WO2013147330A1 - Prognosis prediction system of locally advanced gastric cancer - Google Patents

Prognosis prediction system of locally advanced gastric cancer Download PDF

Info

Publication number
WO2013147330A1
WO2013147330A1 PCT/KR2012/002193 KR2012002193W WO2013147330A1 WO 2013147330 A1 WO2013147330 A1 WO 2013147330A1 KR 2012002193 W KR2012002193 W KR 2012002193W WO 2013147330 A1 WO2013147330 A1 WO 2013147330A1
Authority
WO
WIPO (PCT)
Prior art keywords
hsa
mir
ilmn
expression
protein
Prior art date
Application number
PCT/KR2012/002193
Other languages
French (fr)
Korean (ko)
Inventor
허용민
서진석
노성훈
정재호
박은성
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to PCT/KR2012/002193 priority Critical patent/WO2013147330A1/en
Publication of WO2013147330A1 publication Critical patent/WO2013147330A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57446Specifically defined cancers of stomach or intestine
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Definitions

  • the present invention relates to a novel prognostic prediction system capable of predicting the prognosis of locally advanced gastric cancer through comparative analysis of gene or protein aggregation expression.
  • Gastric cancer is clearly different from stage 1 to stage 4 according to the TNM staging system, unlike breast cancer and colorectal cancer (see FIG. 1). That is, in case of stage 1, the 5-year survival rate is 90% or more, and in stage 4, the difference is 20% or less. Therefore, the prognostic predictive power of the TNM staging system is very good [Ref., 7th edition of the AJCC cancer staging Manual: stomach. Ann Surg Oncol 2010; 17: 3077-3079.
  • gastric cancer can often be divided into early gastric cancer, locally advanced gastric cancer, locally advanced invasive gastric cancer, and metastatic gastric cancer. .
  • Oncologists do not qualify for labeling for specific cancers and chemotherapeutic agents characterized as "standards of care,” but have numerous treatment options available to them by combining numerous drugs that are effective against the cancer. have.
  • the best possibility for good treatment outcomes should specify the optimal cancer treatment available to the patient and this designation needs to be made as soon as possible after diagnosis.
  • it is important to determine the likelihood of patient response to "treatment basis” chemotherapy because chemotherapeutic agents such as anthracycline and taxanes have limited efficacy and are toxic.
  • identification of the most responsive or least responsive patients can, via smarter patient selection, increase the net benefits that these drugs must provide and reduce net mortality and toxicity.
  • RNA-based testing was not frequently used due to the problem of RNA degradation over time and the fact that fresh tissue samples for analysis were difficult to obtain from patients. Tissues immobilized and embedded in paraffin are more readily available, and methods for detecting RNA in fixed tissues have been established. However, these methods typically do not allow the study of large numbers of genes (DNA or RNA) from small amounts of material. Thus, traditionally, fixed tissues are rarely used except for immunohistochemical detection of proteins.
  • the present invention provides a method for predicting the clinical outcome (prognosis) of the N0 gastric cancer patient group, such as T1N0, T2N0, T3N0 or T4N0 gastric cancer patient group in the TNM stage.
  • the invention provides at least one RNA transcript selected from the group consisting of FZD1, GLI3, ANGPTL7, ABL1, SMARCD3, ILK, CAV1, VIP, HSPB7, TOP2A and FANCD2 in a biological sample comprising cancer cells from a subject; And determining the expression level of one or more miRNAs selected from the group consisting of hsa-miR-933, hsa-miR-184, hsa-miR-380 *, hsa-miR-190b, hsa-miR-27a * and hsa-miR-1201. Making; And
  • RS recurrence score
  • the present invention provides a method for predicting prognosis in a subject diagnosed as gastric cancer, the method including determining a prognosis according to the RS value.
  • the RS can be calculated according to the following equation (1):
  • HR n represents the hazard ratio of the nth RNA transcript or microRNA
  • normLogTransValue n means the value associated with the expression of the n-th RNA transcript or micro RNA.
  • RS can be obtained as follows:
  • Risk Score FZD1 ⁇ 4.302 + GLI3 ⁇ 4.073 + ANGPTL7 ⁇ 2.949 + ABL1 ⁇ 2.784 + SMARCD3 ⁇ 2.266 + ILK ⁇ 2.251 + CAV1 ⁇ 1.788 + VIP ⁇ 1.73 + HSPB7 ⁇ 1.535-TOP2A ⁇ 1.766-FANCD2 ⁇ 2.793 + miR933 ⁇ 5.256 + miR184 ⁇ 1.674 + miR380 * ⁇ 1.903-miR190b ⁇ 3.597-miR27a * ⁇ 1.7-miR1201 ⁇ 1.35
  • the present invention provides a useful method for predicting clinical outcome of the entire gastric cancer patient group irrespective of the TNM stage.
  • the invention is directed to a biological sample comprising cancer cells obtained from a subject.
  • the increase in expression of transcript X is determined to be an increase in the likelihood of a positive clinical outcome
  • the increase in expression of transcript Y is determined to be a decrease in the likelihood of a positive clinical outcome. Provide a way to predict.
  • the invention also relates to a biological sample comprising cancer cells obtained from a subject,
  • hsa-miR-1 HS_6, HS_111, HS_114, hsa-let-7c, HS_126, HS_90, hsa-miR-548d-5p, hsa-miR-189: 9.1, solexa-4793-177, HS_135, hsa- measuring the expression level of one or more miRNA (II) selected from the group consisting of miR-20b * and hsa-miR-658; And
  • Increased expression of miRNA (I) is judged to be an increase in the likelihood of positive clinical outcomes, and increased expression of miRNA (II) is determined to be a decrease in the likelihood of positive clinical outcomes. Provide a way to predict.
  • the invention also relates to a biological sample comprising cancer cells obtained from a subject,
  • the present invention provides a method for predicting prognosis in a subject diagnosed as gastric cancer, the method including determining a prognosis according to the RS value.
  • the RS may be calculated according to Equation 2:
  • HR n represents the hazard ratio of the nth functional protein
  • RPPAValue n means the value associated with the expression of the n th functional protein.
  • the present invention also provides a computer readable recording medium having recorded thereon a program for executing prognostic prediction of gastric cancer.
  • a medium useful for predicting clinical outcome of a stage N0 gastric cancer patient group during a TNM stage may be provided. for example,
  • RS recurrence score
  • a computer readable recording medium having recorded thereon a program for causing a computer to classify a patient having a higher RS than a setpoint is a high probability of relapse and a patient having a lower RS is set to a lower likelihood of relapse.
  • RS value using the expression level of the RNA transcript or miRNA can be obtained through the above equation.
  • a medium may be provided that is useful for predicting clinical outcomes of the entire gastric cancer patient population independent of TNM stages. for example,
  • a computer-readable recording medium having recorded thereon a program for causing a computer to classify a patient whose RS is greater than a setpoint is a high probability of recurrence and a patient smaller than the setpoint is a low likelihood of relapse.
  • the present invention creates a predictive model of overall survival rate and relapse-free survival rate for stage N0 gastric cancer patients in the TNM stage, and then determines the expression level of micro RNA, RNA transcript or protein that affects statistically significant survival. By producing a system to calculate prognostic indicators, the clinical results after resection by gastric cancer surgery can be predicted.
  • the present invention enables the analysis of the gene group according to the biological function of gastric cancer itself by using a gene aggregation system according to the biological function of the gene.
  • Figure 2 shows an example using a recurrence scoring method using micro RNA expression in gastric cancer stage 3a.
  • Figure 3 shows the results of survival analysis of Akt pS473 as a functional protein .
  • Figure 4 shows the number of deaths in the group with the good prognosis and the number of deaths in the poor prognosis when the prognostic index (prognostic index) using the protein expression level is 0.
  • FIG. 5 shows survival analysis results according to prognostic indicators (risk scoring system) (when scores are divided into + and ⁇ groups) in a T1NO, T2N0, T3N0, or T4N0 gastric cancer patient group.
  • FIG. 6 shows the number of deaths in the group with the good prognosis and the number of deaths in the group with the poor prognosis when the prognostic index is 0 based on the T1NO, T2N0, T3N0, or T4N0 gastric cancer patient groups. will be.
  • FIG. 7 illustrates a process of extracting a correlation between the expression level of microRNA and the expression level of RNA transcript in a T1NO, T2N0, T3N0, or T4N0 gastric cancer patient group.
  • the present invention was devised to develop a system for predicting clinical outcome after gastric resection for the entire gastric cancer patient group or the N0 patient group in the TNM stage, and is useful for predicting clinical outcome after surgical resection of gastric cancer patients.
  • MicroRNA or protein sets were devised to develop a system for predicting clinical outcome after gastric resection for the entire gastric cancer patient group or the N0 patient group in the TNM stage, and is useful for predicting clinical outcome after surgical resection of gastric cancer patients. , MicroRNA or protein sets.
  • the present invention provides a method for predicting clinical outcome after resection by surgery in a stage N0 patient group, such as T1NO, T2N0, T3N0, or T4N0 stage of advanced TCC stage.
  • a stage N0 patient group such as T1NO, T2N0, T3N0, or T4N0 stage of advanced TCC stage.
  • RNA transcripts selected from the group consisting of FZD1, GLI3, ANGPTL7, ABL1, SMARCD3, ILK, CAV1, VIP, HSPB7, TOP2A and FANCD2; And determining the expression level of one or more miRNAs selected from the group consisting of hsa-miR-933, hsa-miR-184, hsa-miR-380 *, hsa-miR-190b, hsa-miR-27a * and hsa-miR-1201. Making; And
  • RS recurrence score
  • the present invention provides a method for predicting prognosis in a subject diagnosed as gastric cancer, the method including determining a prognosis according to the RS value.
  • the RS can be calculated according to the following equation (1):
  • HR n represents the hazard ratio of the nth RNA transcript or microRNA
  • normLogTransValue n means the value associated with the expression of the n-th RNA transcript or micro RNA.
  • the term "Hazard Ratio" means a coefficient that reflects the contribution to cancer progression, relapse, or therapy response.
  • the risk factor can be derived by various statistical techniques.
  • the risk factor, HR value can be determined in various statistical models, for example in the Univariate Cox's proportional harzard model.
  • the HR value when the HR value is greater than or equal to 1, the HR value may be used as it is, and when the HR value is less than 1, the 1 / HR value may be used.
  • a value value associated with the expression of an RNA transcript or microRNA means a value associated with the expression of an individual gene, for example RNA transcript, micro RNA, protein.
  • the value can be determined, for example, using various known statistical means.
  • the value related to expression may be a value after quantile normalization after transforming p value measured by Univariate Cox's proportional harzard model into log2 function value.
  • the RS can be determined as follows:
  • Risk Score FZD1 ⁇ 4.302 + GLI3 ⁇ 4.073 + ANGPTL7 ⁇ 2.949 + ABL1 ⁇ 2.784 + SMARCD3 ⁇ 2.266 + ILK ⁇ 2.251 + CAV1 ⁇ 1.788 + VIP ⁇ 1.73 + HSPB7 ⁇ 1.535-TOP2A ⁇ 1.766-FANCD2 ⁇ 2.793 + miR933 ⁇ 5.256 + miR184 ⁇ 1.674 + miR380 * ⁇ 1.903-miR190b ⁇ 3.597-miR27a * ⁇ 1.7-miR1201 ⁇ 1.35
  • the method may be useful for predicting clinical outcome after surgery for surgical treatment of stage N0 gastric cancer patients in a TNM stage, such as stage T0N0, T2N0, T3N0 or T4N0 stage advanced gastric cancer.
  • the method may determine that the RS value is a positive prognosis in terms of overall survival (OS) or recurrence free survival (RFS), and the prognosis is a negative value.
  • OS overall survival
  • RFS recurrence free survival
  • a positive value indicates a low overall survival rate or a high incidence of deaths due to relapse during at least 3 years, 5 years, 8 years, and 10 years. Higher overall survival or abnormal incidence of death patients without relapse for at least 8 years or more than 10 years.
  • good prognosis can be expressed as an increase in the likelihood of a positive clinical outcome of a clinical outcome, and a bad prognosis can be expressed as a decrease in the likelihood of a positive clinical outcome of a clinical outcome.
  • the present invention provides a useful method for predicting clinical outcome after surgical resection of total gastric cancer regardless of TNM stage.
  • the invention is directed to a biological sample comprising cancer cells obtained from a subject.
  • the increase in expression of transcript X is determined to be an increase in the likelihood of a positive clinical outcome
  • the increase in expression of transcript Y is determined to be a decrease in the likelihood of a positive clinical outcome. Provide a way to predict.
  • the method may be a PCR based method or an array based method.
  • the expression level may be one that is normalized to the expression level of one or more RNA transcripts.
  • the clinical result may be expressed in terms of overall survival (OS) or recurrence free survival (RFS).
  • OS overall survival
  • RFS recurrence free survival
  • the method may comprise measuring the expression level of at least two RNA transcripts selected from RNA transcripts X and Y. More specifically, the prognosis can be predicted by measuring two or more expression levels selected from RNA transcripts X and Y and analyzing each increase in expression to determine the increase or decrease in the likelihood of a positive clinical outcome.
  • the method may comprise measuring the expression level of at least five RNA transcripts selected from RNA transcripts X and Y. More specifically, five or more expression levels selected from RNA transcripts X and Y can be measured and each expression increase analyzed to determine the increase or decrease in the likelihood of a positive clinical outcome to predict prognosis.
  • the method may comprise measuring the expression level of at least 10 RNA transcripts selected from RNA transcripts X and Y. More specifically, 10 or more expression levels selected from RNA transcripts X and Y can be measured and each expression increase analyzed to determine the increase or decrease in the likelihood of a positive clinical outcome to predict prognosis.
  • the method may comprise measuring the expression level of RNA transcript X and Y total RNA transcript. More specifically, the prognosis can be predicted by measuring the overall expression level of RNA transcripts X and Y and analyzing the increase in expression to determine the increase or decrease in the likelihood of a positive clinical outcome.
  • the invention also relates to a biological sample comprising cancer cells obtained from a subject,
  • hsa-miR-1 HS_6, HS_111, HS_114, hsa-let-7c, HS_126, HS_90, hsa-miR-548d-5p, hsa-miR-189: 9.1, solexa-4793-177, HS_135, hsa- measuring the expression level of one or more miRNA (II) selected from the group consisting of miR-20b * and hsa-miR-658; And
  • Increased expression of miRNA (I) is judged to be an increase in the likelihood of positive clinical outcomes, and increased expression of miRNA (II) is determined to be a decrease in the likelihood of positive clinical outcomes. Provide a way to predict.
  • the clinical result may be expressed in terms of overall survival (OS) or recurrence free survival (RFS).
  • OS overall survival
  • RFS recurrence free survival
  • the method may comprise measuring the expression level of two or more micro RNAs selected from micro RNA transcripts I and II. More specifically, two or more expression levels selected from micro RNA transcripts I and II can be measured and each expression increase analyzed to determine the increase or decrease in the likelihood of a positive clinical outcome to predict prognosis.
  • the method may comprise measuring the expression level of at least five micro RNAs selected from micro RNA transcripts I and II. More specifically, five or more expression levels selected from microRNA transcripts I and II can be measured and each expression increase analyzed to determine the increase or decrease in the likelihood of a positive clinical outcome to predict prognosis.
  • the method may comprise measuring the expression level of at least 10 microRNAs selected from micro RNA transcripts I and II. More specifically, 10 or more expression levels selected from micro RNA transcripts I and II can be measured and each expression increase analyzed to determine the increase or decrease in the likelihood of a positive clinical outcome to predict prognosis.
  • the method may comprise measuring the expression level of micro RNA throughout the micro RNA transcripts I and II. More specifically, the prognosis can be predicted by measuring the expression levels of the entire micro RNA transcripts I and II and analyzing the respective increase in expression to determine the increase or decrease in the likelihood of a positive clinical outcome.
  • the invention also relates to a biological sample comprising cancer cells obtained from a subject,
  • the present invention provides a method for predicting prognosis in a subject diagnosed as gastric cancer, the method including determining a prognosis according to the RS value.
  • the RS may be calculated according to Equation 2:
  • HR n represents the hazard ratio of the nth functional protein
  • RPPAValue n means the value associated with the expression of the n th functional protein.
  • Values associated with the expression of the risk factor and the functional protein can use the values measured as described above.
  • the method may be a bad prognosis if the RS value is greater than the set point in terms of overall survival (OS) or recurrence free survival (RFS), and the prognosis is good if the RS value is less than the set point. .
  • OS overall survival
  • RFS recurrence free survival
  • the invention also provides a computer readable recording medium having recorded thereon a program for executing a prediction of prognosis after resection by surgery of gastric cancer.
  • a medium useful for predicting clinical outcome after surgical resection of a stage N0 gastric cancer patient during a TNM staging can be provided.
  • a medium useful for predicting clinical outcome after surgical resection of a stage N0 gastric cancer patient during a TNM staging can be provided. For example, in nucleic acid samples obtained from patients
  • RNA transcripts selected from the group consisting of FZD1, GLI3, ANGPTL7, ABL1, SMARCD3, ILK, CAV1, VIP, HSPB7, TOP2A and FANCD2; And determining the expression level of one or more miRNAs selected from the group consisting of hsa-miR-933, hsa-miR-184, hsa-miR-380 *, hsa-miR-190b, hsa-miR-27a * and hsa-miR-1201. Making; And
  • RS recurrence score
  • a computer readable recording medium having recorded thereon a program for causing a computer to classify a patient having a higher RS than a setpoint is a high probability of relapse and a patient having a lower RS is set to a lower likelihood of relapse.
  • the RS may be calculated according to Equation 1.
  • the recording medium is regarded as a high probability of recurrence when the RS value is higher than the set point in terms of overall survival (OS) or recurrence free survival (RFS), and a low recurrence rate when the RS value is lower than the set point.
  • OS overall survival
  • RFS recurrence free survival
  • a low recurrence rate when the RS value is lower than the set point.
  • the set value is expressed as +/-, it may be determined that the recurrence is high when the RS is a positive value, and the recurrence is low when the value is ⁇ .
  • a medium that can be useful for predicting clinical outcome after gastric resection of the entire gastric cancer patient group irrespective of the TNM stage can be provided.
  • a medium that can be useful for predicting clinical outcome after gastric resection of the entire gastric cancer patient group irrespective of the TNM stage can be provided.
  • a computer-readable recording medium having recorded thereon a program for causing a computer to classify a patient whose RS is greater than a setpoint is a high probability of recurrence and a patient smaller than the setpoint is a low likelihood of relapse.
  • the RS may be calculated according to Equation 2.
  • the recording medium has a high probability of recurrence when the RS value is larger than the set point in terms of overall survival or recurrence free survival (RFS), and a low recurrence rate when the RS value is smaller than the set point. It may be. For example, when the set value is 0, if the RS value is greater than 0, recurrence is high, and if the RS value is less than 0, recurrence is low.
  • RFS overall survival or recurrence free survival
  • microarray refers to the regular placement of hybridizable array elements, preferably polynucleotide probes, on a substrate.
  • polynucleotide when used in the singular or plural, generally refers to any polyribonucleotide or polydeoxyribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA.
  • polynucleotides as defined herein include, but are not limited to, DNA comprising one- and two-stranded DNA, one- and two-stranded regions, one- and two-stranded RNA, one-and RNAs comprising two-stranded regions, single-stranded or more typically two-stranded, or hybrid molecules comprising DNA and RNA comprising one- and two-stranded regions.
  • polynucleotide refers to a three-stranded region comprising RNA or DNA or both RNA and DNA.
  • the strands in this region can be from the same molecule or from different molecules.
  • a zone may comprise all of one or more molecules, but more specifically includes only one zone of some of the molecules.
  • One of the molecules of the triple-helix region is an oligonucleotide.
  • polynucleotide specifically includes cDNA.
  • the term includes DNA (including cDNA) and RNA containing one or more modified bases.
  • a DNA or RNA having a backbone modified for stability or for other reasons is a “polynucleotide” as intended herein.
  • DNA or RNA comprising an unusual base such as inosine or a modified base such as tritium base is included within the term “polynucleotide” as defined herein.
  • polynucleotide refers to all chemically, enzymatically and / or metabolically modified forms of unmodified polynucleotides, as well as DNA and RNA characteristics of cells and viruses, including simple and complex cells. It includes a chemical form having a.
  • oligonucleotide refers to a relatively short polynucleotide, including but not limited to one-strand deoxyribonucleotide, one- or two-strand ribonucleotide, RNA: DNA hybrid and two-strand DNA. Oligonucleotides, such as single-stranded DNA probe oligonucleotides, are often synthesized by chemical methods using, for example, commercially available automated oligonucleotide synthesizers. However, oligonucleotides can be prepared by a variety of other methods, including in vitro recombinant DNA-mediated techniques, and by expression of DNA in cells and organisms.
  • differentially expressed gene As used herein, “differentially expressed gene”, “differential gene expression” and their synonyms used interchangeably refer to their expression in a disease, in particular stomach cancer, as compared to their expression in normal or control subjects. It refers to a gene that is activated at a higher or lower level among a subject suffering from a cancer such as. The term also includes genes whose expression is activated at higher or lower levels in different stages of the same disease. It will also be appreciated that differentially expressed genes may be activated or inhibited at the nucleic acid level or the protein level, or may undergo other splicing to result in different polypeptide products. Such differences can be demonstrated, for example, by changes in mRNA levels, surface expression, secretion or other distribution of the polypeptide.
  • Differential gene expression is a comparison of expression between two or more genes or their gene products, or a comparison of expression ratios between two or more genes or their gene products, or even two differently processed genes of the same gene. Comparison of products (these may differ between a normal subject and a disease, in particular a subject suffering from cancer, or between various stages of the same disease). Differential expression is, for example, a quantitative, as well as qualitative difference in the pattern of transient or cell expression in a gene or its expression product between normal and diseased cells, or between cells undergoing different disease events or disease stages. Include all of them.
  • “differential gene expression” is at least about 2 times, preferably at least about 4 times, between the expression of a given gene in normal and diseased subjects or at various stages of disease development in a diseased subject, More preferably at least about 6 times and most preferably at least about 10 times.
  • standardized with respect to a gene transcript or gene expression product refers to the level of the transcript or gene expression product relative to the average level of the transcript / product of the reference gene set, wherein the reference genes are throughout the patient, tissue or treatment. Selected based on their minimal variation (“housekeeping genes”), or reference genes are all of the genes tested. In the latter case, generally referred to as “global normalization", it is important that the total number of genes tested is relatively large, preferably greater than 50.
  • the term 'standardized' with respect to RNA transcripts refers to the level of transcription relative to the average of the levels of transcription of a set of reference genes. More specifically, the mean level of RNA transcript as measured by TaqMan® RT-PCR refers to the Ct value—mean Ct value of the reference gene transcript set.
  • expression threshold and “defined expression threshold” are used interchangeably and above this level the gene or gene product of that gene or gene product is used as a predictive marker for patient response or drug resistance. Say the level. Thresholds are typically defined experimentally from clinical studies. The expression threshold may be selected for maximum sensitivity (eg to detect all responders to one drug), or maximum selectivity (eg to select only responders for one drug), or minimum error.
  • gene amplification refers to the process by which multiple copies of a gene or gene fragment are formed in a particular cell or cell line. Replicated regions (extension of amplified DNA) are often referred to as "amplicons”. Often, the amount of messenger RNA (mRNA) produced, ie gene expression, is also increased in proportion to the number of copies made of a particular gene.
  • mRNA messenger RNA
  • prognosis is used herein to refer to the prediction of the likelihood of death by cancer or progression of neoplastic disease such as gastric cancer (including relapse, metastatic spread and drug resistance).
  • prediction is used herein to refer to the likelihood that a patient will survive for a certain period of time without cancer recurrence after surgical removal of the primary tumor.
  • the prediction method of the present invention can be used clinically to determine treatment by selecting the most appropriate treatment technique for any particular patient.
  • the predictive method of the present invention is an invaluable means in predicting whether a patient is likely to respond favorably to a treatment regimen, for example a surgical procedure, or whether the patient can survive long term after the end of the surgery.
  • prognostic indicator can be used interchangeably with "recurrence score.”
  • long term survival is used herein to refer to survival of at least 3 years, more preferably at least 5 or 8 years, most preferably at least 10 years after surgery or other treatment.
  • tumor refers to all neoplastic cell growth and proliferation (whether malignant or benign) and all cancerous and cancerous cells and tissues.
  • cancer and “cancerous” describe or refer to physiological conditions in mammals that are typically characterized by unregulated cell growth.
  • examples of cancer include gastric cancer, breast cancer, colon cancer, lung cancer, prostate cancer, hepatocellular cancer, gastric cancer, pancreatic cancer, cervical cancer, ovarian cancer, liver cancer, bladder cancer, cancer of the urethra, thyroid cancer, kidney cancer, carcinoma, melanoma, or brain cancer But not limited to these.
  • the “stringency” of the hybridization reaction is easily determined by one of ordinary skill in the art and is an experimental calculation that generally depends on probe length, wash temperature and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes require lower temperatures. Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and the hybridizable sequence, the higher the relative temperature that can be used. As a result, higher relative temperatures tend to make the reaction conditions more stringent, while lower temperatures are less so. For further details and explanation of the stringency of the hybridization reaction, see Ausubel et al. , Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).
  • “Strict conditions” or “high stringency conditions” as defined herein typically include (1) low ionic strength, for example, at 50 ° C. for 0.015 M sodium chloride / 0.0015 M sodium citrate / 0.1% sodium dodecyl sulfate wash and Using high temperatures; (2) denaturant at 42 ° C.
  • formamide for example 50% (v / v) formamide and 0.1% bovine serum albumin / 0.1% Ficoll / 0.1% polyvinylpyrrolidone / Using 750 mM sodium chloride, 75 mM sodium citrate with 50 mM sodium phosphate buffer, pH 6.5; Or (3) 50% formamide at 42 ° C., 5 ⁇ SSC (0.75M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 ⁇ Denhardt's solution , Sonicated salmon sperm DNA (50 ⁇ g / ml), 0.1% SDS, and 10% dextran sulfate, 0.2 ⁇ SSC (sodium chloride / sodium citrate) and 50% formamide (at 55 ° C.) at 42 ° C. ), followeded by a high-stringency wash consisting of 0.1 x SSC containing EDTA at 55 ° C.
  • Modely stringent conditions may be the same as described in Sambrook et al ., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and less stringent washing solutions and hybridizations than those described above. The use of conditions (eg, temperature, ionic strength and% SDS). Examples of moderately stringent conditions include 20% formamide, 5 ⁇ SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 ⁇ denhardt solution, 10% dextran sulfate at 37 ° C.
  • conditions eg, temperature, ionic strength and% SDS
  • moderately stringent conditions include 20% formamide, 5 ⁇ SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 ⁇ denhardt solution, 10% dextran sulfate at 37 ° C.
  • Gene expression profiling methods include methods based on hybridization analysis of polynucleotides, methods based on sequencing polynucleotides, and methods based on proteomics.
  • the most commonly used methods known in the art for the quantification of mRNA expression in samples are Northern blotting and in situ hybridization (Parker & Barnes, Methods in Molecular Biology 106: 247 -283 (1999)]); RNAse protection assay (Hod, Biotechniques 13: 852-854 (1992)); And PCR-based methods such as reverse transcription polymerase chain reaction (RT-PCR) (Weis et al., Trends in Genetics 8: 263-264 (1992)).
  • RT-PCR reverse transcription polymerase chain reaction
  • antibodies can be used that can recognize two specific strands, including two DNA strands, two RNA strands, and two DNA-RNA hybrid strands or two DNA-protein strands.
  • Representative methods for sequencing-based gene expression analysis include gene expression analysis by serial analysis of gene expression (SAGE) and massively parallel signature sequencing (MPSS). .
  • RT-PCR Reverse Transcriptase PCR
  • RT-PCR One of the most sensitive and most flexible quantitative PCR-based gene expression profiling methods is RT-PCR, which compares mRNA levels in different sample populations in normal and tumor tissues with or without drug treatment. It can be used to characterize gene expression patterns, determine closely related mRNAs, and analyze RNA structure.
  • the first step is the isolation of mRNA from the target sample.
  • Starting materials are typically total RNA isolated from human tumors or tumor cell lines and corresponding normal tissue or cell lines, respectively.
  • RNA along with pooled DNA from a healthy donor, may be a tumor or tumor of various major tumors (breast, lung, colon, prostate, brain, liver, kidney, pancreas, spleen, thyroid, testes, ovaries, uterus, etc. Cell lines).
  • the source of mRNA is the primary tumor, the mRNA can be extracted, for example, from frozen or stored paraffin-embedded and immobilized (eg formalin-fixed) tissue samples.
  • RNA isolation can be performed according to the manufacturer's instructions using commercial kits, such as purification kits from Qiagen, buffer sets and proteases. For example, total RNA from cells in culture can be isolated using Qiagen RN easy mini-columns.
  • RNA isolation kits include the MasterPureTM Complete DNA and RNA Purification Kit (EPICENTRE, Madison, WI) and Paraffin Block RNA Isolation Kit (Ambion, Inc.) Ambion, Inc.). Complete RNA from tissue samples can be isolated using RNA Stat-60 (Tel-Test). RNA prepared from tumors can be isolated, for example, by cesium chloride density gradient centrifugation.
  • RNA cannot be used as a template for PCR
  • the first step in gene expression profiling by RT-PCR is reverse transcription of the RNA template into cDNA, followed by exponential amplification into its PCR reaction.
  • the two most commonly used reverse transcriptases are avian myeloblastosis virus reverse transcriptase (AMV-RT) and Moloney rat leukemia virus reverse transcriptase (MMLV-RT).
  • the reverse transcription step is typically first antigen-stimulated using specific primers, random hexamers, or oligo-dT primers, depending on the environment and goal of expression profiling.
  • the extracted RNA can be reverse-transcribed using the GeneAmp RNA PCR Kit (Perkin Elmer, California, USA) following the manufacturer's instructions.
  • the derived cDNA can then be used as a template in subsequent PCR reactions.
  • the PCR step can use a variety of thermostable DNA-dependent DNA polymerases, it typically uses Taq DNA polymerase, which has 5'-3 'nuclease activity, but has 3'-5' read protection. There is a lack of proofreading endonuclease activity.
  • Takman PCR typically utilizes a 5'-nuclease activity that hybridizes a hybridization probe bound to its target amplicon of Taq or Tth polymerase, but with any 5 'nuclease activity equivalent. Enzymes can be used. Two oligonucleotide primers are used to generate representative amplicons of the PCR reaction.
  • the third oligonucleotide or probe is designed to detect a nucleotide sequence located between two PCR primers.
  • the probe is non-extensible by Taq DNA polymerase enzyme and is labeled with a reporter fluorescent dye and a quencher fluorescent dye. Any laser-induced emission from the reporter dye is quenched by the quench dye when the two dyes are placed together as close as they are on the probe.
  • Taq DNA polymerase enzyme cleaves the probe in a template-dependent manner. The resulting probe fragments dissociate in solution and have no quenching effect of the second fluorophore on the signal from the released reporter dye.
  • One molecule of reporter dye is released from each of the synthesized new molecules, and detection of the unquenched reporter dye provides a basis for quantitative interpretation of the data.
  • TAKMAN RT-PCR is a commercially available instrument, for example ABI Prism 7700TM Sequence Detection SystemTM (Perkin-Elmer-Applied Biosystems, California, USA Foster City), or Lightcycler (Roche Molecular Biochemicals, Mannheim, Germany).
  • the 5 'nuclease procedure is performed on a real time quantitative PCR device, such as the ABI Prism 7700TM Sequence Detection SystemTM.
  • the system consists of a thermocycler, laser, charge-coupled device (CCD), camera and computer.
  • the system amplifies the sample in a 96-well format on a thermocycler. During amplification, laser-induced fluorescence signals are collected in real time via fiber optic cables for all 96 wells.
  • the system includes software for running the device and for analyzing the data.
  • 5'-nuclease assay data is initially expressed as Ct, or threshold cycle.
  • Ct threshold cycle
  • the fluorescence value is recorded every cycle and represents the amount of product amplified to that point in the amplification reaction.
  • the point when the fluorescence signal is first recorded as statistically significant is the threshold cycle (Ct).
  • RT-PCR is generally performed using reference RNA, which is ideally expressed at some level between different tissues, and is not affected by experimental treatment.
  • the RNA most often used to normalize gene expression patterns is mRNA for the housekeeping genes glyceraldehyde-3-phosphate-dehydrogenase (GAPD) and ⁇ -actin (ACTB).
  • Real-time quantitative PCR measures PCR product accumulation via double-labeled fluorogenic probes (ie, tagman probes).
  • Real-time PCR is compatible with both quantitative competitive PCR (wherein internal competitors for each target sequence are used for standardization) and quantitative comparison PCR using standardized genes contained in the sample or housekeeping genes for RT-PCR. For further details, see, eg, Held et al., Genome Research 6: 986-994 (1996).
  • CDNA obtained after isolation and reverse transcription of RNA is synthesized from a synthetic DNA molecule (competitor) (this is a single Spiked to the targeting cDNA region at all positions except base) and used as internal standard.
  • the cDNA / competitor mixture is PCR amplified and post-PCR shrimp alkaline phosphatase (SAP) enzyme treatment is added to cause dephosphorylation of the remaining nucleotides.
  • SAP shrimp alkaline phosphatase
  • PCR products from competitors and cDNAs are primer stretched, which produces separate mass signals for competitor- and cDNA-derived PCR products. After purification, these products are metered onto a chip array that is already loaded with the components necessary for analysis using matrix-assisted laser desorption ionization flow time mass spectrometry (MALDI-TOF MS) analysis.
  • MALDI-TOF MS matrix-assisted laser desorption ionization flow time mass spectrometry
  • PCR-based techniques are described, for example, in parallax displays (Liang and Pardee, Science 257: 967-971 (1992)); Amplified fragment length polymorphism (iAFLP) (Kawamoto et al., Genome Res .
  • iAFLP Amplified fragment length polymorphism
  • BeadArray TM technology (Illumina, San Diego, CA) (Oliphant et al ., Discovery of Markers for Disease (Supplement to Biotechniques, June 2002) and Ferguson et al., Analytical Chemistry 72: 5618 (2000)])); Beads for gene expression detection using a commercially available Luminex 100 LabMAP system and multicolor-coded microspheres (Luminex Corp., Austin, Texas) for rapid assays for gene expression Arrays for Detection of Gene Expression (BADGE) (Yang et al., Genome Res . 11: 1888-1898 (2001)); And high coat expression profiling (HiCEP) analysis (Fukumura et al., Nucl. Acids. Res . 31 (16) e94 (2003)).
  • PCR amplified inserts of cDNA clones are applied onto the substrate in a dense array.
  • 10,000 or more nucleotide sequences are added to the substrate.
  • Microarrayed genes immobilized on the microchip with 10,000 elements each are suitable for hybridization under stringent conditions.
  • Fluorescently labeled cDNA probes can be generated through incorporation of fluorescent nucleotides by reverse transcription of RNA extracted from tissue of interest.
  • Labeled cDNA probes applied to the chip hybridize with specificity to each spot of DNA on the array. After rigorous washing to remove non-specifically bound probes, the chip is scanned by in-focus laser microscopy or by another detection method such as a CCD camera.
  • Miniaturization scale hybridization provides convenient and rapid evaluation of expression patterns for large numbers of genes. This method has been shown to have the necessary sensitivity to detect rare transcripts (which are expressed in a few copies per cell) and to reproducibly detect at least approximately two-fold differences in expression (Schena et al., Proc. Natl. Acad. Sci . USA 93 (2): 106-149 (1996)].
  • Microarray analysis can be performed by commercially available equipment according to the manufacturer's protocol, for example using Affymetrix GenChip technology or Insight's microarray technology.
  • microarray methods for large-scale analysis of gene expression makes it possible to systematically study molecular markers of cancer classification and performance prediction in various tumor types.
  • Serial analysis of gene expression is a method that allows for simultaneous and quantitative analysis of large numbers of gene transcripts without the need to provide separate hybridization probes for each transcript.
  • a short sequence tag (about 10-14 bp) is generated that contains enough information to uniquely identify a transcript, with the tag being obtained from a unique location within each transcript.
  • Many transcripts are then linked together to form a long series of molecules (sequenced to represent the identity of multiple tags simultaneously).
  • the expression pattern of any transcript population can be quantitatively assessed by measuring the excess of an individual tag and identifying the gene corresponding to each tag. For more details, see, eg, Velculescu et al., Science 270: 484-487 (1995) and Velculescu et al., Cell 88: 243-51 (1997).
  • microbead libraries of DNA templates are constructed by in vitro cloning. This is followed by the assembly of planar arrays of template-containing microbeads in high density (typically 3 ⁇ 10 6 microbeads / cm) flow cells. The free end of the cloned template on each microbead is analyzed simultaneously using a fluorescence-based signature sequencing method that does not require DNA fragment separation. This method has been shown to provide hundreds and thousands of gene signature sequences from yeast cDNA libraries simultaneously and accurately in one operation.
  • Immunohistochemical methods are also suitable for detecting the expression of prognostic markers of the present invention.
  • expression is detected using antibodies or antisera, preferably polyclonal antisera and most preferably monoclonal antibodies specific for each marker.
  • Antibodies can be detected by direct labeling of the antibodies themselves, for example with radiolabels, fluorescent labels, hapten labels, such as biotin, or enzymes such as horse radish peroxidase or alkaline phosphatase.
  • an unlabeled primary antibody is used in combination with a labeled secondary antibody comprising an antiserum, polyclonal antiserum or monoclonal antibody specific for the primary antibody. Immunohistochemistry protocols and kits are known in the art and are commercially available.
  • proteome is defined as the entirety of a protein present in a sample (eg, tissue, organism or cell culture) at a particular time period.
  • Proteomics in particular involves the study of the overall change in protein expression in a sample (also called “expression proteomics”).
  • Proteomics typically include the following steps: (1) separation of individual proteins in a sample by 2-D gel electrophoresis (2-D PAGE); (2) identification of individual proteins recovered from the gel, such as mass spectrometry or N-terminal sequencing, and (3) analysis of data using bioinformatics.
  • Proteomics methods are valuable appendices to other methods of gene expression profiling and can be used alone or in combination with other methods to detect the product of prognostic markers of the present invention.
  • RNA isolation, purification, primer extension and amplification are described in various published magazine articles (eg, (TE Godfrey et al. J. Molec. Diagnostics 2: 84-91 [2000] and K. Specht et al., Am. J. Pathol . 158: 419-29 [2001]).
  • a representative method begins with cutting about 10 ⁇ m thick sections of paraffin-embedded tumor tissue samples. RNA is then extracted and proteins and DNA are removed.
  • RNA repair and / or amplification steps may be included if necessary, followed by RT-PCR after RNA is reverse transcribed using a gene specific promoter. Finally, the data is analyzed to determine the best treatment option (s) available to the patient based on the characteristic gene expression patterns identified in the observed tumor samples.
  • An important aspect of the present invention is the use of the measured expression of specific genes by gastric cancer tissue to provide prognostic information. For this purpose, it is essential to correct (standardize) the amount of RNA tested, variations in RNA quality used, and differences in other factors, such as machine and operator differences. Therefore, assays typically measure and incorporate the use of reference RNA, including those transcribed from known housekeeping genes such as GAPD and ACTB. Accurate methods for standardizing gene expression data are provided in "User Bulletin # 2" for the ABI PRISM 7700 Sequence Detection System (Applied Biosystems; 1997). Alternatively, normalization can be based on the mean or median signal (Ct) of the assayed genes or all of their many subsets (full normalization approach). In the studies described in the Examples below, a so-called central standardization strategy was used, which used a subset of screened genes selected based on lack of correlation with clinical outcome for standardization.
  • CDNA synthesized from RNA of a sample is prepared using a multiplex RT or TaqMan low-density array for a TaqMan array human microRNA panel (Applied Biosystems, Foster City, Calif.).
  • the operation that distinguishes cancer prognosis methods against the likelihood of recurring gastric cancer is characterized by 1) the unique set of test mRNAs (or corresponding gene expression products) used to measure recurrence, and 2) the specific data used to combine expression data. Weights, and 3) thresholds used to divide patients into groups with different levels of risk, such as low, medium, and high risk groups. This operation yields a numerical recurrence score (RS).
  • RS numerical recurrence score
  • test requires laboratory assays to determine the levels of specified mRNAs or expression products thereof, but is fixed or paraffin embedded tumor biopsies that are either fresh or frozen tissue or already collected and stored from patients. Test specimens are available in very small quantities. Thus, the test can be non-invasive. It is also compatible with several different methods of tumor tissue harvested, for example, via core biopsy or microneedle aspiration.
  • the cancer recurrence score (RS) is
  • (f) is determined by summing the values for each subset multiplied by the coefficients to obtain a recurrence score (RS), where the contribution of each subset that does not show a linear correlation with cancer recurrence is merely a predetermined threshold value.
  • Increased expression of the specified genes gives a negative value to subsets that reduce the risk of cancer recurrence and positive expression to the subsets where expression of the specified genes increases the risk of cancer recurrence.
  • RS is
  • RNA transcript selected from the group consisting of FZD1, GLI3, ANGPTL7, ABL1, SMARCD3, ILK, CAV1, VIP, HSPB7, TOP2A and FANCD2; And measuring the expression level of at least one miRNA selected from the group consisting of hsa-miR-933, hsa-miR-184, hsa-miR-380 *, hsa-miR-190b, hsa-miR-27a * and hsa-miR-1201 and;
  • HR n represents the hazard ratio of the nth RNA transcript or microRNA
  • normLogTransValue n means the value associated with the expression of the n-th RNA transcript or micro RNA.
  • the RS value is a positive value, it is a bad prognosis, and if the RS value is a -value, it is determined that it is a good prognosis.
  • RS is
  • HR n represents the hazard ratio of the nth functional protein
  • RPPAValue n means the value associated with the expression of the n th functional protein.
  • the prognosis is bad, and if the RS value is less than 0, the prognosis is determined to be good.
  • the ABI Prism 7900TM consists of a thermocycler, laser, charge-coupled device (CCD), camera and computer. The system amplifies the sample in a 384-well format on a thermocycler. During amplification, laser-induced fluorescence signals are collected in real time for all 384 wells and detected in the CCD.
  • the system includes software for running the device and for analyzing the data.
  • CT Threshold cycle
  • Table 1 lists a set of genes showing good prognosis with genes with Hazard ratio ⁇ 1.0 and p ⁇ 0.05, and Table 2 lists sets of genes showing bad prognosis with genes with Hazard ratio> 1.0 and p ⁇ 0.05. will be.
  • prognostic analysis was performed not only in the overall stage but also in the locally advanced gastric cancer group. Accordingly, a good prognosis group showing 85% or more of 5 year overall survival rate as well as 5 year no recurrence survival rate was selected by micro RNA group in locally advanced gastric cancer group.
  • the first and fourth stages were set as the training set, and the predictive model was made using the locally advanced gastric cancer based on the second and third stages as the test set.
  • training set is meant a subject sample from which statistically significant RNA transcripts and microRNAs were extracted.
  • the test set refers to a set for testing the accuracy of the extracted variable can actually determine whether the prognosis is good or bad. The reason for using this method is not only to be able to effectively predict prognosis in a specific sample group, but also to determine that it is effective in an independent sample. Based on the table, the following accuracy was obtained when leave one out cross validation (Reference, BRB-ArrayTools Version 4.2 User's Manual p74-81).
  • the accuracy of the prediction model is very high. It makes it possible to make prognostic predictions more clear, especially in locally advanced gastric cancer.
  • Tables 4 and 5 are lists of microRNAs that influence survival using the Univariate Cox's proportional harzard model.
  • the left column shows the names of the microRNAs, and the left column to the right, Cox p value, harzard ratio. , The degree of expression of the microRNA, and finally the fold difference between the maximum and minimum values.
  • a total of 27 microRNAs showed survival and statistical significance. Among them, the names of each of the 14 microRNAs affecting survival and survival analysis are shown.
  • Table 4 lists micro RNA sets that show good prognosis with genes with Hazard ratio ⁇ 1.0 and p ⁇ 0.05, and Table 5 shows micro RNA sets showing bad prognosis with genes with Hazard ratio> 1.0 and p ⁇ 0.05. It is listed.
  • Prognostic Index (HR 1 * normLogTransValue 1 + HR 2 * normLogTransValue 2 + ... + HR n * normLogTransValue n )
  • HR n represents the hazard ratio of the n-th micro RNA, in particular, when the hazard ratio is less than 1, it is replaced with -1 / hazard ratio.
  • normLogTransValue n means the value after quantile normalization after transformation to log2 of nth micro RNA.
  • the prognostic index is about -20 or less, the prognosis is good, and when -20 or more, the prognosis is poor.
  • Figure 2 shows an example using the recurrence scoring method in stage 3a of gastric cancer
  • the y-axis represents the prognostic indicator value
  • SDS-sample buffer (without) was extracted from total cellular proteome using Reverse phase protein array (RPPA) Lysis buffer from frozen tumor tissue. After denaturation using bromophenol blue) and serial dilution of 6-8 times, printing was carried out with a robot arrayer on a nitrocellulose coated glass slide.
  • RPPA Reverse phase protein array
  • the slides in which the proteins derived from the tumor freezing tissues are printed in high density can be used for the biological characteristics of the tumor cells such as tumor growth, cell death, survival and cell cycle transition and invasion, metastasis and cell neovascularization.
  • a specific antibody including phosphorylated protein specific antibodies
  • Table 6 shows a list of functional proteins that affect survival significantly statistically using the univariate cox's proportional hazard model among a total of 250 specific antibodies for detecting functional proteins.
  • the left column of Table 8 indicates the name of the functional protein, and shows the Cox p value (parametric), harzard ratio, and standard error of log intensities, from left to right.
  • Figure 3 shows the results of survival analysis in the case of Akt pS473 , the lower the expression of the phosphorylated protein has a better prognosis.
  • the phosphorylated protein may be referred to as a target biomarker having a feature that can simultaneously function as a target of a target therapeutic agent.
  • HR n represents the hazard ratio of the nth functional protein, and in particular, when the hazard ratio is less than 1, it is substituted with -1 / hazard ratio.
  • RPPAValue n is the value after transformation to log2 of the n th functional protein.
  • the prognostic index is greater than zero, the prognosis is bad, and if the prognostic index is less than zero, the prognosis is good.
  • the risk score system using the five markers shows the characteristics of functional proteins that can look at the prognosis as well as the availability of various targeted therapies.
  • the five targeted markers such as Akt pS473 , PAI, SMAD3, P70 S6K , and VEGFR2
  • the therapeutic drugs by Akt and VEGFR2 targets are already used in other cancers in the clinic.
  • the advantage is that it can be applied immediately. It can also be used as a prognostic model for locally advanced gastric cancer.
  • Table 7 lists a set of RNA transcripts showing good prognosis with genes with Hazard ratio ⁇ 1.0 and p ⁇ 0.05 and a set of RNA transcripts showing bad prognosis with genes> 1.0 and p ⁇ 0.05.
  • Table 8 lists the micro RNA set showing good prognosis with genes with Hazard ratio ⁇ 1.0 and p ⁇ 0.05 and the micro RNA set showing bad prognosis with genes> 1.0 and p ⁇ 0.05.
  • Risk Score FZD1 ⁇ 4.302 + GLI3 ⁇ 4.073 + ANGPTL7 ⁇ 2.949 + ABL1 ⁇ 2.784 + SMARCD3 ⁇ 2.266 + ILK ⁇ 2.251 + CAV1 ⁇ 1.788 + VIP ⁇ 1.73 + HSPB7 ⁇ 1.535-TOP2A ⁇ 1.766-FANCD2 ⁇ 2.793 + miR933 ⁇ 5.256 + miR184 ⁇ 1.674 + miR380 * ⁇ 1.903-miR190b ⁇ 3.597-miR27a * ⁇ 1.7-miR1201 ⁇ 1.35
  • RNA transcripts and microRNAs are a survival analysis result when the risk score in the N0 gastric cancer group is divided into negative cases and positive cases when using the prognostic indicators. Similar anatomical stages clearly show differences in survival rates. This means superiority of prognostic indicators using RNA transcripts and microRNAs.
  • FIG. 6 shows that the risk scoring system in N0 gastric cancer is separated into two groups based on 0, showing a 7% relapse survival rate in a good prognosis group and a 41% recurrence survival rate in a poor prognosis group. Show an ability to clearly distinguish
  • FIG. 7 illustrates a process in which a clear prognostic difference appears between clusters when hierachial clustering is performed using statistically correlated genes of microRNAs. This means the value of the combined use of microRNA and RNA transcripts.
  • biologically specific microRNAs can have the biological significance of such statistical methods as they have the ability to collectively inhibit specific group RNA transcripts.
  • the present invention can be used in the field of predicting gastric cancer recurrence prognosis.

Abstract

The present invention relates to a novel prognosis prediction system capable of predicting a prognosis of a locally advanced gastric cancer. More specifically, the present invention can predict a clinical outcome through a comparative analysis method of gene or protein set expressions after surgically removing a gastric cancer.

Description

국소 진행형 위암에 대한 예후 예측 시스템Prognostic Prediction System for Locally Advanced Gastric Cancer
본 발명은 유전자 또는 단백질 집합 발현 비교 분석법을 통해 국소 진행형 위암의 예후 예측이 가능한 신규한 예후 예측 시스템에 관한 것이다.The present invention relates to a novel prognostic prediction system capable of predicting the prognosis of locally advanced gastric cancer through comparative analysis of gene or protein aggregation expression.
위암은 유방암과 대장암 등과 달리 TNM 병기 시스템에 따라서 1기에서 4기까지 명확하게 차이가 난다 (도 1 참조). 즉, 1기의 경우에는 5년 생존율이 90% 이상이며, 4기의 경우에는 20% 이하로 큰 차이를 보인다. 그러므로 TNM 병기 시스템의 예후 예측력이 매우 뛰어남을 알 수 있다 [참고문헌, 7th edition of the AJCC cancer staging Manual: stomach. Ann Surg Oncol 2010;17:3077-3079].Gastric cancer is clearly different from stage 1 to stage 4 according to the TNM staging system, unlike breast cancer and colorectal cancer (see FIG. 1). That is, in case of stage 1, the 5-year survival rate is 90% or more, and in stage 4, the difference is 20% or less. Therefore, the prognostic predictive power of the TNM staging system is very good [Ref., 7th edition of the AJCC cancer staging Manual: stomach. Ann Surg Oncol 2010; 17: 3077-3079.
상기 병기 시스템에 기반을 두어 위암은 흔히 조기 위암 (Early Gastric Cancer), 국소진행형 (Locally Advanced Gastric Cancer), 국소 침윤형 (Locally Advanced Invasive Gastric Cancer) 및 전이 위암 (Metastatic Gastric Cancer) 등으로 나눌 수 있다. Based on the staging system, gastric cancer can often be divided into early gastric cancer, locally advanced gastric cancer, locally advanced invasive gastric cancer, and metastatic gastric cancer. .
종양의들은 "처치 기준(standard of care)"으로서 특성화된 화학요법 약제 및 특정 암에 대한 표지 자격을 갖지는 않지만 그 암에 대한 효과 있는 수많은 약물들을 조합하여 이들이 이용할 수 있는 수많은 치료 선택 사항들을 가지고 있다. 양호한 치료 성과에 대한 최상의 가능성은 환자에게 이용가능한 최적의 암 치료를 지정해야 하고 이러한 지정은 진단 후 가능한 빠르게 이루어져야 할 필요가 있다. 특히, 화학요법 약제, 예를 들면 안트라시클린 및 탁산이 제한된 효능을 갖고 독성이 있기 때문에 "처치 기준" 화학요법에 대한 환자 반응의 가능성을 결정하는 것이 중요하다. 따라서 가장 반응하기 쉽거나 또는 가장 반응하기 어려운 환자의 식별은 보다 현명한 환자 선택을 통해, 이들 약물이 제공해야 하는 순이익을 증대시키고 순 사망률 및 독성을 감소시킬 수 있다. 현재, 임상학적 관행에 사용되는 진단 시험은 단일 분석물질이므로, 많은 상이한 마커들 사이의 알려져 있는 관계들의 잠재적인 값을 손에 넣지 못한다. 게다가, 진단 시험들은 주로 면역조직화학에 의존하여 정량적이 아니다. 이 방법은 부분적으로는 시약이 표준화되어 있지 않기 때문에, 그리고 부분적으로는 해석이 주관적이어서 쉽게 정량화될 수 없기 때문에, 상이한 실험실에서 상이한 결과를 산출한다. RNA-기재 시험은 시간이 지남에 따른 RNA 분해 문제 및 분석을 위한 신선한 조직 샘플을 환자로부터 얻기 어렵다는 사실 때문에 자주 사용되지 못하였다. 고정되어 파라핀에 매립된 조직은 보다 쉽게 입수할 수 있어 고정 조직에서 RNA를 검출하기 위한 방법들이 확립되어 있다. 그러나, 이들 방법은 전형적으로 소량의 물질로부터 많은 수의 유전자 (DNA 또는 RNA)의 연구를 가능하게 하지 못한다. 그리하여, 전통적으로 고정 조직은 단백질의 면역조직화학 검출의 경우를 제외하고선 거의 사용되지 않고 있다.Oncologists do not qualify for labeling for specific cancers and chemotherapeutic agents characterized as "standards of care," but have numerous treatment options available to them by combining numerous drugs that are effective against the cancer. have. The best possibility for good treatment outcomes should specify the optimal cancer treatment available to the patient and this designation needs to be made as soon as possible after diagnosis. In particular, it is important to determine the likelihood of patient response to "treatment basis" chemotherapy because chemotherapeutic agents such as anthracycline and taxanes have limited efficacy and are toxic. Thus, identification of the most responsive or least responsive patients can, via smarter patient selection, increase the net benefits that these drugs must provide and reduce net mortality and toxicity. Currently, diagnostic tests used in clinical practice are single analytes and thus do not obtain the potential value of known relationships between many different markers. In addition, diagnostic tests are not quantitative, mainly dependent on immunohistochemistry. This method yields different results in different laboratories, in part because the reagents are not standardized, and in part because the interpretation is subjective and cannot be easily quantified. RNA-based testing was not frequently used due to the problem of RNA degradation over time and the fact that fresh tissue samples for analysis were difficult to obtain from patients. Tissues immobilized and embedded in paraffin are more readily available, and methods for detecting RNA in fixed tissues have been established. However, these methods typically do not allow the study of large numbers of genes (DNA or RNA) from small amounts of material. Thus, traditionally, fixed tissues are rarely used except for immunohistochemical detection of proteins.
최근 수년 동안에, 몇몇 그룹들은 마이크로어레이(microarray) 유전자 발현 분석에 의한 다양한 암 유형의 분류에 관한 연구를 발표하였다(예를 들면, 문헌 ([Golub et al., Science 286:531-537 (1999)], [Bhattacharjae et al., Proc. Natl. Acad. Sci. USA 98:13790-13795 (2001)], [Chen-Hsiang et al., Bioinformatics 17 (Suppl.1):S316-S322 (2001)], 및 [Ramaswamy et al., Proc. Natl. Acad. Sci. USA 98:15149-15154 (2001)]) 참조).In recent years, several groups have published studies on the classification of various cancer types by microarray gene expression analysis (see, eg, Golub et al., Science 286: 531-537 (1999). ], Bhattacharjae et al., Proc. Natl. Acad. Sci. USA 98: 13790-13795 (2001), Chen-Hsiang et al., Bioinformatics 17 (Suppl. 1): S316-S322 (2001)]. , And Ramaswamy et al., Proc. Natl. Acad. Sci. USA 98: 15149-15154 (2001)).
비록 현대 분자 생물학 및 생화학이 그의 활성이 종양 세포의 거동, 그의 분화 상태, 및 그의 특정 요법 약제에 대한 내성 또는 민감도에 영향을 미치는 수백 개의 유전자들을 밝혀냈지만, 몇몇 예외가 있어, 이들 유전자들의 현황은 일상적으로 약물치료에 대한 임상학적 결정을 내릴 목적으로 이용되지 못하고 있다.Although modern molecular biology and biochemistry have uncovered hundreds of genes whose activity affects tumor cell behavior, their differentiation status, and resistance or sensitivity to certain therapeutic agents, with a few exceptions, the current state of these genes It is not routinely used to make clinical decisions about drug treatment.
최근의 진전에도 불구하고, 발병적으로 별개의 종양 유형에 대해 특이적 치료 섭생을 표적화하고, 궁극적으로 성과를 최대화시키기 위하여 종양 치료를 개인화하기 위한 암 치료의 도전과제들이 남아있다. 따라서, 각종 치료 선택사항들에 대한 환자 반응에 관한 예측적 정보를 동시에 제공하는 시험을 필요로 하고 있다.Despite recent advances, the challenges of cancer treatment remain to personalize tumor treatment in order to target specific treatment regimens for pathologically distinct tumor types and ultimately maximize outcomes. Thus, there is a need for tests that simultaneously provide predictive information about patient response to various treatment options.
본 발명의 목적은 국소 진행형 위암, 특히 N0기(N0 regional lymph node metastasis)와 짝을 이루는 병기 또는 병기와 상관 없는 전체 위암에 대해 마이크로 RNA, 전사체 또는 단백질을 기반으로 하여 새로운 예후 예측 시스템을 제공하는 것이다.It is an object of the present invention to provide a novel prognostic prediction system based on microRNAs, transcripts or proteins for locally advanced gastric cancer, in particular for all gastric cancers not associated with stages or stages paired with N0 regional lymph node metastasis. It is.
상기 목적을 달성하기 위하여, 본 발명은 TNM 병기 중 N0기 위암 환자군, 예컨대, T1N0기, T2N0기, T3N0기 또는T4N0기 위암 환자군의 임상 결과(예후)를 예측하는 방법을 제공한다.In order to achieve the above object, the present invention provides a method for predicting the clinical outcome (prognosis) of the N0 gastric cancer patient group, such as T1N0, T2N0, T3N0 or T4N0 gastric cancer patient group in the TNM stage.
일 실시 태양에서, 본 발명은 대상으로부터 얻은 암세포를 포함하는 생물학적 샘플에서 FZD1, GLI3, ANGPTL7, ABL1, SMARCD3, ILK, CAV1, VIP, HSPB7, TOP2A 및 FANCD2로 이루어지는 군으로부터 선택된 하나 이상의 RNA 전사체; 및 hsa-miR-933, hsa-miR-184, hsa-miR-380*, hsa-miR-190b, hsa-miR-27a* 및 hsa-miR-1201로 이루어진 군으로부터 선택된 하나 이상의 miRNA의 발현도를 결정하는 단계; 및In one embodiment, the invention provides at least one RNA transcript selected from the group consisting of FZD1, GLI3, ANGPTL7, ABL1, SMARCD3, ILK, CAV1, VIP, HSPB7, TOP2A and FANCD2 in a biological sample comprising cancer cells from a subject; And determining the expression level of one or more miRNAs selected from the group consisting of hsa-miR-933, hsa-miR-184, hsa-miR-380 *, hsa-miR-190b, hsa-miR-27a * and hsa-miR-1201. Making; And
상기 단계에서 결정된 RNA 전사체 또는 miRNA의 발현도에 기초하여 상기 생물학적 샘플의 재발 스코어(RS, Risk Score)를 계산하고, Calculating a recurrence score (RS) of the biological sample based on the expression level of the RNA transcript or miRNA determined in the step,
상기 RS 값에 따라 예후를 판단하는 단계를 포함하는 위암으로 진단된 대상에서 예후를 예측하는 방법을 제공한다.The present invention provides a method for predicting prognosis in a subject diagnosed as gastric cancer, the method including determining a prognosis according to the RS value.
상기 RS는 하기 수학식 1에 따라 계산할 수 있다:The RS can be calculated according to the following equation (1):
[수학식 1][Equation 1]
Risk Score = HR1*normLogTransValue1 + HR2*normLogTransValue2 + ... + HRn* normLogTransValuen Risk Score = HR 1 * normLogTransValue 1 + HR 2 * normLogTransValue 2 + ... + HR n * normLogTransValue n
상기 식에서, Where
HRn 는 n번째 RNA 전사체 또는 마이크로 RNA의 위험 계수(hazard ratio)를 나타내고,HR n represents the hazard ratio of the nth RNA transcript or microRNA,
normLogTransValuen는 n번째 RNA 전사체 또는 마이크로 RNA의 발현과 관련된 값을 의미한다.normLogTransValue n means the value associated with the expression of the n-th RNA transcript or micro RNA.
일 구체예에 따르면, RS는 다음과 같이 구할 수 있다:According to one embodiment, RS can be obtained as follows:
Risk Score = FZD1×4.302 + GLI3×4.073 + ANGPTL7×2.949 + ABL1×2.784 + SMARCD3×2.266 + ILK×2.251 + CAV1×1.788 + VIP×1.73 + HSPB7×1.535-TOP2A×1.766 - FANCD2×2.793 + miR933×5.256 + miR184×1.674 + miR380*×1.903 - miR190b×3.597 - miR27a*×1.7 - miR1201×1.35Risk Score = FZD1 × 4.302 + GLI3 × 4.073 + ANGPTL7 × 2.949 + ABL1 × 2.784 + SMARCD3 × 2.266 + ILK × 2.251 + CAV1 × 1.788 + VIP × 1.73 + HSPB7 × 1.535-TOP2A × 1.766-FANCD2 × 2.793 + miR933 × 5.256 + miR184 × 1.674 + miR380 * × 1.903-miR190b × 3.597-miR27a * × 1.7-miR1201 × 1.35
본 발명은 TNM 병기와 상관없는 전체 위암 환자군의 임상 결과를 예측하는데 유용한 방법을 제공한다.The present invention provides a useful method for predicting clinical outcome of the entire gastric cancer patient group irrespective of the TNM stage.
일 실시 태양에서, 본 발명은 대상으로부터 얻은 암세포를 포함하는 생물학적 샘플에서 In one embodiment, the invention is directed to a biological sample comprising cancer cells obtained from a subject.
a) HAT, C17orf65, TRAF6, CISH, ELAC1, ACTR8, SMARCAD1, SRRM1, C15orf44, EFTUD1, BUB3, KIAA0232, SEPSECS, DCAF16, ARHGAP19, TAF5, CNOT6L, NIF3L1, C19orf54, DUSP28, HNRNPC, CTR9, C6orf70, RCCD1, USP54, LIN54, FANCF, GAR1, GPBP1L1, TRAF3, KIAA0368, CRNKL1, SCLY, SMCR7L, PAIP1, RBD1, RPAIN, AP1G1, C1orf212, C18orf54, TIFA, EWSR1, FUBP1, AGGF1, CWF19L1, C14orf145, RPUSD2, SMC2, CEP152, NUP88, SNORA65, MED28, RFC1, RRM1, KARS, CCR1, CHAF1A, PLCH1, FASTKD1, KIAA0174, SAAL1, TNFSF14, ETV7, NBN, C20orf7, RHBDD1, ANKRD32, ING3, ATPAF1, CCDC15, IQCB1, TDP1, KIR2DL4, NOP14, NFX1, SMAP2, SRGAP3, KIR2DL3, KIAA0564, GFI1, KIAA1715, COX15, PATL1, LETMD1, PRRG4, SETD4, GRAMD1C, NDRG3, PTPN22, TRIM21, PI4K2B, DCLRE1A, ALG11, PARP3, KLRC2, LIAS, CHEK2, DONSON, CCDC77, MMP25, LARP1B, STAP2, GCH1, C20orf72, HK3, SNX5, NAAA, KLRD1, IL18RAP, PSMB8, THOP1, CASP5, ALPK1, SLC11A2, PSMB10, MND1, FANCG, IMPA1, MYL5, TTF2, DIAPH3, BATF2, PRF1, RFWD3, BTN3A1, FANCD2, RIPK2, TSPAN6, IFNG, CDC25A, CXCR6, SLC27A2, GAD1, DLEU2, JAK2, CD7, FKBP11, IL32, SORD, TAP1, GNLY, C2, GZMB, VSNL1 및 GBP5로 이루어진 군으로부터 선택된 하나 이상의 RNA 전사체 X의 발현 수준, 및/또는a) HAT, C17orf65, TRAF6, CISH, ELAC1, ACTR8, SMARCAD1, SRRM1, C15orf44, EFTUD1, BUB3, KIAA0232, SEPSECS, DCAF16, ARHGAP19, TAF5, CNOT6L, NIF3L1, C19orf54, RNPC6, NRCPC28, NRCPC28 USP54, LIN54, FANCF, GAR1, GPBP1L1, TRAF3, KIAA0368, CRNKL1, SCLY, SMCR7L, PAIP1, RBD1, RPAIN, AP1G1, C1orf212, C18orf54, TIFA, EWSR1, FUBP1, AGGF1, CWF2F145, CRP14F152 NUP88, SNORA65, MED28, RFC1, RRM1, KARS, CCR1, CHAF1A, PLCH1, FASTKD1, KIAA0174, SAAL1, TNFSF14, ETV7, NBN, C20orf7, RHBDD1, ANKRD32, ING3, ATPAF1, CCD KP14, QD1 NFX1, SMAP2, SRGAP3, KIR2DL3, KIAA0564, GFI1, KIAA1715, COX15, PATL1, LETMD1, PRRG4, SETD4, GRAMD1C, NDRG3, PTPN22, TRIM21, PI4K2B, DCLRE1A, ALG11, PARPC, LIKASCEK2 MMP25, LARP1B, STAP2, GCH1, C20orf72, HK3, SNX5, NAAA, KLRD1, IL18RAP, PSMB8, THOP1, CASP5, ALPK1, SLC11A2, PSMB10, MND1, FANCG, IMPA1, MYL5, TTF2, RFIA3 PRF, BA BTN3A1, FANCD2, RIPK2, TSPAN6, IFNG, CDC25A, CXCR6, SLC27A2, GAD Expression level of one or more RNA transcript X selected from the group consisting of 1, DLEU2, JAK2, CD7, FKBP11, IL32, SORD, TAP1, GNLY, C2, GZMB, VSNL1 and GBP5, and / or
b) CALD1, C2orf40, MATN2, AQP1, LPHN2, TYRP1, TUBB6, EDNRB, PDLIM3, RHOJ, ACOT1, SVIL, COL4A2, FHL1, PPP1R3C, GREM1, PTPRM, SSPN, ANXA8, MSRB3, SPARCL1, OMD, COL8A1, C1QTNF5, CRTAC1, DKK3, DIO2, CYBRD1, SPIRE1, SERPINE2, PPAP2A, TCEAL2, DPYSL3, ACTA2, RBPMS2, PALLD, ALDH1A3, HDGFRP3, DACT3, IGFBP7, TMEFF2, PCSK5, ICAM2, MYL9, FOXF2, LMOD1, SEPW1, SYNPO2, DCBLD2, NNMT, HEYL, APOD, HSPB2, NGFRAP1, HSPB6, RBPMS, SGCE, DCAF6, LPP, PEA15, VIP, GJA4, CYTH3, PTN, LEPR, RAI14, TMEM47, FOXS1, ESAM, MEIS3P1, C15orf52, ITGB1, OGN, RGMA, IGFBP6, ABLIM3, LAYN, FERMT2, FZD4, ADAMTS8, TGFB1I1, DARC, PLN, SCHIP1, PDGFC, RAB6B, CPE, MARCKS, TIE1, AFAP1L1, ERGIC1, HSPB7, EHD2, SLC38A1, FNDC4, ADAMTS1, C20orf160, CALHM2, FAM124B, TMEM136, FSTL1, CDH6, HTR2B, LAMA2, GEM, CDH5, PDE8B, RAB32, SELM, C7, PLAC9, MFAP4, FLNC, CTSE, LOC346887, MPRIP, GNB5, ELN, ENG, CRABP2, CST6, MYOM1, PCDH18, LAMB1, LHFP, FILIP1L, CAV1, CPXM2, NBEA, TEK, CTSF, LTC4S, AEBP1, GNG11, SV2B, KCNMB1, BARX1, DIP2C, LAMC1, PODN, LAPTM4A, HTRA1, FGF2, CLEC14A, PHLDB2, CD93, RGS11, TRIM47, LHX6, EDNRA, PRSS23, FAM129A, SDPR, PAMR1, APLNR, PDE7B, ANKRD10, FRZB, SMOC2, CDC42EP4 및 RERG로 이루어지는 군 중에서 선택되는 하나 이상의 RNA 전사체 Y의 발현 수준을 측정하는 단계; 및 b. CRTAC1, DKK3, DIO2, CYBRD1, SPIRE1, SERPINE2, PPAP2A, TCEAL2, DPYSL3, ACTA2, RBPMS2, PALLD, ALDH1A3, HDGFRP3, DACT3, IGFBP7, TMEFF2, PCSK5, ICAM2, MYL2, DC1 SOD2 NNMT, HEYL, APOD, HSPB2, NGFRAP1, HSPB6, RBPMS, SGCE, DCAF6, LPP, PEA15, VIP, GJA4, CYTH3, PTN, LEPR, RAI14, TMEM47, FOXS1, ESAM, MEIS3P1, C15orf52, ITGB1, OGN IGFBP6, ABLIM3, LAYN, FERMT2, FZD4, ADAMTS8, TGFB1I1, DARC, PLN, SCHIP1, PDGFC, RAB6B, CPE, MARCKS, TIE1, AFAP1L1, ERGIC1, HSPB7, EHD2, SLC38A1, FTSCC, AD20, FNDC4H TMEM136, FSTL1, CDH6, HTR2B, LAMA2, GEM, CDH5, PDE8B, RAB32, SELM, C7, PLAC9, MFAP4, FLNC, CTSE, LOC346887, MPRIP, GNB5, ELN, ENG, CRABP2, CST6, MYOM1, PCDH18, LAMB LHFP, FILIP1L, CAV1, CPXM2, NBEA, TEK, CTSF, LTC4S, AEBP1, GNG11, SV2B, KCNMB1, BARX1, DIP2C, LAMC1, PODN, LAPTM One or more RNAs selected from the group consisting of 4A, HTRA1, FGF2, CLEC14A, PHLDB2, CD93, RGS11, TRIM47, LHX6, EDNRA, PRSS23, FAM129A, SDPR, PAMR1, APLNR, PDE7B, ANKRD10, FRZB, SMOC2, CDC42EP4 and RERG Measuring the expression level of transcript Y; And
상기 전사체 X의 발현 증가는 긍정적인 임상 결과 가능성의 증가로 판단하고, 상기 전사체 Y의 발현 증가는 긍정적인 임상 결과 가능성의 감소로 판단하는 단계를 포함하는, 위암으로 진단된 대상에서 예후를 예측하는 방법을 제공한다.The increase in expression of transcript X is determined to be an increase in the likelihood of a positive clinical outcome, and the increase in expression of transcript Y is determined to be a decrease in the likelihood of a positive clinical outcome. Provide a way to predict.
일 실시 태양에서, 본 발명은 또한 대상으로부터 얻은 암세포를 포함하는 생물학적 샘플에서, In one embodiment, the invention also relates to a biological sample comprising cancer cells obtained from a subject,
a) HS_59, HS_162, HS_67, hsa-miR-96*, hsa-miR-496, hsa-miR-223, hsa-miR-302a*, hsa-miR-20a, hsa-miR-93, hsa-miR-148a, hsa-miR-155*, hsa-miR-15a, hsa-miR-17 및 hsa-miR-18a로 이루어진 군으로부터 선택된 하나 이상의 miRNA (I)의 발현 수준, 및/또는a) HS_59, HS_162, HS_67, hsa-miR-96 *, hsa-miR-496, hsa-miR-223, hsa-miR-302a *, hsa-miR-20a, hsa-miR-93, hsa-miR- Expression level of one or more miRNA (I) selected from the group consisting of 148a, hsa-miR-155 *, hsa-miR-15a, hsa-miR-17 and hsa-miR-18a, and / or
b) hsa-miR-1, HS_6, HS_111, HS_114, hsa-let-7c, HS_126, HS_90, hsa-miR-548d-5p, hsa-miR-189:9.1, solexa-4793-177, HS_135, hsa-miR-20b* 및 hsa-miR-658로 이루어진 군으로부터 선택된 하나 이상의 miRNA (II)의 발현 수준을 측정하는 단계; 및 b) hsa-miR-1, HS_6, HS_111, HS_114, hsa-let-7c, HS_126, HS_90, hsa-miR-548d-5p, hsa-miR-189: 9.1, solexa-4793-177, HS_135, hsa- measuring the expression level of one or more miRNA (II) selected from the group consisting of miR-20b * and hsa-miR-658; And
miRNA (I)의 발현 증가는 긍정적인 임상 결과 가능성의 증가로 판단하고, miRNA (II)의 발현 증가는 긍정적인 임상 결과 가능성의 감소로 판단하는 단계를 포함하는, 위암으로 진단된 대상에서 예후를 예측하는 방법을 제공한다.Increased expression of miRNA (I) is judged to be an increase in the likelihood of positive clinical outcomes, and increased expression of miRNA (II) is determined to be a decrease in the likelihood of positive clinical outcomes. Provide a way to predict.
일 실시 태양에서, 본 발명은 또한 대상으로부터 얻은 암세포를 포함하는 생물학적 샘플에서, In one embodiment, the invention also relates to a biological sample comprising cancer cells obtained from a subject,
AktpS473, PAI, SMAD3, P70S6K 및 EGFR2로 이루어진 군으로부터 선택된 하나 이상의 단백체의 발현도를 결정하는 단계; 및Determining the expression level of at least one protein selected from the group consisting of Akt pS473 , PAI, SMAD3, P70 S6K and EGFR2; And
상기 단계에서 결정된 단백체의 발현도에 기초하여 상기 생물학적 샘플의 재발 스코어(RS, Risk Score)를 계산하고,Calculating a recurrence score (RS) of the biological sample based on the expression level of the protein determined in the step,
상기 RS 값에 따라 예후를 판단하는 단계를 포함하는 위암으로 진단된 대상에서 예후를 예측하는 방법을 제공한다.The present invention provides a method for predicting prognosis in a subject diagnosed as gastric cancer, the method including determining a prognosis according to the RS value.
상기 RS는 하기 수학식 2에 따라 계산할 수 있다:The RS may be calculated according to Equation 2:
[수학식 2][Equation 2]
Risk Score = HR1*RPPAValue1 + HR2*RPPAValue2 + ... + HRn*RPPAValuen Risk Score = HR 1 * RPPAValue 1 + HR 2 * RPPAValue 2 + ... + HR n * RPPAValue n
상기 식에서,Where
HRn 는 n번째 기능적 단백체의 위험계수(hazard ratio)를 나타내고,HR n represents the hazard ratio of the nth functional protein,
RPPAValuen는 n번째 기능적 단백체의 발현과 관련된 값을 의미한다.RPPAValue n means the value associated with the expression of the n th functional protein.
본 발명은 또한 위암의 예후 예측을 실행하는 프로그램을 기록한 컴퓨터로 판독가능한 기록 매체를 제공한다.The present invention also provides a computer readable recording medium having recorded thereon a program for executing prognostic prediction of gastric cancer.
일 실시 태양에서, TNM 병기중 N0기 위암 환자군의 임상 결과를 예측하는데 유용한 매체를 제공할 수 있다. 예컨대,In one embodiment, a medium useful for predicting clinical outcome of a stage N0 gastric cancer patient group during a TNM stage may be provided. for example,
환자로부터 얻은 핵산 시료에서 FZD1, GLI3, ANGPTL7, ABL1, SMARCD3, ILK, CAV1, VIP, HSPB7, TOP2A 및 FANCD2로 이루어지는 군으로부터 선택된 하나 이상의 RNA 전사체; 및 hsa-miR-933, hsa-miR-184, hsa-miR-380*, hsa-miR-190b, hsa-miR-27a* 및 hsa-miR-1201로 이루어진 군으로부터 선택된 하나 이상의 miRNA의 발현도를 결정하는 단계; 및At least one RNA transcript selected from the group consisting of FZD1, GLI3, ANGPTL7, ABL1, SMARCD3, ILK, CAV1, VIP, HSPB7, TOP2A and FANCD2 in a nucleic acid sample obtained from a patient; And determining the expression level of one or more miRNAs selected from the group consisting of hsa-miR-933, hsa-miR-184, hsa-miR-380 *, hsa-miR-190b, hsa-miR-27a * and hsa-miR-1201. Making; And
상기 단계에서 결정된 RNA 전사체 또는 miRNA의 발현도에 기초하여 상기 생물학적 샘플의 재발 스코어(RS, Risk Score)를 계산하고,Calculating a recurrence score (RS) of the biological sample based on the expression level of the RNA transcript or miRNA determined in the step,
상기 RS가 설정치 보다 높은 환자는 재발가능성이 높은 환자로, RS가 설정치 보다 낮은 환자는 재발가능성이 낮은 환자로 분류하는 단계를 컴퓨터에 실행시키는 프로그램을 기록한 컴퓨터로 판독가능한 기록 매체를 제공한다.A computer readable recording medium having recorded thereon a program for causing a computer to classify a patient having a higher RS than a setpoint is a high probability of relapse and a patient having a lower RS is set to a lower likelihood of relapse.
RNA 전사체 또는 miRNA의 발현도를 이용한 RS 값은 상술한 수학식을 통해 얻을 수 있다.RS value using the expression level of the RNA transcript or miRNA can be obtained through the above equation.
일 실시 태양에서, TNM 병기와 상관 없는 전체 위암 환자군의 임상 결과를 예측하는데 유용한 매체를 제공할 수 있다. 예컨대,In one embodiment, a medium may be provided that is useful for predicting clinical outcomes of the entire gastric cancer patient population independent of TNM stages. for example,
환자로부터 얻은 단백질 시료에서 AktpS473, PAI, SMAD3, P70S6K 및 EGFR2로 이루어진 군으로부터 선택된 하나 이상의 단백체의 발현도를 결정하는 단계; 및Determining the expression level of at least one protein selected from the group consisting of Akt pS473 , PAI, SMAD3, P70 S6K and EGFR2 in a protein sample obtained from the patient; And
상기 단계에서 결정된 단백체의 발현도에 기초하여 상기 생물학적 샘플의 재발 스코어(RS, Risk Score)를 계산하고,Calculating a recurrence score (RS) of the biological sample based on the expression level of the protein determined in the step,
상기 RS가 설정치보다 큰 환자는 재발가능성이 높은 환자로, 설정치보다 작은 환자는 재발가능성이 낮은 환자로 분류하는 단계를 컴퓨터에 실행시키는 프로그램을 기록한 컴퓨터로 판독가능한 기록 매체를 제공한다.A computer-readable recording medium having recorded thereon a program for causing a computer to classify a patient whose RS is greater than a setpoint is a high probability of recurrence and a patient smaller than the setpoint is a low likelihood of relapse.
단백체의 발현도를 이용한 RS 값은 상술한 수학식을 통해 얻을 수 있다.RS value using the expression level of the protein can be obtained through the above equation.
본 발명은 TNM 병기중 N0기 위암 환자군에 대한 전체 생존율과 무재발 생존율의 예측 모델을 만든 후 통계적으로 유의한 생존에 영향을 미치는 마이크로 RNA, RNA 전사체 또는 단백체의 발현도를 결정하여 이로부터 재발 스코어 시스템을 만들어 예후 지표 값을 산출하는 방식으로 위암 수술에 의한 절제 후 임상 결과를 예측할 수 있다.The present invention creates a predictive model of overall survival rate and relapse-free survival rate for stage N0 gastric cancer patients in the TNM stage, and then determines the expression level of micro RNA, RNA transcript or protein that affects statistically significant survival. By producing a system to calculate prognostic indicators, the clinical results after resection by gastric cancer surgery can be predicted.
또한, 본 발명은 유전자의 생물학적 기능에 따른 유전자 집합 시스템을 이용함으로써 위암 자체의 생물학적 기능에 따른 유전자군의 분석이 가능하다.In addition, the present invention enables the analysis of the gene group according to the biological function of gastric cancer itself by using a gene aggregation system according to the biological function of the gene.
도 1은 연세의료원 내 세브란스 병원에서 1987년부터 2007년까지 총 9324 례를 대상으로 위암 병기에 따른 사망률을 조사한 결과이다.1 is a result of a mortality rate according to the stage of gastric cancer in 9324 cases from 1987 to 2007 at Severance Hospital in Yonsei Medical Center.
도 2는 위암 병기 3a에서 마이크로 RNA 발현도를 이용한 재발 스코어법을 이용한 예시를 나타낸 것이다.Figure 2 shows an example using a recurrence scoring method using micro RNA expression in gastric cancer stage 3a.
도 3은 기능적 단백체로 AktpS473 인 경우 생존 분석 결과를 나타낸 것이다.Figure 3 shows the results of survival analysis of Akt pS473 as a functional protein .
도 4는 단백체 발현도를 이용한 예후 지표(prognostic index)를 0을 기준으로 하였을 때, 예후가 좋은 군의 사망자 수 및 예후가 나쁜 군의 사망자 수를 나타낸 것이다.Figure 4 shows the number of deaths in the group with the good prognosis and the number of deaths in the poor prognosis when the prognostic index (prognostic index) using the protein expression level is 0.
도 5는 T1NO기, T2N0기, T3N0기 또는 T4N0기 위암 환자군을 대상으로 예후 지표(리스크 스코어링 시스템)에 따른(스코어 값을 +군과 -군으로 나눈 경우) 생존 분석 결과를 나타낸 것이다.FIG. 5 shows survival analysis results according to prognostic indicators (risk scoring system) (when scores are divided into + and − groups) in a T1NO, T2N0, T3N0, or T4N0 gastric cancer patient group.
도 6은 T1NO기, T2N0기, T3N0기 또는 T4N0기 위암 환자군을 대상으로 예후 지표(prognostic index)를 0을 기준으로 하였을 때, 예후가 좋은 군의 사망자 수 및 예후가 나쁜 군의 사망자 수를 나타낸 것이다.FIG. 6 shows the number of deaths in the group with the good prognosis and the number of deaths in the group with the poor prognosis when the prognostic index is 0 based on the T1NO, T2N0, T3N0, or T4N0 gastric cancer patient groups. will be.
도 7은 T1NO기, T2N0기, T3N0기 또는 T4N0기 위암 환자군을 대상으로 마이크로 RNA의 발현도와 RNA 전사체 발현도 사이의 상관관계를 통해 추출하는 과정을 설명한 것이다.FIG. 7 illustrates a process of extracting a correlation between the expression level of microRNA and the expression level of RNA transcript in a T1NO, T2N0, T3N0, or T4N0 gastric cancer patient group.
이하 본 발명의 구성을 구체적으로 설명한다.Hereinafter, the configuration of the present invention will be described in detail.
본 발명은 위암 전체 환자군 또는 TNM 병기중 N0기 환자군에 대해 위암 절제술 후 임상 결과를 예측하기 위한 시스템을 개발하기 위해 안출된 것으로, 위암 환자의 수술에 의한 절제 후 임상 결과를 예측하는데 유용한 RNA 전사체, 마이크로 RNA 또는 단백체 세트를 제공한다. The present invention was devised to develop a system for predicting clinical outcome after gastric resection for the entire gastric cancer patient group or the N0 patient group in the TNM stage, and is useful for predicting clinical outcome after surgical resection of gastric cancer patients. , MicroRNA or protein sets.
한 측면에서 본 발명은 TNM 병기중 N0기 환자군, 예컨대, T1NO기, T2N0기, T3N0기 또는 T4N0기 국소진행형 위암의 수술에 의한 절제 후 임상 결과를 예측할 수 있는 방법을 제공한다. 예컨대, 대상으로부터 얻은 암세포를 포함하는 생물학적 샘플에서 In one aspect, the present invention provides a method for predicting clinical outcome after resection by surgery in a stage N0 patient group, such as T1NO, T2N0, T3N0, or T4N0 stage of advanced TCC stage. For example, in biological samples containing cancer cells obtained from a subject
FZD1, GLI3, ANGPTL7, ABL1, SMARCD3, ILK, CAV1, VIP, HSPB7, TOP2A 및 FANCD2로 이루어지는 군으로부터 선택된 하나 이상의 RNA 전사체; 및 hsa-miR-933, hsa-miR-184, hsa-miR-380*, hsa-miR-190b, hsa-miR-27a* 및 hsa-miR-1201로 이루어진 군으로부터 선택된 하나 이상의 miRNA의 발현도를 결정하는 단계; 및One or more RNA transcripts selected from the group consisting of FZD1, GLI3, ANGPTL7, ABL1, SMARCD3, ILK, CAV1, VIP, HSPB7, TOP2A and FANCD2; And determining the expression level of one or more miRNAs selected from the group consisting of hsa-miR-933, hsa-miR-184, hsa-miR-380 *, hsa-miR-190b, hsa-miR-27a * and hsa-miR-1201. Making; And
상기 단계에서 결정된 RNA 전사체 또는 miRNA의 발현도에 기초하여 상기 생물학적 샘플의 재발 스코어(RS, Risk Score)를 계산하고, Calculating a recurrence score (RS) of the biological sample based on the expression level of the RNA transcript or miRNA determined in the step,
상기 RS 값에 따라 예후를 판단하는 단계를 포함하는 위암으로 진단된 대상에서 예후를 예측하는 방법을 제공한다.The present invention provides a method for predicting prognosis in a subject diagnosed as gastric cancer, the method including determining a prognosis according to the RS value.
상기 RS는 하기 수학식 1에 따라 계산할 수 있다:The RS can be calculated according to the following equation (1):
[수학식 1][Equation 1]
Risk Score = HR1*normLogTransValue1 + HR2*normLogTransValue2 + ... + HRn* normLogTransValuen Risk Score = HR 1 * normLogTransValue 1 + HR 2 * normLogTransValue 2 + ... + HR n * normLogTransValue n
상기 식에서, Where
HRn 는 n번째 RNA 전사체 또는 마이크로 RNA의 위험 계수(hazard ratio)를 나타내고,HR n represents the hazard ratio of the nth RNA transcript or microRNA,
normLogTransValuen는 n번째 RNA 전사체 또는 마이크로 RNA의 발현과 관련된 값을 의미한다. normLogTransValue n means the value associated with the expression of the n-th RNA transcript or micro RNA.
상기 식에서, 용어, 위험계수(Hazard Ratio: HR)란 암의 진행, 재발, 또는 요법 반응에 대한 기여도를 반영하는 계수를 의미한다. 위험 계수는 다양한 통계적 기법에 의하여 도출될 수 있다. 상기 위험 계수, HR 값은 다양한 통계적 모델에서 결정할 수 있으며, 예컨대, Univariate Cox's proportional harzard model에서 결정할 수 있다. 일 구체예에서, HR 값을 RS 수식에 사용함에 있어서, HR 값이 1보다 크거나 같을 경우 HR 값을 그대로 사용하고, HR 값이 1 보다 작을 경우 1/HR 값을 사용할 수 있다. In the above formula, the term "Hazard Ratio" (HR) means a coefficient that reflects the contribution to cancer progression, relapse, or therapy response. The risk factor can be derived by various statistical techniques. The risk factor, HR value, can be determined in various statistical models, for example in the Univariate Cox's proportional harzard model. In one embodiment, in using the HR value in the RS formula, when the HR value is greater than or equal to 1, the HR value may be used as it is, and when the HR value is less than 1, the 1 / HR value may be used.
또한, 상기 식에서, 용어, RNA 전사체 또는 마이크로 RNA의 발현과 관련된 값 값이란 개별유전자, 예를 들어 RNA 전사체, 마이크로 RNA, 단백체의 발현과 관련된 값을 의미한다. 상기 값은 예를 들어 공지된 다양한 통계적 수단을 사용하여 결정할 수 있다. 예를 들어 발현과 관련된 값은 Univariate Cox's proportional harzard model에 의해 측정된 p 값을 log2 함수값으로 변형 후 사분위수 표준화(quantile normalization) 후의 값을 사용할 수 있다.In addition, in the above formula, the term, a value value associated with the expression of an RNA transcript or microRNA, means a value associated with the expression of an individual gene, for example RNA transcript, micro RNA, protein. The value can be determined, for example, using various known statistical means. For example, the value related to expression may be a value after quantile normalization after transforming p value measured by Univariate Cox's proportional harzard model into log2 function value.
일 구체예에 따르면, RS는 다음과 같이 결정할 수 있다:According to one embodiment, the RS can be determined as follows:
Risk Score = FZD1×4.302 + GLI3×4.073 + ANGPTL7×2.949 + ABL1×2.784 + SMARCD3×2.266 + ILK×2.251 + CAV1×1.788 + VIP×1.73 + HSPB7×1.535-TOP2A×1.766 - FANCD2×2.793 + miR933×5.256 + miR184×1.674 + miR380*×1.903 - miR190b×3.597 - miR27a*×1.7 - miR1201×1.35Risk Score = FZD1 × 4.302 + GLI3 × 4.073 + ANGPTL7 × 2.949 + ABL1 × 2.784 + SMARCD3 × 2.266 + ILK × 2.251 + CAV1 × 1.788 + VIP × 1.73 + HSPB7 × 1.535-TOP2A × 1.766-FANCD2 × 2.793 + miR933 × 5.256 + miR184 × 1.674 + miR380 * × 1.903-miR190b × 3.597-miR27a * × 1.7-miR1201 × 1.35
상기 방법은 TNM 병기 중 N0기 위암 환자군, 예컨대, T1N0기, T2N0기, T3N0기 또는T4N0기 국소진행형 위암의 수술에 의한 절제 후 임상 결과를 예측하는데 유용할 수 있다.The method may be useful for predicting clinical outcome after surgery for surgical treatment of stage N0 gastric cancer patients in a TNM stage, such as stage T0N0, T2N0, T3N0 or T4N0 stage advanced gastric cancer.
상기 방법은 전체 생존율(Overall Survival, OS) 또는 무재발 생존율(recurrence free survival, RFS) 측면에서 RS 값이 + 값이면 나쁜 예후를, - 값이면 좋은 예후인 것으로 판단할 수 있다. 즉, + 값이면 3년 이상, 5년 이상, 8년 이상, 10년 이상의 기간 동안 전체 생존율이 낮거나, 재발을 통해 사망 환자의 발생율이 높음을 의미하고, - 값이면 3년 이상, 5년 이상, 8년 이상, 또는 10년 이상 동안 전체 생존율이 높거나, 재발 없이 사망 환자의 발생율이 낮음을 의미한다. 상기 용어, 좋은 예후는 임상 결과의 긍정적 임상 결과 가능성의 증가로 표현될 수 있고, 나쁜 예후는 임상 결과의 긍정적 임상 결과 가능성의 감소로 표현될 수 있다.The method may determine that the RS value is a positive prognosis in terms of overall survival (OS) or recurrence free survival (RFS), and the prognosis is a negative value. In other words, a positive value indicates a low overall survival rate or a high incidence of deaths due to relapse during at least 3 years, 5 years, 8 years, and 10 years. Higher overall survival or abnormal incidence of death patients without relapse for at least 8 years or more than 10 years. The term, good prognosis can be expressed as an increase in the likelihood of a positive clinical outcome of a clinical outcome, and a bad prognosis can be expressed as a decrease in the likelihood of a positive clinical outcome of a clinical outcome.
본 발명은 TNM 병기와 상관 없는 전체 위암의 수술에 의한 절제 후 임상 결과를 예측하는데 유용한 방법을 제공한다.The present invention provides a useful method for predicting clinical outcome after surgical resection of total gastric cancer regardless of TNM stage.
일 실시 태양에서, 본 발명은 대상으로부터 얻은 암세포를 포함하는 생물학적 샘플에서 In one embodiment, the invention is directed to a biological sample comprising cancer cells obtained from a subject.
a) HAT, C17orf65, TRAF6, CISH, ELAC1, ACTR8, SMARCAD1, SRRM1, C15orf44, EFTUD1, BUB3, KIAA0232, SEPSECS, DCAF16, ARHGAP19, TAF5, CNOT6L, NIF3L1, C19orf54, DUSP28, HNRNPC, CTR9, C6orf70, RCCD1, USP54, LIN54, FANCF, GAR1, GPBP1L1, TRAF3, KIAA0368, CRNKL1, SCLY, SMCR7L, PAIP1, RBD1, RPAIN, AP1G1, C1orf212, C18orf54, TIFA, EWSR1, FUBP1, AGGF1, CWF19L1, C14orf145, RPUSD2, SMC2, CEP152, NUP88, SNORA65, MED28, RFC1, RRM1, KARS, CCR1, CHAF1A, PLCH1, FASTKD1, KIAA0174, SAAL1, TNFSF14, ETV7, NBN, C20orf7, RHBDD1, ANKRD32, ING3, ATPAF1, CCDC15, IQCB1, TDP1, KIR2DL4, NOP14, NFX1, SMAP2, SRGAP3, KIR2DL3, KIAA0564, GFI1, KIAA1715, COX15, PATL1, LETMD1, PRRG4, SETD4, GRAMD1C, NDRG3, PTPN22, TRIM21, PI4K2B, DCLRE1A, ALG11, PARP3, KLRC2, LIAS, CHEK2, DONSON, CCDC77, MMP25, LARP1B, STAP2, GCH1, C20orf72, HK3, SNX5, NAAA, KLRD1, IL18RAP, PSMB8, THOP1, CASP5, ALPK1, SLC11A2, PSMB10, MND1, FANCG, IMPA1, MYL5, TTF2, DIAPH3, BATF2, PRF1, RFWD3, BTN3A1, FANCD2, RIPK2, TSPAN6, IFNG, CDC25A, CXCR6, SLC27A2, GAD1, DLEU2, JAK2, CD7, FKBP11, IL32, SORD, TAP1, GNLY, C2, GZMB, VSNL1 및 GBP5로 이루어진 군으로부터 선택된 하나 이상의 RNA 전사체 X의 발현 수준, 및/또는a) HAT, C17orf65, TRAF6, CISH, ELAC1, ACTR8, SMARCAD1, SRRM1, C15orf44, EFTUD1, BUB3, KIAA0232, SEPSECS, DCAF16, ARHGAP19, TAF5, CNOT6L, NIF3L1, C19orf54, RNPC6, NRCPC28, NRCPC28 USP54, LIN54, FANCF, GAR1, GPBP1L1, TRAF3, KIAA0368, CRNKL1, SCLY, SMCR7L, PAIP1, RBD1, RPAIN, AP1G1, C1orf212, C18orf54, TIFA, EWSR1, FUBP1, AGGF1, CWF2F145, CRP14F152 NUP88, SNORA65, MED28, RFC1, RRM1, KARS, CCR1, CHAF1A, PLCH1, FASTKD1, KIAA0174, SAAL1, TNFSF14, ETV7, NBN, C20orf7, RHBDD1, ANKRD32, ING3, ATPAF1, CCD KP14, QD1 NFX1, SMAP2, SRGAP3, KIR2DL3, KIAA0564, GFI1, KIAA1715, COX15, PATL1, LETMD1, PRRG4, SETD4, GRAMD1C, NDRG3, PTPN22, TRIM21, PI4K2B, DCLRE1A, ALG11, PARPC, LIKASCEK2 MMP25, LARP1B, STAP2, GCH1, C20orf72, HK3, SNX5, NAAA, KLRD1, IL18RAP, PSMB8, THOP1, CASP5, ALPK1, SLC11A2, PSMB10, MND1, FANCG, IMPA1, MYL5, TTF2, RFIA3 PRF, BA BTN3A1, FANCD2, RIPK2, TSPAN6, IFNG, CDC25A, CXCR6, SLC27A2, GAD Expression level of one or more RNA transcript X selected from the group consisting of 1, DLEU2, JAK2, CD7, FKBP11, IL32, SORD, TAP1, GNLY, C2, GZMB, VSNL1 and GBP5, and / or
b) CALD1, C2orf40, MATN2, AQP1, LPHN2, TYRP1, TUBB6, EDNRB, PDLIM3, RHOJ, ACOT1, SVIL, COL4A2, FHL1, PPP1R3C, GREM1, PTPRM, SSPN, ANXA8, MSRB3, SPARCL1, OMD, COL8A1, C1QTNF5, CRTAC1, DKK3, DIO2, CYBRD1, SPIRE1, SERPINE2, PPAP2A, TCEAL2, DPYSL3, ACTA2, RBPMS2, PALLD, ALDH1A3, HDGFRP3, DACT3, IGFBP7, TMEFF2, PCSK5, ICAM2, MYL9, FOXF2, LMOD1, SEPW1, SYNPO2, DCBLD2, NNMT, HEYL, APOD, HSPB2, NGFRAP1, HSPB6, RBPMS, SGCE, DCAF6, LPP, PEA15, VIP, GJA4, CYTH3, PTN, LEPR, RAI14, TMEM47, FOXS1, ESAM, MEIS3P1, C15orf52, ITGB1, OGN, RGMA, IGFBP6, ABLIM3, LAYN, FERMT2, FZD4, ADAMTS8, TGFB1I1, DARC, PLN, SCHIP1, PDGFC, RAB6B, CPE, MARCKS, TIE1, AFAP1L1, ERGIC1, HSPB7, EHD2, SLC38A1, FNDC4, ADAMTS1, C20orf160, CALHM2, FAM124B, TMEM136, FSTL1, CDH6, HTR2B, LAMA2, GEM, CDH5, PDE8B, RAB32, SELM, C7, PLAC9, MFAP4, FLNC, CTSE, LOC346887, MPRIP, GNB5, ELN, ENG, CRABP2, CST6, MYOM1, PCDH18, LAMB1, LHFP, FILIP1L, CAV1, CPXM2, NBEA, TEK, CTSF, LTC4S, AEBP1, GNG11, SV2B, KCNMB1, BARX1, DIP2C, LAMC1, PODN, LAPTM4A, HTRA1, FGF2, CLEC14A, PHLDB2, CD93, RGS11, TRIM47, LHX6, EDNRA, PRSS23, FAM129A, SDPR, PAMR1, APLNR, PDE7B, ANKRD10, FRZB, SMOC2, CDC42EP4 및 RERG로 이루어지는 군 중에서 선택되는 하나 이상의 RNA 전사체 Y의 발현 수준을 측정하는 단계; 및 b. CRTAC1, DKK3, DIO2, CYBRD1, SPIRE1, SERPINE2, PPAP2A, TCEAL2, DPYSL3, ACTA2, RBPMS2, PALLD, ALDH1A3, HDGFRP3, DACT3, IGFBP7, TMEFF2, PCSK5, ICAM2, MYL2, DC1 SOD2 NNMT, HEYL, APOD, HSPB2, NGFRAP1, HSPB6, RBPMS, SGCE, DCAF6, LPP, PEA15, VIP, GJA4, CYTH3, PTN, LEPR, RAI14, TMEM47, FOXS1, ESAM, MEIS3P1, C15orf52, ITGB1, OGN IGFBP6, ABLIM3, LAYN, FERMT2, FZD4, ADAMTS8, TGFB1I1, DARC, PLN, SCHIP1, PDGFC, RAB6B, CPE, MARCKS, TIE1, AFAP1L1, ERGIC1, HSPB7, EHD2, SLC38A1, FTSCC, AD20, FNDC4H TMEM136, FSTL1, CDH6, HTR2B, LAMA2, GEM, CDH5, PDE8B, RAB32, SELM, C7, PLAC9, MFAP4, FLNC, CTSE, LOC346887, MPRIP, GNB5, ELN, ENG, CRABP2, CST6, MYOM1, PCDH18, LAMB LHFP, FILIP1L, CAV1, CPXM2, NBEA, TEK, CTSF, LTC4S, AEBP1, GNG11, SV2B, KCNMB1, BARX1, DIP2C, LAMC1, PODN, LAPTM One or more RNAs selected from the group consisting of 4A, HTRA1, FGF2, CLEC14A, PHLDB2, CD93, RGS11, TRIM47, LHX6, EDNRA, PRSS23, FAM129A, SDPR, PAMR1, APLNR, PDE7B, ANKRD10, FRZB, SMOC2, CDC42EP4 and RERG Measuring the expression level of transcript Y; And
상기 전사체 X의 발현 증가는 긍정적인 임상 결과 가능성의 증가로 판단하고, 상기 전사체 Y의 발현 증가는 긍정적인 임상 결과 가능성의 감소로 판단하는 단계를 포함하는, 위암으로 진단된 대상에서 예후를 예측하는 방법을 제공한다.The increase in expression of transcript X is determined to be an increase in the likelihood of a positive clinical outcome, and the increase in expression of transcript Y is determined to be a decrease in the likelihood of a positive clinical outcome. Provide a way to predict.
상기 방법은 PCR 기반 방법 또는 어레이 기반 방법일 수 있다.The method may be a PCR based method or an array based method.
상기 발현 수준이 하나 이상의 RNA 전사체의 발현 수준에 대해 표준화되는 것일 수 있다. The expression level may be one that is normalized to the expression level of one or more RNA transcripts.
상기 임상 결과가 전체 생존율(Overall Survival, OS) 또는 무재발 생존율(recurrence free survival, RFS) 측면에서 표현되는 것일 수 있다.The clinical result may be expressed in terms of overall survival (OS) or recurrence free survival (RFS).
상기 방법은 RNA 전사체 X 및 Y 중에서 선택된 2개 이상의 RNA 전사체의 발현 수준을 측정하는 것을 포함할 수 있다. 보다 구체적으로, RNA 전사체 X 및 Y 중에서 선택된 2개 이상의 발현 수준을 측정하고 각각의 발현 증가를 분석하여 긍정적인 임상 결과 가능성의 증가 또는 감소를 판단하여 예후를 예측할 수 있다.The method may comprise measuring the expression level of at least two RNA transcripts selected from RNA transcripts X and Y. More specifically, the prognosis can be predicted by measuring two or more expression levels selected from RNA transcripts X and Y and analyzing each increase in expression to determine the increase or decrease in the likelihood of a positive clinical outcome.
상기 방법은 RNA 전사체 X 및 Y 중에서 선택된 5개 이상의 RNA 전사체의 발현 수준을 측정하는 것을 포함할 수 있다. 보다 구체적으로, RNA 전사체 X 및 Y 중에서 선택된 5개 이상의 발현 수준을 측정하고 각각의 발현 증가를 분석하여 긍정적인 임상 결과 가능성의 증가 또는 감소를 판단하여 예후를 예측할 수 있다.The method may comprise measuring the expression level of at least five RNA transcripts selected from RNA transcripts X and Y. More specifically, five or more expression levels selected from RNA transcripts X and Y can be measured and each expression increase analyzed to determine the increase or decrease in the likelihood of a positive clinical outcome to predict prognosis.
상기 방법은 RNA 전사체 X 및 Y 중에서 선택된 10개 이상의 RNA 전사체의 발현 수준을 측정하는 것을 포함할 수 있다. 보다 구체적으로, RNA 전사체 X 및 Y 중에서 선택된 10개 이상의 발현 수준을 측정하고 각각의 발현 증가를 분석하여 긍정적인 임상 결과 가능성의 증가 또는 감소를 판단하여 예후를 예측할 수 있다.The method may comprise measuring the expression level of at least 10 RNA transcripts selected from RNA transcripts X and Y. More specifically, 10 or more expression levels selected from RNA transcripts X and Y can be measured and each expression increase analyzed to determine the increase or decrease in the likelihood of a positive clinical outcome to predict prognosis.
상기 방법은 RNA 전사체 X 및 Y 전체 RNA 전사체의 발현 수준을 측정하는 것을 포함할 수 있다. 보다 구체적으로, RNA 전사체 X 및 Y의 전체의 발현 수준을 측정하고 발현 증가를 분석하여 긍정적인 임상 결과 가능성의 증가 또는 감소를 판단하여 예후를 예측할 수 있다.The method may comprise measuring the expression level of RNA transcript X and Y total RNA transcript. More specifically, the prognosis can be predicted by measuring the overall expression level of RNA transcripts X and Y and analyzing the increase in expression to determine the increase or decrease in the likelihood of a positive clinical outcome.
일 실시 태양에서, 본 발명은 또한 대상으로부터 얻은 암세포를 포함하는 생물학적 샘플에서, In one embodiment, the invention also relates to a biological sample comprising cancer cells obtained from a subject,
a) HS_59, HS_162, HS_67, hsa-miR-96*, hsa-miR-496, hsa-miR-223, hsa-miR-302a*, hsa-miR-20a, hsa-miR-93, hsa-miR-148a, hsa-miR-155*, hsa-miR-15a, hsa-miR-17 및 hsa-miR-18a로 이루어진 군으로부터 선택된 하나 이상의 miRNA (I)의 발현 수준, 및/또는a) HS_59, HS_162, HS_67, hsa-miR-96 *, hsa-miR-496, hsa-miR-223, hsa-miR-302a *, hsa-miR-20a, hsa-miR-93, hsa-miR- Expression level of one or more miRNA (I) selected from the group consisting of 148a, hsa-miR-155 *, hsa-miR-15a, hsa-miR-17 and hsa-miR-18a, and / or
b) hsa-miR-1, HS_6, HS_111, HS_114, hsa-let-7c, HS_126, HS_90, hsa-miR-548d-5p, hsa-miR-189:9.1, solexa-4793-177, HS_135, hsa-miR-20b* 및 hsa-miR-658로 이루어진 군으로부터 선택된 하나 이상의 miRNA (II)의 발현 수준을 측정하는 단계; 및 b) hsa-miR-1, HS_6, HS_111, HS_114, hsa-let-7c, HS_126, HS_90, hsa-miR-548d-5p, hsa-miR-189: 9.1, solexa-4793-177, HS_135, hsa- measuring the expression level of one or more miRNA (II) selected from the group consisting of miR-20b * and hsa-miR-658; And
miRNA (I)의 발현 증가는 긍정적인 임상 결과 가능성의 증가로 판단하고, miRNA (II)의 발현 증가는 긍정적인 임상 결과 가능성의 감소로 판단하는 단계를 포함하는, 위암으로 진단된 대상에서 예후를 예측하는 방법을 제공한다.Increased expression of miRNA (I) is judged to be an increase in the likelihood of positive clinical outcomes, and increased expression of miRNA (II) is determined to be a decrease in the likelihood of positive clinical outcomes. Provide a way to predict.
상기 임상 결과가 전체 생존율(Overall Survival, OS) 또는 무재발 생존율(recurrence free survival, RFS) 측면에서 표현되는 것일 수 있다.The clinical result may be expressed in terms of overall survival (OS) or recurrence free survival (RFS).
상기 방법은 마이크로 RNA 전사체 I 및 II 중에서 선택된 2개 이상의 마이크로 RNA의 발현 수준을 측정하는 것을 포함할 수 있다. 보다 구체적으로, 마이크로 RNA 전사체 I 및 II 중에서 선택된 2개 이상의 발현 수준을 측정하고 각각의 발현 증가를 분석하여 긍정적인 임상 결과 가능성의 증가 또는 감소를 판단하여 예후를 예측할 수 있다.The method may comprise measuring the expression level of two or more micro RNAs selected from micro RNA transcripts I and II. More specifically, two or more expression levels selected from micro RNA transcripts I and II can be measured and each expression increase analyzed to determine the increase or decrease in the likelihood of a positive clinical outcome to predict prognosis.
상기 방법은 마이크로 RNA 전사체 I 및 II 중에서 선택된 5개 이상의 마이크로 RNA의 발현 수준을 측정하는 것을 포함할 수 있다. 보다 구체적으로, 마이크로 RNA 전사체 I 및 II 중에서 선택된 5개 이상의 발현 수준을 측정하고 각각의 발현 증가를 분석하여 긍정적인 임상 결과 가능성의 증가 또는 감소를 판단하여 예후를 예측할 수 있다.The method may comprise measuring the expression level of at least five micro RNAs selected from micro RNA transcripts I and II. More specifically, five or more expression levels selected from microRNA transcripts I and II can be measured and each expression increase analyzed to determine the increase or decrease in the likelihood of a positive clinical outcome to predict prognosis.
상기 방법은 마이크로 RNA 전사체 I 및 II 중에서 선택된 10개 이상의 마이크로 RNA의 발현 수준을 측정하는 것을 포함할 수 있다. 보다 구체적으로, 마이크로 RNA 전사체 I 및 II 중에서 선택된 10개 이상의 발현 수준을 측정하고 각각의 발현 증가를 분석하여 긍정적인 임상 결과 가능성의 증가 또는 감소를 판단하여 예후를 예측할 수 있다.The method may comprise measuring the expression level of at least 10 microRNAs selected from micro RNA transcripts I and II. More specifically, 10 or more expression levels selected from micro RNA transcripts I and II can be measured and each expression increase analyzed to determine the increase or decrease in the likelihood of a positive clinical outcome to predict prognosis.
상기 방법은 마이크로 RNA 전사체 I 및 II 전체의 마이크로 RNA의 발현 수준을 측정하는 것을 포함할 수 있다. 보다 구체적으로, 마이크로 RNA 전사체 I 및 II 전체의 발현 수준을 측정하고 각각의 발현 증가를 분석하여 긍정적인 임상 결과 가능성의 증가 또는 감소를 판단하여 예후를 예측할 수 있다.The method may comprise measuring the expression level of micro RNA throughout the micro RNA transcripts I and II. More specifically, the prognosis can be predicted by measuring the expression levels of the entire micro RNA transcripts I and II and analyzing the respective increase in expression to determine the increase or decrease in the likelihood of a positive clinical outcome.
일 실시 태양에서 본 발명은 또한 대상으로부터 얻은 암세포를 포함하는 생물학적 샘플에서, In one embodiment the invention also relates to a biological sample comprising cancer cells obtained from a subject,
AktpS473, PAI, SMAD3, P70S6K 및 EGFR2로 이루어진 군으로부터 선택된 하나 이상의 단백체의 발현도를 결정하는 단계; 및Determining the expression level of at least one protein selected from the group consisting of Akt pS473 , PAI, SMAD3, P70 S6K and EGFR2; And
상기 단계에서 결정된 단백체의 발현도에 기초하여 상기 생물학적 샘플의 재발 스코어(RS, Risk Score)를 계산하고,Calculating a recurrence score (RS) of the biological sample based on the expression level of the protein determined in the step,
상기 RS 값에 따라 예후를 판단하는 단계를 포함하는 위암으로 진단된 대상에서 예후를 예측하는 방법을 제공한다.The present invention provides a method for predicting prognosis in a subject diagnosed as gastric cancer, the method including determining a prognosis according to the RS value.
상기 RS는 하기 수학식 2에 따라 계산할 수 있다:The RS may be calculated according to Equation 2:
[수학식 2][Equation 2]
Risk Score = HR1*RPPAValue1 + HR2*RPPAValue2 + ... + HRn*RPPAValuen Risk Score = HR 1 * RPPAValue 1 + HR 2 * RPPAValue 2 + ... + HR n * RPPAValue n
상기 식에서, Where
HRn 는 n번째 기능적 단백체의 위험계수(hazard ratio)를 나타내고, HR n represents the hazard ratio of the nth functional protein,
RPPAValuen는 n번째 기능적 단백체의 발현과 관련된 값을 의미한다.RPPAValue n means the value associated with the expression of the n th functional protein.
상기 위험계수 및 기능적 단백체의 발현과 관련된 값은 상술한 바와 같이 측정된 값을 사용할 수 있다.Values associated with the expression of the risk factor and the functional protein can use the values measured as described above.
상기 방법은 전체 생존율(Overall Survival, OS) 또는 무재발 생존율(recurrence free survival, RFS) 측면에서 RS 값이 설정치 보다 크면 예후가 나쁘고, RS 값이 설정치 보다 작으면 예후가 좋은 것으로 판단하는 것일 수 있다. 예컨대, 상기 설정치가 0일 경우, RS 값이 0 보다 크면 예후가 나쁘고, RS 값이 0 보다 작으면 예후가 좋은 것으로 판단할 수 있다.The method may be a bad prognosis if the RS value is greater than the set point in terms of overall survival (OS) or recurrence free survival (RFS), and the prognosis is good if the RS value is less than the set point. . For example, when the set value is 0, the prognosis is poor when the RS value is greater than 0, and the prognosis is good when the RS value is less than zero.
본 발명은 또한 위암의 수술에 의한 절제 후 예후의 예측을 실행하는 프로그램을 기록한 컴퓨터로 판독가능한 기록 매체를 제공한다.The invention also provides a computer readable recording medium having recorded thereon a program for executing a prediction of prognosis after resection by surgery of gastric cancer.
일 실시 태양에서, TNM 병기중 N0기 위암 환자군의 수술에 의한 절제 후 임상 결과를 예측하는데 유용한 매체를 제공할 수 있다. 예컨대, 환자로부터 얻은 핵산 시료에서 In one embodiment, a medium useful for predicting clinical outcome after surgical resection of a stage N0 gastric cancer patient during a TNM staging can be provided. For example, in nucleic acid samples obtained from patients
FZD1, GLI3, ANGPTL7, ABL1, SMARCD3, ILK, CAV1, VIP, HSPB7, TOP2A 및 FANCD2로 이루어지는 군으로부터 선택된 하나 이상의 RNA 전사체; 및 hsa-miR-933, hsa-miR-184, hsa-miR-380*, hsa-miR-190b, hsa-miR-27a* 및 hsa-miR-1201로 이루어진 군으로부터 선택된 하나 이상의 miRNA의 발현도를 결정하는 단계; 및One or more RNA transcripts selected from the group consisting of FZD1, GLI3, ANGPTL7, ABL1, SMARCD3, ILK, CAV1, VIP, HSPB7, TOP2A and FANCD2; And determining the expression level of one or more miRNAs selected from the group consisting of hsa-miR-933, hsa-miR-184, hsa-miR-380 *, hsa-miR-190b, hsa-miR-27a * and hsa-miR-1201. Making; And
상기 단계에서 결정된 RNA 전사체 또는 miRNA의 발현도에 기초하여 상기 생물학적 샘플의 재발 스코어(RS, Risk Score)를 계산하고,Calculating a recurrence score (RS) of the biological sample based on the expression level of the RNA transcript or miRNA determined in the step,
상기 RS가 설정치 보다 높은 환자는 재발가능성이 높은 환자로, RS가 설정치 보다 낮은 환자는 재발가능성이 낮은 환자로 분류하는 단계를 컴퓨터에 실행시키는 프로그램을 기록한 컴퓨터로 판독가능한 기록 매체를 제공한다.A computer readable recording medium having recorded thereon a program for causing a computer to classify a patient having a higher RS than a setpoint is a high probability of relapse and a patient having a lower RS is set to a lower likelihood of relapse.
상기 RS는 상기 수학식 1에 따라 계산할 수 있다. The RS may be calculated according to Equation 1.
상기 기록 매체는 전체 생존율(Overall Survival, OS) 또는 무재발 생존율(recurrence free survival, RFS) 측면에서 RS 값이 설정치 보다 높으면 재발가능성이 높고, RS 값이 설정치 보다 작으면 재발가능성이 낮은 판단하는 것일 수 있다. 예컨대, 상기 설정치가 +/-로 표시하는 경우, RS가 + 값일 경우, 재발가능성이 높고, - 값인 경우 재발가능성이 낮은 것으로 판단할 수 있다.The recording medium is regarded as a high probability of recurrence when the RS value is higher than the set point in terms of overall survival (OS) or recurrence free survival (RFS), and a low recurrence rate when the RS value is lower than the set point. Can be. For example, when the set value is expressed as +/-, it may be determined that the recurrence is high when the RS is a positive value, and the recurrence is low when the value is −.
일 실시 태양에서, TNM 병기와 상관 없는 전체 위암 환자군의 위암 절제술 후 임상 결과를 예측하는데 유용한 매체를 제공할 수 있다. 예컨대, 환자로부터 얻은 단백질 시료에서 In one embodiment, a medium that can be useful for predicting clinical outcome after gastric resection of the entire gastric cancer patient group irrespective of the TNM stage can be provided. For example, in protein samples obtained from patients
AktpS473, PAI, SMAD3, P70S6K 및 EGFR2로 이루어진 군으로부터 선택된 하나 이상의 단백체의 발현도를 결정하는 단계; 및Determining the expression level of at least one protein selected from the group consisting of Akt pS473 , PAI, SMAD3, P70 S6K and EGFR2; And
상기 단계에서 결정된 단백체의 발현도에 기초하여 상기 생물학적 샘플의 재발 스코어(RS, Risk Score)를 계산하고,Calculating a recurrence score (RS) of the biological sample based on the expression level of the protein determined in the step,
상기 RS가 설정치보다 큰 환자는 재발가능성이 높은 환자로, 설정치보다 작은 환자는 재발가능성이 낮은 환자로 분류하는 단계를 컴퓨터에 실행시키는 프로그램을 기록한 컴퓨터로 판독가능한 기록 매체를 제공한다.A computer-readable recording medium having recorded thereon a program for causing a computer to classify a patient whose RS is greater than a setpoint is a high probability of recurrence and a patient smaller than the setpoint is a low likelihood of relapse.
상기 RS는 상기 수학식 2에 따라 계산할 수 있다. The RS may be calculated according to Equation 2.
상기 기록 매체는 전체 생존율(Overall Survival, OS) 또는 무재발 생존율(recurrence free survival, RFS) 측면에서 RS 값이 설정치 보다 크면 재발가능성이 높고, RS 값이 설정치 보다 작으면 재발가능성이 낮은 것으로 판단하는 것일 수 있다. 예컨대, 상기 설정치가 0일 경우, RS 값이 0 보다 크면 재발가능성이 높고, RS 값이 0 보다 작으면 재발가능성이 낮은 판단할 수 있다.The recording medium has a high probability of recurrence when the RS value is larger than the set point in terms of overall survival or recurrence free survival (RFS), and a low recurrence rate when the RS value is smaller than the set point. It may be. For example, when the set value is 0, if the RS value is greater than 0, recurrence is high, and if the RS value is less than 0, recurrence is low.
달리 정의되지 않는다면, 본원에 사용된 기술 및 과학 용어들은 본 발명이 속한 분야의 통상의 숙련인이 일반적으로 이해하는 바와 같은 의미를 갖는다. 문헌 ([Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, NY 1994)] 및 [March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, NY 1992)])은 당업계의 통상의 숙련인에게 본 출원에 사용된 용어들 중 다수에 대한 일반적인 지침을 제공한다.Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, NY 1994) and March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, NY 1992)] provides general guidance for many of the terms used in this application to those skilled in the art.
당업계의 통상의 숙련인은 본 발명의 실행에 사용될 수 있는, 본원에 설명된 것과 유사한 또는 동등한 많은 방법 및 재료들을 인식할 수 있을 것이다. 사실상, 본 발명은 어떤 방식으로든 설명된 방법 및 재료로 제한되지 않는다. 본 발명의 목적상, 하기 용어들이 아래에서 정의된다.Those skilled in the art will recognize many methods and materials similar or equivalent to those described herein that can be used in the practice of the present invention. In fact, the invention is not limited to the methods and materials described in any way. For the purposes of the present invention, the following terms are defined below.
본 명세서에서, "마이크로어레이(microarray)"는 기질 상의 혼성화가능한 어레이 엘레멘트, 바람직하게는 폴리뉴클레오티드 프로브의 규칙적인 배치를 말한다.As used herein, "microarray" refers to the regular placement of hybridizable array elements, preferably polynucleotide probes, on a substrate.
본 명세서에서, "폴리뉴클레오티드"는 단수 또는 복수로 사용될 때, 일반적으로 임의의 폴리리보뉴클레오티드 또는 폴리데옥시리보뉴클레오티드를 말하고, 이것은 변형되지 않은 RNA 또는 DNA 또는 변형된 RNA 또는 DNA일 수 있다. 따라서, 예를 들면, 본원에 정의된 바와 같은 폴리뉴클레오티드는 비제한적으로, 한- 및 두-가닥 DNA, 한- 및 두-가닥 구역을 포함하는 DNA, 한- 및 두-가닥 RNA, 한- 및 두-가닥 구역을 포함하는 RNA, 한-가닥 또는 보다 전형적으로는 두-가닥일 수 있거나 또는 한- 및 두-가닥 구역을 포함하는 DNA 및 RNA를 포함하는 하이브리드 분자를 포함한다. As used herein, "polynucleotide", when used in the singular or plural, generally refers to any polyribonucleotide or polydeoxyribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. Thus, for example, polynucleotides as defined herein include, but are not limited to, DNA comprising one- and two-stranded DNA, one- and two-stranded regions, one- and two-stranded RNA, one-and RNAs comprising two-stranded regions, single-stranded or more typically two-stranded, or hybrid molecules comprising DNA and RNA comprising one- and two-stranded regions.
또한, 본 명세서에서, "폴리뉴클레오티드"는 RNA 또는 DNA 또는 RNA와 DNA 둘 다를 포함하는 세-가닥 구역을 말한다. 이러한 구역 내의 가닥들은 동일한 분자로부터의 것이거나 또는 상이한 분자들로부터의 것일 수 있다. 구역은 1종 이상의 분자들 모두를 포함할 수 있지만, 보다 구체적으로는 분자들 중 일부의 한 구역만을 포함한다. 삼중-나선형 구역의 분자들 중 하나는 올리고뉴클레오티드이다. Also, herein, "polynucleotide" refers to a three-stranded region comprising RNA or DNA or both RNA and DNA. The strands in this region can be from the same molecule or from different molecules. A zone may comprise all of one or more molecules, but more specifically includes only one zone of some of the molecules. One of the molecules of the triple-helix region is an oligonucleotide.
본 명세서에서, "폴리뉴클레오티드"는 구체적으로 cDNA를 포함한다. 용어는 1개 이상의 변형된 염기를 함유하는 DNA (cDNA 포함) 및 RNA를 포함한다. 따라서, 안정성을 위해 또는 다른 이유로 변형된 주쇄를 갖는 DNA 또는 RNA는 본원에서 의도되는 바와 같은 "폴리뉴클레오티드"이다. 게다가, 일반적이지 않은 염기, 예를 들면 이노신 또는 변형된 염기, 예를 들면 삼중수소 염기를 포함하는 DNA 또는 RNA는 본원에서 정의된 용어 "폴리뉴클레오티드" 내에 포함된다. 일반적으로, 용어 "폴리뉴클레오티드"는 변형되지 않은 폴리뉴클레오티드의 모든 화학적으로, 효소적으로 및(또는) 대사적으로 변형된 형태, 뿐만 아니라 단순 및 복합 세포를 포함하는 세포 및 바이러스의 DNA 및 RNA 특징을 갖는 화학적 형태를 포함한다.As used herein, "polynucleotide" specifically includes cDNA. The term includes DNA (including cDNA) and RNA containing one or more modified bases. Thus, a DNA or RNA having a backbone modified for stability or for other reasons is a "polynucleotide" as intended herein. In addition, DNA or RNA comprising an unusual base such as inosine or a modified base such as tritium base is included within the term "polynucleotide" as defined herein. In general, the term "polynucleotide" refers to all chemically, enzymatically and / or metabolically modified forms of unmodified polynucleotides, as well as DNA and RNA characteristics of cells and viruses, including simple and complex cells. It includes a chemical form having a.
본 명세서에서, "올리고뉴클레오티드"는 비제한적으로 한-가닥 데옥시리보뉴클레오티드, 한- 또는 두-가닥 리보뉴클레오티드, RNA:DNA 하이브리드 및 두-가닥 DNA를 포함하는, 비교적 짧은 폴리뉴클레오티드를 말한다. 올리고뉴클레오티드, 예를 들면 한-가닥 DNA 프로브 올리고뉴클레오티드는 종종 예를 들면 상업적으로 입수가능한 자동화 올리고뉴클레오티드 합성기를 사용하는 화학적 방법에 의해 합성된다. 그러나, 올리고뉴클레오티드는 시험관내 재조합 DNA-매개 기술을 포함하는 각종 다른 방법들에 의해 및 세포 및 유기체 중에서의 DNA 발현에 의해 제조될 수 있다. As used herein, "oligonucleotide" refers to a relatively short polynucleotide, including but not limited to one-strand deoxyribonucleotide, one- or two-strand ribonucleotide, RNA: DNA hybrid and two-strand DNA. Oligonucleotides, such as single-stranded DNA probe oligonucleotides, are often synthesized by chemical methods using, for example, commercially available automated oligonucleotide synthesizers. However, oligonucleotides can be prepared by a variety of other methods, including in vitro recombinant DNA-mediated techniques, and by expression of DNA in cells and organisms.
본 명세서에서, "차등적으로 발현된 유전자", "차등적인 유전자 발현" 및 상호교환적으로 사용되는 이들의 동의어들은 정상 또는 대조용 대상체에서의 그의 발현에 비하여, 그의 발현이 질병, 구체적으로 위암과 같은 암을 앓는 대상체 중에서 보다 높은 또는 보다 낮은 수준으로 활성화되는 유전자를 말한다. 이 용어는 또한 그의 발현이 동일한 질병의 상이한 단계에서 보다 높은 또는 보다 낮은 수준으로 활성화되는 유전자를 포함한다. 차등적으로 발현되는 유전자는 핵산 수준 또는 단백질 수준에서 활성화되거나 또는 억제될 수 있거나, 또는 다른 스플라이싱을 받아 상이한 폴리펩티드 생성물을 야기시킬 수 있음을 또한 알 수 있다. 이러한 차이는 예를 들면 폴리펩티드의 mRNA 수준, 표면 발현, 분비 또는 다른 분배에 있어서의 변화에 의해 입증될 수 있다. 차등적인 유전자 발현은 2개 이상의 유전자 또는 이들의 유전자 생성물들 사이의 발현 비교, 또는 2개 이상의 유전자 또는 이들의 유전자 생성물들 사이의 발현 비의 비교, 또는 심지어는 동일한 유전자의 2개의 상이하게 가공된 생성물들의 비교 (이들은 정상 대상체과 질병, 구체적으로 암을 앓는 대상체 사이에서 또는 동일한 질병의 각종 단계들 사이에서 다름)를 포함할 수 있다. 차등적인 발현은 예를 들면 정상 세포와 질병에 걸린 세포들 사이에서, 또는 상이한 질병 사건 또는 질병 단계를 거치는 세포들 사이에서 유전자 또는 그의 발현 생성물에서 일시적인 또는 세포 발현 패턴의 정량적, 뿐만 아니라 정성적 차이를 모두 포함한다. 본 발명의 목적상, "차등적인 유전자 발현"은 정상 및 질병에 걸린 대상체에서 또는 질병에 걸린 대상체의 다양한 질병 전개 단계에서 주어진 유전자의 발현 사이에 약 2배 이상, 바람직하게는 약 4배 이상, 보다 바람직하게는 약 6배 이상, 가장 바람직하게는 약 10배 이상의 차이가 있을 때 존재하는 것으로 간주 된다.As used herein, “differentially expressed gene”, “differential gene expression” and their synonyms used interchangeably refer to their expression in a disease, in particular stomach cancer, as compared to their expression in normal or control subjects. It refers to a gene that is activated at a higher or lower level among a subject suffering from a cancer such as. The term also includes genes whose expression is activated at higher or lower levels in different stages of the same disease. It will also be appreciated that differentially expressed genes may be activated or inhibited at the nucleic acid level or the protein level, or may undergo other splicing to result in different polypeptide products. Such differences can be demonstrated, for example, by changes in mRNA levels, surface expression, secretion or other distribution of the polypeptide. Differential gene expression is a comparison of expression between two or more genes or their gene products, or a comparison of expression ratios between two or more genes or their gene products, or even two differently processed genes of the same gene. Comparison of products (these may differ between a normal subject and a disease, in particular a subject suffering from cancer, or between various stages of the same disease). Differential expression is, for example, a quantitative, as well as qualitative difference in the pattern of transient or cell expression in a gene or its expression product between normal and diseased cells, or between cells undergoing different disease events or disease stages. Include all of them. For the purposes of the present invention, "differential gene expression" is at least about 2 times, preferably at least about 4 times, between the expression of a given gene in normal and diseased subjects or at various stages of disease development in a diseased subject, More preferably at least about 6 times and most preferably at least about 10 times.
유전자 전사체 또는 유전자 발현 생성물에 관한 용어 "표준화된"은 기준 유전자 세트의 전사체/생성물의 평균 수준에 대한 전사체 또는 유전자 발현 생성물의 수준을 말하는데, 여기서 기준 유전자들은 환자, 조직 또는 치료에 걸쳐 이들의 최소한의 변동에 기준하여 선택되거나 ("하우스키핑 유전자(housekeeping genes)"), 또는 기준 유전자는 시험된 유전자들 전체이다. 후자의 경우, 일반적으로 "전체 표준화(global normalization)"로 언급되는데, 시험된 유전자들의 총 수가 비교적 큰, 바람직하게는 50 초과인 것이 중요하다. 구체적으로, RNA 전사체에 관한 용어 '표준화된'은 기준 유전자 세트의 전사 수준의 평균에 대한 전사 수준을 말한다. 보다 구체적으로, 타크랜(TaqMan)® RT-PCR에 의해 측정하였을 때 RNA 전사체의 평균 수준은 기준 유전자 전사체 세트의 Ct 값 - 평균 Ct 값을 말한다.The term “standardized” with respect to a gene transcript or gene expression product refers to the level of the transcript or gene expression product relative to the average level of the transcript / product of the reference gene set, wherein the reference genes are throughout the patient, tissue or treatment. Selected based on their minimal variation (“housekeeping genes”), or reference genes are all of the genes tested. In the latter case, generally referred to as "global normalization", it is important that the total number of genes tested is relatively large, preferably greater than 50. Specifically, the term 'standardized' with respect to RNA transcripts refers to the level of transcription relative to the average of the levels of transcription of a set of reference genes. More specifically, the mean level of RNA transcript as measured by TaqMan® RT-PCR refers to the Ct value—mean Ct value of the reference gene transcript set.
본 명세서에서, "발현 역치" 및 "정의된 발현 역치"는 상호교환적으로 사용되며, 이 수준 이상에서는 유전자 또는 유전자 생성물이 환자 반응 또는 내약물성에 대한 예측 마커로서 사용되는 해당 유전자 또는 유전자 생성물의 수준을 말한다. 역치는 대표적으로는 임상적 연구로부터 실험적으로 정의된다. 발현 역치는 최대 민감성(예를 들면, 한 약물에 대한 반응자들 모두를 검출하도록), 또는 최대 선택성(예를 들면 한 약물에 대한 반응자들 만을 선택하도록), 또는 최소 오차로 선택될 수 있다.As used herein, "expression threshold" and "defined expression threshold" are used interchangeably and above this level the gene or gene product of that gene or gene product is used as a predictive marker for patient response or drug resistance. Say the level. Thresholds are typically defined experimentally from clinical studies. The expression threshold may be selected for maximum sensitivity (eg to detect all responders to one drug), or maximum selectivity (eg to select only responders for one drug), or minimum error.
본 명세서에서, "유전자 증폭"은 특정 세포 또는 세포주에서 유전자 또는 유전자 단편의 다수개의 복사물이 형성되는 과정을 말한다. 복제된 영역 (증폭된 DNA의 신장)은 종종 "암플리콘"으로 언급된다. 종종, 생산된 메신저 RNA (mRNA)의 양, 즉 유전자 발현도는 또한 특정 유전자의 만들어진 복제 수에 비례하여 증가된다.As used herein, "gene amplification" refers to the process by which multiple copies of a gene or gene fragment are formed in a particular cell or cell line. Replicated regions (extension of amplified DNA) are often referred to as "amplicons". Often, the amount of messenger RNA (mRNA) produced, ie gene expression, is also increased in proportion to the number of copies made of a particular gene.
본 명세서에서, "예후"는 본원에서 암에 의한 사망 또는 위암과 같은 신생물성 질환의 진행 (재발, 전이성 확산 및 내약물성 포함)의 가능성의 예측을 말하는데 사용된다. 용어 "예측"은 본원에서 환자가 주요 종양의 수술 제거 후에 암 재발 없이 특정 기간 동안 살아남게 될 가능성을 말하는데 사용된다. 본 발명의 예측 방법은 임의의 특정 환자에 대하여 가장 적절한 치료 기법을 선택함으로써 치료를 결정하는데 임상적으로 사용될 수 있다. 본 발명의 예측 방법은 환자가 치료 섭생, 예를 들면 수술 시술에 대하여 유리하게 반응하기 쉬운지, 또는 수술 종료 후에 환자의 장기간 생존이 가능한지를 예측하는데 있어서 귀중한 수단이 된다. 용어 "예후 지표"는 "재발 스코어"와 혼용되어 사용할 수 있다.As used herein, "prognosis" is used herein to refer to the prediction of the likelihood of death by cancer or progression of neoplastic disease such as gastric cancer (including relapse, metastatic spread and drug resistance). The term "prediction" is used herein to refer to the likelihood that a patient will survive for a certain period of time without cancer recurrence after surgical removal of the primary tumor. The prediction method of the present invention can be used clinically to determine treatment by selecting the most appropriate treatment technique for any particular patient. The predictive method of the present invention is an invaluable means in predicting whether a patient is likely to respond favorably to a treatment regimen, for example a surgical procedure, or whether the patient can survive long term after the end of the surgery. The term "prognostic indicator" can be used interchangeably with "recurrence score."
본 명세서에서, "장기간" 생존은 본원에서 수술 또는 다른 치료 후 3년 이상, 보다 바람직하게는 5년 또는 8년 이상, 가장 바람직하게는 10년 이상 생존하는 것을 말하는데 사용된다.As used herein, “long term” survival is used herein to refer to survival of at least 3 years, more preferably at least 5 or 8 years, most preferably at least 10 years after surgery or other treatment.
본 명세서에서, "종양"은 본원에서 사용될 때 모든 신생물성 세포 성장 및 증식 (악성 또는 양성 불문) 및 모든 암조짐 및 암성 세포 및 조직을 말한다.As used herein, "tumor" as used herein refers to all neoplastic cell growth and proliferation (whether malignant or benign) and all cancerous and cancerous cells and tissues.
본 명세서에서, "암" 및 "암성"은 전형적으로는 조절되지 않는 세포 성장을 특징으로 하는 포유동물 내 생리학적 상태를 설명하거나 또는 말한다. 암의 예는 위암, 유방암, 결장암, 폐암, 전립선암, 간세포암, 위암, 췌장암, 자궁경부암, 난소암, 간암, 방광암, 요도의 암, 갑상선암, 신장암, 암종, 흑색종, 또는 뇌암을 포함하지만 이들로 제한되지는 않는다.As used herein, "cancer" and "cancerous" describe or refer to physiological conditions in mammals that are typically characterized by unregulated cell growth. Examples of cancer include gastric cancer, breast cancer, colon cancer, lung cancer, prostate cancer, hepatocellular cancer, gastric cancer, pancreatic cancer, cervical cancer, ovarian cancer, liver cancer, bladder cancer, cancer of the urethra, thyroid cancer, kidney cancer, carcinoma, melanoma, or brain cancer But not limited to these.
혼성화 반응의 "엄격성(stringency)"은 당업계의 통상의 숙련인이 쉽게 결정할 수 있고, 일반적으로는 프로브 길이, 세척 온도 및 염 농도에 의존하는 실험적 계산이다. 일반적으로, 보다 긴 프로브는 적절한 어닐링을 위해 보다 높은 온도를 필요로 하는 반면, 보다 짧은 프로브는 보다 낮은 온도를 요구한다. 혼성화는 일반적으로 상보적 가닥들이 그들의 용융 온도 이하의 환경 중에 존재할 때 변성된 DNA가 재어닐링할 수 있는 능력에 의존한다. 프로브와 혼성화가능한 서열 사이의 원하는 상동성 정도가 높을수록, 사용될 수 있는 상대 온도가 보다 높다. 그 결과, 보다 높은 상대 온도는 반응 조건을 보다 엄격하게 만드는 경향이 있는 반면, 보다 낮은 온도는 덜 그러하다고 할 수 있다. 혼성화 반응의 엄격성에 대한 추가적인 세부사항 및 설명에 대해서는, 문헌 [Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995)]을 참조한다.The “stringency” of the hybridization reaction is easily determined by one of ordinary skill in the art and is an experimental calculation that generally depends on probe length, wash temperature and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes require lower temperatures. Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and the hybridizable sequence, the higher the relative temperature that can be used. As a result, higher relative temperatures tend to make the reaction conditions more stringent, while lower temperatures are less so. For further details and explanation of the stringency of the hybridization reaction, see Ausubel et al. , Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).
본원에서 정의되는 "엄격한 조건" 또는 "고 엄격성 조건"은 전형적으로는 (1) 예를 들면 50℃에서 0.015 M 염화나트륨/0.0015 M 시트르산나트륨/0.1% 소듐 도데실 술페이트 세척에 낮은 이온 세기 및 높은 온도를 사용하고; (2) 혼성화 동안 42℃에서 변성제, 예를 들면 포름아미드, 예를 들면 50% (v/v) 포름아미드와 0.1 % 소 혈청 알부민/0.1 % 피콜(Ficoll)/0.1% 폴리비닐피롤리돈/50 mM 인산나트륨 완충제, pH 6.5와 함께 750 mM 염화나트륨, 75 mM 시트르산나트륨을 사용; 또는 (3) 42℃에서 50% 포름아미드, 5×SSC (0.75M NaCl, 0.075 M 시트르산나트륨), 50 mM 인산나트륨 (pH 6.8), 0.1% 피로인산나트륨, 5×덴하르트 용액(Denhardt's solution), 음파처리된 연어 정자 DNA (50 ㎍/ml), 0.1% SDS, 및 10% 덱스트란 술페이트를 사용하고, 42℃에서 0.2×SSC (염화나트륨/시트르산나트륨) 및 50% 포름아미드 (55℃에서) 중에서 세척한 후, 55℃에서의 EDTA를 함유하는 0.1×SSC로 이루어진 고-엄격성 세척이 이어진다. "Strict conditions" or "high stringency conditions" as defined herein typically include (1) low ionic strength, for example, at 50 ° C. for 0.015 M sodium chloride / 0.0015 M sodium citrate / 0.1% sodium dodecyl sulfate wash and Using high temperatures; (2) denaturant at 42 ° C. during hybridization, for example formamide, for example 50% (v / v) formamide and 0.1% bovine serum albumin / 0.1% Ficoll / 0.1% polyvinylpyrrolidone / Using 750 mM sodium chloride, 75 mM sodium citrate with 50 mM sodium phosphate buffer, pH 6.5; Or (3) 50% formamide at 42 ° C., 5 × SSC (0.75M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 × Denhardt's solution , Sonicated salmon sperm DNA (50 μg / ml), 0.1% SDS, and 10% dextran sulfate, 0.2 × SSC (sodium chloride / sodium citrate) and 50% formamide (at 55 ° C.) at 42 ° C. ), Followed by a high-stringency wash consisting of 0.1 x SSC containing EDTA at 55 ° C.
"적당히 엄격한 조건"은 문헌 [Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989]에 설명되어 있는 바와 동일할 수 있으며, 상기한 것보다 덜 엄격한 세척 용액 및 혼성화 조건 (예를 들면, 온도, 이온 세기 및 %SDS)의 사용을 포함한다. 적당히 엄격한 조건의 예는 37℃에서 20% 포름아미드, 5×SSC (150 mM NaCl, 15 mM 시트르산삼나트륨), 50 mM 인산나트륨 (pH 7.6), 5×덴하르트 용액, 10% 덱스트란 술페이트, 및 20 mg/ml 변성된 전단작용을 받은 연어 정자 DNA를 포함하는 용액 중에서 밤동안의 인큐베이션에 이은 약 37-50℃ 에서 1×SSC 중에서 필터의 세척이다. 당업자들은 프로브 길이 등과 같은 인자들을 채택하는데 필요한 온도, 이온 세기 등을 어떻게 조절하는지 알 수 있을 것이다.“Moderately stringent conditions” may be the same as described in Sambrook et al ., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and less stringent washing solutions and hybridizations than those described above. The use of conditions (eg, temperature, ionic strength and% SDS). Examples of moderately stringent conditions include 20% formamide, 5 × SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 × denhardt solution, 10% dextran sulfate at 37 ° C. , And overnight incubation in a solution comprising 20 mg / ml denatured sheared salmon sperm DNA followed by washing of the filter in 1 × SSC at about 37-50 ° C. Those skilled in the art will appreciate how to adjust the temperature, ionic strength, and the like necessary to employ factors such as probe length and the like.
본 발명의 내용상, 임의의 특정 유전자 세트에 열거된 유전자들 중 "1종 이상", "2종 이상", "5종 이상" 등에 대한 언급은 열거된 유전자들의 임의의 하나 또는 임의의 및 모든 조합물을 의미한다.In the context of the present invention, reference to "one or more", "two or more", "five or more", etc., among the genes listed in any particular gene set, refers to any one or any and all combinations of the listed genes. Means water.
본 발명의 실행은 달리 지시하지 않는 한, 분자 생물학 (재조합 기술 포함), 미생물학, 세포 생물학 및 생화학의 종래 기술(당업계의 통상의 기술 내에 속함)을 사용할 것이다. 이러한 기술은 문헌 (["Molecular Cloning: A Laboratory Manual", 2nd edition (Sambrook et al., 1989)], ["Oligonucleotide Synthesis" (M. J. Gait, ed., 1984)], ["Animal Cell Culture" (R. I. Freshney, ed., 1987)], ["Methods in Enzymology" (Academic Press, Inc.)], ["Handbook of Experimental Immunology", 4th edition (D. M. Weir & C. C. Blackwell, eds., Blackwell Science Inc., 1987)], ["Gene Transfer Vectors for Mammalian Cells" (J. M. Miller & M. P. Calos, eds., 1987)], ["Current Protocols in Molecular Biology" (F. M. Ausubel et al. , eds., 1987)] 및 ["PCR: The Polymerase Chain Reaction", (Mullis et al., eds. , 1994)])과 같은 문헌들에서 자세하게 설명되어 있다.The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology (including recombination techniques), microbiology, cell biology, and biochemistry (within ordinary skill in the art). Such techniques are described in "Molecular Cloning: A Laboratory Manual", 2nd edition (Sambrook et al. , 1989), "Oligonucleotide Synthesis" (MJ Gait, ed., 1984), "Animal Cell Culture" ( RI Freshney, ed., 1987)], "Methods in Enzymology" (Academic Press, Inc.), "" Handbook of Experimental Immunology ", 4th edition (DM Weir & CC Blackwell, eds., Blackwell Science Inc., 1987)], "Gene Transfer Vectors for Mammalian Cells" (JM Miller & MP Calos, eds., 1987)], "Current Protocols in Molecular Biology" (FM Ausubel et al ., Eds., 1987) and [ (PCR: The Polymerase Chain Reaction), (Mullis et al ., Eds., 1994)).
1. 유전자 발현 프로파일 작성(Profiling)1. Gene Expression Profile (Profiling)
유전자 발현 프로파일작성 방법은 폴리뉴클레오티드의 혼성화 분석에 기초한 방법, 폴리뉴클레오티드의 서열화에 기초한 방법, 및 프로테오믹스 기재 방법을 포함한다. 샘플 중에서의 mRNA 발현의 정량화를 위한 당업계에 공지된 가장 일반적으로 사용되는 방법은 노던 블롯팅(northern blotting) 및 현장 혼성화(in situ hybridization) (문헌 [Parker & Barnes, Methods in Molecular Biology 106:247-283 (1999)]); RNAse 보호 검정시험 (문헌[Hod, Biotechniques 13:852-854 (1992)]); 및 PCR-기재 방법, 예를 들면 역 전사 폴리머라제 연쇄 반응 (RT-PCR) (문헌 [Weis et al., Trends in Genetics 8:263-264 (1992)])을 포함한다. 다르게는, DNA 두 가닥, RNA 두 가닥, 및 DNA-RNA 하이브리드 두 가닥 또는 DNA-단백질 두 가닥을 포함하는 특정 두 가닥을 인식할 수 있는 항체들이 사용될 수 있다. 서열화-기재 유전자 발현 분석에 대표적인 방법은 유전자 발현의 연속 분석(Serial Analysis of Gene Expression (SAGE)) 및 대량적으로 평행한 시그너쳐 서열화(massively parallel signature sequencing (MPSS))에 의한 유전자 발현 분석을 포함한다.Gene expression profiling methods include methods based on hybridization analysis of polynucleotides, methods based on sequencing polynucleotides, and methods based on proteomics. The most commonly used methods known in the art for the quantification of mRNA expression in samples are Northern blotting and in situ hybridization (Parker & Barnes, Methods in Molecular Biology 106: 247 -283 (1999)]); RNAse protection assay (Hod, Biotechniques 13: 852-854 (1992)); And PCR-based methods such as reverse transcription polymerase chain reaction (RT-PCR) (Weis et al., Trends in Genetics 8: 263-264 (1992)). Alternatively, antibodies can be used that can recognize two specific strands, including two DNA strands, two RNA strands, and two DNA-RNA hybrid strands or two DNA-protein strands. Representative methods for sequencing-based gene expression analysis include gene expression analysis by serial analysis of gene expression (SAGE) and massively parallel signature sequencing (MPSS). .
2. PCR-기재 유전자 발현 프로파일 작성 방법2. How to Create a PCR-Based Gene Expression Profile
a. 역 전사효소 PCR (RT-PCR)a. Reverse Transcriptase PCR (RT-PCR)
가장 민감하고 가장 유연한 정량적 PCR-기재 유전자 발현 프로파일작성 방법들 중 하나는 RT-PCR이고, 이것은 약물 치료와 함께 또는 약물 치료 없이 정상 조직 및 종양 조직에서의 상이한 샘플 집단에 있어서의 mRNA 수준을 비교하여 유전자 발현 패턴을 특성화하고, 밀접하게 관련된 mRNA들을 판별하고, RNA 구조를 분석하는데 사용될 수 있다.One of the most sensitive and most flexible quantitative PCR-based gene expression profiling methods is RT-PCR, which compares mRNA levels in different sample populations in normal and tumor tissues with or without drug treatment. It can be used to characterize gene expression patterns, determine closely related mRNAs, and analyze RNA structure.
제1단계는 표적 샘플로부터 mRNA의 단리이다. 출발 물질은 대표적으로는 사람 종양 또는 종양 세포주로부터 단리된 전체 RNA 및 각각 대응하는 정상 조직 또는 세포주이다. 따라서 RNA는 건강한 제공자로부터의 풀링된(pooled) DNA와 함께, 각종 주요 종양 (유방, 폐, 결장, 전립선, 뇌, 간, 신장, 췌장, 비장, 갑상선, 고환, 난소, 자궁 등의 종양 또는 종양 세포주 포함)으로부터 단리될 수 있다. mRNA의 공급원이 주요 종양인 경우, mRNA는 예를 들면 냉동되거나 보관된 파라핀-매립 및 고정된 (예를 들면, 포르말린-고정된) 조직 샘플로부터 추출될 수 있다.The first step is the isolation of mRNA from the target sample. Starting materials are typically total RNA isolated from human tumors or tumor cell lines and corresponding normal tissue or cell lines, respectively. Thus, RNA, along with pooled DNA from a healthy donor, may be a tumor or tumor of various major tumors (breast, lung, colon, prostate, brain, liver, kidney, pancreas, spleen, thyroid, testes, ovaries, uterus, etc. Cell lines). If the source of mRNA is the primary tumor, the mRNA can be extracted, for example, from frozen or stored paraffin-embedded and immobilized (eg formalin-fixed) tissue samples.
mRNA 추출을 위한 일반적인 방법은 당업계에 공지되어 있으며, 문헌 [Ausubel et al., Current Protocols of Molecular Biology, John Wiley and Sons (1997)]을 비롯한 분자 생물학의 표준 교과서에 개시되어 있다. 파라핀에 매립된 조직으로부터의 RNA 추출 방법은 예를 들면, 문헌 ([Rupp and Locker, Lab Invest. 56: A67 (1987)] 및 [De Andres et al., BioTechniques 18: 42044 (1995)])에 개시되어 있다. 특히, RNA 단리는 상업적 제조업체, 예를 들면 퀴아겐(Qiagen)으로부터의 정제 키트, 완충제 세트 및 프로테아제를 사용하여 제조업자의 지시사항에 따라 수행할 수 있다. 예를 들면, 배양물 중의 세포들로부터의 전체 RNA는 퀴아겐 RN이지(easy) 미니-컬럼(mini-columns)을 사용하여 단리할 수 있다. 다른 상업적으로 입수가능한 RNA 단리 키트는 마스터푸어(MasterPure)TM 완전 DNA 및 RNA 정제 키트 (에피센트레(EPICENTRE) , 위스콘신주 매디슨) 및 파라핀 블록(Paraffin Block) RNA 단리 키트 (앰비온, 인크.(Ambion, Inc.))를 포함한다. 조직 샘플로부터의 전제 RNA는 RNA Stat-60 (Tel-Test)를 사용하여 단리할 수 있다. 종양으로부터 제조된 RNA는 예를 들면 염화세슘 밀도 구배 원심분리에 의해 단리될 수 있다.General methods for mRNA extraction are known in the art and described in standard textbooks of molecular biology, including Ausubel et al., Current Protocols of Molecular Biology, John Wiley and Sons (1997). Methods of RNA extraction from tissue embedded in paraffin are described, for example, in Rupp and Locker, Lab Invest. 56: A67 (1987) and De Andres et al., BioTechniques 18: 42044 (1995). Is disclosed. In particular, RNA isolation can be performed according to the manufacturer's instructions using commercial kits, such as purification kits from Qiagen, buffer sets and proteases. For example, total RNA from cells in culture can be isolated using Qiagen RN easy mini-columns. Other commercially available RNA isolation kits include the MasterPureTM Complete DNA and RNA Purification Kit (EPICENTRE, Madison, WI) and Paraffin Block RNA Isolation Kit (Ambion, Inc.) Ambion, Inc.). Complete RNA from tissue samples can be isolated using RNA Stat-60 (Tel-Test). RNA prepared from tumors can be isolated, for example, by cesium chloride density gradient centrifugation.
RNA는 PCR을 위한 주형으로 사용될 수 없기 때문에, RT-PCR에 의한 유전자 발현 프로파일작성의 제1단계는 RNA 주형의 cDNA로의 역 전사이고, 이후 그의 PCR 반응으로의 지수적 증폭이 이어진다. 2가지 가장 일반적으로 사용되는 역 전사효소는 조류 골수아세포증 바이러스 역 전사효소(AMV-RT) 및 몰로니(Moloney) 쥐 백혈병 바이러스 역 전사효소(MMLV-RT)이다. 역 전사 단계는 대표적으로 발현 프로파일작성의 환경 및 목표에 따라, 특정 프라이머, 무작위 헥사머, 또는 올리고-dT 프라이머를 사용하여 초회항원자극된다. 예를 들면, 추출된 RNA는 진앰프(GeneAmp) RNA PCR 키트(퍼킨 엘머(Perkin Elmer), 미국 캘리포니아주)를 사용하여 제조업자의 지시사항에 따라 역-전사될 수 있다. 유도된 cDNA는 이어서 후속되는 PCR 반응에서 주형으로서 사용될 수 있다.Since RNA cannot be used as a template for PCR, the first step in gene expression profiling by RT-PCR is reverse transcription of the RNA template into cDNA, followed by exponential amplification into its PCR reaction. The two most commonly used reverse transcriptases are avian myeloblastosis virus reverse transcriptase (AMV-RT) and Moloney rat leukemia virus reverse transcriptase (MMLV-RT). The reverse transcription step is typically first antigen-stimulated using specific primers, random hexamers, or oligo-dT primers, depending on the environment and goal of expression profiling. For example, the extracted RNA can be reverse-transcribed using the GeneAmp RNA PCR Kit (Perkin Elmer, California, USA) following the manufacturer's instructions. The derived cDNA can then be used as a template in subsequent PCR reactions.
비록 PCR 단계가 각종 열안정성 DNA-의존성 DNA 폴리머라제를 사용할 수 있지만, 이것은 전형적으로는 Taq DNA 폴리머라제를 사용하는데, 이것은 5'-3' 뉴클레아제 활성을 갖지만, 3'-5' 판독방지(proofreading) 엔도뉴클레아제 활성은 부족하다. 따라서, 타크맨 PCR은 전형적으로는 Taq 또는 Tth 폴리머라제의 그의 표적 암플리콘에 결합된 혼성화 프로브를 혼성화시키는 5'-뉴클레아제 활성을 이용하지만, 동등한 5' 뉴클레아제 활성을 갖는 임의의 효소가 사용될 수 있다. 2개의 올리고뉴클레오티드 프라이머들을 사용하여 PCR 반응의 대표적인 암플리콘을 생성시킨다. 제3 올리고뉴클레오티드 또는 프로브는 2개의 PCR 프라이머들 사이에 위치한 뉴클레오티드 서열을 검출하도록 설계된다. 프로브는 Taq DNA 폴리머라제 효소에 의해 비-연신성이고, 리포터 형광 염료 및 켄처(quencher) 형광 염료로 표지된다. 리포터 염료로부터 임의의 레이저-유도 방출은 2개의 염료가 이들이 프로브 상에 있을 때와 같이 함께 가깝게 위치할 때 켄칭 염료에 의해 켄칭된다. 증폭 반응 동안, Taq DNA 폴리머라제 효소는 주형-의존적 방식으로 프로브를 절단한다. 생성되는 프로브 단편들은 용액 중에서 해리되고, 방출된 리포터 염료로부터의 신호에는 제2 형광단의 켄칭 효과가 없다. 리포터 염료의 한 분자가 합성된 새로운 분자 각각으로부터 방출되고, 켄칭되지 않은 리포터 염료의 검출은 데이터의 정량적 해석에 대한 기준을 제공한다.Although the PCR step can use a variety of thermostable DNA-dependent DNA polymerases, it typically uses Taq DNA polymerase, which has 5'-3 'nuclease activity, but has 3'-5' read protection. There is a lack of proofreading endonuclease activity. Thus, Takman PCR typically utilizes a 5'-nuclease activity that hybridizes a hybridization probe bound to its target amplicon of Taq or Tth polymerase, but with any 5 'nuclease activity equivalent. Enzymes can be used. Two oligonucleotide primers are used to generate representative amplicons of the PCR reaction. The third oligonucleotide or probe is designed to detect a nucleotide sequence located between two PCR primers. The probe is non-extensible by Taq DNA polymerase enzyme and is labeled with a reporter fluorescent dye and a quencher fluorescent dye. Any laser-induced emission from the reporter dye is quenched by the quench dye when the two dyes are placed together as close as they are on the probe. During the amplification reaction, Taq DNA polymerase enzyme cleaves the probe in a template-dependent manner. The resulting probe fragments dissociate in solution and have no quenching effect of the second fluorophore on the signal from the released reporter dye. One molecule of reporter dye is released from each of the synthesized new molecules, and detection of the unquenched reporter dye provides a basis for quantitative interpretation of the data.
타크맨 RT-PCR은 상업적으로 입수가능한 장비, 예를 들면 ABI 프리즘(PRISM) 7700TM 시퀀스 디텍션 시스템(Sequence Detection System)TM (퍼킨-엘머-어플라이드 바이오시스템즈(Perkin-Elmer-Applied Biosystems), 미국 캘리포니아주 포스터 시티), 또는 라이트사이클러(Lightcycler) (로쉐 몰큘라 바이오케미칼즈(Roche Molecular Biochemicals), 독일 만하임)를 사용하여 수행될 수 있다. 바람직한 실시태양에서, 5' 뉴클레아제 절차가 실시간 정량적 PCR 장치, 예를 들면 ABI 프리즘 7700TM 시퀀스 디텍션 시스템TM 상에서 실행된다. 시스템은 써모사이클러(thermocycler), 레이저, 전하-커플링된 장치 (CCD), 카메라 및 컴퓨터로 이루어진다. 시스템은 샘플을 써모사이클러 상에서 96-웰 포맷으로 증폭시킨다. 증폭 동안, 레이저-유도 형광 신호는 모든 96 웰에 대하여 섬유 광학 케이블을 통해 실시간으로 수집된다. 시스템은 기기를 실행하기 위한 및 데이터를 분석하기 위한 소프트웨어를 포함한다.TAKMAN RT-PCR is a commercially available instrument, for example ABI Prism 7700TM Sequence Detection SystemTM (Perkin-Elmer-Applied Biosystems, California, USA Foster City), or Lightcycler (Roche Molecular Biochemicals, Mannheim, Germany). In a preferred embodiment, the 5 'nuclease procedure is performed on a real time quantitative PCR device, such as the ABI Prism 7700TM Sequence Detection SystemTM. The system consists of a thermocycler, laser, charge-coupled device (CCD), camera and computer. The system amplifies the sample in a 96-well format on a thermocycler. During amplification, laser-induced fluorescence signals are collected in real time via fiber optic cables for all 96 wells. The system includes software for running the device and for analyzing the data.
5'-뉴클레아제 검정시험 데이터는 초기에 Ct, 또는 역치 사이클로서 표현된다. 상기 논의된 바와 같이, 형광 값은 매 사이클 동안 기록되고, 증폭 반응으로 그 지점으로까지 증폭된 생성물의 양을 나타낸다. 형광 신호가 처음 통계학적으로 유의한 것으로 기록될 때의 지점이 역치 사이클 (Ct)이다.5'-nuclease assay data is initially expressed as Ct, or threshold cycle. As discussed above, the fluorescence value is recorded every cycle and represents the amount of product amplified to that point in the amplification reaction. The point when the fluorescence signal is first recorded as statistically significant is the threshold cycle (Ct).
샘플들 간의 변동 효과 및 오차를 최소화시키기 위하여, RT-PCR은 일반적으로 기준 RNA(이것은 이상적으로는 상이한 조직들 사이에서 일정 수준으로 발현됨)를 사용하여 수행되고, 실험적 치료에 의해 영향을 받지 않는다. 유전자 발현 패턴을 표준화하는데 가장 자주 사용되는 RNA는 하우스키핑 유전자 글리세르알데히드-3-포스페이트-데히드로게나제 (GAPD) 및 β-악틴 (ACTB)에 대한 mRNA이다.In order to minimize the variability effects and errors between samples, RT-PCR is generally performed using reference RNA, which is ideally expressed at some level between different tissues, and is not affected by experimental treatment. . The RNA most often used to normalize gene expression patterns is mRNA for the housekeeping genes glyceraldehyde-3-phosphate-dehydrogenase (GAPD) and β-actin (ACTB).
RT-PCR 기술의 보다 최근의 변화는 실시간 정량적 PCR인데, 이것은 이중-표지된 형광원성 프로브(즉, 타크맨 프로브)를 통한 PCR 생성물 축적을 측정한다. 실시간 PCR은 정량적 경쟁적 PCR(여기서는, 각 표적 서열에 대한 내부 경쟁자가 표준화에 사용됨) 및 샘플 내에 포함된 표준화 유전자 또는 RT-PCR에 대한 하우스키핑 유전자를 사용하는 정량적 비교용 PCR 모두와 상용가능하다. 추가적인 세부사항들에 관해서는, 예를 들면 문헌 [Held et al., Genome Research 6:986-994 (1996)]을 참조한다.A more recent change in RT-PCR technology is real-time quantitative PCR, which measures PCR product accumulation via double-labeled fluorogenic probes (ie, tagman probes). Real-time PCR is compatible with both quantitative competitive PCR (wherein internal competitors for each target sequence are used for standardization) and quantitative comparison PCR using standardized genes contained in the sample or housekeeping genes for RT-PCR. For further details, see, eg, Held et al., Genome Research 6: 986-994 (1996).
b. 매스어레이(MassARRAY) 시스템b. MassARRAY System
시커놈, 인크.(Sequenom, Inc.)(캘리포니아주 샌 디에고)가 개발한 매스어레이-기재 유전자 발현 프로파일작성 방법에서는, RNA의 단리 및 역 전사 후에 얻어진 cDNA를 합성 DNA 분자(경쟁자)(이것은 단일 염기를 제외한 모든 위치에서 표적화 cDNA 구역과 일치함)로 스파이크하고(spiked), 내부 표준으로 사용한다. cDNA/경쟁자 혼합물을 PCR 증폭시키고, 후-PCR 새우 알칼리성 포스파타제(SAP) 효소 처리를 가하여, 남아있는 뉴클레오티드의 데포스포릴화를 야기시킨다.In the massarray-based gene expression profiling method developed by Sequenom, Inc. (San Diego, Calif.), CDNA obtained after isolation and reverse transcription of RNA is synthesized from a synthetic DNA molecule (competitor) (this is a single Spiked to the targeting cDNA region at all positions except base) and used as internal standard. The cDNA / competitor mixture is PCR amplified and post-PCR shrimp alkaline phosphatase (SAP) enzyme treatment is added to cause dephosphorylation of the remaining nucleotides.
알칼리성 포스파타제의 불활성화 후에, 경쟁자 및 cDNA로부터의 PCR 생성물을 프라이머 신장시키고, 이것은 경쟁자- 및 cDNA-유래 PCR 생성물에 대한 별도의 질량 신호들을 생성시킨다. 정제 후, 이들 생성물들을, 매트릭스-보조 레이저 탈착 이온화 흐름시간 질량 분광측정법 (MALDI-TOF MS) 분석을 이용한 분석에 필요한 성분들이 이미-부하되어 있는 칩 어레이 상에 계량분배한다. 반응에 존재하는 cDNA를 이어서 생성된 질량 스펙트럼 내의 피크 면적 비를 분석하여 정량화한다. 추가적인 세부사항들에 대해서는, 예를 들면 문헌 [Ding and Cantor, Proc. Natl. Acad. Sci. USA 100:3059-3064(2003)]을 참조한다.After inactivation of alkaline phosphatase, PCR products from competitors and cDNAs are primer stretched, which produces separate mass signals for competitor- and cDNA-derived PCR products. After purification, these products are metered onto a chip array that is already loaded with the components necessary for analysis using matrix-assisted laser desorption ionization flow time mass spectrometry (MALDI-TOF MS) analysis. The cDNA present in the reaction is then quantified by analyzing the peak area ratio in the resulting mass spectrum. For further details, see, eg, Ding and Cantor, Proc. Natl. Acad. Sci . USA 100: 3059-3064 (2003).
c. 기타 PCR-기재 방법c. Other PCR-Based Methods
추가의 PCR-기재 기술은 예를 들면 시차 디스플레이 (문헌 [Liang and Pardee, Science 257:967-971 (1992)]); 증폭된 단편 길이 다형성 (iAFLP) (문헌[Kawamoto et al., Genome Res. 12:1305-1312 (1999)]); 비드어레이(BeadArray) TM 기술 (일루미나(Illumina), 캘리포니아주 샌 디에고) (문헌([Oliphant et al., Discovery of Markers for Disease (Supplement to Biotechniques), June 2002] 및 [Ferguson et al., Analytical Chemistry 72: 5618 (2000)])); 유전자발현에 대한 신속 검정시험에 상업적으로 입수가능한 루미넥스(Luminex)100 LabMAP 시스템 및 다색-코딩된 미소구(루미넥스 코포레이션(Luminex Corp.), 텍사스주 오스틴)를 사용하는, 유전자 발현 검출용 비즈어레이(BeadsArray for Detection of Gene Expression) (BADGE) (문헌 [Yang et al., Genome Res. 11:1888-1898 (2001)]); 및 고 피복 발현프로파일작성 (HiCEP) 분석 (문헌 [Fukumura et al., Nucl. Acids. Res. 31(16) e94 (2003)])을 포함한다.Additional PCR-based techniques are described, for example, in parallax displays (Liang and Pardee, Science 257: 967-971 (1992)); Amplified fragment length polymorphism (iAFLP) (Kawamoto et al., Genome Res . 12: 1305-1312 (1999)); BeadArray ™ technology (Illumina, San Diego, CA) (Oliphant et al ., Discovery of Markers for Disease (Supplement to Biotechniques, June 2002) and Ferguson et al., Analytical Chemistry 72: 5618 (2000)])); Beads for gene expression detection using a commercially available Luminex 100 LabMAP system and multicolor-coded microspheres (Luminex Corp., Austin, Texas) for rapid assays for gene expression Arrays for Detection of Gene Expression (BADGE) (Yang et al., Genome Res . 11: 1888-1898 (2001)); And high coat expression profiling (HiCEP) analysis (Fukumura et al., Nucl. Acids. Res . 31 (16) e94 (2003)).
3. 마이크로어레이3. Microarray
차등적인 유전자 발현은 마이크로어레이 기술을 사용하여 판별 또는 확인될 수 있다. 따라서, 위암-관련 유전자의 발현 프로파일은 마이크로어레이 기술을 사용하여 신선한 또는 파라핀에 매립된 종양 조직에서 측정될 수 있다. 이 방법에서는, 관심을 갖는 서열(cDNA 및 올리고뉴클레오티드 포함)을 마이크로칩 기판 상에 플레이팅 또는 배열시킨다. 배열된 서열들을 이어서 관심을 갖는 세포 또는 조직으로부터의 특정 DNA 프로브와 혼성화시킨다. RT-PCR 방법에서와 마찬가지로, mRNA의 공급원은 전형적으로 사람 종양 또는 종양 세포주, 및 대응하는 정상 조직 또는 세포주로부터 단리된 전체 RNA이다. 따라서 RNA는 각종 주요 종양 또는 종양 세포주로부터 단리될 수 있다. mRNA의 공급원이 주요 종양인 경우, mRNA는 예를 들면 냉동되거나 보관된 파라핀-매립 및 고정된(예를 들면 포르말린-고정된) 조직 샘플(이것은 매일의 임상적 관행으로 일상적으로 제조 및 보존됨)로부터 추출될 수 있다.Differential gene expression can be determined or confirmed using microarray techniques. Thus, expression profiles of gastric cancer-related genes can be measured in tumor tissue fresh or embedded in paraffin using microarray techniques. In this method, sequences of interest (including cDNA and oligonucleotides) are plated or arranged on a microchip substrate. The arranged sequences are then hybridized with specific DNA probes from the cell or tissue of interest. As in the RT-PCR method, the source of mRNA is typically human RNA or tumor cell lines, and total RNA isolated from the corresponding normal tissues or cell lines. Thus RNA can be isolated from various major tumors or tumor cell lines. If the source of mRNA is a major tumor, the mRNA may be, for example, frozen or stored paraffin-embedded and fixed (eg formalin-fixed) tissue samples (which are routinely prepared and preserved with daily clinical practice). Can be extracted from.
마이크로어레이 기술의 특정 실시태양에서, cDNA 클론의 PCR 증폭된 삽입물이 치밀한 어레이로 기판 상에 가해진다. 바람직하게는, 10,000 이상의 뉴클레오티드 서열들이 기판에 가해진다. 10,000 엘레멘트 각각으로 마이크로칩 상에 고정화된 미세배열된 유전자들이 엄격한 조건 하에서의 혼성화에 적합하다. 형광적으로 표지된 cDNA 프로브들이 관심을 갖는 조직으로부터 추출된 RNA의 역 전사에 의해 형광 뉴클레오티드의 혼입을 통해 생성될 수 있다. 칩에 가해진 표지된 cDNA 프로브는 어레이 상의 DNA 각 스팟에 특이성을 갖게 혼성화된다. 비-특이적으로 결합된 프로브들을 제거하기 위한 엄격한 세척 후, 칩을 동일초점 레이저 현미경에 의해 또는 다른 검출 방법, 예를 들면 CCD 카메라에 의해 주사한다. 각 배열된 엘레멘트의 혼성화에 대한 정량화는 대응하는 mRNA 과다의 평가를 가능하게 한다. 이중 색 형광의 경우, 2개의 RNA 공급원으로부터 생성된 별도로 표지된 cDNA 프로브가 어레이에 각 쌍별로 혼성화된다. 따라서 각 명시된 유전자에 대응하는 2개의 공급원으로부터의 전사체의 상대적 과다가 동시에 결정된다. 소형화 규모의 혼성화가 많은 수의 유전자들에 대한 발현 패턴의 편리하고 신속한 평가를 제공한다. 이러한 방법은 희귀한 전사체(이것은 세포 당 소수개의 복사물로 발현됨)을 검출하는데 및 발현도에 있어서 적어도 대략 2배 차이로 재현가능하게 검출하는데 필요한 민감성을 갖는 것으로 나타났다 (문헌 [Schena et al., Proc. Natl. Acad. Sci. USA 93(2):106-149 (1996)]). 마이크로어레이 분석은 상업적으로 입수가능한 장비에 의해 제조업자의 프로토콜에 따라, 예를 들면 아피매트릭스 겐칩(Affymetrix GenChip) 기술 또는 인사이트(Incyte's) 마이크로어레이 기술을 사용하여 수행될 수 있다.In certain embodiments of microarray technology, PCR amplified inserts of cDNA clones are applied onto the substrate in a dense array. Preferably, 10,000 or more nucleotide sequences are added to the substrate. Microarrayed genes immobilized on the microchip with 10,000 elements each are suitable for hybridization under stringent conditions. Fluorescently labeled cDNA probes can be generated through incorporation of fluorescent nucleotides by reverse transcription of RNA extracted from tissue of interest. Labeled cDNA probes applied to the chip hybridize with specificity to each spot of DNA on the array. After rigorous washing to remove non-specifically bound probes, the chip is scanned by in-focus laser microscopy or by another detection method such as a CCD camera. Quantification of hybridization of each arranged element allows for evaluation of the corresponding mRNA excess. For dual color fluorescence, separately labeled cDNA probes generated from two RNA sources hybridize to each pair in the array. Thus, the relative excess of transcripts from two sources corresponding to each specified gene is determined simultaneously. Miniaturization scale hybridization provides convenient and rapid evaluation of expression patterns for large numbers of genes. This method has been shown to have the necessary sensitivity to detect rare transcripts (which are expressed in a few copies per cell) and to reproducibly detect at least approximately two-fold differences in expression (Schena et al., Proc. Natl. Acad. Sci . USA 93 (2): 106-149 (1996)]. Microarray analysis can be performed by commercially available equipment according to the manufacturer's protocol, for example using Affymetrix GenChip technology or Insight's microarray technology.
유전자 발현의 대규모 분석을 위한 마이크로어레이 방법의 개발은 암 분류의 분자 마커에 대해 및 각종 종양 타입에서의 성과 예측에 대하여 체계적으로 연구할 수 있게 만든다.The development of microarray methods for large-scale analysis of gene expression makes it possible to systematically study molecular markers of cancer classification and performance prediction in various tumor types.
4. 유전자 발현의 연속 분석(SAGE)4. Continuous Analysis of Gene Expression (SAGE)
유전자 발현의 연속 분석(SAGE)은 각 전사체에 대한 개별 혼성화 프로브를 제공할 필요 없이, 많은 수의 유전자 전사체의 동시적인 및 정량적인 분석을 가능하게 하는 방법이다. 우선, 한 전사체를 독특하게 동정하기에 충분한 정보를 함유하는 짧은 서열 꼬리표(tag)(약 10-14 bp)를 생성시키는데, 단 꼬리표는 각 전사체 내의 독특한 위치로부터 얻는다. 이어서, 많은 전사체들을 함께 연결하여 긴 일련의 분자들(서열화되어 다수개의 꼬리표들의 동일성을 동시에 나타냄)을 형성한다.Serial analysis of gene expression (SAGE) is a method that allows for simultaneous and quantitative analysis of large numbers of gene transcripts without the need to provide separate hybridization probes for each transcript. First, a short sequence tag (about 10-14 bp) is generated that contains enough information to uniquely identify a transcript, with the tag being obtained from a unique location within each transcript. Many transcripts are then linked together to form a long series of molecules (sequenced to represent the identity of multiple tags simultaneously).
개별 꼬리표의 과다를 측정하고 각 꼬리표에 대응하는 유전자를 동정함으로써 임의의 전사체 집단의 발현 패턴을 정량적으로 평가할 수 있다. 보다 자세한 내용을 위해서는, 예를 들면 문헌([Velculescu et al., Science 270:484-487 (1995)] 및 [Velculescu et al., Cell 88:243-51 (1997)])을 참조한다.The expression pattern of any transcript population can be quantitatively assessed by measuring the excess of an individual tag and identifying the gene corresponding to each tag. For more details, see, eg, Velculescu et al., Science 270: 484-487 (1995) and Velculescu et al., Cell 88: 243-51 (1997).
5. 대량적으로 평행한 시그너쳐 서열화(MPSS)에 의한 유전자 발현 분석5. Gene expression analysis by massively parallel signature sequencing (MPSS)
문헌 [Brenner et al., Nature Biotechnology 18:630-634 (2000)]에 의해 설명되는 이 방법은 비-겔-기재 시그너쳐 서열화와 별도의 5 ㎛ 직경 마이크로비드 상에서의 수백만의 주형들의 시험관내 클로닝을 병용하는 서열화 접근법이다. 우선, DNA 주형들의 마이크로비드 라이브러리를 시험관내 클로닝으로 구축한다. 이후, 고 밀도(전형적으로는 3×106 마이크로비드/cm)의 흐름 세포 중에서의 주형-함유 마이크로비드의 평면 어레이의 구축(assembly)이 이어진다. 각 마이크로비드 상의 클로닝된 주형의 유리 단부를 DNA 단편 분리를 필요로 하지 않는 형광-기재 시그너쳐 서열화 방법을 사용하여 동시에 분석한다. 이 방법은 한번의 작업으로 효모 cDNA 라이브러리로부터 수백 수천개의 유전자 시그너쳐 서열들을 동시에 및 정확하게 제공하는 것으로 나타났다.This method, described by Brenner et al., Nature Biotechnology 18: 630-634 (2000), allows for in vitro cloning of millions of templates on separate 5 μm diameter microbeads and non-gel-based signature sequencing. It is a combination sequencing approach. First, microbead libraries of DNA templates are constructed by in vitro cloning. This is followed by the assembly of planar arrays of template-containing microbeads in high density (typically 3 × 10 6 microbeads / cm) flow cells. The free end of the cloned template on each microbead is analyzed simultaneously using a fluorescence-based signature sequencing method that does not require DNA fragment separation. This method has been shown to provide hundreds and thousands of gene signature sequences from yeast cDNA libraries simultaneously and accurately in one operation.
6. 면역조직화학6. Immunohistochemistry
면역조직화학 방법 또한 본 발명의 예후 마커들의 발현도를 검출하는데 적합하다. 따라서, 항체 또는 항혈청, 바람직하게는 폴리클론 항혈청 및 가장 바람직하게는 각 마커에 특이성인 모노클론 항체를 사용하여 발현을 검출한다. 항체는 예를 들면 방사성 표지, 형광 표지, 합텐 표지, 예를 들면 비오틴, 또는 효소, 예를 들면 호스 래디쉬 퍼옥시다제 또는 알칼리성 포스파타제를 이용한, 항체 자신들의 직접적인 표지화에 의해 검출될 수 있다. 다르게는, 표지되지 않은 1차 항체를 1차 항체에 특이적인 항혈청, 폴리클론 항혈청 또는 모노클론 항체를 포함하는 표지된 2차 항체와 함께 사용한다. 면역조직화학 프로토콜 및 키트는 당업계에 공지되어 있고 상업적으로 입수가능하다.Immunohistochemical methods are also suitable for detecting the expression of prognostic markers of the present invention. Thus, expression is detected using antibodies or antisera, preferably polyclonal antisera and most preferably monoclonal antibodies specific for each marker. Antibodies can be detected by direct labeling of the antibodies themselves, for example with radiolabels, fluorescent labels, hapten labels, such as biotin, or enzymes such as horse radish peroxidase or alkaline phosphatase. Alternatively, an unlabeled primary antibody is used in combination with a labeled secondary antibody comprising an antiserum, polyclonal antiserum or monoclonal antibody specific for the primary antibody. Immunohistochemistry protocols and kits are known in the art and are commercially available.
7. 프로테오믹스7. Proteomics
용어 "프로테옴스(proteome)"는 특정 기간에 샘플(예를 들면, 조직, 유기체 또는 세포 배양물) 중에 존재하는 단백질 전체로서 정의된다. 프로테오믹스는 특히, 샘플 중의 단백질 발현의 전반적인 변화의 연구를 포함한다(또한, "발현 프로테오믹스"로도 불림). 프로테오믹스는 전형적으로는 다음 단계들을 포함한다: (1) 2-D 젤 전기영동 (2-D PAGE)에 의한 샘플 중의 개별 단백질의 분리; (2) 젤로부터 회수된 개별 단백질의 확인, 예를 들면 질량 분광측정법 또는 N-말단 서열화, 및 (3) 생물정보학(bioinformatics)을 이용한 데이터의 분석. The term "proteome" is defined as the entirety of a protein present in a sample (eg, tissue, organism or cell culture) at a particular time period. Proteomics in particular involves the study of the overall change in protein expression in a sample (also called "expression proteomics"). Proteomics typically include the following steps: (1) separation of individual proteins in a sample by 2-D gel electrophoresis (2-D PAGE); (2) identification of individual proteins recovered from the gel, such as mass spectrometry or N-terminal sequencing, and (3) analysis of data using bioinformatics.
프로테오믹스 방법은 유전자 발현 프로파일작성의 다른 방법에 대한 귀중한 부록으로 단독으로 또는 다른 방법과 함께 본 발명의 예후 마커들의 생성물을 검출하는데 사용될 수 있다.Proteomics methods are valuable appendices to other methods of gene expression profiling and can be used alone or in combination with other methods to detect the product of prognostic markers of the present invention.
8. mRNA 단리, 정제 및 증폭의 일반적인 설명8. General description of mRNA isolation, purification and amplification
mRNA 단리, 정제, 프라이머 신장 및 증폭을 포함하는, RNA 공급원으로서 고정되어 파라핀에 매립된 조직을 사용하는 유전자 발현을 프로파일 작성하기 위한 대표적인 프로토콜의 단계들이 각종의 출판된 잡지 논문 (예를 들면, 문헌([T.E. Godfrey et al. J. Molec. Diagnostics 2: 84-91 [2000]] 및 [K. Specht et al., Am. J. Pathol. 158: 419-29 [2001]]))에 제공된다. 요약하면, 대표적인 방법은 파라핀-매립 종양 조직 샘플의 약 10 ㎛ 두께 절편을 절단하는 것으로 시작된다. 이어서 RNA를 추출하고, 단백질 및 DNA를 제거한다. RNA 농도의 분석 후, RNA 수복 및(또는) 증폭 단계들이 필요할 경우 포함될 수 있으며, 유전자 특이적 프로모터를 사용하여 RNA가 역 전사된 후 RT-PCR이 이어진다. 최종적으로, 데이터를 분석하여 관찰된 종양 샘플에서 확인된 특징적인 유전자 발현 패턴에 기초하여 환자에게 이용할 수 있는 최상의 치료 선택사항(들)을 판별해낸다.Representative protocol steps for profiling gene expression using immobilized, paraffin-embedded tissue as an RNA source, including mRNA isolation, purification, primer extension and amplification, are described in various published magazine articles (eg, (TE Godfrey et al. J. Molec. Diagnostics 2: 84-91 [2000] and K. Specht et al., Am. J. Pathol . 158: 419-29 [2001]). . In summary, a representative method begins with cutting about 10 μm thick sections of paraffin-embedded tumor tissue samples. RNA is then extracted and proteins and DNA are removed. After analysis of RNA concentration, RNA repair and / or amplification steps may be included if necessary, followed by RT-PCR after RNA is reverse transcribed using a gene specific promoter. Finally, the data is analyzed to determine the best treatment option (s) available to the patient based on the characteristic gene expression patterns identified in the observed tumor samples.
본 발명의 중요한 면은 위암 조직에 의한 특정 유전자의 측정된 발현을 사용하여 예후 정보를 제공하는 것이다. 이러한 목적을 위해, 검정시험된 RNA의 양, 사용된 RNA 품질에 있어서의 변동, 및 다른 인자, 예를 들면 기계 및 작업자 차이에 있어서의 차이에 대해 보정하는(표준화) 것이 필수적이다. 그러므로, 검정시험은 전형적으로 GAPD 및 ACTB와 같은 공지된 하우스키핑 유전자로부터 전사된 것들을 포함하는, 기준 RNA의 사용을 측정하여 혼입시킨다. 유전자 발현 데이터를 표준화하기 위한 정확한 방법은 문헌 ["User Bulletin #2" for the ABI PRISM 7700 Sequence Detection System (Applied Biosystems; 1997)]에 제공된다. 다르게는, 표준화는 검정시험된 유전자들 또는 이들의 많은 서브세트 전부의 평균 또는 중간 신호(Ct)를 기준으로 할 수 있다 (전체 표준화 접근법). 하기 실시예에 설명된 연구에서는, 소위 중심 표준화 전략을 사용하였는데, 이것은 표준화를 위해 임상적 성과와의 상관성 부족에 기초하여 선택된 스크리닝된 유전자의 서브세트를 이용하였다.An important aspect of the present invention is the use of the measured expression of specific genes by gastric cancer tissue to provide prognostic information. For this purpose, it is essential to correct (standardize) the amount of RNA tested, variations in RNA quality used, and differences in other factors, such as machine and operator differences. Therefore, assays typically measure and incorporate the use of reference RNA, including those transcribed from known housekeeping genes such as GAPD and ACTB. Accurate methods for standardizing gene expression data are provided in "User Bulletin # 2" for the ABI PRISM 7700 Sequence Detection System (Applied Biosystems; 1997). Alternatively, normalization can be based on the mean or median signal (Ct) of the assayed genes or all of their many subsets (full normalization approach). In the studies described in the Examples below, a so-called central standardization strategy was used, which used a subset of screened genes selected based on lack of correlation with clinical outcome for standardization.
9. miRNA 프로파일 작성9. Create miRNA profiles
TaqMan 어레이 인간 마이크로RNA 패널(Applied Biosystems, Foster City, CA)에 대한 멀티플렉스(Multiplex) RT 또는 TaqMan 저-밀도 어레이 등을 이용하여 샘플의 RNA에서 합성된 cDNA를 대상으로 작성한다.CDNA synthesized from RNA of a sample is prepared using a multiplex RT or TaqMan low-density array for a TaqMan array human microRNA panel (Applied Biosystems, Foster City, Calif.).
10. 재발에 대한 반응 스코어 및 이들의 응용10. Response scores for relapse and their application
위암 재발의 가능성에 대한 암 예후 방법을 구분 짓는 연산의 특징은 1) 재발 가능성을 측정하는데 사용된 독특한 시험 mRNAs 세트 (또는 대응하는 유전자 발현 생성물), 2) 발현 데이터를 식으로 합치는데 사용된 특정 가중치, 및 3) 환자들을 상이한 수준의 위험을 갖는 군, 예를 들면 저, 중간 및 고 위험 군으로 나누는데 사용된 역치를 포함한다. 이 연산은 수치적인 재발 스코어 (RS)를 산출해낸다.The operation that distinguishes cancer prognosis methods against the likelihood of recurring gastric cancer is characterized by 1) the unique set of test mRNAs (or corresponding gene expression products) used to measure recurrence, and 2) the specific data used to combine expression data. Weights, and 3) thresholds used to divide patients into groups with different levels of risk, such as low, medium, and high risk groups. This operation yields a numerical recurrence score (RS).
시험은 명시된 mRNA 또는 이들의 발현 생성물의 수준을 측정하기 위한 실험실 검정시험을 필요로 하지만, 신선한 조직이거나 또는 냉동된 조직, 또는 이미 반드시 환자들로부터 수집되어 보관되어 있는 고정되어 파라핀에 매립된 종양 생검 시험편을 매우 소량으로 이용할 수 있다. 따라서, 시험은 비침입성일 수 있다. 예를 들면 코어 생검 또는 미세침 흡인을 통해 수확된 종양 조직의 몇 가지 상이한 방법들과 상용성이기도 하다. The test requires laboratory assays to determine the levels of specified mRNAs or expression products thereof, but is fixed or paraffin embedded tumor biopsies that are either fresh or frozen tissue or already collected and stored from patients. Test specimens are available in very small quantities. Thus, the test can be non-invasive. It is also compatible with several different methods of tumor tissue harvested, for example, via core biopsy or microneedle aspiration.
이 방법에 따르면, 암 재발 스코어(RS)는According to this method, the cancer recurrence score (RS) is
(a) 상기 대상체로부터 얻은 암 세포를 포함하는 생물학적 샘플로 유전자 또는 단백질 발현 프로파일을 작성하고;(a) generating a gene or protein expression profile with a biological sample comprising cancer cells obtained from the subject;
(b) 다수개의 개별 유전자의 발현도 [즉, mRNA 또는 단백질 수준]를 정량화하여 각 유전자에 대한 발현 값을 정하고;(b) quantifying the expression levels (ie mRNA or protein levels) of a plurality of individual genes to determine expression values for each gene;
(c) 각각 암-관련 생물학적 함수에 의해 및(또는) 동시발현에 의해 연결된 유전자들에 대한 발현 값을 포함하는, 유전자 발현 값들의 서브세트를 생성시키고;(c) generate a subset of gene expression values, each comprising an expression value for genes linked by cancer-related biological function and / or by co-expression;
(d) 한 서브세트 내의 각 유전자의 발현도에 상기 서브세트 내에서의 그의 암 재발 또는 요법 반응에 대한 상대적 기여도를 반영하는 계수를 곱하고 곱한 값을 더하여 상기 서브세트에 대한 값을 산출하고;(d) multiply the expression level of each gene in one subset by a coefficient reflecting its relative contribution to cancer recurrence or therapy response in the subset and add the multiplied value to yield a value for the subset;
(e) 각 서브세트의 그 값에 그의 암 재발 또는 요법 반응에 대한 기여도를 반영하는 계수를 곱하고; (e) multiply that value of each subset by a coefficient that reflects its contribution to cancer recurrence or therapy response;
(f) 상기 계수를 곱한 각 서브세트에 대한 값들의 합을 구하여 재발 스코어 (RS)를 얻음으로써 결정되는데, 여기서, 암 재발과 선형 상관관계를 보이지 않는 각 서브세트의 기여도는 단지 소정의 역치 값 이상에서만 포함되고,(f) is determined by summing the values for each subset multiplied by the coefficients to obtain a recurrence score (RS), where the contribution of each subset that does not show a linear correlation with cancer recurrence is merely a predetermined threshold value. Only included in the above,
명시된 유전자의 증가된 발현이 암 재발 위험을 감소시키는 서브세트에는 음의 값을 부여하고, 명시된 유전자의 발현이 암 재발 위험을 증가시키는 서브세트에는 양의 값을 부여한다.Increased expression of the specified genes gives a negative value to subsets that reduce the risk of cancer recurrence and positive expression to the subsets where expression of the specified genes increases the risk of cancer recurrence.
구체적인 실시태양에서, RS는In a specific embodiment, RS is
(a) FZD1, GLI3, ANGPTL7, ABL1, SMARCD3, ILK, CAV1, VIP, HSPB7, TOP2A 및 FANCD2로 이루어지는 군으로부터 선택된 하나 이상의 RNA 전사체; 및 hsa-miR-933, hsa-miR-184, hsa-miR-380*, hsa-miR-190b, hsa-miR-27a* 및 hsa-miR-1201로 이루어진 군으로부터 선택된 하나 이상의 miRNA의 발현도를 측정하고;(a) at least one RNA transcript selected from the group consisting of FZD1, GLI3, ANGPTL7, ABL1, SMARCD3, ILK, CAV1, VIP, HSPB7, TOP2A and FANCD2; And measuring the expression level of at least one miRNA selected from the group consisting of hsa-miR-933, hsa-miR-184, hsa-miR-380 *, hsa-miR-190b, hsa-miR-27a * and hsa-miR-1201 and;
(b) 하기 수학식 1에 의해 재발 스코어(RS)를 계산함으로써 결정된다:(b) is determined by calculating the recurrence score (RS) by the following equation:
[수학식 1][Equation 1]
Risk Score = HR1*normLogTransValue1 + HR2*normLogTransValue2 + ... + HRn* normLogTransValuen Risk Score = HR 1 * normLogTransValue 1 + HR 2 * normLogTransValue 2 + ... + HR n * normLogTransValue n
상기 식에서, Where
HRn 는 n번째 RNA 전사체 또는 마이크로 RNA의 위험 계수(hazard ratio)를 나타내고,HR n represents the hazard ratio of the nth RNA transcript or microRNA,
normLogTransValuen는 n번째 RNA 전사체 또는 마이크로 RNA의 발현과 관련된 값을 의미한다.normLogTransValue n means the value associated with the expression of the n-th RNA transcript or micro RNA.
여기서, RS 값이 +값이면 나쁜 예후이고, RS 값이 -값이면 좋은 예후인 것으로 판단한다.Here, if the RS value is a positive value, it is a bad prognosis, and if the RS value is a -value, it is determined that it is a good prognosis.
구체적인 실시태양에서, RS는In a specific embodiment, RS is
a) AktpS473, PAI, SMAD3, P70S6K 및 EGFR2로 이루어진 군으로부터 선택된 하나 이상의 단백체의 발현도를 측정하고,a) measuring the expression level of at least one protein selected from the group consisting of Akt pS473 , PAI, SMAD3, P70 S6K and EGFR2,
b) 하기 수학식 2에 의해 재발 스코어 (RS)를 계산함으로써 결정된다:b) determined by calculating the recurrence score (RS) by Equation 2:
[수학식 2][Equation 2]
Risk Score = HR1*RPPAValue1 + HR2*RPPAValue2 + ... + HRn*RPPAValuen Risk Score = HR 1 * RPPAValue 1 + HR 2 * RPPAValue 2 + ... + HR n * RPPAValue n
상기 식에서, Where
HRn 는 n번째 기능적 단백체의 위험계수(hazard ratio)를 나타내고, HR n represents the hazard ratio of the nth functional protein,
RPPAValuen는 n번째 기능적 단백체의 발현과 관련된 값을 의미한다.RPPAValue n means the value associated with the expression of the n th functional protein.
여기서, 0 보다 크면 예후가 나쁘고, RS 값이 0 보다 작으면 예후가 좋은 것으로 판단한다.If the value is greater than 0, the prognosis is bad, and if the RS value is less than 0, the prognosis is determined to be good.
본 발명의 추가적인 세부사항들은 하기의 비제한적인 실시예에서 설명될 것이다.Further details of the invention will be described in the following non-limiting examples.
<실시예 1> RNA 전사체를 기반으로 한 전체 병기를 포함하는 위암의 예후 예측Example 1 Prediction of Gastric Cancer Including Total Stage Based on RNA Transcripts
연세대학교 의료원 내 세브란스 병원에서 2000년부터 2004년까지 위암 클리닉에서 위암 수술을 받은 환자(n=332)의 유전자 은행에 보관된 동결절편 조직을 대상으로 RT-PCR을 시행하였고, 국소 진행형 위암은 113례였다. 상기 113 mRNA 종들의 수준을 RT-PCR로 측정하여, 생체의학 연구 문헌으로 선택된 후보 암-관련 유전자의 생성물을 나타내었다. RT-PCR was performed on frozen section tissue stored in the gene bank of patients with gastric cancer surgery (n = 332) at Severance Hospital in Yonsei University Medical Center from 2000 to 2004. It was an example. The levels of the 113 mRNA species were measured by RT-PCR, indicating the product of the candidate cancer-related gene selected in the biomedical research literature.
mRNA를 마스터퓨어TM RNA 정제 키트 (에피센터 테크놀로지스(Epicentre Technologies))를 사용하여 추출하고 리보그린(RiboGreen) 형광 방법 (몰큘라 프로브(Molecular probes))에 의해 정량화하였다. 정량적 유전자 발현의 분자 검정시험을 ABI 프리즘 7900TM 시퀀스 디텍션 시스템TM (퍼킨-엘머-어플라이드 바이오시스템즈, 미국 캘리포니아주 포스터 시티)를 사용하여 수행하였다. ABI 프리즘 7900TM은 써모사이클러, 레이저, 전하-커플링된 장치(CCD), 카메라 및 컴퓨터로 이루어진다. 시스템은 샘플을 써모사이클러 상에서 384-웰 포맷으로 증폭시킨다. 증폭 동안, 레이저-유도 형광 신호가 모든 384 웰에 대하여 실시간으로 수집되고 CCD에서 검출된다. 시스템은 기기를 실행하기 위한 및 데이터를 분석하기 위한 소프트웨어를 포함한다.mRNA was extracted using the MasterPureTM RNA Purification Kit (Epicentre Technologies) and quantified by RiboGreen fluorescence method (Molecular probes). Molecular assays of quantitative gene expression were performed using the ABI Prism 7900 ™ Sequence Detection System ™ (Perkin-Elmer-Applied Biosystems, Foster City, CA, USA). The ABI Prism 7900TM consists of a thermocycler, laser, charge-coupled device (CCD), camera and computer. The system amplifies the sample in a 384-well format on a thermocycler. During amplification, laser-induced fluorescence signals are collected in real time for all 384 wells and detected in the CCD. The system includes software for running the device and for analyzing the data.
종양 조직을 384개의 유전자들에 대하여 분석하였다. 각 환자에 대한 역치 사이클(CT) 값을 임상적 성과와의 상관성 부족에 기초하여 선택된, 특정 환자에 대한 스크리닝된 유전자의 한 서브세트의 평균에 기초하여 표준화하였다(중심 표준화 전략).Tumor tissue was analyzed for 384 genes. Threshold cycle (CT) values for each patient were normalized based on the mean of one subset of screened genes for a particular patient, selected based on lack of correlation with clinical outcome (central standardization strategy).
표 1
Parametric p-value Hazard Ratio Unique id Gene symbol UGCluster Name
0.000492 0.304 ILMN_1768856 CHAT Hs.302002 choline O-acetyltransferase
9.25E-05 0.367 ILMN_1676731 C17orf65 Hs.656564 chromosome 17 open reading frame 65
0.000122 0.37 ILMN_1783910 TRAF6 Hs.591983 TNF receptor-associated factor 6
2.00E-06 0.374 ILMN_1738207 CISH Hs.655334 cytokine inducible SH2-containing protein
0.000116 0.386 ILMN_1693072 ELAC1 Hs.657360 elaC homolog 1 (E. coli)
0.000579 0.399 ILMN_1689162 ACTR8 Hs.412186 ARP8 actin-related protein 8 homolog (yeast)
1.31E-05 0.401 ILMN_1741976 SMARCAD1 Hs.410406 SWI/SNF-related, matrix-associated actin-dependent regulator of chromatin, subfamily a, containing DEAD/H box 1
0.000126 0.411 ILMN_1697670 SRRM1 Hs.18192 serine/arginine repetitive matrix 1
0.000976 0.419 ILMN_2268026 C15orf44 Hs.6686 chromosome 15 open reading frame 44
5.90E-05 0.425 ILMN_2404629 EFTUD1 Hs.459114 elongation factor Tu GTP binding domain containing 1
7.67E-05 0.434 ILMN_1693145 BUB3 Hs.418533 budding uninhibited by benzimidazoles 3 homolog (yeast)
0.00018 0.438 ILMN_1795704 KIAA0232 Hs.79276 KIAA0232
9.61E-05 0.442 ILMN_1750092 SEPSECS Hs.253305 Sep (O-phosphoserine) tRNA:Sec (selenocysteine) tRNA synthase
9.30E-06 0.451 ILMN_1753440 DCAF16 Hs.614787 DDB1 and CUL4 associated factor 16
2.99E-05 0.454 ILMN_1688953 ARHGAP19 Hs.80305 Rho GTPase activating protein 19
0.000137 0.459 ILMN_1684802 TAF5 Hs.96103 TAF5 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 100kDa
0.000336 0.463 ILMN_2083833 CNOT6L Hs.592519 CCR4-NOT transcription complex, subunit 6-like
0.00075 0.464 ILMN_1777066 NIF3L1 Hs.145284 NIF3 NGG1 interacting factor 3-like 1 (S. pombe)
6.30E-06 0.468 ILMN_1729546 C19orf54 Hs.585105 chromosome 19 open reading frame 54
1.02E-05 0.47 ILMN_1741780 DUSP28 Hs.369297 dual specificity phosphatase 28
1.92E-05 0.471 ILMN_2334587 HNRNPC Hs.508848 heterogeneous nuclear ribonucleoprotein C (C1/C2)
7.28E-05 0.472 ILMN_1665164 CTR9 Hs.725151 Ctr9, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae)
0.000517 0.479 ILMN_1657064 C6orf70 Hs.47546 chromosome 6 open reading frame 70
9.70E-06 0.48 ILMN_2409318 RCCD1 Hs.655895 RCC1 domain containing 1
0.000455 0.48 ILMN_1738971 USP54 Hs.657355 ubiquitin specific peptidase 54
0.000378 0.481 ILMN_1724062 LIN54 Hs.96952 lin-54 homolog (C. elegans)
0.000949 0.486 ILMN_1682724 FANCF Hs.713574 Fanconi anemia, complementation group F
0.000171 0.487 ILMN_2412549 GAR1 Hs.69851 GAR1 ribonucleoprotein homolog (yeast)
0.000889 0.487 ILMN_1662719 GPBP1L1 Hs.725955 GC-rich promoter binding protein 1-like 1
5.87E-05 0.488 ILMN_2383774 TRAF3 Hs.510528 TNF receptor-associated factor 3
0.000405 0.488 ILMN_1847822 KIAA0368 Hs.368255 KIAA0368
0.000706 0.488 ILMN_1768640 CRNKL1 Hs.171342 crooked neck pre-mRNA splicing factor-like 1 (Drosophila)
0.000257 0.49 ILMN_1722742 SCLY Hs.709612 selenocysteine lyase
0.000276 0.49 ILMN_1793203 SMCR7L Hs.714252 Smith-Magenis syndrome chromosome region, candidate 7-like
0.000725 0.492 ILMN_2312386 PAIP1 Hs.482038 poly(A) binding protein interacting protein 1
0.000632 0.495 ILMN_1798827 SRBD1 Hs.14229 S1 RNA binding domain 1
0.000394 0.496 ILMN_2323774 RPAIN Hs.462086 RPA interacting protein
2.20E-05 0.497 ILMN_2399622 AP1G1 Hs.461253 adaptor-related protein complex 1, gamma 1 subunit
0.000541 0.499 ILMN_1693226 C1orf212 Hs.27160 chromosome 1 open reading frame 212
0.0003 0.503 ILMN_2169089 C18orf54 Hs.208701 chromosome 18 open reading frame 54
0.000407 0.504 ILMN_1686454 TIFA Hs.310640 TRAF-interacting protein with forkhead-associated domain
0.00017 0.505 ILMN_1727041 EWSR1 Hs.374477 Ewing sarcoma breakpoint region 1
0.000294 0.506 ILMN_1776552 FUBP1 Hs.567380 far upstream element (FUSE) binding protein 1
0.000667 0.506 ILMN_1776153 AGGF1 Hs.634849 angiogenic factor with G patch and FHA domains 1
0.000488 0.507 ILMN_1651886 CWF19L1 Hs.215502 CWF19-like 1, cell cycle control (S. pombe)
0.000387 0.508 ILMN_1806825 C14orf145 Hs.162889 chromosome 14 open reading frame 145
0.000149 0.51 ILMN_1730077 RPUSD2 Hs.173311 RNA pseudouridylate synthase domain containing 2
1.46E-05 0.511 ILMN_2411190 SMC2 Hs.119023 structural maintenance of chromosomes 2
0.000576 0.512 ILMN_2199676 CEP152 Hs.443005 centrosomal protein 152kDa
0.000468 0.513 ILMN_1734826 NUP88 Hs.584784 nucleoporin 88kDa
0.000652 0.518 ILMN_1787326 SNORA65 Hs.656353 small nucleolar RNA, H/ACA box 65
0.000272 0.523 ILMN_1749821 MED28 Hs.434075 mediator complex subunit 28
0.000558 0.523 ILMN_2217935 RFC1 Hs.507475 replication factor C (activator 1) 1, 145kDa
4.96E-05 0.525 ILMN_1771593 RRM1 Hs.445705 ribonucleotide reductase M1
0.000376 0.527 ILMN_1777584 KARS Hs.3100 lysyl-tRNA synthetase
3.75E-05 0.528 ILMN_1678833 CCR1 Hs.301921 chemokine (C-C motif) receptor 1
0.000325 0.532 ILMN_1669842 CHAF1A Hs.79018 chromatin assembly factor 1, subunit A (p150)
9.00E-07 0.534 ILMN_2043060 PLCH1 Hs.567423 phospholipase C, eta 1
0.000707 0.534 ILMN_1751362 FASTKD1 Hs.529276 FAST kinase domains 1
0.000817 0.534 ILMN_1740351 KIAA0174 Hs.232194 KIAA0174
0.000267 0.536 ILMN_1658678 SAAL1 Hs.591998 serum amyloid A-like 1
0.000433 0.538 ILMN_1655414 TNFSF14 Hs.129708 tumor necrosis factor (ligand) superfamily, member 14
5.30E-06 0.54 ILMN_1700671 ETV7 Hs.272398 ets variant 7
0.000723 0.54 ILMN_2358041 NBN Hs.492208 nibrin
0.000653 0.541 ILMN_1813344 C20orf7 Hs.472165 chromosome 20 open reading frame 7
0.000838 0.544 ILMN_2209766 RHBDD1 Hs.471514 rhomboid domain containing 1
0.000889 0.544 ILMN_1805985 ANKRD32 Hs.657315 ankyrin repeat domain 32
0.000531 0.553 ILMN_2237746 ING3 Hs.489811 inhibitor of growth family, member 3
0.000731 0.557 ILMN_2395055 ATPAF1 Hs.100874 ATP synthase mitochondrial F1 complex assembly factor 1
1.97E-05 0.559 ILMN_1783676 CCDC15 Hs.287555 coiled-coil domain containing 15
0.000325 0.561 ILMN_2316104 IQCB1 Hs.604110 IQ motif containing B1
0.00062 0.561 ILMN_1726520 TDP1 Hs.209945 tyrosyl-DNA phosphodiesterase 1
9.00E-07 0.563 ILMN_1739756 KIR2DL4 Hs.651287 killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 4
0.000383 0.564 ILMN_1750052 NOP14 Hs.627133 NOP14 nucleolar protein homolog (yeast)
0.000417 0.564 ILMN_1744959 NFX1 Hs.413074 nuclear transcription factor, X-box binding 1
0.000835 0.564 ILMN_1781468 SMAP2 Hs.15200 small ArfGAP2
0.00094 0.564 ILMN_2400644 SRGAP3 Hs.654743 SLIT-ROBO Rho GTPase activating protein 3
2.00E-07 0.565 ILMN_1667232 KIR2DL3 Hs.654605 killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 3
0.000141 0.568 ILMN_2339006 KIAA0564 Hs.368282 KIAA0564
7.44E-05 0.571 ILMN_1690420 GFI1 Hs.73172 growth factor independent 1 transcription repressor
0.00041 0.571 ILMN_2055760 KIAA1715 Hs.209561 KIAA1715
0.000309 0.572 ILMN_1718309 COX15 Hs.28326 COX15 homolog, cytochrome c oxidase assembly protein (yeast)
0.000125 0.576 ILMN_1680782 PATL1 Hs.591960 protein associated with topoisomerase II homolog 1 (yeast)
1.99E-05 0.577 ILMN_1754149 LETMD1 Hs.655272 LETM1 domain containing 1
8.06E-05 0.578 ILMN_1661809 PRRG4 Hs.471695 proline rich Gla (G-carboxyglutamic acid) 4 (transmembrane)
0.000694 0.583 ILMN_1751075 SETD4 Hs.606200 SET domain containing 4
0.000121 0.585 ILMN_2052717 GRAMD1C Hs.24583 GRAM domain containing 1C
0.000588 0.591 ILMN_2385097 NDRG3 Hs.437338 NDRG family member 3
0.00065 0.591 ILMN_1695640 PTPN22 Hs.535276 protein tyrosine phosphatase, non-receptor type 22 (lymphoid)
8.71E-05 0.592 ILMN_1678054 TRIM21 Hs.532357 tripartite motif-containing 21
4.60E-06 0.593 ILMN_1815134 PI4K2B Hs.726376 phosphatidylinositol 4-kinase type 2 beta
0.000197 0.593 ILMN_1734096 DCLRE1A Hs.1560 DNA cross-link repair 1A
0.000401 0.594 ILMN_1660856 ALG11 Hs.512963 asparagine-linked glycosylation 11, alpha-1,2-mannosyltransferase homolog (yeast)
8.53E-05 0.596 ILMN_1796682 PARP3 Hs.271742 poly (ADP-ribose) polymerase family, member 3
0.000285 0.598 ILMN_2059357 KLRC2 Hs.591157 killer cell lectin-like receptor subfamily C, member 2
0.000692 0.598 ILMN_1736077 LIAS Hs.550502 lipoic acid synthetase
0.000171 0.602 ILMN_2395236 CHEK2 Hs.291363 CHK2 checkpoint homolog (S. pombe)
0.000313 0.604 ILMN_1758629 DONSON Hs.436341 downstream neighbor of SON
0.000751 0.604 ILMN_2101375 CCDC77 Hs.631656 coiled-coil domain containing 77
0.000284 0.608 ILMN_1717207 MMP25 Hs.654979 matrix metallopeptidase 25
0.000417 0.609 ILMN_1733390 LARP1B Hs.657067 La ribonucleoprotein domain family, member 1B
2.40E-06 0.61 ILMN_1657631 STAP2 Hs.194385 signal transducing adaptor family member 2
0.000723 0.61 ILMN_1812759 GCH1 Hs.86724 GTP cyclohydrolase 1
9.61E-05 0.611 ILMN_2176251 C20orf72 Hs.320823 chromosome 20 open reading frame 72
0.000402 0.617 ILMN_1670302 HK3 Hs.411695 hexokinase 3 (white cell)
0.000222 0.619 ILMN_1709772 SNX5 Hs.316890 sorting nexin 5
0.00063 0.621 ILMN_2391512 NAAA Hs.437365 N-acylethanolamine acid amidase
0.000114 0.628 ILMN_1797988 KLRD1 Hs.562457 killer cell lectin-like receptor subfamily D, member 1
6.58E-05 0.633 ILMN_1721762 IL18RAP Hs.158315 interleukin 18 receptor accessory protein
3.74E-05 0.638 ILMN_2390299 PSMB8 Hs.180062 proteasome (prosome, macropain) subunit, beta type, 8 (large multifunctional peptidase 7)
0.000232 0.641 ILMN_1726659 THOP1 Hs.78769 thimet oligopeptidase 1
0.000284 0.647 ILMN_1722158 CASP5 Hs.213327 caspase 5, apoptosis-related cysteine peptidase
0.000718 0.649 ILMN_2078697 ALPK1 Hs.652825 alpha-kinase 1
6.22E-05 0.651 ILMN_1745034 SLC11A2 Hs.505545 solute carrier family 11 (proton-coupled divalent metal ion transporters), member 2
0.00052 0.651 ILMN_1683026 PSMB10 Hs.9661 proteasome (prosome, macropain) subunit, beta type, 10
0.000606 0.655 ILMN_2148796 MND1 Hs.294088 meiotic nuclear divisions 1 homolog (S. cerevisiae)
0.000771 0.656 ILMN_1758728 FANCG Hs.591084 Fanconi anemia, complementation group G
0.000756 0.658 ILMN_1758811 IMPA1 Hs.656694 inositol(myo)-1(or 4)-monophosphatase 1
0.000817 0.66 ILMN_2203588 MYL5 Hs.410970 myosin, light chain 5, regulatory
0.000445 0.662 ILMN_1810228 TTF2 Hs.486818 transcription termination factor, RNA polymerase II
0.000566 0.662 ILMN_1874530 DIAPH3 Hs.283127 diaphanous homolog 3 (Drosophila)
4.76E-05 0.663 ILMN_1690241 BATF2 Hs.124840 basic leucine zipper transcription factor, ATF-like 2
0.000225 0.671 ILMN_1740633 PRF1 Hs.2200 perforin 1 (pore forming protein)
0.000926 0.671 ILMN_1687107 RFWD3 Hs.567525 ring finger and WD repeat domain 3
0.000696 0.673 ILMN_1802708 BTN3A1 Hs.191510 butyrophilin, subfamily 3, member A1
0.000256 0.683 ILMN_2235137 FANCD2 Hs.208388 Fanconi anemia, complementation group D2
0.000872 0.685 ILMN_1758939 RIPK2 Hs.103755 receptor-interacting serine-threonine kinase 2
0.000407 0.694 ILMN_2183856 TSPAN6 Hs.43233 tetraspanin 6
3.23E-05 0.698 ILMN_2207291 IFNG Hs.856 interferon, gamma
0.000204 0.699 ILMN_1711005 CDC25A Hs.437705 cell division cycle 25 homolog A (S. pombe)
0.000567 0.703 ILMN_1674640 CXCR6 Hs.34526 chemokine (C-X-C motif) receptor 6
1.08E-05 0.718 ILMN_1700831 SLC27A2 Hs.720807 solute carrier family 27 (fatty acid transporter), member 2
7.49E-05 0.719 ILMN_1660973 GAD1 Hs.420036 glutamate decarboxylase 1 (brain, 67kDa)
0.000938 0.72 ILMN_1658607 DLEU2 Hs.547964 deleted in lymphocytic leukemia 2 (non-protein coding)
0.000598 0.721 ILMN_1683178 JAK2 Hs.656213 Janus kinase 2
0.000262 0.722 ILMN_1792538 CD7 Hs.36972 CD7 molecule
0.000633 0.722 ILMN_1787345 FKBP11 Hs.655103 FK506 binding protein 11, 19 kDa
3.05E-05 0.732 ILMN_1778010 IL32 Hs.943 interleukin 32
0.000236 0.733 ILMN_2285375 SORD Hs.878 sorbitol dehydrogenase
0.000322 0.733 ILMN_1751079 TAP1 Hs.352018 transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)
0.000123 0.748 ILMN_1790692 GNLY Hs.105806 granulysin
0.000897 0.75 ILMN_1710740 C2 Hs.408903 complement component 2
1.00E-05 0.764 ILMN_2109489 GZMB Hs.1051 granzyme B (granzyme 2, cytotoxic T-lymphocyte-associated serine esterase 1)
0.00068 0.809 ILMN_1676413 VSNL1 Hs.444212 visinin-like 1
0.000722 0.809 ILMN_2114568 GBP5 Hs.513726 guanylate binding protein 5
Table 1
Parametric p-value Hazard Ratio Unique id Gene symbol UGCluster Name
0.000492 0.304 ILMN_1768856 CHAT Hs.302002 choline O-acetyltransferase
9.25E-05 0.367 ILMN_1676731 C17orf65 Hs.656564 chromosome 17 open reading frame 65
0.000122 0.37 ILMN_1783910 TRAF6 Hs.591983 TNF receptor-associated factor 6
2.00E-06 0.374 ILMN_1738207 CISH Hs.655334 cytokine inducible SH2-containing protein
0.000116 0.386 ILMN_1693072 ELAC1 Hs.657360 elaC homolog 1 (E. coli)
0.000579 0.399 ILMN_1689162 ACTR8 Hs.412186 ARP8 actin-related protein 8 homolog (yeast)
1.31E-05 0.401 ILMN_1741976 SMARCAD1 Hs.410406 SWI / SNF-related, matrix-associated actin-dependent regulator of chromatin, subfamily a, containing DEAD / H box 1
0.000126 0.411 ILMN_1697670 SRRM1 Hs.18192 serine / arginine repetitive matrix 1
0.000976 0.419 ILMN_2268026 C15orf44 Hs.6686 chromosome 15 open reading frame 44
5.90E-05 0.425 ILMN_2404629 EFTUD1 Hs.459114 elongation factor Tu GTP binding domain containing 1
7.67E-05 0.434 ILMN_1693145 BUB3 Hs.418533 budding uninhibited by benzimidazoles 3 homolog (yeast)
0.00018 0.438 ILMN_1795704 KIAA0232 Hs.79276 KIAA0232
9.61E-05 0.442 ILMN_1750092 SEPSECS Hs.253305 Sep (O-phosphoserine) tRNA: Sec (selenocysteine) tRNA synthase
9.30E-06 0.451 ILMN_1753440 DCAF16 Hs.614787 DDB1 and CUL4 associated factor 16
2.99E-05 0.454 ILMN_1688953 ARHGAP19 Hs.80305 Rho GTPase activating protein 19
0.000137 0.459 ILMN_1684802 TAF5 Hs.96103 TAF5 RNA polymerase II, TATA box binding protein (TBP) -associated factor, 100 kDa
0.000336 0.463 ILMN_2083833 CNOT6L Hs.592519 CCR4-NOT transcription complex, subunit 6-like
0.00075 0.464 ILMN_1777066 NIF3L1 Hs.145284 NIF3 NGG1 interacting factor 3-like 1 (S. pombe)
6.30E-06 0.468 ILMN_1729546 C19orf54 Hs.585105 chromosome 19 open reading frame 54
1.02E-05 0.47 ILMN_1741780 DUSP28 Hs.369297 dual specificity phosphatase 28
1.92E-05 0.471 ILMN_2334587 HNRNPC Hs.508848 heterogeneous nuclear ribonucleoprotein C (C1 / C2)
7.28E-05 0.472 ILMN_1665164 CTR9 Hs.725151 Ctr9, Paf1 / RNA polymerase II complex component, homolog (S. cerevisiae)
0.000517 0.479 ILMN_1657064 C6orf70 Hs.47546 chromosome 6 open reading frame 70
9.70E-06 0.48 ILMN_2409318 RCCD1 Hs.655895 RCC1 domain containing 1
0.000455 0.48 ILMN_1738971 USP54 Hs.657355 ubiquitin specific peptidase 54
0.000378 0.481 ILMN_1724062 LIN54 Hs.96952 lin-54 homolog (C. elegans)
0.000949 0.486 ILMN_1682724 FANCF Hs.713574 Fanconi anemia, complementation group F
0.000171 0.487 ILMN_2412549 GAR1 Hs.69851 GAR1 ribonucleoprotein homolog (yeast)
0.000889 0.487 ILMN_1662719 GPBP1L1 Hs.725955 GC-rich promoter binding protein 1-like 1
5.87E-05 0.488 ILMN_2383774 TRAF3 Hs.510528 TNF receptor-associated factor 3
0.000405 0.488 ILMN_1847822 KIAA0368 Hs.368255 KIAA0368
0.000706 0.488 ILMN_1768640 CRNKL1 Hs.171342 crooked neck pre-mRNA splicing factor-like 1 (Drosophila)
0.000257 0.49 ILMN_1722742 SCLY Hs.709612 selenocysteine lyase
0.000276 0.49 ILMN_1793203 SMCR7L Hs.714252 Smith-Magenis syndrome chromosome region, candidate 7-like
0.000725 0.492 ILMN_2312386 PAIP1 Hs.482038 poly (A) binding protein interacting protein 1
0.000632 0.495 ILMN_1798827 SRBD1 Hs.14229 S1 RNA binding domain 1
0.000394 0.496 ILMN_2323774 RPAIN Hs.462086 RPA interacting protein
2.20E-05 0.497 ILMN_2399622 AP1G1 Hs.461253 adapter-related protein complex 1, gamma 1 subunit
0.000541 0.499 ILMN_1693226 C1orf212 Hs.27160 chromosome 1 open reading frame 212
0.0003 0.503 ILMN_2169089 C18orf54 Hs.208701 chromosome 18 open reading frame 54
0.000407 0.504 ILMN_1686454 TIFA Hs.310640 TRAF-interacting protein with forkhead-associated domain
0.00017 0.505 ILMN_1727041 EWSR1 Hs.374477 Ewing sarcoma breakpoint region 1
0.000294 0.506 ILMN_1776552 FUBP1 Hs.567380 far upstream element (FUSE) binding protein 1
0.000667 0.506 ILMN_1776153 AGGF1 Hs.634849 angiogenic factor with G patch and FHA domains 1
0.000488 0.507 ILMN_1651886 CWF19L1 Hs.215502 CWF19-like 1, cell cycle control (S. pombe)
0.000387 0.508 ILMN_1806825 C14orf145 Hs.162889 chromosome 14 open reading frame 145
0.000149 0.51 ILMN_1730077 RPUSD2 Hs.173311 RNA pseudouridylate synthase domain containing 2
1.46E-05 0.511 ILMN_2411190 SMC2 Hs.119023 structural maintenance of chromosomes 2
0.000576 0.512 ILMN_2199676 CEP152 Hs.443005 centrosomal protein 152kDa
0.000468 0.513 ILMN_1734826 NUP88 Hs.584784 nucleoporin 88kDa
0.000652 0.518 ILMN_1787326 SNORA65 Hs.656353 small nucleolar RNA, H / ACA box 65
0.000272 0.523 ILMN_1749821 MED28 Hs.434075 mediator complex subunit 28
0.000558 0.523 ILMN_2217935 RFC1 Hs.507475 replication factor C (activator 1) 1, 145kDa
4.96E-05 0.525 ILMN_1771593 RRM1 Hs.445705 ribonucleotide reductase M1
0.000376 0.527 ILMN_1777584 KARS Hs.3100 lysyl-tRNA synthetase
3.75E-05 0.528 ILMN_1678833 CCR1 Hs.301921 chemokine (CC motif) receptor 1
0.000325 0.532 ILMN_1669842 CHAF1A Hs.79018 chromatin assembly factor 1, subunit A (p150)
9.00E-07 0.534 ILMN_2043060 PLCH1 Hs.567423 phospholipase C, eta 1
0.000707 0.534 ILMN_1751362 FASTKD1 Hs.529276 FAST kinase domains 1
0.000817 0.534 ILMN_1740351 KIAA0174 Hs.232194 KIAA0174
0.000267 0.536 ILMN_1658678 SAAL1 Hs.591998 serum amyloid A-like 1
0.000433 0.538 ILMN_1655414 TNFSF14 Hs.129708 tumor necrosis factor (ligand) superfamily, member 14
5.30E-06 0.54 ILMN_1700671 ETV7 Hs.272398 ets variant 7
0.000723 0.54 ILMN_2358041 NBN Hs.492208 nibrin
0.000653 0.541 ILMN_1813344 C20orf7 Hs.472165 chromosome 20 open reading frame 7
0.000838 0.544 ILMN_2209766 RHBDD1 Hs.471514 rhomboid domain containing 1
0.000889 0.544 ILMN_1805985 ANKRD32 Hs.657315 ankyrin repeat domain 32
0.000531 0.553 ILMN_2237746 ING3 Hs.489811 inhibitor of growth family, member 3
0.000731 0.557 ILMN_2395055 ATPAF1 Hs.100874 ATP synthase mitochondrial F1 complex assembly factor 1
1.97E-05 0.559 ILMN_1783676 CCDC15 Hs.287555 coiled-coil domain containing 15
0.000325 0.561 ILMN_2316104 IQCB1 Hs.604110 IQ motif containing B1
0.00062 0.561 ILMN_1726520 TDP1 Hs.209945 tyrosyl-DNA phosphodiesterase 1
9.00E-07 0.563 ILMN_1739756 KIR2DL4 Hs.651287 killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 4
0.000383 0.564 ILMN_1750052 NOP14 Hs.627133 NOP14 nucleolar protein homolog (yeast)
0.000417 0.564 ILMN_1744959 NFX1 Hs.413074 nuclear transcription factor, X-box binding 1
0.000835 0.564 ILMN_1781468 SMAP2 Hs.15200 small ArfGAP2
0.00094 0.564 ILMN_2400644 SRGAP3 Hs.654743 SLIT-ROBO Rho GTPase activating protein 3
2.00E-07 0.565 ILMN_1667232 KIR2DL3 Hs.654605 killer cell immunoglobulin-like receptor, two domains, long cytoplasmic tail, 3
0.000141 0.568 ILMN_2339006 KIAA0564 Hs.368282 KIAA0564
7.44E-05 0.571 ILMN_1690420 GFI1 Hs.73172 growth factor independent 1 transcription repressor
0.00041 0.571 ILMN_2055760 KIAA1715 Hs.209561 KIAA1715
0.000309 0.572 ILMN_1718309 COX15 Hs.28326 COX15 homolog, cytochrome c oxidase assembly protein (yeast)
0.000125 0.576 ILMN_1680782 PATL1 Hs.591960 protein associated with topoisomerase II homolog 1 (yeast)
1.99E-05 0.577 ILMN_1754149 LETMD1 Hs.655272 LETM1 domain containing 1
8.06E-05 0.578 ILMN_1661809 PRRG4 Hs.471695 proline rich Gla (G-carboxyglutamic acid) 4 (transmembrane)
0.000694 0.583 ILMN_1751075 SETD4 Hs.606200 SET domain containing 4
0.000121 0.585 ILMN_2052717 GRAMD1C Hs.24583 GRAM domain containing 1C
0.000588 0.591 ILMN_2385097 NDRG3 Hs.437338 NDRG family member 3
0.00065 0.591 ILMN_1695640 PTPN22 Hs.535276 protein tyrosine phosphatase, non-receptor type 22 (lymphoid)
8.71E-05 0.592 ILMN_1678054 TRIM21 Hs.532357 tripartite motif-containing 21
4.60E-06 0.593 ILMN_1815134 PI4K2B Hs.726376 phosphatidylinositol 4-kinase type 2 beta
0.000197 0.593 ILMN_1734096 DCLRE1A Hs.1560 DNA cross-link repair 1A
0.000401 0.594 ILMN_1660856 ALG11 Hs.512963 asparagine-linked glycosylation 11, alpha-1,2-mannosyltransferase homolog (yeast)
8.53E-05 0.596 ILMN_1796682 PARP3 Hs.271742 poly (ADP-ribose) polymerase family, member 3
0.000285 0.598 ILMN_2059357 KLRC2 Hs.591157 killer cell lectin-like receptor subfamily C, member 2
0.000692 0.598 ILMN_1736077 LIAS Hs.550502 lipoic acid synthetase
0.000171 0.602 ILMN_2395236 CHEK2 Hs.291363 CHK2 checkpoint homolog (S. pombe)
0.000313 0.604 ILMN_1758629 DONSON Hs.436341 downstream neighbor of SON
0.000751 0.604 ILMN_2101375 CCDC77 Hs.631656 coiled-coil domain containing 77
0.000284 0.608 ILMN_1717207 MMP25 Hs.654979 matrix metallopeptidase 25
0.000417 0.609 ILMN_1733390 LARP1B Hs.657067 La ribonucleoprotein domain family, member 1B
2.40E-06 0.61 ILMN_1657631 STAP2 Hs.194385 signal transducing adapter family member 2
0.000723 0.61 ILMN_1812759 GCH1 Hs.86724 GTP cyclohydrolase 1
9.61E-05 0.611 ILMN_2176251 C20orf72 Hs.320823 chromosome 20 open reading frame 72
0.000402 0.617 ILMN_1670302 HK3 Hs.411695 hexokinase 3 (white cell)
0.000222 0.619 ILMN_1709772 SNX5 Hs.316890 sorting nexin 5
0.00063 0.621 ILMN_2391512 NAAA Hs.437365 N-acylethanolamine acid amidase
0.000114 0.628 ILMN_1797988 KLRD1 Hs.562457 killer cell lectin-like receptor subfamily D, member 1
6.58E-05 0.633 ILMN_1721762 IL18RAP Hs.158315 interleukin 18 receptor accessory protein
3.74E-05 0.638 ILMN_2390299 PSMB8 Hs.180062 proteasome (prosome, macropain) subunit, beta type, 8 (large multifunctional peptidase 7)
0.000232 0.641 ILMN_1726659 THOP1 Hs.78769 thimet oligopeptidase 1
0.000284 0.647 ILMN_1722158 CASP5 Hs.213327 caspase 5, apoptosis-related cysteine peptidase
0.000718 0.649 ILMN_2078697 ALPK1 Hs.652825 alpha-kinase 1
6.22E-05 0.651 ILMN_1745034 SLC11A2 Hs.505545 solute carrier family 11 (proton-coupled divalent metal ion transporters), member 2
0.00052 0.651 ILMN_1683026 PSMB10 Hs.9661 proteasome (prosome, macropain) subunit, beta type, 10
0.000606 0.655 ILMN_2148796 MND1 Hs.294088 meiotic nuclear divisions 1 homolog (S. cerevisiae)
0.000771 0.656 ILMN_1758728 FANCG Hs.591084 Fanconi anemia, complementation group G
0.000756 0.658 ILMN_1758811 IMPA1 Hs.656694 inositol (myo) -1 (or 4) -monophosphatase 1
0.000817 0.66 ILMN_2203588 MYL5 Hs.410970 myosin, light chain 5, regulatory
0.000445 0.662 ILMN_1810228 TTF2 Hs.486818 transcription termination factor, RNA polymerase II
0.000566 0.662 ILMN_1874530 DIAPH3 Hs.283127 diaphanous homolog 3 (Drosophila)
4.76E-05 0.663 ILMN_1690241 BATF2 Hs.124840 basic leucine zipper transcription factor, ATF-like 2
0.000225 0.671 ILMN_1740633 PRF1 Hs.2200 perforin 1 (pore forming protein)
0.000926 0.671 ILMN_1687107 RFWD3 Hs.567525 ring finger and WD repeat domain 3
0.000696 0.673 ILMN_1802708 BTN3A1 Hs.191510 butyrophilin, subfamily 3, member A1
0.000256 0.683 ILMN_2235137 FANCD2 Hs.208388 Fanconi anemia, complementation group D2
0.000872 0.685 ILMN_1758939 RIPK2 Hs.103755 receptor-interacting serine-threonine kinase 2
0.000407 0.694 ILMN_2183856 TSPAN6 Hs.43233 tetraspanin 6
3.23E-05 0.698 ILMN_2207291 IFNG Hs.856 interferon, gamma
0.000204 0.699 ILMN_1711005 CDC25A Hs.437705 cell division cycle 25 homolog A (S. pombe)
0.000567 0.703 ILMN_1674640 CXCR6 Hs.34526 chemokine (CXC motif) receptor 6
1.08E-05 0.718 ILMN_1700831 SLC27A2 Hs.720807 solute carrier family 27 (fatty acid transporter), member 2
7.49E-05 0.719 ILMN_1660973 GAD1 Hs.420036 glutamate decarboxylase 1 (brain, 67kDa)
0.000938 0.72 ILMN_1658607 DLEU2 Hs.547964 deleted in lymphocytic leukemia 2 (non-protein coding)
0.000598 0.721 ILMN_1683178 JAK2 Hs.656213 Janus kinase 2
0.000262 0.722 ILMN_1792538 CD7 Hs.36972 CD7 molecule
0.000633 0.722 ILMN_1787345 FKBP11 Hs.655103 FK506 binding protein 11, 19 kDa
3.05E-05 0.732 ILMN_1778010 IL32 Hs.943 interleukin 32
0.000236 0.733 ILMN_2285375 SORD Hs.878 sorbitol dehydrogenase
0.000322 0.733 ILMN_1751079 TAP1 Hs.352018 transporter 1, ATP-binding cassette, sub-family B (MDR / TAP)
0.000123 0.748 ILMN_1790692 GNLY Hs.105806 granulysin
0.000897 0.75 ILMN_1710740 C2 Hs.408903 complement component 2
1.00E-05 0.764 ILMN_2109489 GZMB Hs.1051 granzyme B (granzyme 2, cytotoxic T-lymphocyte-associated serine esterase 1)
0.00068 0.809 ILMN_1676413 VSNL1 Hs.444212 visinin-like 1
0.000722 0.809 ILMN_2114568 GBP5 Hs.513726 guanylate binding protein 5
표 2
Parametric p-value Hazard Ratio Gene symbol UGCluster Name
5.00E-07 1.513 NOV Hs.235935 nephroblastoma overexpressed gene
6.00E-07 1.492 ARHGAP23 Hs.374446 Rho GTPase activating protein 23
1.90E-06 1.992 ITGB5 Hs.536663 integrin, beta 5
3.10E-06 1.826 OLFM1 Hs.522484 olfactomedin 1
5.70E-06 1.221 ACTG2 Hs.516105 actin, gamma 2, smooth muscle, enteric
6.20E-06 1.212 TAGLN Hs.410977 transgelin
6.90E-06 1.403 GJA1 Hs.74471 gap junction protein, alpha 1, 43kDa
9.10E-06 1.194 MYH11 Hs.460109 myosin, heavy chain 11, smooth muscle
9.20E-06 1.29 PDK4 Hs.8364 pyruvate dehydrogenase kinase, isozyme 4
9.20E-06 1.243 CRYAB Hs.53454 crystallin, alpha B
9.70E-06 1.545 CHST3 Hs.158304 carbohydrate (chondroitin 6) sulfotransferase 3
1.01E-05 1.558 VCL Hs.643896 vinculin
1.14E-05 1.414 RHOB Hs.502876 ras homolog gene family, member B
1.17E-05 1.348 LOXL4 Hs.306814 lysyl oxidase-like 4
1.39E-05 1.296 LEPREL1 Hs.374191 leprecan-like 1
1.68E-05 1.417 CRIP2 Hs.534309 cysteine-rich protein 2
1.86E-05 1.24 MGP Hs.365706 matrix Gla protein
1.97E-05 1.433 GSN Hs.522373 gelsolin
2.21E-05 1.163 SCRG1 Hs.7122 stimulator of chondrogenesis 1
2.49E-05 1.145 DES Hs.594952 desmin
2.82E-05 1.295 TPM1 Hs.133892 tropomyosin 1 (alpha)
3.15E-05 1.164 THBS4 Hs.211426 thrombospondin 4
3.55E-05 1.247 SPON1 Hs.643864 spondin 1, extracellular matrix protein
3.63E-05 1.337 SLCO2A1 Hs.518270 solute carrier organic anion transporter family, member 2A1
3.68E-05 1.147 CNN1 Hs.465929 calponin 1, basic, smooth muscle
3.81E-05 1.336 HSPA2 Hs.432648 heat shock 70kDa protein 2
3.98E-05 1.31 CSRP1 Hs.108080 cysteine and glycine-rich protein 1
4.57E-05 1.673 HSPB1 Hs.520973 heat shock 27kDa protein 1
5.12E-05 1.232 HSPB8 Hs.400095 heat shock 22kDa protein 8
5.24E-05 1.387 EFHD1 Hs.516769 EF-hand domain family, member D1
5.27E-05 1.519 TCEAL4 Hs.194329 transcription elongation factor A (SII)-like 4
5.42E-05 1.29 TPM2 Hs.300772 tropomyosin 2 (beta)
5.70E-05 1.507 RRAS Hs.515536 related RAS viral (r-ras) oncogene homolog
5.72E-05 1.31 C20orf103 Hs.22920 chromosome 20 open reading frame 103
5.86E-05 1.501 EMCN Hs.152913 endomucin
5.95E-05 1.262 CHRDL2 Hs.432379 chordin-like 2
6.05E-05 1.425 C5orf13 Hs.36053 chromosome 5 open reading frame 13
6.32E-05 1.164 SYNM Hs.207106 synemin, intermediate filament protein
6.39E-05 1.329 C10orf10 Hs.93675 chromosome 10 open reading frame 10
6.78E-05 1.178 MYLK Hs.477375 myosin light chain kinase
7.07E-05 1.45 COL18A1 Hs.517356 collagen, type XVIII, alpha 1
7.31E-05 1.307 SHISA2 Hs.433791 shisa homolog 2 (Xenopus laevis)
7.39E-05 1.262 CALD1 Hs.490203 caldesmon 1
7.61E-05 1.146 C2orf40 Hs.43125 chromosome 2 open reading frame 40
7.97E-05 1.238 MATN2 Hs.189445 matrilin 2
8.36E-05 1.348 AQP1 Hs.76152 aquaporin 1 (Colton blood group)
8.46E-05 1.398 LPHN2 Hs.24212 latrophilin 2
9.13E-05 1.275 TYRP1 Hs.270279 tyrosinase-related protein 1
9.38E-05 1.428 TUBB6 Hs.193491 tubulin, beta 6
9.46E-05 1.867 EDNRB Hs.82002 endothelin receptor type B
9.62E-05 1.214 PDLIM3 Hs.442702 PDZ and LIM domain 3
0.0001076 1.379 RHOJ Hs.656339 ras homolog gene family, member J
0.0001104 1.653 ACOT1 Hs.568046 acyl-CoA thioesterase 1
0.0001121 1.316 SVIL Hs.499209 supervillin
0.0001131 1.375 COL4A2 Hs.508716 collagen, type IV, alpha 2
0.0001173 1.184 FHL1 Hs.435369 four and a half LIM domains 1
0.0001186 1.202 PPP1R3C Hs.303090 protein phosphatase 1, regulatory (inhibitor) subunit 3C
0.0001195 1.212 GREM1 Hs.40098 gremlin 1
0.0001199 1.467 PTPRM Hs.49774 protein tyrosine phosphatase, receptor type, M
0.0001234 1.316 SSPN Hs.183428 sarcospan (Kras oncogene-associated gene)
0.0001234 1.25 ANXA8 Hs.535306 annexin A8
0.0001238 1.229 MSRB3 Hs.339024 methionine sulfoxide reductase B3
0.0001335 1.238 SPARCL1 Hs.62886 SPARC-like 1 (hevin)
0.0001349 1.324 OMD Hs.94070 osteomodulin
0.0001365 1.267 COL8A1 Hs.654548 collagen, type VIII, alpha 1
0.0001372 1.369 C1QTNF5 Hs.632102 C1q and tumor necrosis factor related protein 5
0.0001375 1.454 CRTAC1 Hs.500736 cartilage acidic protein 1
0.0001406 1.387 DKK3 Hs.292156 dickkopf homolog 3 (Xenopus laevis)
0.0001418 1.303 DIO2 Hs.202354 deiodinase, iodothyronine, type II
0.000147 1.282 CYBRD1 Hs.726027 cytochrome b reductase 1
0.0001499 1.405 SPIRE1 Hs.515283 spire homolog 1 (Drosophila)
0.0001529 1.301 SERPINE2 Hs.38449 serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 2
0.0001584 1.499 PPAP2A Hs.696231 phosphatidic acid phosphatase type 2A
0.0001602 1.175 TCEAL2 Hs.401835 transcription elongation factor A (SII)-like 2
0.0001607 1.249 DPYSL3 Hs.519659 dihydropyrimidinase-like 3
0.0001727 1.328 ACTA2 Hs.500483 actin, alpha 2, smooth muscle, aorta
0.0001756 1.186 RBPMS2 Hs.436518 RNA binding protein with multiple splicing 2
0.0001769 1.338 PALLD Hs.151220 palladin, cytoskeletal associated protein
0.0001775 1.296 ALDH1A3 Hs.459538 aldehyde dehydrogenase 1 family, member A3
0.0001794 1.401 HDGFRP3 Hs.513954 hepatoma-derived growth factor, related protein 3
0.0001801 1.225 DACT3 Hs.515490 dapper, antagonist of beta-catenin, homolog 3 (Xenopus laevis)
0.0001836 1.333 IGFBP7 Hs.479808 insulin-like growth factor binding protein 7
0.0001852 1.373 TMEFF2 Hs.144513 transmembrane protein with EGF-like and two follistatin-like domains 2
0.0001878 1.472 PCSK5 Hs.368542 proprotein convertase subtilisin/kexin type 5
0.0001898 1.415 ICAM2 Hs.431460 intercellular adhesion molecule 2
0.0001954 1.183 MYL9 Hs.504687 myosin, light chain 9, regulatory
0.000196 1.32 FOXF2 Hs.484423 forkhead box F2
0.0001984 1.204 LMOD1 Hs.519075 leiomodin 1 (smooth muscle)
0.0002005 1.641 SEPW1 Hs.631549 selenoprotein W, 1
0.000201 1.173 SYNPO2 Hs.655519 synaptopodin 2
0.0002042 1.292 DCBLD2 Hs.203691 discoidin, CUB and LCCL domain containing 2
0.0002081 1.363 NNMT Hs.503911 nicotinamide N-methyltransferase
0.0002116 1.332 HEYL Hs.472566 hairy/enhancer-of-split related with YRPW motif-like
0.0002129 1.154 APOD Hs.522555 apolipoprotein D
0.0002221 1.462 HSPB2 Hs.709660 heat shock 27kDa protein 2
0.0002233 1.35 NGFRAP1 Hs.448588 nerve growth factor receptor (TNFRSF16) associated protein 1
0.0002269 1.151 HSPB6 Hs.534538 heat shock protein, alpha-crystallin-related, B6
0.0002281 1.404 RBPMS Hs.334587 RNA binding protein with multiple splicing
0.0002309 1.293 SGCE Hs.371199 sarcoglycan, epsilon
0.0002342 2.016 DCAF6 Hs.435741 DDB1 and CUL4 associated factor 6
0.0002401 1.405 LPP Hs.5724 LIM domain containing preferred translocation partner in lipoma
0.0002404 1.67 PEA15 Hs.517216 phosphoprotein enriched in astrocytes 15
0.0002474 1.179 VIP Hs.53973 vasoactive intestinal peptide
0.0002526 1.457 GJA4 Hs.296310 gap junction protein, alpha 4, 37kDa
0.0002531 1.975 CYTH3 Hs.487479 cytohesin 3
0.0002589 1.531 PTN Hs.371249 pleiotrophin
0.0002607 1.231 LEPR Hs.23581 leptin receptor
0.0002677 1.423 RAI14 Hs.431400 retinoic acid induced 14
0.0002767 1.274 TMEM47 Hs.8769 transmembrane protein 47
0.0002899 1.531 FOXS1 Hs.516971 forkhead box S1
0.0002919 1.44 ESAM Hs.173840 endothelial cell adhesion molecule
0.0002935 1.443 MEIS3P1 Hs.356135 Meis homeobox 3 pseudogene 1
0.000294 1.257 C15orf52 Hs.32433 chromosome 15 open reading frame 52
0.0002955 1.962 ITGB1 Hs.643813 integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 includes MDF2, MSK12)
0.0003037 1.219 OGN Hs.109439 osteoglycin
0.0003059 1.184 RGMA Hs.271277 RGM domain family, member A
0.0003069 1.302 IGFBP6 Hs.274313 insulin-like growth factor binding protein 6
0.0003084 1.571 ABLIM3 Hs.49688 actin binding LIM protein family, member 3
0.0003098 1.335 LAYN Hs.503831 layilin
0.0003109 1.275 FERMT2 Hs.509343 fermitin family member 2
0.0003147 1.392 FZD4 Hs.591968 frizzled homolog 4 (Drosophila)
0.0003253 1.354 ADAMTS8 Hs.271605 ADAM metallopeptidase with thrombospondin type 1 motif, 8
0.0003302 1.293 TGFB1I1 Hs.513530 transforming growth factor beta 1 induced transcript 1
0.0003322 1.182 DARC Hs.153381 Duffy blood group, chemokine receptor
0.0003501 1.254 PLN Hs.170839 phospholamban
0.0003519 1.403 SCHIP1 Hs.134665 schwannomin interacting protein 1
0.0003527 1.402 PDGFC Hs.570855 platelet derived growth factor C
0.000363 1.617 RAB6B Hs.707804 RAB6B, member RAS oncogene family
0.0003672 1.22 CPE Hs.75360 carboxypeptidase E
0.0003776 1.906 MARCKS Hs.519909 myristoylated alanine-rich protein kinase C substrate
0.00038 1.807 TIE1 Hs.78824 tyrosine kinase with immunoglobulin-like and EGF-like domains 1
0.0003805 1.854 AFAP1L1 Hs.483793 actin filament associated protein 1-like 1
0.0003823 1.548 ERGIC1 Hs.509163 endoplasmic reticulum-golgi intermediate compartment (ERGIC) 1
0.0003825 1.195 HSPB7 Hs.502612 heat shock 27kDa protein family, member 7 (cardiovascular)
0.0003838 1.447 EHD2 Hs.726202 EH-domain containing 2
0.0003881 1.429 SLC38A1 Hs.533770 solute carrier family 38, member 1
0.0004033 1.619 FNDC4 Hs.27836 fibronectin type III domain containing 4
0.0004092 1.334 ADAMTS1 Hs.643357 ADAM metallopeptidase with thrombospondin type 1 motif, 1
0.0004268 1.474 C20orf160 Hs.382151 chromosome 20 open reading frame 160
0.0004552 1.714 CALHM2 Hs.241545 calcium homeostasis modulator 2
0.0004579 1.623 FAM124B Hs.147585 family with sequence similarity 124B
0.0004674 1.517 TMEM136 Hs.643516 transmembrane protein 136
0.0004674 1.343 FSTL1 Hs.269512 follistatin-like 1
0.0004742 1.549 CDH6 Hs.171054 cadherin 6, type 2, K-cadherin (fetal kidney)
0.0004958 1.281 HTR2B Hs.421649 5-hydroxytryptamine (serotonin) receptor 2B
0.0004971 1.482 LAMA2 Hs.200841 laminin, alpha 2
0.0005016 1.342 GEM Hs.654463 GTP binding protein overexpressed in skeletal muscle
0.0005157 1.387 CDH5 Hs.76206 cadherin 5, type 2 (vascular endothelium)
0.0005179 1.329 PDE8B Hs.584830 phosphodiesterase 8B
0.0005236 1.394 RAB32 Hs.287714 RAB32, member RAS oncogene family
0.0005255 1.29 SELM Hs.55940 selenoprotein M
0.0005265 1.154 C7 Hs.78065 complement component 7
0.0005292 1.245 PLAC9 Hs.204947 placenta-specific 9
0.0005345 1.193 MFAP4 Hs.296049 microfibrillar-associated protein 4
0.0005371 1.178 FLNC Hs.58414 filamin C, gamma
0.0005421 1.16 CTSE Hs.644082 cathepsin E
0.0005663 1.479 LOC346887 Hs.127286 similar to solute carrier family 16 (monocarboxylic acid transporters), member 14
0.0005731 1.378 MPRIP Hs.462341 myosin phosphatase Rho interacting protein
0.000584 1.484 GNB5 Hs.155090 guanine nucleotide binding protein (G protein), beta 5
0.000585 1.305 ELN Hs.647061 elastin
0.0006189 1.332 ENG Hs.76753 endoglin
0.0006308 1.227 CRABP2 Hs.405662 cellular retinoic acid binding protein 2
0.0006328 1.196 CST6 Hs.139389 cystatin E/M
0.0006334 1.223 MYOM1 Hs.464469 myomesin 1, 185kDa
0.0006354 1.408 PCDH18 Hs.591691 protocadherin 18
0.0006526 1.528 LAMB1 Hs.650585 laminin, beta 1
0.0006578 1.28 LHFP Hs.507798 lipoma HMGIC fusion partner
0.0006642 1.302 FILIP1L Hs.104672 filamin A interacting protein 1-like
0.0006744 1.228 CAV1 Hs.74034 caveolin 1, caveolae protein, 22kDa
0.0006751 1.187 CPXM2 Hs.656887 carboxypeptidase X (M14 family), member 2
0.0006762 1.298 NBEA Hs.491172 neurobeachin
0.000684 1.344 TEK Hs.89640 TEK tyrosine kinase, endothelial
0.0007038 1.345 CTSF Hs.11590 cathepsin F
0.0007096 1.613 LTC4S Hs.706741 leukotriene C4 synthase
0.000716 1.247 AEBP1 Hs.439463 AE binding protein 1
0.0007249 1.3 GNG11 Hs.83381 guanine nucleotide binding protein (G protein), gamma 11
0.000732 1.617 SV2B Hs.21754 synaptic vesicle glycoprotein 2B
0.0007328 1.153 KCNMB1 Hs.484099 potassium large conductance calcium-activated channel, subfamily M, beta member 1
0.0007334 1.208 BARX1 Hs.164960 BARX homeobox 1
0.0007401 1.435 DIP2C Hs.432397 DIP2 disco-interacting protein 2 homolog C (Drosophila)
0.0007424 1.446 LAMC1 Hs.609663 laminin, gamma 1 (formerly LAMB2)
0.0007667 1.201 PODN Hs.586141 podocan
0.0007707 1.57 LAPTM4A Hs.467807 lysosomal protein transmembrane 4 alpha
0.000771 1.319 HTRA1 Hs.501280 HtrA serine peptidase 1
0.0007865 1.377 FGF2 Hs.284244 fibroblast growth factor 2 (basic)
0.0007874 1.344 CLEC14A Hs.525307 C-type lectin domain family 14, member A
0.0008122 1.372 PHLDB2 Hs.603252 pleckstrin homology-like domain, family B, member 2
0.0008304 1.366 CD93 Hs.97199 CD93 molecule
0.0008458 1.31 RGS11 Hs.65756 regulator of G-protein signaling 11
0.000851 1.469 TRIM47 Hs.293660 tripartite motif-containing 47
0.0008686 1.348 LHX6 Hs.103137 LIM homeobox 6
0.0008794 1.293 EDNRA Hs.183713 endothelin receptor type A
0.0008876 1.293 PRSS23 Hs.25338 protease, serine, 23
0.0009105 1.226 FAM129A Hs.518662 family with sequence similarity 129, member A
0.0009239 1.243 SDPR Hs.26530 serum deprivation response
0.0009423 1.331 PAMR1 Hs.55044 peptidase domain containing associated with muscle regeneration 1
0.0009484 1.286 APLNR Hs.438311 apelin receptor
0.0009587 1.279 PDE7B Hs.726482 phosphodiesterase 7B
0.0009591 1.507 ANKRD10 Hs.525163 ankyrin repeat domain 10
0.0009622 1.195 FRZB Hs.128453 frizzled-related protein
0.0009762 1.175 SMOC2 Hs.487200 SPARC related modular calcium binding 2
0.0009826 1.55 CDC42EP4 Hs.3903 CDC42 effector protein (Rho GTPase binding) 4
0.0009992 1.231 RERG Hs.199487 RAS-like, estrogen-regulated, growth inhibitor
TABLE 2
Parametric p-value Hazard Ratio Gene symbol UGCluster Name
5.00E-07 1.513 NOV Hs.235935 nephroblastoma overexpressed gene
6.00E-07 1.492 ARHGAP23 Hs.374446 Rho GTPase activating protein 23
1.90E-06 1.992 ITGB5 Hs.536663 integrin, beta 5
3.10E-06 1.826 OLFM1 Hs.522484 olfactomedin 1
5.70E-06 1.221 ACTG2 Hs.516105 actin, gamma 2, smooth muscle, enteric
6.20E-06 1.212 TAGLN Hs.410977 transgelin
6.90E-06 1.403 GJA1 Hs.74471 gap junction protein, alpha 1, 43kDa
9.10E-06 1.194 MYH11 Hs.460109 myosin, heavy chain 11, smooth muscle
9.20E-06 1.29 PDK4 Hs.8364 pyruvate dehydrogenase kinase, isozyme 4
9.20E-06 1.243 CRYAB Hs.53454 crystallin, alpha B
9.70E-06 1.545 CHST3 Hs.158304 carbohydrate (chondroitin 6) sulfotransferase 3
1.01E-05 1.558 VCL Hs.643896 vinculin
1.14E-05 1.414 RHOB Hs.502876 ras homolog gene family, member B
1.17E-05 1.348 LOXL4 Hs.306814 lysyl oxidase-like 4
1.39E-05 1.296 LEPREL1 Hs.374191 leprecan-like 1
1.68E-05 1.417 CRIP2 Hs.534309 cysteine-rich protein 2
1.86E-05 1.24 MGP Hs.365706 matrix Gla protein
1.97E-05 1.433 GSN Hs.522373 gelsolin
2.21E-05 1.163 SCRG1 Hs.7122 stimulator of chondrogenesis 1
2.49E-05 1.145 DES Hs.594952 desmin
2.82E-05 1.295 TPM1 Hs.133892 tropomyosin 1 (alpha)
3.15E-05 1.164 THBS4 Hs.211426 thrombospondin 4
3.55E-05 1.247 SPON1 Hs.643864 spondin 1, extracellular matrix protein
3.63E-05 1.337 SLCO2A1 Hs.518270 solute carrier organic anion transporter family, member 2A1
3.68E-05 1.147 CNN1 Hs.465929 calponin 1, basic, smooth muscle
3.81E-05 1.336 HSPA2 Hs.432648 heat shock 70kDa protein 2
3.98E-05 1.31 CSRP1 Hs.108080 cysteine and glycine-rich protein 1
4.57E-05 1.673 HSPB1 Hs.520973 heat shock 27kDa protein 1
5.12E-05 1.232 HSPB8 Hs.400095 heat shock 22kDa protein 8
5.24E-05 1.387 EFHD1 Hs.516769 EF-hand domain family, member D1
5.27E-05 1.519 TCEAL4 Hs.194329 transcription elongation factor A (SII) -like 4
5.42E-05 1.29 TPM2 Hs.300772 tropomyosin 2 (beta)
5.70E-05 1.507 RRAS Hs.515536 related RAS viral (r-ras) oncogene homolog
5.72E-05 1.31 C20orf103 Hs.22920 chromosome 20 open reading frame 103
5.86E-05 1.501 EMCN Hs.152913 endomucin
5.95E-05 1.262 CHRDL2 Hs.432379 chordin-like 2
6.05E-05 1.425 C5orf13 Hs.36053 chromosome 5 open reading frame 13
6.32E-05 1.164 SYNM Hs.207106 synemin, intermediate filament protein
6.39E-05 1.329 C10orf10 Hs.93675 chromosome 10 open reading frame 10
6.78E-05 1.178 MYLK Hs.477375 myosin light chain kinase
7.07E-05 1.45 COL18A1 Hs.517356 collagen, type XVIII, alpha 1
7.31E-05 1.307 SHISA2 Hs.433791 shisa homolog 2 (Xenopus laevis)
7.39E-05 1.262 CALD1 Hs.490203 caldesmon 1
7.61E-05 1.146 C2orf40 Hs.43125 chromosome 2 open reading frame 40
7.97E-05 1.238 MATN2 Hs.189445 matrilin 2
8.36E-05 1.348 AQP1 Hs.76152 aquaporin 1 (Colton blood group)
8.46E-05 1.398 LPHN2 Hs.24212 latrophilin 2
9.13E-05 1.275 TYRP1 Hs.270279 tyrosinase-related protein 1
9.38E-05 1.428 TUBB6 Hs.193491 tubulin, beta 6
9.46E-05 1.867 EDNRB Hs.82002 endothelin receptor type B
9.62E-05 1.214 PDLIM3 Hs.442702 PDZ and LIM domain 3
0.0001076 1.379 RHOJ Hs.656339 ras homolog gene family, member J
0.0001104 1.653 ACOT1 Hs.568046 acyl-CoA thioesterase 1
0.0001121 1.316 SVIL Hs.499209 supervillin
0.0001131 1.375 COL4A2 Hs.508716 collagen, type IV, alpha 2
0.0001173 1.184 FHL1 Hs.435369 four and a half LIM domains 1
0.0001186 1.202 PPP1R3C Hs.303090 protein phosphatase 1, regulatory (inhibitor) subunit 3C
0.0001195 1.212 GREM1 Hs.40098 gremlin 1
0.0001199 1.467 PTPRM Hs.49774 protein tyrosine phosphatase, receptor type, M
0.0001234 1.316 SSPN Hs.183428 sarcospan (Kras oncogene-associated gene)
0.0001234 1.25 ANXA8 Hs.535306 annexin A8
0.0001238 1.229 MSRB3 Hs.339024 methionine sulfoxide reductase B3
0.0001335 1.238 SPARCL1 Hs.62886 SPARC-like 1 (hevin)
0.0001349 1.324 OMD Hs.94070 osteomodulin
0.0001365 1.267 COL8A1 Hs.654548 collagen, type VIII, alpha 1
0.0001372 1.369 C1QTNF5 Hs.632102 C1q and tumor necrosis factor related protein 5
0.0001375 1.454 CRTAC1 Hs.500736 cartilage acidic protein 1
0.0001406 1.387 DKK3 Hs.292156 dickkopf homolog 3 (Xenopus laevis)
0.0001418 1.303 DIO2 Hs.202354 deiodinase, iodothyronine, type II
0.000147 1.282 CYBRD1 Hs.726027 cytochrome b reductase 1
0.0001499 1.405 SPIRE1 Hs.515283 spire homolog 1 (Drosophila)
0.0001529 1.301 SERPINE2 Hs.38449 serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 2
0.0001584 1.499 PPAP2A Hs.696231 phosphatidic acid phosphatase type 2A
0.0001602 1.175 TCEAL2 Hs.401835 transcription elongation factor A (SII) -like 2
0.0001607 1.249 DPYSL3 Hs.519659 dihydropyrimidinase-like 3
0.0001727 1.328 ACTA2 Hs.500483 actin, alpha 2, smooth muscle, aorta
0.0001756 1.186 RBPMS2 Hs.436518 RNA binding protein with multiple splicing 2
0.0001769 1.338 PALLD Hs.151220 palladin, cytoskeletal associated protein
0.0001775 1.296 ALDH1A3 Hs.459538 aldehyde dehydrogenase 1 family, member A3
0.0001794 1.401 HDGFRP3 Hs.513954 hepatoma-derived growth factor, related protein 3
0.0001801 1.225 DACT3 Hs.515490 dapper, antagonist of beta-catenin, homolog 3 (Xenopus laevis)
0.0001836 1.333 IGFBP7 Hs.479808 insulin-like growth factor binding protein 7
0.0001852 1.373 TMEFF2 Hs.144513 transmembrane protein with EGF-like and two follistatin-like domains 2
0.0001878 1.472 PCSK5 Hs.368542 proprotein convertase subtilisin / kexin type 5
0.0001898 1.415 ICAM2 Hs.431460 intercellular adhesion molecule 2
0.0001954 1.183 MYL9 Hs.504687 myosin, light chain 9, regulatory
0.000196 1.32 FOXF2 Hs.484423 forkhead box F2
0.0001984 1.204 LMOD1 Hs.519075 leiomodin 1 (smooth muscle)
0.0002005 1.641 SEPW1 Hs.631549 selenoprotein W, 1
0.000201 1.173 SYNPO2 Hs.655519 synaptopodin 2
0.0002042 1.292 DCBLD2 Hs.203691 discoidin, CUB and LCCL domain containing 2
0.0002081 1.363 NNMT Hs.503911 nicotinamide N-methyltransferase
0.0002116 1.332 HEYL Hs.472566 hairy / enhancer-of-split related with YRPW motif-like
0.0002129 1.154 APOD Hs.522555 apolipoprotein D
0.0002221 1.462 HSPB2 Hs.709660 heat shock 27kDa protein 2
0.0002233 1.35 NGFRAP1 Hs.448588 nerve growth factor receptor (TNFRSF16) associated protein 1
0.0002269 1.151 HSPB6 Hs.534538 heat shock protein, alpha-crystallin-related, B6
0.0002281 1.404 RBPMS Hs.334587 RNA binding protein with multiple splicing
0.0002309 1.293 SGCE Hs.371199 sarcoglycan, epsilon
0.0002342 2.016 DCAF6 Hs.435741 DDB1 and CUL4 associated factor 6
0.0002401 1.405 LPP Hs.5724 LIM domain containing preferred translocation partner in lipoma
0.0002404 1.67 PEA15 Hs.517216 phosphoprotein enriched in astrocytes 15
0.0002474 1.179 VIP Hs.53973 vasoactive intestinal peptide
0.0002526 1.457 GJA4 Hs.296310 gap junction protein, alpha 4, 37kDa
0.0002531 1.975 CYTH3 Hs.487479 cytohesin 3
0.0002589 1.531 PTN Hs.371249 pleiotrophin
0.0002607 1.231 LEPR Hs.23581 leptin receptor
0.0002677 1.423 RAI14 Hs.431400 retinoic acid induced 14
0.0002767 1.274 TMEM47 Hs.8769 transmembrane protein 47
0.0002899 1.531 FOXS1 Hs.516971 forkhead box S1
0.0002919 1.44 ESAM Hs.173840 endothelial cell adhesion molecule
0.0002935 1.443 MEIS3P1 Hs.356135 Meis homeobox 3 pseudogene 1
0.000294 1.257 C15orf52 Hs.32433 chromosome 15 open reading frame 52
0.0002955 1.962 ITGB1 Hs.643813 integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 includes MDF2, MSK12)
0.0003037 1.219 OGN Hs.109439 osteoglycin
0.0003059 1.184 RGMA Hs.271277 RGM domain family, member A
0.0003069 1.302 IGFBP6 Hs.274313 insulin-like growth factor binding protein 6
0.0003084 1.571 ABLIM3 Hs.49688 actin binding LIM protein family, member 3
0.0003098 1.335 LAYN Hs.503831 layilin
0.0003109 1.275 FERMT2 Hs.509343 fermitin family member 2
0.0003147 1.392 FZD4 Hs.591968 frizzled homolog 4 (Drosophila)
0.0003253 1.354 ADAMTS8 Hs.271605 ADAM metallopeptidase with thrombospondin type 1 motif, 8
0.0003302 1.293 TGFB1I1 Hs.513530 transforming growth factor beta 1 induced transcript 1
0.0003322 1.182 DARC Hs.153381 Duffy blood group, chemokine receptor
0.0003501 1.254 PLN Hs.170839 phospholamban
0.0003519 1.403 SCHIP1 Hs.134665 schwannomin interacting protein 1
0.0003527 1.402 PDGFC Hs.570855 platelet derived growth factor C
0.000363 1.617 RAB6B Hs.707804 RAB6B, member RAS oncogene family
0.0003672 1.22 CPE Hs.75360 carboxypeptidase E
0.0003776 1.906 MARCKS Hs.519909 myristoylated alanine-rich protein kinase C substrate
0.00038 1.807 TIE1 Hs.78824 tyrosine kinase with immunoglobulin-like and EGF-like domains 1
0.0003805 1.854 AFAP1L1 Hs.483793 actin filament associated protein 1-like 1
0.0003823 1.548 ERGIC1 Hs.509163 endoplasmic reticulum-golgi intermediate compartment (ERGIC) 1
0.0003825 1.195 HSPB7 Hs.502612 heat shock 27kDa protein family, member 7 (cardiovascular)
0.0003838 1.447 EHD2 Hs.726202 EH-domain containing 2
0.0003881 1.429 SLC38A1 Hs.533770 solute carrier family 38, member 1
0.0004033 1.619 FNDC4 Hs.27836 fibronectin type III domain containing 4
0.0004092 1.334 ADAMTS1 Hs.643357 ADAM metallopeptidase with thrombospondin type 1 motif, 1
0.0004268 1.474 C20orf160 Hs.382151 chromosome 20 open reading frame 160
0.0004552 1.714 CALHM2 Hs.241545 calcium homeostasis modulator 2
0.0004579 1.623 FAM124B Hs.147585 family with sequence similarity 124B
0.0004674 1.517 TMEM136 Hs.643516 transmembrane protein 136
0.0004674 1.343 FSTL1 Hs.269512 follistatin-like 1
0.0004742 1.549 CDH6 Hs.171054 cadherin 6, type 2, K-cadherin (fetal kidney)
0.0004958 1.281 HTR2B Hs.421649 5-hydroxytryptamine (serotonin) receptor 2B
0.0004971 1.482 LAMA2 Hs.200841 laminin, alpha 2
0.0005016 1.342 GEM Hs.654463 GTP binding protein overexpressed in skeletal muscle
0.0005157 1.387 CDH5 Hs.76206 cadherin 5, type 2 (vascular endothelium)
0.0005179 1.329 PDE8B Hs.584830 phosphodiesterase 8B
0.0005236 1.394 RAB32 Hs.287714 RAB32, member RAS oncogene family
0.0005255 1.29 SELM Hs.55940 selenoprotein M
0.0005265 1.154 C7 Hs.78065 complement component 7
0.0005292 1.245 PLAC9 Hs.204947 placenta-specific 9
0.0005345 1.193 MFAP4 Hs.296049 microfibrillar-associated protein 4
0.0005371 1.178 FLNC Hs.58414 filamin C, gamma
0.0005421 1.16 CTSE Hs.644082 cathepsin E
0.0005663 1.479 LOC346887 Hs.127286 similar to solute carrier family 16 (monocarboxylic acid transporters), member 14
0.0005731 1.378 MPRIP Hs.462341 myosin phosphatase Rho interacting protein
0.000584 1.484 GNB5 Hs.155090 guanine nucleotide binding protein (G protein), beta 5
0.000585 1.305 ELN Hs.647061 elastin
0.0006189 1.332 ENG Hs.76753 endoglin
0.0006308 1.227 CRABP2 Hs.405662 cellular retinoic acid binding protein 2
0.0006328 1.196 CST6 Hs.139389 cystatin E / M
0.0006334 1.223 MYOM1 Hs.464469 myomesin 1, 185 kDa
0.0006354 1.408 PCDH18 Hs.591691 protocadherin 18
0.0006526 1.528 LAMB1 Hs.650585 laminin, beta 1
0.0006578 1.28 LHFP Hs.507798 lipoma HMGIC fusion partner
0.0006642 1.302 FILIP1L Hs.104672 filamin A interacting protein 1-like
0.0006744 1.228 CAV1 Hs.74034 caveolin 1, caveolae protein, 22kDa
0.0006751 1.187 CPXM2 Hs.656887 carboxypeptidase X (M14 family), member 2
0.0006762 1.298 NBEA Hs.491172 neurobeachin
0.000684 1.344 TEK Hs.89640 TEK tyrosine kinase, endothelial
0.0007038 1.345 CTSF Hs.11590 cathepsin F
0.0007096 1.613 LTC4S Hs.706741 leukotriene C4 synthase
0.000716 1.247 AEBP1 Hs.439463 AE binding protein 1
0.0007249 1.3 GNG11 Hs.83381 guanine nucleotide binding protein (G protein), gamma 11
0.000732 1.617 SV2B Hs.21754 synaptic vesicle glycoprotein 2B
0.0007328 1.153 KCNMB1 Hs.484099 potassium large conductance calcium-activated channel, subfamily M, beta member 1
0.0007334 1.208 BARX1 Hs.164960 BARX homeobox 1
0.0007401 1.435 DIP2C Hs.432397 DIP2 disco-interacting protein 2 homolog C (Drosophila)
0.0007424 1.446 LAMC1 Hs.609663 laminin, gamma 1 (formerly LAMB2)
0.0007667 1.201 PODN Hs.586141 podocan
0.0007707 1.57 LAPTM4A Hs.467807 lysosomal protein transmembrane 4 alpha
0.000771 1.319 HTRA1 Hs.501280 HtrA serine peptidase 1
0.0007865 1.377 FGF2 Hs.284244 fibroblast growth factor 2 (basic)
0.0007874 1.344 CLEC14A Hs.525307 C-type lectin domain family 14, member A
0.0008122 1.372 PHLDB2 Hs.603252 pleckstrin homology-like domain, family B, member 2
0.0008304 1.366 CD93 Hs.97199 CD93 molecule
0.0008458 1.31 RGS11 Hs.65756 regulator of G-protein signaling 11
0.000851 1.469 TRIM47 Hs.293660 tripartite motif-containing 47
0.0008686 1.348 LHX6 Hs.103137 LIM homeobox 6
0.0008794 1.293 EDNRA Hs.183713 endothelin receptor type A
0.0008876 1.293 PRSS23 Hs.25338 protease, serine, 23
0.0009105 1.226 FAM129A Hs.518662 family with sequence similarity 129, member A
0.0009239 1.243 SDPR Hs.26530 serum deprivation response
0.0009423 1.331 PAMR1 Hs.55044 peptidase domain containing associated with muscle regeneration 1
0.0009484 1.286 APLNR Hs.438311 apelin receptor
0.0009587 1.279 PDE7B Hs.726482 phosphodiesterase 7B
0.0009591 1.507 ANKRD10 Hs.525163 ankyrin repeat domain 10
0.0009622 1.195 FRZB Hs.128453 frizzled-related protein
0.0009762 1.175 SMOC2 Hs.487200 SPARC related modular calcium binding 2
0.0009826 1.55 CDC42EP4 Hs.3903 CDC42 effector protein (Rho GTPase binding) 4
0.0009992 1.231 RERG Hs.199487 RAS-like, estrogen-regulated, growth inhibitor
표 1은 Hazard ratio가 <1.0 이고 p<0.05인 유전자들로 좋은 예후들을 나타내는 유전자 세트를 나열한 것이고, 표 2는 Hazard ratio가 >1.0 이고 p<0.05인 유전자들로 나쁜 예후들을 나타내는 유전자 세트를 나열한 것이다.Table 1 lists a set of genes showing good prognosis with genes with Hazard ratio <1.0 and p <0.05, and Table 2 lists sets of genes showing bad prognosis with genes with Hazard ratio> 1.0 and p <0.05. will be.
<실시예 2> 마이크로 RNA를 기반으로 한 전체 병기 위암의 예후 예측Example 2 Prediction of Total Stage Gastric Cancer Based on Micro RNA
연세대학교 의료원 내 세브란스 병원에서 2000년부터 2004년까지 위암 클리닉에서 위암 수술을 받은 환자(n=332)의 유전자 은행에 보관된 동결절편 조직을 대상으로 일루미나 마이크로 RNA 마이크로 어레이를 시행하였고, 국소 진행형 위암은 113례였다. RNA 전사체를 얻은 환자 샘플과 동일한 샘플에서 마이크로 RNA의 테스트하였다. Alumina microRNA microarray was performed on frozen section tissue stored in the gene bank of patients who had gastric cancer surgery (n = 332) at Severance Hospital in Yonsei University Medical Center from 2000 to 2004. Was 113 cases. Micro RNA was tested in the same sample as the patient sample from which the RNA transcript was obtained.
Unsupervised clustering에 바탕을 두고 전체 병기뿐만 아니라 국소 진행형 위암군 내에서 예후 분석을 시행하였다. 이에 따라 5년 전체 생존율뿐만 아니라 5년 무재발 생존율 모두 85% 이상을 보이는 좋은 예후군을 마이크로 RNA 군에 의하여 국소 진행 위암군 내에서 선별하였다.Based on unsupervised clustering, prognostic analysis was performed not only in the overall stage but also in the locally advanced gastric cancer group. Accordingly, a good prognosis group showing 85% or more of 5 year overall survival rate as well as 5 year no recurrence survival rate was selected by micro RNA group in locally advanced gastric cancer group.
상기의 unsupervised clustering의 결과를 토대로 병기 1기와 4기를 training set으로 놓고, 병기 2기와 3기를 바탕으로 한 국소 진행형 위암을 test set 으로 하여 예측 모델을 만들었다. Training set라 함은 예후에 통계적으로 유의한 RNA 전사체 및 마이크로 RNA를 추출한 대상 샘플을 의미한다. Test Set라 함은 상기 추출된 변수가 실제로 예후의 좋고 나쁨을 판단할 수 있는 정확도를 테스트하는 set를 의미한다. 이러한 방법을 사용하는 이유는 특정 샘플 군에서만 효과적으로 예후 판단 능력이 있는 것이 아니라 독립적 샘플에서도 효능이 있는 것을 판단하기 위해서 이다. 표이를 바탕으로 leave one out cross validation (참고, BRB-ArrayTools Version 4.2 User's Manual p74-81)을 시행하였을 때 아래와 같은 정확도를 얻었다.Based on the results of the unsupervised clustering, the first and fourth stages were set as the training set, and the predictive model was made using the locally advanced gastric cancer based on the second and third stages as the test set. By training set is meant a subject sample from which statistically significant RNA transcripts and microRNAs were extracted. The test set refers to a set for testing the accuracy of the extracted variable can actually determine whether the prognosis is good or bad. The reason for using this method is not only to be able to effectively predict prognosis in a specific sample group, but also to determine that it is effective in an independent sample. Based on the table, the following accuracy was obtained when leave one out cross validation (Reference, BRB-ArrayTools Version 4.2 User's Manual p74-81).
표 3 국소 진행형 위암(2기 및 3기)에서의 예후 예측 모델의 정확도
컴파운드공변량예측변수 선형판별식해석 최단중심연결법
정확한 분류의 평균% 87% 85% 93%
TABLE 3 Accuracy of Prognostic Prediction Model in Locally Advanced Gastric Cancer (Stages 2 and 3)
Compound Covariate Predictor Linear Discrimination Analysis Shortest Center Connection
Average percent of correct classification 87% 85% 93%
상기의 예측 모델의 정확성은 매우 높은 편이다. 특히 국소 진행형 위암 내에서 예후 예측을 보다 더 명확히 할 수 있게 한다.The accuracy of the prediction model is very high. It makes it possible to make prognostic predictions more clear, especially in locally advanced gastric cancer.
표 4 및 5는 Univariate Cox's proportional harzard model을 이용하여 생존에 영향을 미치는 마이크로 RNA를 선별한 리스트로, 왼쪽 열은 마이크로 RNA의 이름을 의미하며, 왼쪽 칸에서 오른쪽 순으로, Cox p value, harzard ratio, 마이크로 RNA의 발현 정도, 마지막으로 최대 및 최소값 간의 fold 차이 등이 표시되어 있다. 총 27개의 마이크로 RNA가 생존율과 통계적 유의성을 보였다. 이 중 특히 생존에 영향을 미치는 마이크로 RNA 14 종의 각각의 이름과 생존 분석 결과를 표시하였다.Tables 4 and 5 are lists of microRNAs that influence survival using the Univariate Cox's proportional harzard model.The left column shows the names of the microRNAs, and the left column to the right, Cox p value, harzard ratio. , The degree of expression of the microRNA, and finally the fold difference between the maximum and minimum values. A total of 27 microRNAs showed survival and statistical significance. Among them, the names of each of the 14 microRNAs affecting survival and survival analysis are shown.
표 4
Parametric p-value Hazard Ratio Unique id Description
0.0039084 0.368 ILMN_3167707 HS_59
0.0083208 0.421 ILMN_3167742 HS_162
0.009446 0.423 ILMN_3167440 HS_67
0.0092068 0.623 ILMN_3168569 hsa-miR-96*
0.0062687 0.651 ILMN_3167393 hsa-miR-496
0.0062712 0.712 ILMN_3166979 hsa-miR-223
0.0011696 0.729 ILMN_3167474 hsa-miR-302a*
0.0043565 0.741 ILMN_3167510 hsa-miR-20a
0.0077049 0.75 ILMN_3167769 hsa-miR-93
0.0071496 0.757 ILMN_3168105 hsa-miR-148a
0.0016924 0.779 ILMN_3168715 hsa-miR-155*
0.0022459 0.781 ILMN_3167434 hsa-miR-15a
0.0058083 0.832 ILMN_3168642 hsa-miR-17
0.0084347 0.878 ILMN_3168282 hsa-miR-18a
Table 4
Parametric p-value Hazard Ratio Unique id Description
0.0039084 0.368 ILMN_3167707 HS_59
0.0083208 0.421 ILMN_3167742 HS_162
0.009446 0.423 ILMN_3167440 HS_67
0.0092068 0.623 ILMN_3168569 hsa-miR-96 *
0.0062687 0.651 ILMN_3167393 hsa-miR-496
0.0062712 0.712 ILMN_3166979 hsa-miR-223
0.0011696 0.729 ILMN_3167474 hsa-miR-302a *
0.0043565 0.741 ILMN_3167510 hsa-miR-20a
0.0077049 0.75 ILMN_3167769 hsa-miR-93
0.0071496 0.757 ILMN_3168105 hsa-miR-148a
0.0016924 0.779 ILMN_3168715 hsa-miR-155 *
0.0022459 0.781 ILMN_3167434 hsa-miR-15a
0.0058083 0.832 ILMN_3168642 hsa-miR-17
0.0084347 0.878 ILMN_3168282 hsa-miR-18a
표 5
Parametric p-value Hazard Ratio Unique id Description
0.0072061 1.086 ILMN_3168320 hsa-miR-1
0.0073919 1.2 ILMN_3167368 HS_6
0.0069289 1.248 ILMN_3168527 HS_111
0.006867 1.282 ILMN_3168017 HS_114
0.0027552 1.283 ILMN_3168513 hsa-let-7c
0.0063893 1.321 ILMN_3168523 HS_126
0.0045926 1.35 ILMN_3168036 HS_90
0.0029516 1.373 ILMN_3168072 hsa-miR-548d-5p
0.0038524 1.388 ILMN_3168103 hsa-miR-189:9.1
0.0022636 1.423 ILMN_3168899 solexa-4793-177
0.0071311 1.564 ILMN_3167512 HS_135
0.0007934 1.709 ILMN_3168593 hsa-miR-20b*
0.0002497 1.866 ILMN_3168097 hsa-miR-658
Table 5
Parametric p-value Hazard Ratio Unique id Description
0.0072061 1.086 ILMN_3168320 hsa-miR-1
0.0073919 1.2 ILMN_3167368 HS_6
0.0069289 1.248 ILMN_3168527 HS_111
0.006867 1.282 ILMN_3168017 HS_114
0.0027552 1.283 ILMN_3168513 hsa-let-7c
0.0063893 1.321 ILMN_3168523 HS_126
0.0045926 1.35 ILMN_3168036 HS_90
0.0029516 1.373 ILMN_3168072 hsa-miR-548d-5p
0.0038524 1.388 ILMN_3168103 hsa-miR-189: 9.1
0.0022636 1.423 ILMN_3168899 solexa-4793-177
0.0071311 1.564 ILMN_3167512 HS_135
0.0007934 1.709 ILMN_3168593 hsa-miR-20b *
0.0002497 1.866 ILMN_3168097 hsa-miR-658
표 4은 Hazard ratio가 <1.0 이고 p<0.05인 유전자들로 좋은 예후들을 나타내는 마이크로 RNA 세트를 나열한 것이고, 표 5는 Hazard ratio가 >1.0 이고 p<0.05인 유전자들로 나쁜 예후들을 나타내는 마이크로 RNA 세트를 나열한 것이다.Table 4 lists micro RNA sets that show good prognosis with genes with Hazard ratio <1.0 and p <0.05, and Table 5 shows micro RNA sets showing bad prognosis with genes with Hazard ratio> 1.0 and p <0.05. It is listed.
상기 마이크로 RNA 리스트를 바탕으로 리스크 스코어 시스템(Risk Scoring System)을 만들었고, 예후 지표를 산출하는 공식은 아래와 같다:Based on the microRNA list, a Risk Scoring System was created, and the formula for calculating prognostic indicators is as follows:
Prognostic Index (예후 지표) = (HR1*normLogTransValue1 + HR2*normLogTransValue2 + ... + HRn*normLogTransValuen)Prognostic Index = (HR 1 * normLogTransValue 1 + HR 2 * normLogTransValue 2 + ... + HR n * normLogTransValue n )
상기 식에서, Where
HRn 는 n번째 마이크로 RNA의 hazard ratio를 나타내고, 특히 hazard ratio가 1보다 적은 경우 -1/hazard ratio로 치환하며,HR n represents the hazard ratio of the n-th micro RNA, in particular, when the hazard ratio is less than 1, it is replaced with -1 / hazard ratio.
normLogTransValuen는 n번째 마이크로 RNA의 log2로 변형 후 quantile normalization 후의 값을 의미한다. normLogTransValue n means the value after quantile normalization after transformation to log2 of nth micro RNA.
즉, 예후 지표가 약 -20을 기준으로 이하이면 예후가 좋고, -20 이상 이면 예후가 나쁜 것을 나타낸다.In other words, if the prognostic index is about -20 or less, the prognosis is good, and when -20 or more, the prognosis is poor.
도 2에서는 위암 병기 3a에서 재발 스코어법을 이용한 예시를 나타내며, y축은 예후 지표 값을 의미하며 약 -20을 기준으로 하였을 때, 그 이하의 예후가 좋은 군에서 13명 중에서 1명의 사망을 기록하였고, 그 이상의 군에서는 총 45명 중에서 19명의 사망을 기록하였다. Figure 2 shows an example using the recurrence scoring method in stage 3a of gastric cancer, the y-axis represents the prognostic indicator value, and based on about -20, 1 death of 13 out of 13 patients with a good prognosis less than that was recorded In the above-mentioned group, 19 deaths were recorded out of a total of 45.
상기 결과로부터 마이크로 RNA들을 이용한 리스크 스코어 시스템은 국소진행형 위암에서 매우 뛰어난 예후 예측 모델을 만들 수 있음을 알 수 있었다.From the above results, it was found that the risk score system using micro RNAs can make an excellent prognostic prediction model in locally advanced gastric cancer.
<실시예 3> 기능적 단백체를 기반으로 한 전체 병기 위암의 예후 예측Example 3 Prediction of Prognosis of All Stages of Gastric Cancer Based on Functional Proteins
기능적 단백체를 기반으로 한 국소 진행형 위암의 예후 예측을 위해, 동결종양조직에서 Reverse phase protein array (RPPA) 라이시스 버퍼를 이용하여 총 세포성 단백체(total cellular proteome)를 추출한 후 SDS-샘플 버퍼 (without bromophenol blue)를 이용하여 변성시키고 6-8회 연쇄 희석한 후 니트로셀룰로오스가 코팅된 유리슬라이드 위에 로봇 어레이어를 이용하여 고집적으로 프린트 하였다. To predict the prognosis of functional proteolytic-based locally advanced gastric cancer, SDS-sample buffer (without) was extracted from total cellular proteome using Reverse phase protein array (RPPA) Lysis buffer from frozen tumor tissue. After denaturation using bromophenol blue) and serial dilution of 6-8 times, printing was carried out with a robot arrayer on a nitrocellulose coated glass slide.
상기의 방법으로, 종양동결조직으로부터 유래된 단백질이 고집적으로 프린트된 슬라이드에 종양의 성장, 세포 사멸, 생존 및 세포주기 이행과 침윤, 전이 및 세포 신생혈관 생성 등의 핵심적인 종양세포의 생물학적 특성을 탐색할 수 있는 특이 항체(인산화 단백질 특이 항체 포함)를 사용하여, 각각의 슬라이드에서 면역학적 방법 (특이적 항원-항체 반응) 및 시그날 증폭기법 (DACO CSA system)을 이용 정량적으로 단백질 발현 양을 검출하였다.In the above method, the slides in which the proteins derived from the tumor freezing tissues are printed in high density can be used for the biological characteristics of the tumor cells such as tumor growth, cell death, survival and cell cycle transition and invasion, metastasis and cell neovascularization. Using a specific antibody (including phosphorylated protein specific antibodies) that can be explored, quantitatively detect the amount of protein expression on each slide using immunological methods (specific antigen-antibody reactions) and signal amplifier method (DACO CSA system) It was.
표 6은 기능적 단백체를 검출하기 위한 총 250개의 특이 항체 중에서 univariate cox's proportional hazard model을 이용하여 통계적으로 유의하게 나온 생존에 영향을 미치는 기능적 단백체의 리스트를 나타낸 것이다. 표 8의 왼쪽 열은 기능적 단백체의 이름을 의미하며, 왼쪽 칸에서 오른쪽 순으로, Cox p value (parametric), harzard ratio 및 log intensities의 표준 오차 등이 표시되어 있다. Table 6 shows a list of functional proteins that affect survival significantly statistically using the univariate cox's proportional hazard model among a total of 250 specific antibodies for detecting functional proteins. The left column of Table 8 indicates the name of the functional protein, and shows the Cox p value (parametric), harzard ratio, and standard error of log intensities, from left to right.
표 6
Figure PCTKR2012002193-appb-T000001
Table 6
Figure PCTKR2012002193-appb-T000001
표 6에 나타난 바와 같이, 총 5개의 기능적 단백체, 즉 AktpS473, PAI, SMAD3, P70S6K, VEGFR2 가 생존율과 통계적 유의성을 보였다. 이 중에서 대표적으로 AktpS473 인 경우 생존 분석에서 p=0.00032를 보이며 가장 우수하였다. As shown in Table 6, five functional proteins , Akt pS473 , PAI, SMAD3, P70 S6K and VEGFR2, showed survival and statistical significance. Among them, Akt pS473 showed the best p = 0.00032 in survival analysis.
도 3은 AktpS473 인 경우 생존 분석 결과를 나타낸 것으로, 상기 인산화 단백질의 발현이 낮을수록 예후가 좋다. 또한 상기 인산화 단백체는 표적 치료제의 표적으로서의 기능을 동시에 가질 수 있는 특색을 지니는 것으로 표적형 바이오마커(targetable biomarker)라고 할 수 있다. Figure 3 shows the results of survival analysis in the case of Akt pS473 , the lower the expression of the phosphorylated protein has a better prognosis. In addition, the phosphorylated protein may be referred to as a target biomarker having a feature that can simultaneously function as a target of a target therapeutic agent.
상기 기능적 단백체 리스트를 바탕으로 리스크 스코어 시스템(Risk Scoring System)을 만들었고, 예후 지표를 산출하는 공식은 아래와 같다:Based on the functional protein list, a risk scoring system was created, and the formula for calculating prognostic indicators is as follows:
Prognostic Index (예후 지표) = (HR1*RPPAValue1 + HR2*RPPAValue2 + ... + HRn*RPPAValuen)Prognostic Index = (HR 1 * RPPAValue 1 + HR 2 * RPPAValue 2 + ... + HR n * RPPAValue n )
상기 식에서, Where
HRn 는 n번째 기능적 단백체의 hazard ratio를 나타내고, 특히 hazard ratio가 1보다 적은 경우 -1/hazard ratio로 치환하며,HR n represents the hazard ratio of the nth functional protein, and in particular, when the hazard ratio is less than 1, it is substituted with -1 / hazard ratio.
RPPAValuen는 n번째 기능적 단백체의 log2로 변형 후 값을 의미한다.RPPAValue n is the value after transformation to log2 of the n th functional protein.
즉, 예후 지표가 0 보다 크면 예후가 나쁘며, 0 보다 작으면 예후가 좋은 것을 나타낸다.In other words, if the prognostic index is greater than zero, the prognosis is bad, and if the prognostic index is less than zero, the prognosis is good.
도 4에서는 예후 지표(prognostic index)를 0을 기준으로 하였을 때, 예후가 좋은 군의 경우 36명의 환자 중에 3명이 사망하였으며, 예후가 나쁜 군의 경우 33명 중에 14명이 사망하였다. 상기 5가지 마커를 이용한 리스크 스코어 시스템은 예후 예측뿐만 아니라 다양한 표적 치료제의 사용 가능성을 같이 살펴볼 수 있는 기능적 단백체만의 특성을 나타낸다. 구체적으로 AktpS473, PAI, SMAD3, P70S6K, VEGFR2 등의 다섯 가지 표적형 마커 중에서 Akt, VEGFR2 표적에 의한 치료 약물 등은 이미 임상에서 다른 암종에 사용되고 있으므로, 위암 군에 상기 표적 치료제의 성능 평가에 바로 응용될 수 있다는 장점을 지니고 있다. 또한 국소 진행형 위암의 예후 예측 모델로도 활용될 수 있다. In FIG. 4, when the prognostic index was 0, 3 of 36 patients died in the good prognosis group and 14 of 33 died in the poor prognosis group. The risk score system using the five markers shows the characteristics of functional proteins that can look at the prognosis as well as the availability of various targeted therapies. Specifically, among the five targeted markers such as Akt pS473 , PAI, SMAD3, P70 S6K , and VEGFR2, the therapeutic drugs by Akt and VEGFR2 targets are already used in other cancers in the clinic. The advantage is that it can be applied immediately. It can also be used as a prognostic model for locally advanced gastric cancer.
<실시예 4> RNA 전사체 및 마이크로 RNA를 기반으로 한 N0 위암의 예후 예측Example 4 Prediction of N0 Gastric Cancer Based on RNA Transcripts and Micro RNA
하기 표 7은 Hazard ratio가 <1.0 이고 p<0.05인 유전자들로 좋은 예후들을 나타내는 RNA 전사체 세트와 >1.0 이고 p<0.05인 유전자들로 나쁜 예후들을 나타내는 RNA 전사체 세트를 나열한 것이다.Table 7 below lists a set of RNA transcripts showing good prognosis with genes with Hazard ratio <1.0 and p <0.05 and a set of RNA transcripts showing bad prognosis with genes> 1.0 and p <0.05.
하기 표 8은 Hazard ratio가 <1.0 이고 p<0.05인 유전자들로 좋은 예후들을 나타내는 마이크로 RNA 세트와 >1.0 이고 p<0.05인 유전자들로 나쁜 예후들을 나타내는 마이크로 RNA 세트를 나열한 것이다.Table 8 below lists the micro RNA set showing good prognosis with genes with Hazard ratio <1.0 and p <0.05 and the micro RNA set showing bad prognosis with genes> 1.0 and p <0.05.
표 7
Parametric p-value_Total Hazard Ratio_Total Description UG cluster Gene symbol
0.0000585 4.302 frizzled homolog 1 (Drosophila) Hs.94234 FZD1
0.0000134 4.073 GLI family zinc finger 3 Hs.21509 GLI3
0.0000345 2.949 angiopoietin-like 7 Hs.146559 ANGPTL7
0.0000525 2.784 c-abl oncogene 1, non-receptor tyrosine kinase Hs.431048 ABL1
0.0000177 2.266 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 3 Hs.647067 SMARCD3
0.0000331 2.251 integrin-linked kinase Hs.706355 ILK
0.0000189 1.788 caveolin 1, caveolae protein, 22kDa Hs.74034 CAV1
0.0000212 1.73 vasoactive intestinal peptide Hs.53973 VIP
0.0000251 1.535 heat shock 27kDa protein family, member 7 (cardiovascular) Hs.502612 HSPB7
0.0000514 0.566 topoisomerase (DNA) II alpha 170kDa Hs.156346 TOP2A
0.0000064 0.358 Fanconi anemia, complementation group D2 Hs.208388 FANCD2
TABLE 7
Parametric p-value_Total Hazard Ratio_Total Description UG cluster Gene symbol
0.0000585 4.302 frizzled homolog 1 (Drosophila) Hs.94234 FZD1
0.0000134 4.073 GLI family zinc finger 3 Hs.21509 GLI3
0.0000345 2.949 angiopoietin-like 7 Hs.146559 ANGPTL7
0.0000525 2.784 c-abl oncogene 1, non-receptor tyrosine kinase Hs.431048 ABL1
0.0000177 2.266 SWI / SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 3 Hs.647067 SMARCD3
0.0000331 2.251 integrin-linked kinase Hs.706355 ILK
0.0000189 1.788 caveolin 1, caveolae protein, 22kDa Hs.74034 CAV1
0.0000212 1.73 vasoactive intestinal peptide Hs.53973 VIP
0.0000251 1.535 heat shock 27kDa protein family, member 7 (cardiovascular) Hs.502612 HSPB7
0.0000514 0.566 topoisomerase (DNA) II alpha 170kDa Hs.156346 TOP2A
0.0000064 0.358 Fanconi anemia, complementation group D2 Hs.208388 FANCD2
표 8
Parametric p-value Hazard Ratio Unique id Description
0.0005464 5.256 ILMN_3168863 hsa-miR-933
0.002469 1.674 ILMN_3167698 hsa-miR-184
0.004149 1.903 ILMN_3168015 hsa-miR-380*
0.0075231 0.278 ILMN_3168837 hsa-miR-190b
0.0141791 0.587 ILMN_3168612 hsa-miR-27a*
0.015639 0.74 ILMN_3168604 hsa-miR-1201
Table 8
Parametric p-value Hazard Ratio Unique id Description
0.0005464 5.256 ILMN_3168863 hsa-miR-933
0.002469 1.674 ILMN_3167698 hsa-miR-184
0.004149 1.903 ILMN_3168015 hsa-miR-380 *
0.0075231 0.278 ILMN_3168837 hsa-miR-190b
0.0141791 0.587 ILMN_3168612 hsa-miR-27a *
0.015639 0.74 ILMN_3168604 hsa-miR-1201
표 7과 8의 리스트를 바탕으로 리스크 스코어 시스템(Risk Scoring System)을 만들었고, 예후 지표를 산출하는 공식은 아래와 같다:Based on the lists in Tables 7 and 8, a Risk Scoring System was created, and the formula for calculating the prognostic indicators is as follows:
Risk Score = FZD1×4.302 + GLI3×4.073 + ANGPTL7×2.949 + ABL1×2.784 + SMARCD3×2.266 + ILK×2.251 + CAV1×1.788 + VIP×1.73 + HSPB7×1.535-TOP2A×1.766 - FANCD2×2.793 + miR933×5.256 + miR184×1.674 + miR380*×1.903 - miR190b×3.597 - miR27a*×1.7 - miR1201×1.35Risk Score = FZD1 × 4.302 + GLI3 × 4.073 + ANGPTL7 × 2.949 + ABL1 × 2.784 + SMARCD3 × 2.266 + ILK × 2.251 + CAV1 × 1.788 + VIP × 1.73 + HSPB7 × 1.535-TOP2A × 1.766-FANCD2 × 2.793 + miR933 × 5.256 + miR184 × 1.674 + miR380 * × 1.903-miR190b × 3.597-miR27a * × 1.7-miR1201 × 1.35
도 5는 상기 예후 지표를 이용하였을 때, N0 위암군에 리스크 스코어가 음성이 경우와 양성이 경우로 나누었을 때 나타난 생존 분석 결과이다. 해부학적 병기가 유사한 경우에도 명확히 생존률의 차이를 보인다. 이는 RNA 전사체와 마이크로 RNA를 이용한 예후 지표의 우수성을 의미한다.5 is a survival analysis result when the risk score in the N0 gastric cancer group is divided into negative cases and positive cases when using the prognostic indicators. Similar anatomical stages clearly show differences in survival rates. This means superiority of prognostic indicators using RNA transcripts and microRNAs.
도 6은 N0 위암에서 상기 리스크 스코어링 시스템에 의해서 0을 기준으로 두 군으로 분리되는 것으로 나타나며, 예후가 좋은 군에서 7% 가량의 재발 생존율을 보이고, 예후가 나쁜 군에서는 41% 가량의 재발 생존율을 보여서 명확히 구별할 수 있는 능력을 나타낸다.FIG. 6 shows that the risk scoring system in N0 gastric cancer is separated into two groups based on 0, showing a 7% relapse survival rate in a good prognosis group and a 41% recurrence survival rate in a poor prognosis group. Show an ability to clearly distinguish
도 7은 마이크로 RNA의 통계적으로 상관관계가 있는 유전자들을 이용하여 hierachial clustering을 시행하였을 때, 군집군 사이에 명확한 예후 차이가 나타내는 과정을 설명한 것이다. 이것의 의미는 마이크로 RNA와 RNA 전사체의 병용 사용의 가치를 나타낸다. 특히 생물학적으로 특정 마이크로 RNA는 특정 군 RNA 전사체를 집단적으로 억제하는 기능이 있으므로 상기 통계적 방법의 생물학적 의미가 있을 수 있다.FIG. 7 illustrates a process in which a clear prognostic difference appears between clusters when hierachial clustering is performed using statistically correlated genes of microRNAs. This means the value of the combined use of microRNA and RNA transcripts. In particular, biologically specific microRNAs can have the biological significance of such statistical methods as they have the ability to collectively inhibit specific group RNA transcripts.
본 명세서 전반에 걸쳐 인용된 모든 참고문헌들이 본원에서 명백히 참고문헌으로 인용된다. 본 발명을 특정 실시태양에 대하여 강조하여 설명하였지만, 구체적인 방법 및 기술에 있어서의 변화 및 변형이 가능함이 당업계의 통상의 숙련인에게 명백하다. 따라서, 본 발명은 하기하는 특허 청구의 범위에 의해 정의되는 본 발명의 본질 및 범위 내에 포함되는 모든 변형을 포함한다.All references cited throughout this specification are expressly incorporated herein by reference. While the invention has been described with particular emphasis on certain embodiments, it will be apparent to those skilled in the art that changes and variations in specific methods and techniques are possible. Accordingly, the invention includes all modifications that fall within the spirit and scope of the invention as defined by the following claims.
본 발명은 위암 재발 예후 예측 분야에서 사용할 수 있다.The present invention can be used in the field of predicting gastric cancer recurrence prognosis.

Claims (21)

  1. 대상으로부터 얻은 암세포를 포함하는 생물학적 샘플에서 In biological samples containing cancer cells obtained from a subject
    FZD1, GLI3, ANGPTL7, ABL1, SMARCD3, ILK, CAV1, VIP, HSPB7, TOP2A 및 FANCD2로 이루어지는 군으로부터 선택된 하나 이상의 RNA 전사체; 및 hsa-miR-933, hsa-miR-184, hsa-miR-380*, hsa-miR-190b, hsa-miR-27a* 및 hsa-miR-1201로 이루어진 군으로부터 선택된 하나 이상의 miRNA의 발현도를 결정하는 단계; 및One or more RNA transcripts selected from the group consisting of FZD1, GLI3, ANGPTL7, ABL1, SMARCD3, ILK, CAV1, VIP, HSPB7, TOP2A and FANCD2; And determining the expression level of one or more miRNAs selected from the group consisting of hsa-miR-933, hsa-miR-184, hsa-miR-380 *, hsa-miR-190b, hsa-miR-27a * and hsa-miR-1201. Making; And
    상기 단계에서 결정된 RNA 전사체 또는 miRNA의 발현도에 기초하여 상기 생물학적 샘플의 재발 스코어(RS, Risk Score)를 계산하고, Calculating a recurrence score (RS) of the biological sample based on the expression level of the RNA transcript or miRNA determined in the step,
    상기 RS 값에 따라 예후를 판단하는 단계를 포함하는 위암으로 진단된 대상에서 예후를 예측하는 방법. A method of predicting prognosis in a subject diagnosed as gastric cancer comprising the step of determining the prognosis according to the RS value.
  2. 제1항에 있어서,The method of claim 1,
    RS는 하기 수학식 1에 따라 계산하는 방법:RS is calculated according to Equation 1:
    [수학식 1][Equation 1]
    Risk Score = HR1*normLogTransValue1 + HR2*normLogTransValue2 + ... + HRn* normLogTransValuen Risk Score = HR 1 * normLogTransValue 1 + HR 2 * normLogTransValue 2 + ... + HR n * normLogTransValue n
    상기 식에서, Where
    HRn 는 n번째 RNA 전사체 또는 마이크로 RNA의 위험 계수(hazard ratio)를 나타내고,HR n represents the hazard ratio of the nth RNA transcript or microRNA,
    normLogTransValuen는 n번째 RNA 전사체 또는 마이크로 RNA의 발현과 관련된 값을 의미한다.normLogTransValue n means the value associated with the expression of the n-th RNA transcript or micro RNA.
  3. 제1항에 있어서,The method of claim 1,
    상기 방법이 TNM 병기 분류에서 T1NO기, T2N0기, T3N0기 또는 T4N0기 국소진행형 위암의 수술에 의한 절제 후 임상 결과를 예측하는 것인 방법.Wherein said method predicts clinical results after surgery for resection of locally advanced T1NO, T2N0, T3N0, or T4N0 stage cancer in TNM staging.
  4. 제1항에 있어서,The method of claim 1,
    상기 방법이 전체 생존율(Overall Survival, OS) 또는 무재발 생존율(recurrence free survival, RFS) 측면에서 RS 값이 + 값이면 나쁜 예후를, - 값이면 좋은 예후인 것으로 판단하는 방법.The method determines that the poor prognosis if the RS value is a positive value and the good prognosis is a negative value in terms of overall survival (OS) or recurrence free survival (RFS).
  5. 대상으로부터 얻은 암세포를 포함하는 생물학적 샘플에서 In biological samples containing cancer cells obtained from a subject
    a) HAT, C17orf65, TRAF6, CISH, ELAC1, ACTR8, SMARCAD1, SRRM1, C15orf44, EFTUD1, BUB3, KIAA0232, SEPSECS, DCAF16, ARHGAP19, TAF5, CNOT6L, NIF3L1, C19orf54, DUSP28, HNRNPC, CTR9, C6orf70, RCCD1, USP54, LIN54, FANCF, GAR1, GPBP1L1, TRAF3, KIAA0368, CRNKL1, SCLY, SMCR7L, PAIP1, RBD1, RPAIN, AP1G1, C1orf212, C18orf54, TIFA, EWSR1, FUBP1, AGGF1, CWF19L1, C14orf145, RPUSD2, SMC2, CEP152, NUP88, SNORA65, MED28, RFC1, RRM1, KARS, CCR1, CHAF1A, PLCH1, FASTKD1, KIAA0174, SAAL1, TNFSF14, ETV7, NBN, C20orf7, RHBDD1, ANKRD32, ING3, ATPAF1, CCDC15, IQCB1, TDP1, KIR2DL4, NOP14, NFX1, SMAP2, SRGAP3, KIR2DL3, KIAA0564, GFI1, KIAA1715, COX15, PATL1, LETMD1, PRRG4, SETD4, GRAMD1C, NDRG3, PTPN22, TRIM21, PI4K2B, DCLRE1A, ALG11, PARP3, KLRC2, LIAS, CHEK2, DONSON, CCDC77, MMP25, LARP1B, STAP2, GCH1, C20orf72, HK3, SNX5, NAAA, KLRD1, IL18RAP, PSMB8, THOP1, CASP5, ALPK1, SLC11A2, PSMB10, MND1, FANCG, IMPA1, MYL5, TTF2, DIAPH3, BATF2, PRF1, RFWD3, BTN3A1, FANCD2, RIPK2, TSPAN6, IFNG, CDC25A, CXCR6, SLC27A2, GAD1, DLEU2, JAK2, CD7, FKBP11, IL32, SORD, TAP1, GNLY, C2, GZMB, VSNL1 및 GBP5로 이루어진 군으로부터 선택된 하나 이상의 RNA 전사체 X의 발현 수준, 및/또는a) HAT, C17orf65, TRAF6, CISH, ELAC1, ACTR8, SMARCAD1, SRRM1, C15orf44, EFTUD1, BUB3, KIAA0232, SEPSECS, DCAF16, ARHGAP19, TAF5, CNOT6L, NIF3L1, C19orf54, RNPC6, NRCPC28, NRCPC28 USP54, LIN54, FANCF, GAR1, GPBP1L1, TRAF3, KIAA0368, CRNKL1, SCLY, SMCR7L, PAIP1, RBD1, RPAIN, AP1G1, C1orf212, C18orf54, TIFA, EWSR1, FUBP1, AGGF1, CWF2F145, CRP14F152 NUP88, SNORA65, MED28, RFC1, RRM1, KARS, CCR1, CHAF1A, PLCH1, FASTKD1, KIAA0174, SAAL1, TNFSF14, ETV7, NBN, C20orf7, RHBDD1, ANKRD32, ING3, ATPAF1, CCD KP14, QD1 NFX1, SMAP2, SRGAP3, KIR2DL3, KIAA0564, GFI1, KIAA1715, COX15, PATL1, LETMD1, PRRG4, SETD4, GRAMD1C, NDRG3, PTPN22, TRIM21, PI4K2B, DCLRE1A, ALG11, PARPC, LIKASCEK2 MMP25, LARP1B, STAP2, GCH1, C20orf72, HK3, SNX5, NAAA, KLRD1, IL18RAP, PSMB8, THOP1, CASP5, ALPK1, SLC11A2, PSMB10, MND1, FANCG, IMPA1, MYL5, TTF2, RFIA3 PRF, BA BTN3A1, FANCD2, RIPK2, TSPAN6, IFNG, CDC25A, CXCR6, SLC27A2, GAD Expression level of one or more RNA transcript X selected from the group consisting of 1, DLEU2, JAK2, CD7, FKBP11, IL32, SORD, TAP1, GNLY, C2, GZMB, VSNL1 and GBP5, and / or
    b) CALD1, C2orf40, MATN2, AQP1, LPHN2, TYRP1, TUBB6, EDNRB, PDLIM3, RHOJ, ACOT1, SVIL, COL4A2, FHL1, PPP1R3C, GREM1, PTPRM, SSPN, ANXA8, MSRB3, SPARCL1, OMD, COL8A1, C1QTNF5, CRTAC1, DKK3, DIO2, CYBRD1, SPIRE1, SERPINE2, PPAP2A, TCEAL2, DPYSL3, ACTA2, RBPMS2, PALLD, ALDH1A3, HDGFRP3, DACT3, IGFBP7, TMEFF2, PCSK5, ICAM2, MYL9, FOXF2, LMOD1, SEPW1, SYNPO2, DCBLD2, NNMT, HEYL, APOD, HSPB2, NGFRAP1, HSPB6, RBPMS, SGCE, DCAF6, LPP, PEA15, VIP, GJA4, CYTH3, PTN, LEPR, RAI14, TMEM47, FOXS1, ESAM, MEIS3P1, C15orf52, ITGB1, OGN, RGMA, IGFBP6, ABLIM3, LAYN, FERMT2, FZD4, ADAMTS8, TGFB1I1, DARC, PLN, SCHIP1, PDGFC, RAB6B, CPE, MARCKS, TIE1, AFAP1L1, ERGIC1, HSPB7, EHD2, SLC38A1, FNDC4, ADAMTS1, C20orf160, CALHM2, FAM124B, TMEM136, FSTL1, CDH6, HTR2B, LAMA2, GEM, CDH5, PDE8B, RAB32, SELM, C7, PLAC9, MFAP4, FLNC, CTSE, LOC346887, MPRIP, GNB5, ELN, ENG, CRABP2, CST6, MYOM1, PCDH18, LAMB1, LHFP, FILIP1L, CAV1, CPXM2, NBEA, TEK, CTSF, LTC4S, AEBP1, GNG11, SV2B, KCNMB1, BARX1, DIP2C, LAMC1, PODN, LAPTM4A, HTRA1, FGF2, CLEC14A, PHLDB2, CD93, RGS11, TRIM47, LHX6, EDNRA, PRSS23, FAM129A, SDPR, PAMR1, APLNR, PDE7B, ANKRD10, FRZB, SMOC2, CDC42EP4 및 RERG로 이루어지는 군 중에서 선택되는 하나 이상의 RNA 전사체 Y의 발현 수준을 측정하는 단계; 및 b. CRTAC1, DKK3, DIO2, CYBRD1, SPIRE1, SERPINE2, PPAP2A, TCEAL2, DPYSL3, ACTA2, RBPMS2, PALLD, ALDH1A3, HDGFRP3, DACT3, IGFBP7, TMEFF2, PCSK5, ICAM2, MYL2, DC1 SOD2 NNMT, HEYL, APOD, HSPB2, NGFRAP1, HSPB6, RBPMS, SGCE, DCAF6, LPP, PEA15, VIP, GJA4, CYTH3, PTN, LEPR, RAI14, TMEM47, FOXS1, ESAM, MEIS3P1, C15orf52, ITGB1, OGN IGFBP6, ABLIM3, LAYN, FERMT2, FZD4, ADAMTS8, TGFB1I1, DARC, PLN, SCHIP1, PDGFC, RAB6B, CPE, MARCKS, TIE1, AFAP1L1, ERGIC1, HSPB7, EHD2, SLC38A1, FTSCC, AD20, FNDC4H TMEM136, FSTL1, CDH6, HTR2B, LAMA2, GEM, CDH5, PDE8B, RAB32, SELM, C7, PLAC9, MFAP4, FLNC, CTSE, LOC346887, MPRIP, GNB5, ELN, ENG, CRABP2, CST6, MYOM1, PCDH18, LAMB LHFP, FILIP1L, CAV1, CPXM2, NBEA, TEK, CTSF, LTC4S, AEBP1, GNG11, SV2B, KCNMB1, BARX1, DIP2C, LAMC1, PODN, LAPTM One or more RNAs selected from the group consisting of 4A, HTRA1, FGF2, CLEC14A, PHLDB2, CD93, RGS11, TRIM47, LHX6, EDNRA, PRSS23, FAM129A, SDPR, PAMR1, APLNR, PDE7B, ANKRD10, FRZB, SMOC2, CDC42EP4 and RERG Measuring the expression level of transcript Y; And
    상기 전사체 X의 발현 증가는 긍정적인 임상 결과 가능성의 증가로 판단하고, 상기 전사체 Y의 발현 증가는 긍정적인 임상 결과 가능성의 감소로 판단하는 단계를 포함하는, 위암으로 진단된 대상에서 예후를 예측하는 방법.The increase in expression of transcript X is determined to be an increase in the likelihood of a positive clinical outcome, and the increase in expression of transcript Y is determined to be a decrease in the likelihood of a positive clinical outcome. How to predict.
  6. 제5항에 있어서, The method of claim 5,
    상기 방법이 PCR 기반 또는 어레이 기반 방법인 방법.The method is a PCR based or an array based method.
  7. 제5항에 있어서,The method of claim 5,
    상기 발현 수준이 하나 이상의 RNA 전사체의 발현 수준에 대해 표준화되는 것인 방법.Wherein said expression level is normalized to the expression level of one or more RNA transcripts.
  8. 제5항에 있어서,The method of claim 5,
    상기 임상 결과가 전체 생존율(Overall Survival, OS) 또는 무재발 생존율(recurrence free survival, RFS) 측면에서 표현되는 것인 방법.Wherein said clinical outcome is expressed in terms of overall survival (OS) or recurrence free survival (RFS).
  9. 제5항에 있어서,The method of claim 5,
    상기 방법이 TNM 병기와 상관 없는 전체 위암의 수술에 의한 절제 후 임상 결과를 예측하는 것인 방법.Wherein said method predicts clinical outcome after surgical resection of total gastric cancer irrespective of TNM stage.
  10. 제5항에 있어서,The method of claim 5,
    RNA 전사체 X 및 Y 중에서 선택된 2개 이상의 RNA 전사체의 발현 수준을 측정하는 것인 방법.Measuring the expression level of at least two RNA transcripts selected from RNA transcripts X and Y.
  11. 대상으로부터 얻은 암세포를 포함하는 생물학적 샘플에서, In biological samples containing cancer cells obtained from a subject,
    a) HS_59, HS_162, HS_67, hsa-miR-96*, hsa-miR-496, hsa-miR-223, hsa-miR-302a*, hsa-miR-20a, hsa-miR-93, hsa-miR-148a, hsa-miR-155*, hsa-miR-15a, hsa-miR-17 및 hsa-miR-18a로 이루어진 군으로부터 선택된 하나 이상의 miRNA (I)의 발현 수준, 및/또는a) HS_59, HS_162, HS_67, hsa-miR-96 *, hsa-miR-496, hsa-miR-223, hsa-miR-302a *, hsa-miR-20a, hsa-miR-93, hsa-miR- Expression level of one or more miRNA (I) selected from the group consisting of 148a, hsa-miR-155 *, hsa-miR-15a, hsa-miR-17 and hsa-miR-18a, and / or
    b) hsa-miR-1, HS_6, HS_111, HS_114, hsa-let-7c, HS_126, HS_90, hsa-miR-548d-5p, hsa-miR-189:9.1, solexa-4793-177, HS_135, hsa-miR-20b* 및 hsa-miR-658로 이루어진 군으로부터 선택된 하나 이상의 miRNA (II)의 발현 수준을 측정하는 단계; 및 b) hsa-miR-1, HS_6, HS_111, HS_114, hsa-let-7c, HS_126, HS_90, hsa-miR-548d-5p, hsa-miR-189: 9.1, solexa-4793-177, HS_135, hsa- measuring the expression level of one or more miRNA (II) selected from the group consisting of miR-20b * and hsa-miR-658; And
    miRNA (I)의 발현 증가는 긍정적인 임상 결과 가능성의 증가로 판단하고, miRNA (II)의 발현 증가는 긍정적인 임상 결과 가능성의 감소로 판단하는 단계를 포함하는, 위암으로 진단된 대상에서 예후를 예측하는 방법.Increased expression of miRNA (I) is judged to be an increase in the likelihood of positive clinical outcomes, and increased expression of miRNA (II) is determined to be a decrease in the likelihood of positive clinical outcomes. How to predict.
  12. 제11항에 있어서,The method of claim 11,
    암이 TNM 병기와 상관 없는 전체 위암의 수술에 의한 절제 후 임상 결과를 예측하는 것인 방법.Wherein the cancer predicts clinical outcome after surgical resection of total gastric cancer independent of TNM stage.
  13. 제11항에 있어서,The method of claim 11,
    상기 임상 결과가 전체 생존율(Overall Survival, OS) 또는 무재발 생존율(recurrence free survival, RFS) 측면에서 표현되는 것인 방법.Wherein said clinical outcome is expressed in terms of overall survival (OS) or recurrence free survival (RFS).
  14. 대상으로부터 얻은 암세포를 포함하는 생물학적 샘플에서, In biological samples containing cancer cells obtained from a subject,
    AktpS473, PAI, SMAD3, P70S6K 및 EGFR2로 이루어진 군으로부터 선택된 하나 이상의 단백체의 발현도를 결정하는 단계; 및Determining the expression level of at least one protein selected from the group consisting of Akt pS473 , PAI, SMAD3, P70 S6K and EGFR2; And
    상기 단계에서 결정된 단백체의 발현도에 기초하여 상기 생물학적 샘플의 재발 스코어(RS, Risk Score)를 계산하고,Calculating a recurrence score (RS) of the biological sample based on the expression level of the protein determined in the step,
    상기 RS 값에 따라 예후를 판단하는 단계를 포함하는 위암으로 진단된 대상에서 예후를 예측하는 방법.A method of predicting prognosis in a subject diagnosed as gastric cancer comprising the step of determining the prognosis according to the RS value.
  15. 제14항에 있어서,The method of claim 14,
    RS는 하기 수학식 2에 따라 계산하는 방법:RS is calculated according to Equation 2:
    [수학식 2][Equation 2]
    Risk Score = HR1*RPPAValue1 + HR2*RPPAValue2 + ... + HRn*RPPAValuen Risk Score = HR 1 * RPPAValue 1 + HR 2 * RPPAValue 2 + ... + HR n * RPPAValue n
    상기 식에서, Where
    HRn 는 n번째 기능적 단백체의 위험계수(hazard ratio)를 나타내고, HR n represents the hazard ratio of the nth functional protein,
    RPPAValuen는 n번째 기능적 단백체의 발현과 관련된 값을 의미한다.RPPAValue n means the value associated with the expression of the n th functional protein.
  16. 제14항에 있어서,The method of claim 14,
    TNM 병기와 상관 없는 전체 위암의 수술에 의한 절제 후 임상 결과를 예측하는 것인 방법.Predicting clinical outcome after surgical resection of total gastric cancer regardless of TNM stage.
  17. 제14항에 있어서,The method of claim 14,
    상기 방법이 전체 생존율(Overall Survival, OS) 또는 무재발 생존율(recurrence free survival, RFS) 측면에서 RS 값이 설정치 보다 크면 예후가 나쁘고, RS 값이 설정치 보다 작으면 예후가 좋은 것으로 판단하는 것인 방법.The method is a poor prognosis if the RS value is greater than the set point in terms of overall survival (OS) or recurrence free survival (RFS), and the prognosis is good if the RS value is less than the set point. .
  18. 위암의 예후 예측을 실행하는 프로그램을 기록한 컴퓨터로 판독가능한 기록 매체에 있어서, 환자로부터 얻은 핵산 시료에서 A computer-readable recording medium having recorded thereon a program for performing prognostic prediction of gastric cancer, comprising:
    FZD1, GLI3, ANGPTL7, ABL1, SMARCD3, ILK, CAV1, VIP, HSPB7, TOP2A 및 FANCD2로 이루어지는 군으로부터 선택된 하나 이상의 RNA 전사체; 및 hsa-miR-933, hsa-miR-184, hsa-miR-380*, hsa-miR-190b, hsa-miR-27a* 및 hsa-miR-1201로 이루어진 군으로부터 선택된 하나 이상의 miRNA의 발현도를 결정하는 단계; 및One or more RNA transcripts selected from the group consisting of FZD1, GLI3, ANGPTL7, ABL1, SMARCD3, ILK, CAV1, VIP, HSPB7, TOP2A and FANCD2; And determining the expression level of one or more miRNAs selected from the group consisting of hsa-miR-933, hsa-miR-184, hsa-miR-380 *, hsa-miR-190b, hsa-miR-27a * and hsa-miR-1201. Making; And
    상기 단계에서 결정된 RNA 전사체 또는 miRNA의 발현도에 기초하여 상기 생물학적 샘플의 재발 스코어(RS, Risk Score)를 계산하고,Calculating a recurrence score (RS) of the biological sample based on the expression level of the RNA transcript or miRNA determined in the step,
    상기 RS가 설정치 보다 높은 환자는 재발가능성이 높은 환자로, RS가 설정치 보다 낮은 환자는 재발가능성이 낮은 환자로 분류하는 단계를 컴퓨터에 실행시키는 프로그램을 기록한 컴퓨터로 판독가능한 기록 매체.A computer-readable recording medium having recorded thereon a program for causing a computer to classify a patient having a higher RS than a setpoint as a high probability of recurrence and a patient having a RS lower than a setpoint as a low likelihood of relapse.
  19. 제18항에 있어서,The method of claim 18,
    상기 기록 매체는 TNM 병기 분류에서 T1NO기, T2N0기, T3N0기 또는 T4N0기 국소진행형 위암의 수술에 의한 절제 후 임상 결과를 예측하는 것인 기록 매체.The recording medium is a recording medium for predicting the clinical outcome after resection by surgery of T1NO stage, T2N0 stage, T3N0 stage or T4N0 stage advanced gastric cancer in the TNM stage classification.
  20. 위암의 예후 예측을 실행하는 프로그램을 기록한 컴퓨터로 판독가능한 기록 매체에 있어서,A computer-readable recording medium having recorded thereon a program for executing prognostic prediction of gastric cancer,
    환자로부터 얻은 단백질 시료에서 AktpS473, PAI, SMAD3, P70S6K 및 EGFR2로 이루어진 군으로부터 선택된 하나 이상의 단백체의 발현도를 결정하는 단계; 및Determining the expression level of at least one protein selected from the group consisting of Akt pS473 , PAI, SMAD3, P70 S6K and EGFR2 in a protein sample obtained from the patient; And
    상기 단계에서 결정된 단백체의 발현도에 기초하여 상기 생물학적 샘플의 재발 스코어(RS, Risk Score)를 계산하고,Calculating a recurrence score (RS) of the biological sample based on the expression level of the protein determined in the step,
    상기 RS가 설정치보다 큰 환자는 재발가능성이 높은 환자로, 설정치보다 작은 환자는 재발가능성이 낮은 환자로 분류하는 단계를 컴퓨터에 실행시키는 프로그램을 기록한 컴퓨터로 판독가능한 기록 매체.A computer-readable recording medium having recorded thereon a program for causing a computer to classify a patient whose RS is greater than a setpoint is a high probability of relapse and a patient smaller than the setpoint is a low likelihood of relapse.
  21. 제20항에 있어서,The method of claim 20,
    상기 기록 매체는 TNM 병기와 상관 없는 전체 위암의 수술에 의한 절제 후 임상 결과를 예측하는 것인 기록 매체.The recording medium is a recording medium for predicting clinical results after surgery for resection of total gastric cancer irrespective of the TNM stage.
PCT/KR2012/002193 2012-03-26 2012-03-26 Prognosis prediction system of locally advanced gastric cancer WO2013147330A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/002193 WO2013147330A1 (en) 2012-03-26 2012-03-26 Prognosis prediction system of locally advanced gastric cancer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/002193 WO2013147330A1 (en) 2012-03-26 2012-03-26 Prognosis prediction system of locally advanced gastric cancer

Publications (1)

Publication Number Publication Date
WO2013147330A1 true WO2013147330A1 (en) 2013-10-03

Family

ID=49260557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002193 WO2013147330A1 (en) 2012-03-26 2012-03-26 Prognosis prediction system of locally advanced gastric cancer

Country Status (1)

Country Link
WO (1) WO2013147330A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111551720A (en) * 2020-04-30 2020-08-18 昆山德诺瑞尔生物科技有限公司 Method for detecting OGN protein expression and application thereof in gastric cancer auxiliary diagnosis
CN114525330A (en) * 2021-04-08 2022-05-24 四川大学华西第二医院 Marker group for evaluating non-alcoholic steatohepatitis
CN114934116A (en) * 2022-01-28 2022-08-23 中国医学科学院北京协和医院 Early gastric cancer prognosis differential gene and recurrence prediction model
WO2022215991A1 (en) * 2021-04-05 2022-10-13 연세대학교 산학협력단 Biomarker for predicting cancer prognosis
CN116024338A (en) * 2022-09-27 2023-04-28 上海爱谱蒂康生物科技有限公司 Biomarker combination and application thereof in predicting effect of drug on treating gastric cancer
US11845989B2 (en) 2019-01-23 2023-12-19 Regeneron Pharmaceuticals, Inc. Treatment of ophthalmic conditions with angiopoietin-like 7 (ANGPTL7) inhibitors
US11865134B2 (en) 2021-02-26 2024-01-09 Regeneron Pharmaceuticals, Inc. Treatment of inflammation with glucocorticoids and angiopoietin-like 7 (ANGPTL7) inhibitors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070184439A1 (en) * 2003-07-17 2007-08-09 Guilford Parry J Markers for detection of gastric cancer
KR20110052361A (en) * 2009-11-12 2011-05-18 연세대학교 산학협력단 System for predicting recurrence-free survival for early gastric cancer and prediction methods thereof
WO2011095623A2 (en) * 2010-02-05 2011-08-11 Febit Holding Gmbh miRNA IN THE DIAGNOSIS OF OVARIAN CANCER

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070184439A1 (en) * 2003-07-17 2007-08-09 Guilford Parry J Markers for detection of gastric cancer
KR20110052361A (en) * 2009-11-12 2011-05-18 연세대학교 산학협력단 System for predicting recurrence-free survival for early gastric cancer and prediction methods thereof
WO2011095623A2 (en) * 2010-02-05 2011-08-11 Febit Holding Gmbh miRNA IN THE DIAGNOSIS OF OVARIAN CANCER

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAO, WEI ET AL.: "HER2-mediated upregulation of MMP-1 is involved in gastric cancer cell invasion", ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS., vol. 499, no. ISSUES, 2010, pages 49 - 55, XP027084046 *
CHO, JAE YONG ET AL.: "Gene Expression Signature-Based Prognostic Risk Score in Gastric Cancer", CLIN CANCER RES., vol. 17, no. 7, 29 March 2011 (2011-03-29), pages 1850 - 1857 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11845989B2 (en) 2019-01-23 2023-12-19 Regeneron Pharmaceuticals, Inc. Treatment of ophthalmic conditions with angiopoietin-like 7 (ANGPTL7) inhibitors
CN111551720A (en) * 2020-04-30 2020-08-18 昆山德诺瑞尔生物科技有限公司 Method for detecting OGN protein expression and application thereof in gastric cancer auxiliary diagnosis
US11865134B2 (en) 2021-02-26 2024-01-09 Regeneron Pharmaceuticals, Inc. Treatment of inflammation with glucocorticoids and angiopoietin-like 7 (ANGPTL7) inhibitors
WO2022215991A1 (en) * 2021-04-05 2022-10-13 연세대학교 산학협력단 Biomarker for predicting cancer prognosis
WO2022213664A1 (en) * 2021-04-08 2022-10-13 四川大学华西第二医院 Application of hdac2 and dnmt1 inhibitors in combined targeted therapy of non-alcoholic steatohepatitis
CN114617970A (en) * 2021-04-08 2022-06-14 四川大学华西第二医院 Application of HDAC2 and DNMT1 inhibitor in combined targeted therapy of non-alcoholic steatohepatitis
CN114617970B (en) * 2021-04-08 2023-03-24 四川大学华西第二医院 Application of HDAC2 and DNMT1 inhibitor in combined targeted therapy of non-alcoholic steatohepatitis
CN114525329B (en) * 2021-04-08 2023-08-25 四川大学华西第二医院 Application of vascular secretion factor in preparation of biomarker for detecting non-alcoholic steatohepatitis
CN114525330B (en) * 2021-04-08 2023-11-03 四川大学华西第二医院 Marker set for evaluating nonalcoholic steatohepatitis
CN114525329A (en) * 2021-04-08 2022-05-24 四川大学华西第二医院 Application of vascular secretion factor in preparation of biomarker for detecting non-alcoholic steatohepatitis
CN114525330A (en) * 2021-04-08 2022-05-24 四川大学华西第二医院 Marker group for evaluating non-alcoholic steatohepatitis
CN114941031A (en) * 2022-01-28 2022-08-26 中国医学科学院北京协和医院 Early gastric cancer prognosis differential gene and recurrence prediction model
CN114934116A (en) * 2022-01-28 2022-08-23 中国医学科学院北京协和医院 Early gastric cancer prognosis differential gene and recurrence prediction model
CN116024338A (en) * 2022-09-27 2023-04-28 上海爱谱蒂康生物科技有限公司 Biomarker combination and application thereof in predicting effect of drug on treating gastric cancer

Similar Documents

Publication Publication Date Title
WO2013147330A1 (en) Prognosis prediction system of locally advanced gastric cancer
Yu et al. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy
JP5486719B2 (en) Gene expression markers for prognosis of colorectal cancer
US20120245235A1 (en) Classification of cancers
Nishidate et al. Genome-wide gene-expression profiles of breast-cancer cells purified with laser microbeam microdissection: identification of genes associated with progression and metastasis
KR101287600B1 (en) Prognostic Genes for Early Breast Cancer and Prognostic Model for Early Breast Cancer Patients
US20100292933A1 (en) Methods, systems, and compositions for classification, prognosis, and diagnosis of cancers
WO2014163444A1 (en) System for predicting prognosis of locally advanced gastric cancer
EP2140020A2 (en) Gene expression markers for prediction of patient response to chemotherapy
US20100267575A1 (en) Gene array technique for predicting response in inflammatory bowel diseases
WO2002059271A2 (en) Gene expression profiles in breast tissue
KR20080065476A (en) A method of predicting risk of lung cancer recurrence in a patient after lung cancer treatment or a lung cancer patient, a method of preparing a report on the risk of lung cancer recurrence in a patient after lung cancer treatment or a lung cancer patient and a report prepared by the same, a composition, kit and microarray for diagnosing the risk of lung cancer recurrence in a patient after lung cancer treatment or a lung cancer patient
WO2009026128A2 (en) Gene expression markers of recurrence risk in cancer patients after chemotherapy
WO2018169145A1 (en) System for predicting post-surgery prognosis or anticancer drug compatibility of advanced gastric cancer patients
KR20070084488A (en) Methods and systems for prognosis and treatment of solid tumors
KR101618950B1 (en) Composition for screening skin irritant and method for screening skin irritant using the same
WO2021086014A1 (en) Cxcl13 marker for predicting immunotherapy responsiveness in lung cancer patient and use thereof
US20210079479A1 (en) Compostions and methods for diagnosing lung cancers using gene expression profiles
WO2016064231A1 (en) Method for predicting sensitivity to vascular endothelial growth factor receptor inhibitor
KR101725985B1 (en) Prognostic Genes for Early Breast Cancer and Prognostic Model for Early Breast Cancer Patients
US20090297506A1 (en) Classification of cancer
Wang et al. Expression profile analysis for epithelial-mesenchymal transition of breast cancer cell line DKTA based on microarray data
WO2018074865A2 (en) Composition and method for breast cancer prognosis prediction
Lu et al. Identification of aberrantly expressed lncRNAs and ceRNA networks in Multiple Myeloma: a combined high-throughput sequencing and microarray analysis
JP5299885B2 (en) Genes related to carcinogenesis / recurrence of HCV positive hepatocellular carcinoma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872844

Country of ref document: EP

Kind code of ref document: A1