 2,
    상기 백금합금 잉곳을 제조하는 단계에 첨가되는 합금원소의 양은 0.5 wt% 내지 0.9 wt%인 것을 특징으로 하는 산화물 분산강화형 백금-금 합금 분말의 제조방법.The amount of alloying elements added to the step of producing the platinum alloy ingot is a method of producing an oxide dispersion-enhanced platinum-gold alloy powder, characterized in that 0.5 wt% to 0.9 wt%.
  4. 제 1항에 있어서,The method of claim 1,
    상기 플라즈마 장비에 사용되는 몰드의 재료는 그라파이트(Graphite), 구리(Cu), 몰리브덴(Mo), 텅스텐(W) 또는 백금(Pt) 중에서 선택된 어느 하나인 것을 특징으로 하는 산화물 분산강화형 백금-금 합금 분말의 제조방법.The material of the mold used in the plasma equipment is any one selected from graphite, copper (Cu), molybdenum (Mo), tungsten (W) or platinum (Pt) oxide-dispersed platinum-gold Method for producing alloy powder.
  5. 제 1항에 있어서,The method of claim 1,
    상기 플라즈마 장비에 사용되는 전극의 재료는 몰리브덴(Mo), 텅스텐(W) 또는 백금(Pt) 중에서 선택된 어느 하나인 것을 특징으로 하는 산화물 분산강화형 백금-금 합금 분말의 제조방법.The material of the electrode used in the plasma equipment is molybdenum (Mo), tungsten (W) or platinum (Pt) any one selected from the production method of the oxide dispersion-enhanced platinum-gold alloy powder.
  6. 제 1항에 있어서,The method of claim 1,
    상기 플라즈마 형성시 사용되는 반응가스는 Ar, H2, N2, 또는 CH4 중에서 선택된 하나 이상인 것을 특징으로 하는 산화물 분산강화형 백금-금 합금 분말의 제조방법.The reaction gas used in the plasma formation is Ar, H 2 , N 2 , or CH 4 The production method of the oxide-dispersed platinum-gold alloy powder, characterized in that at least one selected from.
  7. 제 1항에 있어서,The method of claim 1,
    상기 플라즈마 처리후 제조된 백금분말에 대해 대기 또는 산소 분위기에서 열처리를 하여 고순도의 백금 분말을 얻는 것을 특징으로 하는 산화물 분산강화형 백금-금 합금 분말의 제조방법.The platinum powder prepared after the plasma treatment is heat-treated in an air or oxygen atmosphere to obtain a high purity platinum powder, characterized in that the production method of the oxide-dispersed platinum-gold alloy powder.
  8. 제 7항에 있어서, The method of claim 7, wherein
    상기 대기 열처리는 600℃ 내지 1200℃의 온도에서 4시간 이상 동안 열처리하는 것을 특징으로 하는 산화물 분산강화형 백금-금 합금 분말의 제조방법.The atmospheric heat treatment is a method of producing an oxide dispersion-enhanced platinum-gold alloy powder, characterized in that the heat treatment for more than 4 hours at a temperature of 600 ℃ to 1200 ℃.
PCT/KR2012/002243 2012-03-27 2012-03-28 Method for manufacturing oxide dispersion-strengthened platinum-gold alloy powder using dry method WO2013147338A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015503086A JP2015516512A (en) 2012-03-27 2012-03-28 Method for producing oxide dispersion strengthened platinum-gold alloy powder using dry method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0031006 2012-03-27
KR1020120031006A KR101321945B1 (en) 2012-03-27 2012-03-27 A method for manufacturing powders of platinum-gold alloy of oxide dispersion reinforcement type using dry method

Publications (1)

Publication Number Publication Date
WO2013147338A1 true WO2013147338A1 (en) 2013-10-03

Family

ID=49260565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002243 WO2013147338A1 (en) 2012-03-27 2012-03-28 Method for manufacturing oxide dispersion-strengthened platinum-gold alloy powder using dry method

Country Status (3)

Country Link
JP (1) JP2015516512A (en)
KR (1) KR101321945B1 (en)
WO (1) WO2013147338A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111926195A (en) * 2020-06-24 2020-11-13 重庆材料研究院有限公司 Method for preparing high-purity platinum from platinum alloy waste
CN115927904A (en) * 2022-12-14 2023-04-07 英特派铂业股份有限公司 Trace substance doped high-purity platinum material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10280070A (en) * 1997-04-08 1998-10-20 Wc Heraeus Gmbh Dispersively solidified platinum material, production of the material and use of the material
KR20060011939A (en) * 2003-11-28 2006-02-06 다나까 기낀조꾸 고교 가부시끼가이샤 Method for producing reinforced platinum material
KR20080076759A (en) * 2007-02-14 2008-08-20 베.체.헤레우스게엠베하 Pt material, ptrh material or ptau material hardened by oxide dispersion, produced by inner oxidation and having a high proportion of oxide and a good ductility
KR100969991B1 (en) * 2007-05-03 2010-07-15 희성금속 주식회사 Manufacturing method of the composite materials of platinum and enhanced platinum using a thermal spray process
KR101118635B1 (en) * 2009-12-14 2012-03-06 희성금속 주식회사 Method of an enhanced platinum materials using a thermal plasma process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10280070A (en) * 1997-04-08 1998-10-20 Wc Heraeus Gmbh Dispersively solidified platinum material, production of the material and use of the material
JP2002266040A (en) * 1997-04-08 2002-09-18 Wc Heraeus Gmbh Dispersion hardened platinum-gold material, its manufacturing method, and use thereof
KR20060011939A (en) * 2003-11-28 2006-02-06 다나까 기낀조꾸 고교 가부시끼가이샤 Method for producing reinforced platinum material
KR20080076759A (en) * 2007-02-14 2008-08-20 베.체.헤레우스게엠베하 Pt material, ptrh material or ptau material hardened by oxide dispersion, produced by inner oxidation and having a high proportion of oxide and a good ductility
KR100969991B1 (en) * 2007-05-03 2010-07-15 희성금속 주식회사 Manufacturing method of the composite materials of platinum and enhanced platinum using a thermal spray process
KR101118635B1 (en) * 2009-12-14 2012-03-06 희성금속 주식회사 Method of an enhanced platinum materials using a thermal plasma process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111926195A (en) * 2020-06-24 2020-11-13 重庆材料研究院有限公司 Method for preparing high-purity platinum from platinum alloy waste
CN115927904A (en) * 2022-12-14 2023-04-07 英特派铂业股份有限公司 Trace substance doped high-purity platinum material and preparation method thereof

Also Published As

Publication number Publication date
KR101321945B1 (en) 2013-10-28
JP2015516512A (en) 2015-06-11
KR20130109348A (en) 2013-10-08

Similar Documents

Publication Publication Date Title
CN108425050B (en) High-strength high-toughness aluminum lithium alloy and preparation method thereof
CN110592421B (en) Copper alloy, copper alloy sheet material, and preparation method and application thereof
WO2015005348A1 (en) Copper material for high-purity copper sputtering target, and high-purity copper sputtering target
JP3935492B2 (en) Copper alloy having high strength and excellent bendability and method for producing copper alloy sheet
EP3514249A1 (en) Metal mask material and method for manufacturing same
WO2012124846A1 (en) Method for manufacturing oxide-dispersion strengthened platinum-rhodium alloy
CN110578070A (en) Method for improving oxidation resistance of copper by using authigenic non-metallic oxide composite film
WO2012124840A1 (en) Method for manufacturing titanium powder for manufacturing oxide-dispersion strengthening-type titanium material
WO2013147338A1 (en) Method for manufacturing oxide dispersion-strengthened platinum-gold alloy powder using dry method
TW201629240A (en) Corrosion resistant high-nickel alloy and its manufacturing method
KR101560455B1 (en) LCD Glass METHOD OF MANUFACTURING AN OXIDE DISPERSION STRENGTHENED PLATINUMRHODIUM ALLOYS MATERIALS USING SPARK PLASMA SINTERING FOR LIQUID CRYSTAL DISPLAY GLASS MANUFACTURING
CN112080673A (en) Production process for improving conductivity of aluminum alloy plate
CN114921656B (en) Method for reducing high-purity gold carbon content
CN106967895A (en) A kind of preparation method of vananum
JP4513605B2 (en) Vacuum degassing apparatus for molten glass, method for clarifying molten glass using the vacuum degassing apparatus, and glass manufacturing apparatus elements
WO2013141420A1 (en) Method for manufacturing platinum-ruthenium alloy powder
WO2014088142A1 (en) Method for producing platinum alloy plate strengthened by dispersing oxide
WO2013147337A1 (en) Method for manufacturing oxide dispersion-strengthened platinum-gold alloy
JP4209749B2 (en) Copper alloy with high strength and excellent bendability
KR102472842B1 (en) Method for producing ferrotitanium with improved elongation and ferrotitanium produced thereby
WO2012121444A1 (en) Plasma-aided manufacturing method for oxide-dispersion-strengthened platinum material
WO2014014171A1 (en) Method for producing oxide dispersion strengthened platinum thin plate using melt spinning method
JP3111792B2 (en) Manufacturing method of high purity copper ingot
CN114737063A (en) Platinum alloy purification process
CN111349799A (en) Aluminum alloy ingot and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015503086

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872674

Country of ref document: EP

Kind code of ref document: A1