WO2013147312A1 - Method for manufacturing optical member equipped with adhesive - Google Patents

Method for manufacturing optical member equipped with adhesive Download PDF

Info

Publication number
WO2013147312A1
WO2013147312A1 PCT/JP2013/060139 JP2013060139W WO2013147312A1 WO 2013147312 A1 WO2013147312 A1 WO 2013147312A1 JP 2013060139 W JP2013060139 W JP 2013060139W WO 2013147312 A1 WO2013147312 A1 WO 2013147312A1
Authority
WO
WIPO (PCT)
Prior art keywords
release film
pressure
sensitive adhesive
adhesive layer
film
Prior art date
Application number
PCT/JP2013/060139
Other languages
French (fr)
Japanese (ja)
Inventor
柱烈 張
眞求 李
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020147028668A priority Critical patent/KR101738741B1/en
Priority to CN201380017184.6A priority patent/CN104204875B/en
Publication of WO2013147312A1 publication Critical patent/WO2013147312A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a method for producing an optical member with an adhesive which is suitably used for producing a liquid crystal panel or a liquid crystal display device. Specifically, the present invention relates to a method for producing an optical member with an adhesive by peeling off one release film from an adhesive sheet provided with release films on both sides of the adhesive layer and sticking the adhesive layer to an optical member. .
  • a liquid crystal panel constituting a liquid crystal display device has a configuration in which an optical member such as a polarizing plate or a retardation film is bonded to a liquid crystal cell via an adhesive layer.
  • the optical member for bonding to the liquid crystal cell is produced as an optical member with an adhesive having a structure in which an adhesive layer is formed on the bonding surface to the liquid crystal cell and the surface is temporarily protected with a release film.
  • Such an optical member with an adhesive peels off one release film from an adhesive sheet provided with a peelable film (release film) on both sides of the adhesive layer, and attaches the adhesive layer to the optical member. Often manufactured by a method.
  • the adhesive sheet is provided with a release film on the front and back of the adhesive layer, respectively, and has a structure like a double-sided adhesive tape used for general stationery or work, but a general double-sided adhesive tape is While the pressure-sensitive adhesive layer and the release film correspond to one sheet: one sheet, the pressure-sensitive adhesive sheet is different in that a release film is provided on both surfaces of the pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive here is sometimes referred to as a pressure-sensitive adhesive
  • the release film is sometimes referred to as a separator or a separate film. If the peeling force from the adhesive layer of the release film that is applied to both sides of the adhesive sheet is the same, pulling both release films outward will cause the part with the adhesive layer to be attached to one release film. The other part of the pressure-sensitive adhesive layer is often peeled off along with the other release film.
  • This phenomenon is also commonly referred to as “crying farewell”, and when crying farewell occurs, a uniform pressure-sensitive adhesive layer cannot be formed on the optical member. Therefore, conventionally, as a pressure-sensitive adhesive sheet, a release film that exhibits a relatively small release force (also referred to as “light release film”) and a release film that exhibits a relatively large release force (“heavy release”).
  • the film is also referred to as “film”) on both sides of the pressure-sensitive adhesive layer.
  • the release film is produced by applying a release agent such as silicone oil to a film made of a transparent resin such as polyethylene terephthalate.
  • Patent Document 1 discloses an adhesive sheet for attaching an adhesive layer to an optical member such as a polarizing plate (referred to as “liquid crystal display member” in this document). Discloses "adhesive transfer tape").
  • the pressure-sensitive adhesive layer is composed of two or more layers having different adhesive forces, and the pressure-sensitive adhesive layer is sandwiched between two release films. And it is also disclosed that a difference is given to the peeling force of the two release films with respect to the pressure-sensitive adhesive layer so that the ratio between the two is within a certain range.
  • Patent Document 2 in the pressure-sensitive adhesive sheet with a release film provided with a release film on both sides of the pressure-sensitive adhesive layer, at least one of the release films is composed of a polyolefin film, It is disclosed that the difference in peel force between the release film and the pressure-sensitive adhesive layer is 0.1 N / 25 mm or more.
  • Patent Document 3 in a pressure-sensitive adhesive sheet with a release film which is provided with a release film on both sides of the same pressure-sensitive adhesive layer, a portion having no pressure-sensitive adhesive layer of 1 to 50 mm at both ends in the width direction while providing, it is disclosed that the difference of the peeling force with respect to the adhesive layer of a peeling film of both surfaces will be 10 mN / 25 mm or more, ie, 0.01 N / 25 mm or more.
  • Patent Document 4 discloses a release film in which a pressure-sensitive adhesive layer is provided on one side of a release film to form a roll, and the pressure-sensitive adhesive layer contacts the other side of the release film.
  • the surface roughness of both surfaces in contact with the pressure-sensitive adhesive layer of the release film is set to 0.1 ⁇ m or less, and the difference in peeling force with respect to the pressure-sensitive adhesive layer on both sides of the release film is 10 mN / 25 mm or more, that is, 0 It is disclosed that it is set to 0.01 N / 25 mm or more.
  • Patent Document 5 discloses a conveyance turning roll on an adhesive sheet in which a light release film is laminated on one side of an adhesive layer and a heavy release film is laminated on the other side. Is applied to peel off the light release film while changing the transport direction of the light release film and / or the transport direction of the laminate of the pressure-sensitive adhesive layer and the heavy release film after peeling.
  • the method of providing only one release film and providing a difference in the peel force with respect to the pressure-sensitive adhesive layer on both sides has a difference in peel force depending on the type of pressure-sensitive adhesive. It is necessary to change the mold release treatment applied to both sides of the release film every time, and to design the release force corresponding to the adhesive.
  • the LCD panel production line could be stopped.
  • the present invention employs a pressure-sensitive adhesive sheet in which release films are provided on both sides of the pressure-sensitive adhesive layer, the two release films used therein are virtually the same, and both pressure-sensitive adhesives are used. If there is no need to make a difference in the peel force to the layer, it is considered that the design management of the pressure-sensitive adhesive sheet can be facilitated and the cost can be reduced. Even in this state, one peeling film can be removed from the pressure-sensitive adhesive layer without causing so-called tearing. As a result of repeated research from the viewpoint of whether or not it can be peeled off, the present invention has been completed.
  • the object of the present invention is to use a pressure-sensitive adhesive sheet provided with release films on both sides of the pressure-sensitive adhesive layer, without depending on the peeling force of each release film, and without causing so-called crying easily.
  • An object of the present invention is to provide a method for producing an optical member with an adhesive by peeling the release film from the pressure-sensitive adhesive layer, and bonding the pressure-sensitive adhesive layer exposed after peeling off the release film to the optical member.
  • the peeling process which peels off the 1st peeling film from the adhesive sheet in which the 1st peeling film, the adhesive layer, and the 2nd peeling film are laminated
  • the peeling force between the first release film and the pressure-sensitive adhesive layer in the pressure-sensitive adhesive sheet and the peel force between the second release film and the pressure-sensitive adhesive layer are each 0.3 m / When tested at a peel rate of minutes, both are above 0.02 N / 25 mm and below 0.15 N / 25 mm, and the difference between the two peel forces is less than 0.01 N / 25 mm,
  • the process is the first At the peeling point where the release film is peeled off from the adhesive layer, the first release film is moved straight so as not to bend, and the second release film is subjected to a pressing force from the opposite side of the surface to which the adhesive layer is attached.
  • the first release film can be peeled off from the pressure-sensitive adhesive layer without causing crying separation, so that it can be used effectively even when a light diffusion pressure-sensitive adhesive layer is bonded to an optical member. it can.
  • a typical example of the optical member to which the pressure-sensitive adhesive layer is bonded is a polarizing plate.
  • the optical member with the pressure-sensitive adhesive produced by these methods peels off the second release film existing on the pressure-sensitive adhesive layer, and pastes the pressure-sensitive adhesive layer exposed thereby to the liquid crystal cell, thereby producing a liquid crystal panel. It can be.
  • the first release film and the second release film may be substantially the same
  • the first release film is peeled off from the adhesive layer at the release point.
  • the film is moved straight so as not to bend, and the second release film is different from the straight direction of the first release film so that no pressing force is applied from the opposite side of the surface on which the adhesive layer is adhered. It is transported in the direction.
  • the pressure-sensitive adhesive layer is naturally peeled off from the first release film without depending on the release force from the pressure-sensitive adhesive layer of the first release film and the second release film, and the second release film. At the same time, it is transferred in the conveying direction. For this reason, the so-called crying separation that the adhesive layer partially remains on the first release film is less likely to occur.
  • the pressure-sensitive adhesive layer is naturally peeled off from the first release film, there is no need to select a combination of the first release film and the second release film in relation to the pressure-sensitive adhesive layer, The design management of the adhesive sheet becomes easy.
  • the pressure-sensitive adhesive layer peeled off from the first release film and left on the second release film is in a good state with no defects, the exposed pressure-sensitive adhesive layer is bonded to the next layer.
  • adhering to the optical member in the process it is possible to produce an optical film with a good quality adhesive without a defect in the pressure sensitive adhesive layer. Therefore, according to this method, the production cost of the optical member with adhesive and the liquid crystal panel can be reduced.
  • FIG. 1 is a cross-sectional view schematically showing a layer structure of each member until an optical member with an adhesive is obtained.
  • FIG. 2 is a side view schematically showing an arrangement example of apparatuses when the pressure-sensitive adhesive sheet is produced in a continuous line.
  • FIG. 3 is a side view schematically showing an arrangement example of apparatuses when an optical member with an adhesive is manufactured in a continuous line.
  • FIG. 4 is a side view schematically showing some examples in which the peeling process does not satisfy the requirements defined in the present invention and thus easily causes tearing.
  • FIG. 5 is a cross-sectional view schematically showing a state in which the peeling force of a release film in an example described later is measured.
  • FIG. 6 is a cross-sectional view schematically showing a state of a high-speed peel test in Examples described later.
  • FIG. 7 is a cross-sectional view schematically showing a state of a hand peeling test in Examples described later.
  • FIG. 1 is a schematic cross-sectional view showing the layer structure of each member until an optical member with an adhesive is obtained by the method of the present invention.
  • a first release film 2 an adhesive layer 1, and a second release film 3 are laminated in this order.
  • An agent sheet 5 is prepared.
  • the first release film 2 is peeled off from the pressure-sensitive adhesive sheet 5, and as shown in the same (B), a laminate of the second release film 3 and the pressure-sensitive adhesive layer 1, which is a pressure-sensitive adhesive layer
  • Let 1 be the pressure-sensitive adhesive sheet 10 before bonding exposed.
  • FIG. 1 shows an example in which the optical member 20 is a polarizing plate in which transparent protective films 16 and 17 are bonded to both surfaces of a polarizing film 15.
  • the optical member can be a retardation film or the like, and the method of the present invention can be applied to various members generally having optical characteristics and provided with an adhesive layer. The process until the first release film 2 is peeled from the pressure-sensitive adhesive sheet 5 shown in FIG.
  • the peeling force of each is in the range of more than 0.02 N / 25 mm and less than 0.15 N / 25 mm, and the difference between the two peeling forces is less than 0.01 N / 25 mm.
  • the peeling force here is a value when tested at a peeling speed of 0.3 m / min.
  • a specific peeling force test method is as shown in the examples with reference to FIG. That is, one release film side (the second release film 3 side in FIG. 5) of the adhesive sheet cut to a width of 25 mm is attached to a glass plate via a double-sided adhesive tape, and in this state, the adhesive sheet is attached to the glass plate. Grasp one end of the unbonded release film (first release film 2 in FIG.
  • the release films 2 and 3 and the pressure-sensitive adhesive layer 1 cause delamination (delamination), and the so-called tunneling phenomenon in which the release films 2 and 3 are lifted from the pressure-sensitive adhesive layer 1 easily occurs.
  • the release agent contains silicone oil
  • the result of applying a lot of release agent containing the silicone oil is that When the pressure-sensitive adhesive sheet is rolled into a roll, the release agent applied to one release film is secondarily transferred to the surface of the other release film (so-called back transfer). May also occur.
  • the difference of the peeling force from the adhesive layer 1 of the 1st peeling film 2 and the peeling force from the adhesive layer 1 of the 2nd peeling film 3 is as small as less than 0.01 N / 25mm.
  • the state in which there is no difference between the two peeling forces, that is, the first release film and the second release film may be substantially the same. In this case, since the first release film 2 and the second release film 3 manufactured under the same conditions can be used, the manufacturing process can be shortened and the manufacturing cost can be reduced.
  • FIG. 2 is a schematic side view showing an arrangement example of apparatuses when the pressure-sensitive adhesive sheet is produced in a continuous line.
  • a pressure-sensitive adhesive layer is formed on the surface of the second release film 3, the first release film 2 is bonded to the surface of the pressure-sensitive adhesive layer, and a pressure-sensitive adhesive sheet 5 is manufactured and wound up.
  • the roll 35 is wound around.
  • the second release film 3 wound around the feeding roll 30 is fed from there, and the pressure-sensitive adhesive composition supplied from the coating machine 31 is applied to the release treatment surface. .
  • the applied pressure-sensitive adhesive composition is dried by a dryer 32 to become a pressure-sensitive adhesive layer, and a laminate 10 of the second release film 3 and the pressure-sensitive adhesive layer.
  • FIG. The obtained pressure-sensitive adhesive sheet 5 is wound around a winding roll 35 and stored.
  • the curved arrow means the rotation direction of the roll.
  • the pressure-sensitive adhesive sheet 5 generally has a coating process for coating the second release film 3 with the pressure-sensitive adhesive composition, a drying process for drying the pressure-sensitive adhesive composition to form a pressure-sensitive adhesive layer, and It is manufactured through a bonding step in which the first release film is bonded to the pressure-sensitive adhesive layer.
  • the laminate 10 of the second release film 3 and the pressure-sensitive adhesive layer obtained through the coating process and the drying process is an intermediate for producing a pressure-sensitive adhesive sheet.
  • a film having a different peeling force with respect to the pressure-sensitive adhesive layer was often used. .
  • the heavy release film having a relatively large release force is used as the second release film 3 in FIG. 2, an adhesive layer is provided on the release treatment surface, and the light release film having a relatively low release force is shown in FIG.
  • the release treatment surface of the light release film (first release film) 2 is bonded to the pressure-sensitive adhesive layer provided on the heavy release film (second release film) 3. It was manufactured by doing.
  • the pressure-sensitive adhesive composition is applied to the release treatment surface of the second release film 3 in the coating process, and the first pressure-sensitive adhesive layer is then peeled off in the subsequent bonding process.
  • the first release film 2 and the second release film 3 may be reversed.
  • the pressure-sensitive adhesive sheet 5 used in the present invention is, as shown in FIG. 1, between two release films 2 and 3 having a difference in peel strength with respect to the pressure-sensitive adhesive layer 1 of less than 0.01 N / 25 mm. As long as the adhesive layer 1 is sandwiched, one of the two release films is the first release film 2 and the other is the second release film 3. The method of the invention may be applied.
  • the pressure-sensitive adhesive composition can be applied by a known method, for example, a die coater, a gravure roll coater, a comma coater, or the like. After the application of the pressure-sensitive adhesive composition, the pressure-sensitive adhesive layer is formed by passing through a drying furnace 32 as shown in FIG. The thickness of the pressure-sensitive adhesive layer is usually about 1 to 100 ⁇ m.
  • the first release film 2 and the second release film 3 are generally composed of a resin film that has been subjected to a release treatment.
  • polyester resins such as polyethylene naphthalate, polyethylene isophthalate, and polybutylene terephthalate, polyolefin resins, polyamide resins, cellulose resins, polycarbonate resins, and polyphenylene sulfide.
  • Resins, polyvinyl chloride resins, polyvinylidene chloride resins, various liquid crystalline polymers, various biodegradable resins, and the like can be used.
  • polyethylene terephthalate or polyethylene naphthalate is preferable from the viewpoint of heat resistance and ease of subsequent release treatment, and polyethylene terephthalate is most practical in view of cost.
  • the above resin may be unstretched or uniaxially or biaxially stretched. Of these, a uniaxial or biaxially stretched film having a maximum strain of the orientation main axis of 10 degrees or less is preferable.
  • the release film a single film may be used, or a laminated film in which a plurality of single films are laminated may be used.
  • the thickness of the release film can be, for example, about 5 to 200 ⁇ m.
  • the mold release treatment applied to the surface of the release film can be performed by a method of applying a mold release agent to the film surface. Any release agent can be used, but a silicone release agent having excellent release characteristics is particularly preferable.
  • silicone release agents include addition-reactive silicone release agents that cure at relatively low temperatures, acrylic silicone release agents that do not apply heat, and UV-curable epoxy group-containing silicone release agents. Can be used.
  • the peeling force can be adjusted by the thickness of the release agent, the presence or absence of the oligomer added to the release agent, and the amount thereof.
  • the coating amount of the release agent is 0.01-3 g / m 2 It is preferable to set the degree.
  • the coating amount of the release agent is 0.01 g / m 2 If it is less than 1, the peeling force of the release film increases, but the release performance is insufficient and the release film is difficult to peel from the pressure-sensitive adhesive layer. On the other hand, the coating amount of the release agent is 3 g / m.
  • the pressure-sensitive adhesive layer 1 constituting the pressure-sensitive adhesive sheet 5 shown in FIG. 1 is a pressure-sensitive adhesive whose base polymer is an acrylic polymer, a silicone polymer, a polyester polymer, a polyurethane polymer, a polyether polymer, or the like. It can be formed using the composition.
  • an acrylic pressure-sensitive adhesive based on an acrylic polymer (acrylic resin) is preferably used.
  • the acrylic resin constituting the acrylic pressure-sensitive adhesive is generally composed of a structural unit derived from (meth) acrylic acid ester as a main component, such as a heterocyclic group including a free carboxyl group, a hydroxyl group, an amino group, and an epoxy ring.
  • An acrylic copolymer having a structural unit derived from an unsaturated monomer having a crosslinkable polar functional group is useful.
  • the unsaturated monomer having a polar functional group is also preferably a (meth) acrylic acid compound.
  • the acrylic resin constituting the acrylic pressure-sensitive adhesive preferably has a glass transition temperature of 20 ° C. or lower, more preferably 0 ° C. or lower. Moreover, the thing whose weight average molecular weight of standard polystyrene conversion by a gel permeation chromatography (GPC) is 100,000 or more is preferable.
  • a crosslinking agent is mix
  • the crosslinking agent is a compound having at least two functional groups in the molecule that can react with polar functional groups constituting the acrylic resin to form a crosslinked structure. Specific examples include isocyanate compounds, epoxy compounds, metal chelate compounds, and aziridine compounds.
  • the pressure-sensitive adhesive composition containing an acrylic resin as a main component preferably contains a silane compound also called a silane coupling agent.
  • a silane compound Prior to blending the crosslinking agent, a silane compound may be blended in the pressure-sensitive adhesive composition.
  • an ionic compound can also be contained in an adhesive composition. Thereby, antistatic property is imparted to the pressure-sensitive adhesive layer 1.
  • the ionic compound for example, a compound having an imidazolium cation, a pyridinium cation, an ammonium cation, or the like can be used.
  • the pressure-sensitive adhesive layer can contain a light diffusing agent, whereby light diffusibility can be imparted to the pressure-sensitive adhesive layer itself.
  • the pressure-sensitive adhesive sheet containing a light-diffusing agent sandwiched between two release films is particularly prone to crying when one of the release films is peeled off.
  • the method of the present invention is effective when manufacturing an attached optical member.
  • the light diffusing agent is generally organic or inorganic fine particles, and the shape thereof is preferably spherical.
  • Organic fine particles are generally made of resin (polymer compound). Examples of resins that can be used as light diffusing agents include polyolefin resins such as polystyrene, polyethylene and polypropylene, acrylic resins such as polymethacrylate resins and polyacrylate resins.
  • the light diffusing agent may be a silicone resin or an acrylic resin (usually Fine particles comprising a methyl methacrylate resin) are preferred.
  • the light diffusing agent When a light diffusing agent is blended to impart light diffusibility, the light diffusing agent is 0.01 or more and 0.07 or less, more preferably 0.01 or more, between the acrylic resin constituting the pressure-sensitive adhesive composition. It preferably has a refractive index difference of 0.04 or less. When the difference in refractive index between the two is less than 0.01, a desired light diffusibility is not imparted to the resulting pressure-sensitive adhesive layer, and as a result, it becomes close to a transparent pressure-sensitive adhesive. On the other hand, if the difference in refractive index between the two becomes too large, light diffusibility is strongly developed, so that white luminance when the liquid crystal display device is viewed from the front is lowered.
  • components other than the light diffusing agent are mixed in a state dissolved in an organic solvent.
  • a light diffusing agent it can be prepared by dispersing the light diffusing agent in the mixed solution.
  • the pressure-sensitive adhesive composition is, for example, an acrylic resin dissolved in an organic solvent such as toluene or ethyl acetate, and a necessary component among a crosslinking agent, a silane compound, an ionic compound and a light diffusing agent, and further blended as desired.
  • the following components are dissolved or dispersed to prepare a solution having a solid content concentration of about 10 to 40% by weight.
  • the pressure-sensitive adhesive composition (solution) may further contain a crosslinking catalyst, a weathering stabilizer, a tackifier, a plasticizer, a softening agent, a dye, a pigment, and the like.
  • a crosslinking catalyst is blended with the crosslinking agent in the pressure-sensitive adhesive composition, the pressure-sensitive adhesive layer 1 can be prepared by aging in a short time. For this reason, in the obtained optical member with an adhesive or a liquid crystal display device using the same, floating or peeling occurs between the adhesive layer 1 and the optical member, or foaming occurs in the adhesive layer 1. Can be suppressed, and reworkability can be further improved.
  • FIG. 3 is a schematic side view showing an arrangement example of apparatuses when an optical member with an adhesive is produced in a continuous line.
  • the example of illustration peels off the 1st peeling film 2 from the adhesive sheet 5, and the adhesive layer 1 of the adhesive sheet 10 before bonding which is the laminated body of the 2nd peeling film 3 and the adhesive layer 1 obtained is obtained.
  • the optical member 25 with adhesive is bonded to the surface of the optical member 20, and the optical member 25 with pressure-sensitive adhesive thus obtained is wound up by a winding roll 42.
  • the straight arrow means the film conveyance direction
  • the curved arrow means the roll rotation direction.
  • the manufacturing method of the optical member 25 with an adhesive according to the present invention will be described with reference to FIG.
  • the pressure-sensitive adhesive sheet 5 wound around the feeding roll 36 is fed out therefrom.
  • the second peelable film 3 is the pressure-sensitive adhesive layer 1 and the laminated body of both, that is, the pressure-sensitive adhesive sheet 10 before being bonded to the optical member.
  • the first release film 2 is conveyed in a direction different from the straight direction.
  • a pressing force is not applied to the second release film 3 from the side opposite to the surface where the pressure-sensitive adhesive layer 1 is adhered.
  • the pressure-sensitive adhesive sheet 5 fed out from the feed-out roll 36 has the first release film 2 and the pressure-sensitive adhesive film 2 as shown in the enlarged sectional view A in FIG.
  • the adhesive layer 1 and the second release film 3 are laminated in this order, from which only the first release film 2 moves straight in the direction of the downstream tension roll 38 and is peeled off from the adhesive layer 1. It is.
  • the peeled first release film 2 passes through the downstream tension roll 38 and is then taken up by the take-up roll 39.
  • the pre-bonding pressure-sensitive adhesive sheet 10 which is a laminate of the second peelable film 3 and the pressure-sensitive adhesive layer 1 after peeling off the first peelable film 2, has another pressure roll 40 on the pressure-sensitive adhesive layer 1 side.
  • the process of peeling the 1st peeling film 2 from the adhesive sheet 5 is equivalent to the peeling process said by this invention, and the 2nd peeling film 3 and adhesion after peeling the 1st peeling film 2
  • the process of bonding the adhesive sheet 10 before bonding which is the laminated body of the agent layer 1 to the optical member 20 with the bonding roll 41 corresponds to the bonding process referred to in the present invention.
  • the tension is applied to the first peeling film 2 between the upstream tension roll 37 and the downstream tension roll 38, and the first peeling film 2 is straightened so as not to bend.
  • the tension at this time can be applied by a method of giving a difference in peripheral speed between the feeding roll 36 and the winding roll 39 or a method of changing the film transport direction using the tension roll as a support.
  • tension is applied to the first release film 2 by making the peripheral speed of the winding roll 39 faster than the peripheral speed of the feeding roll 36.
  • the transport direction of the film with the tension roll for example, as shown in FIG.
  • the speed at which the second release film 3 is peeled off varies depending on productivity, workability, surface activation treatment applied to the pressure-sensitive adhesive layer 1 and the optical member 20 described later, and 3 to 50 m / min. It is preferable to set the degree.
  • the peeling process is performed in the straight section L shown in FIG. 3, but the peeling point P at which the first release film 2 is peeled off from the pressure-sensitive adhesive layer 1 is due to changes in manufacturing conditions such as fluctuations in tension within the range of the direct feed section L.
  • the separation point P is provided with sensors for detecting the separation point on the upstream side and the downstream side of the separation point in the straight section L, and the separation surface is detected by these sensors, the feeding roll 36 and the winding roll 39 are provided.
  • the tension applied to the first release film 2 is appropriately adjusted by adjusting the peripheral speed of the belt or by adjusting the distance between the upstream tension roll 37 and the downstream tension roll 38, and the peeling point P is set between the sensors. Can be held.
  • the sensor to be used can be appropriately selected from known sensors such as an ultrasonic sensor and an optical sensor as long as it can detect the peeling point.
  • the tension applied to keep the first release film 2 conveyed in the straight direction can be measured and controlled by a known tension controller.
  • FIG. 4 is a side view schematically showing some examples in which the above-described peeling process does not satisfy the requirements defined in the present invention, and thus easily causes tearing, and enlarges the straight section L and its peripheral portion in FIG. As shown.
  • FIG. 4 shows the conveyance direction of a film.
  • FIG. 4A shows a configuration of a production line in which tension is applied to the second release film 3 so that the second release film 3 moves straight, and the first release film 2 is peeled off without applying a pressing force.
  • the tension is applied to the second release film 3, so that the attachment of the pressure-sensitive adhesive layer 1 occurs in the first release film 2.
  • FIG. 4B shows a configuration of a production line in which the film is peeled off under the same stress applied to the first release film 2 and the second release film 3. In this form, since there is no difference in the tension applied to the first release film 2 and the second release film 3, the adhesive layer 1 tears apart.
  • FIG. 4A shows a configuration of a production line in which tension is applied to the second release film 3 so that the second release film 3 moves straight, and the first release film 2 is peeled off without applying a pressing force.
  • the tension is applied to the second release film 3, so that the attachment of the pressure-sensitive adhesive layer 1 occurs in the first release
  • 4C shows a production line in which the second release film 3 and the pressure-sensitive adhesive layer 1 are peeled off using a support, that is, the second release film 3 is peeled off by applying a pressing force. It is a configuration. In this form, since tension is also applied to the second release film 3 by the support, tearing occurs in the pressure-sensitive adhesive layer 1. Thus, in the peeling form which does not satisfy the requirements prescribed
  • the method for producing an optical member with an adhesive applies a tension larger than the peeling force of the second release film 3 to the first release film 2, and conveys the first release film 2.
  • the second release film 3 is peeled off so that a pressing force is not applied in a direction different from the direction.
  • tearing occurs regardless of the magnitude relationship between the release force of the first release film 2 and the release force of the second release film 3.
  • the 1st peeling film 2 can be peeled from the adhesive sheet 5 without this.
  • the same peel force can be used for the first release film 2 and the second release film 3, it is not necessary to set the peel force within a predetermined range as in the prior art. Thereby, there is no need to select a release film or a pressure-sensitive adhesive layer so that the peeling force is within a predetermined range, design management is facilitated, and the manufacturing cost of the pressure-sensitive adhesive sheet 5 and the optical member with the pressure-sensitive adhesive is reduced. be able to.
  • the bonding step the optical member 20 is bonded to the surface of the pressure-sensitive adhesive layer 1 in the pressure-sensitive adhesive sheet 10 before bonding, which is a laminate of the second release film 3 and the pressure-sensitive adhesive layer 1 that has passed through the peeling step.
  • the pressure-sensitive adhesive sheet 10 before bonding is a continuous bonding process, and the pressure-sensitive adhesive layer 1 side is laminated on the surface of the optical member 20 fed from the feeding roll 40, and the bonding pressure is applied by the bonding roll 41. And paste.
  • stacked on the optical member 20 in this order can be manufactured.
  • the produced polarizing plate 25 with the pressure-sensitive adhesive is wound around the winding roll 42 and stored.
  • the corona discharge treatment is a treatment that activates the surface of the resin film or the pressure-sensitive adhesive layer that is discharged by applying a high voltage between the electrodes.
  • the output of the corona discharge treatment is preferably set to about 200 to 1,000 W.
  • the output of the corona discharge treatment is 200 W or more, the effect of this treatment becomes remarkable, and the adhesive force between the pressure-sensitive adhesive layer 1 and the transparent resin film 17 is improved.
  • production of the dust which is easy to produce by this process is suppressed as the output of a corona discharge process is 1,000 W or less.
  • the optical member provided with the pressure-sensitive adhesive layer in the present invention has optical characteristics, and typical examples thereof include a polarizing plate and a retardation film.
  • a polarizing plate is preferably used.
  • a polarizing plate is an optical member having a function of emitting polarized light with respect to incident light such as natural light.
  • the polarizing plate absorbs linearly polarized light having a vibration surface in a certain direction and reflects linearly polarized light having a vibration surface in a certain direction, and reflects linearly polarized light having a vibration surface in a certain direction.
  • a polarization separating plate showing the property of transmitting linearly polarized light having a vibration plane orthogonal to the polarizing plate
  • an elliptically polarizing plate in which a polarizing plate and a retardation film are laminated.
  • a linear polarizing plate is representative.
  • the linearly polarizing plate will be specifically described.
  • the linearly polarizing plate is simply referred to as a polarizing plate.
  • the polarizing plate has a structure in which the first transparent protective film 16 and the second transparent protective film 17 are bonded to both surfaces of the polarizing film 15, respectively, as shown in the schematic cross-sectional view of FIG.
  • the polarizing film 15 can be composed of a uniaxially stretched polyvinyl alcohol resin film in which a dichroic dye such as iodine or a dichroic dye is adsorbed and oriented.
  • a polarizing film is generally produced by subjecting a polyvinyl alcohol resin film to uniaxial stretching, dyeing with a dichroic dye, and boric acid treatment.
  • the thickness of the polarizing film 15 can be set to about 2 to 40 ⁇ m, for example.
  • a saponified polyvinyl acetate resin can be used as the polyvinyl alcohol resin.
  • the polyvinyl acetate resin can be a copolymer of vinyl acetate, which is a homopolymer of vinyl acetate, or a copolymer of vinyl acetate and another monomer copolymerizable therewith.
  • examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the transparent protective films 16 and 17 are bonded on both surfaces, respectively.
  • These transparent protective films 16 and 17 are, for example, acrylic resins such as methyl methacrylate resins, olefin resins, polyvinyl chloride resins, cellulose resins, styrene resins, acrylonitrile / butadiene / styrene copolymers.
  • acrylic resins such as methyl methacrylate resins, olefin resins, polyvinyl chloride resins, cellulose resins, styrene resins, acrylonitrile / butadiene / styrene copolymers.
  • Resin acrylonitrile / styrene copolymer resin, polyvinyl acetate resin, polyvinylidene chloride resin, polyamide resin, polyacetal resin, polycarbonate resin, modified polyphenylene ether resin, polyester resin (for example, polybutylene terephthalate, Polyethylene terephthalate, etc.), polysulfone resin, polyethersulfone resin, polyarylate resin, polyamideimide resin, polyimide resin, epoxy resin, oxetane resin, etc.
  • These transparent resins can contain additives as long as transparency and adhesiveness with the polarizing film 15 are not impaired.
  • the transparent protective films 16 and 17 can have a thickness of about 5 to 200 ⁇ m, preferably 20 to 120 ⁇ m.
  • the transparent protective film bonded to one surface of the polarizing film, in particular, the second transparent protective film 17 on the liquid crystal cell side when the pressure-sensitive adhesive layer 1 is provided to form a liquid crystal panel is stretched and positioned.
  • a phase difference can be given.
  • a film provided with a retardation that is, a retardation film
  • a film having an appropriate retardation value may be selected depending on the mode of the liquid crystal cell to which the polarizing plate is applied. For example, for a vertical alignment (VA) mode liquid crystal cell, a polymer film having positive intrinsic birefringence is uniaxially stretched, and the refractive index ellipsoid is n.
  • VA vertical alignment
  • a refractive index ellipsoid is n. x ⁇ n y ⁇ n z A generally non-oriented film having the following relationship is preferably used.
  • n x Is the refractive index in the in-plane slow axis (x-axis) direction of the film
  • n y Is the refractive index in the in-plane fast axis (y-axis: axis perpendicular to the slow axis in the plane)
  • n z Is the refractive index in the thickness (z-axis) direction.
  • a biaxially stretched biaxial retardation film is particularly preferably used as the second transparent protective film 17.
  • the Nz coefficient that is a measure of the biaxiality is defined by the following equation (1).
  • the in-plane retardation value Re and the thickness direction retardation value Rth when the film thickness is d are defined by the following equations (2) and (3), respectively.
  • Nz (n x -N z ) / (N x -N y (1)
  • Re (n x -N y ) ⁇ d (2)
  • Rth [(n x + N y ) / 2-n z ] Xd (3)
  • the relationship between the Nz coefficient, the in-plane retardation value Re, and the thickness direction retardation value Rth can be expressed by the following equation (4).
  • the in-plane retardation value Re is preferably in the range of 30 to 300 nm, particularly in the range of 50 to 260 nm.
  • the Nz coefficient is preferably in the range of 1.1 to 7, and more preferably in the range of 1.4 to 5. From these ranges, the value of the optical characteristic may be appropriately selected according to the viewing angle characteristic required for the applied liquid crystal display device.
  • the first transparent protective film 16 on the side far from the liquid crystal cell is subjected to a surface treatment selected from hard coat treatment, antistatic treatment, antireflection treatment, antifouling treatment, antiglare treatment and the like.
  • the polarizing plate 20 is obtained by bonding the first transparent protective film 16 and the second transparent protective film 17 to the polarizing film 15 described above via an adhesive, respectively.
  • the adhesive used for the bonding is usually made of a transparent resin, and an aqueous adhesive such as an aqueous solution of a polyvinyl alcohol resin can be used, or an ultraviolet curable adhesive that is cured by irradiation with ultraviolet rays is used. You can also The adhesive that forms the adhesive layer provided on both surfaces of the polarizing film 15 may be the same or different.
  • the optical member with an adhesive produced according to the present invention can be used as a constituent member of a liquid crystal panel.
  • It is a liquid crystal panel.
  • the liquid crystal panel is composed of a liquid crystal cell, a front side polarizing plate disposed on the viewing side of the liquid crystal cell, and a back side polarizing plate disposed on the side opposite to the viewing side of the liquid crystal cell. It becomes a member.
  • the liquid crystal display device includes a liquid crystal panel, a light diffusing plate and a backlight sequentially arranged on the side opposite to the viewing side.
  • the liquid crystal panel is disposed so that the back side polarizing plate is on the backlight side.
  • the back side means the backlight side when the liquid crystal panel is mounted on the liquid crystal display device, and the viewing side (front side) is opposite to the backlight when the liquid crystal panel is mounted on the liquid crystal display device. It means the side where the person who sees the display device is present.
  • the pressure-sensitive adhesive-coated polarizing plate produced according to the present invention can be used for the front side polarizing plate 25 or the back side polarizing plate.
  • a liquid crystal cell is an element that displays an image by electrically controlling a cell in which a liquid crystal material is sealed between glass substrates.
  • a known mode such as a VA mode, an IPS mode, or a liquid crystal driving mode using a blue phase liquid crystal can be employed.
  • the adhesive-attached polarizing plate 25 is bonded to the liquid crystal cell, the second release film 3 is peeled off from the adhesive layer 1, and the surface of the adhesive layer 1 exposed thereby is bonded to the surface of the liquid crystal cell.
  • the polarizing plate with an adhesive 25 may be rolled out into a sheet and pasted into a liquid crystal cell by a roll-to-cell method, or stored in a sheet-cut state. It is also possible to paste the paste on the liquid crystal cell by the sheet-to-cell method.
  • the backlight is a device for supplying display light to the liquid crystal cell.
  • the backlight examples include an edge light type and a direct type.
  • the edge-light type backlight is composed of a light guide plate and a light source such as a cold cathode tube or an LED arranged on the side thereof, and light from the light source irradiates the liquid crystal panel through the light guide plate.
  • the direct type backlight is composed of a plurality of light sources arranged on the back side of the liquid crystal panel, and light from the light source irradiates the liquid crystal panel through the light diffusion plate. The type of the backlight can be appropriately selected and used according to the application of the liquid crystal display device.
  • the light diffusing plate disposed between the liquid crystal panel and the backlight is an optical member having a function of diffusing light from the backlight and supplying uniformed light to the liquid crystal panel.
  • the light diffusing plate include those obtained by dispersing particles as a light diffusing agent in a thermoplastic resin and imparting light diffusibility, those obtained by forming irregularities on the surface of the thermoplastic resin film and imparting light diffusibility, For example, a coating layer of a resin composition in which particles are dispersed is provided on the surface of a thermoplastic resin film to impart light diffusibility.
  • the light diffusion plate usually has a thickness of about 0.1 to 5 mm.
  • a brightness enhancement film such as a reflective polarizing film sold under the name “DBEF” from 3M (Sumitomo 3M Co., Ltd. in Japan)
  • DBEF reflective polarizing film sold under the name “DBEF” from 3M (Sumitomo 3M Co., Ltd. in Japan)
  • a sheet or film exhibiting other optical functionalities such as a light diffusion film different from the light diffusion plate disposed immediately above the backlight may be disposed.
  • a plurality of types or a plurality of sheets or films exhibiting other optical functionalities may be arranged as necessary.
  • Release film 3 Trade name “MRV (08)” sold by Mitsubishi Plastics, Inc.
  • Release film 4 Trade name “A71-T1” sold by Teijin Limited.
  • (B) Preparation of acrylic resin for pressure-sensitive adhesive In a reactor equipped with a cooling pipe, a nitrogen introduction pipe, a thermometer and a stirrer, 169.8 parts of ethyl acetate, 98.6 parts of butyl acrylate, 2-hydroxyethyl acrylate 1 A mixed solution of 0.0 part and 0.4 part of acrylic acid was charged, and the internal temperature was raised to 55 ° C. while substituting the air in the apparatus with nitrogen gas so as not to contain oxygen.
  • the obtained acrylic resin has a polystyrene-reduced weight average molecular weight Mw of 1.34 million by gel permeation chromatography, a ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of 1.7, and a refractive index. 1.46.
  • (C) Preparation of acrylic pressure-sensitive adhesive composition The following were used as an isocyanate-based crosslinking agent, a silane compound, an ionic compound serving as an antistatic agent, and a light diffusing agent to be blended in the pressure-sensitive adhesive composition.
  • Names enclosed in “” are product names.
  • FC-4400 tributylmethylammonium bis (trifluoromethanesulfonyl) imide having a structure of the formula (C 4 H 9 ) 3 (CH 3 ) N + (CF 3 SO 2 ) 2 N ⁇ , melting point 26 ° C., Sumitomo 3M Obtained from Co., Ltd.
  • Light diffusing agent MX-1000: spherical type acrylic resin fine particles having an average particle diameter of 10 ⁇ m and a refractive index of 1.49, obtained from Soken Chemical Co., Ltd.
  • the above-mentioned isocyanate crosslinking agent, silane compound, ionic compound, and light diffusing agent are added to the ethyl acetate solution of the acrylic resin prepared in (b) above (however, expressed as the solid content in the following) in the following proportions.
  • To prepare an acrylic pressure-sensitive adhesive composition 100 parts of (b) acrylic resin (solid content) Isocyanate-based crosslinking agent 0.16 parts Silane compound 0.5 part Ionic compound 1.0 part Light diffusing agent 35 parts (d) Preparation of adhesive sheet
  • the four types of release films shown in (a) above 1 is used as the first release film 2 and the second release film 3 in the combination shown in FIG.
  • Adhesive sheets A to D were prepared by aging for 10 days at a relative humidity of 65%.
  • the commercially available double-sided adhesive tape 45 is affixed on the surface of the 2nd peeling film 3, and also the opposite surface of the double-sided adhesive tape 45 is glass substrate 50 [ It was affixed to the product name “EAGLE XG” manufactured by Corning. In this state, using the autograph [product name “AGS-X” manufactured by Shimadzu Corporation], one end in the length direction (one side of 25 mm in width) of the first release film 2 is grasped, and the load range is 5,000 g.
  • the film is pulled from the pressure-sensitive adhesive layer 1 by pulling in the direction of 180 degrees (the direction along the film surface in the direction of the curved arrow in the figure), and the peeling force at that time is recorded on a chart. did. Since the data is not stable immediately after the start of measurement and immediately before the end of measurement, 20% of the data after the start of measurement and 20% of the data before the end of the measurement are cut and averaged only from the range of 60% of the middle portion where the data is relatively stable. The value was calculated and this was taken as the peel force. Each pressure-sensitive adhesive sheet A to D was tested, and the results are shown in Table 1.
  • the other adhesive sheets A, B, and D were judged that the non-peeling problem is unlikely to occur because the peel strength of the second release film is less than 0.15 N / 25 mm. “None”. As shown in Table 1, in the adhesive sheet D, tunneling occurred because the peel strength of the first release film 2 was as small as 0.02 N / 25 mm. Moreover, in the adhesive sheet C, since the peeling force of the 2nd peeling film 3 is as large as 0.15N / 25mm, when peeling off the 2nd peeling film just before bonding to a liquid crystal cell, the problem of unpeeling There is a high possibility of waking up.
  • Example 1 High-speed peeling test A test piece having a length of 500 mm and a width of 25 mm was cut from the pressure-sensitive adhesive sheet A using a super cutter. Then, as shown in FIG.
  • a commercially available double-sided adhesive tape 45 having a thickness of about 0.1 mm is attached to the surface of the first release film 2, and further using a hand roller, The opposite surface of the double-sided pressure-sensitive adhesive tape 45 was attached to a glass substrate 50 (trade name “EAGLE XG” manufactured by Corning).
  • a peel tester [CHUNG BUK TECHNOLOGY CO. Manufactured product name “SSA-034-SD (Double Type)”, holding one end in the length direction (one side of 25 mm in width) of the second release film 3, setting the load range to 5,000 g, and the release speed.
  • the second release film 3 was peeled off by pulling in the direction of the curved arrow in the figure while changing at three levels of 5 m / min, 10 m / min, and 15 m / min, and the peel force at that time was recorded on a chart. Since the data is not stable immediately after the start of measurement and immediately before the end of measurement, 20% of the data after the start of measurement and 20% of the data before the end of the measurement are cut and averaged only from the range of 60% of the middle portion where the data is relatively stable. The value was calculated and this was taken as the peel force. The results are shown in Table 2. This test is performed by fixing the first release film 2 in the horizontal direction and pulling the second release film 3 in a different direction, and on the opposite side of the adhesive layer of the second release film 3.
  • Level 3 All the pressure-sensitive adhesive remains on the first release film 2.
  • Level 2 More than 50% and less than 100% of the pressure-sensitive adhesive remains in the first release film 2.
  • Level 1 More than 0% and 50% or less of the pressure-sensitive adhesive remains in the first release film 2.
  • Level 0 No adhesive remains on the first release film 2 at all.
  • the pressure-sensitive adhesive sheet A was changed to the pressure-sensitive adhesive sheet B, and other tests were performed in the same manner as in Example 1, and the results are summarized in Table 2.
  • (A) High-speed peeling test Like (a) in Example 1, a test piece having a length of 500 mm and a width of 25 mm is cut from the pressure-sensitive adhesive sheet A. As shown in FIG.
  • the second release film 3 side is pasted on the glass substrate 50 through the wire, and the first release film 2 is changed so as to be pulled and peeled in the direction of the curved arrow in the figure, and the others are the same as in (a) of Example 1.
  • the test was conducted. The results are shown in Table 2. This test is performed by fixing the second release film 3 in the horizontal direction and pulling the first release film 2 in a different direction, and on the opposite side of the adhesive layer of the first release film 2. No special pressing force is applied from the roll. Therefore, relatively, the second release film 3 is made to go straight so as not to bend, and the first release film 2 is made so that no pressing force is applied from the opposite side of the pressure-sensitive adhesive layer.
  • this test corresponds to a state in which the sheet is conveyed in a direction different from the horizontal direction in which is located. That is, this test corresponds to the state shown in FIG. (B) Manual peeling test As in (b) of Example 1, a test piece having a length of 400 mm and a width of 25 mm is cut from the pressure-sensitive adhesive sheet A. As shown in FIG. In the state where one person grasps both ends of the film 3 with both left and right hands and pulls it in the direction of two straight arrows facing outward in the drawing, and gives some tension in that direction, the first release film 2 Another person grabbed one end of the film, pulled it up in the direction of the curved arrow in the figure, and peeled off the first release film 2.
  • Example 2 The results were evaluated according to Example 1 and are shown in Table 2. This test is also performed by fixing the second release film 3 in the horizontal direction and pulling the first release film 2 in a different direction, and opposite to the adhesive layer of the first release film 2. No special pressing force is applied from the side by rolls. Therefore, relatively, the second release film 3 is made to go straight so as not to bend, and the first release film 2 is made so that no pressing force is applied from the opposite side of the pressure-sensitive adhesive layer. This corresponds to a state in which the sheet is conveyed in a direction different from the horizontal direction in which is located.
  • the double-sided pressure-sensitive adhesive tape 45 having a thickness of about 0.1 mm was attached to only one end in the outer length direction (one end having a width of 25 mm) with a width of 25 mm, and the opposite surface of the double-sided adhesive tape 45 was further attached to the glass substrate 50.
  • the first release film 2 was changed so as to be pulled and peeled in the direction of the curved arrow in the figure, and the other experiments were performed in the same manner as in (a) of Comparative Example 3, and the results are shown in Table 2. Since this test is also performed in a state in which the first release film 2 and the second release film 3 are bent as shown in FIG. 6 (D), the state is close to FIG. 4 (B) described above. It is.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Adhesive Tapes (AREA)

Abstract

In the present invention, an optical member (25) equipped with an adhesive is manufactured by peeling a first peeling film (2) from an adhesive sheet (5) that is a laminate of the first peeling film (2), an adhesive layer (1), and a second peeling film (3) and affixing the exposed adhesive layer (1) to an optical member (20). The peeling forces used between the peeling films and the adhesive layer (1) both exceed 0.02 N/25 mm and are both less than 0.15 N/25 mm, with a mutual difference of less than 0.01 N/25 mm. At peel point P, the first peeling film (2) is made to advance straight ahead without bending, the second peeling film (3) and the adhesive layer (1) are carried in a direction different from the direction of advance of the first peeling film (2) so that no pressing force will be added from the opposite side of the adhesive layer, and the first peeling film (2) is peeled off.

Description

粘着剤付き光学部材の製造方法Method for producing optical member with adhesive
 本発明は、液晶パネルや液晶表示装置の製造に好適に用いられる粘着剤付き光学部材の製造方法に関するものである。詳しくは、粘着剤層の両面に剥離フィルムが設けられている粘着剤シートから一方の剥離フィルムを剥がしてその粘着剤層を光学部材に貼り、粘着剤付き光学部材を製造する方法に関するものである。 The present invention relates to a method for producing an optical member with an adhesive which is suitably used for producing a liquid crystal panel or a liquid crystal display device. Specifically, the present invention relates to a method for producing an optical member with an adhesive by peeling off one release film from an adhesive sheet provided with release films on both sides of the adhesive layer and sticking the adhesive layer to an optical member. .
 液晶表示装置を構成する液晶パネルは、一般に、偏光板や位相差フィルム等の光学部材が粘着剤層を介して液晶セルに貼合された構成を備えている。液晶セルに貼合するための光学部材は、液晶セルへの貼合面に粘着剤層を形成し、さらにその表面を剥離フィルムで仮着保護した構造の粘着剤付き光学部材として生産されるのが一般的である。
 このような粘着剤付き光学部材は、粘着剤層の両面に剥離可能なフィルム(剥離フィルム)が設けられている粘着剤シートから一方の剥離フィルムを剥がしてその粘着剤層を光学部材に貼り付ける方法で製造されることが多い。すなわち粘着剤シートは、剥離フィルムが粘着剤層の表裏にそれぞれ設けられており、一般の文房具や工作用として用いられる両面粘着テープのような構造をしているが、一般の両面粘着テープは、粘着剤層と剥離フィルムが1枚:1枚で対応しているのに対し、粘着剤シートは、粘着剤層の両面に剥離フィルムが設けられている点で相違する。この粘着剤シートから一方の剥離フィルムを剥がして、それにより露出した粘着剤面を光学部材の表面に貼合する方法で製造される粘着剤層が設けられた光学部材、すなわち粘着剤付き光学部材は、この状態で保管又は流通される。そして、液晶セルに貼合される直前にその粘着剤面を仮着保護している剥離フィルムを剥がし、それにより露出した粘着剤面が液晶セルに貼合される。なお、ここでいう粘着剤は、感圧接着剤と呼ばれることもあり、また剥離フィルムは、セパレータ又はセパレートフィルムと呼ばれることもある。
 粘着剤シートの両面に貼られる剥離フィルムの粘着剤層からの剥離力が同じ場合、両方の剥離フィルムを外側へ引っ張って剥がそうとすると、粘着剤層のある部分は一方の剥離フィルムに伴って引き剥がされ、粘着剤層の他の部分は他方の剥離フィルムに伴って引き剥がされることが多い。この現象は、俗に「泣き別れ」とも呼ばれ、泣き別れが発生すると、光学部材に均一な粘着剤層を形成することができない。
 そこで従来から、粘着剤シートとして、粘着剤層に対し、相対的に小さな剥離力を示す剥離フィルム(「軽剥離フィルム」とも呼ばれる)と、相対的に大きな剥離力を示す剥離フィルム(「重剥離フィルム」とも呼ばれる)とを、粘着剤層の両面にそれぞれ貼り合わせたものが採用されている。剥離フィルムは、ポリエチレンテレフタレートのような透明樹脂からなるフィルムに、シリコーンオイルのような離型剤を塗布することにより、製造される。そして、離型剤の組成及び/又は処理方法を変えることで、ある一つの粘着剤層に対する剥離力が異なるように設計された各種の剥離フィルムが市販されている。
 光学部材に粘着剤層を形成するために、剥離フィルム上に粘着剤層を設けた粘着剤シートを用いる手法について開示する先行技術文献の例を、以下に掲げる。特開2003−177241号公報(特許文献1)には、偏光板等の光学部材(この文献では「液晶ディスプレイ用部材」と表記)に粘着剤層を貼着するための粘着剤シート(この文献では「粘着剤転写テープ」と表記)が開示されている。この文献では、粘着剤層を粘着力の異なる2層以上で構成するとともに、その粘着剤層を2枚の剥離フィルムで挟んだ構造とすることが提案されている。そして、それら2枚の剥離フィルムの粘着剤層に対する剥離力に差を持たせ、両者の比が一定範囲となるようにすることも開示されている。
 特開2004−10647号公報(特許文献2)には、粘着剤層の両面に剥離フィルムを設けた剥離フィルム付き粘着剤シートにおいて、剥離フィルムの少なくとも一方をポリオレフィン系フィルムで構成するとともに、両面の剥離フィルムの粘着剤層に対する剥離力の差が0.1N/25mm以上となるようにすることが開示されている。特開2004−196939号公報(特許文献3)には、同じく粘着剤層の両面に剥離フィルムを設けた剥離フィルム付き粘着剤シートにおいて、幅方向両端に1~50mmの粘着剤層のない部分を設けるとともに、両面の剥離フィルムの粘着剤層に対する剥離力の差が、10mN/25mm以上、すなわち、0.01N/25mm以上となるようにすることが開示されている。また特開2005−154689号公報(特許文献4)には、剥離フィルムの片面に粘着剤層を設けた状態で巻物状とし、その剥離フィルムのもう一方の面に粘着剤層が接触する剥離フィルム付き粘着剤シートにおいて、剥離フィルムの粘着剤層に接する両面の表面粗さをともに0.1μm以下とするとともに、剥離フィルム両面の粘着剤層に対する剥離力の差が、10mN/25mm以上、すなわち0.01N/25mm以上となるようにすることが開示されている。
 さらに、国際公開第2010/038697号(特許文献5)には、粘着剤層の一方の側に軽剥離フィルムが、他方の側に重剥離フィルムが積層されている粘着剤シートに、搬送転向ロールを当てて、軽剥離フィルムの搬送方向及び/又は剥離後の粘着剤層と重剥離フィルムの積層物の搬送方向を変えつつ、軽剥離フィルムを剥がすことが開示されている。
 上記特許文献4のように、剥離フィルムを1枚だけとし、その両面の粘着剤層に対する剥離力に差を設ける方法は、粘着剤の種類によって剥離力に違いがあるため、対象とする粘着剤毎に剥離フィルムの両面に施す離型処理を変更し、その粘着剤に見合った剥離力を与えるように設計する必要がある。そのため、剥離フィルムを1枚だけとする方法は大幅なコスト高になるので、工業的には採用されておらず、特許文献1~3及び5に開示されるような、2枚の剥離フィルムの間に粘着剤層を挟み、それぞれの剥離フィルムの粘着剤層に対する剥離力に差を持たせる方法が主流になっている。
 このような事情から、先にも述べたように、離型剤の組成及び/又は処理方法を変えることで、粘着剤層に対する剥離力が異なるように設計された各種の剥離フィルムが市販されており、これらの中から、対象とする粘着剤層に適した剥離力を示すものを、軽剥離フィルム及び重剥離フィルムとして選択し、それらを粘着剤層の両面に貼り付けて、粘着剤シートが生産されている。しかしながらこの場合は、数ある剥離フィルムの中から、適当な剥離力を示す軽剥離フィルム及び重剥離フィルムを選択する必要があるため、粘着剤シートの設計管理が煩雑になり、依然としてコスト高になっていた。
 一方で、軽剥離フィルムと重剥離フィルムの粘着剤層に対する剥離力の差又は両者の比を一定範囲とするために、軽剥離フィルムの剥離力を小さくしすぎると、その軽剥離フィルムが粘着剤層から浮き上がったり、その軽剥離フィルムと粘着剤層との間に部分的な剥離に伴うスジや気泡が観察されるトンネリングと呼ばれる不良を生じたりすることがあった。また、重剥離フィルムの剥離力を大きくしすぎると、重剥離フィルムが剥がれにくくなり、粘着剤付き光学部材からその重剥離フィルムを剥がして液晶セルに貼合する段階で重剥離フィルムの未剥離問題を惹起し、極端な場合には液晶パネル生産ラインの停止に至ることもあった。
In general, a liquid crystal panel constituting a liquid crystal display device has a configuration in which an optical member such as a polarizing plate or a retardation film is bonded to a liquid crystal cell via an adhesive layer. The optical member for bonding to the liquid crystal cell is produced as an optical member with an adhesive having a structure in which an adhesive layer is formed on the bonding surface to the liquid crystal cell and the surface is temporarily protected with a release film. Is common.
Such an optical member with an adhesive peels off one release film from an adhesive sheet provided with a peelable film (release film) on both sides of the adhesive layer, and attaches the adhesive layer to the optical member. Often manufactured by a method. That is, the adhesive sheet is provided with a release film on the front and back of the adhesive layer, respectively, and has a structure like a double-sided adhesive tape used for general stationery or work, but a general double-sided adhesive tape is While the pressure-sensitive adhesive layer and the release film correspond to one sheet: one sheet, the pressure-sensitive adhesive sheet is different in that a release film is provided on both surfaces of the pressure-sensitive adhesive layer. An optical member provided with a pressure-sensitive adhesive layer manufactured by a method in which one release film is peeled off from the pressure-sensitive adhesive sheet and the pressure-sensitive adhesive surface exposed thereby is bonded to the surface of the optical member, that is, an optical member with a pressure-sensitive adhesive Are stored or distributed in this state. Then, immediately before being bonded to the liquid crystal cell, the release film temporarily protecting the adhesive surface is peeled off, and the exposed adhesive surface is bonded to the liquid crystal cell. The pressure-sensitive adhesive here is sometimes referred to as a pressure-sensitive adhesive, and the release film is sometimes referred to as a separator or a separate film.
If the peeling force from the adhesive layer of the release film that is applied to both sides of the adhesive sheet is the same, pulling both release films outward will cause the part with the adhesive layer to be attached to one release film. The other part of the pressure-sensitive adhesive layer is often peeled off along with the other release film. This phenomenon is also commonly referred to as “crying farewell”, and when crying farewell occurs, a uniform pressure-sensitive adhesive layer cannot be formed on the optical member.
Therefore, conventionally, as a pressure-sensitive adhesive sheet, a release film that exhibits a relatively small release force (also referred to as “light release film”) and a release film that exhibits a relatively large release force (“heavy release”). The film is also referred to as “film”) on both sides of the pressure-sensitive adhesive layer. The release film is produced by applying a release agent such as silicone oil to a film made of a transparent resin such as polyethylene terephthalate. And various release films designed so that the peeling force with respect to a certain adhesive layer differs by changing the composition and / or processing method of a mold release agent are marketed.
Examples of prior art documents that disclose a method using a pressure-sensitive adhesive sheet provided with a pressure-sensitive adhesive layer on a release film in order to form a pressure-sensitive adhesive layer on an optical member are listed below. JP-A-2003-177241 (Patent Document 1) discloses an adhesive sheet for attaching an adhesive layer to an optical member such as a polarizing plate (referred to as “liquid crystal display member” in this document). Discloses "adhesive transfer tape"). In this document, it is proposed that the pressure-sensitive adhesive layer is composed of two or more layers having different adhesive forces, and the pressure-sensitive adhesive layer is sandwiched between two release films. And it is also disclosed that a difference is given to the peeling force of the two release films with respect to the pressure-sensitive adhesive layer so that the ratio between the two is within a certain range.
In JP 2004-10647 A (Patent Document 2), in the pressure-sensitive adhesive sheet with a release film provided with a release film on both sides of the pressure-sensitive adhesive layer, at least one of the release films is composed of a polyolefin film, It is disclosed that the difference in peel force between the release film and the pressure-sensitive adhesive layer is 0.1 N / 25 mm or more. In JP-A-2004-196939 (Patent Document 3), in a pressure-sensitive adhesive sheet with a release film which is provided with a release film on both sides of the same pressure-sensitive adhesive layer, a portion having no pressure-sensitive adhesive layer of 1 to 50 mm at both ends in the width direction While providing, it is disclosed that the difference of the peeling force with respect to the adhesive layer of a peeling film of both surfaces will be 10 mN / 25 mm or more, ie, 0.01 N / 25 mm or more. Japanese Patent Application Laid-Open No. 2005-15489 (Patent Document 4) discloses a release film in which a pressure-sensitive adhesive layer is provided on one side of a release film to form a roll, and the pressure-sensitive adhesive layer contacts the other side of the release film. In the adhesive sheet with adhesive, the surface roughness of both surfaces in contact with the pressure-sensitive adhesive layer of the release film is set to 0.1 μm or less, and the difference in peeling force with respect to the pressure-sensitive adhesive layer on both sides of the release film is 10 mN / 25 mm or more, that is, 0 It is disclosed that it is set to 0.01 N / 25 mm or more.
Furthermore, International Publication No. 2010/038697 (Patent Document 5) discloses a conveyance turning roll on an adhesive sheet in which a light release film is laminated on one side of an adhesive layer and a heavy release film is laminated on the other side. Is applied to peel off the light release film while changing the transport direction of the light release film and / or the transport direction of the laminate of the pressure-sensitive adhesive layer and the heavy release film after peeling.
As in the above-mentioned Patent Document 4, the method of providing only one release film and providing a difference in the peel force with respect to the pressure-sensitive adhesive layer on both sides has a difference in peel force depending on the type of pressure-sensitive adhesive. It is necessary to change the mold release treatment applied to both sides of the release film every time, and to design the release force corresponding to the adhesive. Therefore, since the method of using only one release film increases the cost significantly, it is not industrially adopted, and two release films as disclosed in Patent Documents 1 to 3 and 5 are used. A method in which a pressure-sensitive adhesive layer is sandwiched therebetween to give a difference in the peeling force of each release film with respect to the pressure-sensitive adhesive layer has become the mainstream.
Under such circumstances, as described above, various release films designed to have different release forces for the pressure-sensitive adhesive layer by changing the composition and / or processing method of the release agent are commercially available. And, from these, those showing the peel strength suitable for the target pressure-sensitive adhesive layer are selected as a light release film and a heavy release film, and they are attached to both sides of the pressure-sensitive adhesive layer. Has been produced. However, in this case, it is necessary to select a light release film and a heavy release film exhibiting an appropriate release force from among a number of release films, so the design management of the pressure-sensitive adhesive sheet becomes complicated and the cost is still high. It was.
On the other hand, if the release force of the light release film is too small in order to keep the difference in the release force of the light release film and the adhesive layer of the heavy release film or the ratio of both within a certain range, the light release film becomes an adhesive. There is a case in which a defect called tunneling in which streaks or bubbles accompanying partial peeling are observed between the light release film and the pressure-sensitive adhesive layer is sometimes raised from the layer. Also, if the release force of the heavy release film is too large, the heavy release film will be difficult to peel off, and the heavy release film will not peel off at the stage of peeling off the heavy release film from the optical member with adhesive and pasting it to the liquid crystal cell. In extreme cases, the LCD panel production line could be stopped.
 本発明者らは、粘着剤層の両面に剥離フィルムが設けられた粘着剤シートを採用することを基本にして、そこに用いられる2枚の剥離フィルムを事実上同じものとし、両者の粘着剤層に対する剥離力に差をつける必要がなければ、粘着剤シートの設計管理が容易になってコスト低下につながると考え、この状態でも、いわゆる泣き別れを起こすことなく、粘着剤層から一方の剥離フィルムを剥がすことができないかという観点から研究を重ねた結果、本発明を完成するに至った。
 そこで本発明の課題は、粘着剤層の両面に剥離フィルムが設けられた粘着剤シートを用い、それぞれの剥離フィルムの剥離力に依存することなく、かついわゆる泣き別れを起こすことなく、容易に一方の剥離フィルムを粘着剤層から剥がすことができ、その剥離フィルムを剥がした後に露出する粘着剤層を光学部材に貼り合わせて、粘着剤付き光学部材を製造する方法を提供することにある。
 すなわち、本発明によれば、第一の剥離フィルム、粘着剤層及び第二の剥離フィルムがこの順に積層されている粘着剤シートから第一の剥離フィルムを剥がして粘着剤層を露出させる剥離工程と、その剥離工程で露出させた粘着剤層を光学部材に貼り合わせる貼合工程とを経て、光学部材、粘着剤層及び第二の剥離フィルムがこの順に積層された粘着剤付き光学部材を製造する方法であって、上記粘着剤シートにおける第一の剥離フィルムと粘着剤層との間の剥離力、及び第二の剥離フィルムと粘着剤層との間の剥離力は、それぞれ0.3m/分の剥離速度で試験したとき、いずれも0.02N/25mmを超え、0.15N/25mm未満の範囲にあり、かつ二つの剥離力の差が0.01N/25mm未満であり、上記の剥離工程は、第一の剥離フィルムが粘着剤層から剥がれる剥離ポイントにおいて、第一の剥離フィルムは屈曲しないように直進させ、第二の剥離フィルムは、粘着剤層が貼着されている面の反対側から押圧力が加わらないようにして粘着剤層とともに、第一の剥離フィルムの直進方向とは異なる方向に搬送し、第一の剥離フィルムが粘着剤層から剥離するように行われる方法が提供される。
 この方法において、粘着剤シートを構成する粘着剤層は、一般の透明な粘着剤層であることもできるし、光拡散剤を含有する、いわゆる光拡散粘着剤層であることもできる。特に、光拡散粘着剤層の両面を剥離力にあまり差のない剥離フィルムで挟んだ場合に、それぞれの剥離フィルムを外側に引っ張って剥がそうとすると、いわゆる泣き別れを起こしやすいのに対し、上記本発明の方法を採用すれば、泣き別れを起こすことなく第一の剥離フィルムを粘着剤層から剥がすことができるので、光学部材に光拡散粘着剤層を貼り合わせる場合にも、有効に使用することができる。またこれらの方法において、粘着剤層が貼り合わされる光学部材の典型的な例は、偏光板である。
 これらの方法によって製造される粘着剤付き光学部材は、その粘着剤層の上に存在する第二の剥離フィルムを剥がし、それにより露出する粘着剤層を液晶セルに貼合することによって、液晶パネルとすることができる。
 本発明の方法では、粘着剤シートを構成する第一の剥離フィルムと粘着剤層との間の剥離力、及び第二の剥離フィルムと粘着剤層との間の剥離力に事実上差を設けない状態、すなわち第一の剥離フィルムと第二の剥離フィルムが事実上同じものであってもよい状態としたうえで、第一の剥離フィルムが粘着剤層から剥がれる剥離ポイントにおいて、第一の剥離フィルムは屈曲しないように直進させ、第二の剥離フィルムは、粘着剤層が貼着されている面の反対側から押圧力が加わらないようにして、第一の剥離フィルムの直進方向とは異なる方向に搬送している。
 これにより、第一の剥離フィルム及び第二の剥離フィルムのそれぞれ粘着剤層からの剥離力にあまり依存することなく、粘着剤層は第一の剥離フィルムから自然に剥がれて、第二の剥離フィルムとともにその搬送方向に移送される。そのため、粘着剤層が第一の剥離フィルム上に部分的に残る、いわゆる泣き別れが生じにくくなる。このように、粘着剤層が第一の剥離フィルムから自然に剥がれるようにしているので、粘着剤層との関係で第一の剥離フィルム及び第二の剥離フィルムの組合せを選択する必要がなく、粘着剤シートの設計管理が容易となる。そして、第一の剥離フィルムから剥がされ、第二の剥離フィルム上に残った粘着剤層は、欠損などがない良好な状態となっているので、その露出された粘着剤層を次の貼合工程で光学部材に貼り合わせることにより、粘着剤層に欠陥のない良好な品質の粘着剤付き光学フィルムを製造することができる。
 したがってこの方法によれば、粘着剤付き光学部材や液晶パネルの生産コストを低減させることができる。
Based on the fact that the present invention employs a pressure-sensitive adhesive sheet in which release films are provided on both sides of the pressure-sensitive adhesive layer, the two release films used therein are virtually the same, and both pressure-sensitive adhesives are used. If there is no need to make a difference in the peel force to the layer, it is considered that the design management of the pressure-sensitive adhesive sheet can be facilitated and the cost can be reduced. Even in this state, one peeling film can be removed from the pressure-sensitive adhesive layer without causing so-called tearing. As a result of repeated research from the viewpoint of whether or not it can be peeled off, the present invention has been completed.
Therefore, the object of the present invention is to use a pressure-sensitive adhesive sheet provided with release films on both sides of the pressure-sensitive adhesive layer, without depending on the peeling force of each release film, and without causing so-called crying easily. An object of the present invention is to provide a method for producing an optical member with an adhesive by peeling the release film from the pressure-sensitive adhesive layer, and bonding the pressure-sensitive adhesive layer exposed after peeling off the release film to the optical member.
That is, according to this invention, the peeling process which peels off the 1st peeling film from the adhesive sheet in which the 1st peeling film, the adhesive layer, and the 2nd peeling film are laminated | stacked in this order and exposes an adhesive layer And manufacturing the optical member with the adhesive in which the optical member, the adhesive layer and the second release film are laminated in this order through the bonding step of bonding the adhesive layer exposed in the peeling step to the optical member. The peeling force between the first release film and the pressure-sensitive adhesive layer in the pressure-sensitive adhesive sheet and the peel force between the second release film and the pressure-sensitive adhesive layer are each 0.3 m / When tested at a peel rate of minutes, both are above 0.02 N / 25 mm and below 0.15 N / 25 mm, and the difference between the two peel forces is less than 0.01 N / 25 mm, The process is the first At the peeling point where the release film is peeled off from the adhesive layer, the first release film is moved straight so as not to bend, and the second release film is subjected to a pressing force from the opposite side of the surface to which the adhesive layer is attached. There is provided a method in which the first release film is transported in a direction different from the linear direction of the first release film together with the adhesive layer, and the first release film is released from the adhesive layer.
In this method, the pressure-sensitive adhesive layer constituting the pressure-sensitive adhesive sheet can be a general transparent pressure-sensitive adhesive layer or a so-called light diffusion pressure-sensitive adhesive layer containing a light diffusion agent. In particular, when both sides of the light diffusing adhesive layer are sandwiched between release films that do not have much difference in peel force, pulling each release film to the outside tends to cause so-called crying. If the method of the invention is adopted, the first release film can be peeled off from the pressure-sensitive adhesive layer without causing crying separation, so that it can be used effectively even when a light diffusion pressure-sensitive adhesive layer is bonded to an optical member. it can. In these methods, a typical example of the optical member to which the pressure-sensitive adhesive layer is bonded is a polarizing plate.
The optical member with the pressure-sensitive adhesive produced by these methods peels off the second release film existing on the pressure-sensitive adhesive layer, and pastes the pressure-sensitive adhesive layer exposed thereby to the liquid crystal cell, thereby producing a liquid crystal panel. It can be.
In the method of the present invention, a difference is practically provided in the peeling force between the first release film and the pressure-sensitive adhesive layer constituting the pressure-sensitive adhesive sheet and in the peeling force between the second release film and the pressure-sensitive adhesive layer. In a state where there is no state, that is, the first release film and the second release film may be substantially the same, the first release film is peeled off from the adhesive layer at the release point. The film is moved straight so as not to bend, and the second release film is different from the straight direction of the first release film so that no pressing force is applied from the opposite side of the surface on which the adhesive layer is adhered. It is transported in the direction.
Thus, the pressure-sensitive adhesive layer is naturally peeled off from the first release film without depending on the release force from the pressure-sensitive adhesive layer of the first release film and the second release film, and the second release film. At the same time, it is transferred in the conveying direction. For this reason, the so-called crying separation that the adhesive layer partially remains on the first release film is less likely to occur. Thus, since the pressure-sensitive adhesive layer is naturally peeled off from the first release film, there is no need to select a combination of the first release film and the second release film in relation to the pressure-sensitive adhesive layer, The design management of the adhesive sheet becomes easy. And since the pressure-sensitive adhesive layer peeled off from the first release film and left on the second release film is in a good state with no defects, the exposed pressure-sensitive adhesive layer is bonded to the next layer. By adhering to the optical member in the process, it is possible to produce an optical film with a good quality adhesive without a defect in the pressure sensitive adhesive layer.
Therefore, according to this method, the production cost of the optical member with adhesive and the liquid crystal panel can be reduced.
 図1は、粘着剤付き光学部材を得るまでの各部材の層構成を模式的に示す断面図である。
 図2は、粘着剤シートを連続ラインで製造するときの装置の配置例を模式的に示す側面図である。
 図3は、粘着剤付き光学部材を連続ラインで製造するときの装置の配置例を模式的に示す側面図である。
 図4は、剥離工程が本発明で規定する要件を満たさず、したがって泣き別れを起こしやすいいくつかの例を模式的に示す側面図である。
 図5は、後述する実施例における剥離フィルムの剥離力を測定する状態を模式的に示す断面図である。
 図6は、後述する実施例における高速剥離試験の状態を模式的に示す断面図である。
 図7は、後述する実施例における手剥離試験の状態を模式的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a layer structure of each member until an optical member with an adhesive is obtained.
FIG. 2 is a side view schematically showing an arrangement example of apparatuses when the pressure-sensitive adhesive sheet is produced in a continuous line.
FIG. 3 is a side view schematically showing an arrangement example of apparatuses when an optical member with an adhesive is manufactured in a continuous line.
FIG. 4 is a side view schematically showing some examples in which the peeling process does not satisfy the requirements defined in the present invention and thus easily causes tearing.
FIG. 5 is a cross-sectional view schematically showing a state in which the peeling force of a release film in an example described later is measured.
FIG. 6 is a cross-sectional view schematically showing a state of a high-speed peel test in Examples described later.
FIG. 7 is a cross-sectional view schematically showing a state of a hand peeling test in Examples described later.
 本発明の実施の形態を、添付の図面も適宜参照しながら、詳細に説明する。図1は、本発明の方法によって粘着剤付き光学部材を得るまでの各部材の層構成を模式的な断面図で示したものである。
 図1を参照して、本発明の方法ではまず、同図(A)に示すように、第一の剥離フィルム2、粘着剤層1及び第二の剥離フィルム3がこの順に積層されている粘着剤シート5が用意される。次に、この粘着剤シート5から第一の剥離フィルム2を剥がして、同(B)に示すように、第二の剥離フィルム3と粘着剤層1との積層体であって、粘着剤層1が露出された貼合前粘着剤シート10とする。別途、同(C)に示す光学部材20が用意される。そして、同(B)の貼合前粘着剤シート10で露出させた粘着剤層1を、同(C)の光学部材20に貼り合わせて、同(D)に示すように、光学部材20、粘着剤層1、及び第二の剥離フィルム3がこの順に積層された粘着剤付き光学部材25が製造される。図1には、光学部材20が、偏光フィルム15の両面に透明保護フィルム16,17が貼合されている偏光板である例が示されている。光学部材はそのほか、位相差フィルムなどであることもでき、一般に光学特性を有し、粘着剤層が設けられる各種の部材に対して、本発明の方法は適用できる。
 図1の(A)に示す粘着剤シート5から、第一の剥離フィルム2を剥がして、同(B)に示す貼合前粘着剤シート10を得るまでの工程が、本発明でいう剥離工程に相当する。また、同(B)に示す貼合前粘着剤シート10を同(C)に示す光学部材20に貼り合わせて、同(D)に示す粘着剤付き光学部材25を得るまでの工程が、本発明でいう貼合工程に相当する。
 本発明では、図1(A)に示す粘着剤シート5として、第一の剥離フィルム2と粘着剤層1との間の剥離力、及び第二の剥離フィルム3と粘着剤層1との間の剥離力が、いずれも0.02N/25mmを超え、0.15N/25mm未満の範囲にあり、かつ二つの剥離力の差が0.01N/25mm未満のものを採用する。ここでいう剥離力は、0.3m/分の剥離速度で試験したときの値である。
 具体的な剥離力の試験方法は、後述する図5を参照して実施例に示すとおりである。すなわち、25mm幅で裁断された粘着剤シートの一方の剥離フィルム側(図5では第二の剥離フィルム3側)を、両面粘着テープを介してガラス板に貼り、この状態で、ガラス板に貼合されていない剥離フィルム(図5では第一の剥離フィルム2)の長さ方向(幅25mmの一辺と直交する方向)一端をつかみ、そのつかんだ剥離フィルム(図5では第一の剥離フィルム2)を180度方向(折り返してフィルム面に沿う方向)に剥離速度0.3m/分で剥がすことにより、そのつかんだ剥離フィルム(図5では第一の剥離フィルム2)の粘着剤層からの剥離力を求める。一方の剥離フィルムを剥がした後に残る粘着剤がもう一方の剥離フィルムに貼着されている積層体は、先にガラス板に貼るために用いた両面粘着テープから剥がした後、その粘着剤層側をガラス板に貼り、この状態で、ガラス板と反対側にある剥離フィルム(図5では第二の剥離フィルム3)の長さ方向一端をつかみ、そのつかんだ剥離フィルム(図5では第二の剥離フィルム3)を180度方向(折り返してフィルム面に沿う方向)に剥離速度0.3m/分で剥がすことにより、そのつかんだ剥離フィルム(図5では第二の剥離フィルム3)の粘着剤層からの剥離力を求める。
 第一の剥離フィルム2と粘着剤層1との間の剥離力及び/又は第二の剥離フィルム3と粘着剤層1との間の剥離力が0.02N/25mm以下と小さくなると、以下のような不都合を生じやすい。すなわち、剥離フィルム2,3と粘着剤層1とがデラミネーション(層間剥離)を起こし、剥離フィルム2,3が粘着剤層1から浮き上がる、いわゆるトンネリング現象が生じやすくなる。また、剥離力を小さくするためには離型剤を多く塗布する必要があるところ、離型剤がシリコーンオイルを含む場合には、そのシリコーンオイルを含む離型剤を多く塗布する結果、シリコーンオイルのブリードアウトを生じ、粘着剤シートをロール状に巻いたときに、一方の剥離フィルムに塗布された離型剤がもう一方の剥離フィルムの表面に二次転写(いわゆる背面転写)されるという現象も生じる可能性がある。
 一方、第一の剥離フィルム2と粘着剤層1との間の剥離力及び/又は第二の剥離フィルム3と粘着剤層1との間の剥離力が0.15N/25mm以上と大きくなると、以下のような不都合を生じやすい。すなわち、この粘着剤シートから一方の剥離フィルムを剥がし、光学部材に貼って得られる粘着剤層に剥離フィルムが貼合された状態の粘着剤付き光学部材を、液晶パネル製造ラインで液晶セルに貼合するとき、剥離フィルムの表面には剥離用テープを接着し、反対側の光学部材は吸着板で吸引し、この状態で剥離用テープを引き上げて剥離フィルムを剥がし、粘着剤層を液晶セルに貼合するところ、剥離フィルムの粘着剤層からの剥離力が大きすぎると、剥離用テープの剥離フィルムに対する接着力の減退が早く、剥離用テープの交換周期が早くなって、液晶パネルの生産コストアップにつながりやすい。また、剥離フィルムの粘着剤層からの剥離力が大きすぎると、剥離用テープを引っ張っても剥離フィルムを粘着剤層から剥がすことができず、液晶パネル製造ラインを停止させてしまう可能性もある。
 また上述のとおり、第一の剥離フィルム2の粘着剤層1からの剥離力と、第二の剥離フィルム3の粘着剤層1からの剥離力との差は、0.01N/25mm未満と小さくする。二つの剥離力に差を設けない状態、すなわち、第一の剥離フィルムと第二の剥離フィルムとが事実上同じものであってもよい。この場合、第一の剥離フィルム2と第二の剥離フィルム3は、同じ条件で製造したものを用いることができるため、製造工程の短縮化や製造コストの低減を図ることができる。本明細書では、第一の剥離フィルム2と粘着剤層1との間の剥離力を、単に「第一の剥離フィルム2の剥離力」と、第二の剥離フィルム3と粘着剤層1との間の剥離力を、単に「第二の剥離フィルム3の剥離力」と、それぞれ呼ぶことがある。
[粘着剤シートとその製造方法]
 まず、粘着剤シートを連続ラインで製造する方法について、図2を参照して説明する。図2は、粘着剤シートを連続ラインで製造するときの装置の配置例を模式的な側面図で示したものである。図示の例では、第二の剥離フィルム3の表面に粘着剤層を形成し、その粘着剤層の表面に第一の剥離フィルム2を貼合して、粘着剤シート5を製造し、巻取りロール35に巻き取られるようになっている。順を追って説明すると、繰出しロール30に巻かれている第二の剥離フィルム3は、そこから繰り出され、その離型処理面に、塗工機31から供給される粘着剤組成物が塗布される。塗布された粘着剤組成物は、乾燥機32で乾燥されて粘着剤層となり、第二の剥離フィルム3と粘着剤層との積層体10となる。別の繰出しロール33に巻かれている第一の剥離フィルム2がそこから繰り出されて、乾燥機32から送られてくる第二の剥離フィルム3と粘着剤層との積層体10の粘着剤層表面に、その離型処理面で積層され、貼合ロール34の貼合圧力により貼合される。得られた粘着剤シート5は、巻き取りロール35に巻き取られ、保管される。図2中、曲線矢印はロールの回転方向を意味する。
 このように、粘着剤シート5は一般に、第二の剥離フィルム3に粘着剤組成物を塗工する塗工工程、その粘着剤組成物を乾燥して粘着剤層を形成する乾燥工程、及び得られる粘着剤層に第一の剥離フィルムを貼り合わせる貼合工程を経て、製造される。塗工工程及び乾燥工程を経て得られる第二の剥離フィルム3と粘着剤層との積層体10は、粘着剤シート製造のための中間体となる。
 なお、背景技術の項で説明したとおり、光学部材に適用される従来の粘着剤シートにおいては、両面に貼合される剥離フィルムとして、粘着剤層に対する剥離力が異なるものを用いることが多かった。この場合、相対的に剥離力の大きい重剥離フィルムを図2における第二の剥離フィルム3とし、その離型処理面に粘着剤層を設け、相対的に剥離力の小さい軽剥離フィルムを図2における第一の剥離フィルムとし、上記重剥離フィルム(第二の剥離フィルム)3の上に設けた粘着剤層に、この軽剥離フィルム(第一の剥離フィルム)2の離型処理面を貼合することにより、製造されていた。
 本発明においては先に説明したとおり、第一の剥離フィルム2の粘着剤層に対する剥離力と、第二の剥離フィルム3の粘着剤層に対する剥離力との間に、実質的な差を設ける必要がない。そこで、図2においては便宜上、塗工工程で第二の剥離フィルム3の離型処理面に粘着剤組成物を塗工し、得られる粘着剤層に、その後の貼合工程で第一の剥離フィルム2の離型処理面を貼り合わせるように描かれているが、第一の剥離フィルム2と第二の剥離フィルム3が逆になっても構わない。すなわら、本発明に用いる粘着剤シート5は、図1を参照して、粘着剤層1に対する剥離力の差が0.01N/25mm未満である2枚の剥離フィルム2,3の間に粘着剤層1が挟まれた状態のものであればよく、それら2枚の剥離フィルムのうち、一方を第一の剥離フィルム2とし、他方を第二の剥離フィルム3として、上で述べた本発明の方法を適用すればよい。
 粘着剤組成物の塗工は、公知の方法で行うことができ、例えば、ダイコーター、グラビアロールコーター、コンマコーターなどを用いることができる。粘着剤組成物の塗工後、図2に示すように乾燥炉32を通すことで、粘着剤層が形成される。粘着剤層の厚みは、通常1~100μm程度である。
 第一の剥離フィルム2及び第二の剥離フィルム3は、離型処理が施された樹脂フィルムで構成するのが一般的である。剥離フィルムを構成する樹脂としては、例えば、ポリエチレンナフタレート、ポリエチレンイソフタレート、及びポリブチレンテレフタレートのようなポリエステル系樹脂や、ポリオレフィン系樹脂、ポリアミド系樹脂、セルロース系樹脂、ポリカーボネート系樹脂、ポリフェニレンサルファイド系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、各種の液晶性高分子、各種の生分解性樹脂などを採用することができる。これらのうち、耐熱性やその後の離型処理のしやすさなどの観点から、ポリエチレンテレフタレート又はポリエチレンナフタレートが好適であり、さらにコストの点を考慮すると、ポリエチレンテレフタレートが最も実用的である。もちろん、所望なら2種以上の樹脂を組み合わせて用いてもよい。
 上記の樹脂は、未延伸のものであってもよいし、一軸又は二軸に延伸されたものであってもよい。なかでも、配向主軸の最大歪みが10度以下の一軸又は二軸延伸フィルムが好ましい。剥離フィルムには、単体フィルムを用いてもよいし、複数の単体フィルムが積層された積層フィルムを用いてもよい。剥離フィルムの厚さは、例えば、5~200μm程度とすることができる。
 剥離フィルムの表面に施される離型処理は、離型剤をフィルム表面に塗布する方法によって行うことができる。離型剤は、任意のものを用いることができるが、離型特性に優れたシリコーン系離型剤が特に好ましい。シリコーン系離型剤として、比較的低温で硬化する付加反応型シリコーン系離型剤や、熱を付与しないタイプのアクリルシリコーン系離型剤、紫外線硬化型のエポキシ基含有シリコーン系離型剤などを使用することができる。剥離力は、離型剤の厚さ、離型剤に添加するオリゴマーの有無やその量によって調節することができる。
 離型剤の塗工量は、0.01~3g/m程度とすることが好ましい。離型剤の塗工量が0.01g/m未満であると、剥離フィルムの剥離力は大きくなるが、剥離性能が不足して粘着剤層から剥離フィルムを剥がしにくくなる。一方、離型剤の塗工量が3g/mを超えると、剥離力は小さくなるものの、離型処理が施された剥離フィルムをロール状に巻いたときに、塗工面上の離型剤が、離型処理を施していないもう一方の面(背面)に付着して固化する、いわゆるブロッキングを起こしやすくなる。
[粘着剤]
 図1に示す粘着剤シート5を構成する粘着剤層1は、アクリル系重合体、シリコーン系重合体、ポリエステル系重合体、ポリウレタン系重合体、ポリエーテル系重合体などをベースポリマーとする粘着剤組成物を用いて形成することができる。なかでも、透明性や濡れ性、凝集力、また耐候性や耐熱性を包含する耐久性などの観点から、アクリル系重合体(アクリル樹脂)をベースポリマーとするアクリル系粘着剤が、好ましく用いられる。
 アクリル系粘着剤を構成するアクリル樹脂としては、一般に、(メタ)アクリル酸エステルに由来する構造単位を主成分とし、遊離カルボキシル基、水酸基、アミノ基、エポキシ環をはじめとする複素環基のような、架橋可能な極性官能基を有する不飽和単量体に由来する構造単位を有するアクリル系共重合体が有用である。極性官能基を有する不飽和単量体も、(メタ)アクリル酸系化合物であるのが好ましい。アクリル系粘着剤を構成するアクリル樹脂は、20℃以下、さらには0℃以下のガラス転移温度を有することが好ましい。また、ゲルパーミェーションクロマトグラフィー(GPC)による標準ポリスチレン換算の重量平均分子量が10万以上であるものが好ましい。
 アクリル樹脂を主成分とする粘着剤組成物には通常、架橋剤が配合される。架橋剤は、アクリル樹脂を構成する極性官能基と反応して架橋構造を形成しうる官能基を分子内に少なくとも2個有する化合物である。具体的には、イソシアネート系化合物、エポキシ系化合物、金属キレート化合物、アジリジン系化合物などを挙げることができる。
 アクリル樹脂を主成分とする粘着剤組成物には、粘着剤層と液晶セルガラスとの密着性を向上させるために、シランカップリング剤とも呼ばれるシラン化合物を含有させることが好ましい。架橋剤を配合する前に、粘着剤組成物中にシラン系化合物を配合しておくこともできる。
 また、粘着剤組成物にイオン性化合物を含有させることもできる。これによって、粘着剤層1に帯電防止性が付与される。イオン性化合物としては、例えば、イミダゾリウムカチオン、ピリジニウムカチオン、アンモニウムカチオンなどを有する化合物を用いることができる。
 粘着剤層は、光拡散剤を含有することができ、これによって、粘着剤層自体に光拡散性を付与することができる。光拡散剤を含有する粘着剤層が2枚の剥離フィルムに挟まれている粘着剤シートは特に、一方の剥離フィルムを剥がすときに泣き別れが発生しやすいので、このような粘着剤シートから粘着剤付き光学部材を製造する場合に、本発明の方法は有効である。光拡散剤は一般に、有機又は無機の微粒子であり、その形状は球状であることが好ましい。
 有機微粒子は一般に樹脂(高分子化合物)からなり、光拡散剤となりうる樹脂の例を挙げると、ポリスチレン、ポリエチレンやポリプロピレンのようなポリオレフィン系樹脂、ポリメタクリレート系樹脂やポリアクリレート系樹脂のようなアクリル樹脂、シリコーン樹脂、ベンゾグアナミン樹脂、メラミン樹脂などがある。もちろんこれらの樹脂は、2種類以上の単量体から得られる共重合体であってもよい。さらに、架橋構造を有する樹脂微粒子も、光拡散剤として有効に使用することができる。一方、光拡散剤となりうる無機微粒子の例を挙げると、シリカ微粒子、酸化チタン微粒子、酸化アルミニウム微粒子などがある。粘着剤組成物を構成するアクリル樹脂に対する分散性、粘着剤組成物の塗工性、得られる粘着剤層の光学特性などを考慮すると、光拡散剤としては、シリコーン樹脂又はアクリル樹脂(通常はポリメチルメタクリレート系樹脂)からなる微粒子が好適である。
 光拡散剤を配合して光拡散性を付与する場合、その光拡散剤は、粘着剤組成物を構成するアクリル樹脂との間に、0.01以上0.07以下、さらには0.01以上0.04以下の屈折率差を有することが好ましい。両者の屈折率差が0.01を下回ると、得られる粘着剤層に所望の光拡散性が付与されず、結果として透明な粘着剤に近いものとなる。一方、両者の屈折率差が大きくなりすぎると、光拡散性が強く発現するので、液晶表示装置を正面から見たときの白輝度を低下させることになる。
 以上説明した各成分のうち、光拡散剤以外の成分は、有機溶剤に溶かした状態で混合される。光拡散剤を配合する場合は、その混合溶液に光拡散剤を分散させて調製することができる。粘着剤組成物は、例えば、トルエンや酢酸エチルのような有機溶剤に、アクリル樹脂を溶解させ、また架橋剤、シラン化合物、イオン性化合物及び光拡散剤のうち必要な成分、さらには所望により配合される以下の各成分を溶解又は分散させて、10~40重量%程度の固形分濃度を有する溶液状態で調製される。
 上記の粘着剤組成物(溶液)はさらに、架橋触媒、耐候安定剤、タッキファイヤー、可塑剤、軟化剤、染料、顔料などを含んでもよい。粘着剤組成物に架橋剤とともに架橋触媒を配合すると、粘着剤層1を短時間の熟成で調製することができる。このため、得られる粘着剤付き光学部材又はこれを適用した液晶表示装置などにおいて、粘着剤層1と光学部材との間に浮きや剥がれが発生したり、粘着剤層1内で発泡が起こったりすることを抑制することができ、またリワーク性も一層良好とすることができる。架橋触媒としては、例えば、ヘキサメチレンジアミン、エチレンジアミン、ポリエチレンイミン、ヘキサメチレンテトラミン、ジエチレントリアミン、トリエチレンテトラミン、イソホロンジアミン、トリメチレンジアミン、ポリアミノ樹脂、メラミン樹脂のようなアミン系化合物などを挙げることができる。粘着剤に架橋触媒としてアミン系化合物を配合する場合、架橋剤としてはイソシアネート系化合物が好適である。
[粘着剤付き光学部材の製造方法]
 図3は、粘着剤付き光学部材を連続ラインで製造するときの装置の配置例を模式的な側面図で示したものである。図示の例は、粘着剤シート5から第一の剥離フィルム2を剥がし、得られる第二の剥離フィルム3と粘着剤層1の積層体である貼合前粘着剤シート10の粘着剤層1を光学部材20の表面に貼合し、こうして得られる粘着剤付き光学部材25を巻取りロール42で巻き取るように構成されている。図3中、直線矢印はフィルムの搬送方向を意味し、曲線矢印はロールの回転方向を意味する。図3を参照しながら、本発明に係る粘着剤付き光学部材25の製造方法を説明する。
 繰出しロール36に巻かれている粘着剤シート5は、そこから繰り出される。そして、上流テンションロール37と下流テンションロール38との間で、粘着剤シート5を構成する第一の剥離フィルム2には張力がかけられ、第一の剥離フィルム2は屈曲しないように直進させる一方で、その直進区間Lの間のある点(剥離ポイントP)において、第二の剥離フィルム3は粘着剤層1とともに、両者の積層体、すなわち光学部材への貼合前粘着剤シート10となって、第一の剥離フィルム2の直進方向とは異なる方向に搬送される。このとき、第二の剥離フィルム3には、その粘着剤層1が貼着されている面の反対側から押圧力が加わらないようにする。
 繰出しロール36から繰り出される粘着剤シート5は、図3において、上流テンションロール37の直後下流側に一点鎖線の引き出し線を引いて拡大断面図Aで示すように、第一の剥離フィルム2、粘着剤層1、及び第二の剥離フィルム3がこの順に積層された状態となっており、そこから第一の剥離フィルム2だけを下流側テンションロール38の方向へ直進させ、粘着剤層1から剥がされる。剥がされた第一の剥離フィルム2は、下流側テンションロール38を経た後、巻取りロール39に巻き取られる。一方、第一の剥離フィルム2を剥がした後の第二の剥離フィルム3と粘着剤層1の積層体である貼合前粘着剤シート10は、その粘着剤層1側が、別の繰出しロール40から繰り出される光学部材20に重ねられ、貼合ロール41で貼合されて、粘着剤付き光学部材25とされる。得られる粘着剤付き光学部材25は、巻取りロール42に巻き取られる。
 図3において、粘着剤シート5から、第一の剥離フィルム2を剥がす工程が、本発明でいう剥離工程に相当し、第一の剥離フィルム2を剥がした後の第二の剥離フィルム3と粘着剤層1の積層体である貼合前粘着剤シート10を貼合ロール41で光学部材20に貼り合わせる工程が、本発明でいう貼合工程に相当する。
 〈剥離工程〉
 剥離工程においては、上述のとおり、上流テンションロール37と下流テンションロール38との間で、第一の剥離フィルム2に張力をかけ、第一の剥離フィルム2が屈曲しないように、それを直進される。このときの張力は、繰出しロール36と巻取りロール39との間で周速度に差を持たせる方法や、テンションロールを支持体にしてフィルムの搬送方向を変える方法などによって付与することができる。周速度に差を持たせる場合は、巻取りロール39の周速度を繰出しロール36の周速度よりも速くすることで、第一の剥離フィルム2に張力が付与される。また、テンションロールでフィルムの搬送方向を変える場合は、例えば図3のように、下流テンションロール38を支持体として第一の剥離フィルム2の搬送方向が大きく変更されると、上流テンションロール37と下流テンションロール38との間で張力が付与される。
 第一の剥離フィルム2に付与される張力の大きさは、第二の剥離フィルム3と粘着剤層1との間の剥離力よりも相対的に大きければよい。第一の剥離フィルム2に付与される張力が第二の剥離フィルム3と粘着剤層1との間の剥離力よりも大きくなると、第一の剥離フィルム2の搬送方向(張力方向)と異なる方向に、押圧力が加わらないように第二の剥離フィルム3を剥したとき、粘着剤層1が第一の剥離フィルム2に残る、いわゆる泣き別れが発生しにくくなる。
 上記の第二の剥離フィルム3を剥がすときの速度は、生産性、作業性、後述する粘着剤層1と光学部材20に施される表面活性化処理などによって変動するが、3~50m/分程度に設定することが好ましい。
 剥離工程は、図3に示す直進区間Lで行われるが、第一の剥離フィルム2が粘着剤層1から剥がれる剥離ポイントPは、直送区間Lの範囲内で張力の変動など製造条件の変化により移動する。剥離ポイントPは、例えば、直進区間Lにおいて剥離ポイントの上流側と下流側に剥離ポイントを検知するセンサーをそれぞれ設け、これらのセンサーで剥離面を検知した場合に、繰出しロール36や巻取りロール39の周速度を調節したり、上流テンションロール37と下流テンションロール38との間隔を調整したりすることで、第一の剥離フィルム2にかかる張力を適宜調節し、剥離ポイントPをセンサーの間に保持することができる。使用するセンサーとしては、剥離ポイントを検出できるものであれば、超音波センサーや光学センサーなど公知のセンサーから適宜選択することができる。第一の剥離フィルム2を直進方向に搬送を維持するために付与される張力は、公知のテンションコントローラにより測定・制御することができる。
 図4は、上記の剥離工程が本発明で規定する要件を満たさず、したがって泣き別れを起こしやすいいくつかの例を模式的に示す側面図であり、図3の直進区間Lとその周辺部を拡大して示している。図4中の直線矢印は、フィルムの搬送方向を示す。図4(A)は、第二の剥離フィルム3に張力を付与して直進させ、第一の剥離フィルム2は押圧力を加えないように剥がす形態の製造ラインの構成である。この形態では、本発明で規定する方法とは異なり、第二の剥離フィルム3に張力を付与しているため、粘着剤層1の付随が第一の剥離フィルム2に生じる。図4(B)は、第一の剥離フィルム2と第二の剥離フィルム3とにかかる応力が同じ条件下でフィルムを剥がす形態の製造ラインの構成である。この形態では、第一の剥離フィルム2と第二の剥離フィルム3にかかる張力に差がないため、粘着剤層1の泣き別れが生じる。また、図4(C)は、第二の剥離フィルム3及び粘着剤層1が支持体を用いて剥離する、すなわち、第二の剥離フィルム3に押圧力を付与して剥がす形態の製造ラインの構成である。この形態では、支持体により第二の剥離フィルム3にも張力が付与されるため、粘着剤層1に泣き別れが生じる。このように、本発明で規定する要件を満たさない剥離形態では、第一の剥離フィルム2に粘着剤層1が付随したり、粘着剤層1が泣き別れを起こしたりしやすい傾向がある。
 以上説明したように、本発明の粘着剤付き光学部材の製造方法は、第一の剥離フィルム2に第二の剥離フィルム3の剥離力より大きい張力を付与し、第一の剥離フィルム2の搬送方向と異なる方向に、押圧力が加わらないように第二の剥離フィルム3を剥がすことを特徴とする。この方法によると、本発明で規定した剥離力を有する剥離フィルムを用いたとき、第一の剥離フィルム2の剥離力及び第二の剥離フィルム3の剥離力の大小関係に関わらず、泣き別れが生ずることなく粘着剤シート5から第一の剥離フィルム2を剥がすことができる。このとき、第一の剥離フィルム2の剥離力と第二の剥離フィルム3は、事実上同じものを用いることができるため、従来のように剥離力を所定の範囲内に設定する必要がない。これにより、剥離力が所定の範囲内となるように剥離フィルムや粘着剤層を選択する必要がなく、設計管理が容易になり、粘着剤シート5及び粘着剤付き光学部材の製造コストを低減することができる。
 〈貼合工程〉
 貼合工程では、剥離工程を経た第二の剥離フィルム3と粘着剤層1との積層体である貼合前粘着剤シート10における粘着剤層1の表面に光学部材20を貼合する。貼合工程について、先の図3を参照しながら説明する。上述の貼合前粘着剤シート10は、連続する貼合工程で、繰出しロール40から繰り出される光学部材20の表面に、その粘着剤層1側が積層され、貼合ロール41で貼合圧力をかけて貼合する。これにより、光学部材20に、粘着剤層1及び第二の剥離フィルム3がこの順で積層された粘着剤付き光学部材25を製造することができる。製造された粘着剤付き偏光板25は、巻取りロール42に巻き取られ、保管される。
 粘着剤層1と光学部材20との接着力を高めるために、粘着剤層1及び/又は光学部材20の接着面にコロナ放電処理を施しておくことが好ましい。コロナ放電処理とは、電極間に高電圧をかけて放電し、そこに配置された樹脂フィルムや粘着剤層の表面を活性化する処理である。コロナ放電処理の出力は、200~1,000W程度に設定して行うことが好ましい。コロナ放電処理の出力が200W以上であると、この処理による効果が顕著になり、粘着剤層1と透明樹脂フィルム17との間の接着力が向上する。また、コロナ放電処理の出力が1,000W以下であると、この処理によって生じやすい粉塵の発生が抑えられる。コロナ放電処理の効果は、電極の種類、電極間隔、電圧、温度などによって変動するが、被処理物の移動速度を3~50m/分程度に設定することが好ましい。
[光学部材]
 先にも説明したとおり、本発明において粘着剤層が設けられる光学部材は、光学特性を有するものであり、その典型的な例として、偏光板や位相差フィルムを挙げることができる。とりわけ偏光板が好適に用いられる。
 偏光板とは、自然光などの入射光に対し、偏光を出射する機能を持つ光学部材である。偏光板には、ある方向の振動面を有する直線偏光を吸収し、それと直交する振動面を有する直線偏光を透過する性質を示す直線偏光板、ある方向の振動面を有する直線偏光を反射し、それと直交する振動面を有する直線偏光を透過する性質を示す偏光分離板、偏光板と位相差フィルムを積層した楕円偏光板などがある。これらのなかでも、直線偏光板が代表的である。以下、この直線偏光板について、具体的に説明する。以下では、直線偏光板を単に偏光板と呼ぶ。
 偏光板は、図1(C)に断面模式図で示したとおり、偏光フィルム15の両面にそれぞれ、第一の透明保護フィルム16及び第二の透明保護フィルム17が貼合された構造になっていることが多い。
 偏光フィルム15は、一軸延伸されたポリビニルアルコール系樹脂フィルムにヨウ素や二色性染料の如き二色性色素が吸着配向されているもので構成することができる。このような偏光フィルムは、一般に、ポリビニルアルコール系樹脂フィルムに対し、一軸延伸、二色性色素による染色及びホウ酸処理を施すことにより製造される。偏光フィルム15の厚さは、例えば2~40μm程度とすることができる。
 ポリビニルアルコール系樹脂として、ポリ酢酸ビニル系樹脂をケン化したものを用いることができる。ポリ酢酸ビニル系樹脂は、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとこれに共重合可能な他の単量体との共重合体などであることができる。酢酸ビニルに共重合可能な他の単量体として、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類などが挙げられる。
 偏光フィルム15は、その両面に透明保護フィルム16,17がそれぞれ貼合されている。これらの透明保護フィルム16,17は、例えば、メタクリル酸メチル系樹脂のようなアクリル系樹脂、オレフィン系樹脂、ポリ塩化ビニル系樹脂、セルロース系樹脂、スチレン系樹脂、アクリロニトリル・ブタジエン・スチレン系共重合樹脂、アクリロニトリル・スチレン系共重合樹脂、ポリ酢酸ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂、変性ポリフェニレンエーテル系樹脂、ポリエステル系樹脂(例えば、ポリブチレンテレフタレートやポリエチレンテレフタレート系等)、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ポリアリレート系樹脂、ポリアミドイミド系樹脂、ポリイミド系樹脂、エポキシ系樹脂、オキセタン系樹脂などで構成することができる。これらの透明樹脂は、透明性や偏光フィルム15との接着性を阻害しない範囲で添加物を含有することができる。透明保護フィルム16,17は、その厚さを5~200μm程度とすることができるが、好ましくは20~120μmの範囲である。
 偏光フィルムの一方の面に貼合される透明保護フィルム、特に、粘着剤層1が設けられて、液晶パネルとするときに液晶セル側となる第二の透明保護フィルム17は、延伸されて位相差が付与されたものとすることができる。位相差が付与されたフィルム、すなわち位相差フィルムを採用する場合、その偏光板が適用される液晶セルのモードによって、適当な位相差値を有するものを選択すればよい。例えば、垂直配向(Vertical Alignment:VA)モードの液晶セルに対しては、正の固有複屈折を有する高分子フィルムが一軸延伸され、屈折率楕円体がn>n≒nの関係を有するポジティブAプレート、横延伸や逐次二軸延伸が施され、n>n>nの関係を有する二軸性のフィルム、又はn≒n>nの関係を有するネガティブCプレートを用いることができる。また横電界(In−Plane Switching:IPS)モードの液晶セルに対しては、屈折率楕円体がn≒n≒nの関係を有する概ね無配向のフィルムが好ましく用いられる。ここで、nはフィルムの面内遅相軸(x軸)方向の屈折率、nは面内進相軸(y軸:遅相軸と面内で直交する軸)方向の屈折率、そしてnは厚み(z軸)方向の屈折率である。
 VAモードの液晶セルに対しては、第二の透明保護フィルム17として特に、二軸延伸された二軸性の位相差フィルムが好ましく用いられる。二軸性の位相差フィルムを用いる場合、その二軸性の目安となるNz係数は、次の式(1)で定義される。また、膜厚をdとしたときの面内の位相差値Re及び厚み方向の位相差値Rthは、それぞれ次の式(2)及び(3)で定義される。
 Nz=(n−n)/(n−n)    (1)
 Re=(n−n)×d          (2)
 Rth=〔(n+n)/2−n〕×d  (3)
 さらに、上記式(1)~(3)から、Nz係数と、面内の位相差値Re及び厚み方向の位相差値Rthとの関係は、次の式(4)で表すことができる。
 Nz=Rth/Re+0.5         (4)
 第二の透明保護フィルム17として二軸性の位相差フィルムを用いる場合、その面内の位相差値Reは、30~300nmの範囲、とりわけ50~260nmの範囲にあることが好ましい。またNz係数は、1.1~7の範囲、とりわけ1.4~5の範囲にあることが好ましい。これらの範囲から、適用される液晶表示装置に要求される視野角特性に合わせて、適宜光学特性の値を選択すればよい。
 一方、液晶セルから遠い側となる第一の透明保護フィルム16に対しては、ハードコート処理、帯電防止処理、反射防止処理、防汚処理、防眩処理などから選ばれる表面処理を施すことで、傷防止や視認性向上などの機能を付与することができる。
 偏光板20は、以上説明した偏光フィルム15に、それぞれ接着剤を介して、第一の透明保護フィルム16及び第二の透明保護フィルム17を貼合することにより得られる。貼合に用いる接着剤は、通常、透明樹脂からなるものであり、ポリビニルアルコール系樹脂の水溶液など、水系の接着剤を用いることもできるし、紫外線の照射によって硬化する紫外線硬化型接着剤を用いることもできる。偏光フィルム15の両面に設けられる接着剤層を形成する接着剤は、同種であってもよいし、異種であってもよい。
[液晶パネル及び液晶表示装置]
 本発明によって製造される粘着剤付き光学部材は、液晶パネルの構成部材として使用することができる。図1の(D)に示す粘着剤付き光学部材(粘着剤付き偏光板)25は、そこから第二の剥離フィルム3を剥がし、それによって露出する粘着剤層1を液晶セルに積層して、液晶パネルとされる。液晶パネルは、液晶セルと、液晶セルの視認側に配置される前面側偏光板と、液晶セルの視認側とは反対側に配置される背面側偏光板とで構成され、液晶表示装置の構成部材となる。
 液晶表示装置は、液晶パネルと、その視認側とは反対側に順次配置された光拡散板及びバックライトで構成される。液晶表示装置において、液晶パネルは、その背面側偏光板がバックライト側となるように配置される。ここで背面側とは、液晶パネルを液晶表示装置に搭載したときのバックライト側を意味し、視認側(前面側)とは、液晶パネルを液晶表示装置に搭載したときのバックライトとは反対側であって、その表示装置を見る人がいる側を意味する。本発明によって製造される粘着剤付き偏光板は25、前面側偏光板に用いることもできるし、背面側偏光板に用いることもできる。
 液晶セルは、ガラス基板の間に液晶物質を封入したセルを電気的に制御することで、画像を表示させる素子である。液晶セルのモードとしては、VAモード、IPSモード、ブルー相の液晶を用いた液晶駆動モードなど、公知のモードを採用することができる。
 粘着剤付着偏光板25を液晶セルに貼合するときは、第二の剥離フィルム3を粘着剤層1から剥がし、それによって露出する粘着剤層1の面を液晶セルの表面に貼合する。粘着剤付き偏光板25は、ロール状に保管されたものをシート状に繰り出してロール・トゥ・セル方式で液晶セルに貼合してもよいし、シート状にチップカットされた状態で保管されたものをシート・トゥ・セル方式で液晶セルに貼合してもよい。
 バックライトは、液晶セルに表示用の光を供給するための装置である。バックライトには、エッジライト式と呼ばれるものや直下型と呼ばれるものなどがさる。エッジライト式のバックライトは、導光板と、その側面に配置された冷陰極管やLEDなどの光源とで構成され、光源からの光が導光板を通じて液晶パネルを照射するようになっている。また、直下型のバックライトは、液晶パネルの背面側に配置された複数の光源で構成され、そこからの光が上記光拡散板を通じて液晶パネルを照射するようになっている。バックライトの種類は、液晶表示装置の用途に応じたものを適宜選択して採用することができる。
 液晶パネルとバックライトの間に配置される光拡散板は、バックライトからの光を拡散させ、均一化された光を液晶パネルに供給する機能を有する光学部材である。光拡散板としては、例えば、熱可塑性樹脂に光拡散剤である粒子を分散させて光拡散性を付与したもの、熱可塑性樹脂フィルムの表面に凹凸を形成して光拡散性を付与したもの、熱可塑性樹脂フィルムの表面に粒子が分散された樹脂組成物の塗布層を設け、光拡散性を付与したものなどが使用できる。光拡散板は通常、0.1~5mm程度の厚さを有する。
 光拡散板と液晶パネルの間には、輝度向上フィルム〔3M社(日本では住友スリーエム(株))から“DBEF”の商品名で販売されている反射型偏光フィルムなどがこれに該当する〕や、バックライトの直上に配置される光拡散板とは異なる光拡散フィルムなど、他の光学機能性を示すシート又はフィルムを配置することもできる。他の光学機能性を示すシート又はフィルムは、必要に応じて複数種類、また複数枚配置してもよい。
Embodiments of the present invention will be described in detail with reference to the accompanying drawings as appropriate. FIG. 1 is a schematic cross-sectional view showing the layer structure of each member until an optical member with an adhesive is obtained by the method of the present invention.
Referring to FIG. 1, in the method of the present invention, first, as shown in FIG. 1A, a first release film 2, an adhesive layer 1, and a second release film 3 are laminated in this order. An agent sheet 5 is prepared. Next, the first release film 2 is peeled off from the pressure-sensitive adhesive sheet 5, and as shown in the same (B), a laminate of the second release film 3 and the pressure-sensitive adhesive layer 1, which is a pressure-sensitive adhesive layer Let 1 be the pressure-sensitive adhesive sheet 10 before bonding exposed. Separately, an optical member 20 shown in FIG. And the adhesive layer 1 exposed with the adhesive sheet 10 before bonding of the (B) is bonded to the optical member 20 of the same (C), and as shown in the same (D), the optical member 20, The optical member 25 with an adhesive in which the adhesive layer 1 and the second release film 3 are laminated in this order is manufactured. FIG. 1 shows an example in which the optical member 20 is a polarizing plate in which transparent protective films 16 and 17 are bonded to both surfaces of a polarizing film 15. In addition, the optical member can be a retardation film or the like, and the method of the present invention can be applied to various members generally having optical characteristics and provided with an adhesive layer.
The process until the first release film 2 is peeled from the pressure-sensitive adhesive sheet 5 shown in FIG. 1A to obtain the pre-bonding pressure-sensitive adhesive sheet 10 shown in FIG. It corresponds to. Moreover, the process until it bonds the adhesive sheet 10 before bonding shown to the same (B) to the optical member 20 shown to the same (C), and obtains the optical member 25 with an adhesive shown to the same (D) is this book. This corresponds to the bonding step in the invention.
In this invention, as the adhesive sheet 5 shown to FIG. 1 (A), the peeling force between the 1st peeling film 2 and the adhesive layer 1, and between the 2nd peeling film 3 and the adhesive layer 1 are used. The peeling force of each is in the range of more than 0.02 N / 25 mm and less than 0.15 N / 25 mm, and the difference between the two peeling forces is less than 0.01 N / 25 mm. The peeling force here is a value when tested at a peeling speed of 0.3 m / min.
A specific peeling force test method is as shown in the examples with reference to FIG. That is, one release film side (the second release film 3 side in FIG. 5) of the adhesive sheet cut to a width of 25 mm is attached to a glass plate via a double-sided adhesive tape, and in this state, the adhesive sheet is attached to the glass plate. Grasp one end of the unbonded release film (first release film 2 in FIG. 5) in the length direction (direction perpendicular to one side of 25 mm in width) and hold the release film (first release film 2 in FIG. 5). ) Is peeled off in the 180 degree direction (in the direction along the film surface) at a peeling speed of 0.3 m / min, whereby the peeled release film (first release film 2 in FIG. 5) is peeled from the adhesive layer. Seeking power. The laminate that has the adhesive remaining after peeling off one release film is attached to the other release film, and then peeled off from the double-sided adhesive tape that was used to attach to the glass plate first, then the adhesive layer side Is attached to the glass plate, and in this state, one end in the length direction of the release film (second release film 3 in FIG. 5) on the opposite side of the glass plate is grasped, and the gripped release film (second in FIG. 5) The release film 3) is peeled off in the direction of 180 degrees (folded and along the film surface) at a release speed of 0.3 m / min, whereby the pressure-sensitive adhesive layer of the gripped release film (second release film 3 in FIG. 5) Find peel strength from.
When the peeling force between the first release film 2 and the pressure-sensitive adhesive layer 1 and / or the peeling force between the second release film 3 and the pressure-sensitive adhesive layer 1 are reduced to 0.02 N / 25 mm or less, Such inconvenience is likely to occur. That is, the release films 2 and 3 and the pressure-sensitive adhesive layer 1 cause delamination (delamination), and the so-called tunneling phenomenon in which the release films 2 and 3 are lifted from the pressure-sensitive adhesive layer 1 easily occurs. In addition, in order to reduce the peeling force, it is necessary to apply a large amount of release agent. When the release agent contains silicone oil, the result of applying a lot of release agent containing the silicone oil is that When the pressure-sensitive adhesive sheet is rolled into a roll, the release agent applied to one release film is secondarily transferred to the surface of the other release film (so-called back transfer). May also occur.
On the other hand, when the peeling force between the first release film 2 and the pressure-sensitive adhesive layer 1 and / or the peeling force between the second release film 3 and the pressure-sensitive adhesive layer 1 are increased to 0.15 N / 25 mm or more, The following inconveniences are likely to occur. That is, one of the release films is peeled off from the adhesive sheet, and the adhesive-attached optical member in which the release film is bonded to the adhesive layer obtained by attaching to the optical member is attached to the liquid crystal cell on the liquid crystal panel production line. When bonding, a release tape is adhered to the surface of the release film, the opposite optical member is sucked with an adsorption plate, and in this state, the release tape is pulled up to peel off the release film, and the adhesive layer is attached to the liquid crystal cell. When pasting, if the peel strength of the release film from the adhesive layer is too large, the adhesive force of the release tape to the release film will decrease quickly, and the replacement cycle of the release tape will be accelerated, resulting in the production cost of the liquid crystal panel. Easy to connect. Moreover, if the peeling force from the adhesive layer of the release film is too large, the release film cannot be peeled off from the adhesive layer even if the release tape is pulled, and the liquid crystal panel production line may be stopped. .
Moreover, as above-mentioned, the difference of the peeling force from the adhesive layer 1 of the 1st peeling film 2 and the peeling force from the adhesive layer 1 of the 2nd peeling film 3 is as small as less than 0.01 N / 25mm. To do. The state in which there is no difference between the two peeling forces, that is, the first release film and the second release film may be substantially the same. In this case, since the first release film 2 and the second release film 3 manufactured under the same conditions can be used, the manufacturing process can be shortened and the manufacturing cost can be reduced. In this specification, the peeling force between the first release film 2 and the pressure-sensitive adhesive layer 1 is simply referred to as “the peeling force of the first release film 2”, the second release film 3 and the pressure-sensitive adhesive layer 1. May be referred to simply as “peeling force of the second release film 3”, respectively.
[Adhesive sheet and method for producing the same]
First, a method for producing an adhesive sheet on a continuous line will be described with reference to FIG. FIG. 2 is a schematic side view showing an arrangement example of apparatuses when the pressure-sensitive adhesive sheet is produced in a continuous line. In the illustrated example, a pressure-sensitive adhesive layer is formed on the surface of the second release film 3, the first release film 2 is bonded to the surface of the pressure-sensitive adhesive layer, and a pressure-sensitive adhesive sheet 5 is manufactured and wound up. The roll 35 is wound around. Explaining in order, the second release film 3 wound around the feeding roll 30 is fed from there, and the pressure-sensitive adhesive composition supplied from the coating machine 31 is applied to the release treatment surface. . The applied pressure-sensitive adhesive composition is dried by a dryer 32 to become a pressure-sensitive adhesive layer, and a laminate 10 of the second release film 3 and the pressure-sensitive adhesive layer. The pressure-sensitive adhesive layer of the laminate 10 of the second release film 3 and the pressure-sensitive adhesive layer that is fed from the first release film 2 wound around another supply roll 33 and fed from the dryer 32. It is laminated | stacked on the surface by the mold release process surface, and is bonded by the bonding pressure of the bonding roll 34. FIG. The obtained pressure-sensitive adhesive sheet 5 is wound around a winding roll 35 and stored. In FIG. 2, the curved arrow means the rotation direction of the roll.
As described above, the pressure-sensitive adhesive sheet 5 generally has a coating process for coating the second release film 3 with the pressure-sensitive adhesive composition, a drying process for drying the pressure-sensitive adhesive composition to form a pressure-sensitive adhesive layer, and It is manufactured through a bonding step in which the first release film is bonded to the pressure-sensitive adhesive layer. The laminate 10 of the second release film 3 and the pressure-sensitive adhesive layer obtained through the coating process and the drying process is an intermediate for producing a pressure-sensitive adhesive sheet.
In addition, as explained in the section of the background art, in the conventional pressure-sensitive adhesive sheet applied to the optical member, as the release film to be bonded to both surfaces, a film having a different peeling force with respect to the pressure-sensitive adhesive layer was often used. . In this case, the heavy release film having a relatively large release force is used as the second release film 3 in FIG. 2, an adhesive layer is provided on the release treatment surface, and the light release film having a relatively low release force is shown in FIG. The release treatment surface of the light release film (first release film) 2 is bonded to the pressure-sensitive adhesive layer provided on the heavy release film (second release film) 3. It was manufactured by doing.
In the present invention, as explained above, it is necessary to provide a substantial difference between the peeling force of the first release film 2 on the pressure-sensitive adhesive layer and the peel strength of the second release film 3 on the pressure-sensitive adhesive layer. There is no. Therefore, in FIG. 2, for convenience, the pressure-sensitive adhesive composition is applied to the release treatment surface of the second release film 3 in the coating process, and the first pressure-sensitive adhesive layer is then peeled off in the subsequent bonding process. Although drawn so that the release treatment surfaces of the film 2 are bonded together, the first release film 2 and the second release film 3 may be reversed. On the other hand, the pressure-sensitive adhesive sheet 5 used in the present invention is, as shown in FIG. 1, between two release films 2 and 3 having a difference in peel strength with respect to the pressure-sensitive adhesive layer 1 of less than 0.01 N / 25 mm. As long as the adhesive layer 1 is sandwiched, one of the two release films is the first release film 2 and the other is the second release film 3. The method of the invention may be applied.
The pressure-sensitive adhesive composition can be applied by a known method, for example, a die coater, a gravure roll coater, a comma coater, or the like. After the application of the pressure-sensitive adhesive composition, the pressure-sensitive adhesive layer is formed by passing through a drying furnace 32 as shown in FIG. The thickness of the pressure-sensitive adhesive layer is usually about 1 to 100 μm.
The first release film 2 and the second release film 3 are generally composed of a resin film that has been subjected to a release treatment. Examples of the resin constituting the release film include polyester resins such as polyethylene naphthalate, polyethylene isophthalate, and polybutylene terephthalate, polyolefin resins, polyamide resins, cellulose resins, polycarbonate resins, and polyphenylene sulfide. Resins, polyvinyl chloride resins, polyvinylidene chloride resins, various liquid crystalline polymers, various biodegradable resins, and the like can be used. Among these, polyethylene terephthalate or polyethylene naphthalate is preferable from the viewpoint of heat resistance and ease of subsequent release treatment, and polyethylene terephthalate is most practical in view of cost. Of course, if desired, two or more kinds of resins may be used in combination.
The above resin may be unstretched or uniaxially or biaxially stretched. Of these, a uniaxial or biaxially stretched film having a maximum strain of the orientation main axis of 10 degrees or less is preferable. As the release film, a single film may be used, or a laminated film in which a plurality of single films are laminated may be used. The thickness of the release film can be, for example, about 5 to 200 μm.
The mold release treatment applied to the surface of the release film can be performed by a method of applying a mold release agent to the film surface. Any release agent can be used, but a silicone release agent having excellent release characteristics is particularly preferable. Examples of silicone release agents include addition-reactive silicone release agents that cure at relatively low temperatures, acrylic silicone release agents that do not apply heat, and UV-curable epoxy group-containing silicone release agents. Can be used. The peeling force can be adjusted by the thickness of the release agent, the presence or absence of the oligomer added to the release agent, and the amount thereof.
The coating amount of the release agent is 0.01-3 g / m 2 It is preferable to set the degree. The coating amount of the release agent is 0.01 g / m 2 If it is less than 1, the peeling force of the release film increases, but the release performance is insufficient and the release film is difficult to peel from the pressure-sensitive adhesive layer. On the other hand, the coating amount of the release agent is 3 g / m. 2 If it exceeds, the release force will be reduced, but when the release film that has been subjected to the release treatment is rolled into a roll, the release agent on the coated surface will be the other side that has not been released. It becomes easy to cause so-called blocking that adheres to the back surface and solidifies.
[Adhesive]
The pressure-sensitive adhesive layer 1 constituting the pressure-sensitive adhesive sheet 5 shown in FIG. 1 is a pressure-sensitive adhesive whose base polymer is an acrylic polymer, a silicone polymer, a polyester polymer, a polyurethane polymer, a polyether polymer, or the like. It can be formed using the composition. Among these, from the viewpoints of transparency, wettability, cohesive strength, durability including weather resistance and heat resistance, an acrylic pressure-sensitive adhesive based on an acrylic polymer (acrylic resin) is preferably used. .
The acrylic resin constituting the acrylic pressure-sensitive adhesive is generally composed of a structural unit derived from (meth) acrylic acid ester as a main component, such as a heterocyclic group including a free carboxyl group, a hydroxyl group, an amino group, and an epoxy ring. An acrylic copolymer having a structural unit derived from an unsaturated monomer having a crosslinkable polar functional group is useful. The unsaturated monomer having a polar functional group is also preferably a (meth) acrylic acid compound. The acrylic resin constituting the acrylic pressure-sensitive adhesive preferably has a glass transition temperature of 20 ° C. or lower, more preferably 0 ° C. or lower. Moreover, the thing whose weight average molecular weight of standard polystyrene conversion by a gel permeation chromatography (GPC) is 100,000 or more is preferable.
Usually, a crosslinking agent is mix | blended with the adhesive composition which has an acrylic resin as a main component. The crosslinking agent is a compound having at least two functional groups in the molecule that can react with polar functional groups constituting the acrylic resin to form a crosslinked structure. Specific examples include isocyanate compounds, epoxy compounds, metal chelate compounds, and aziridine compounds.
In order to improve the adhesiveness between the pressure-sensitive adhesive layer and the liquid crystal cell glass, the pressure-sensitive adhesive composition containing an acrylic resin as a main component preferably contains a silane compound also called a silane coupling agent. Prior to blending the crosslinking agent, a silane compound may be blended in the pressure-sensitive adhesive composition.
Moreover, an ionic compound can also be contained in an adhesive composition. Thereby, antistatic property is imparted to the pressure-sensitive adhesive layer 1. As the ionic compound, for example, a compound having an imidazolium cation, a pyridinium cation, an ammonium cation, or the like can be used.
The pressure-sensitive adhesive layer can contain a light diffusing agent, whereby light diffusibility can be imparted to the pressure-sensitive adhesive layer itself. The pressure-sensitive adhesive sheet containing a light-diffusing agent sandwiched between two release films is particularly prone to crying when one of the release films is peeled off. The method of the present invention is effective when manufacturing an attached optical member. The light diffusing agent is generally organic or inorganic fine particles, and the shape thereof is preferably spherical.
Organic fine particles are generally made of resin (polymer compound). Examples of resins that can be used as light diffusing agents include polyolefin resins such as polystyrene, polyethylene and polypropylene, acrylic resins such as polymethacrylate resins and polyacrylate resins. There are resin, silicone resin, benzoguanamine resin, melamine resin and the like. Of course, these resins may be copolymers obtained from two or more types of monomers. Furthermore, resin fine particles having a crosslinked structure can also be used effectively as a light diffusing agent. On the other hand, examples of inorganic fine particles that can serve as a light diffusing agent include silica fine particles, titanium oxide fine particles, and aluminum oxide fine particles. In consideration of the dispersibility to the acrylic resin constituting the pressure-sensitive adhesive composition, the coating properties of the pressure-sensitive adhesive composition, the optical properties of the resulting pressure-sensitive adhesive layer, etc., the light diffusing agent may be a silicone resin or an acrylic resin (usually Fine particles comprising a methyl methacrylate resin) are preferred.
When a light diffusing agent is blended to impart light diffusibility, the light diffusing agent is 0.01 or more and 0.07 or less, more preferably 0.01 or more, between the acrylic resin constituting the pressure-sensitive adhesive composition. It preferably has a refractive index difference of 0.04 or less. When the difference in refractive index between the two is less than 0.01, a desired light diffusibility is not imparted to the resulting pressure-sensitive adhesive layer, and as a result, it becomes close to a transparent pressure-sensitive adhesive. On the other hand, if the difference in refractive index between the two becomes too large, light diffusibility is strongly developed, so that white luminance when the liquid crystal display device is viewed from the front is lowered.
Among the components described above, components other than the light diffusing agent are mixed in a state dissolved in an organic solvent. When blending a light diffusing agent, it can be prepared by dispersing the light diffusing agent in the mixed solution. The pressure-sensitive adhesive composition is, for example, an acrylic resin dissolved in an organic solvent such as toluene or ethyl acetate, and a necessary component among a crosslinking agent, a silane compound, an ionic compound and a light diffusing agent, and further blended as desired. The following components are dissolved or dispersed to prepare a solution having a solid content concentration of about 10 to 40% by weight.
The pressure-sensitive adhesive composition (solution) may further contain a crosslinking catalyst, a weathering stabilizer, a tackifier, a plasticizer, a softening agent, a dye, a pigment, and the like. When a crosslinking catalyst is blended with the crosslinking agent in the pressure-sensitive adhesive composition, the pressure-sensitive adhesive layer 1 can be prepared by aging in a short time. For this reason, in the obtained optical member with an adhesive or a liquid crystal display device using the same, floating or peeling occurs between the adhesive layer 1 and the optical member, or foaming occurs in the adhesive layer 1. Can be suppressed, and reworkability can be further improved. Examples of the crosslinking catalyst include amine compounds such as hexamethylenediamine, ethylenediamine, polyethyleneimine, hexamethylenetetramine, diethylenetriamine, triethylenetetramine, isophoronediamine, trimethylenediamine, polyamino resin, and melamine resin. . When an amine compound is added to the adhesive as a crosslinking catalyst, an isocyanate compound is suitable as the crosslinking agent.
[Method for producing optical member with adhesive]
FIG. 3 is a schematic side view showing an arrangement example of apparatuses when an optical member with an adhesive is produced in a continuous line. The example of illustration peels off the 1st peeling film 2 from the adhesive sheet 5, and the adhesive layer 1 of the adhesive sheet 10 before bonding which is the laminated body of the 2nd peeling film 3 and the adhesive layer 1 obtained is obtained. The optical member 25 with adhesive is bonded to the surface of the optical member 20, and the optical member 25 with pressure-sensitive adhesive thus obtained is wound up by a winding roll 42. In FIG. 3, the straight arrow means the film conveyance direction, and the curved arrow means the roll rotation direction. The manufacturing method of the optical member 25 with an adhesive according to the present invention will be described with reference to FIG.
The pressure-sensitive adhesive sheet 5 wound around the feeding roll 36 is fed out therefrom. And between the upstream tension roll 37 and the downstream tension roll 38, tension is applied to the first release film 2 constituting the pressure-sensitive adhesive sheet 5, and the first release film 2 is moved straight so as not to bend. Thus, at a certain point (peeling point P) between the straight sections L, the second peelable film 3 is the pressure-sensitive adhesive layer 1 and the laminated body of both, that is, the pressure-sensitive adhesive sheet 10 before being bonded to the optical member. Thus, the first release film 2 is conveyed in a direction different from the straight direction. At this time, a pressing force is not applied to the second release film 3 from the side opposite to the surface where the pressure-sensitive adhesive layer 1 is adhered.
The pressure-sensitive adhesive sheet 5 fed out from the feed-out roll 36 has the first release film 2 and the pressure-sensitive adhesive film 2 as shown in the enlarged sectional view A in FIG. The adhesive layer 1 and the second release film 3 are laminated in this order, from which only the first release film 2 moves straight in the direction of the downstream tension roll 38 and is peeled off from the adhesive layer 1. It is. The peeled first release film 2 passes through the downstream tension roll 38 and is then taken up by the take-up roll 39. On the other hand, the pre-bonding pressure-sensitive adhesive sheet 10, which is a laminate of the second peelable film 3 and the pressure-sensitive adhesive layer 1 after peeling off the first peelable film 2, has another pressure roll 40 on the pressure-sensitive adhesive layer 1 side. Is laminated on the optical member 20 that is fed out, and is bonded by the bonding roll 41 to obtain an optical member 25 with an adhesive. The obtained optical member 25 with pressure-sensitive adhesive is wound around a winding roll 42.
In FIG. 3, the process of peeling the 1st peeling film 2 from the adhesive sheet 5 is equivalent to the peeling process said by this invention, and the 2nd peeling film 3 and adhesion after peeling the 1st peeling film 2 The process of bonding the adhesive sheet 10 before bonding which is the laminated body of the agent layer 1 to the optical member 20 with the bonding roll 41 corresponds to the bonding process referred to in the present invention.
<Peeling process>
In the peeling process, as described above, the tension is applied to the first peeling film 2 between the upstream tension roll 37 and the downstream tension roll 38, and the first peeling film 2 is straightened so as not to bend. The The tension at this time can be applied by a method of giving a difference in peripheral speed between the feeding roll 36 and the winding roll 39 or a method of changing the film transport direction using the tension roll as a support. In order to give a difference in peripheral speed, tension is applied to the first release film 2 by making the peripheral speed of the winding roll 39 faster than the peripheral speed of the feeding roll 36. Also, when changing the transport direction of the film with the tension roll, for example, as shown in FIG. 3, if the transport direction of the first release film 2 is largely changed using the downstream tension roll 38 as a support, Tension is applied to the downstream tension roll 38.
The magnitude | size of the tension | tensile_strength provided to the 1st peeling film 2 should just be relatively larger than the peeling force between the 2nd peeling film 3 and the adhesive layer 1. FIG. When the tension applied to the first release film 2 is greater than the release force between the second release film 3 and the pressure-sensitive adhesive layer 1, the direction is different from the transport direction (tension direction) of the first release film 2. In addition, when the second release film 3 is peeled off so that no pressing force is applied, the pressure-sensitive adhesive layer 1 remains on the first release film 2 so that so-called tearing is less likely to occur.
The speed at which the second release film 3 is peeled off varies depending on productivity, workability, surface activation treatment applied to the pressure-sensitive adhesive layer 1 and the optical member 20 described later, and 3 to 50 m / min. It is preferable to set the degree.
The peeling process is performed in the straight section L shown in FIG. 3, but the peeling point P at which the first release film 2 is peeled off from the pressure-sensitive adhesive layer 1 is due to changes in manufacturing conditions such as fluctuations in tension within the range of the direct feed section L. Moving. For example, when the separation point P is provided with sensors for detecting the separation point on the upstream side and the downstream side of the separation point in the straight section L, and the separation surface is detected by these sensors, the feeding roll 36 and the winding roll 39 are provided. The tension applied to the first release film 2 is appropriately adjusted by adjusting the peripheral speed of the belt or by adjusting the distance between the upstream tension roll 37 and the downstream tension roll 38, and the peeling point P is set between the sensors. Can be held. The sensor to be used can be appropriately selected from known sensors such as an ultrasonic sensor and an optical sensor as long as it can detect the peeling point. The tension applied to keep the first release film 2 conveyed in the straight direction can be measured and controlled by a known tension controller.
FIG. 4 is a side view schematically showing some examples in which the above-described peeling process does not satisfy the requirements defined in the present invention, and thus easily causes tearing, and enlarges the straight section L and its peripheral portion in FIG. As shown. The straight arrow in FIG. 4 shows the conveyance direction of a film. FIG. 4A shows a configuration of a production line in which tension is applied to the second release film 3 so that the second release film 3 moves straight, and the first release film 2 is peeled off without applying a pressing force. In this embodiment, unlike the method defined in the present invention, the tension is applied to the second release film 3, so that the attachment of the pressure-sensitive adhesive layer 1 occurs in the first release film 2. FIG. 4B shows a configuration of a production line in which the film is peeled off under the same stress applied to the first release film 2 and the second release film 3. In this form, since there is no difference in the tension applied to the first release film 2 and the second release film 3, the adhesive layer 1 tears apart. FIG. 4C shows a production line in which the second release film 3 and the pressure-sensitive adhesive layer 1 are peeled off using a support, that is, the second release film 3 is peeled off by applying a pressing force. It is a configuration. In this form, since tension is also applied to the second release film 3 by the support, tearing occurs in the pressure-sensitive adhesive layer 1. Thus, in the peeling form which does not satisfy the requirements prescribed | regulated by this invention, there exists a tendency for the adhesive layer 1 to accompany the 1st peeling film 2, or for the adhesive layer 1 to raise | generate a tearing-up easily.
As described above, the method for producing an optical member with an adhesive according to the present invention applies a tension larger than the peeling force of the second release film 3 to the first release film 2, and conveys the first release film 2. The second release film 3 is peeled off so that a pressing force is not applied in a direction different from the direction. According to this method, when a release film having a release force defined in the present invention is used, tearing occurs regardless of the magnitude relationship between the release force of the first release film 2 and the release force of the second release film 3. The 1st peeling film 2 can be peeled from the adhesive sheet 5 without this. At this time, since the same peel force can be used for the first release film 2 and the second release film 3, it is not necessary to set the peel force within a predetermined range as in the prior art. Thereby, there is no need to select a release film or a pressure-sensitive adhesive layer so that the peeling force is within a predetermined range, design management is facilitated, and the manufacturing cost of the pressure-sensitive adhesive sheet 5 and the optical member with the pressure-sensitive adhesive is reduced. be able to.
<Bonding process>
In the bonding step, the optical member 20 is bonded to the surface of the pressure-sensitive adhesive layer 1 in the pressure-sensitive adhesive sheet 10 before bonding, which is a laminate of the second release film 3 and the pressure-sensitive adhesive layer 1 that has passed through the peeling step. The pasting process will be described with reference to FIG. The pressure-sensitive adhesive sheet 10 before bonding is a continuous bonding process, and the pressure-sensitive adhesive layer 1 side is laminated on the surface of the optical member 20 fed from the feeding roll 40, and the bonding pressure is applied by the bonding roll 41. And paste. Thereby, the optical member 25 with an adhesive by which the adhesive layer 1 and the 2nd peeling film 3 were laminated | stacked on the optical member 20 in this order can be manufactured. The produced polarizing plate 25 with the pressure-sensitive adhesive is wound around the winding roll 42 and stored.
In order to increase the adhesive force between the pressure-sensitive adhesive layer 1 and the optical member 20, it is preferable to subject the adhesive surface of the pressure-sensitive adhesive layer 1 and / or the optical member 20 to corona discharge treatment. The corona discharge treatment is a treatment that activates the surface of the resin film or the pressure-sensitive adhesive layer that is discharged by applying a high voltage between the electrodes. The output of the corona discharge treatment is preferably set to about 200 to 1,000 W. When the output of the corona discharge treatment is 200 W or more, the effect of this treatment becomes remarkable, and the adhesive force between the pressure-sensitive adhesive layer 1 and the transparent resin film 17 is improved. Moreover, generation | occurrence | production of the dust which is easy to produce by this process is suppressed as the output of a corona discharge process is 1,000 W or less. The effect of the corona discharge treatment varies depending on the type of electrode, electrode interval, voltage, temperature, etc., but it is preferable to set the moving speed of the object to be processed to about 3 to 50 m / min.
[Optical member]
As described above, the optical member provided with the pressure-sensitive adhesive layer in the present invention has optical characteristics, and typical examples thereof include a polarizing plate and a retardation film. In particular, a polarizing plate is preferably used.
A polarizing plate is an optical member having a function of emitting polarized light with respect to incident light such as natural light. The polarizing plate absorbs linearly polarized light having a vibration surface in a certain direction and reflects linearly polarized light having a vibration surface in a certain direction, and reflects linearly polarized light having a vibration surface in a certain direction. There are a polarization separating plate showing the property of transmitting linearly polarized light having a vibration plane orthogonal to the polarizing plate, an elliptically polarizing plate in which a polarizing plate and a retardation film are laminated. Among these, a linear polarizing plate is representative. Hereinafter, the linearly polarizing plate will be specifically described. Hereinafter, the linearly polarizing plate is simply referred to as a polarizing plate.
The polarizing plate has a structure in which the first transparent protective film 16 and the second transparent protective film 17 are bonded to both surfaces of the polarizing film 15, respectively, as shown in the schematic cross-sectional view of FIG. There are many.
The polarizing film 15 can be composed of a uniaxially stretched polyvinyl alcohol resin film in which a dichroic dye such as iodine or a dichroic dye is adsorbed and oriented. Such a polarizing film is generally produced by subjecting a polyvinyl alcohol resin film to uniaxial stretching, dyeing with a dichroic dye, and boric acid treatment. The thickness of the polarizing film 15 can be set to about 2 to 40 μm, for example.
A saponified polyvinyl acetate resin can be used as the polyvinyl alcohol resin. The polyvinyl acetate resin can be a copolymer of vinyl acetate, which is a homopolymer of vinyl acetate, or a copolymer of vinyl acetate and another monomer copolymerizable therewith. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
As for the polarizing film 15, the transparent protective films 16 and 17 are bonded on both surfaces, respectively. These transparent protective films 16 and 17 are, for example, acrylic resins such as methyl methacrylate resins, olefin resins, polyvinyl chloride resins, cellulose resins, styrene resins, acrylonitrile / butadiene / styrene copolymers. Resin, acrylonitrile / styrene copolymer resin, polyvinyl acetate resin, polyvinylidene chloride resin, polyamide resin, polyacetal resin, polycarbonate resin, modified polyphenylene ether resin, polyester resin (for example, polybutylene terephthalate, Polyethylene terephthalate, etc.), polysulfone resin, polyethersulfone resin, polyarylate resin, polyamideimide resin, polyimide resin, epoxy resin, oxetane resin, etc. These transparent resins can contain additives as long as transparency and adhesiveness with the polarizing film 15 are not impaired. The transparent protective films 16 and 17 can have a thickness of about 5 to 200 μm, preferably 20 to 120 μm.
The transparent protective film bonded to one surface of the polarizing film, in particular, the second transparent protective film 17 on the liquid crystal cell side when the pressure-sensitive adhesive layer 1 is provided to form a liquid crystal panel is stretched and positioned. A phase difference can be given. When employing a film provided with a retardation, that is, a retardation film, a film having an appropriate retardation value may be selected depending on the mode of the liquid crystal cell to which the polarizing plate is applied. For example, for a vertical alignment (VA) mode liquid crystal cell, a polymer film having positive intrinsic birefringence is uniaxially stretched, and the refractive index ellipsoid is n. x > N y ≒ n z A positive A plate having the following relationship, lateral stretching and sequential biaxial stretching are applied, and n x > N y > N z A biaxial film having the relationship x ≒ n y > N z A negative C plate having the following relationship can be used. For a liquid crystal cell in a lateral electric field (In-Plane Switching: IPS) mode, a refractive index ellipsoid is n. x ≒ n y ≒ n z A generally non-oriented film having the following relationship is preferably used. Where n x Is the refractive index in the in-plane slow axis (x-axis) direction of the film, n y Is the refractive index in the in-plane fast axis (y-axis: axis perpendicular to the slow axis in the plane), and n z Is the refractive index in the thickness (z-axis) direction.
For the VA mode liquid crystal cell, a biaxially stretched biaxial retardation film is particularly preferably used as the second transparent protective film 17. When a biaxial retardation film is used, the Nz coefficient that is a measure of the biaxiality is defined by the following equation (1). Further, the in-plane retardation value Re and the thickness direction retardation value Rth when the film thickness is d are defined by the following equations (2) and (3), respectively.
Nz = (n x -N z ) / (N x -N y (1)
Re = (n x -N y ) × d (2)
Rth = [(n x + N y ) / 2-n z ] Xd (3)
Furthermore, from the above equations (1) to (3), the relationship between the Nz coefficient, the in-plane retardation value Re, and the thickness direction retardation value Rth can be expressed by the following equation (4).
Nz = Rth / Re + 0.5 (4)
When a biaxial retardation film is used as the second transparent protective film 17, the in-plane retardation value Re is preferably in the range of 30 to 300 nm, particularly in the range of 50 to 260 nm. The Nz coefficient is preferably in the range of 1.1 to 7, and more preferably in the range of 1.4 to 5. From these ranges, the value of the optical characteristic may be appropriately selected according to the viewing angle characteristic required for the applied liquid crystal display device.
On the other hand, the first transparent protective film 16 on the side far from the liquid crystal cell is subjected to a surface treatment selected from hard coat treatment, antistatic treatment, antireflection treatment, antifouling treatment, antiglare treatment and the like. Functions such as scratch prevention and visibility improvement can be imparted.
The polarizing plate 20 is obtained by bonding the first transparent protective film 16 and the second transparent protective film 17 to the polarizing film 15 described above via an adhesive, respectively. The adhesive used for the bonding is usually made of a transparent resin, and an aqueous adhesive such as an aqueous solution of a polyvinyl alcohol resin can be used, or an ultraviolet curable adhesive that is cured by irradiation with ultraviolet rays is used. You can also The adhesive that forms the adhesive layer provided on both surfaces of the polarizing film 15 may be the same or different.
[Liquid crystal panel and liquid crystal display device]
The optical member with an adhesive produced according to the present invention can be used as a constituent member of a liquid crystal panel. The optical member with pressure-sensitive adhesive (polarizing plate with pressure-sensitive adhesive) 25 shown in (D) of FIG. 1 peels off the second release film 3 therefrom, and the pressure-sensitive adhesive layer 1 exposed thereby is laminated on the liquid crystal cell. It is a liquid crystal panel. The liquid crystal panel is composed of a liquid crystal cell, a front side polarizing plate disposed on the viewing side of the liquid crystal cell, and a back side polarizing plate disposed on the side opposite to the viewing side of the liquid crystal cell. It becomes a member.
The liquid crystal display device includes a liquid crystal panel, a light diffusing plate and a backlight sequentially arranged on the side opposite to the viewing side. In the liquid crystal display device, the liquid crystal panel is disposed so that the back side polarizing plate is on the backlight side. Here, the back side means the backlight side when the liquid crystal panel is mounted on the liquid crystal display device, and the viewing side (front side) is opposite to the backlight when the liquid crystal panel is mounted on the liquid crystal display device. It means the side where the person who sees the display device is present. The pressure-sensitive adhesive-coated polarizing plate produced according to the present invention can be used for the front side polarizing plate 25 or the back side polarizing plate.
A liquid crystal cell is an element that displays an image by electrically controlling a cell in which a liquid crystal material is sealed between glass substrates. As a mode of the liquid crystal cell, a known mode such as a VA mode, an IPS mode, or a liquid crystal driving mode using a blue phase liquid crystal can be employed.
When the adhesive-attached polarizing plate 25 is bonded to the liquid crystal cell, the second release film 3 is peeled off from the adhesive layer 1, and the surface of the adhesive layer 1 exposed thereby is bonded to the surface of the liquid crystal cell. The polarizing plate with an adhesive 25 may be rolled out into a sheet and pasted into a liquid crystal cell by a roll-to-cell method, or stored in a sheet-cut state. It is also possible to paste the paste on the liquid crystal cell by the sheet-to-cell method.
The backlight is a device for supplying display light to the liquid crystal cell. Examples of the backlight include an edge light type and a direct type. The edge-light type backlight is composed of a light guide plate and a light source such as a cold cathode tube or an LED arranged on the side thereof, and light from the light source irradiates the liquid crystal panel through the light guide plate. The direct type backlight is composed of a plurality of light sources arranged on the back side of the liquid crystal panel, and light from the light source irradiates the liquid crystal panel through the light diffusion plate. The type of the backlight can be appropriately selected and used according to the application of the liquid crystal display device.
The light diffusing plate disposed between the liquid crystal panel and the backlight is an optical member having a function of diffusing light from the backlight and supplying uniformed light to the liquid crystal panel. Examples of the light diffusing plate include those obtained by dispersing particles as a light diffusing agent in a thermoplastic resin and imparting light diffusibility, those obtained by forming irregularities on the surface of the thermoplastic resin film and imparting light diffusibility, For example, a coating layer of a resin composition in which particles are dispersed is provided on the surface of a thermoplastic resin film to impart light diffusibility. The light diffusion plate usually has a thickness of about 0.1 to 5 mm.
Between the light diffusing plate and the liquid crystal panel, a brightness enhancement film (such as a reflective polarizing film sold under the name “DBEF” from 3M (Sumitomo 3M Co., Ltd. in Japan)) In addition, a sheet or film exhibiting other optical functionalities such as a light diffusion film different from the light diffusion plate disposed immediately above the backlight may be disposed. A plurality of types or a plurality of sheets or films exhibiting other optical functionalities may be arranged as necessary.
 以下に具体的な実験例を示して、本発明をさらに詳しく説明するが、本発明はこれらの例によって限定されるものではない。例中、使用量ないし含有量を表す部及び%は、特記ない限り重量基準である。
[粘着剤シートの作製]
(a)剥離フィルム
 離型処理が施された以下の4種類のポリエチレンテレフタレートフィルムを用意し、それぞれを剥離フィルムとして用いた。以下に示すフィルムは、粘着剤層からの剥離力の順に並べており、上が剥離力の小さいもの、下が剥離力の大きいものである。
 剥離フィルム1:三菱樹脂(株)から販売されている商品名“MRF”、
 剥離フィルム2:三菱樹脂(株)から販売されている商品名“MRE(MT125)”、
 剥離フィルム3:三菱樹脂(株)から販売されている商品名“MRV(08)”、
 剥離フィルム4:帝人(株)から販売されている商品名“A71−T1”。
(b)粘着剤用アクリル樹脂の調製
 冷却管、窒素導入管、温度計及び攪拌機を備えた反応器に、酢酸エチル169.8部、アクリル酸ブチル98.6部、アクリル酸2−ヒドロキシエチル1.0部、及びアクリル酸0.4部の混合溶液を仕込み、窒素ガスで装置内の空気を置換して酸素不含としながら、内温を55℃に上げた。次に、重合開始剤であるアゾビスイソブチロニトリル0.14部を酢酸エチル5部に溶かした溶液を全量添加した。その後、内温を54~56℃に保ちながら12時間保温し、最後に酢酸エチルを添加して、アクリル樹脂の濃度が28%となるように調節した。得られたアクリル樹脂は、ゲルパーミェーションクロマトグラフィーによるポリスチレン換算の重量平均分子量Mwが134万、重量平均分子量Mwと数平均分子量Mnの比Mw/Mnが1.7であり、屈折率が1.46であった。
(c)アクリル系粘着剤組成物の調製
 粘着剤組成物に配合するイソシアネート系架橋剤、シラン化合物、帯電防止剤となるイオン性化合物、及び光拡散剤として、それぞれ次のものを用いた。“ ”で括った名前は商品名である。
(イソシアネート系架橋剤)
 “コロネートL”:トリレンジイソシアネートのトリメチロールプロパンアダクト体を75%濃度で含む酢酸エチル溶液、日本ポリウレタン工業(株)から入手。
(シラン化合物)
 “KBM−403”:3−グリシドキシプロピルトリメトキシシラン、液体、信越化学工業(株)から入手。
(イオン性化合物)
 “FC−4400”:式(C(CH)N(CFSOの構造を有するトリブチルメチルアンモニウム ビス(トリフルオロメタンスルホニル)イミド、融点26℃、住友スリーエム(株)から入手。
(光拡散剤)
 “MX−1000”:平均粒径が10μm、屈折率が1.49で球状タイプのアクリル樹脂微粒子、綜研化学(株)から入手。
 上の(b)で調製したアクリル樹脂の酢酸エチル溶液(ただし、以下ではその固形分量として表示)に、上記のイソシアネート系架橋剤、シラン化合物、イオン性化合物、及び光拡散剤をそれぞれ以下の割合で配合し、アクリル系粘着剤組成物を調製した。
(アクリル系粘着剤組成物の組成)
 (b)のアクリル樹脂  100部(固形分量)
 イソシアネート系架橋剤   0.16部
 シラン化合物        0.5部
 イオン性化合物       1.0部
 光拡散剤         35部
(d)粘着剤シートの作製
 上の(a)に示した4種類の剥離フィルムを、表1に示す組合せで第一の剥離フィルム2及び第二の剥離フィルム3として用い、その間に、上の(c)で調製したアクリル系粘着剤組成物から形成される粘着剤層を挟んで、粘着剤シートを作製した。具体的な操作は以下のとおりである。まず、第二の剥離フィルムの離型処理面に、アプリケーターを用いて乾燥後の厚さが25μmとなるように上記の粘着剤組成物を塗布し、90℃で2分間乾燥させて、シート状粘着剤を得た。次いで、第一の剥離フィルムの離型処理面に、上で得たシート状粘着剤の第二の剥離フィルムと反対側の面(粘着剤面)をラミネーターにより貼り合わせた後、温度23℃、相対湿度65%の条件で10日間熟成して、粘着剤シートA~Dを作製した。
(e)トンネリングの有無の評価
 上の(d)で粘着剤シートを作製する際、第二の剥離フィルム上に形成された粘着剤層を第一の剥離フィルムの離型処理面に貼り合わせた直後に、第一の剥離フィルムと粘着剤層との間のデラミネーション現象(トンネリングによるスジ又は気泡の存在)の有無を目視で観察した。結果は、表1の「トンネリング」の欄に表示した。
(f)第一の剥離フィルムの剥離力の測定
 上の(d)で作製したそれぞれの粘着剤シートについて、第一の剥離フィルムの粘着剤層からの剥離力を以下の手順で測定した。まず、スーパーカッターを用いて、粘着剤シートから長さ150mm×幅25mmの試験片を裁断した。そして、図5(A)に示すように、第二の剥離フィルム3の表面に市販の両面粘着テープ45を貼り付け、さらに、ハンドローラーを用いて両面粘着テープ45の反対面をガラス基板50〔コーニング社製の商品名“EAGLE XG”〕に貼り付けた。この状態で、オートグラフ〔(株)島津製作所製の製品名“AGS−X”〕を用いて第一の剥離フィルム2の長さ方向一端(幅25mmの一辺)をつかみ、荷重範囲5,000g及び剥離速度0.3m/分で180度方向(折り返してフィルム面に沿う方向であって、図中の曲線矢印方向)に引っ張って粘着剤層1から剥がし、そのときの剥離力をチャートに記録した。測定開始直後と測定終了直前はデータが安定しないため、測定開始後20%のデータと測定終了前20%のデータをカットし、データが比較的安定している中間部分60%の範囲のみから平均値を算出し、これを剥離力とした。各粘着剤シートA~Dについて試験し、結果を表1に示した。
(g)第二の剥離フィルムの剥離力の測定
 上の(f)で第一の剥離フィルムを剥がした後の第二の剥離フィルム/粘着剤層の積層体を両面粘着テープ45から剥がした。次に、図5(B)に示すように、その粘着剤層1を、ハンドローラーを用いて上の(f)に示したのと同じガラス基板“EAGLE XG”に貼り付けた。この状態で、上の(f)に示したのと同じオートグラフ“AGS−X”を用いて第二の剥離フィルム3の長さ方向一端をつかみ、それ以外は上の(f)と同じ条件で剥離力を測定して、結果を表1に示した。
(h)第二の剥離フィルム未剥離の可能性の評価
 上の(g)で求めた第二の剥離フィルム3の剥離力が0.15N/25mmとなった粘着剤シートCについては、そこから第一の剥離フィルムを剥がして粘着剤層を光学部材に貼って粘着剤付き光学部材とし、液晶セルへ貼合する直前に第二の剥離フィルムを剥がすとき、その第二の剥離フィルムの未剥離の問題が生じやすいと判断し、表1の「第二の剥離フィルム未剥離の可能性」の欄に「あり」と表示した。その他の粘着剤シートA、B及びDは、第二の剥離フィルムの剥離力が0.15N/25mmを下回っているので、その未剥離問題は生じにくいと判断し、表1の同項目に「なし」と表示した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、粘着剤シートDでは、第一の剥離フィルム2の剥離力が0.02N/25mmと小さいため、トンネリングが発生した。また、粘着剤シートCでは、第二の剥離フィルム3の剥離力が0.15N/25mmと大きいため、液晶セルに貼合する直前にその第二の剥離フィルムを剥がすとき、未剥離の問題を起こす可能性が大きい。
 次に、上で作製した粘着剤シートA~Dのうち、第一の剥離フィルムにトンネリングが発生せず、第二の剥離フィルムに未剥離の問題も生じないと判断された粘着剤シートA及びBを用いて剥離試験を行い、泣き別れの有無を評価した実験例を示す。
[実施例1]
(a)高速剥離試験
 スーパーカッターを用いて、粘着剤シートAから長さ500mm×幅25mmの試験片を裁断した。そして、図6(A)に示すように、その第一の剥離フィルム2の表面に、市販されている厚さ約0.1mmの両面粘着テープ45を貼り付け、さらに、ハンドローラーを用いて、両面粘着テープ45の反対面をガラス基板50〔コーニング社製の商品名“EAGLE XG”〕に貼り付けた。この状態で、剥離試験機〔韓国のCHUNG BUK TECHNOLOGY CO.製の製品名“SSA−034−SD(Double Type)”〕を用い、第二の剥離フィルム3の長さ方向一端(幅25mmの一辺)をつかみ、荷重範囲を5,000gとし、剥離速度を5m/分、10m/分、及び15m/分の3水準で変化させて、図中の曲線矢印方向に引っ張って第二の剥離フィルム3を剥がし、そのときの剥離力をチャートに記録した。測定開始直後と測定終了直前はデータが安定しないため、測定開始後20%のデータと測定終了前20%のデータをカットし、データが比較的安定している中間部分60%の範囲のみから平均値を算出し、これを剥離力とした。結果を表2に示した。この試験は、第一の剥離フィルム2を水平方向に固定し、第二の剥離フィルム3をそれとは異なる方向に引っ張ることにより行っており、かつ第二の剥離フィルム3の粘着剤層の反対側からはロールなどによる特別な押圧力を加えていない。そこで相対的には、第一の剥離フィルム2は、屈曲しないように直進させ、第二の剥離フィルム3は、粘着剤層の反対側から押圧力が加わらないようにして第一の剥離フィルム2が位置する水平方向とは異なる方向に搬送する状態に相当する。
(b)手剥離試験
 スーパーカッターを用いて、粘着剤シートAから長さ400mm×幅25mmの試験片を裁断した。そして、図7(A)に示すように、第一の剥離フィルム2の長さ方向両端を一人の人間が左右の両手でつかんで図中の外側へ向く2本の直線矢印方向に引っ張り、その方向にある程度張力を付与した状態で、第二の剥離フィルム3の一端をもう一人の人間がつかんでこれを図中の曲線矢印方向に引き上げ、第二の剥離フィルム3を剥がした。この試験も、第一の剥離フィルム2を水平方向に固定し、第二の剥離フィルム3をそれとは異なる方向に引っ張ることにより行っており、かつ、第二の剥離フィルム3の粘着剤層の反対側からはロールなどによる特別な押圧力を加えていない。そこで相対的には、第一の剥離フィルム2は、屈曲しないように直進させ、第二の剥離フィルム3は、粘着剤層の反対側から押圧力が加わらないようにして第一の剥離フィルム2が位置する水平方向とは異なる方向に搬送する状態に相当する。
(c)泣き別れの有無の観察
 上の(a)高速剥離試験及び(b)手剥離試験それぞれを行った後、第一の剥離フィルム2の表面を目視で観察した。そして、その第一の剥離フィルム2の表面に残った粘着剤の量によって、以下のレベル0~3の4段階に区分し、泣き別れの有無を評価した。レベル0のみが、泣き別れなしで粘着剤層1がすべて第二の剥離フィルム3に移った状態に相当する。なお、レベル3の状態は、泣き別れとはいわないが、粘着剤層1が意図しない第一の剥離フィルム2に残っている状態である。結果を表2に示した。
〈泣き別れのレベル〉
 レベル3:粘着剤がすべて第一の剥離フィルム2に残る。
 レベル2:粘着剤の50%超100%未満が第一の剥離フィルム2に残る。
 レベル1:粘着剤の0%超50%以下が第一の剥離フィルム2に残る。
 レベル0:粘着剤が第一の剥離フィルム2にまったく残らない。
[実施例2]
 粘着剤シートAを粘着剤シートBに変え、その他は実施例1と同じ試験を行い、結果を表2にまとめた。
[比較例1]
(a)高速剥離試験
 実施例1の(a)と同様に、粘着剤シートAから長さ500mm×幅25mmの試験片を裁断するが、図6(B)に示すように、両面粘着テープ45を介して第二の剥離フィルム3側をガラス基板50に貼り、第一の剥離フィルム2を図中の曲線矢印方向に引っ張って剥がすように変更し、その他は実施例1の(a)と同様の試験を行った。結果を表2に示した。この試験は、第二の剥離フィルム3を水平方向に固定し、第一の剥離フィルム2をそれとは異なる方向に引っ張ることにより行っており、かつ第一の剥離フィルム2の粘着剤層の反対側からはロールなどによる特別な押圧力を加えていない。そこで相対的には、第二の剥離フィルム3は、屈曲しないように直進させ、第一の剥離フィルム2は、粘着剤層の反対側から押圧力が加わらないようにして第二の剥離フィルム3が位置する水平方向とは異なる方向に搬送する状態に相当する。すなわちこの試験は、先に説明した図4(A)の状態に相当する。
(b)手剥離試験
 実施例1の(b)と同様に、粘着剤シートAから長さ400mm×幅25mmの試験片を裁断するが、図7(B)に示すように、第二の剥離フィルム3の長さ方向両端を一人の人間が左右の両手でつかんで図中の外側へ向く2本の直線矢印方向に引っ張り、その方向にある程度張力を付与した状態で、第一の剥離フィルム2の一端をもう一人の人間がつかんでこれを図中の曲線矢印方向に引き上げ、第一の剥離フィルム2を剥がした。結果は、実施例1に準じて評価し、表2に示した。この試験も、第二の剥離フィルム3を水平方向に固定し、第一の剥離フィルム2をそれとは異なる方向に引っ張ることにより行っており、かつ、第一の剥離フィルム2の粘着剤層の反対側からはロールなどによる特別な押圧力を加えていない。そこで相対的には、第二の剥離フィルム3は、屈曲しないように直進させ、第一の剥離フィルム2は、粘着剤層の反対側から押圧力が加わらないようにして第二の剥離フィルム3が位置する水平方向とは異なる方向に搬送する状態に相当する。
[比較例2]
 粘着剤シートAを粘着剤シートBに変え、その他は比較例1と同じ試験を行い、結果を表2にまとめた。
[比較例3]
(a)高速剥離試験
 実施例1の(a)と同様に、粘着剤シートAから長さ500mm×幅25mmの試験片を裁断するが、図6(C)に示すように、この試験片の第一の剥離フィルム2の外側長さ方向一端(幅25mmの一端)にのみ、厚さ約0.1mmの両面粘着テープ45を25mm幅で貼り付け、さらに両面粘着テープ45の反対面をガラス基板50に貼り付けた。この状態で、第二の剥離フィルム3を図中の曲線矢印方向に引っ張って剥がすように変更し、その他は実施例1の(a)と同様の試験を行い、結果を表2に示した。この試験は、図6(C)に示すとおり、第一の剥離フィルム2及び第二の剥離フィルム3に屈曲が生じた状態で行っているので、先に説明した図4(B)に近い状態である。
(b)手剥離試験
 実施例1の(b)と同様に、粘着剤シートAから長さ400mm×幅25mmの試験片を裁断するが、図7(C)に示すように、その長さ方向一端の第一の剥離フィルム2と第二の剥離フィルム3を一人の人間が左右の両手でそれぞれつかんで、図中の左右に向く曲線矢印方向に引っ張り、両者を引き剥がす試験を行った。結果を表2に示した。
[比較例4]
 比較例3の(a)と同様に、粘着剤シートAから長さ500mm×幅25mmの試験片を裁断するが、図6(D)に示すように、この試験片の第二の剥離フィルム3の外側長さ方向一端(幅25mmの一端)にのみ、厚さ約0.1mmの両面粘着テープ45を25mm幅で貼り付け、さらに両面粘着テープ45の反対面をガラス基板50に貼り付けた。この状態で、第一の剥離フィルム2を図中の曲線矢印方向に引っ張って剥がすように変更し、その他は比較例3の(a)と同様の実験を行い、結果を表2に示した。この試験も、図6(D)に示すとおり、第一の剥離フィルム2及び第二の剥離フィルム3に屈曲が生じた状態で行っているので、先に説明した図4(B)に近い状態である。
 なお、この例に相当する手剥離試験は、比較例3の(b)と同じなので、表2の「手剥離試験」の欄には、「同上」とのみ記載した。「比較例3と同じ」という趣旨である。
[比較例5及び6]
 粘着剤シートAを粘着剤シートBに変え、その他は比較例3及び4と同じ実験を行い、結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
 表2に示すとおり、剥離フィルムを剥がすときに、第一の剥離フィルム2を水平状態とし、第二の剥離フィルム3をそれとは異なる方向に引っ張ると、泣き別れが発生せずに、粘着剤層1が第二の剥離フィルム3に伴って剥がれるのに対し、第二の剥離フィルム3を水平状態とし、第一の剥離フィルムをそれとは異なる方向に引っ張ると、粘着剤層1がすべて、引っ張った第一の剥離フィルム2側に移行し、また第一の剥離フィルムが屈曲している状態で引っ張ると、泣き別れが発生する。これらの結果から、第一の剥離フィルム2は屈曲しないように直進させ、第二の剥離フィルム3は粘着剤層1が貼着されている面の反対側から押圧力が加わらないように、第一の剥離フィルム2の直進方向とは異なる方向に搬送すれば、粘着剤層1が泣き別れを起こすことなく、第二の剥離フィルム3に伴って剥がれることがわかる。
Hereinafter, the present invention will be described in more detail by showing specific experimental examples, but the present invention is not limited to these examples. In the examples, parts and% indicating the amount used or content are based on weight unless otherwise specified.
[Preparation of adhesive sheet]
(A) Release film The following four types of polyethylene terephthalate films subjected to a release treatment were prepared, and each was used as a release film. The films shown below are arranged in the order of the peel force from the pressure-sensitive adhesive layer, with the top having a small peel force and the bottom having a large peel force.
Release film 1: Trade name “MRF” sold by Mitsubishi Plastics, Inc.
Release film 2: Trade name “MRE (MT125)” sold by Mitsubishi Plastics, Inc.
Release film 3: Trade name “MRV (08)” sold by Mitsubishi Plastics, Inc.
Release film 4: Trade name “A71-T1” sold by Teijin Limited.
(B) Preparation of acrylic resin for pressure-sensitive adhesive In a reactor equipped with a cooling pipe, a nitrogen introduction pipe, a thermometer and a stirrer, 169.8 parts of ethyl acetate, 98.6 parts of butyl acrylate, 2-hydroxyethyl acrylate 1 A mixed solution of 0.0 part and 0.4 part of acrylic acid was charged, and the internal temperature was raised to 55 ° C. while substituting the air in the apparatus with nitrogen gas so as not to contain oxygen. Next, a total amount of a solution obtained by dissolving 0.14 part of azobisisobutyronitrile as a polymerization initiator in 5 parts of ethyl acetate was added. Thereafter, the temperature was maintained for 12 hours while maintaining the internal temperature at 54 to 56 ° C., and finally ethyl acetate was added to adjust the concentration of the acrylic resin to 28%. The obtained acrylic resin has a polystyrene-reduced weight average molecular weight Mw of 1.34 million by gel permeation chromatography, a ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of 1.7, and a refractive index. 1.46.
(C) Preparation of acrylic pressure-sensitive adhesive composition The following were used as an isocyanate-based crosslinking agent, a silane compound, an ionic compound serving as an antistatic agent, and a light diffusing agent to be blended in the pressure-sensitive adhesive composition. Names enclosed in “” are product names.
(Isocyanate-based crosslinking agent)
“Coronate L”: Ethyl acetate solution containing 75% concentration of trimethylolpropane adduct of tolylene diisocyanate, obtained from Nippon Polyurethane Industry Co., Ltd.
(Silane compound)
“KBM-403”: 3-glycidoxypropyltrimethoxysilane, liquid, obtained from Shin-Etsu Chemical Co., Ltd.
(Ionic compounds)
“FC-4400”: tributylmethylammonium bis (trifluoromethanesulfonyl) imide having a structure of the formula (C 4 H 9 ) 3 (CH 3 ) N + (CF 3 SO 2 ) 2 N , melting point 26 ° C., Sumitomo 3M Obtained from Co., Ltd.
(Light diffusing agent)
“MX-1000”: spherical type acrylic resin fine particles having an average particle diameter of 10 μm and a refractive index of 1.49, obtained from Soken Chemical Co., Ltd.
The above-mentioned isocyanate crosslinking agent, silane compound, ionic compound, and light diffusing agent are added to the ethyl acetate solution of the acrylic resin prepared in (b) above (however, expressed as the solid content in the following) in the following proportions. To prepare an acrylic pressure-sensitive adhesive composition.
(Composition of acrylic pressure-sensitive adhesive composition)
100 parts of (b) acrylic resin (solid content)
Isocyanate-based crosslinking agent 0.16 parts Silane compound 0.5 part Ionic compound 1.0 part Light diffusing agent 35 parts (d) Preparation of adhesive sheet The four types of release films shown in (a) above 1 is used as the first release film 2 and the second release film 3 in the combination shown in FIG. 1, and an adhesive layer formed from the acrylic adhesive composition prepared in (c) above is sandwiched between them. An agent sheet was prepared. The specific operation is as follows. First, the pressure-sensitive adhesive composition is applied to the release-treated surface of the second release film using an applicator so that the thickness after drying is 25 μm, and dried at 90 ° C. for 2 minutes to form a sheet. An adhesive was obtained. Next, the surface (adhesive surface) opposite to the second release film of the sheet-like pressure-sensitive adhesive obtained above was bonded to the release treatment surface of the first release film with a laminator, and then the temperature was 23 ° C. Adhesive sheets A to D were prepared by aging for 10 days at a relative humidity of 65%.
(E) Evaluation of presence / absence of tunneling When producing an adhesive sheet in (d) above, the adhesive layer formed on the second release film was bonded to the release treatment surface of the first release film. Immediately thereafter, the presence or absence of a delamination phenomenon (the presence of streaks or bubbles due to tunneling) between the first release film and the pressure-sensitive adhesive layer was visually observed. The results are shown in the “tunneling” column of Table 1.
(F) Measurement of peeling force of first release film For each pressure-sensitive adhesive sheet prepared in (d) above, the peeling force from the pressure-sensitive adhesive layer of the first release film was measured by the following procedure. First, a test piece having a length of 150 mm and a width of 25 mm was cut from the adhesive sheet using a super cutter. And as shown to FIG. 5 (A), the commercially available double-sided adhesive tape 45 is affixed on the surface of the 2nd peeling film 3, and also the opposite surface of the double-sided adhesive tape 45 is glass substrate 50 [ It was affixed to the product name “EAGLE XG” manufactured by Corning. In this state, using the autograph [product name “AGS-X” manufactured by Shimadzu Corporation], one end in the length direction (one side of 25 mm in width) of the first release film 2 is grasped, and the load range is 5,000 g. At a peeling speed of 0.3 m / min, the film is pulled from the pressure-sensitive adhesive layer 1 by pulling in the direction of 180 degrees (the direction along the film surface in the direction of the curved arrow in the figure), and the peeling force at that time is recorded on a chart. did. Since the data is not stable immediately after the start of measurement and immediately before the end of measurement, 20% of the data after the start of measurement and 20% of the data before the end of the measurement are cut and averaged only from the range of 60% of the middle portion where the data is relatively stable. The value was calculated and this was taken as the peel force. Each pressure-sensitive adhesive sheet A to D was tested, and the results are shown in Table 1.
(G) Measurement of Peeling Force of Second Release Film The second release film / adhesive layer laminate after peeling off the first release film in (f) above was peeled off from the double-sided adhesive tape 45. Next, as shown in FIG. 5B, the pressure-sensitive adhesive layer 1 was attached to the same glass substrate “EAGLE XG” as shown in (f) above using a hand roller. In this state, the same autograph “AGS-X” as shown in (f) above is used to grasp one end in the lengthwise direction of the second release film 3, and the other conditions are the same as in (f) above. The peel force was measured with and the results are shown in Table 1.
(H) Evaluation of Possibility of Unpeeling of Second Release Film Regarding the pressure-sensitive adhesive sheet C in which the peel force of the second release film 3 obtained in (g) above is 0.15 N / 25 mm, from there When the first release film is peeled off, the adhesive layer is attached to the optical member to form an optical member with an adhesive, and when the second release film is peeled off just before being bonded to the liquid crystal cell, the second release film is not peeled off. Therefore, “Yes” is displayed in the column “Possibility of non-peeling of the second release film” in Table 1. The other adhesive sheets A, B, and D were judged that the non-peeling problem is unlikely to occur because the peel strength of the second release film is less than 0.15 N / 25 mm. “None”.
Figure JPOXMLDOC01-appb-T000001
As shown in Table 1, in the adhesive sheet D, tunneling occurred because the peel strength of the first release film 2 was as small as 0.02 N / 25 mm. Moreover, in the adhesive sheet C, since the peeling force of the 2nd peeling film 3 is as large as 0.15N / 25mm, when peeling off the 2nd peeling film just before bonding to a liquid crystal cell, the problem of unpeeling There is a high possibility of waking up.
Next, among the pressure-sensitive adhesive sheets A to D produced above, the pressure-sensitive adhesive sheet A and the pressure-sensitive adhesive sheet A determined that no tunneling occurs in the first release film and no unpeeled problem occurs in the second release film. An experimental example is shown in which a peel test is performed using B and the presence or absence of tearing is evaluated.
[Example 1]
(A) High-speed peeling test A test piece having a length of 500 mm and a width of 25 mm was cut from the pressure-sensitive adhesive sheet A using a super cutter. Then, as shown in FIG. 6 (A), a commercially available double-sided adhesive tape 45 having a thickness of about 0.1 mm is attached to the surface of the first release film 2, and further using a hand roller, The opposite surface of the double-sided pressure-sensitive adhesive tape 45 was attached to a glass substrate 50 (trade name “EAGLE XG” manufactured by Corning). In this state, a peel tester [CHUNG BUK TECHNOLOGY CO. Manufactured product name “SSA-034-SD (Double Type)”, holding one end in the length direction (one side of 25 mm in width) of the second release film 3, setting the load range to 5,000 g, and the release speed. The second release film 3 was peeled off by pulling in the direction of the curved arrow in the figure while changing at three levels of 5 m / min, 10 m / min, and 15 m / min, and the peel force at that time was recorded on a chart. Since the data is not stable immediately after the start of measurement and immediately before the end of measurement, 20% of the data after the start of measurement and 20% of the data before the end of the measurement are cut and averaged only from the range of 60% of the middle portion where the data is relatively stable. The value was calculated and this was taken as the peel force. The results are shown in Table 2. This test is performed by fixing the first release film 2 in the horizontal direction and pulling the second release film 3 in a different direction, and on the opposite side of the adhesive layer of the second release film 3. No special pressing force is applied from the roll. Therefore, relatively, the first release film 2 is made to advance straight so as not to bend, and the second release film 3 is made so that no pressing force is applied from the opposite side of the pressure-sensitive adhesive layer. This corresponds to a state in which the sheet is conveyed in a direction different from the horizontal direction in which is located.
(B) Manual peeling test A test piece having a length of 400 mm and a width of 25 mm was cut from the adhesive sheet A using a super cutter. Then, as shown in FIG. 7 (A), one person holds both ends in the length direction of the first release film 2 with both left and right hands, and pulls it in the direction of two linear arrows facing outward in the figure. With some tension applied in the direction, another person grabbed one end of the second release film 3 and pulled it up in the direction of the curved arrow in the figure to peel off the second release film 3. This test is also performed by fixing the first release film 2 in the horizontal direction and pulling the second release film 3 in a different direction, and opposite to the adhesive layer of the second release film 3. No special pressing force is applied from the side by rolls. Therefore, relatively, the first release film 2 is made to advance straight so as not to bend, and the second release film 3 is made so that no pressing force is applied from the opposite side of the pressure-sensitive adhesive layer. This corresponds to a state in which the sheet is conveyed in a direction different from the horizontal direction in which is located.
(C) Observation of presence / absence of crying After the above (a) high-speed peeling test and (b) hand peeling test were performed, the surface of the first release film 2 was visually observed. Then, according to the amount of the pressure-sensitive adhesive remaining on the surface of the first release film 2, it was divided into the following 4 levels of levels 0 to 3, and the presence or absence of crying was evaluated. Only level 0 corresponds to a state in which the pressure-sensitive adhesive layer 1 has all moved to the second release film 3 without crying. In addition, although the state of level 3 is not said to cry, it is a state in which the adhesive layer 1 remains on the first release film 2 that is not intended. The results are shown in Table 2.
<Level of tearing up>
Level 3: All the pressure-sensitive adhesive remains on the first release film 2.
Level 2: More than 50% and less than 100% of the pressure-sensitive adhesive remains in the first release film 2.
Level 1: More than 0% and 50% or less of the pressure-sensitive adhesive remains in the first release film 2.
Level 0: No adhesive remains on the first release film 2 at all.
[Example 2]
The pressure-sensitive adhesive sheet A was changed to the pressure-sensitive adhesive sheet B, and other tests were performed in the same manner as in Example 1, and the results are summarized in Table 2.
[Comparative Example 1]
(A) High-speed peeling test Like (a) in Example 1, a test piece having a length of 500 mm and a width of 25 mm is cut from the pressure-sensitive adhesive sheet A. As shown in FIG. The second release film 3 side is pasted on the glass substrate 50 through the wire, and the first release film 2 is changed so as to be pulled and peeled in the direction of the curved arrow in the figure, and the others are the same as in (a) of Example 1. The test was conducted. The results are shown in Table 2. This test is performed by fixing the second release film 3 in the horizontal direction and pulling the first release film 2 in a different direction, and on the opposite side of the adhesive layer of the first release film 2. No special pressing force is applied from the roll. Therefore, relatively, the second release film 3 is made to go straight so as not to bend, and the first release film 2 is made so that no pressing force is applied from the opposite side of the pressure-sensitive adhesive layer. This corresponds to a state in which the sheet is conveyed in a direction different from the horizontal direction in which is located. That is, this test corresponds to the state shown in FIG.
(B) Manual peeling test As in (b) of Example 1, a test piece having a length of 400 mm and a width of 25 mm is cut from the pressure-sensitive adhesive sheet A. As shown in FIG. In the state where one person grasps both ends of the film 3 with both left and right hands and pulls it in the direction of two straight arrows facing outward in the drawing, and gives some tension in that direction, the first release film 2 Another person grabbed one end of the film, pulled it up in the direction of the curved arrow in the figure, and peeled off the first release film 2. The results were evaluated according to Example 1 and are shown in Table 2. This test is also performed by fixing the second release film 3 in the horizontal direction and pulling the first release film 2 in a different direction, and opposite to the adhesive layer of the first release film 2. No special pressing force is applied from the side by rolls. Therefore, relatively, the second release film 3 is made to go straight so as not to bend, and the first release film 2 is made so that no pressing force is applied from the opposite side of the pressure-sensitive adhesive layer. This corresponds to a state in which the sheet is conveyed in a direction different from the horizontal direction in which is located.
[Comparative Example 2]
The pressure-sensitive adhesive sheet A was changed to the pressure-sensitive adhesive sheet B, and the others were subjected to the same test as in Comparative Example 1, and the results are summarized in Table 2.
[Comparative Example 3]
(A) High-speed peel test As in (a) of Example 1, a test piece having a length of 500 mm and a width of 25 mm is cut from the pressure-sensitive adhesive sheet A. As shown in FIG. A double-sided adhesive tape 45 having a thickness of about 0.1 mm is attached to only one end in the outer length direction of the first release film 2 (one end having a width of 25 mm), and the opposite side of the double-sided adhesive tape 45 is a glass substrate. Affixed to 50. In this state, the second release film 3 was changed so as to be pulled and peeled in the direction of the curved arrow in the figure, and the other tests were performed in the same manner as in (a) of Example 1, and the results are shown in Table 2. Since this test is performed in a state in which the first release film 2 and the second release film 3 are bent as shown in FIG. 6 (C), the state is close to FIG. 4 (B) described above. It is.
(B) Manual peeling test As in (b) of Example 1, a test piece having a length of 400 mm and a width of 25 mm is cut from the pressure-sensitive adhesive sheet A. As shown in FIG. A test was conducted in which one person grasped the first release film 2 and the second release film 3 at one end with both left and right hands, pulled in the direction of the curved arrow pointing left and right in the figure, and then peeled off both. The results are shown in Table 2.
[Comparative Example 4]
Similarly to (a) of Comparative Example 3, a test piece having a length of 500 mm and a width of 25 mm was cut from the pressure-sensitive adhesive sheet A. As shown in FIG. 6D, the second release film 3 of this test piece was cut. The double-sided pressure-sensitive adhesive tape 45 having a thickness of about 0.1 mm was attached to only one end in the outer length direction (one end having a width of 25 mm) with a width of 25 mm, and the opposite surface of the double-sided adhesive tape 45 was further attached to the glass substrate 50. In this state, the first release film 2 was changed so as to be pulled and peeled in the direction of the curved arrow in the figure, and the other experiments were performed in the same manner as in (a) of Comparative Example 3, and the results are shown in Table 2. Since this test is also performed in a state in which the first release film 2 and the second release film 3 are bent as shown in FIG. 6 (D), the state is close to FIG. 4 (B) described above. It is.
Since the hand peel test corresponding to this example is the same as (b) of Comparative Example 3, only “same as above” is described in the “hand peel test” column of Table 2. This is the same as “Comparative Example 3”.
[Comparative Examples 5 and 6]
The pressure-sensitive adhesive sheet A was changed to pressure-sensitive adhesive sheet B, and the others were the same as in Comparative Examples 3 and 4, and the results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
As shown in Table 2, when the release film is peeled off, the first release film 2 is placed in a horizontal state, and the second release film 3 is pulled in a different direction. Is peeled off with the second release film 3, whereas when the second release film 3 is placed in a horizontal state and the first release film is pulled in a different direction, the adhesive layer 1 is all pulled. If it moves to the one peeling film 2 side and is pulled in a state where the first peeling film is bent, crying separation occurs. From these results, the first release film 2 is moved straight so as not to bend, and the second release film 3 is not subjected to a pressing force from the opposite side of the surface to which the adhesive layer 1 is adhered. It can be seen that the pressure-sensitive adhesive layer 1 is peeled off along with the second release film 3 without causing crying separation if transported in a direction different from the straight direction of the one release film 2.
  1……粘着剤層、
  2……第一の剥離フィルム、
  3……第二の剥離フィルム、
  5……粘着剤シート、
 10……第二の剥離フィルムと粘着剤層との積層体(粘着剤シート製造のための中間体となり、光学部材への貼合前粘着剤シートともなる)、
 15……偏光フィルム、
 16,17……透明保護フィルム、
 20……光学部材(偏光板)、
 25……粘着剤付き光学部材、
 30,33,36,40……繰出しロール、
 31……塗工機、
 32……乾燥機、
 34,41……貼合ロール、
 35,39,42……巻き取りロール、
 37……上流テンションロール、
 38……下流テンションロール、
 L……第一の剥離フィルムの直進区間、
 P……剥離ポイント、
 A……粘着剤シートの拡大断面図、
 45……両面粘着テープ、
 50……ガラス基板。
1 …… Adhesive layer,
2 …… First release film,
3. Second release film,
5 …… Adhesive sheet,
10 ... Laminated body of the second release film and the pressure-sensitive adhesive layer (becomes an intermediate for producing a pressure-sensitive adhesive sheet and also serves as a pressure-sensitive adhesive sheet before bonding to an optical member),
15: Polarizing film,
16, 17 ... Transparent protective film,
20: Optical member (polarizing plate),
25 …… Optical member with adhesive,
30, 33, 36, 40...
31 …… Coating machine,
32 …… Dryer,
34, 41 …… bonding roll,
35, 39, 42 ... take-up roll,
37 …… Upstream tension roll,
38 …… Downstream tension roll,
L: Straight section of the first release film,
P …… Peeling point
A: Expanded sectional view of the adhesive sheet,
45 …… Double-sided adhesive tape,
50: Glass substrate.

Claims (3)

  1.  第一の剥離フィルム、粘着剤層及び第二の剥離フィルムがこの順に積層されている粘着剤シートから前記第一の剥離フィルムを剥がして前記粘着剤層を露出させる剥離工程と、前記剥離工程で露出させた前記粘着剤層を光学部材に貼り合わせる貼合工程とを経て、前記光学部材、前記粘着剤層及び前記第二の剥離フィルムがこの順に積層された粘着剤付き光学部材を製造する方法であって、
     前記第一の剥離フィルムと前記粘着剤層との間の剥離力、及び前記第二の剥離フィルムと前記粘着剤層との間の剥離力は、それぞれ0.3m/分の剥離速度で試験したとき、いずれも0.02N/25mmを超え、0.15N/25mm未満の範囲にあり、かつ二つの剥離力の差が0.01N/25mm未満であり、
     前記剥離工程は、前記第一の剥離フィルムが前記粘着剤層から剥がれる剥離ポイントにおいて、前記第一の剥離フィルムは屈曲しないように直進させ、前記第二の剥離フィルムは、前記粘着剤層が貼着されている面の反対側から押圧力が加わらないようにして前記粘着剤層とともに、前記第一の剥離フィルムの直進方向とは異なる方向に搬送し、前記第一の剥離フィルムが前記粘着剤層から剥離するように行われることを特徴とする
     粘着剤付き光学部材の製造方法。
    In the peeling step, the first peeling film, the pressure-sensitive adhesive layer, and the second peeling film are laminated in this order to peel off the first peeling film to expose the pressure-sensitive adhesive layer, and in the peeling step A method for producing an optical member with an adhesive in which the optical member, the adhesive layer, and the second release film are laminated in this order through a bonding step of bonding the exposed adhesive layer to the optical member. Because
    The peel force between the first release film and the pressure-sensitive adhesive layer and the peel force between the second release film and the pressure-sensitive adhesive layer were each tested at a peel speed of 0.3 m / min. When both are in the range of more than 0.02 N / 25 mm and less than 0.15 N / 25 mm, and the difference between the two peel forces is less than 0.01 N / 25 mm,
    In the peeling step, at the peeling point where the first release film is peeled off from the pressure-sensitive adhesive layer, the first release film is moved straight so as not to bend, and the pressure-sensitive adhesive layer is pasted on the second release film. The pressure-sensitive adhesive layer is transported in a direction different from the linear direction of the first release film so that no pressing force is applied from the opposite side of the attached surface, and the first release film is the pressure-sensitive adhesive. It is performed so that it may peel from a layer, The manufacturing method of the optical member with an adhesive.
  2.  前記粘着剤層は光拡散剤を含有する請求項1に記載の粘着剤付き光学部材の製造方法。 The method for producing an optical member with an adhesive according to claim 1, wherein the adhesive layer contains a light diffusing agent.
  3.  前記光学部材は偏光板である請求項1又は2に記載の粘着剤付き光学部材の製造方法。 The method for producing an optical member with an adhesive according to claim 1 or 2, wherein the optical member is a polarizing plate.
PCT/JP2013/060139 2012-03-28 2013-03-27 Method for manufacturing optical member equipped with adhesive WO2013147312A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147028668A KR101738741B1 (en) 2012-03-28 2013-03-27 Method for manufacturing optical member equipped with adhesive
CN201380017184.6A CN104204875B (en) 2012-03-28 2013-03-27 Manufacture method with the optical component of adhesive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-073085 2012-03-28
JP2012073085A JP5903978B2 (en) 2012-03-28 2012-03-28 Method for producing optical member with adhesive

Publications (1)

Publication Number Publication Date
WO2013147312A1 true WO2013147312A1 (en) 2013-10-03

Family

ID=49260545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060139 WO2013147312A1 (en) 2012-03-28 2013-03-27 Method for manufacturing optical member equipped with adhesive

Country Status (5)

Country Link
JP (1) JP5903978B2 (en)
KR (1) KR101738741B1 (en)
CN (1) CN104204875B (en)
TW (1) TWI569048B (en)
WO (1) WO2013147312A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6186011B2 (en) * 2014-01-23 2017-08-23 富士フイルム株式会社 Polarizing plate and image display device
JP6494844B1 (en) * 2017-10-31 2019-04-03 住友化学株式会社 Manufacturing method of resin film and resin film with few micro scratches
JP2019112505A (en) * 2017-12-21 2019-07-11 日東電工株式会社 Pressure sensitive adhesive sheet with release film and manufacturing method thereof
KR102299021B1 (en) * 2019-07-04 2021-09-06 정라파엘 Apparatus for laminating an object
JP7449723B2 (en) 2020-03-03 2024-03-14 三菱重工業株式会社 Method of manufacturing a sound wave sensor and method of installing a sound wave sensor
JP7130789B2 (en) * 2021-02-01 2022-09-05 住友化学株式会社 optical laminate
JP2023013267A (en) * 2021-07-15 2023-01-26 日東電工株式会社 Manufacturing method of functional layer and manufacturing apparatus of the same
JP7379420B2 (en) 2021-07-15 2023-11-14 日東電工株式会社 Functional layer manufacturing method
CN114464753B (en) * 2022-01-19 2023-10-31 武汉华星光电半导体显示技术有限公司 Display panel and cover plate assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038697A1 (en) * 2008-09-30 2010-04-08 リンテック株式会社 Film-peeling method, process for production of optical film, film-peeling mechanism, and apparatus for production of optical film
JP2011201999A (en) * 2010-03-25 2011-10-13 Sumitomo Chemical Co Ltd Separation method and separation device
JP2012025813A (en) * 2010-07-21 2012-02-09 Dic Corp Double-sided adhesive tape

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5827591A (en) * 1996-10-08 1998-10-27 Tricor Direct, Inc. Removable adhesive notes for an industrial setting
JP5591662B2 (en) * 2010-01-07 2014-09-17 株式会社パワーサポート Film sheet
JP2011224904A (en) * 2010-04-21 2011-11-10 Mitsubishi Plastics Inc Mold release film for base material-less double-coated adhesive sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038697A1 (en) * 2008-09-30 2010-04-08 リンテック株式会社 Film-peeling method, process for production of optical film, film-peeling mechanism, and apparatus for production of optical film
JP2011201999A (en) * 2010-03-25 2011-10-13 Sumitomo Chemical Co Ltd Separation method and separation device
JP2012025813A (en) * 2010-07-21 2012-02-09 Dic Corp Double-sided adhesive tape

Also Published As

Publication number Publication date
KR101738741B1 (en) 2017-05-22
JP5903978B2 (en) 2016-04-13
CN104204875A (en) 2014-12-10
CN104204875B (en) 2016-08-24
JP2013205545A (en) 2013-10-07
KR20140146608A (en) 2014-12-26
TWI569048B (en) 2017-02-01
TW201346355A (en) 2013-11-16

Similar Documents

Publication Publication Date Title
JP5903978B2 (en) Method for producing optical member with adhesive
TWI528056B (en) Method for producing polarizing plate
TWI782908B (en) Optical film, peeling method, and manufacturing method of optical display panel
KR102338615B1 (en) Optical film, peeling method and manufacturing method of optical display panel
WO2009087942A1 (en) Polarizer
US20190025485A1 (en) Pressure-sensitive-adhesive-layer-attached one-side-protected polarizing film, image display device, and method for continuously producing same
JP2020190754A (en) Optical film, removal method and manufacturing method of optical display panel
JP2023061955A (en) Optical film and optical display panel
TW201840413A (en) One-side-protected polarizing film with pressure-sensitive adhesive layer, image display device, and continuous production method therefor
JP7153459B2 (en) Adhesive layer, piece protective polarizing film with adhesive layer, image display device and continuous production method thereof
JP6654113B2 (en) Optical display panel manufacturing method and optical display panel manufacturing system
JP6767143B2 (en) Release film peeling method and optical display panel manufacturing method
WO2020003857A1 (en) Single-side-protected polarization film with adhesive layer, image display device, and continuous production method therfor
WO2018181715A1 (en) Pressure-sensitive adhesive layer, one-side-protected polarizing film having pressure-sensitive adhesive layer, image display device, and continuous production method therefor
WO2018181014A1 (en) One-side-protected polarizing film with pressure-sensitive adhesive layer, image display device, and continuous production method therefor
TWI793125B (en) Manufacturing method of optical film
KR102425954B1 (en) Optical display panel manufacturing method and optical display panel manufacturing system
KR102356930B1 (en) sheetfed optical film
TW201930933A (en) Polarization plate set and liquid crystal display panel
JP7154002B2 (en) POLARIZING FILM, POLARIZING FILM WITH ADHESIVE LAYER, AND IMAGE DISPLAY DEVICE
TWI777946B (en) Polarizing film with surface protection film and manufacturing method of polarizing film
JP2011232627A (en) Adhesive polarizing plate and image display device
JP2002138260A (en) Optical film with pressure-sensitive adhesive layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769986

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147028668

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769986

Country of ref document: EP

Kind code of ref document: A1