WO2013146529A1 - Method for producing random-interesterified fat or oil - Google Patents

Method for producing random-interesterified fat or oil Download PDF

Info

Publication number
WO2013146529A1
WO2013146529A1 PCT/JP2013/058074 JP2013058074W WO2013146529A1 WO 2013146529 A1 WO2013146529 A1 WO 2013146529A1 JP 2013058074 W JP2013058074 W JP 2013058074W WO 2013146529 A1 WO2013146529 A1 WO 2013146529A1
Authority
WO
WIPO (PCT)
Prior art keywords
lipase
oil
fats
oils
random
Prior art date
Application number
PCT/JP2013/058074
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 矢島
晴康 木田
真晴 加藤
Original Assignee
不二製油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 不二製油株式会社 filed Critical 不二製油株式会社
Publication of WO2013146529A1 publication Critical patent/WO2013146529A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/02Other edible oils or fats, e.g. shortenings, cooking oils characterised by the production or working-up
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters

Definitions

  • the present invention relates to a novel method for producing fats and oils. More specifically, the present invention relates to a method for producing a random transesterified oil using a lipase obtained by culturing bacteria belonging to Burkholderia plantarii.
  • the transesterification reaction of fats and oils is an effective method for improving the physical properties of fats and oils, and mainly comprises chemical methods and enzymatic methods.
  • the chemical method includes a random transesterification reaction using a chemical catalyst, but this method requires washing with water to remove the catalyst after the reaction is completed, and the operation is very troublesome.
  • the enzymatic method does not require washing with water, it is necessary to perform the reaction at a temperature equal to or higher than the melting point of the fats and oils used. Therefore, when the heat resistance of the lipase is low, the lipase is easily deactivated and efficient. There is a problem that can not react properly.
  • Non-Patent Document 1 discloses a random transesterification reaction using a Candida lipase
  • Patent Document 1 discloses a fat and oil random ester using a lipase derived from Burkholderia gladioli. Exchange reactions are each disclosed.
  • Patent Document 2 reports an example of an enantioselective ring-opening method from oxetane-2-one using a lipase derived from Burkholderia plantarii. Using this lipase, a random triglyceride is reported. No examples of transesterification have been reported.
  • Non-Patent Document 1 is a method in which a large amount of enzyme of 10% or more is added to the fats and oils of the substrate and the reaction is carried out at 40 ° C. for 66 hours, and industrialization is difficult.
  • the lipase used for random transesterification in Patent Document 1 also has room for improvement in heat resistance. Under such circumstances, a lipase with high heat resistance, which can be transesterified with oil and fat at a high temperature, which cannot be solved by existing lipases, has been desired.
  • the present inventors searched for a fungus that produces a novel lipase that exhibits an efficient random transesterification reaction of fats and oils, a lipase derived from Burkholderia plantarii produces a lipase with high heat resistance, and uses this lipase
  • the present invention was completed by successfully producing an efficient random transesterified oil and fat. That is, the present invention (1) A method for producing random transesterified fats and oils using lipase produced by Burkholderia plantarii. (2) The method for producing a random transesterified oil or fat according to claim 1, wherein the oil or fat is a triacylglyceride.
  • a lipase derived from Burkholderia plantarii is allowed to act on fats and oils, whereby it is possible to obtain fats and oils subjected to random transesterification at a high temperature and for a long period of time.
  • the lipase used in the present invention is derived from Burkholderia plantarii. Specifically, a lipase obtained by culturing bacteria obtained by isolation from soil, distribution from an organization, etc., in a normal medium can be used. This lipase is preferably used by being immobilized on a carrier such as diatomaceous earth, silica, ceramic, activated carbon, or ion exchange resin. Such an immobilized lipase can be prepared by bringing the lipase solution into contact with the carrier by infiltration or spraying and then drying by ventilation, reduced pressure, heating or the like.
  • the fats and oils obtained in the present invention are glycerin fatty acid esters which are triacyl glycerides, diacyl glycerides or monoacyl glycerides, and the most suitable modification is to obtain triacyl glycerides.
  • As the substrate used in the present invention various glycerin fatty acid esters can be used.
  • Vegetable fats such as monkey fat
  • animal and vegetable fats such as fish oil, lard, beef tallow, milk fat, and their fractionated fats, hardened oils, transesterified oils, and MCT, trilaurin, triolein, tris
  • examples include triacylglycerides containing synthetic fats and oils such as palmitic acid and tristearin.
  • diacylglycerol esters and monoacylglycerol esters can also be used.
  • long chain saturated fatty acids such as stearic acid, palmitic acid, behenic acid, myristic acid, lauric acid, long chain unsaturated fatty acids such as oleic acid, linoleic acid, linolenic acid, palmitoleic acid, EPA, DHA, and capric acid , Caprylic acid, caproic acid, butyric acid, acetic acid and other medium chain or short chain fatty acids, and these short chain alcohol esters can be used in combination with the glycerin fatty acid ester. (Transesterification reaction)
  • transesterification reaction between the fatty glycerin esters as substrates preferably between the triacylglycerides, or between the fatty glycerin ester, preferably the triacylglyceride, and the fatty acid or fatty acid ester is carried out by transesterification of the present invention. Corresponds to the reaction.
  • Random transesterification reaction using the lipase of the present invention refers to a primary hydroxyl group of glycerin between fatty acids bound to glycerin, or between fatty acids bound to glycerin and free fatty acids or short-chain alcohol esters of fatty acids, By exchanging the bonding position regardless of the secondary hydroxyl group, the reaction is performed by transesterification so that the fatty acid composition at each position becomes the same, thereby modifying the fats and oils. “Randomized” means that the fatty acid composition at each position is the same.
  • the reaction using the lipase may be a batch type or a continuous type, but it is preferable to reduce the substrate moisture to 1% by weight or less because production of a hydrolyzate is effectively suppressed.
  • the amount of enzyme used for fats and oils is preferably from 50 ppm to 10,000 ppm, more preferably from 200 ppm to 2,000 ppm, based on the raw material fats and oils.
  • the reaction can be carried out in the absence of a solvent or in various solvents, but the reaction in the absence of a solvent or in a nonpolar solvent such as hexane is preferred, and the reaction in the absence of solvent is most preferred.
  • the reaction temperature is preferably 30 to 100 ° C, more preferably 40 to 80 ° C, and most preferably 60 to 75 ° C. Since the lipase of the present invention has high heat resistance, it is possible to carry out the reaction for a long period of time with little decrease in activity due to heat in both batch and continuous methods.
  • Each activity measurement of the hydrolysis activity and transesterification activity used in the Examples was performed by the following methods.
  • a) Hydrolysis activity This was carried out by partially modifying the fat digestion test method described in the Japanese Pharmacopoeia. The enzyme was allowed to react with an olive oil substrate (phosphate buffer, pH 7.0) at 37 ° C. for 30 minutes, and then the amount of enzyme that liberates 1 ⁇ mol of fatty acid per minute was 10 Units. When measuring the temperature dependence of activity, the reaction temperature was changed.
  • Random transesterification activity 2g of immobilized lipase was added to 100g of the substrate containing 6: 4 palm mid-melting fraction and palm low-melting fraction, and the mixture was allowed to act at 60 ° C. Asked.
  • (Randomization rate) ((tripalmitin content of reaction product) ⁇ (tripalmitin content of raw oil) / ((tripalmitin content of reaction equilibrium composition) ⁇ (tripalmitin content of raw oil)) ⁇ 100
  • the lipase of the present invention which is Example 1 of the lipase QLM of Comparative Example 1, has high reactivity at high temperatures and high heat resistance.
  • the lipase 0.04 wt% aqueous solution obtained by cultivation of Burkholderia plantarii used in Example 1 was stored at 5 ° C, 40 ° C, and 60 ° C for 24 hours, and then the hydrolysis activity was measured to determine the heat resistance of the lipase. The results are shown in Table 2 (Example 2). As a comparison, the same measurement was performed with lipase QLM, which is a lipase derived from Burkholderia gladioli (Comparative Example 2).
  • the lipase of the present invention was found to have high heat resistance with little inactivation at high temperatures.
  • Example 4 2 g of immobilized lipase derived from Burkholderia plantarii used in Example 3 was added to 100 g of palm super olein (IV65) and reacted at 60 ° C. for 24 hours (Example 4).
  • a 1,3-selective lipase, Neurase F3GR from Rhizopus niveus, Amano Enzyme was added to the oil and reacted in the same manner (Comparative Example 3).
  • a random transesterified oil produced using a chemical catalyst (Comparative Example 4) was prepared.
  • Table 3 shows the solid fat content (SFC) and the tripalmitin (PPP) content in the triacylglyceride (TG) composition for the raw material oil and the total of 4 points of Example 4 and Comparative Examples 3 to 4.
  • the lipase of the present invention catalyzes a strong random transesterification reaction, it can be used for oil and fat modification. These transesterified oils are useful as safe transesterified fats because they do not use chemical catalysts.

Abstract

The present invention provides a highly heat-resistant lipase which enables high-temperature random interesterification of a fat or oil. Incidentally, high-temperature random interesterification of a fat or oil cannot be achieved by a conventional lipase. A lipase originating from Burkholderia plantarii can retain the activity even at high temperature, so that the use of the lipase makes it possible to produce a random-interesterified fat or oil efficiently. The fat or oil to be produced by this method is preferably a triacylglyceride.

Description

ランダムエステル交換油脂の製造方法Method for producing random transesterified oil and fat
 本発明は新規な油脂の製造方法に関する。更に詳しくは、バークホルデリア・プランタリイ(Burkholderia plantarii)に属する細菌の培養によって得られるリパーゼを用いたランダムエステル交換油の製造方法に関する。 The present invention relates to a novel method for producing fats and oils. More specifically, the present invention relates to a method for producing a random transesterified oil using a lipase obtained by culturing bacteria belonging to Burkholderia plantarii.
 油脂のエステル交換反応は、油脂の物性を改善するのに有効な方法であり、大きくは化学的方法と酵素的方法から成る。化学的方法としては、化学触媒を用いるランダムエステル交換反応が挙げられるが、この方法は反応終了後触媒を除去するため水洗する必要があり、その操作が非常に面倒である。一方の酵素的方法は、、水洗の必要はないものの、用いる油脂の融点以上の温度で反応を行う必要があるため、リパーゼの耐熱性が低い場合は、リパーゼの失活が起こり易く、効率的な反応ができない問題がある。また、グリセリンの水酸基の位置に影響されず、1級アルコールにも2級アルコールにも同じ様に反応するランダムエステル交換と、グリセリンの1級アルコールにのみ反応する1,3位選択エステル交換は酵素により選択することができるが、多くのリパーゼは「1,3-選択的リパーゼ」であり、ランダムエステル交換を行えるリパーゼの種類は限定されている。
 そのような中で、非特許文献1には、キャンディダ属のリパーゼを用いたランダムエステル交換反応が、また、特許文献1には、バークホルデリア・グラジオリ由来のリパーゼを用いた油脂のランダムエステル交換反応が、それぞれ開示されている。
The transesterification reaction of fats and oils is an effective method for improving the physical properties of fats and oils, and mainly comprises chemical methods and enzymatic methods. The chemical method includes a random transesterification reaction using a chemical catalyst, but this method requires washing with water to remove the catalyst after the reaction is completed, and the operation is very troublesome. On the other hand, although the enzymatic method does not require washing with water, it is necessary to perform the reaction at a temperature equal to or higher than the melting point of the fats and oils used. Therefore, when the heat resistance of the lipase is low, the lipase is easily deactivated and efficient. There is a problem that can not react properly. Random transesterification, which reacts in the same way with primary alcohols and secondary alcohols, and 1,3-position selective transesterification, which reacts only with primary alcohols of glycerin, is not affected by the position of the hydroxyl group of glycerin. Although many lipases are “1,3-selective lipases”, the types of lipases that can be subjected to random transesterification are limited.
Among them, Non-Patent Document 1 discloses a random transesterification reaction using a Candida lipase, and Patent Document 1 discloses a fat and oil random ester using a lipase derived from Burkholderia gladioli. Exchange reactions are each disclosed.
 また、特許文献2には、バークホルデリア・プランタリイ由来のリパーゼを用いたオケセタン-2-オンからのエナンチオ選択的な開環法の例が報告されているが、このリパーゼを用いてトリグリセリドのランダムエステル交換を行っている例は報告されていない。 Patent Document 2 reports an example of an enantioselective ring-opening method from oxetane-2-one using a lipase derived from Burkholderia plantarii. Using this lipase, a random triglyceride is reported. No examples of transesterification have been reported.
特開平11-253157号公報Japanese Patent Laid-Open No. 11-253157 特表2008-507984号公報Special table 2008-507984 gazette
 しかし、非特許文献1のランダムエステル交換反応は、基質の油脂に対して10%以上の多量の酵素を加え、40℃で66時間反応するという方法であり、工業化は困難なものだった。また、特許文献1でランダムエステル交換反応に用いられているリパーゼも、その耐熱性は、まだまだ改善の余地があるものだった。
 このような状況の中で、既存のリパーゼでは解決できない、油脂を高温でランダムエステル交換を行うことが可能な、耐熱性の高いリパーゼが望まれていた。
However, the random transesterification reaction of Non-Patent Document 1 is a method in which a large amount of enzyme of 10% or more is added to the fats and oils of the substrate and the reaction is carried out at 40 ° C. for 66 hours, and industrialization is difficult. In addition, the lipase used for random transesterification in Patent Document 1 also has room for improvement in heat resistance.
Under such circumstances, a lipase with high heat resistance, which can be transesterified with oil and fat at a high temperature, which cannot be solved by existing lipases, has been desired.
 本発明者らは効率の良い油脂のランダムエステル交換反応を示す新規なリパーゼを生産する菌の検索を行い、バークホルデリア・プランタリイ由来のリパーゼが耐熱性の高いリパーゼを生産し、本リパーゼを用いることで効率的なランダムエステル交換油脂を製造することに成功し、本発明を完成した。すなわち、本発明は、
(1)バークホルデリア・プランタリイ(Burkholderia plantarii)の生産するリパーゼを用いる、ランダムエステル交換油脂の製造方法。
(2)油脂がトリアシルグリセリドである、請求項1記載のランダムエステル交換油脂の製造方法。
(3)バークホルデリア・プランタリイ(Burkholderia plantarii)の生産するリパーゼを用いる、油脂のランダムエステル交換方法。
(4)油脂がトリアシルグリセリドである、(3)記載の油脂のランダムエステル交換方法。
である。
The present inventors searched for a fungus that produces a novel lipase that exhibits an efficient random transesterification reaction of fats and oils, a lipase derived from Burkholderia plantarii produces a lipase with high heat resistance, and uses this lipase Thus, the present invention was completed by successfully producing an efficient random transesterified oil and fat. That is, the present invention
(1) A method for producing random transesterified fats and oils using lipase produced by Burkholderia plantarii.
(2) The method for producing a random transesterified oil or fat according to claim 1, wherein the oil or fat is a triacylglyceride.
(3) A method for random transesterification of fats and oils using lipase produced by Burkholderia plantarii.
(4) The method for random transesterification of fats and oils according to (3), wherein the fats and oils are triacylglycerides.
It is.
 本発明は、バークホルデリア・プランタリイ由来のリパーゼを油脂に作用させることで、高い温度で且つ長期間に渡って、ランダムエステル交換した油脂を取得することが可能となる。 In the present invention, a lipase derived from Burkholderia plantarii is allowed to act on fats and oils, whereby it is possible to obtain fats and oils subjected to random transesterification at a high temperature and for a long period of time.
(リパーゼ)
 本発明で用いられるリパーゼは、バークホルデリア・プランタリイ(Burkholderia plantarii)由来のものである。具体的には、土壌からの単離、機関からの分譲等により入手した菌を、通常の培地で培養して得られるリパーゼを利用することができる。このリパーゼは、珪藻土,シリカ,セラミック,活性炭,イオン交換樹脂等の担体に固定化して用いることが好ましい。斯かる固定化リパーゼは、上記担体に上記リパーゼの溶液を浸潤または噴霧により接触させた後に、通風,減圧,加熱等により乾燥することで調製することができる。
(Lipase)
The lipase used in the present invention is derived from Burkholderia plantarii. Specifically, a lipase obtained by culturing bacteria obtained by isolation from soil, distribution from an organization, etc., in a normal medium can be used. This lipase is preferably used by being immobilized on a carrier such as diatomaceous earth, silica, ceramic, activated carbon, or ion exchange resin. Such an immobilized lipase can be prepared by bringing the lipase solution into contact with the carrier by infiltration or spraying and then drying by ventilation, reduced pressure, heating or the like.
(油脂)
 本発明で得られる油脂とは、トリアシルグリセリド,ジアシルグリセリドまたはモノアシルグリセリドであるグリセリン脂肪酸エステルであり、トリアシルグリセリドを得る改変が最も適切である。本発明に用いられる基質としては、種々のグリセリン脂肪酸エステルを用いることができるが、たとえば、大豆油,菜種油,米油,コーン油,綿実油,パーム油,パーム核油,やし油,カカオ脂,サル脂等の植物脂、および魚油,ラード,牛脂,乳脂等の動植物脂、並びにこれらの分別脂,硬化油,エステル交換油、更には脂肪酸とグリセリンから再合成したMCT,トリラウリン,トリオレイン,トリパルミチン,トリステアリン等の合成油脂を含む、トリアシルグリセリドが例示される。また、各種のジアシルグリセリンエステル、モノアシルグリセリンエステルも使用することができる。あるいは、ステアリン酸,パルミチン酸,ベヘン酸,ミリスチン酸,ラウリン酸等の長鎖飽和脂肪酸、オレイン酸,リノール酸,リノレン酸,パルミトレイン酸,EPA,DHA等の長鎖不飽和脂肪酸、更にはカプリン酸,カプリル酸,カプロン酸,酪酸,酢酸等の中鎖または短鎖の脂肪酸、並びにこれらの短鎖アルコールエステルを上記グリセリン脂肪酸エステルと併用することもできる。
(エステル交換反応)
(Oil and fat)
The fats and oils obtained in the present invention are glycerin fatty acid esters which are triacyl glycerides, diacyl glycerides or monoacyl glycerides, and the most suitable modification is to obtain triacyl glycerides. As the substrate used in the present invention, various glycerin fatty acid esters can be used. For example, soybean oil, rapeseed oil, rice oil, corn oil, cottonseed oil, palm oil, palm kernel oil, palm oil, cocoa butter, Vegetable fats such as monkey fat, and animal and vegetable fats such as fish oil, lard, beef tallow, milk fat, and their fractionated fats, hardened oils, transesterified oils, and MCT, trilaurin, triolein, tris Examples include triacylglycerides containing synthetic fats and oils such as palmitic acid and tristearin. Various diacylglycerol esters and monoacylglycerol esters can also be used. Or long chain saturated fatty acids such as stearic acid, palmitic acid, behenic acid, myristic acid, lauric acid, long chain unsaturated fatty acids such as oleic acid, linoleic acid, linolenic acid, palmitoleic acid, EPA, DHA, and capric acid , Caprylic acid, caproic acid, butyric acid, acetic acid and other medium chain or short chain fatty acids, and these short chain alcohol esters can be used in combination with the glycerin fatty acid ester.
(Transesterification reaction)
 基質である上記脂肪グリセリンエステルの相互間、好ましくはトリアシルグリセリドの相互間、または、脂肪グリセリンエステルと、好ましくはトリアシルグリセリドと、脂肪酸もしくは脂肪酸エステル間のエステル交換反応が、本発明のエステル交換反応に相当する。 The transesterification reaction between the fatty glycerin esters as substrates, preferably between the triacylglycerides, or between the fatty glycerin ester, preferably the triacylglyceride, and the fatty acid or fatty acid ester is carried out by transesterification of the present invention. Corresponds to the reaction.
(ランダムエステル交換)
 本発明のリパーゼを用いたランダムエステル交換反応とは、グリセリンに結合した脂肪酸相互間、または、グリセリンに結合した脂肪酸と、遊離の脂肪酸または脂肪酸の短鎖アルコールエステル間について、グリセリンの1級水酸基,2級水酸基に関係なくその結合位置を交換することで、各位置の脂肪酸組成が同一になるようにエステル交換を行い、油脂を改変する反応を指す。また、「ランダム化」とは、各位置の脂肪酸組成が同一になることを意味する。
(Random transesterification)
Random transesterification reaction using the lipase of the present invention refers to a primary hydroxyl group of glycerin between fatty acids bound to glycerin, or between fatty acids bound to glycerin and free fatty acids or short-chain alcohol esters of fatty acids, By exchanging the bonding position regardless of the secondary hydroxyl group, the reaction is performed by transesterification so that the fatty acid composition at each position becomes the same, thereby modifying the fats and oils. “Randomized” means that the fatty acid composition at each position is the same.
(交換反応条件)
 上記リパーゼを用いた反応は回分式でも連続式でよいが、基質水分を1重量%以下にすることにより加水分解物の生成が効果的に抑制されるために好ましい。また、油脂に対する酵素の使用量は原料油脂に対して50ppmから10,000ppm添加が好ましく、200ppmから2,000ppmがより好ましい。反応は無溶媒または種々の溶媒中で行うことができるが、無溶媒またはヘキサン等の非極性溶媒中での反応が好ましく、無溶媒条件での反応が最も好ましい。反応温度は30~100℃が好ましく、40~80℃が更に好ましく、60~75℃が最も好ましい。本発明のリパーゼは耐熱性が高いため、回分式、連続式いずれの方法でも、熱による活性の低下が少なく、長期間反応を行うことができる。
(Exchange reaction conditions)
The reaction using the lipase may be a batch type or a continuous type, but it is preferable to reduce the substrate moisture to 1% by weight or less because production of a hydrolyzate is effectively suppressed. In addition, the amount of enzyme used for fats and oils is preferably from 50 ppm to 10,000 ppm, more preferably from 200 ppm to 2,000 ppm, based on the raw material fats and oils. The reaction can be carried out in the absence of a solvent or in various solvents, but the reaction in the absence of a solvent or in a nonpolar solvent such as hexane is preferred, and the reaction in the absence of solvent is most preferred. The reaction temperature is preferably 30 to 100 ° C, more preferably 40 to 80 ° C, and most preferably 60 to 75 ° C. Since the lipase of the present invention has high heat resistance, it is possible to carry out the reaction for a long period of time with little decrease in activity due to heat in both batch and continuous methods.
 本発明を以下の実施例によってさらに具体的に説明するが、これらの実施例は単なる例示であり本発明を制限することを意図したものではない。 The present invention will be described more specifically with reference to the following examples. However, these examples are merely illustrative and are not intended to limit the present invention.
 実施例で使用した加水分解活性およびエステル交換活性の各活性測定は以下の方法で行った。
a) 加水分解活性
 日本薬局方記載の脂肪消化力試験法を一部改変して行った。オリーブ油基質(リン酸緩衝液,pH7.0)に酵素を37℃,30分間反応させた後、1分間に1μmolの脂肪酸を遊離する酵素量を10Unitsとした。活性の温度依存性測定時には、反応時の温度を変更して行った。
Each activity measurement of the hydrolysis activity and transesterification activity used in the Examples was performed by the following methods.
a) Hydrolysis activity This was carried out by partially modifying the fat digestion test method described in the Japanese Pharmacopoeia. The enzyme was allowed to react with an olive oil substrate (phosphate buffer, pH 7.0) at 37 ° C. for 30 minutes, and then the amount of enzyme that liberates 1 μmol of fatty acid per minute was 10 Units. When measuring the temperature dependence of activity, the reaction temperature was changed.
b) ランダムエステル交換活性
 パーム中融点画分とパーム低融点画分を6:4に配合した基質100gに、2gの固定化リパーゼを加え、60℃にて作用させランダムエステル交換のランダム化率を求めた。
(ランダム化率)=((反応生成物のトリパルミチン含量)-(原料油脂のトリパルミチン含量))/((反応平衡組成物のトリパルミチン含量)-(原料油脂のトリパルミチン含量))×100
b) Random transesterification activity 2g of immobilized lipase was added to 100g of the substrate containing 6: 4 palm mid-melting fraction and palm low-melting fraction, and the mixture was allowed to act at 60 ° C. Asked.
(Randomization rate) = ((tripalmitin content of reaction product) − (tripalmitin content of raw oil) / ((tripalmitin content of reaction equilibrium composition) − (tripalmitin content of raw oil)) × 100
(最適温度)
 バークホルデリア・プランタリイ(Burkholderia plantarii)NBRC 104884株の培養により得られたリパーゼの各反応温度での加水分解活性を測定し、その結果を表1に示した(実施例1)。比較として、バークホルデリア・グラジオリ(Burkholderia gladioli)由来のリパーゼである、リパーゼQLM(名糖産業製)で同様の測定を行った(比較例1)。
(Optimum temperature)
The hydrolytic activity of each lipase obtained by culturing Burkholderia plantarii NBRC 104884 was measured at each reaction temperature, and the results are shown in Table 1 (Example 1). As a comparison, the same measurement was performed with lipase QLM (manufactured by Meikatsu Sangyo), which is a lipase derived from Burkholderia gladioli (Comparative Example 1).
(表1)各反応温度における加水分解活性
Figure JPOXMLDOC01-appb-I000001
(Table 1) Hydrolysis activity at each reaction temperature
Figure JPOXMLDOC01-appb-I000001
 比較例1のリパーゼQLMに対し、実施例1である本発明のリパーゼは、高温での反応性が高く、高い耐熱性を有することが判明した。 It was found that the lipase of the present invention, which is Example 1 of the lipase QLM of Comparative Example 1, has high reactivity at high temperatures and high heat resistance.
(耐熱性)
 実施例1で使用した、バークホルデリア・プランタリイの培養により得られたリパーゼの0.04重量%水溶液を、5℃,40℃,60℃に24時間保管後、加水分解活性を測定し、リパーゼの耐熱性として、その結果を表2に示した(実施例2)。比較として、バークホルデリア・グラジオリ由来のリパーゼである、リパーゼQLMで同様の測定を行った(比較例2)。
(Heat-resistant)
The lipase 0.04 wt% aqueous solution obtained by cultivation of Burkholderia plantarii used in Example 1 was stored at 5 ° C, 40 ° C, and 60 ° C for 24 hours, and then the hydrolysis activity was measured to determine the heat resistance of the lipase. The results are shown in Table 2 (Example 2). As a comparison, the same measurement was performed with lipase QLM, which is a lipase derived from Burkholderia gladioli (Comparative Example 2).
(表2)各保管温度における耐熱性
Figure JPOXMLDOC01-appb-I000002
(Table 2) Heat resistance at each storage temperature
Figure JPOXMLDOC01-appb-I000002
 リパーゼQLMに対し、本発明のリパーゼは、高温での失活が少なく、高い耐熱性を有することが判明した。 In contrast to lipase QLM, the lipase of the present invention was found to have high heat resistance with little inactivation at high temperatures.
 バークホルデリア・プランタリイの培養により得られたリパーゼ8gを冷水25gに分散させ、珪藻土25gに散布した。この珪藻土を凍結乾燥し、固定化リパーゼを得た。本固定化リパーゼを用いてランダムエステル交換を行い、ランダム化率を測定したところ、ランダム化率は98.8%であった(実施例3)。 8g of lipase obtained by cultivation of Burkholderia plantarii was dispersed in 25g of cold water and sprayed on 25g of diatomaceous earth. This diatomaceous earth was freeze-dried to obtain an immobilized lipase. When random transesterification was performed using this immobilized lipase and the randomization rate was measured, the randomization rate was 98.8% (Example 3).
 本発明のリパーゼは、ランダム化反応が起こっていることがわかった。 It was found that the lipase of the present invention had a randomization reaction.
 パームスーパーオレイン(IV65)100gに、実施例3で使用したバークホルデリア・プランタリイ由来の固定化リパーゼ2gを添加し、60℃,24時間反応を行った(実施例4)。また、比較として、1,3-選択的リパーゼであるニューラーゼF3G (Rhizopus niveus由来・天野エンザイム製)を同様に油脂に添加し反応したもの(比較例3)、原料油を酵素ではなく通常の化学的触媒を用いてランダムエステル交換油を製造したもの(比較例4)を調製した。原料油および実施例4,比較例3~4の計4点について、それぞれの固体脂含量(SFC)とトリアシルグリセリド(TG)組成中のトリパルミチン(PPP)含量を表3に示した。 2 g of immobilized lipase derived from Burkholderia plantarii used in Example 3 was added to 100 g of palm super olein (IV65) and reacted at 60 ° C. for 24 hours (Example 4). In addition, as a comparison, a 1,3-selective lipase, Neurase F3GR (from Rhizopus niveus, Amano Enzyme) was added to the oil and reacted in the same manner (Comparative Example 3). A random transesterified oil produced using a chemical catalyst (Comparative Example 4) was prepared. Table 3 shows the solid fat content (SFC) and the tripalmitin (PPP) content in the triacylglyceride (TG) composition for the raw material oil and the total of 4 points of Example 4 and Comparative Examples 3 to 4.
(表3)エステル交換油脂の調製
Figure JPOXMLDOC01-appb-I000003
(Table 3) Preparation of transesterified oil and fat
Figure JPOXMLDOC01-appb-I000003
 本発明のリパーゼを用いた反応(実施例4)によりSFCが上昇し、PPP量が増加する。すなわち、1,3-選択的リパーゼ(比較例3)とは異なり化学的方法(比較例4)でランダムエステル交換を行った場合と同様の油脂を得ることができることが確認された。 SFC rises and the amount of PPP increases by the reaction (Example 4) using the lipase of the present invention. That is, it was confirmed that unlike the case where 1,3-selective lipase (Comparative Example 3) is used, the same fats and oils can be obtained as when random transesterification is performed by a chemical method (Comparative Example 4).
 本発明のリパーゼは強いランダムエステル交換反応を触媒するので、油脂の改質に用いることができる。これらのエステル交換油は化学触媒を用いないので、安全なエステル交換脂として有用である。 Since the lipase of the present invention catalyzes a strong random transesterification reaction, it can be used for oil and fat modification. These transesterified oils are useful as safe transesterified fats because they do not use chemical catalysts.

Claims (4)

  1. バークホルデリア・プランタリイ(Burkholderia plantarii)の生産するリパーゼを用いる、ランダムエステル交換油脂の製造方法。 A method for producing random transesterified fats and oils using a lipase produced by Burkholderia plantarii.
  2. 油脂がトリアシルグリセリドである、請求項1記載のランダムエステル交換油脂の製造方法。 The manufacturing method of the random transesterified fats and oils of Claim 1 whose fats and oils are triacylglycerides.
  3. バークホルデリア・プランタリイ(Burkholderia plantarii)の生産するリパーゼを用いる、油脂のランダムエステル交換方法。 A method for random transesterification of fats and oils using a lipase produced by Burkholderia plantarii.
  4. 油脂がトリアシルグリセリドである、請求項3記載の油脂のランダムエステル交換方法。 The method for random transesterification of fats and oils according to claim 3, wherein the fats and oils are triacylglycerides.
PCT/JP2013/058074 2012-03-28 2013-03-21 Method for producing random-interesterified fat or oil WO2013146529A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-073168 2012-03-28
JP2012073168 2012-03-28

Publications (1)

Publication Number Publication Date
WO2013146529A1 true WO2013146529A1 (en) 2013-10-03

Family

ID=49259785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058074 WO2013146529A1 (en) 2012-03-28 2013-03-21 Method for producing random-interesterified fat or oil

Country Status (1)

Country Link
WO (1) WO2013146529A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020458A1 (en) * 2019-08-01 2021-02-04 天野エンザイム株式会社 Novel lipase and use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0468102A1 (en) * 1989-05-01 1992-01-29 Solvay Enzymes, Inc. Detergent formulations containing alkaline lipase
JPH08332093A (en) * 1995-06-07 1996-12-17 Asahi Denka Kogyo Kk Production of transesterified oil and fat
JPH11253157A (en) * 1998-03-09 1999-09-21 Meito Sangyo Co Ltd Microbe having ability for producing new lipase, lipase, its production and its use
JP2009540848A (en) * 2006-06-27 2009-11-26 ビーエーエスエフ ソシエタス・ヨーロピア Protein with esterase activity
WO2010085975A1 (en) * 2009-01-29 2010-08-05 Nordmark Arzneimittel Gmbh & Co. Kg Pharmaceutical preparation comprising lipase of bacterial origin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0468102A1 (en) * 1989-05-01 1992-01-29 Solvay Enzymes, Inc. Detergent formulations containing alkaline lipase
JPH08332093A (en) * 1995-06-07 1996-12-17 Asahi Denka Kogyo Kk Production of transesterified oil and fat
JPH11253157A (en) * 1998-03-09 1999-09-21 Meito Sangyo Co Ltd Microbe having ability for producing new lipase, lipase, its production and its use
JP2009540848A (en) * 2006-06-27 2009-11-26 ビーエーエスエフ ソシエタス・ヨーロピア Protein with esterase activity
WO2010085975A1 (en) * 2009-01-29 2010-08-05 Nordmark Arzneimittel Gmbh & Co. Kg Pharmaceutical preparation comprising lipase of bacterial origin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020458A1 (en) * 2019-08-01 2021-02-04 天野エンザイム株式会社 Novel lipase and use thereof
JP6846577B1 (en) * 2019-08-01 2021-03-24 天野エンザイム株式会社 New lipase and its uses
US11718837B2 (en) 2019-08-01 2023-08-08 Amano Enzyme Inc. Lipase and uses of the same

Similar Documents

Publication Publication Date Title
Goswami et al. Lipase applications in oil hydrolysis with a case study on castor oil: a review
US11781161B2 (en) Enzymatic enrichment of n-3 fatty acids in the form of glycerides
Anobom et al. From structure to catalysis: recent developments in the biotechnological applications of lipases
Ghazali et al. Enzymatic transesterification of palm olein with nonspecific and 1, 3‐specific lipases
Contesini et al. Aspergillus sp. lipase: potential biocatalyst for industrial use
Soumanou et al. Lipase‐catalyzed interesterification reactions for human milk fat substitutes production: A review
KR101294635B1 (en) Enzymatic oil interesterification
JP2011504745A5 (en)
CA2706972A1 (en) A robust multi-enzyme preparation for the synthesis of fatty acid alkyl esters
RU2528954C2 (en) Method of producing triglyceride composition
de Souza et al. Characterization and application of Yarrowia lipolytica lipase obtained by solid-state fermentation in the synthesis of different esters used in the food industry
Kim et al. Liquid microbial lipase—recent applications and expanded use through immobilization
Samoylova et al. Enzymatic interesterification of sunflower oil and hydrogenated soybean oil with the immobilized bacterial recombinant lipase from Geobacillus stearothermophilus G3
EP3146044B1 (en) Process for immobilization of a lipase
WO2013146529A1 (en) Method for producing random-interesterified fat or oil
Ghaffari-Moghaddam et al. Application of response surface methodology in enzymatic synthesis: A review
CN106811455A (en) Immobilised enzymes and preparation method thereof
US20240018491A1 (en) Purified Immobilized Lipases
Chong et al. Rice bran lipase catalyzed esterification of palm oil fatty acid distillate and glycerol in organic solvent
JP5782130B2 (en) Process for producing diacylglycerol-enriched oil or fat
JP4220957B2 (en) Method for producing immobilized enzyme
JP5178888B2 (en) Method for producing transesterified oil
Loo et al. Fatty acid preference of mycelium-bound lipase from a locally isolated strain of Geotrichum candidum
Infanzón et al. Alternative oils tested as feedstocks for enzymatic FAMEs synthesis: toward a more sustainable process
Najm et al. Immobilized thermophilic lipases for the interesterification of soybean oil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP