WO2013146627A1 - Process for producing filter for filtration - Google Patents
Process for producing filter for filtration Download PDFInfo
- Publication number
- WO2013146627A1 WO2013146627A1 PCT/JP2013/058474 JP2013058474W WO2013146627A1 WO 2013146627 A1 WO2013146627 A1 WO 2013146627A1 JP 2013058474 W JP2013058474 W JP 2013058474W WO 2013146627 A1 WO2013146627 A1 WO 2013146627A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- filtration
- filter
- etched
- etching
- Prior art date
Links
- 238000001914 filtration Methods 0.000 title claims abstract description 146
- 238000000034 method Methods 0.000 title claims abstract description 76
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 75
- 239000010703 silicon Substances 0.000 claims abstract description 75
- 239000000758 substrate Substances 0.000 claims abstract description 53
- 230000003647 oxidation Effects 0.000 claims abstract description 16
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 16
- 238000005530 etching Methods 0.000 claims description 67
- 238000004519 manufacturing process Methods 0.000 claims description 48
- 239000000463 material Substances 0.000 claims description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 7
- 238000000231 atomic layer deposition Methods 0.000 claims description 6
- 238000005498 polishing Methods 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 73
- 239000007788 liquid Substances 0.000 abstract description 13
- 230000001105 regulatory effect Effects 0.000 abstract description 11
- 230000015572 biosynthetic process Effects 0.000 abstract description 5
- 238000001039 wet etching Methods 0.000 abstract description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 abstract description 4
- 239000012212 insulator Substances 0.000 abstract description 2
- 239000000706 filtrate Substances 0.000 abstract 1
- 238000011045 prefiltration Methods 0.000 description 29
- 239000007789 gas Substances 0.000 description 17
- 230000004048 modification Effects 0.000 description 15
- 238000012986 modification Methods 0.000 description 15
- 239000012528 membrane Substances 0.000 description 8
- 238000001223 reverse osmosis Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- 238000001020 plasma etching Methods 0.000 description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 239000005426 pharmaceutical component Substances 0.000 description 3
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 3
- 229960000909 sulfur hexafluoride Drugs 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004380 ashing Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920005597 polymer membrane Polymers 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 229910017625 MgSiO Inorganic materials 0.000 description 1
- 229910017855 NH 4 F Inorganic materials 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910018503 SF6 Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0053—Inorganic membrane manufacture by inducing porosity into non porous precursor membranes
- B01D67/006—Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods
- B01D67/0062—Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods by micromachining techniques, e.g. using masking and etching steps, photolithography
Definitions
- the efficiency of filtration can be increased by increasing the primary pressure, while the diameter of the through-hole cannot be directly controlled in the manufacturing process.
- the reverse osmosis membrane has a through-hole having a diameter larger than several nm, for example, a diameter of several tens of nm.
- an etching process such as a plasma etching process, which has many achievements in fine groove processing and fine through hole processing in the field of semiconductor device manufacturing (for example, , See Patent Document 2).
- a mask film in which the width of the opening is controlled by a lithography technique is used to obtain a large number of grooves whose widths are uniformly adjusted by etching in a silicon substrate, and the grooves are used as slits for a filter for filtration. It is advocated to use.
- the cross-sectional shape of the grooves tends to be a tapered shape or a reverse spindle shape.
- a groove shape is a reverse spindle shape, as shown in FIG.
- the slit 81 having a width R is formed by etching to select the shaped foreign matter 80 (indicated by a broken line in the figure)
- the depth of the slit 81 becomes R or more, for example, an elliptical cross-sectional shape having a major axis of R or more
- the foreign matter 82 passes through the slit 81.
- the formed groove has an unintended depth, and there arises a problem that the flow rate of the liquid to be passed through the groove cannot be accurately controlled. That is, in order to perform filtration more accurately, it is necessary to form slits in which not only the width but also the depth are controlled with high accuracy.
- An object of the present invention is to provide a method of manufacturing a filter for filtration that can form a groove in which not only the width but also the depth are controlled with high precision.
- a method for producing a filter for filtration wherein a filter for filtration is produced from a substrate having a first layer adjusted to a first predetermined thickness in advance. Forming an upper layer on the first layer by adjusting the second layer to a second predetermined thickness as an upper layer; and on the second layer having the adjusted thickness, A mask film forming step for forming a mask film having an opening of a predetermined width, and an upper portion for forming a groove reaching the first layer by etching the second layer exposed in the opening of the mask film There is provided a method for manufacturing a filter for filtration comprising a layer etching step, wherein the first layer is made of a material that is not etched when the second layer is etched.
- the second layer is formed by oxidation of the first layer, and in the upper layer forming step, the thickness of the second layer is adjusted by an oxidation time.
- the second layer is formed by an atomic layer deposition method, and in the upper layer formation step, the thickness of the second layer is adjusted by a deposition time.
- the substrate further includes a third layer formed as a lower layer below the first layer, and the third layer is made of a material that is not etched when the first layer is etched.
- the method further includes a first layer etching step of etching the first layer exposed in the upper layer etching step to form another groove reaching the third layer.
- an upper portion of the first layer that was not etched in the first layer etching step is etched to form a plurality of shallow grooves in the upper portion of the first layer. It is preferable to do.
- the etching of the first layer is preferably continued for a predetermined time after the groove reaches the lower layer.
- the substrate further includes a fourth layer formed below the lower layer, and the fourth layer is made of a material that is not etched when the lower layer is etched.
- the lower layer exposed in the etching step is preferably etched in a portion different from the groove to form another groove etching step for forming another groove reaching the fourth layer.
- the first layer is polished by chemical mechanical polishing to be adjusted to the first predetermined thickness.
- the first layer and the fourth layer are made of silicon, and the lower layer is made of silicon oxide.
- FIG. 1A It is a side view of a filtration unit constituted by laminating filtration filters in a diagram schematically showing a configuration of a filtration filter produced by a method for producing a filtration filter according to an embodiment of the present invention.
- the filter 11 for filtration is formed by groove processing by etching on a main body made of a substrate formed by laminating two layers of materials having different etching characteristics, for example, an SOI (Silicon On Insulator) substrate.
- SOI Silicon On Insulator
- each filtration slit 14 is set to a predetermined value, for example, 100 nm, so that the diameter included in the liquid flowing in the pre-filtration flow path 13a is a predetermined value, for example, Foreign matter of 100 nm or more cannot pass through each filtration slit 14 and does not flow into the post-filtration branch channel 15a. That is, each filtration slit 14 removes foreign matters having a diameter equal to or larger than a predetermined value and filters the liquid.
- the number of the filtration slits 14 formed on the upper surface of the wall portion 16 is preferably large from the viewpoint of improving the filtration efficiency. For example, 1,000,000 or more are preferably formed.
- An introduction hole 17 penetrating the bottom surface is provided on the bottom surface of the pre-filtration flow path 13, and the pre-filtration flow path 13 of the filter for filtration 11 passes through the introduction hole 17 before the pre-filtration flow of the other filtration filters 11. It communicates with the road 13. Further, the bottom surface of the post-filtration flow path 15 is provided with a discharge hole 18 penetrating the bottom surface, and the post-filtration flow path 15 of the filter for filtration 11 is filtered through the discharge hole 18 by another filter for filtration 11. It communicates with the rear channel 15. Therefore, in the filtration unit 10, the pre-filtration liquid introduced from the introduction pipe 19 to the pre-filtration flow path 13 of the uppermost filtration filter 11 is distributed to the pre-filtration flow paths 13 of the filtration filters 11 by the introduction holes 17.
- FIG. 2 is a process diagram of a method for manufacturing an SOI substrate used in the method for manufacturing a filter for filtration according to the present embodiment.
- the two substrates 21 are bonded together so that the oxide layers 22 come into contact with each other (FIG. 2C), and further heated for a predetermined time.
- the respective oxide layers 22 are joined to each other so that the two substrates 21 are in close contact with each other, and an SOI substrate 25 having two silicon layers 23 and one intermediate oxide layer 24 sandwiched between the two silicon layers 23 is obtained. Formed (FIG. 2D). Thereafter, this process is terminated.
- the SOI substrate 25 can be manufactured very simply and inexpensively because it can be obtained simply by bonding and heating the two substrates 21 after subjecting the two substrates 21 to thermal oxidation. it can.
- the intermediate oxide layer 24 includes the two oxide layers 22 whose thicknesses are adjusted, the thickness of the intermediate oxide layer 24 is also adjusted.
- 3 and 4 are process diagrams of a method for manufacturing a filter for filtration according to the present embodiment.
- the thickness of the substrate 21 before the SOI substrate 25 is adjusted in advance by a chemical polishing process (CMP, Chemical Mechanical Polishing), and the oxide layer 22 and the upper oxide layer 26 formed on the substrate 21 are also included. Since the thickness is adjusted, as a result, the thickness of the silicon layer 23 (first layer) on the intermediate oxide layer 24 (third layer) as the lower layer is also a predetermined value (first predetermined thickness). ) In advance.
- CMP Chemical Mechanical Polishing
- a mask film 27 made of, for example, a photoresist is formed on the upper oxide layer 26 (mask film forming step).
- the mask film 27 is provided with a flow passage opening 28 corresponding to the pre-filtration flow path 13 and the post-filtration flow path 15 and a slit opening 29 corresponding to each filtration slit 14.
- the portion 28 and the slit opening 29 expose the upper oxide layer 26 (FIG. 3C).
- the width (predetermined width) of the slit opening 29 is strictly adjusted, for example, 10 nm, which is the same as the thickness of the upper oxide layer 26.
- a mask film 32 made of, for example, a photoresist is formed on the upper oxide layer 26 again.
- the mask film 32 is provided with a channel opening 33 corresponding to the groove 30.
- the channel opening 33 exposes the upper silicon layer 23, while the mask film 32 covers each groove 31.
- the upper silicon layer 23 is not exposed (FIG. 4A).
- the upper silicon layer 23 exposed in step 1 is etched to form a groove 34 reaching the intermediate oxide layer 24 (FIG. 4B) (first layer etching step).
- the groove 34 whose depth and width are accurately controlled constitutes the pre-filtration flow path 13 and the post-filtration flow path 15, and the groove 31 whose depth and width is precisely controlled constitutes the filtration slit 14. .
- the upper oxide layer 26 exposed to the flow path opening 28 and the slit opening 29 of the mask film 27 is etched by the BHF wet etching process using the mask film 27 having the portion 29 to the upper silicon layer 23. Reaching grooves 30 and grooves 31 are formed. Since the upper silicon layer 23 is made of silicon alone that is not dissolved by BHF, the upper silicon layer 23 is not etched even if the grooves 30 and 31 reach the upper silicon layer 23. That is, the depth of the grooves 30 and 31 is regulated by the upper silicon layer 23. Thereby, the groove
- the groove 34 is formed by plasma etching using the mask film 32 formed on the upper silicon layer 23 whose thickness is adjusted to a predetermined value as a mask. Reaches the intermediate oxide layer 24. Since the intermediate oxide layer 24 is made of silicon oxide that is not etched by the plasma generated from the processing gas, even if the groove 34 reaches the intermediate oxide layer 24, the intermediate oxide layer 24 is not etched. That is, the depth of the groove 34 formed through the upper silicon layer 23 is regulated by the intermediate oxide layer 24. Thereby, the pre-filtration flow path 13 and the post-filtration flow path 15 whose depths are accurately controlled can be formed.
- etching with BHF is continued for a predetermined time after the groove 31 reaches the upper silicon layer 23, and the groove 34 is formed in the intermediate oxide layer 24. Since the etching by plasma is continued for another predetermined time even after reaching, the width of the slit opening 29 and the channel opening 33 can be accurately reflected in the groove 31 and the groove 34. As a result, the pre-filtration flow path 13, the filtration slit 14 and the post-filtration flow path 15 whose widths are accurately controlled can be formed.
- the width and depth of each filtration slit 14 are accurately controlled, so that the filtration can be performed more accurately.
- the number of filtration slits 14 is determined by the number of slit openings 29 in the mask film 27, so that each slit opening is formed in the mask film 27.
- the number of filtration slits 14 can be increased, thereby further increasing the amount of filtration per unit time and filtering efficiency. Can be further improved.
- FIG. 5 is a process diagram of a first modification of the method for manufacturing a filter for filtration according to the present embodiment.
- an SOI substrate 25 is prepared (FIG. 5A), the upper silicon layer 23 is polished by chemical polishing, and the thickness of the upper silicon layer 23 is set to a predetermined value, for example, 10 nm. (FIG. 5B).
- the upper silicon layer 23 that is made of a photoresist and is exposed in the opening using a mask film (not shown) having openings corresponding to the pre-filtration flow path 13, the filtration slit 14, and the post-filtration flow path 15.
- Grooves 30 and 31 that reach the intermediate oxide layer 24 by etching by the silicon layer etching process are formed in the upper silicon layer 23 (FIG. 5C), and after the mask film is removed, openings corresponding to the grooves 30 are formed.
- the intermediate oxide layer 24 exposed in the opening is etched by BHF using another mask film (not shown) having a groove 34 to reach the lower silicon layer 23 (fourth layer), and the like.
- the manufacturing method is finished by removing the mask film (FIG. 5D) (lower layer etching step).
- the intermediate oxide layer 24 is not etched by the plasma generated from the processing gas, the growth in the depth direction of the groove 31 is regulated by the intermediate oxide layer 24 and formed under the intermediate oxide layer 24 by BHF. Since the lower silicon layer 23 is not etched, growth of the groove 34 in the depth direction is restricted by the lower silicon layer 23. As a result, it is possible to form the pre-filtration flow path 13, the post-filtration flow path 15 and the filtration slit 14 whose depth is accurately controlled.
- the etching by plasma is continued for a predetermined time after the groove 31 reaches the intermediate oxide layer 24, and the etching by BHF is performed after the groove 34 reaches the lower silicon layer 23. Since it continues for a predetermined time, the width of the opening of the mask film or other mask film can be accurately reflected in the grooves 31 and 34, and as a result, the pre-filtration flow path 13 whose width is accurately controlled.
- the filtration slit 14 and the post-filtration flow path 15 can be formed.
- FIG. 6 is a process diagram of a second modification of the method for manufacturing a filter for filtration according to the present embodiment.
- an SOI substrate 25 is prepared, the upper silicon layer 23 is polished by chemical polishing, and the thickness of the upper silicon layer 23 is adjusted to a predetermined value, for example, 100 nm ( FIG. 6A).
- the above silicon layer etching process is applied to the upper silicon layer 23 made of photoresist and exposed at the opening using a mask film (not shown) having openings corresponding to the pre-filtration flow path 13 and the post-filtration flow path 15.
- a groove 30 reaching the intermediate oxide layer 24 by etching is formed in the upper silicon layer 23 (FIG. 6B), and further, after removing the mask film, the groove 30 is covered and an opening corresponding to each filtration slit 14
- the upper silicon layer 23 exposed at the opening is etched by the above silicon layer etching process using another mask film (not shown) having a thickness to form each filtration slit 14 having a predetermined depth. And the present manufacturing method is finished (FIG. 6C).
- the intermediate oxide layer 24 is not etched by the silicon layer etching process, so that the growth in the depth direction of the groove 30 is restricted by the intermediate oxide layer 24.
- the pre-filtration flow path 13 and the post-filtration flow path 15 whose depth is accurately controlled can be formed.
- the etching by plasma is continued for a predetermined time after the groove 30 reaches the intermediate oxide layer 24, so that the width of the opening of the mask film can be accurately reflected in the groove 30.
- the pre-filtration flow path 13 and the post-filtration flow path 15 can be formed from the groove 30 whose width is accurately controlled.
- the filtration filter 11 may be manufactured using one substrate 21 instead of the SOI substrate 25.
- the oxide layer 22 made of photoresist and exposed at the opening is etched with BHF using a mask film (not shown) having openings corresponding to the pre-filtration flow path 13, the filtration slit 14, and the post-filtration flow path 15.
- a mask film not shown
- grooves 30 and each groove 31 reaching the silicon layer 23 are formed in the oxide layer 22 (FIG. 7B), and after removing the mask film, each groove 31 is covered and an opening corresponding to the groove 30 is provided.
- the silicon layer 23 exposed in the opening using another mask film (not shown) is etched by the above-mentioned silicon layer etching process to form a groove 34 having a predetermined depth, and the other mask film is removed and this manufacturing is performed.
- the method ends (FIG. 7C).
- the silicon layer 23 is not etched by BHF, the growth in the depth direction of the groove 31 is regulated by the silicon layer 23. As a result, the filtration slit 14 whose depth is accurately controlled can be formed.
- the substrate 21 described above has been subjected to a thermal oxidation process to form an oxide layer 22, but the substrate 21 may be exposed to a predetermined gas in a high temperature atmosphere to form another altered layer on the surface.
- a nitride layer made of silicon nitride is formed on the surface of the substrate 21.
- the thickness of the nitride layer can be adjusted by adjusting the time of exposure to nitrogen gas in a high temperature atmosphere.
- the other deteriorated layer is preferably composed of a stable silicon compound such as silicon carbide, silicate (MgSiO 3 or the like) or silicon resin.
- silicon oxide may be stacked by ALD (Atomic Layer Deposition) to form a heterogeneous layer on the surface of the substrate 21.
- ALD atomic layer Deposition
- the thickness can be adjusted in nm units.
- the thickness of the heterogeneous layer can be adjusted by adjusting the processing time of ALD.
- the above-mentioned other deteriorated layer or heterogeneous layer is made of a material that is not etched when the silicon layer 23 is etched, and the silicon layer 23 is formed when other deteriorated layer or heterogeneous layer is etched. Preferably it is not etched.
- the layer can be regulated by a layer different from the layer in which the grooves 34 and 31 are formed.
- the substrate 21 does not need to be made of silicon, and may be made of a material that undergoes oxidation or nitridation to significantly change the etching rate or change to a material that is not etched, such as aluminum.
- the silicon layer etching process is performed by treatment with plasma of C 4 F 8 as a carbon fluoride gas, and treatment with plasma of a mixed gas of SF 6 as sulfur fluoride gas and oxygen gas.
- the processing gas that can be used in the silicon layer etching process is not limited to these processing gases as long as the gas can be anisotropically etched with high accuracy.
- C 5 F 8 , CF 4, or the like may be used as the silicon layer etching process, and the silicon layer etching process is not an alternating process in which a different gas plasma is alternately repeated.
- a mixture of sulfur hexafluoride gas and oxygen gas is used.
- Gas plasma, single gas such as chlorine gas, bromine gas, CCl 4 , CF 2 Cl 2 , SiCl 4 , or HBr It may be a single treatment with plasma.
- wet etching is used as the oxide layer etching process.
- the oxide layer etching process is not limited to this, and dry etching may be used.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Micromachines (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
A process for producing a filter for filtration is provided in which grooves precisely controlled with respect to not only the width but also the depth can be formed. The upper surface of a silicon-on-insulator (SOI) substrate (25) that comprises a lower silicon layer (23), an upper silicon layer (23), and an intermediate oxide layer (24) sandwiched between the two silicon layers (23) is subjected to a thermal oxidation treatment in which the treatment time is regulated, thereby forming an upper oxide layer (26) that has a thickness regulated to a given value. On the upper oxide layer (26) having a regulated thickness is formed a mask film (27) which has openings (28) for channel formation that correspond to raw-liquid channels (13) and filtrate channels (15) and which further has openings (29) for slit formation that correspond to filtration slits (14). This SOI substrate (25) is subjected to wet etching with an ultrahigh-purity buffered hydrofluoric acid to etch the upper oxide layer (26) that is exposed in the openings (28) for channel formation and the openings (29) for slit formation, thereby forming grooves (30) and grooves (31) that extend to the upper silicon layer (23).
Description
本発明は、エッチング処理を用いた濾過用フィルタの製造方法に関する。
The present invention relates to a method for manufacturing a filter for filtration using an etching process.
工場や家庭からの排水(下水)から汚染物質や不純物を除去して上水を精製する際、若しくは、海水から塩分等を除去して淡水を精製する際、濾過用フィルタが多用されている。濾過用フィルタとしては、高分子材料から成るもの、例えば、酢酸メチルの高分子膜を用いる逆浸透膜が知られている。
Filtration filters are frequently used when purifying clean water by removing pollutants and impurities from wastewater (sewage) from factories and households, or when purifying fresh water by removing salt from seawater. As a filter for filtration, a reverse osmosis membrane using a polymer material, for example, a methyl acetate polymer membrane is known.
ところが、逆浸透膜は高分子膜を主要構成要素とするため、強度が低く、精製効率向上のために下水や海水へ印加する圧力(一次側圧力)を上昇させて負荷をかけると破れてしまうという問題がある。そこで、近年、剛性の高い多孔質セラミック体からなる逆浸透膜が開発されている(例えば、特許文献1参照)。
However, the reverse osmosis membrane has a polymer membrane as its main component, so it is low in strength, and will be broken if the pressure (primary side pressure) applied to sewage or seawater is increased to increase the purification efficiency and a load is applied. There is a problem. Therefore, in recent years, a reverse osmosis membrane made of a highly rigid porous ceramic body has been developed (see, for example, Patent Document 1).
多孔質セラミック体からなる逆浸透膜を用いた場合、一次側圧力を上げることによって濾過の効率を上げることができる一方で、製造過程において貫通孔の径を直接的に制御することができない。また、逆浸透膜の貫通孔を径が数nm以下の径の貫通孔で構成する必要がある場合でも、逆浸透膜には径が数nmよりも大きい貫通孔、例えば、径が数十nmとなる貫通孔が少なからず存在し、場合によっては径が数百nmの貫通孔が数個存在する可能性がある。そのため、汚染物質や塩分の除去に関して依然として懸念がある。さらに、逆浸透膜を液体中に含まれる大きさが異なる複数の医薬成分の仕分けに利用する場合、所望の大きさではない医薬成分が貫通孔を通過する虞があり、医薬成分の仕分けができないという問題がある。すなわち、逆浸透膜の貫通孔を形成する際、該貫通孔のサイズ及び形状を精度よく制御することは重要な課題である。
When a reverse osmosis membrane made of a porous ceramic body is used, the efficiency of filtration can be increased by increasing the primary pressure, while the diameter of the through-hole cannot be directly controlled in the manufacturing process. Further, even when it is necessary to configure the through-hole of the reverse osmosis membrane with a through-hole having a diameter of several nm or less, the reverse osmosis membrane has a through-hole having a diameter larger than several nm, for example, a diameter of several tens of nm. In some cases, there may be several through holes with a diameter of several hundreds of nanometers. As such, there are still concerns regarding the removal of contaminants and salt. Furthermore, when a reverse osmosis membrane is used for sorting a plurality of pharmaceutical components having different sizes contained in a liquid, there is a possibility that a pharmaceutical component that is not a desired size may pass through the through-hole, and the pharmaceutical components cannot be sorted. There is a problem. That is, when forming a through-hole of a reverse osmosis membrane, it is an important subject to accurately control the size and shape of the through-hole.
本発明者等は、これに対応して、半導体デバイスの製造分野において微細溝加工や微細貫通孔加工に多数の実績があるエッチング処理、例えば、プラズマエッチング処理を用いることを提唱している(例えば、特許文献2参照。)。具体的には、開口部の幅がリソグラフィ技術によって制御されたマスク膜を使用して珪素基板にエッチング処理によって幅が均一に調整された多数の溝を得、該溝を濾過用フィルタのスリットとして用いることを提唱している。
Corresponding to this, the present inventors have proposed using an etching process, such as a plasma etching process, which has many achievements in fine groove processing and fine through hole processing in the field of semiconductor device manufacturing (for example, , See Patent Document 2). Specifically, a mask film in which the width of the opening is controlled by a lithography technique is used to obtain a large number of grooves whose widths are uniformly adjusted by etching in a silicon substrate, and the grooves are used as slits for a filter for filtration. It is advocated to use.
リソグラフィ技術を用いたエッチング処理では、溝の幅を均一に数nm単位で制御できるため、所望の径よりも大きい径を持つ球体状の異物が濾過用フィルタを通過するのを確実に防止することができる。
In the etching process using lithography technology, the groove width can be uniformly controlled in units of several nanometers, so that spherical foreign substances having a diameter larger than a desired diameter can be reliably prevented from passing through the filter for filtration. Can do.
しかしながら、エッチング処理で溝を形成する場合、溝の断面形状は先細りした形状や逆紡錘形となる傾向があり、例えば、逆紡錘形となった場合、図8に示すように、所定の径Rの球体状異物80(図中破線で示す。)の選別を行うために、エッチング処理によって幅Rのスリット81を形成すると、スリット81の深さはR以上となり、例えば、長径がR以上の楕円断面形状の異物82がスリット81を通過するおそれがある。また、形成された溝が意図しない深さとなり、当該溝を通過させたい液体の流量を正確に制御できないという問題が生じる。すなわち、より正確に濾過を行うためには、幅だけでなく深さも精度よく制御されたスリットを形成する必要がある。
However, when grooves are formed by etching, the cross-sectional shape of the grooves tends to be a tapered shape or a reverse spindle shape. For example, when a groove shape is a reverse spindle shape, as shown in FIG. When the slit 81 having a width R is formed by etching to select the shaped foreign matter 80 (indicated by a broken line in the figure), the depth of the slit 81 becomes R or more, for example, an elliptical cross-sectional shape having a major axis of R or more There is a possibility that the foreign matter 82 passes through the slit 81. Further, the formed groove has an unintended depth, and there arises a problem that the flow rate of the liquid to be passed through the groove cannot be accurately controlled. That is, in order to perform filtration more accurately, it is necessary to form slits in which not only the width but also the depth are controlled with high accuracy.
本発明の目的は、幅だけでなく深さも精度よく制御された溝を形成することができる濾過用フィルタの製造方法を提供することにある。
An object of the present invention is to provide a method of manufacturing a filter for filtration that can form a groove in which not only the width but also the depth are controlled with high precision.
上記目的を達成するために、本発明によれば、予め第1の所定の厚さに調整された第1の層を有する基板から濾過用フィルタを製造する濾過用フィルタの製造方法であって、前記第1の層の上に上部層として第2の層を第2の所定の厚さに調整して形成する上部層形成ステップと、前記厚さが調整された第2の層の上に、所定の幅の開口部を有するマスク膜を形成するマスク膜形成ステップと、前記マスク膜の開口部に露出する前記第2の層をエッチングして前記第1の層まで到達する溝を形成する上部層エッチングステップとを有し、前記第1の層は、前記第2の層がエッチングされる際にエッチングされない材料からなる濾過用フィルタの製造方法が提供される。
In order to achieve the above object, according to the present invention, there is provided a method for producing a filter for filtration, wherein a filter for filtration is produced from a substrate having a first layer adjusted to a first predetermined thickness in advance. Forming an upper layer on the first layer by adjusting the second layer to a second predetermined thickness as an upper layer; and on the second layer having the adjusted thickness, A mask film forming step for forming a mask film having an opening of a predetermined width, and an upper portion for forming a groove reaching the first layer by etching the second layer exposed in the opening of the mask film There is provided a method for manufacturing a filter for filtration comprising a layer etching step, wherein the first layer is made of a material that is not etched when the second layer is etched.
本発明において、前記第2の層のエッチングは、前記溝が前記第1の層まで到達した後も所定の時間に亘って継続されることが好ましい。
In the present invention, it is preferable that the etching of the second layer is continued for a predetermined time even after the groove reaches the first layer.
本発明において、前記第2の層は前記第1の層の酸化によって形成され、前記上部層形成ステップにおいて、前記第2の層の厚さは酸化時間によって調整されることが好ましい。
In the present invention, it is preferable that the second layer is formed by oxidation of the first layer, and in the upper layer forming step, the thickness of the second layer is adjusted by an oxidation time.
本発明において、前記第1の層は珪素からなり、前記第2の層は酸化珪素からなることが好ましい。
In the present invention, it is preferable that the first layer is made of silicon and the second layer is made of silicon oxide.
本発明において、前記第2の層は原子層堆積方法によって形成され、前記上部層形成ステップにおいて、前記第2の層の厚さは堆積時間によって調整されることが好ましい。
In the present invention, it is preferable that the second layer is formed by an atomic layer deposition method, and in the upper layer formation step, the thickness of the second layer is adjusted by a deposition time.
本発明において、前記基板は前記第1の層の下に下部層として形成された第3の層をさらに備え、前記第3の層は前記第1の層がエッチングされる際にエッチングされない材料からなり、前記上部層エッチングステップにおいて露出した前記第1の層をエッチングして前記第3の層まで到達する他の溝を形成する第1の層エッチングステップを有することが好ましい。
In the present invention, the substrate further includes a third layer formed as a lower layer below the first layer, and the third layer is made of a material that is not etched when the first layer is etched. Preferably, the method further includes a first layer etching step of etching the first layer exposed in the upper layer etching step to form another groove reaching the third layer.
上記目的を達成するために、本発明によれば、予め第1の所定の厚さに調整された第1の層と、該第1の層の下に形成された下部層とを備え、前記下部層は前記第1の層がエッチングされる際にエッチングされない材料からなる基板から濾過用フィルタを製造する濾過用フィルタの製造方法であって、前記厚さが調整された第1の層の上に、所定の幅の開口部を有するマスク膜を形成するマスク膜形成ステップと、前記マスク膜の開口部に露出する前記第1の層をエッチングして前記下部層まで到達する溝を形成する第1の層エッチングステップとを有する濾過用フィルタの製造方法が提供される。
In order to achieve the above object, according to the present invention, a first layer adjusted to a first predetermined thickness in advance and a lower layer formed under the first layer are provided, The lower layer is a method for manufacturing a filter for filtration, wherein the filter is manufactured from a substrate made of a material that is not etched when the first layer is etched, and the lower layer is formed on the first layer whose thickness is adjusted. In addition, a mask film forming step for forming a mask film having an opening with a predetermined width, and a groove reaching the lower layer by etching the first layer exposed in the opening of the mask film are formed. A method of manufacturing a filter for filtration having one layer etching step is provided.
本発明において、前記第1の層エッチングステップ後、前記第1の層エッチングステップにおいてエッチングされなかった前記第1の層の上部をエッチングして前記第1の層の上部に複数の浅溝を形成することが好ましい。
In the present invention, after the first layer etching step, an upper portion of the first layer that was not etched in the first layer etching step is etched to form a plurality of shallow grooves in the upper portion of the first layer. It is preferable to do.
本発明において、前記第1の層のエッチングは、前記溝が前記下部層まで到達した後も所定の時間に亘って継続されることが好ましい。
In the present invention, the etching of the first layer is preferably continued for a predetermined time after the groove reaches the lower layer.
本発明において、前記基板は前記下部層の下に形成された第4の層をさらに備え、前記第4の層は前記下部層がエッチングされる際にエッチングされない材料からなり、前記第1の層エッチングステップにおいて露出した前記下部層を、前記溝とは異なる部分においてエッチングして前記第4の層まで到達する他の溝を形成する下部層エッチングステップを有することが好ましい。
In the present invention, the substrate further includes a fourth layer formed below the lower layer, and the fourth layer is made of a material that is not etched when the lower layer is etched. The lower layer exposed in the etching step is preferably etched in a portion different from the groove to form another groove etching step for forming another groove reaching the fourth layer.
本発明において、前記第1の層は化学機械研磨によって研磨されて前記第1の所定の厚さに調整されることが好ましい。
In the present invention, it is preferable that the first layer is polished by chemical mechanical polishing to be adjusted to the first predetermined thickness.
本発明において、前記第1の層及び前記第4の層は珪素からなり、前記下部層は酸化珪素からなることが好ましい。
In the present invention, it is preferable that the first layer and the fourth layer are made of silicon, and the lower layer is made of silicon oxide.
本実施の形態に係る濾過用フィルタの製造方法によれば、所定の厚さに調整された第2の層の上に形成された所定の幅の開口部を有するマスク膜を用いたエッチングによってマスク膜の開口部に露出する第2の層をエッチングして第1の層まで到達する溝を形成する。第1の層は、第2の層がエッチングされる際にエッチングされない材料からなるので、溝が第1の層に到達しても第1の層はエッチングされない。すなわち、第2の層が貫通されて形成される溝の幅はマスク膜における開口部によって規制され、溝の深さは第1の層によって規制される。これにより、幅だけでなく深さも精度よく制御された溝を形成することができる。
According to the method for manufacturing a filter for filtration according to the present embodiment, the mask is formed by etching using a mask film having an opening with a predetermined width formed on the second layer adjusted to a predetermined thickness. The second layer exposed in the opening of the film is etched to form a groove reaching the first layer. Since the first layer is made of a material that is not etched when the second layer is etched, the first layer is not etched even when the groove reaches the first layer. That is, the width of the groove formed by penetrating the second layer is regulated by the opening in the mask film, and the depth of the groove is regulated by the first layer. As a result, it is possible to form a groove in which not only the width but also the depth are accurately controlled.
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図1A乃至図1Eは、本実施の形態に係る濾過用フィルタの製造方法によって製造される濾過用フィルタの構成を概略的に示す図であり、図1Aは濾過用フィルタが積層されて構成される濾過ユニットの側面図であり、図1Bは図1Aにおける線B−Bに沿う断面図であって、濾過用フィルタの平面図であり、図1Cは図1Bにおける線C−Cに沿う断面図であり、図1Dは図1Bにおける線D−Dに沿う断面図であり、図1Eは図1Bにおける線E−Eに沿う断面図である。
1A to 1E are diagrams schematically showing a configuration of a filter for filtration manufactured by the method for manufacturing a filter for filtration according to the present embodiment, and FIG. 1A is configured by laminating filters for filtration. 1B is a cross-sectional view taken along line BB in FIG. 1A, is a plan view of the filter for filtration, and FIG. 1C is a cross-sectional view taken along line CC in FIG. 1B. FIG. 1D is a sectional view taken along line DD in FIG. 1B, and FIG. 1E is a sectional view taken along line EE in FIG. 1B.
図1Aにおいて、濾過ユニット10は、積層された3つの濾過用フィルタ11と、最上位の濾過用フィルタ11の上面を覆う透明な材料、例えば、ガラスからなる観測板12と、濾過前の液体を導入する導入管19と、濾過後の液体を排出する排出管20とを備える。3つの濾過用フィルタ11は全て同じ構造を有し、互いに後述する導入孔17や排出孔18で内部が連通されている。
In FIG. 1A, a filtration unit 10 includes three filtration filters 11 stacked, a transparent material covering the upper surface of the uppermost filtration filter 11, for example, an observation plate 12 made of glass, and a liquid before filtration. An introduction pipe 19 for introduction and a discharge pipe 20 for discharging the liquid after filtration are provided. All of the three filtration filters 11 have the same structure, and the inside is communicated with each other through an introduction hole 17 and a discharge hole 18 described later.
図1B乃至図1Eにおいて、濾過用フィルタ11は、互いにエッチング特性が異なる2種類の材料の層が積層されてなる基板、例えば、SOI(Silicon On Insulator)基板からなる本体にエッチング処理による溝加工で形成された濾過前流路13、濾過スリット14、濾過後流路15を有する。
In FIG. 1B to FIG. 1E, the filter 11 for filtration is formed by groove processing by etching on a main body made of a substrate formed by laminating two layers of materials having different etching characteristics, for example, an SOI (Silicon On Insulator) substrate. The pre-filtration flow path 13, the filtration slit 14, and the post-filtration flow path 15 are formed.
濾過前流路13及び濾過後流路15は平面視櫛状に形成され、濾過前流路13の櫛の歯に相当する各濾過前分流路13aと、濾過後流路15の櫛の歯に相当する各濾過後分流路15aとが互いに入れ子になるように向かい合わせで配置されている。各濾過前分流路13a及び各濾過後分流路15aの間には壁部16が介在し、該壁部16の上面には複数の濾過スリット14が濾過前分流路13aと濾過後分流路15aとを連通するように配置されている。
The pre-filtration flow path 13 and the post-filtration flow path 15 are formed in a comb shape in plan view, and each pre-filtration branch flow path 13a corresponding to the comb teeth of the pre-filtration flow path 13 and the comb teeth of the post-filtration flow path 15 The corresponding post-filter separation flow paths 15a are arranged face to face so as to be nested with each other. A wall portion 16 is interposed between each pre-filtration branch flow path 13a and each post-filtration branch flow path 15a. Are arranged to communicate with each other.
濾過用フィルタ11では、異物を含む液体が、濾過前流路13から各濾過前分流路13a、各濾過スリット14、各濾過後分流路15aを介して濾過後流路15へ流れるが(図1Bの破線を参照。)、各濾過スリット14の幅及び深さはそれぞれ所定値、例えば、100nmに設定されているので、濾過前分流路13a内を流れる液体に含まれる径が所定値、例えば、100nm以上の異物は各濾過スリット14を通過することができず、濾過後分流路15aへ流入することがない。すなわち、各濾過スリット14が所定値以上の径を有する異物を除去して液体を濾過する。壁部16の上面に形成される濾過スリット14の数は、濾過効率向上の観点から多いのが好ましく、例えば、1,000,000個以上形成されるのが好ましい。
In the filter 11 for filtration, the liquid containing the foreign material flows from the pre-filtration flow path 13 to the post-filtration flow path 15 via the pre-filtration flow paths 13a, the filtration slits 14, and the post-filtration flow paths 15a (FIG. 1B). The width and depth of each filtration slit 14 is set to a predetermined value, for example, 100 nm, so that the diameter included in the liquid flowing in the pre-filtration flow path 13a is a predetermined value, for example, Foreign matter of 100 nm or more cannot pass through each filtration slit 14 and does not flow into the post-filtration branch channel 15a. That is, each filtration slit 14 removes foreign matters having a diameter equal to or larger than a predetermined value and filters the liquid. The number of the filtration slits 14 formed on the upper surface of the wall portion 16 is preferably large from the viewpoint of improving the filtration efficiency. For example, 1,000,000 or more are preferably formed.
濾過前流路13の底面には該底面を貫通する導入孔17が設けられ、該導入孔17を介して当該濾過用フィルタ11の濾過前流路13は他の濾過用フィルタ11の濾過前流路13と連通する。また、濾過後流路15の底面には該底面を貫通する排出孔18が設けられ、該排出孔18を介して当該濾過用フィルタ11の濾過後流路15は他の濾過用フィルタ11の濾過後流路15と連通する。したがって、濾過ユニット10では導入管19から最上位の濾過用フィルタ11の濾過前流路13へ導入された濾過前の液体が各導入孔17によって各濾過用フィルタ11の濾過前流路13へ分配され、各濾過用フィルタ11の濾過スリット14によって濾過された後、各濾過用フィルタ11の濾過後流路15に存在する濾過後の液体が各排出孔18によって最上位の濾過用フィルタ11の濾過後流路15へ集合し、排出管20を介して排出される。
An introduction hole 17 penetrating the bottom surface is provided on the bottom surface of the pre-filtration flow path 13, and the pre-filtration flow path 13 of the filter for filtration 11 passes through the introduction hole 17 before the pre-filtration flow of the other filtration filters 11. It communicates with the road 13. Further, the bottom surface of the post-filtration flow path 15 is provided with a discharge hole 18 penetrating the bottom surface, and the post-filtration flow path 15 of the filter for filtration 11 is filtered through the discharge hole 18 by another filter for filtration 11. It communicates with the rear channel 15. Therefore, in the filtration unit 10, the pre-filtration liquid introduced from the introduction pipe 19 to the pre-filtration flow path 13 of the uppermost filtration filter 11 is distributed to the pre-filtration flow paths 13 of the filtration filters 11 by the introduction holes 17. After being filtered by the filtration slit 14 of each filtration filter 11, the filtered liquid existing in the post-filtration flow path 15 of each filtration filter 11 is filtered by the uppermost filtration filter 11 through each discharge hole 18. Collects in the rear flow path 15 and is discharged through the discharge pipe 20.
図2は、本実施の形態に係る濾過用フィルタの製造方法において用いられるSOI基板の製造方法の工程図である。
FIG. 2 is a process diagram of a method for manufacturing an SOI substrate used in the method for manufacturing a filter for filtration according to the present embodiment.
まず、珪素(Si)のみからなる基板21を準備し(図2A)、該基板21の上面に熱酸化処理を施して上部を酸化珪素(SiO2)に変質させて酸化層22を形成する(図2B)。珪素から形成される酸化珪素の量は熱酸化処理が施される時間にほぼ比例するため、熱酸化処理時間を調整することによって酸化層22の厚さを調整する。図2A及び図2Bでは、1枚の基板21しか図示していないが、SOIは後述するように2枚の基板21を貼り合わせて製造されるため、少なくとも2枚の基板21が準備され、各基板21に熱酸化処理が施される。
First, a substrate 21 made of only silicon (Si) is prepared (FIG. 2A), and the upper surface of the substrate 21 is subjected to thermal oxidation treatment to transform the upper portion into silicon oxide (SiO 2) to form an oxide layer 22 (FIG. 2). 2B). Since the amount of silicon oxide formed from silicon is substantially proportional to the time during which the thermal oxidation treatment is performed, the thickness of the oxide layer 22 is adjusted by adjusting the thermal oxidation treatment time. Although only one substrate 21 is shown in FIGS. 2A and 2B, since the SOI is manufactured by bonding two substrates 21 as will be described later, at least two substrates 21 are prepared. The substrate 21 is subjected to a thermal oxidation process.
次いで、2枚の基板21を互いの酸化層22が当接するように貼り合わせ(図2C)、さらに所定時間に亘って加熱する。このとき、各酸化層22同士が接合されて2つの基板21が密着し、2つの珪素層23と、該2つの珪素層23に挟まれた1つの中間酸化層24とを有するSOI基板25が形成される(図2D)。その後、本処理を終了する。
Next, the two substrates 21 are bonded together so that the oxide layers 22 come into contact with each other (FIG. 2C), and further heated for a predetermined time. At this time, the respective oxide layers 22 are joined to each other so that the two substrates 21 are in close contact with each other, and an SOI substrate 25 having two silicon layers 23 and one intermediate oxide layer 24 sandwiched between the two silicon layers 23 is obtained. Formed (FIG. 2D). Thereafter, this process is terminated.
上述したように、SOI基板25は、2つの基板21に熱酸化処理を施した後、該2つの基板21を貼り合わせて加熱するだけで得られるため、非常に簡便且つ安価に製造することができる。なお、中間酸化層24は厚さが調整された2つの酸化層22からなるため、該中間酸化層24の厚さも調整されることになる。
As described above, the SOI substrate 25 can be manufactured very simply and inexpensively because it can be obtained simply by bonding and heating the two substrates 21 after subjecting the two substrates 21 to thermal oxidation. it can. In addition, since the intermediate oxide layer 24 includes the two oxide layers 22 whose thicknesses are adjusted, the thickness of the intermediate oxide layer 24 is also adjusted.
図3及び図4は、本実施の形態に係る濾過用フィルタの製造方法の工程図である。
3 and 4 are process diagrams of a method for manufacturing a filter for filtration according to the present embodiment.
まず、SOI基板25を準備し(図3A)、該SOI基板25の上面に熱酸化処理を施して上部を酸化珪素に変質させて上部層としての上部酸化層26(第2の層)を形成する(図3B)。このとき、熱酸化処理時間が調整されて上部酸化層26の厚さは、所定値(第2の所定の厚さ)、例えば、10nmに調整される(上部層形成ステップ)。
First, an SOI substrate 25 is prepared (FIG. 3A), and the upper surface of the SOI substrate 25 is subjected to a thermal oxidation process to transform the upper portion into silicon oxide to form an upper oxide layer 26 (second layer) as an upper layer. (FIG. 3B). At this time, the thermal oxidation treatment time is adjusted, and the thickness of the upper oxide layer 26 is adjusted to a predetermined value (second predetermined thickness), for example, 10 nm (upper layer forming step).
ここで、SOI基板25を構成する前の基板21は化学研磨処理(CMP、Chemical Mechanical Polishing)によって厚さが予め調整されており、該基板21に形成される酸化層22や上部酸化層26も厚さが調整されるため、結果として、下部層としての中間酸化層24(第3の層)の上の珪素層23(第1の層)の厚さも所定値(第1の所定の厚さ)に予め調整されることになる。
Here, the thickness of the substrate 21 before the SOI substrate 25 is adjusted in advance by a chemical polishing process (CMP, Chemical Mechanical Polishing), and the oxide layer 22 and the upper oxide layer 26 formed on the substrate 21 are also included. Since the thickness is adjusted, as a result, the thickness of the silicon layer 23 (first layer) on the intermediate oxide layer 24 (third layer) as the lower layer is also a predetermined value (first predetermined thickness). ) In advance.
次いで、上部酸化層26の上に、例えば、フォトレジストからなるマスク膜27を形成する(マスク膜形成ステップ)。該マスク膜27には、濾過前流路13や濾過後流路15に対応する流路用開口部28と、各濾過スリット14に対応するスリット用開口部29とが設けられ、流路用開口部28及びスリット用開口部29は上部酸化層26を露出させる(図3C)。特に、スリット用開口部29の幅(所定の幅)は、厳密に調整され、例えば、上部酸化層26の厚さと同じ10nmに調整される。
Next, a mask film 27 made of, for example, a photoresist is formed on the upper oxide layer 26 (mask film forming step). The mask film 27 is provided with a flow passage opening 28 corresponding to the pre-filtration flow path 13 and the post-filtration flow path 15 and a slit opening 29 corresponding to each filtration slit 14. The portion 28 and the slit opening 29 expose the upper oxide layer 26 (FIG. 3C). In particular, the width (predetermined width) of the slit opening 29 is strictly adjusted, for example, 10 nm, which is the same as the thickness of the upper oxide layer 26.
次いで、超高純度バッファードフッ酸(BHF:NH4F及びHFの混合物)をエッチャントとして用いてSOI基板25へウェットエッチング処理を施す酸化層エッチングプロセスにより、流路用開口部28やスリット用開口部29において露出する上部酸化層26をエッチングして上の珪素層23まで到達する溝30や溝31を形成する(図3D)(上部層エッチングステップ)。
Next, by using an oxide layer etching process in which ultra-high purity buffered hydrofluoric acid (a mixture of BHF: NH 4 F and HF) is used as an etchant and wet etching is performed on the SOI substrate 25, the channel openings 28 and the slit openings are formed. The upper oxide layer 26 exposed in the portion 29 is etched to form grooves 30 and grooves 31 reaching the upper silicon layer 23 (FIG. 3D) (upper layer etching step).
このとき、珪素単体はBHFによって溶解されないため、上の珪素層23はBHFによってエッチングされない。したがって、上部酸化層26がエッチングされて形成される溝30や溝31は上の珪素層23に到達するとそれ以上深くならず、結果として深さが精度よく制御される。一方、溝30や溝31が上の珪素層23に到達したときは、溝30や溝31は先細りの形状、例えば、下に凸の紡錘形を呈するため、個々の溝30や溝31の幅は深さ方向に関して一定でない。これに対応して本実施の形態では、溝30や溝31が上の珪素層23まで到達した後もウェットエッチング処理を所定時間、例えば、溝30や溝31が上の珪素層23まで到達する時間の3割に該当する時間に亘って継続する。これにより、溝30や溝31の深さ方向の成長を上の珪素層23によって規制したまま、溝30や溝31の幅方向の成長を促すことができ、もって、溝30や溝31に流路用開口部28やスリット用開口部29の幅を正確に反映することができ、結果として溝30や溝31の幅が精度よく制御される。
At this time, since silicon alone is not dissolved by BHF, the upper silicon layer 23 is not etched by BHF. Therefore, the grooves 30 and 31 formed by etching the upper oxide layer 26 do not become deeper when reaching the upper silicon layer 23, and as a result, the depth is accurately controlled. On the other hand, when the groove 30 or 31 reaches the upper silicon layer 23, the groove 30 or 31 has a tapered shape, for example, a downwardly convex spindle shape. It is not constant in the depth direction. Correspondingly, in the present embodiment, after the groove 30 or 31 reaches the upper silicon layer 23, the wet etching process is performed for a predetermined time, for example, the groove 30 or 31 reaches the upper silicon layer 23. Continue for a time corresponding to 30% of the time. Accordingly, the growth in the width direction of the grooves 30 and 31 can be promoted while the growth in the depth direction of the grooves 30 and 31 is restricted by the upper silicon layer 23, and thus the flow to the grooves 30 and 31 can be promoted. The widths of the road openings 28 and the slit openings 29 can be accurately reflected, and as a result, the widths of the grooves 30 and 31 are accurately controlled.
次いで、酸素プラズマ、又は有機洗浄液によるアッシング処理をSOI基板25へ施してマスク膜27を除去する(図3E)。
Next, ashing with oxygen plasma or organic cleaning liquid is performed on the SOI substrate 25 to remove the mask film 27 (FIG. 3E).
次いで、再度、上部酸化層26の上に、例えば、フォトレジストからなるマスク膜32を形成する。該マスク膜32には溝30に対応する流路用開口部33が設けられ、流路用開口部33は上の珪素層23を露出させる一方、マスク膜32は各溝31を覆い、溝31における上の珪素層23を露出させない(図4A)。
Next, a mask film 32 made of, for example, a photoresist is formed on the upper oxide layer 26 again. The mask film 32 is provided with a channel opening 33 corresponding to the groove 30. The channel opening 33 exposes the upper silicon layer 23, while the mask film 32 covers each groove 31. The upper silicon layer 23 is not exposed (FIG. 4A).
次いで、弗化炭素ガス(例えば、C4F8)から生じたプラズマによってSOI基板25へ所定の時間、例えば5秒間、エッチング処理とともに施されるデポ付着処理と、弗化硫黄ガス(例えば、SF6)及び酸素ガスからなる処理ガスから生じたプラズマによってSOI基板25へ他の所定の時間、例えば10秒間、施されるプラズマエッチング処理を交互に繰返す珪素層エッチングプロセスにより、流路用開口部33において露出する上の珪素層23をエッチングして中間酸化層24まで到達する溝34を形成する(図4B)(第1の層エッチングステップ)。
Next, a deposition process performed with an etching process on the SOI substrate 25 by a plasma generated from a carbon fluoride gas (for example, C 4 F 8 ) for a predetermined time, for example, 5 seconds, and a sulfur fluoride gas (for example, SF) 6 ) and a flow path opening 33 by a silicon layer etching process in which a plasma etching process is alternately performed on the SOI substrate 25 for another predetermined time, for example, 10 seconds, by plasma generated from a processing gas comprising oxygen gas. The upper silicon layer 23 exposed in step 1 is etched to form a groove 34 reaching the intermediate oxide layer 24 (FIG. 4B) (first layer etching step).
このとき、酸化珪素は上記珪素層エッチングプロセスにおいて生じるプラズマによってエッチングされないため、中間酸化層24はプラズマエッチング処理においてエッチングされない。したがって、上の珪素層23がエッチングされて形成される溝34は中間酸化層24に到達するとそれ以上深くならず、結果として深さが精度よく制御される。一方、溝34が中間酸化層24に到達したときは、溝34は先細りの形状、例えば下に凸の紡錘形を呈するため、個々の溝34の幅は深さ方向に関して一定でない。これに対応して本実施の形態では、溝34が中間酸化層24まで到達した後もプラズマエッチング処理を他の所定時間、例えば、5秒に亘って継続する。これにより、溝34の深さ方向の成長を中間酸化層24によって規制したまま、溝34の幅方向の成長を促すことができ、もって、溝34に流路用開口部33の幅を正確に反映することができ、結果として溝34の幅が精度よく制御される。
At this time, since the silicon oxide is not etched by the plasma generated in the silicon layer etching process, the intermediate oxide layer 24 is not etched in the plasma etching process. Therefore, the groove 34 formed by etching the upper silicon layer 23 does not become deeper when it reaches the intermediate oxide layer 24, and as a result, the depth is accurately controlled. On the other hand, when the groove 34 reaches the intermediate oxide layer 24, the groove 34 has a tapered shape, for example, a downwardly convex spindle shape, and therefore the width of each groove 34 is not constant in the depth direction. Correspondingly, in the present embodiment, the plasma etching process is continued for another predetermined time, for example, 5 seconds after the groove 34 reaches the intermediate oxide layer 24. Accordingly, the growth in the width direction of the groove 34 can be promoted while the growth in the depth direction of the groove 34 is regulated by the intermediate oxide layer 24, so that the width of the opening 33 for the flow path is accurately set in the groove 34. As a result, the width of the groove 34 is accurately controlled.
次いで、酸素プラズマ、又は有機洗浄液によるアッシング処理をSOI基板25へ施してマスク膜32を除去する(図4C)。このとき、深さ及び幅が精度よく制御された溝34が濾過前流路13や濾過後流路15を構成し、深さ及び幅が精度よく制御された溝31が濾過スリット14を構成する。
Next, an ashing process using oxygen plasma or an organic cleaning liquid is applied to the SOI substrate 25 to remove the mask film 32 (FIG. 4C). At this time, the groove 34 whose depth and width are accurately controlled constitutes the pre-filtration flow path 13 and the post-filtration flow path 15, and the groove 31 whose depth and width is precisely controlled constitutes the filtration slit 14. .
その後、濾過ユニット10における最上位の濾過用フィルタ11には観測板12が上部に貼り付けられ(図4D)、本製造方法が終了する。
Thereafter, the observation plate 12 is stuck on the uppermost filter 11 for filtration in the filtration unit 10 (FIG. 4D), and the manufacturing method is completed.
本実施の形態に係る濾過用フィルタの製造方法によれば、厚さが所定値に調整された上部酸化層26の上に形成された、所定の幅の流路用開口部28やスリット用開口部29を有するマスク膜27を用いたBHFによるウェットエッチング処理により、マスク膜27の流路用開口部28やスリット用開口部29に露出する上部酸化層26をエッチングして上の珪素層23まで到達する溝30や溝31を形成する。上の珪素層23はBHFによって溶解しない珪素単体からなるので、溝30や溝31が上の珪素層23へ到達しても上の珪素層23はエッチングされない。すなわち、溝30や溝31の深さは上の珪素層23によって規制される。これにより、深さが精度よく制御された溝31や濾過スリット14を形成することができる。
According to the method for manufacturing a filter for filtration according to the present embodiment, a channel opening 28 or a slit aperture having a predetermined width formed on the upper oxide layer 26 having a thickness adjusted to a predetermined value. The upper oxide layer 26 exposed to the flow path opening 28 and the slit opening 29 of the mask film 27 is etched by the BHF wet etching process using the mask film 27 having the portion 29 to the upper silicon layer 23. Reaching grooves 30 and grooves 31 are formed. Since the upper silicon layer 23 is made of silicon alone that is not dissolved by BHF, the upper silicon layer 23 is not etched even if the grooves 30 and 31 reach the upper silicon layer 23. That is, the depth of the grooves 30 and 31 is regulated by the upper silicon layer 23. Thereby, the groove | channel 31 and the filtration slit 14 by which the depth was controlled accurately can be formed.
また、本実施の形態に係る濾過用フィルタの製造方法では、厚さが所定値に予め調整された上の珪素層23の上に形成されたマスク膜32をマスクとして用いるプラズマエッチング処理によって溝34が中間酸化層24まで到達する。中間酸化層24は上記処理ガスから生じたプラズマによってエッチングされない酸化珪素からなるので、溝34が中間酸化層24へ到達しても中間酸化層24はエッチングされない。すなわち、上の珪素層23が貫通されて形成される溝34の深さは中間酸化層24によって規制される。これにより、深さが精度よく制御された濾過前流路13や濾過後流路15を形成することができる。
Further, in the method for manufacturing a filter for filtration according to the present embodiment, the groove 34 is formed by plasma etching using the mask film 32 formed on the upper silicon layer 23 whose thickness is adjusted to a predetermined value as a mask. Reaches the intermediate oxide layer 24. Since the intermediate oxide layer 24 is made of silicon oxide that is not etched by the plasma generated from the processing gas, even if the groove 34 reaches the intermediate oxide layer 24, the intermediate oxide layer 24 is not etched. That is, the depth of the groove 34 formed through the upper silicon layer 23 is regulated by the intermediate oxide layer 24. Thereby, the pre-filtration flow path 13 and the post-filtration flow path 15 whose depths are accurately controlled can be formed.
上述した本実施の形態に係る濾過用フィルタの製造方法では、さらに、溝31が上の珪素層23まで到達した後もBHFによるエッチングを所定時間に亘って継続し、溝34が中間酸化層24まで到達した後もプラズマによるエッチングを他の所定時間に亘って継続するので、溝31や溝34にスリット用開口部29や流路用開口部33の幅を正確に反映することができ、結果として幅が精度よく制御された濾過前流路13、濾過スリット14や濾過後流路15を形成することができる。
In the above-described method for manufacturing a filter for filtration according to the present embodiment, etching with BHF is continued for a predetermined time after the groove 31 reaches the upper silicon layer 23, and the groove 34 is formed in the intermediate oxide layer 24. Since the etching by plasma is continued for another predetermined time even after reaching, the width of the slit opening 29 and the channel opening 33 can be accurately reflected in the groove 31 and the groove 34. As a result, the pre-filtration flow path 13, the filtration slit 14 and the post-filtration flow path 15 whose widths are accurately controlled can be formed.
上述した本実施の形態に係る濾過用フィルタの製造方法によって製造される濾過用フィルタ11では、各濾過スリット14の幅及び深さが精度よく制御されるので、より正確に濾過を行うことができる。
In the filter 11 for filtration manufactured by the method for manufacturing a filter for filtration according to the above-described embodiment, the width and depth of each filtration slit 14 are accurately controlled, so that the filtration can be performed more accurately. .
また、上述した本実施の形態に係る濾過用フィルタの製造方法によって製造される濾過用フィルタ11は剛性の高い珪素を基材とするSOI基板25から製造され、濾過スリット14は硬質の酸化珪素からなる酸化層22に形成されるため、各濾過用フィルタ11において異物を含む液体に高圧を負荷して各濾過スリット14を通過させることができ、もって、単位時間当たりの濾過量を増加させることができ、濾過効率を向上させることができる。
Moreover, the filter 11 manufactured by the method for manufacturing a filter according to this embodiment described above is manufactured from an SOI substrate 25 based on silicon having high rigidity, and the filter slit 14 is formed from hard silicon oxide. Since the oxide layer 22 is formed, it is possible to apply a high pressure to the liquid containing foreign matter in each filtration filter 11 and pass each filtration slit 14, thereby increasing the amount of filtration per unit time. And the filtration efficiency can be improved.
さらに、上述した本実施の形態に係る濾過用フィルタの製造方法では、濾過スリット14の数はマスク膜27における各スリット用開口部29の数によって決定されるため、マスク膜27において各スリット用開口部29の幅の精度が悪化しない範囲で各スリット用開口部29の数を増やすことにより、濾過スリット14の数を増やすことができ、もって、単位時間当たりの濾過量をさらに増加させて濾過効率をさらに向上させることができる。
Furthermore, in the method for manufacturing a filter for filtration according to the above-described embodiment, the number of filtration slits 14 is determined by the number of slit openings 29 in the mask film 27, so that each slit opening is formed in the mask film 27. By increasing the number of openings 29 for each slit within a range in which the accuracy of the width of the portion 29 is not deteriorated, the number of filtration slits 14 can be increased, thereby further increasing the amount of filtration per unit time and filtering efficiency. Can be further improved.
上述した本実施の形態に係る濾過用フィルタの製造方法では、各濾過スリット14が上部酸化層26に形成され、且つ濾過前流路13や濾過後流路15が上の珪素層23に形成されたが、各濾過スリット14が上の珪素層23に形成され、且つ濾過前流路13や濾過後流路15が中間酸化層24に形成されてもよい。
In the method for manufacturing the filter for filtration according to the present embodiment described above, each filtration slit 14 is formed in the upper oxide layer 26, and the pre-filtration flow path 13 and the post-filtration flow path 15 are formed in the upper silicon layer 23. However, each filtration slit 14 may be formed in the upper silicon layer 23, and the pre-filtration flow path 13 and the post-filtration flow path 15 may be formed in the intermediate oxide layer 24.
図5は、本実施の形態に係る濾過用フィルタの製造方法の第1の変形例の工程図である。
FIG. 5 is a process diagram of a first modification of the method for manufacturing a filter for filtration according to the present embodiment.
本変形例では、例えば、まず、SOI基板25を準備し(図5A)、上の珪素層23を化学研磨処理によって研磨して、該上の珪素層23の厚さを所定値、例えば、10nmに調整する(図5B)。
In this modification, for example, first, an SOI substrate 25 is prepared (FIG. 5A), the upper silicon layer 23 is polished by chemical polishing, and the thickness of the upper silicon layer 23 is set to a predetermined value, for example, 10 nm. (FIG. 5B).
次いで、フォトレジストからなり、濾過前流路13、濾過スリット14や濾過後流路15に対応する開口部を有するマスク膜(図示しない)を用いて開口部において露出する上の珪素層23を上記珪素層エッチングプロセスによってエッチングして中間酸化層24まで到達する溝30や溝31を上の珪素層23に形成し(図5C)、さらに、マスク膜を除去した後、溝30に対応する開口部を有する他のマスク膜(図示しない)を用いて開口部において露出する中間酸化層24をBHFによってエッチングして下の珪素層23(第4の層)にまで到達する溝34を形成し、他のマスク膜を除去して本製造方法を終了する(図5D)(下部層エッチングステップ)。
Next, the upper silicon layer 23 that is made of a photoresist and is exposed in the opening using a mask film (not shown) having openings corresponding to the pre-filtration flow path 13, the filtration slit 14, and the post-filtration flow path 15. Grooves 30 and 31 that reach the intermediate oxide layer 24 by etching by the silicon layer etching process are formed in the upper silicon layer 23 (FIG. 5C), and after the mask film is removed, openings corresponding to the grooves 30 are formed. The intermediate oxide layer 24 exposed in the opening is etched by BHF using another mask film (not shown) having a groove 34 to reach the lower silicon layer 23 (fourth layer), and the like. The manufacturing method is finished by removing the mask film (FIG. 5D) (lower layer etching step).
本変形例でも、上記処理ガスから生じたプラズマによって中間酸化層24はエッチングされないため、溝31の深さ方向の成長が中間酸化層24によって規制され、BHFによって中間酸化層24の下に形成される下の珪素層23はエッチングされないため、溝34の深さ方向の成長が下の珪素層23によって規制される。その結果、深さが精度よく制御された濾過前流路13、濾過後流路15や濾過スリット14を形成することができる。
Also in this modification, since the intermediate oxide layer 24 is not etched by the plasma generated from the processing gas, the growth in the depth direction of the groove 31 is regulated by the intermediate oxide layer 24 and formed under the intermediate oxide layer 24 by BHF. Since the lower silicon layer 23 is not etched, growth of the groove 34 in the depth direction is restricted by the lower silicon layer 23. As a result, it is possible to form the pre-filtration flow path 13, the post-filtration flow path 15 and the filtration slit 14 whose depth is accurately controlled.
なお、本変形例でも、溝31が中間酸化層24まで到達した後もプラズマによるエッチングを所定時間に亘って継続し、溝34が下の珪素層23まで到達した後もBHFによるエッチングを他の所定時間に亘って継続するので、溝31や溝34にマスク膜や他のマスク膜の開口部の幅を正確に反映することができ、結果として幅が精度よく制御された濾過前流路13、濾過スリット14や濾過後流路15を形成することができる。
In this modification, the etching by plasma is continued for a predetermined time after the groove 31 reaches the intermediate oxide layer 24, and the etching by BHF is performed after the groove 34 reaches the lower silicon layer 23. Since it continues for a predetermined time, the width of the opening of the mask film or other mask film can be accurately reflected in the grooves 31 and 34, and as a result, the pre-filtration flow path 13 whose width is accurately controlled. The filtration slit 14 and the post-filtration flow path 15 can be formed.
また、各濾過スリット14、濾過前流路13及び濾過後流路15が上の珪素層23に形成されてもよい。
Further, each filtration slit 14, pre-filtration flow path 13 and post-filtration flow path 15 may be formed in the upper silicon layer 23.
図6は、本実施の形態に係る濾過用フィルタの製造方法の第2の変形例の工程図である。
FIG. 6 is a process diagram of a second modification of the method for manufacturing a filter for filtration according to the present embodiment.
本変形例では、例えば、まず、SOI基板25を準備し、上の珪素層23を化学研磨処理によって研磨して、該上の珪素層23の厚さを所定値、例えば、100nmに調整する(図6A)。
In this modification, for example, first, an SOI substrate 25 is prepared, the upper silicon layer 23 is polished by chemical polishing, and the thickness of the upper silicon layer 23 is adjusted to a predetermined value, for example, 100 nm ( FIG. 6A).
次いで、フォトレジストからなり、濾過前流路13や濾過後流路15に対応する開口部を有するマスク膜(図示しない)を用いて開口部において露出する上の珪素層23を上記珪素層エッチングプロセスによってエッチングして中間酸化層24まで到達する溝30を上の珪素層23に形成し(図6B)、さらに、マスク膜を除去した後、溝30を覆い且つ各濾過スリット14に対応する開口部を有する他のマスク膜(図示しない)を用いて開口部において露出する上の珪素層23を上記珪素層エッチングプロセスによってエッチングして所定の深さの各濾過スリット14を形成し、他のマスク膜を除去して本製造方法を終了する(図6C)。
Next, the above silicon layer etching process is applied to the upper silicon layer 23 made of photoresist and exposed at the opening using a mask film (not shown) having openings corresponding to the pre-filtration flow path 13 and the post-filtration flow path 15. A groove 30 reaching the intermediate oxide layer 24 by etching is formed in the upper silicon layer 23 (FIG. 6B), and further, after removing the mask film, the groove 30 is covered and an opening corresponding to each filtration slit 14 The upper silicon layer 23 exposed at the opening is etched by the above silicon layer etching process using another mask film (not shown) having a thickness to form each filtration slit 14 having a predetermined depth. And the present manufacturing method is finished (FIG. 6C).
本変形例でも、上記珪素層エッチングプロセスによって中間酸化層24はエッチングされないため、溝30の深さ方向の成長が中間酸化層24によって規制される。その結果、深さが精度よく制御された濾過前流路13や濾過後流路15を形成することができる。
Also in this modification, the intermediate oxide layer 24 is not etched by the silicon layer etching process, so that the growth in the depth direction of the groove 30 is restricted by the intermediate oxide layer 24. As a result, the pre-filtration flow path 13 and the post-filtration flow path 15 whose depth is accurately controlled can be formed.
なお、本変形例でも、溝30が中間酸化層24まで到達した後もプラズマによるエッチングを所定時間に亘って継続するので、溝30にマスク膜の開口部の幅を正確に反映することができ、結果として幅が精度よく制御された溝30から濾過前流路13や濾過後流路15を形成することができる。
Even in this modification, the etching by plasma is continued for a predetermined time after the groove 30 reaches the intermediate oxide layer 24, so that the width of the opening of the mask film can be accurately reflected in the groove 30. As a result, the pre-filtration flow path 13 and the post-filtration flow path 15 can be formed from the groove 30 whose width is accurately controlled.
また、SOI基板25でなく1つの基板21を用いて濾過用フィルタ11を製造してもよい。
Further, the filtration filter 11 may be manufactured using one substrate 21 instead of the SOI substrate 25.
図7は、本実施の形態に係る濾過用フィルタの製造方法の第3の変形例の工程図である。
FIG. 7 is a process diagram of a third modification of the method for manufacturing a filter for filtration according to the present embodiment.
本変形例では、例えば、まず、基板21を準備し、該基板21の上面に熱酸化処理を施して酸化層22を形成する。このとき、熱酸化処理時間を調整することによって酸化層22の厚さを所定値、例えば、2000nmに調整する(図7A)。
In this modification, for example, first, the substrate 21 is prepared, and the upper surface of the substrate 21 is subjected to a thermal oxidation process to form the oxide layer 22. At this time, the thickness of the oxide layer 22 is adjusted to a predetermined value, for example, 2000 nm by adjusting the thermal oxidation treatment time (FIG. 7A).
次いで、フォトレジストからなり、濾過前流路13、濾過スリット14や濾過後流路15に対応する開口部を有するマスク膜(図示しない)を用いて開口部において露出する酸化層22をBHFによってエッチングして珪素層23まで到達する溝30や各溝31を酸化層22に形成し(図7B)、さらに、マスク膜を除去した後、各溝31を覆い且つ溝30に対応する開口部を有する他のマスク膜(図示しない)を用いて開口部において露出する珪素層23を上記珪素層エッチングプロセスによってエッチングして所定の深さの溝34を形成し、他のマスク膜を除去して本製造方法を終了する(図7C)。
Next, the oxide layer 22 made of photoresist and exposed at the opening is etched with BHF using a mask film (not shown) having openings corresponding to the pre-filtration flow path 13, the filtration slit 14, and the post-filtration flow path 15. Then, grooves 30 and each groove 31 reaching the silicon layer 23 are formed in the oxide layer 22 (FIG. 7B), and after removing the mask film, each groove 31 is covered and an opening corresponding to the groove 30 is provided. The silicon layer 23 exposed in the opening using another mask film (not shown) is etched by the above-mentioned silicon layer etching process to form a groove 34 having a predetermined depth, and the other mask film is removed and this manufacturing is performed. The method ends (FIG. 7C).
本変形例でも、BHFによって珪素層23はエッチングされないため、溝31の深さ方向の成長が珪素層23によって規制される。その結果、深さが精度よく制御された濾過スリット14を形成することができる。
Also in this modification, since the silicon layer 23 is not etched by BHF, the growth in the depth direction of the groove 31 is regulated by the silicon layer 23. As a result, the filtration slit 14 whose depth is accurately controlled can be formed.
なお、本変形例でも、溝31が珪素層23まで到達した後もBHFによるエッチングを所定時間に亘って継続するので、溝31にマスク膜の開口部の幅を正確に反映することができ、結果として幅が精度よく制御された各濾過スリット14を形成することができる。
Even in this modification, since the etching with BHF is continued for a predetermined time after the groove 31 reaches the silicon layer 23, the width of the opening of the mask film can be accurately reflected in the groove 31. As a result, each filtration slit 14 whose width is accurately controlled can be formed.
上述した基板21には熱酸化処理が施されて酸化層22が形成されたが、基板21を高温雰囲気において所定のガスに晒して表面に他の変質層を形成してもよく、例えば、基板21を高温雰囲気において窒素ガスに晒すと該基板21の表面に窒化珪素からなる窒化層が形成される。この場合も高温雰囲気において窒素ガスに晒す時間を調整することによって窒化層の厚さを調整することができる。なお、他の変質層は炭化珪素、珪酸塩(MgSiO3等)や珪素樹脂等の安定した珪素化合物によって構成するのが好ましい。
The substrate 21 described above has been subjected to a thermal oxidation process to form an oxide layer 22, but the substrate 21 may be exposed to a predetermined gas in a high temperature atmosphere to form another altered layer on the surface. When 21 is exposed to nitrogen gas in a high temperature atmosphere, a nitride layer made of silicon nitride is formed on the surface of the substrate 21. In this case as well, the thickness of the nitride layer can be adjusted by adjusting the time of exposure to nitrogen gas in a high temperature atmosphere. The other deteriorated layer is preferably composed of a stable silicon compound such as silicon carbide, silicate (MgSiO 3 or the like) or silicon resin.
また、基板21において酸化層22を形成することなく、酸化珪素をALD(Atomic Layer Deposition:原子層堆積)によって積層して基板21の表面に異質層を形成してもよい。ALDでは酸化珪素のラジカルを一層毎に積層するので、nm単位で厚さ調整が可能であり、基板21ではALDの処理時間を調整することによって異質層の厚さを調整することができる。
Alternatively, without forming the oxide layer 22 on the substrate 21, silicon oxide may be stacked by ALD (Atomic Layer Deposition) to form a heterogeneous layer on the surface of the substrate 21. In ALD, since radicals of silicon oxide are stacked on a layer-by-layer basis, the thickness can be adjusted in nm units. In the substrate 21, the thickness of the heterogeneous layer can be adjusted by adjusting the processing time of ALD.
上述した他の変質層や異質層は、珪素層23がエッチングされる際にエッチングされない材料により構成されるのが好ましく、また、珪素層23は他の変質層や異質層がエッチングされる際にエッチングされないのが好ましい。これにより、珪素層23、他の変質層、若しくは異質層に形成される溝34(濾過前流路13や濾過後流路15)又は溝31(濾過スリット14)の深さ方向の成長を、溝34や溝31が形成される層とは別の層で規制することができる。
It is preferable that the above-mentioned other deteriorated layer or heterogeneous layer is made of a material that is not etched when the silicon layer 23 is etched, and the silicon layer 23 is formed when other deteriorated layer or heterogeneous layer is etched. Preferably it is not etched. Thereby, the growth in the depth direction of the groove 34 (the pre-filtration flow path 13 and the post-filtration flow path 15) or the groove 31 (the filtration slit 14) formed in the silicon layer 23, another altered layer, or a heterogeneous layer, The layer can be regulated by a layer different from the layer in which the grooves 34 and 31 are formed.
また、基板21も珪素からなる必要はなく、酸化や窒化を起こしてエッチングレートが大幅に変更される、又はエッチングされない材料へ変質する材料、例えば、アルミニウム等によって構成されてもよい。
Also, the substrate 21 does not need to be made of silicon, and may be made of a material that undergoes oxidation or nitridation to significantly change the etching rate or change to a material that is not etched, such as aluminum.
以上、本発明について、上記各実施の形態を用いて説明したが、本発明は上記各実施の形態に限定されるものではない。
As mentioned above, although this invention was demonstrated using said each embodiment, this invention is not limited to said each embodiment.
例えば、上記各実施の形態においては、珪素層エッチングプロセスを、弗化炭素ガスとしてのC4F8のプラズマによる処理と、弗化硫黄ガスとしてのSF6及び酸素ガスの混合ガスのプラズマによる処理とを繰り返す交互処理によって構成したが、珪素層エッチングプロセスにおいて用いることができる処理ガスは、精度よく異方性エッチングのできるガスであれば、これらの処理ガスに限られず、例えば、弗化炭素ガスとしてC5F8やCF4等を用いてもよく、また、珪素層エッチングプロセスは、異種ガスのプラズマによる処理を交互に繰り返す交互処理ではなく、例えば、六弗化硫黄ガスと酸素ガスの混合ガスのプラズマや、塩素ガス、臭素ガス、CCl4、CF2Cl2、SiCl4、若しくは、HBr等の単独ガスのプラズマによる単独処理であってもよい。
For example, in each of the above embodiments, the silicon layer etching process is performed by treatment with plasma of C 4 F 8 as a carbon fluoride gas, and treatment with plasma of a mixed gas of SF 6 as sulfur fluoride gas and oxygen gas. However, the processing gas that can be used in the silicon layer etching process is not limited to these processing gases as long as the gas can be anisotropically etched with high accuracy. C 5 F 8 , CF 4, or the like may be used as the silicon layer etching process, and the silicon layer etching process is not an alternating process in which a different gas plasma is alternately repeated. For example, a mixture of sulfur hexafluoride gas and oxygen gas is used. Gas plasma, single gas such as chlorine gas, bromine gas, CCl 4 , CF 2 Cl 2 , SiCl 4 , or HBr It may be a single treatment with plasma.
また、上記各実施の形態においては、酸化層エッチングプロセスとしてウェットエッチングを用いたが、酸化層エッチングプロセスはこれに限らず、ドライエッチングを用いてもよい。
In each of the above embodiments, wet etching is used as the oxide layer etching process. However, the oxide layer etching process is not limited to this, and dry etching may be used.
本出願は、2012年3月29日に出願された日本出願第2012−076349号に基づく優先権を主張するものであり、当該日本出願に記載された全内容を本出願に援用する。
This application claims priority based on Japanese Application No. 2012-076349 filed on March 29, 2012, the entire contents of which are incorporated into this application.
10 濾過ユニット
11 濾過用フィルタ
13 濾過前流路
14 濾過スリット
15 濾過後流路
21 基板
22 酸化層
23 珪素層
24 中面酸化層
25 SOI基板
26 上部酸化層
27,32 マスク膜
28,33 流路用開口部
29 スリット用開口部
30,34 溝
31 スリット DESCRIPTION OFSYMBOLS 10 Filtration unit 11 Filtration filter 13 Flow path before filtration 14 Filtration slit 15 Flow path after filtration 21 Substrate 22 Oxide layer 23 Silicon layer 24 Middle surface oxidation layer 25 SOI substrate 26 Upper oxide layers 27 and 32 Mask films 28 and 33 Opening 29 slit opening 30, 34 groove 31 slit
11 濾過用フィルタ
13 濾過前流路
14 濾過スリット
15 濾過後流路
21 基板
22 酸化層
23 珪素層
24 中面酸化層
25 SOI基板
26 上部酸化層
27,32 マスク膜
28,33 流路用開口部
29 スリット用開口部
30,34 溝
31 スリット DESCRIPTION OF
Claims (12)
- 予め第1の所定の厚さに調整された第1の層を有する基板から濾過用フィルタを製造する濾過用フィルタの製造方法であって、
前記第1の層の上に上部層として第2の層を第2の所定の厚さに調整して形成する上部層形成ステップと、
前記厚さが調整された第2の層の上に、所定の幅の開口部を有するマスク膜を形成するマスク膜形成ステップと、
前記マスク膜の開口部に露出する前記第2の層をエッチングして前記第1の層まで到達する溝を形成する上部層エッチングステップとを有し、
前記第1の層は、前記第2の層がエッチングされる際にエッチングされない材料からなることを特徴とする濾過用フィルタの製造方法。 A method for producing a filtration filter for producing a filtration filter from a substrate having a first layer adjusted to a first predetermined thickness in advance,
Forming an upper layer on the first layer by adjusting the second layer to a second predetermined thickness as an upper layer;
A mask film forming step of forming a mask film having an opening of a predetermined width on the second layer having the adjusted thickness;
An upper layer etching step of etching the second layer exposed in the opening of the mask film to form a groove reaching the first layer;
The method for manufacturing a filter for filtration, wherein the first layer is made of a material that is not etched when the second layer is etched. - 前記第2の層のエッチングは、前記溝が前記第1の層まで到達した後も所定の時間に亘って継続されることを特徴とする請求項1記載の濾過用フィルタの製造方法。 The method for producing a filter for filtration according to claim 1, wherein the etching of the second layer is continued for a predetermined time after the groove reaches the first layer.
- 前記第2の層は前記第1の層の酸化によって形成され、
前記上部層形成ステップにおいて、前記第2の層の厚さは酸化時間によって調整されることを特徴とする請求項1記載の濾過用フィルタの製造方法。 The second layer is formed by oxidation of the first layer;
2. The method for manufacturing a filter for filtration according to claim 1, wherein, in the upper layer forming step, the thickness of the second layer is adjusted by an oxidation time. - 前記第1の層は珪素からなり、前記第2の層は酸化珪素からなることを特徴とする請求項1記載の濾過用フィルタの製造方法。 The method for manufacturing a filter for filtration according to claim 1, wherein the first layer is made of silicon, and the second layer is made of silicon oxide.
- 前記第2の層は原子層堆積方法によって形成され、
前記上部層形成ステップにおいて、前記第2の層の厚さは堆積時間によって調整されることを特徴とする請求項1記載の濾過用フィルタの製造方法。 The second layer is formed by an atomic layer deposition method;
The method for manufacturing a filter for filtration according to claim 1, wherein, in the upper layer forming step, the thickness of the second layer is adjusted by a deposition time. - 前記基板は前記第1の層の下に下部層として形成された第3の層をさらに備え、前記第3の層は前記第1の層がエッチングされる際にエッチングされない材料からなり、
前記上部層エッチングステップにおいて露出した前記第1の層をエッチングして前記第3の層まで到達する他の溝を形成する第1の層エッチングステップをさらに有することを特徴とする請求項1記載の濾過用フィルタの製造方法。 The substrate further includes a third layer formed as a lower layer under the first layer, and the third layer is made of a material that is not etched when the first layer is etched,
2. The first layer etching step according to claim 1, further comprising a first layer etching step of etching the first layer exposed in the upper layer etching step to form another groove reaching the third layer. A method for producing a filter for filtration. - 予め第1の所定の厚さに調整された第1の層と、該第1の層の下に形成された下部層とを備え、前記下部層は前記第1の層がエッチングされる際にエッチングされない材料からなる基板から濾過用フィルタを製造する濾過用フィルタの製造方法であって、
前記厚さが調整された第1の層の上に、所定の幅の開口部を有するマスク膜を形成するマスク膜形成ステップと、
前記マスク膜の開口部に露出する前記第1の層をエッチングして前記下部層まで到達する溝を形成する第1の層エッチングステップとを有することを特徴とする濾過用フィルタの製造方法。 A first layer adjusted to a first predetermined thickness in advance, and a lower layer formed under the first layer, wherein the lower layer is etched when the first layer is etched. A method for producing a filter for filtration, comprising producing a filter for filtration from a substrate made of a material that is not etched,
A mask film forming step of forming a mask film having an opening with a predetermined width on the first layer having the adjusted thickness;
And a first layer etching step of etching the first layer exposed in the opening of the mask film to form a groove reaching the lower layer. - 前記第1の層エッチングステップ後、前記第1の層エッチングステップにおいてエッチングされなかった前記第1の層の上部をエッチングして前記第1の層の上部に複数の浅溝を形成することを特徴とする請求項7記載の濾過用フィルタの製造方法。 After the first layer etching step, an upper portion of the first layer that has not been etched in the first layer etching step is etched to form a plurality of shallow grooves in the upper portion of the first layer. The manufacturing method of the filter for filtration of Claim 7.
- 前記第1の層のエッチングは、前記溝が前記下部層まで到達した後も所定の時間に亘って継続されることを特徴とする請求項7記載の濾過用フィルタの製造方法。 The method for manufacturing a filter for filtration according to claim 7, wherein the etching of the first layer is continued for a predetermined time after the groove reaches the lower layer.
- 前記基板は前記下部層の下に形成された第4の層をさらに備え、前記第4の層は前記下部層がエッチングされる際にエッチングされない材料からなり、
前記第1の層エッチングステップにおいて露出した前記下部層を、前記溝とは異なる部分においてエッチングして前記第4の層まで到達する他の溝を形成する下部層エッチングステップをさらに有することを特徴とする請求項7記載の濾過用フィルタの製造方法。 The substrate further includes a fourth layer formed below the lower layer, and the fourth layer is made of a material that is not etched when the lower layer is etched,
The method further comprises a lower layer etching step of forming another groove reaching the fourth layer by etching the lower layer exposed in the first layer etching step at a portion different from the groove. The manufacturing method of the filter for filtration of Claim 7. - 前記第1の層は化学機械研磨によって研磨されて前記第1の所定の厚さに調整されることを特徴とする請求項7記載の濾過用フィルタの製造方法。 The method for manufacturing a filter for filtration according to claim 7, wherein the first layer is polished by chemical mechanical polishing to be adjusted to the first predetermined thickness.
- 前記第1の層及び前記第4の層は珪素からなり、前記下部層は酸化珪素からなることを特徴とする請求項10記載の濾過用フィルタの製造方法。 The method for manufacturing a filter for filtration according to claim 10, wherein the first layer and the fourth layer are made of silicon, and the lower layer is made of silicon oxide.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-076349 | 2012-03-29 | ||
JP2012076349A JP2013202559A (en) | 2012-03-29 | 2012-03-29 | Method for producing filter for filtration |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013146627A1 true WO2013146627A1 (en) | 2013-10-03 |
Family
ID=49259879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/058474 WO2013146627A1 (en) | 2012-03-29 | 2013-03-18 | Process for producing filter for filtration |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2013202559A (en) |
TW (1) | TW201350194A (en) |
WO (1) | WO2013146627A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014046151A1 (en) * | 2012-09-19 | 2014-03-27 | 東京エレクトロン株式会社 | Method for producing filtration filter |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110416162A (en) * | 2019-08-29 | 2019-11-05 | 上海华力集成电路制造有限公司 | The process of FD-SOI |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6164303A (en) * | 1984-09-05 | 1986-04-02 | Hitachi Ltd | Filter and its preparation |
JP2004209632A (en) * | 2002-12-30 | 2004-07-29 | Internatl Business Mach Corp <Ibm> | Inorganic nanoporous membrane and its forming method |
JP2005528975A (en) * | 2002-01-07 | 2005-09-29 | サントゥル ナショナル ドゥ ラ ルシェルシュ シャーンティフィク(セ エン エール エス) | Method for producing sheets with through holes and their use in the production of micron and submicron filters |
JP2006507105A (en) * | 2002-02-13 | 2006-03-02 | ホスピラ・インコーポレイテツド | Microfluidic antibacterial filter |
-
2012
- 2012-03-29 JP JP2012076349A patent/JP2013202559A/en active Pending
-
2013
- 2013-03-18 WO PCT/JP2013/058474 patent/WO2013146627A1/en active Application Filing
- 2013-03-29 TW TW102111592A patent/TW201350194A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6164303A (en) * | 1984-09-05 | 1986-04-02 | Hitachi Ltd | Filter and its preparation |
JP2005528975A (en) * | 2002-01-07 | 2005-09-29 | サントゥル ナショナル ドゥ ラ ルシェルシュ シャーンティフィク(セ エン エール エス) | Method for producing sheets with through holes and their use in the production of micron and submicron filters |
JP2006507105A (en) * | 2002-02-13 | 2006-03-02 | ホスピラ・インコーポレイテツド | Microfluidic antibacterial filter |
JP2004209632A (en) * | 2002-12-30 | 2004-07-29 | Internatl Business Mach Corp <Ibm> | Inorganic nanoporous membrane and its forming method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014046151A1 (en) * | 2012-09-19 | 2014-03-27 | 東京エレクトロン株式会社 | Method for producing filtration filter |
Also Published As
Publication number | Publication date |
---|---|
TW201350194A (en) | 2013-12-16 |
JP2013202559A (en) | 2013-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7282148B2 (en) | Porous silicon composite structure as large filtration array | |
KR101211850B1 (en) | net of Graphene nano filter, Graphene nano filter and manufacturing method | |
JP6060074B2 (en) | Cleaning method of ceramic filter | |
WO2012128235A1 (en) | Filtration filter and production method therefor | |
US20160199787A1 (en) | Nanoporous silicon nitride membranes, and methods for making and using such membranes | |
JP6678238B2 (en) | Method of making a fluid cavity by transmembrane etching through a porous membrane and structures produced thereby and uses of such structures | |
WO2013146627A1 (en) | Process for producing filter for filtration | |
US20130240479A1 (en) | Method for producing filtration filter | |
JP2005177752A (en) | Internal fluid filter | |
JP2010028108A (en) | Method of manufacturing semiconductor device | |
US10589204B2 (en) | Three dimensional nanometer filters and methods of use | |
KR102412947B1 (en) | How to Create a Freestanding Membrane for Biological Applications | |
WO2014031523A2 (en) | Method for preparing microfluidic device with reduced channel height | |
AU2003216788B2 (en) | Method of producing a sheet comprising through pores and the application thereof in the production of micronic and submicronic filters | |
US20150246317A1 (en) | Method for producing filtration filter | |
WO2015008141A2 (en) | Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranes | |
JP2023546377A (en) | Tangential flow cassette HF emulation | |
KR102562628B1 (en) | Nano-pore flow cells and manufacturing methods | |
KR102727224B1 (en) | Top-down fabrication process for vertically-stracked silicon-nanowire array | |
US20240191168A1 (en) | Method for manufacturing nanostructure and nanostructure | |
KR102056940B1 (en) | Semiconductor filter for water purification and water purification device using same | |
KR101699249B1 (en) | Laminated substrate and method of manufacturing thereof | |
KR20130081841A (en) | Membrane having cylinderical penetration channel and method of manufacturing the same | |
JP2003175330A (en) | Substrate plate for microchip, method for bonding the same and microchip | |
JP2007095847A (en) | Method and apparatus for manufacturing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13769654 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13769654 Country of ref document: EP Kind code of ref document: A1 |