WO2013146481A1 - Method for producing plastic lens - Google Patents

Method for producing plastic lens Download PDF

Info

Publication number
WO2013146481A1
WO2013146481A1 PCT/JP2013/057869 JP2013057869W WO2013146481A1 WO 2013146481 A1 WO2013146481 A1 WO 2013146481A1 JP 2013057869 W JP2013057869 W JP 2013057869W WO 2013146481 A1 WO2013146481 A1 WO 2013146481A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
less
bis
hours
plastic lens
Prior art date
Application number
PCT/JP2013/057869
Other languages
French (fr)
Japanese (ja)
Inventor
幸夫 影山
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to JP2014507759A priority Critical patent/JP6095646B2/en
Priority to CN201380016414.7A priority patent/CN104203526B/en
Publication of WO2013146481A1 publication Critical patent/WO2013146481A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • C08G18/246Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3876Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing mercapto groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses

Definitions

  • the present invention relates to a method for manufacturing a plastic lens, and more particularly to a method for manufacturing a plastic lens for urethane or thiourethane glasses.
  • Plastic lenses are used as optical elements such as eyeglass lenses and camera lenses because they are lighter, harder to break, and can be dyed than inorganic lenses.
  • a plastic lens material a urethane-based resin made of a polymer of polyisocyanate and a polythiol compound is used because of its high refractive index, light weight, and excellent impact resistance (Patent Document 1).
  • Patent Document 1 the composition before polymerization is poured into a mold having a glass mold and a gasket, the temperature is gradually raised, and polymerization is performed in a long time of about 24 hours in total.
  • striae may be a problem depending on the volume of the lens to be manufactured and the strength and properties of the lens to be obtained.
  • Patent Document 2 it has been proposed to increase the viscosity of the monomer composition through a preliminary reaction and then increase the temperature to increase the productivity of the plastic lens.
  • Patent Document 3 as a production method for obtaining a thick plastic lens having practical productivity and having no optical distortion or striae, the polymerizable composition is filled into a molding mold, and then the polymerizable composition is used.
  • Has been proposed that includes a holding step for maintaining the temperature above the initial temperature at the time of filling, and a cooling step for cooling the polymerizable composition. This is intended to prevent inconveniences such as strain due to the increase in the rate of polymerization because the polymerization rate is slow in the initial stage but rapidly increases in a certain stage.
  • the polymerization is performed with a temperature raising program of about 20 to 47 hours. Also in the method of Patent Document 3, in a specific embodiment, the polymerization is performed by a temperature raising program of about 17 to 30 hours. From the viewpoint of reducing plastic lens productivity and electric furnace equipment costs, it is desirable to produce plastic lenses with a shorter polymerization time. However, shortening the polymerization time tends to cause problems such as striae. Had.
  • an object of the present invention is to provide a method for producing a plastic lens in which a striae defect hardly occurs even in a short time polymerization in a method for producing a urethane-based plastic lens.
  • a polymerization composition comprising (A) a polyisocyanate compound, (B) a compound having a plurality of mercapto groups or hydroxy groups in one molecule, and (C) a polymerization catalyst, and satisfying the following conditions (1) and (2) A method for producing a plastic lens, wherein the product is polymerized under polymerization conditions of an initial temperature of 20 ° C.
  • the viscosity at 10 ° C. immediately after blending is 200 mPa ⁇ s or less.
  • the viscosity after 8 hours at a constant temperature of 10 ° C. is 400 mPa ⁇ s or more and 100 Pa ⁇ s or less.
  • R shows a C1-C12 hydrocarbon group
  • X shows a fluorine atom, a chlorine atom, or a bromine atom
  • n is an integer of 1-3.
  • [3] The method for producing a plastic lens according to [1] or [2], wherein, under the polymerization conditions, the final temperature is 100 to 150 ° C., and the proportion of time for polymerization at 60 ° C. or less is 60 to 90%. .
  • [5] The method for producing a plastic lens according to any one of [1] to [4], wherein the polymerization time is 5 hours or less.
  • the method for producing a plastic lens of the present invention provides a method for producing a plastic lens with little striae even by a short polymerization.
  • the method for producing a plastic lens of the present invention comprises (A) a polyisocyanate compound, (B) a compound having a plurality of mercapto groups or hydroxy groups in one molecule, and (C) a polymerization catalyst.
  • the polymerization composition satisfying (2) is polymerized at an initial temperature of 20 ° C. or less and a polymerization time of 12 hours or less.
  • the viscosity at 10 ° C. immediately after blending is 200 mPa ⁇ s or less.
  • the viscosity after 8 hours at a constant temperature of 10 ° C. is 400 mPa ⁇ s or more and 100 Pa ⁇ s or less.
  • the striae in the production of plastic lenses can be attributed to the heat generated in the mold cavity when polymerizing the polymer composition, and in particular, the shorter the polymerization time, the greater the amount of heat generated per unit time. Therefore, it is considered that the temperature distribution in the cavity is expanded, and as a result, striae defects frequently occur.
  • thermal convection there is a dimensionless number that is an index of fluid heat transfer, called the Rayleigh number shown in the following mathematical formula (a).
  • Ra [g ⁇ T d 3 ] / [ ⁇ X] (a) Ra: Rayleigh number g: Gravitational acceleration ⁇ : Volume expansion coefficient ⁇ T: Temperature difference d 3 : The cube of the vertical distance ⁇ : Kinematic viscosity coefficient X: Thermal diffusivity That is, according to the above formula, when the temperature difference is large, When the distance between the upper and lower sides is large, the Rayleigh number increases, indicating that convection is likely to occur. When the viscosity is large, the Rayleigh number is decreased, indicating that convection hardly occurs. Considering the superposition of a lens having a certain shape, the gravitational acceleration is constant, and the vertical distance corresponding to the lens thickness is also constant.
  • the body expansion coefficient and thermal diffusivity are inherent values depending on the degree of polymerization of the monomer, and the contribution to the Rayleigh number is considered to be small. For this reason, in lens polymerization, the kinematic viscosity coefficient ⁇ and the temperature difference ⁇ T have a great influence on the Rayleigh number.
  • condition (1) heat generation due to polymerization is small in the low temperature region in the initial stage of polymerization, and the value of ⁇ T tends to be small. Therefore, even if the viscosity is low and the kinematic viscosity coefficient ⁇ is small as shown in the condition (1), the Rayleigh number can be kept low, so that thermal convection hardly occurs.
  • condition (2) in the latter stage of polymerization, there is much heat generation due to polymerization, and the value of ⁇ T tends to increase. Therefore, a sufficiently high kinematic viscosity coefficient ⁇ can be obtained in the latter stage of polymerization when ⁇ T is increased by using a polymerization composition having a quick viscosity increase as in condition (2), and as a result, the Rayleigh number can be kept low. Therefore, thermal convection is less likely to occur. For this reason, it is thought that by using the polymerization composition of the present invention, a method for producing a plastic lens with little striae can be provided even for short-time polymerization.
  • the configuration of the present invention will be described in detail.
  • the polymer composition of the present invention has (1) a viscosity at 10 ° C. immediately after preparation of 200 mPa ⁇ s or less.
  • a polymerization composition having a viscosity after blending of 200 mPa ⁇ s or less and by setting the initial polymerization temperature to a certain temperature or less it is possible to prevent initial thermal convection, so that striae defects of plastic lenses are remarkable. Can be reduced.
  • the viscosity in the condition (1) is preferably 150 mPa ⁇ s or less, more preferably 100 mPa ⁇ s or less.
  • the lower limit of the viscosity in condition (1) is not specifically limited, For example, it is 10 mPa * s.
  • the viscosity immediately after blending means the viscosity measured within 10 minutes after mixing the composition.
  • the viscosity is a value measured at 10 ° C. according to JIS Z8803 using Seconic Vibrating Viscometer VM-10A.
  • the viscosity after 8 hours at a constant temperature of 10 ° C. is 400 mPa ⁇ s or more and 100 Pa ⁇ s or less.
  • the use of the polymerization composition having such a viscosity range in the condition (2) can significantly reduce striae.
  • the viscosity in the condition (2) is preferably 500 mPa ⁇ s or more and 50 Pa ⁇ s or less, more preferably 700 mPa ⁇ s or more and 3 Pa ⁇ s or less.
  • the viscosity in condition (2) be the value measured at 10 degreeC by the method similar to condition (1).
  • the polymerization composition used in the present invention is based on the common knowledge in the art, and the above conditions (1) and (1) are determined by adjusting the amount of the polymerization catalyst according to the properties of the monomer components used and the polymerization characteristics of the monomer components. A polymerization composition satisfying 2) is obtained. In particular, the content of the polymerization catalyst in the polymerization composition tends to affect the physical properties of the condition (2).
  • each component and content of the polymerization composition used in the present invention will be described.
  • the polymerization composition used in the present invention comprises (A) a polyisocyanate compound (hereinafter sometimes simply referred to as “component (A)”) and (B) a compound having a plurality of mercapto groups or hydroxy groups in one molecule. (Hereinafter sometimes simply referred to as “component (B)”) and (C) a polymerization catalyst (hereinafter sometimes simply referred to as “component (C)”).
  • component (A) a polyisocyanate compound
  • component (B) a compound having a plurality of mercapto groups or hydroxy groups in one molecule.
  • component (C) a polymerization catalyst
  • the polyisocyanate compound is not particularly limited.
  • xylylene diisocyanate (1,3-bisisocyanatomethylbenzene), tetramethylxylylene diisocyanate, 3,3′-dichlorodiphenyl-4,4′-diisocyanate, 4 , 4'-diphenylmethane diisocyanate, hexamethylene diisocyanate, 2,2 ', 5,5'-tetrachlorodiphenyl-4,4'-diisocyanate, tolylene diisocyanate, bis (isocyanatomethyl) cyclohexane, bis (4-isocyanato Cyclohexyl) methane, bis (4-isocyanatomethylcyclohexyl) methane, cyclohexane diisocyanate, isophorone diisocyanate, bis (isocyanatomethyl) bicyclo [2.2.2
  • Xylylene diisocyanate, tetramethyl xylylene diisocyanate, bis (isocyanatomethyl) bicyclo [2.2.1] heptane, and bis (isocyanatomethyl) cyclohexane are particularly preferred. You may use these individually or in combination of 2 or more types.
  • the content of the polyisocyanate compound is preferably 0.6 to 1.4, more preferably 0.8 to 1.2, and still more preferably in terms of an equivalent ratio with respect to the component (B) in the polymerization composition. Is 0.9 to 1.1.
  • the equivalent ratio means the ratio [(A) / (B)] of the number of moles of the isocyanate group of the component (A) and the number of moles of the mercapto group and the hydroxy group of the component (B).
  • the content of the polyisocyanate compound is not particularly limited, but is preferably 30 to 60% by mass, more preferably 35 to 55% by mass, and further preferably 40 to 50% by mass with respect to the total amount of the polymerization composition. It is.
  • (B) Compound having plural mercapto groups or hydroxy groups in one molecule>
  • (B) Examples of the compound having a plurality of mercapto groups or hydroxy groups in one molecule include the following polythiol compounds, polyol compounds, and thiol compounds containing a hydroxy group.
  • the compound having a plurality of mercapto groups or hydroxy groups in one molecule includes a compound having a plurality of mercapto groups and hydroxy groups in one molecule.
  • polythiol compound examples include dimercaptomethane, 1,1-dimercaptoethane, 1,2-dimercaptoethane, 1,1-dimercaptopropane, 1,2-dimercaptopropane, and 1,3-dimercaptopropane.
  • polyol compound examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, neopentyl glycol, glycerin, trimethylolethane, trimethylolpropane, butanetriol, 1,2-methylglucoside, pentaerythritol, Dipentaerythritol, tripentaerythritol, sorbitol, erythritol, threitol, ribitol, arabinitol, xylitol, allitol, mannitol, dolcitol, idiitol, glycol, inositol, hexanetriol, triglycerol, diglycerol, triethylene glycol, polyethylene glycol, tris (2 -Hydroxyethyl) isocyanurate, cyclobuta Diol, cyclopentanediol,
  • Examples include polyols containing sulfur atoms.
  • Examples of the thiol compound containing a hydroxy group include 2-mercaptoethanol, 2,3-dimercapto-1-propanol, 3-hydroxy-2-butanethiol, 3-mercaptohexanol, 3-mercapto-2-methylbutanol, Examples include 3-mercapto-3-methylbutanol and 3-mercapto-2-methylpentanol. You may use these individually or in combination of 2 or more types.
  • ⁇ (C) Polymerization catalyst Although it does not specifically limit as a polymerization catalyst, An amine compound, an organometallic compound, etc. are mentioned. Examples of amine compounds include triethylenediamine, hexamethylenetetramine, N, N-dimethyloctylamine, N, N, N ′, N′-tetramethyl-1,6-diaminohexane, and 4,4′-trimethylenebis. (1-methylpiperidine), 1,8-diazabicyclo- (5,4,0) -7-undecene.
  • organometallic compound examples include organotin, copper oleate, acetylacetone copper, acetylacetone iron, naphthenate iron, iron lactate, iron citrate, iron gluconate, and 2-ethylhexyl titanate.
  • organotin is preferred as the polymerization catalyst, and organometallic compounds represented by the following general formula (I) are preferred.
  • R represents a hydrocarbon group having 1 to 12 (preferably 4 to 8) carbon atoms
  • X represents a fluorine atom, a chlorine atom, or a bromine atom (preferably a chlorine atom)
  • n represents It is an integer from 1 to 3 (preferably 2).
  • Specific examples thereof include dimethyltin dichloride, dibutyltin dichloride, didiooctyltin dichloride, dimethyltin dibromide, dibutyltin dibromide, didiooctyltin dibromide, didiooctyltin difluoride and the like.
  • These catalysts may be used alone or in combination of two or more.
  • dimethyltin dichloride and dibutyltin dichloride are preferable.
  • the content of the polymerization catalyst can be appropriately set according to the common general technical knowledge of the industry according to the polymerization characteristics of the polymerization composition, but is preferably 0.001 to 2.0% by mass with respect to the total amount of the polymerization composition. More preferably, it is 0.005 to 1.5% by mass, and still more preferably 0.01 to 1.0% by mass.
  • the polymerization composition in the present invention may contain an epithio compound.
  • the epithio compound include bis ( ⁇ -epithiopropyl) sulfide, bis ( ⁇ -epithiopropylthio) methane, 1,2-bis ( ⁇ -epithiopropylthio) ethane, 1,3-bis ( ⁇ -Epithiopropylthio) propane, 1,2-bis ( ⁇ -epithiopropylthio) propane, 1- ( ⁇ -epithiopropylthio) -2- ( ⁇ -epithiopropylthiomethyl) propane, 1,4 -Bis ( ⁇ -epithiopropylthio) butane, 1,3-bis ( ⁇ -epithiopropylthio) butane, 1- ( ⁇ -epithiopropylthio) -3- ( ⁇ -epithiopropylthiomethyl) butane 1,5-bis ( ⁇ -epithi
  • the polymerization composition of the present invention may contain a mold release agent in order to facilitate separation from the lens molding mold after polymerization.
  • Phosphoric acid esters are preferably used as mold release agents. Specifically, isopropyl acid phosphate, butyl acid phosphate, octyl acid phosphate, nonyl acid phosphate, decyl acid phosphate, isodecyl acid phosphate , Tridecyl acid phosphate, stearyl acid phosphate, propyl phenyl acid phosphate, butyl phenyl acid phosphate, butoxyethyl acid phosphate, etc.
  • phosphoric acid monoesters diisopropyl acid phosphate, dibutyl acid phosphate, dioctyl acid phosphate , Diisodecyl acid phosphate, bis (tridecyl acid phosphate), distearyl acid phosphate Eto, dipropyl phenyl acid phosphate, dibutyl phenyl acid phosphate, phosphoric acid diesters such as dibutoxyethyl acid phosphate and the like. You may use these individually or in combination of 2 or more types.
  • the content of the release agent is preferably 0.001 to 0.5% by weight with respect to the total amount of the polymerization composition.
  • a bluing agent As other optional components of the polymerization composition, for example, a bluing agent, an ultraviolet absorber and the like may be contained.
  • Blueing agents include blue and red dyes or pigments.
  • the content of the bluing agent is not particularly limited, but is preferably 0.00002 to 0.0002% by mass with respect to the total amount of the polymer composition.
  • the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulphonic acid, 2-hydroxy-4-n-octoxybenzophenone.
  • Benzophenone compounds such as 2-hydroxy-4-n-dodecyloxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2- (2′-hydroxy-5 ′ -Methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-t-butylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3'-t-butyl- 5'-methylphenyl) -5-chlorobenzotriazole, 2- (2'- Droxy-3 ', 5'-di-t-amylphenyl) benzotriazole, 2- (2'-hydroxy-3', 5'-di-t-butylphenyl) benzotriazole, 2- (2'-hydroxy- Benzo such as 5′-t-butylphenyl) benzotriazole, 2- (2′-hydroxy-5′-t-octyl
  • the polymer composition is polymerized under polymerization conditions of an initial temperature of 20 ° C. or less and a polymerization time of 12 hours or less to obtain a plastic lens.
  • the polymerization is performed by pouring the polymer composition into a lens mold and heating to polymerize.
  • a conventionally known gasket and mold As the lens molding mold, it is preferable to use a conventionally known gasket and mold.
  • the material for the gasket include fluorine resins such as tetrafluoroethylene resin.
  • glass is used as a material for the mold.
  • the polymerization temperature condition is preferably in the range of 0 to 150 ° C.
  • the initial temperature is 20 ° C. or less, more preferably 0 to 15 ° C., and further preferably 0 to 10 ° C.
  • the final temperature is not particularly limited, but is preferably 100 to 150 ° C., more preferably 110 to 140 ° C., and still more preferably 120 to 130 ° C.
  • these temperature conditions are set to a temperature raising program under conditions such that thermal convection does not occur according to a change in the viscosity of the polymerization composition over time, and the temperature is raised to the final temperature.
  • the ratio of the polymerization time at 60 ° C.
  • the viscosity of the polymerization composition is in a low state, it is preferably 60 with respect to the entire polymerization time from the viewpoint of keeping the temperature low and preventing thermal convection. It is -90%, More preferably, it is 65-85%, More preferably, it is 70-80%.
  • the viscosity is increased even by polymerization under such a low temperature condition. Even when the temperature is raised, the striae of the plastic lens hardly occur.
  • the polymerization time is 12 hours or less, and preferably 10 hours or less, more preferably 5 hours or less from the viewpoint of productivity. Although the lower limit of polymerization time is not specifically limited, It is 3 hours or more.
  • the above temperature raising program is set according to these polymerization times.
  • Semi-lenses and finish lenses can be manufactured by the manufacturing method of the present invention.
  • the lens weight before processing such as cutting into the shape of a spectacle frame or a lens having a thickness of 20 g or more or a thick lens requires a large amount of a polymerized composition, and the reason is that heat convection is likely to occur.
  • the occurrence of striae can be reduced by using the polymerization composition used in the present invention.
  • a white screen was installed at a distance of 1 m using a USH-102D as a high-pressure UV lamp as a light source, a test lens was inserted between the light source and the screen, and pass / fail was determined by the projected image on the screen.
  • a projection image having no linear irregularity was regarded as a non-defective product, and a projection image having a linear irregularity was regarded as defective.
  • Example 1 The polymer composition shown in Table 1 below was cast, and then polymerized and cured in a lens molding mold under the temperature raising conditions of the polymerization program described in the table to produce a plastic lens.
  • P1 The temperature was raised to 40 ° C. over 3.5 hours at an initial temperature of 10 ° C., then raised to 125 ° C. in 0.5 hours, and further maintained at 125 ° C. for 1 hour (total 5 hours, 60 ° C. About 4 hours or less).
  • P2 Hold at an initial temperature of 7.5 ° C. for 5.0 hours, then raise the temperature to 55 ° C. over 3.0 hours, then raise the temperature to 125 ° C. in 1.0 hour, and further at 125 ° C. for 1 hour Held (total 10 hours, about 8 hours at 60 ° C. or less).
  • P3 Hold for 5.0 hours at an initial temperature of 15 ° C., then raise the temperature to 55 ° C.
  • the initial temperature is 20 ° C. or less. It can be seen that the formation of striae causes less striae defects.
  • a plastic lens with few striae defects can be produced in a short polymerization time, so that the productivity of the plastic lens can be increased, and further, the cost of the electric furnace equipment can be reduced. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Eyeglasses (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

Provided is a method for producing a urethane-based plastic lens, wherein striae are not easily generated even by short-time polymerization. A method for producing a plastic lens, wherein a polymerization composition, which contains (A) a polyisocyanate compound, (B) a compound having a plurality of mercapto groups or hydroxy groups in each molecule and (C) a polymerization catalyst and which satisfies the conditions (1) and (2) described below, is polymerized under such polymerization conditions that the initial temperature is 20°C or less and the polymerization time is 12 hours or less. (1) The viscosity at 10°C right after the blending is 200 mPa·s or less. (2) The viscosity at 10°C after 8 hours under certain conditions is 400 mPa·s or more but 100 Pa·s or less.

Description

プラスチックレンズの製造方法Manufacturing method of plastic lens
 本発明はプラスチックレンズの製造方法に関し、特にウレタン又はチオウレタン系の眼鏡用プラスチックレンズの製造方法に関する。 The present invention relates to a method for manufacturing a plastic lens, and more particularly to a method for manufacturing a plastic lens for urethane or thiourethane glasses.
 プラスチックレンズは、無機レンズに比べて、軽量で割れにくく、染色が可能なため、眼鏡レンズ、カメラレンズ等の光学素子として用いられる。プラスチックレンズの素材としては、高屈折率で、軽量、耐衝撃性に優れるため、ポリイソシアネートと、ポリチオール化合物との重合物からなるウレタン系の樹脂が使用されている(特許文献1)。これらのプラスチックレンズは、例えば、ガラスモールドとガスケットを有するモールド型内に、重合前の組成物を注入して徐々に昇温して合計24時間程度の長時間で重合が行われる。 Plastic lenses are used as optical elements such as eyeglass lenses and camera lenses because they are lighter, harder to break, and can be dyed than inorganic lenses. As a plastic lens material, a urethane-based resin made of a polymer of polyisocyanate and a polythiol compound is used because of its high refractive index, light weight, and excellent impact resistance (Patent Document 1). In these plastic lenses, for example, the composition before polymerization is poured into a mold having a glass mold and a gasket, the temperature is gradually raised, and polymerization is performed in a long time of about 24 hours in total.
 プラスチックレンズの製造方法においては、製造するレンズの体積や、得ようとするレンズの強度、性質に応じて、脈理の発生が問題となることがあり、ポリウレタン系のプラスチックレンズにおいて、このような脈理の発生を防止することを目的として、予備反応して、モノマー組成物の粘度を増粘した後に、昇温してプラスチックレンズの生産性を高めることが提案されている(特許文献2)。 In the plastic lens manufacturing method, striae may be a problem depending on the volume of the lens to be manufactured and the strength and properties of the lens to be obtained. In order to prevent the occurrence of striae, it has been proposed to increase the viscosity of the monomer composition through a preliminary reaction and then increase the temperature to increase the productivity of the plastic lens (Patent Document 2). .
 また、特許文献3においては、実用的な生産性を備え、光学歪や脈理などのない厚いプラスチックレンズが得られる製造方法として、重合性組成物を成形モールドに充填した後、重合性組成物を充填時の初期温度以上に保つ保持工程と、前記重合性組成物を冷却する冷却工程と、を備える製造方法が提案されている。これは、重合の過程において、初期段階では重合速度が遅いが、ある段階で急激に速くなるため、この速度上昇による歪などの不具合を防ぐことを意図している。 Further, in Patent Document 3, as a production method for obtaining a thick plastic lens having practical productivity and having no optical distortion or striae, the polymerizable composition is filled into a molding mold, and then the polymerizable composition is used. Has been proposed that includes a holding step for maintaining the temperature above the initial temperature at the time of filling, and a cooling step for cooling the polymerizable composition. This is intended to prevent inconveniences such as strain due to the increase in the rate of polymerization because the polymerization rate is slow in the initial stage but rapidly increases in a certain stage.
特許3279784号Japanese Patent No. 3279784 特開2007-90574号公報JP 2007-90574 A 特開2009-226742号公報JP 2009-226742 A
 プラスチックレンズの製造方法では、重合組成物を重合するために多くの時間を要する。例えば、特許文献2の方法においては、具体的な実施形態においては、約20~47時間程度の昇温プログラムを組んで重合が行われている。また特許文献3の方法においても、具体的な実施形態においては、約17~30時間程度の昇温プログラムにより重合が行われている。プラスチックレンズの生産性、電気炉設備費用等の低減の観点から、より短い重合時間でプラスチックレンズを製造することが望ましいが、重合時間を短縮すると脈理などの不具合が発生しやすくなるという問題を有していた。
 そこで、本発明は、ウレタン系のプラスチックレンズの製造方法において、短時間での重合によっても脈理不良の発生しにくいプラスチックレンズの製造方法を提供することを課題とする。
In the method for producing a plastic lens, it takes a long time to polymerize the polymerization composition. For example, in the method of Patent Document 2, in a specific embodiment, the polymerization is performed with a temperature raising program of about 20 to 47 hours. Also in the method of Patent Document 3, in a specific embodiment, the polymerization is performed by a temperature raising program of about 17 to 30 hours. From the viewpoint of reducing plastic lens productivity and electric furnace equipment costs, it is desirable to produce plastic lenses with a shorter polymerization time. However, shortening the polymerization time tends to cause problems such as striae. Had.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for producing a plastic lens in which a striae defect hardly occurs even in a short time polymerization in a method for producing a urethane-based plastic lens.
 本発明者は、組成物の初期粘度と、その重合特性を鋭意検討した結果、特定の条件を満たす重合組成物を使用することによって、短時間での重合によっても脈理が発生しにくくなることを見出し、本発明を完成するに至った。
 すなわち本発明は、以下の[1]~[5]を提供する。
[1](A)ポリイソシアネート化合物と(B)一分子中に複数のメルカプト基又はヒドロキシ基を持つ化合物と(C)重合触媒とを含み、下記条件(1)及び(2)を満たす重合組成物を、初期温度20℃以下、重合時間12時間以下の重合条件で重合させる、プラスチックレンズの製造方法。
(1)調合直後の10℃における粘度が200mPa・s以下である。
(2)10℃一定条件での8時間経過後の粘度が400mPa・s以上かつ100Pa・s以下である。
[2]前記重合触媒が下記一般式(I)で表わされる有機金属化合物である、[1]のプラスチックレンズの製造方法。
 (R)n-Sn-(X)4-n   (I)
〔式(I)中、Rは炭素数1から12の炭化水素基を示し、Xはフッ素原子、塩素原子、又は臭素原子を示し、nは1から3の整数である。〕
[3]前記重合条件において、最終温度が100~150℃であり、且つ、60℃以下で重合させる時間の割合が60~90%である、[1]又は[2]のプラスチックレンズの製造方法。
[4]重合時間が10時間以下である、[1]~[3]のいずれかのプラスチックレンズの製造方法。
[5]重合時間が5時間以下である、[1]~[4]のいずれかのプラスチックレンズの製造方法。
As a result of intensive studies on the initial viscosity of the composition and its polymerization characteristics, the present inventor is less likely to generate striae even by short-time polymerization by using a polymerization composition that satisfies specific conditions. As a result, the present invention has been completed.
That is, the present invention provides the following [1] to [5].
[1] A polymerization composition comprising (A) a polyisocyanate compound, (B) a compound having a plurality of mercapto groups or hydroxy groups in one molecule, and (C) a polymerization catalyst, and satisfying the following conditions (1) and (2) A method for producing a plastic lens, wherein the product is polymerized under polymerization conditions of an initial temperature of 20 ° C. or less and a polymerization time of 12 hours or less.
(1) The viscosity at 10 ° C. immediately after blending is 200 mPa · s or less.
(2) The viscosity after 8 hours at a constant temperature of 10 ° C. is 400 mPa · s or more and 100 Pa · s or less.
[2] The method for producing a plastic lens according to [1], wherein the polymerization catalyst is an organometallic compound represented by the following general formula (I).
(R) n -Sn- (X) 4-n (I)
[In formula (I), R shows a C1-C12 hydrocarbon group, X shows a fluorine atom, a chlorine atom, or a bromine atom, and n is an integer of 1-3. ]
[3] The method for producing a plastic lens according to [1] or [2], wherein, under the polymerization conditions, the final temperature is 100 to 150 ° C., and the proportion of time for polymerization at 60 ° C. or less is 60 to 90%. .
[4] The method for producing a plastic lens according to any one of [1] to [3], wherein the polymerization time is 10 hours or less.
[5] The method for producing a plastic lens according to any one of [1] to [4], wherein the polymerization time is 5 hours or less.
 本発明のプラスチックレンズの製造方法によって、短時間の重合によっても、脈理不良の少ないプラスチックレンズの製造方法が提供される。 The method for producing a plastic lens of the present invention provides a method for producing a plastic lens with little striae even by a short polymerization.
 本発明のプラスチックレンズの製造方法は、(A)ポリイソシアネート化合物と(B)一分子中に複数のメルカプト基又はヒドロキシ基を持つ化合物と(C)重合触媒とを含み、下記条件(1)及び(2)を満たす重合組成物を、初期温度20℃以下、重合時間12時間以下で重合させる。
(1)調合直後の10℃における粘度が200mPa・s以下である。
(2)10℃一定条件での8時間経過後の粘度が400mPa・s以上かつ100Pa・s以下である。
The method for producing a plastic lens of the present invention comprises (A) a polyisocyanate compound, (B) a compound having a plurality of mercapto groups or hydroxy groups in one molecule, and (C) a polymerization catalyst. The polymerization composition satisfying (2) is polymerized at an initial temperature of 20 ° C. or less and a polymerization time of 12 hours or less.
(1) The viscosity at 10 ° C. immediately after blending is 200 mPa · s or less.
(2) The viscosity after 8 hours at a constant temperature of 10 ° C. is 400 mPa · s or more and 100 Pa · s or less.
 このような条件を満足する重合組成物を用いることによって、短時間で重合を完了させても、脈理不良の発生するプラスチックレンズが少なくなる。
 このような効果が得られる理由は、定かではないが、以下のことが考えられる。
 本発明において使用する重合組成物のように特定の粘度挙動を示すものを用いることで、キャビティ以内の温度分布に基づく重合組成物の対流(熱対流)を防止することができるため、短時間の重合によっても脈理不良が少なくなったと考えられる。
 プラスチックレンズの製造における脈理不良は、重合組成物を重合する際に型のキャビティ内で発生する熱に起因すると考えられ、特に、重合時間が短くなればなるほど、単位時間当たりの発生熱量は増大するため、キャビティ内の温度分布は拡大して、結果として脈理不良が多発することとなると考えられる。
 このような熱対流に関して、下記の数式(a)に示すレイリー数と呼ばれる流体の熱移動の指標となる無次元数がある。
 Ra =[g β ΔT d3]/[νX]    (a)
Ra:レイリー数
g:重力加速度
β:体積膨張係数
ΔT:温度差
3:上下間距離の3乗
ν:動粘性係数
X:熱拡散率
 すなわち、上記式によれば、温度差が大きい場合、上下間距離が大きい場合にはレイリー数が大きくなり、対流が起きやすくなることを示し、粘度が大きい場合にはレイリー数が小さくなり対流が起きにくいことを示している。
 ここである一定の形状のレンズの重合を考えると重力加速度は一定であり、レンズ肉厚に相当する上下間距離も一定となる。また体膨張係数、熱拡散率はモノマーの重合度により固有の値となり、またレイリー数に対する寄与が小さいと考えられる。このため、レンズの重合においては、動粘性係数νや、温度差ΔTがレイリー数に大きな影響を与える。
 条件(1)に関して、重合初期における低温度領域では重合による発熱が少なく、ΔTの値が小さくなる傾向にある。そのため、条件(1)に示されるように粘度が低く動粘性係数νが小さな値となっても、レイリー数は低く抑えられるため、熱対流が起こりにくい。
 条件(2)に関して、重合後期においては重合による発熱が多く、ΔTの値が大きくなる傾向にある。そのため、条件(2)のように粘度上昇の速い重合組成物を使用することで、ΔTが大きくなる重合後期においては十分に高い動粘性係数νが得られ、結果的にレイリー数を低く抑えることができるため、熱対流が起こりにくくなる。
 このため、本発明の重合組成物を用いることで、短時間の重合であっても、脈理不良の少ないプラスチックレンズの製造方法が提供できるものと考えられる。
 以下本発明の構成について詳細に説明する。
By using a polymerization composition that satisfies such conditions, even if the polymerization is completed in a short time, there are fewer plastic lenses that cause striae.
The reason why such an effect is obtained is not clear, but the following can be considered.
By using a polymer composition exhibiting a specific viscosity behavior such as the polymer composition used in the present invention, convection (thermal convection) of the polymer composition based on the temperature distribution within the cavity can be prevented. It is considered that the number of striae has decreased due to the polymerization.
The striae in the production of plastic lenses can be attributed to the heat generated in the mold cavity when polymerizing the polymer composition, and in particular, the shorter the polymerization time, the greater the amount of heat generated per unit time. Therefore, it is considered that the temperature distribution in the cavity is expanded, and as a result, striae defects frequently occur.
Regarding such thermal convection, there is a dimensionless number that is an index of fluid heat transfer, called the Rayleigh number shown in the following mathematical formula (a).
Ra = [gβΔT d 3 ] / [νX] (a)
Ra: Rayleigh number g: Gravitational acceleration β: Volume expansion coefficient ΔT: Temperature difference d 3 : The cube of the vertical distance ν: Kinematic viscosity coefficient X: Thermal diffusivity That is, according to the above formula, when the temperature difference is large, When the distance between the upper and lower sides is large, the Rayleigh number increases, indicating that convection is likely to occur. When the viscosity is large, the Rayleigh number is decreased, indicating that convection hardly occurs.
Considering the superposition of a lens having a certain shape, the gravitational acceleration is constant, and the vertical distance corresponding to the lens thickness is also constant. The body expansion coefficient and thermal diffusivity are inherent values depending on the degree of polymerization of the monomer, and the contribution to the Rayleigh number is considered to be small. For this reason, in lens polymerization, the kinematic viscosity coefficient ν and the temperature difference ΔT have a great influence on the Rayleigh number.
Regarding condition (1), heat generation due to polymerization is small in the low temperature region in the initial stage of polymerization, and the value of ΔT tends to be small. Therefore, even if the viscosity is low and the kinematic viscosity coefficient ν is small as shown in the condition (1), the Rayleigh number can be kept low, so that thermal convection hardly occurs.
Regarding condition (2), in the latter stage of polymerization, there is much heat generation due to polymerization, and the value of ΔT tends to increase. Therefore, a sufficiently high kinematic viscosity coefficient ν can be obtained in the latter stage of polymerization when ΔT is increased by using a polymerization composition having a quick viscosity increase as in condition (2), and as a result, the Rayleigh number can be kept low. Therefore, thermal convection is less likely to occur.
For this reason, it is thought that by using the polymerization composition of the present invention, a method for producing a plastic lens with little striae can be provided even for short-time polymerization.
Hereinafter, the configuration of the present invention will be described in detail.
[重合組成物]
 本発明の重合組成物は、(1)調合直後の10℃における粘度が200mPa・s以下である。このように調合後の粘度が200mPa・s以下の重合組成物を用いるとともに重合初期温度を一定温度以下とすることにより、初期の熱対流を防ぐことができるため、プラスチックレンズの脈理不良を顕著に減らすことができる。
 また、条件(1)における粘度は、好ましくは150mPa・s以下であり、より好ましくは100mPa・s以下である。条件(1)における粘度の下限値は特に限定されないが、例えば、10mPa・sである。
 調合直後の粘度とは、組成物を混合して、10分以内に測定された粘度を意味する。
 また本発明において粘度は、(株)セコニック製振動式粘度計ビスコメイトVM-10Aを用いて、10℃で、JIS Z8803に準拠して測定された値である。
[Polymerization composition]
The polymer composition of the present invention has (1) a viscosity at 10 ° C. immediately after preparation of 200 mPa · s or less. In this way, by using a polymerization composition having a viscosity after blending of 200 mPa · s or less and by setting the initial polymerization temperature to a certain temperature or less, it is possible to prevent initial thermal convection, so that striae defects of plastic lenses are remarkable. Can be reduced.
Further, the viscosity in the condition (1) is preferably 150 mPa · s or less, more preferably 100 mPa · s or less. Although the lower limit of the viscosity in condition (1) is not specifically limited, For example, it is 10 mPa * s.
The viscosity immediately after blending means the viscosity measured within 10 minutes after mixing the composition.
In the present invention, the viscosity is a value measured at 10 ° C. according to JIS Z8803 using Seconic Vibrating Viscometer VM-10A.
(2)10℃一定条件での8時間経過後の粘度が400mPa・s以上かつ100Pa・s以下である。
 条件(1)に加えて、条件(2)において、このような粘度範囲の重合組成物を使用することで、顕著に脈理不良を減らすことができる。
 条件(2)における粘度は、好ましくは500mPa・s以上かつ50Pa・s以下であり、より好ましくは700mPa・s以上かつ3Pa・s以下である。
 なお、条件(2)における粘度も、条件(1)と同様の方法で10℃にて測定された値とする。
 本発明において用いられる重合組成物は、当業界の常識をふまえて、使用するモノマー成分の性質や、モノマー成分の重合特性に応じた重合触媒の添加量の調節によって上記の条件(1)及び(2)を満足する重合組成物が得られる。特に、重合組成物中の重合触媒の含有量が、条件(2)の物性に影響を与えやすい。以下、本発明において用いる重合組成物の各成分及び含有量について説明する。
(2) The viscosity after 8 hours at a constant temperature of 10 ° C. is 400 mPa · s or more and 100 Pa · s or less.
In addition to the condition (1), the use of the polymerization composition having such a viscosity range in the condition (2) can significantly reduce striae.
The viscosity in the condition (2) is preferably 500 mPa · s or more and 50 Pa · s or less, more preferably 700 mPa · s or more and 3 Pa · s or less.
In addition, let the viscosity in condition (2) be the value measured at 10 degreeC by the method similar to condition (1).
The polymerization composition used in the present invention is based on the common knowledge in the art, and the above conditions (1) and (1) are determined by adjusting the amount of the polymerization catalyst according to the properties of the monomer components used and the polymerization characteristics of the monomer components. A polymerization composition satisfying 2) is obtained. In particular, the content of the polymerization catalyst in the polymerization composition tends to affect the physical properties of the condition (2). Hereinafter, each component and content of the polymerization composition used in the present invention will be described.
 本発明において用いられる重合組成物は、(A)ポリイソシアネート化合物(以下単に「(A)成分」とすることがある)と、(B)一分子中に複数のメルカプト基又はヒドロキシ基を持つ化合物(以下単に「(B)成分」とすることがある)と、(C)重合触媒(以下単に「(C)成分」とすることがある)とを含む。 The polymerization composition used in the present invention comprises (A) a polyisocyanate compound (hereinafter sometimes simply referred to as “component (A)”) and (B) a compound having a plurality of mercapto groups or hydroxy groups in one molecule. (Hereinafter sometimes simply referred to as “component (B)”) and (C) a polymerization catalyst (hereinafter sometimes simply referred to as “component (C)”).
<(A)ポリイソシアネート化合物>
 ポリイソシアネート化合物としては、特に限定されないが、例えば、キシリレンジイソシアネート(1,3-ビスイソシアナトメチルベンゼン)、テトラメチルキシリレンジイソシアネート、3,3'-ジクロロジフェニル-4,4'-ジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、2,2',5,5'-テトラクロロジフェニル-4,4′-ジイソシアネート、トリレンジイソシアネート、ビス(イソシアナトメチル)シクロヘキサン、ビス(4-イソシアナトシクロヘキシル)メタン、ビス(4-イソシアナトメチルシクロヘキシル)メタン、シクロヘキサンジイソシアネート、イソフォロンジイソシアネート、ビス(イソシアナトメチル)ビシクロ[2.2.2]オクタン、ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタン、2-イソシアナトメチル-3-(3-イソシアナトプロピル)-5-イソシアナトメチルビシクロ[2.2.1]ヘプタン、2-イソシアナトメチル-3-(3-イソシアネートプロピル)-6-イソシアナトメチルビシクロ[2.2.1]ヘプタン、2-イソシアナトメチル-2-[3-イソシアナトプロピル]-5-イソシアナトメチルビシクロ[2.2.1]ヘプタン、2-イソシアナトメチル-2-(3-イソシアナトプロピル)-6-イソシアナトメチルビシクロ[2.2.1]ヘプタン、2-イソシアナトメチル-3-(3-イソシアナトプロピル)-6-(2-イソシアナトエチル)ビシクロ[2.2.1]ヘプタン、2-イソシアナトメチル-3-(3-イソシアナトプロピル)-6-(2-イソシアナトエチル)ビシクロ[2.2.1]ヘプタン、2-イソシアナトメチル-2-(3-イソシアナトプロピル)-5-(2-イソシアナトエチル)ビシクロ[2.2.1]ヘプタン、2-イソシアナトメチル-2-(3-イソシアナトプロピル)-6-(2-イソシアナトエチル)ビシクロ[2.2.1]ヘプタン等が挙げられる。キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタン、及びビス(イソシアナトメチル)シクロヘキサンが特に好ましい。これらは単独で又は2種以上を組み合わせて用いてもよい。
 ポリイソシアネート化合物の含有量は、重合組成物中の(B)成分に対して当量比で好ましくは0.6~1.4であり、より好ましくは0.8~1.2であり、更に好ましくは0.9~1.1である。ここで当量比とは、(A)成分のイソシアネート基のモル数と、(B)成分のメルカプト基とヒドロキシ基の合計モル数の比〔(A)/(B)〕を意味する。
 ポリイソシアネート化合物の含有量は、特に限定されないが、重合組成物全量に対して、好ましくは30~60質量%であり、より好ましくは35~55質量%であり、更に好ましくは40~50質量%である。
<(A) Polyisocyanate compound>
The polyisocyanate compound is not particularly limited. For example, xylylene diisocyanate (1,3-bisisocyanatomethylbenzene), tetramethylxylylene diisocyanate, 3,3′-dichlorodiphenyl-4,4′-diisocyanate, 4 , 4'-diphenylmethane diisocyanate, hexamethylene diisocyanate, 2,2 ', 5,5'-tetrachlorodiphenyl-4,4'-diisocyanate, tolylene diisocyanate, bis (isocyanatomethyl) cyclohexane, bis (4-isocyanato Cyclohexyl) methane, bis (4-isocyanatomethylcyclohexyl) methane, cyclohexane diisocyanate, isophorone diisocyanate, bis (isocyanatomethyl) bicyclo [2.2.2] octane, bis (i Cyanatomethyl) bicyclo [2.2.1] heptane, 2-isocyanatomethyl-3- (3-isocyanatopropyl) -5-isocyanatomethylbicyclo [2.2.1] heptane, 2-isocyanatomethyl-3 -(3-Isocyanatopropyl) -6-isocyanatomethylbicyclo [2.2.1] heptane, 2-isocyanatomethyl-2- [3-isocyanatopropyl] -5-isocyanatomethylbicyclo [2.2. 1] Heptane, 2-isocyanatomethyl-2- (3-isocyanatopropyl) -6-isocyanatomethylbicyclo [2.2.1] heptane, 2-isocyanatomethyl-3- (3-isocyanatopropyl) -6- (2-isocyanatoethyl) bicyclo [2.2.1] heptane, 2-isocyanatomethyl-3- (3-isocyanatotop (Lopyl) -6- (2-isocyanatoethyl) bicyclo [2.2.1] heptane, 2-isocyanatomethyl-2- (3-isocyanatopropyl) -5- (2-isocyanatoethyl) bicyclo [2 2.1] heptane, 2-isocyanatomethyl-2- (3-isocyanatopropyl) -6- (2-isocyanatoethyl) bicyclo [2.2.1] heptane, and the like. Xylylene diisocyanate, tetramethyl xylylene diisocyanate, bis (isocyanatomethyl) bicyclo [2.2.1] heptane, and bis (isocyanatomethyl) cyclohexane are particularly preferred. You may use these individually or in combination of 2 or more types.
The content of the polyisocyanate compound is preferably 0.6 to 1.4, more preferably 0.8 to 1.2, and still more preferably in terms of an equivalent ratio with respect to the component (B) in the polymerization composition. Is 0.9 to 1.1. Here, the equivalent ratio means the ratio [(A) / (B)] of the number of moles of the isocyanate group of the component (A) and the number of moles of the mercapto group and the hydroxy group of the component (B).
The content of the polyisocyanate compound is not particularly limited, but is preferably 30 to 60% by mass, more preferably 35 to 55% by mass, and further preferably 40 to 50% by mass with respect to the total amount of the polymerization composition. It is.
<(B)一分子中に複数のメルカプト基又はヒドロキシ基を持つ化合物>
 (B)一分子中に複数のメルカプト基又はヒドロキシ基を持つ化合物としては、下記ポリチオール化合物、ポリオール化合物、ヒドロキシ基を含むチオール化合物が挙げられる。なお、一分子中に複数のメルカプト基又はヒドロキシ基を持つ化合物とは、一分子中に複数のメルカプト基及びヒドロキシ基を持つ化合物を含む。
 ポリチオール化合物としては、例えば、ジメルカプトメタン、1,1-ジメルカプトエタン、1,2-ジメルカプトエタン、1,1-ジメルカプトプロパン、1,2-ジメルカプトプロパン、1,3-ジメルカプトプロパン、2,2-ジメルカプトプロパン、1,1-ジメルカプトブタン、1,2-ジメルカプトブタン、1,3-ジメルカプトブタン、1,4-ジメルカプトブタン、2,2-ジメルカプトブタン、2,3-ジメルカプトブタン、1,2-ジメルカプトベンゼン、1,3-ジメルカプトベンゼン、1,4-ジメルカプトベンゼン、1,2-ジメルカプトキシレン、1,3-ジメルカプトキシレン、1,4-ジメルカプトキシレン、2,5-ビスメルカプトメチル-1,4-ジチアン及びその多量体、4,5-ビスメルカプトメチル-1,3-ジチアン及びその多量体、2,5-ジメルカプト-1,4-ジチアン、4,5-ジメルカプト-1,3-ジチアン、4,5-ビスメルカプトメチル-1,3-ジチオラン、4,5-ジメルカプト-1,3-ジチオラン等のジチオール化合物、2,3-ビス(2-メルカプトエチルチオ)-1-プロパンチオール、ビスメルカプトメチル-3,6,9-トリチオ-1,11-ウンデカンジチオール、テトラキスメルカプトメチルメタン、ペンタエリスリトールテトラキスメルカプトプロピオネート、ペンタエリスリトールテトラキスメルカプトアセテート等またはその混合物が挙げられる。
 ポリオール化合物としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブチレングリコール、ネオペンチルグリコール、グリセリン、トリメチロールエタン、トリメチロールプロパン、ブタントリオール、1,2-メチルグルコサイド、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ソルビトール、エリスリトール、スレイトール、リビトール、アラビニトール、キシリトール、アリトール、マニトール、ドルシトール、イディトール、グリコール、イノシトール、ヘキサントリオール、トリグリセロール、ジグリペロール、トリエチレングリコール、ポリエチレングリコール、トリス(2-ヒドロキシエチル)イソシアヌレート、シクロブタンジオール、シクロペンタンジオール、シクロヘキサンジオール、シクロヘプタンジオール、シクロオクタンジオール、シクロヘキサンジメタノール、ヒドロキシプロピルシクロヘキサノール、トリシクロ〔5,2,1,0,2,6〕デカン-ジメタノール、ビシクロ〔4,3,0〕-ノナンジオール、ジシクロヘキサンジオール、トリシクロ〔5,3,1,1〕ドデカンジオール、ビシクロ〔4,3,0〕ノナンジメタノール、トリシクロ〔5,3,1,1〕ドデカン-ジエタノール、ヒドロキシプロピルトリシクロ〔5,3,1,1〕ドデカノール、スピロ〔3,4〕オクタンジオール、ブチルシクロヘキサンジオール、1,1’-ビシクロヘキシリデンジオール、シクロヘキサントリオール、マルチトール、ラクチトール等の脂肪族ポリオール、ジヒドロキシナフタレン、トリヒドロキシナフタレン、テトラヒドロキシナフタレン、ジヒドロキシベンゼン、ベンゼントリオール、ビフェニルテトラオール、ピロガロール、(ヒドロキシナフチル)ピロガロール、トリヒドロキシフェナントレン、ビスフェノールA、ビスフェノールF、キシリレングリコール、テトラブロムビスフェノールA等の芳香族ポリオール、ジ-(2-ヒドロキシエチル)スルフィド、1,2-ビス-(2-ヒドロキシエチルメルカプト)エタン、ビス(2-ヒドロキシエチル)ジスルフィド、1,4-ジチアン-2,5-ジオール、ビス(2,3-ジヒドロキシプロピル)スルフィド、テトラキス(4-ヒドロキシ-2-チアブチル)メタン、ビス(4-ヒドロキシフェニル)スルホン(商品名ビスフェノールS)、テトラブロモビスフェノールS、テトラメチルビスフェノールS、4,4’-チオビス(6-tert-ブチル-3-メチルフェノール)、1,3-ビス(2-ヒドロキシエチルチオエチル)-シクロヘキサンなどの硫黄原子を含有したポリオール等が挙げられる。
 またヒドロキシ基を含むチオール化合物としては、例えば、2-メルカプトエタノール、2,3-ジメルカプト-1-プロパノール、3-ヒドロキシ-2-ブタンチオール、3-メルカプトヘキサノール、3-メルカプト-2-メチルブタノール、3-メルカプト-3-メチルブタノール、3-メルカプト-2-メチルペンタノール等が挙げられる。
これらは単独で又は2種以上を組み合わせて用いてもよい。
<(B) Compound having plural mercapto groups or hydroxy groups in one molecule>
(B) Examples of the compound having a plurality of mercapto groups or hydroxy groups in one molecule include the following polythiol compounds, polyol compounds, and thiol compounds containing a hydroxy group. The compound having a plurality of mercapto groups or hydroxy groups in one molecule includes a compound having a plurality of mercapto groups and hydroxy groups in one molecule.
Examples of the polythiol compound include dimercaptomethane, 1,1-dimercaptoethane, 1,2-dimercaptoethane, 1,1-dimercaptopropane, 1,2-dimercaptopropane, and 1,3-dimercaptopropane. 2,2-dimercaptopropane, 1,1-dimercaptobutane, 1,2-dimercaptobutane, 1,3-dimercaptobutane, 1,4-dimercaptobutane, 2,2-dimercaptobutane, 2, , 3-dimercaptobutane, 1,2-dimercaptobenzene, 1,3-dimercaptobenzene, 1,4-dimercaptobenzene, 1,2-dimercaptoxylene, 1,3-dimercaptoxylene, 1,4 Dimercaptoxylene, 2,5-bismercaptomethyl-1,4-dithiane and its multimers, 4,5-bismercaptome 1,3-dithiane and its multimer, 2,5-dimercapto-1,4-dithiane, 4,5-dimercapto-1,3-dithiane, 4,5-bismercaptomethyl-1,3-dithiolane, Dithiol compounds such as 4,5-dimercapto-1,3-dithiolane, 2,3-bis (2-mercaptoethylthio) -1-propanethiol, bismercaptomethyl-3,6,9-trithio-1,11- Examples include undecanedithiol, tetrakismercaptomethylmethane, pentaerythritol tetrakismercaptopropionate, pentaerythritol tetrakismercaptoacetate, and the like, or a mixture thereof.
Examples of the polyol compound include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, neopentyl glycol, glycerin, trimethylolethane, trimethylolpropane, butanetriol, 1,2-methylglucoside, pentaerythritol, Dipentaerythritol, tripentaerythritol, sorbitol, erythritol, threitol, ribitol, arabinitol, xylitol, allitol, mannitol, dolcitol, idiitol, glycol, inositol, hexanetriol, triglycerol, diglycerol, triethylene glycol, polyethylene glycol, tris (2 -Hydroxyethyl) isocyanurate, cyclobuta Diol, cyclopentanediol, cyclohexanediol, cycloheptanediol, cyclooctanediol, cyclohexanedimethanol, hydroxypropylcyclohexanol, tricyclo [5,2,1,0,2,6] decane-dimethanol, bicyclo [4,3 , 0] -nonanediol, dicyclohexanediol, tricyclo [5,3,1,1] dodecanediol, bicyclo [4,3,0] nonanedimethanol, tricyclo [5,3,1,1] dodecane-diethanol, Aliphatic groups such as hydroxypropyltricyclo [5,3,1,1] dodecanol, spiro [3,4] octanediol, butylcyclohexanediol, 1,1'-bicyclohexylidenediol, cyclohexanetriol, maltitol, lactitol Poly , Dihydroxynaphthalene, trihydroxynaphthalene, tetrahydroxynaphthalene, dihydroxybenzene, benzenetriol, biphenyltetraol, pyrogallol, (hydroxynaphthyl) pyrogallol, trihydroxyphenanthrene, bisphenol A, bisphenol F, xylylene glycol, tetrabromobisphenol A Aromatic polyols such as di- (2-hydroxyethyl) sulfide, 1,2-bis- (2-hydroxyethylmercapto) ethane, bis (2-hydroxyethyl) disulfide, 1,4-dithian-2,5- Diol, bis (2,3-dihydroxypropyl) sulfide, tetrakis (4-hydroxy-2-thiabutyl) methane, bis (4-hydroxyphenyl) sulfone Nord S), tetrabromobisphenol S, tetramethylbisphenol S, 4,4′-thiobis (6-tert-butyl-3-methylphenol), 1,3-bis (2-hydroxyethylthioethyl) -cyclohexane, etc. Examples include polyols containing sulfur atoms.
Examples of the thiol compound containing a hydroxy group include 2-mercaptoethanol, 2,3-dimercapto-1-propanol, 3-hydroxy-2-butanethiol, 3-mercaptohexanol, 3-mercapto-2-methylbutanol, Examples include 3-mercapto-3-methylbutanol and 3-mercapto-2-methylpentanol.
You may use these individually or in combination of 2 or more types.
<(C)重合触媒>
 重合触媒としては、特に限定されないが、アミン化合物、有機金属化合物等が挙げられる。
 アミン化合物としては、例えば、トリエチレンジアミン、ヘキサメチレンテトラミン、N,N-ジメチルオクチルアミン、N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン、4,4′-トリメチレンビス(1-メチルピペリジン)、1,8-ジアザビシクロー(5,4,0)-7-ウンデセンが挙げられる。
 有機金属化合物としては、有機スズ、オレイン酸銅、アセチルアセトン銅、アセチルアセトン鉄、ナフテン酸鉄、乳酸鉄、クエン酸鉄、グルコン酸鉄、チタン酸2-エチルヘキシル等が挙げられる。
 重合触媒としては、これらの中でも有機スズが好適であり、下記一般式(I)で表される有機金属化合物が好ましい。
 (R)n-Sn-(X)4-n   (I)
〔式(I)中、Rは炭素数1から12(好ましくは4から8)の炭化水素基を示し、Xはフッ素原子、塩素原子、又は臭素原子(好ましくは塩素原子)を示し、nは1から3の整数(好ましくは2)である。〕
 これらの具体例としては、ジメチルスズジクロライド、ジブチルスズジクロライド、ジジオクチルスズジクロライド、ジメチルスズジブロマイド、ジブチルスズジブロマイド、ジジオクチルスズジブロマイド、ジジオクチルスズジフルオライド等が挙げられる。これらの触媒は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 これらの重合触媒の中でも、好ましくは、ジメチルスズジクロライド、ジブチルスズジクロライドである。
 重合触媒の含有量は、重合組成物の重合特性に応じて当業界の技術常識をふまえて、適宜設定できるが、重合組成物全量に対して、好ましくは0.001~2.0質量%であり、より好ましくは0.005~1.5質量%であり、さらに好ましくは0.01~1.0質量%である。
<(C) Polymerization catalyst>
Although it does not specifically limit as a polymerization catalyst, An amine compound, an organometallic compound, etc. are mentioned.
Examples of amine compounds include triethylenediamine, hexamethylenetetramine, N, N-dimethyloctylamine, N, N, N ′, N′-tetramethyl-1,6-diaminohexane, and 4,4′-trimethylenebis. (1-methylpiperidine), 1,8-diazabicyclo- (5,4,0) -7-undecene.
Examples of the organometallic compound include organotin, copper oleate, acetylacetone copper, acetylacetone iron, naphthenate iron, iron lactate, iron citrate, iron gluconate, and 2-ethylhexyl titanate.
Of these, organotin is preferred as the polymerization catalyst, and organometallic compounds represented by the following general formula (I) are preferred.
(R) n -Sn- (X) 4-n (I)
[In the formula (I), R represents a hydrocarbon group having 1 to 12 (preferably 4 to 8) carbon atoms, X represents a fluorine atom, a chlorine atom, or a bromine atom (preferably a chlorine atom), and n represents It is an integer from 1 to 3 (preferably 2). ]
Specific examples thereof include dimethyltin dichloride, dibutyltin dichloride, didiooctyltin dichloride, dimethyltin dibromide, dibutyltin dibromide, didiooctyltin dibromide, didiooctyltin difluoride and the like. These catalysts may be used alone or in combination of two or more.
Among these polymerization catalysts, dimethyltin dichloride and dibutyltin dichloride are preferable.
The content of the polymerization catalyst can be appropriately set according to the common general technical knowledge of the industry according to the polymerization characteristics of the polymerization composition, but is preferably 0.001 to 2.0% by mass with respect to the total amount of the polymerization composition. More preferably, it is 0.005 to 1.5% by mass, and still more preferably 0.01 to 1.0% by mass.
 このほか、本発明における重合組成物には、エピチオ化合物が含まれていてもよい。エピチオ化合物としては、例えば、ビス(β-エピチオプロピル)スルフィド、ビス(β-エピチオプロピルチオ)メタン、1,2-ビス(β-エピチオプロピルチオ)エタン、1,3-ビス(β-エピチオプロピルチオ)プロパン、1,2-ビス(β-エピチオプロピルチオ)プロパン、1-(β-エピチオプロピルチオ)-2-(β-エピチオプロピルチオメチル)プロパン、1,4-ビス(β-エピチオプロピルチオ)ブタン、1,3-ビス(β-エピチオプロピルチオ)ブタン、1-(β-エピチオプロピルチオ)-3-(β-エピチオプロピルチオメチル)ブタン、1,5-ビス(β-エピチオプロピルチオ)ペンタン、1-(β-エピチオプロピルチオ)-4-(β-エピチオプロピルチオメチル)ペンタン、1,6-ビス(β-エピチオプロピルチオ)ヘキサン、1-(β-エピチオプロピルチオ)-5-(β-エピチオプロピルチオメチル)ヘキサン、1-(β-エピチオプロピルチオ)-2-〔(2-β-エピチオプロピルチオエチル)チオ〕エタン、1-(β-エピチオプロピルチオ)-2-[〔2-(2-β-エピチオプロピルチオエチル)チオエチル〕チオ]エタン等の鎖状化合物;テトラキス(β-エピチオプロピルチオメチル)メタン、1,1,1-トリス(β-エピチオプロピルチオメチル)プロパン、1,5-ビス(β-エピチオプロピルチオ)-2-(β-エピチオプロピルチオメチル)-3-チアペンタン、1,5-ビス(β-エピチオプロピルチオ)-2,4-ビス(β-エピチオプロピルチオメチル)-3-チアペンタン、1-(β-エピチオプロピルチオ)-2,2-ビス(β-エピチオプロピルチオメチル)-4-チアヘキサン、1,5,6-トリス(β-エピチオプロピルチオ)-4-(β-エピチオプロピルチオメチル)-3-チアヘキサン、1,8-ビス(β-エピチオプロピルチオ)-4-(β-エピチオプロピルチオメチル)-3,6-ジチアオクタン、1,8-ビス(β-エピチオプロピルチオ)-4,5-ビス(β-エピチオプロピルチオメチル)-3,6-ジチアオクタン、1,8-ビス(β-エピチオプロピルチオ)-4,4-ビス(β-エピチオプロピルチオメチル)-3,6-ジチアオクタン、1,8-ビス(β-エピチオプロピルチオ)-2,4,5-トリス(β-エピチオプロピルチオメチル)-3,6-ジチアオクタン、1,8-ビス(β-エピチオプロピルチオ)-2,5-ビス(β-エピチオプロピルチオメチル)-3,6-ジチアオクタン、1,9-ビス(β-エピチオプロピルチオ)-5-(β-エピチオプロピルチオメチル)-5-〔(2-β-エピチオプロピルチオエチル)チオメチル〕-3,7-ジチアノナン、1,10-ビス(β-エピチオプロピルチオ)-5,6-ビス〔(2-β-エピチオプロピルチオエチル)チオ〕-3,6,9-トリチアデカン、1,11-ビス(β-エピチオプロピルチオ)-4,8-ビス(β-エピチオプロピルチオメチル)-3,6,9-トリチアウンデカン、1,11-ビス(β-エピチオプロピルチオ)-5,7-ビス(β-エピチオプロピルチオメチル)-3,6,9-トリチアウンデカン、1,11-ビス(β-エピチオプロピルチオ)-5,7-〔(2-β-エピチオプロピルチオエチル)チオメチル〕-3,6,9-トリチアウンデカン、1,11-ビス(β-エピチオプロピルチオ)-4,7-ビス(β-エピチオプロピルチオメチル)-3,6,9-トリチアウンデカン等の分岐状化合物;1,3-及び1,4-ビス(β-エピチオプロピルチオ)シクロヘキサン、1,3-及び1,4-ビス(β-エピチオプロピルチオメチル)シクロヘキサン、ビス〔4-(β-エピチオプロピルチオ)シクロヘキシル〕メタン、2,2-ビス〔4-(β-エピチオプロピルチオ)シクロヘキシル〕プロパン、ビス〔4-(β-エピチオプロピルチオ)シクロヘキシル〕スルフィド、2,5-ビス(β-エピチオプロピルチオメチル)-1,4-ジチアン、2,5-ビス(β-エピチオプロピルチオエチルチオメチル)-1,4-ジチアン等の脂環式化合物;1,3-及び1,4-ビス(β-エピチオプロピルチオ)ベンゼン、1,3及び1,4-ビス(β-エピチオプロピルチオメチル)ベンゼン、ビス〔4-(β-エピチオプロピルチオ)フェニル〕メタン、2,2-ビス〔4-(β-エピチオプロピルチオ)フェニル〕プロパン、ビス〔4-(β-エピチオプロピルチオ)フェニル〕スルフィド、ビス〔4-(β-エピチオプロピルチオ)フェニル〕スルフォン、4,4´-ビス(β-エピチオプロピルチオ)ビフェニル等の芳香族化合物;及びこれらの化合物のエピスルフィド基の水素の少なくとも1個がメチル基で置換された化合物などが挙げられる。ビス(β-エピチオプロピル)スルフィドが特に好ましい。これらは単独で又は2種以上を組み合わせて用いてもよい。 In addition, the polymerization composition in the present invention may contain an epithio compound. Examples of the epithio compound include bis (β-epithiopropyl) sulfide, bis (β-epithiopropylthio) methane, 1,2-bis (β-epithiopropylthio) ethane, 1,3-bis (β -Epithiopropylthio) propane, 1,2-bis (β-epithiopropylthio) propane, 1- (β-epithiopropylthio) -2- (β-epithiopropylthiomethyl) propane, 1,4 -Bis (β-epithiopropylthio) butane, 1,3-bis (β-epithiopropylthio) butane, 1- (β-epithiopropylthio) -3- (β-epithiopropylthiomethyl) butane 1,5-bis (β-epithiopropylthio) pentane, 1- (β-epithiopropylthio) -4- (β-epithiopropylthiomethyl) pentane, 1,6-bis (β-epithio) (Lopylthio) hexane, 1- (β-epithiopropylthio) -5- (β-epithiopropylthiomethyl) hexane, 1- (β-epithiopropylthio) -2-[(2-β-epithiopropyl) Chain compounds such as thioethyl) thio] ethane, 1- (β-epithiopropylthio) -2-[[2- (2-β-epithiopropylthioethyl) thioethyl] thio] ethane; tetrakis (β- Epithiopropylthiomethyl) methane, 1,1,1-tris (β-epithiopropylthiomethyl) propane, 1,5-bis (β-epithiopropylthio) -2- (β-epithiopropylthiomethyl) ) -3-Thiapentane, 1,5-bis (β-epithiopropylthio) -2,4-bis (β-epithiopropylthiomethyl) -3-thiapentane, 1- (β-epithiopropylthio) -2,2-bis (β-epithiopropylthiomethyl) -4-thiahexane, 1,5,6-tris (β-epithiopropylthio) -4- (β-epithiopropylthiomethyl) -3- Thiahexane, 1,8-bis (β-epithiopropylthio) -4- (β-epithiopropylthiomethyl) -3,6-dithiaoctane, 1,8-bis (β-epithiopropylthio) -4, 5-bis (β-epithiopropylthiomethyl) -3,6-dithiaoctane, 1,8-bis (β-epithiopropylthio) -4,4-bis (β-epithiopropylthiomethyl) -3, 6-dithiaoctane, 1,8-bis (β-epithiopropylthio) -2,4,5-tris (β-epithiopropylthiomethyl) -3,6-dithiaoctane, 1,8-bis (β-epi Thiopropylthio) -2, -Bis (β-epithiopropylthiomethyl) -3,6-dithiaoctane, 1,9-bis (β-epithiopropylthio) -5- (β-epithiopropylthiomethyl) -5-[(2- β-epithiopropylthioethyl) thiomethyl] -3,7-dithianonane, 1,10-bis (β-epithiopropylthio) -5,6-bis [(2-β-epithiopropylthioethyl) thio] -3,6,9-trithiadecane, 1,11-bis (β-epithiopropylthio) -4,8-bis (β-epithiopropylthiomethyl) -3,6,9-trithiaundecane, 1, 11-bis (β-epithiopropylthio) -5,7-bis (β-epithiopropylthiomethyl) -3,6,9-trithiaundecane, 1,11-bis (β-epithiopropylthio) -5,7-[(2-β- Pthiopropylthioethyl) thiomethyl] -3,6,9-trithiaundecane, 1,11-bis (β-epithiopropylthio) -4,7-bis (β-epithiopropylthiomethyl) -3, Branched compounds such as 6,9-trithiaundecane; 1,3- and 1,4-bis (β-epithiopropylthio) cyclohexane, 1,3- and 1,4-bis (β-epithiopropylthio) Methyl) cyclohexane, bis [4- (β-epithiopropylthio) cyclohexyl] methane, 2,2-bis [4- (β-epithiopropylthio) cyclohexyl] propane, bis [4- (β-epithiopropyl) Thio) cyclohexyl] sulfide, 2,5-bis (β-epithiopropylthiomethyl) -1,4-dithiane, 2,5-bis (β-epithiopropylthioethylthiomethyl) Alicyclic compounds such as 1,4-dithiane; 1,3- and 1,4-bis (β-epithiopropylthio) benzene, 1,3 and 1,4-bis (β-epithiopropyl) Thiomethyl) benzene, bis [4- (β-epithiopropylthio) phenyl] methane, 2,2-bis [4- (β-epithiopropylthio) phenyl] propane, bis [4- (β-epithio) Aromatic compounds such as propylthio) phenyl] sulfide, bis [4- (β-epithiopropylthio) phenyl] sulfone, 4,4′-bis (β-epithiopropylthio) biphenyl; and episulfides of these compounds And compounds in which at least one hydrogen of the group is substituted with a methyl group. Bis (β-epithiopropyl) sulfide is particularly preferred. You may use these individually or in combination of 2 or more types.
 本発明の重合組成物は、重合後にレンズ成形用鋳型からの剥がれやすくするために、離型剤を含有していてもよい。
 離型剤としては、リン酸エステルが好適に用いられ、具体的には、イソプロピルアシッドフォスフェート、ブチルアシッドフォスフェート、オクチルアシッドフォスフェート、ノニルアシッドフォスフェート、デシルアシッドフォスフェート、イソデシルアシッドフォスフェート、トリデシルアシッドフォスフェート、ステアリルアシッドフォスフェート、プロピルフェニルアシッドフォスフェート、ブチルフェニルアシッドフォスフェート、ブトキシエチルアシッドフォスフェート等のリン酸モノエステル;ジイソプロピルアシッドフォスフェート、ジブチルアシッドフォスフェート、ジオクチルアシッドフォスフェート、ジイソデシルアシッドフォスフェート、ビス(トリデシルアシッドフォスフェート)、ジステアリルアシッドフォスフェート、ジプロピルフェニルアシッドフォスフェート、ジブチルフェニルアシッドフォスフェート、ジブトキシエチルアシッドフォスフェート等のリン酸ジエステル等が挙げられる。これらは単独で又は2種以上を組み合わせて用いてもよい。
離型剤の含有量は、重合組成物全量に対して、好ましくは0.001~0.5重量%である。
The polymerization composition of the present invention may contain a mold release agent in order to facilitate separation from the lens molding mold after polymerization.
Phosphoric acid esters are preferably used as mold release agents. Specifically, isopropyl acid phosphate, butyl acid phosphate, octyl acid phosphate, nonyl acid phosphate, decyl acid phosphate, isodecyl acid phosphate , Tridecyl acid phosphate, stearyl acid phosphate, propyl phenyl acid phosphate, butyl phenyl acid phosphate, butoxyethyl acid phosphate, etc. phosphoric acid monoesters; diisopropyl acid phosphate, dibutyl acid phosphate, dioctyl acid phosphate , Diisodecyl acid phosphate, bis (tridecyl acid phosphate), distearyl acid phosphate Eto, dipropyl phenyl acid phosphate, dibutyl phenyl acid phosphate, phosphoric acid diesters such as dibutoxyethyl acid phosphate and the like. You may use these individually or in combination of 2 or more types.
The content of the release agent is preferably 0.001 to 0.5% by weight with respect to the total amount of the polymerization composition.
 その他の重合組成物の任意成分として、例えば、ブルーイング剤、紫外線吸収剤等が含まれていてもよい。
 ブルーイング剤としては、青系と赤系の染料又は顔料が挙げられる。ブルーイング剤の含有量は特に限定されないが、重合体組成物全量に対して、好ましくは0.00002~0.0002質量%である。
 紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホニックアシッド、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2-ヒドロキシ-4-n-ドデシルオキシベンゾフェノン、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン系化合物、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-アミルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-4’-オクチルオキシフェニル)ベンゾトリアゾール等のベンゾトリアゾール化合物、ジベンゾイルメタン、4-tert-ブチル-4’-メトキシベンゾイルメタン等が挙げられる。これらは単独で又は2種以上を組み合わせて用いてもよい。紫外線吸収剤の含有量は、紫外線吸収能と最大吸収波長にもよるが、重合組成物全量に対して、好ましくは0.03~3質量%である。
As other optional components of the polymerization composition, for example, a bluing agent, an ultraviolet absorber and the like may be contained.
Blueing agents include blue and red dyes or pigments. The content of the bluing agent is not particularly limited, but is preferably 0.00002 to 0.0002% by mass with respect to the total amount of the polymer composition.
Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulphonic acid, 2-hydroxy-4-n-octoxybenzophenone. Benzophenone compounds such as 2-hydroxy-4-n-dodecyloxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2- (2′-hydroxy-5 ′ -Methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-t-butylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3'-t-butyl- 5'-methylphenyl) -5-chlorobenzotriazole, 2- (2'- Droxy-3 ', 5'-di-t-amylphenyl) benzotriazole, 2- (2'-hydroxy-3', 5'-di-t-butylphenyl) benzotriazole, 2- (2'-hydroxy- Benzo such as 5′-t-butylphenyl) benzotriazole, 2- (2′-hydroxy-5′-t-octylphenyl) benzotriazole, 2- (2′-hydroxy-4′-octyloxyphenyl) benzotriazole Triazole compounds, dibenzoylmethane, 4-tert-butyl-4′-methoxybenzoylmethane and the like can be mentioned. You may use these individually or in combination of 2 or more types. The content of the ultraviolet absorber is preferably 0.03 to 3% by mass with respect to the total amount of the polymerization composition, although it depends on the ultraviolet absorbing ability and the maximum absorption wavelength.
[製造方法]
 本発明のプラスチックレンズの製造方法は、上記重合組成物を、初期温度20℃以下、重合時間12時間以下の重合条件で重合させてプラスチックレンズを得る。
 重合は、上記重合組成物をレンズ成形用鋳型に注入し、加熱して重合する。
 レンズ成形用鋳型は、従来公知のガスケット及びモールドからなるものが用いられることが好適である。ガスケットの素材としては、四弗化エチレン樹脂などの弗素樹脂が挙げられる。モールドの素材としては、一般的には、ガラスが用いられる。
[Production method]
In the method for producing a plastic lens of the present invention, the polymer composition is polymerized under polymerization conditions of an initial temperature of 20 ° C. or less and a polymerization time of 12 hours or less to obtain a plastic lens.
The polymerization is performed by pouring the polymer composition into a lens mold and heating to polymerize.
As the lens molding mold, it is preferable to use a conventionally known gasket and mold. Examples of the material for the gasket include fluorine resins such as tetrafluoroethylene resin. Generally, glass is used as a material for the mold.
 重合の温度条件は、好ましくは0~150℃の範囲で行われる。また、重合の温度条件としては、初期温度は、20℃以下であり、より好ましくは0~15℃であり、さらに好ましくは0~10℃である。最終温度は、特に限定されないが、例えば、100~150℃が好ましく、110~140℃がより好ましく、120~130℃が更に好ましい。これらの温度条件は、当業界の技術常識を考慮して、重合組成物の粘度の経時変化に応じて熱対流が生じないような条件で昇温プログラムを設定して最終温度まで昇温する。
 60℃以下で重合させる時間の割合は、特に限定されないが、重合組成物の粘度が低い状態にある場合には温度を低く保ち熱対流を防ぐ観点から、重合時間全体に対して、好ましくは60~90%であり、より好ましくは65~85%であり、更に好ましくは70~80%である。特に本発明のプラスチックレンズの製造方法においては、条件(2)を満足する重合組成物を用いるため、このような低温条件での重合によっても高粘度化するため、昇温プログラム後期において短時間で昇温してもプラスチックレンズの脈理が発生しにくくなる。
The polymerization temperature condition is preferably in the range of 0 to 150 ° C. As for the temperature condition for the polymerization, the initial temperature is 20 ° C. or less, more preferably 0 to 15 ° C., and further preferably 0 to 10 ° C. The final temperature is not particularly limited, but is preferably 100 to 150 ° C., more preferably 110 to 140 ° C., and still more preferably 120 to 130 ° C. In consideration of technical common knowledge in the industry, these temperature conditions are set to a temperature raising program under conditions such that thermal convection does not occur according to a change in the viscosity of the polymerization composition over time, and the temperature is raised to the final temperature.
The ratio of the polymerization time at 60 ° C. or lower is not particularly limited, but when the viscosity of the polymerization composition is in a low state, it is preferably 60 with respect to the entire polymerization time from the viewpoint of keeping the temperature low and preventing thermal convection. It is -90%, More preferably, it is 65-85%, More preferably, it is 70-80%. In particular, in the method for producing a plastic lens of the present invention, since a polymerization composition satisfying the condition (2) is used, the viscosity is increased even by polymerization under such a low temperature condition. Even when the temperature is raised, the striae of the plastic lens hardly occur.
 重合時間は、12時間以下であり、生産性の観点から、好ましくは10時間以下、より好ましくは5時間以下である。重合時間の下限値は特に限定されないが、3時間以上である。これらの重合時間に応じて上記の昇温プログラムが設定される。 The polymerization time is 12 hours or less, and preferably 10 hours or less, more preferably 5 hours or less from the viewpoint of productivity. Although the lower limit of polymerization time is not specifically limited, It is 3 hours or more. The above temperature raising program is set according to these polymerization times.
 本発明の製造方法により、セミレンズやフィニッシュレンズを製造することができる。これらの中でも、眼鏡枠形状に切削するなどの加工前のレンズ重量が20g以上のレンズや、厚みのあるレンズの製造では多量の重合組成物を必要とする、熱対流が起こりやすくなる等の理由から脈理の発生が起こりやすくなるが、本発明に使用する重合組成物を用いることで、脈理の発生を低減することができる。 Semi-lenses and finish lenses can be manufactured by the manufacturing method of the present invention. Among these, the lens weight before processing such as cutting into the shape of a spectacle frame or a lens having a thickness of 20 g or more or a thick lens requires a large amount of a polymerized composition, and the reason is that heat convection is likely to occur. However, the occurrence of striae can be reduced by using the polymerization composition used in the present invention.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例及び比較例において得られた眼鏡用プラスチックレンズの物性評価は以下のようにして行った。
(1)粘度(mPa・s(10℃))
 (株)セコニック製振動式粘度計ビスコメイトVM‐10Aを用い10℃で測定した。なお測定方法はJIS Z8803に準拠した。
(2)脈理の有無
 ウシオ電機(株)製外観検査装置オプティカル モデュレックスSX-UI251HQを用いて投影検査を行った。
 光源の高圧UVランプにはUSH-102Dを用いて1mの距離に白色のスクリーンを設置し、被検レンズを光源とスクリーン間に挿入し、スクリーン上の投影像により合否を決定した。
 投影像に線状の不整の無いものを良品とし、線状の不整のあるものを不良とした。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples. In addition, the physical property evaluation of the plastic lens for spectacles obtained in the Example and the comparative example was performed as follows.
(1) Viscosity (mPa · s (10 ° C))
It measured at 10 degreeC using Seconic Co., Ltd. vibratory viscometer Viscomate VM-10A. The measuring method was based on JIS Z8803.
(2) Presence or absence of striae A projection inspection was performed using an optical inspection device Optical Modex SX-UI251HQ manufactured by USHIO INC.
A white screen was installed at a distance of 1 m using a USH-102D as a high-pressure UV lamp as a light source, a test lens was inserted between the light source and the screen, and pass / fail was determined by the projected image on the screen.
A projection image having no linear irregularity was regarded as a non-defective product, and a projection image having a linear irregularity was regarded as defective.
(実施例1~10、比較例1~4)
 以下の表1に示す重合組成物を注型し、次いでレンズ成形用鋳型内で表記載の重合プログラムの昇温条件で重合硬化してプラスチックレンズを製造した。

(Examples 1 to 10, Comparative Examples 1 to 4)
The polymer composition shown in Table 1 below was cast, and then polymerized and cured in a lens molding mold under the temperature raising conditions of the polymerization program described in the table to produce a plastic lens.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
*1フィニッシュレンズ:径70mm、レンズ度数-6.00ジオプター、中心肉厚1.0mm、コバ厚9.0mm
*2セミレンズ:径70mm、レンズベースカーブ136mm(曲率半径R)、中心肉厚4.0mm、コバ厚8.0mm
* 1 Finish lens: 70mm diameter, lens power -6.00 diopter, center thickness 1.0mm, edge thickness 9.0mm
* 2 Semi-lens: Diameter 70mm, lens base curve 136mm (curvature radius R), center thickness 4.0mm, edge thickness 8.0mm
(重合プログラム)
P1:初期温度10℃で、3.5時間かけて40℃に昇温し、その後、0.5時間で125℃まで昇温し、更に125℃で1時間保持した(全5時間、60℃以下約4時間)。
P2:初期温度7.5℃で5.0時間保持し、その後3.0時間かけて55℃に昇温し、その後、1.0時間で125℃まで昇温し、更に125℃で1時間保持した(全10時間、60℃以下約8時間)。
P3:初期温度15℃で5.0時間保持し、その後3.0時間かけて55℃に昇温し、その後、1.0時間で125℃まで昇温し、更に125℃で1時間保持した(全10時間、60℃以下約8時間)。
P4:初期温度25℃で5.0時間保持し、その後3.0時間かけて55℃に昇温し、その後、1.0時間で125℃まで昇温し、更に125℃で1時間保持した(全10時間、60℃以下約8時間)。
P5:初期温度13℃で4.0時間保持し、その後4.0時間かけて80℃に昇温し、その後、0.5時間で125℃まで昇温し、更に125℃で1時間保持した(全9.5時間、60℃以下約7時間)。
(Polymerization program)
P1: The temperature was raised to 40 ° C. over 3.5 hours at an initial temperature of 10 ° C., then raised to 125 ° C. in 0.5 hours, and further maintained at 125 ° C. for 1 hour (total 5 hours, 60 ° C. About 4 hours or less).
P2: Hold at an initial temperature of 7.5 ° C. for 5.0 hours, then raise the temperature to 55 ° C. over 3.0 hours, then raise the temperature to 125 ° C. in 1.0 hour, and further at 125 ° C. for 1 hour Held (total 10 hours, about 8 hours at 60 ° C. or less).
P3: Hold for 5.0 hours at an initial temperature of 15 ° C., then raise the temperature to 55 ° C. over 3.0 hours, then raise the temperature to 125 ° C. over 1.0 hour, and further hold at 125 ° C. for 1 hour (Total 10 hours, about 8 hours under 60 ° C.).
P4: Hold for 5.0 hours at an initial temperature of 25 ° C., then raise the temperature to 55 ° C. over 3.0 hours, then raise the temperature to 125 ° C. over 1.0 hour, and further hold at 125 ° C. for 1 hour (Total 10 hours, about 8 hours under 60 ° C.).
P5: Hold for 4.0 hours at an initial temperature of 13 ° C., then raise the temperature to 80 ° C. over 4.0 hours, then raise the temperature to 125 ° C. in 0.5 hours, and further hold at 125 ° C. for 1 hour (Total 9.5 hours, about 7 hours at 60 ° C. or less).
 以上の結果より、条件(1)及び(2)を満足する重合組成物を用いた場合には12時間以内の重合プログラムによりプラスチックレンズを製造した場合であっても、初期温度20℃以下の条件で重合させることで、脈理不良が発生にくいことがわかる。 From the above results, when using a polymerization composition satisfying the conditions (1) and (2), even when a plastic lens is produced by a polymerization program within 12 hours, the initial temperature is 20 ° C. or less. It can be seen that the formation of striae causes less striae defects.
 本発明によれば、短時間の重合時間で、脈理不良の少ないプラスチックレンズを製造することができるため、プラスチックレンズの生産性を高めることができ、更に電気炉設備費用を低減することができる。 According to the present invention, a plastic lens with few striae defects can be produced in a short polymerization time, so that the productivity of the plastic lens can be increased, and further, the cost of the electric furnace equipment can be reduced. .

Claims (5)

  1.  (A)ポリイソシアネート化合物と(B)一分子中に複数のメルカプト基又はヒドロキシ基を持つ化合物と(C)重合触媒とを含み、下記条件(1)及び(2)を満たす重合組成物を、初期温度20℃以下、重合時間12時間以下の重合条件で重合させる、プラスチックレンズの製造方法。
    (1)調合直後の10℃における粘度が200mPa・s以下である。
    (2)10℃一定条件での8時間経過後の粘度が400mPa・s以上かつ100Pa・s以下である。
    A polymerization composition comprising (A) a polyisocyanate compound, (B) a compound having a plurality of mercapto groups or hydroxy groups in one molecule, and (C) a polymerization catalyst, and satisfying the following conditions (1) and (2): A method for producing a plastic lens, wherein polymerization is carried out under polymerization conditions of an initial temperature of 20 ° C. or less and a polymerization time of 12 hours or less.
    (1) The viscosity at 10 ° C. immediately after blending is 200 mPa · s or less.
    (2) The viscosity after 8 hours at a constant temperature of 10 ° C. is 400 mPa · s or more and 100 Pa · s or less.
  2.  前記重合触媒が下記一般式(I)で表わされる有機金属化合物である、請求項1に記載のプラスチックレンズの製造方法。
     (R)n-Sn-(X)4-n   (I)
    〔式(I)中、Rは炭素数1から12の炭化水素基を示し、Xはフッ素原子、塩素原子、又は臭素原子を示し、nは1から3の整数である。〕
    The method for producing a plastic lens according to claim 1, wherein the polymerization catalyst is an organometallic compound represented by the following general formula (I).
    (R) n -Sn- (X) 4-n (I)
    [In formula (I), R shows a C1-C12 hydrocarbon group, X shows a fluorine atom, a chlorine atom, or a bromine atom, and n is an integer of 1-3. ]
  3.  前記重合条件において、最終温度が100~150℃であり、且つ、60℃以下で重合させる時間の割合が60~90%である、請求項1又は2に記載のプラスチックレンズの製造方法。 3. The method for producing a plastic lens according to claim 1, wherein, under the polymerization conditions, the final temperature is 100 to 150 ° C., and the proportion of time for polymerization at 60 ° C. or less is 60 to 90%.
  4.  前記重合条件において、重合時間が10時間以下である、請求項1~3のいずれかに記載のプラスチックレンズの製造方法。 The method for producing a plastic lens according to any one of claims 1 to 3, wherein the polymerization time is 10 hours or less under the polymerization conditions.
  5.  前記重合条件において、重合時間が5時間以下である、請求項1~4のいずれかに記載のプラスチックレンズの製造方法。 The method for producing a plastic lens according to any one of claims 1 to 4, wherein the polymerization time is 5 hours or less under the polymerization conditions.
PCT/JP2013/057869 2012-03-27 2013-03-19 Method for producing plastic lens WO2013146481A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014507759A JP6095646B2 (en) 2012-03-27 2013-03-19 Manufacturing method of plastic lens
CN201380016414.7A CN104203526B (en) 2012-03-27 2013-03-19 The manufacture method of plastic lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012072547 2012-03-27
JP2012-072547 2012-03-27

Publications (1)

Publication Number Publication Date
WO2013146481A1 true WO2013146481A1 (en) 2013-10-03

Family

ID=49259738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057869 WO2013146481A1 (en) 2012-03-27 2013-03-19 Method for producing plastic lens

Country Status (3)

Country Link
JP (1) JP6095646B2 (en)
CN (1) CN104203526B (en)
WO (1) WO2013146481A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109575217A (en) * 2017-12-28 2019-04-05 Skc株式会社 Polymerizable composition for optical material
WO2020004432A1 (en) * 2018-06-28 2020-01-02 ホヤ レンズ タイランド リミテッド Polymerizable composition for optical member

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101996981B1 (en) * 2017-10-18 2019-07-05 에스케이씨 주식회사 Polymerizable composition for plastic lens
KR102003056B1 (en) * 2018-01-12 2019-07-23 에스케이씨 주식회사 Plastic tinted lenses and manufacturing method thereof
JP7296754B2 (en) * 2019-03-28 2023-06-23 ホヤ レンズ タイランド リミテッド Polymerizable composition for optical member, optical member, and spectacle lens
KR102150592B1 (en) * 2019-09-11 2020-09-01 에스케이씨 주식회사 Polymerizable composition for optical material
WO2021153631A1 (en) 2020-01-27 2021-08-05 三井化学株式会社 Polymerizable composition for optical material, polymerizable prepolymer composition for optical material, cured product, and method for producing optical material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104101A (en) * 1993-09-29 1995-04-21 Hoya Corp Production of polyurethane lens
JPH1081726A (en) * 1996-09-09 1998-03-31 Mitsui Petrochem Ind Ltd Composition for urethane-based plastic lens, plastic lens obtained therefrom and its production
JP2000256435A (en) * 1999-03-10 2000-09-19 Mitsui Chemicals Inc Novel optical resin
JP2005081772A (en) * 2003-09-10 2005-03-31 Seiko Epson Corp Manufacturing method for optical article

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1036204C (en) * 1988-02-17 1997-10-22 三井东圧化学株式会社 Polyurethane base lens resin, plastic lens comprising resin and preparation method of lens
US5693738A (en) * 1994-04-08 1997-12-02 Mitsui Toatsu Chemicals, Inc. Composition for urethane-base plastic lens, urethane-base plastic lens obtained from the composition, and process for the production of the plastic lens
JPH09254267A (en) * 1996-03-21 1997-09-30 Nasu Nikon:Kk Production of plastic lens
JP2009226742A (en) * 2008-03-24 2009-10-08 Seiko Epson Corp Manufacturing method of plastic lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104101A (en) * 1993-09-29 1995-04-21 Hoya Corp Production of polyurethane lens
JPH1081726A (en) * 1996-09-09 1998-03-31 Mitsui Petrochem Ind Ltd Composition for urethane-based plastic lens, plastic lens obtained therefrom and its production
JP2000256435A (en) * 1999-03-10 2000-09-19 Mitsui Chemicals Inc Novel optical resin
JP2005081772A (en) * 2003-09-10 2005-03-31 Seiko Epson Corp Manufacturing method for optical article

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109575217A (en) * 2017-12-28 2019-04-05 Skc株式会社 Polymerizable composition for optical material
JP2019119861A (en) * 2017-12-28 2019-07-22 エスケーシー カンパニー,リミテッド Polymerizable composition for optical material
TWI691519B (en) * 2017-12-28 2020-04-21 南韓商Skc股份有限公司 Polymerizable composition for an optical material
CN109575217B (en) * 2017-12-28 2021-05-11 Skc株式会社 Polymerizable composition for optical material
WO2020004432A1 (en) * 2018-06-28 2020-01-02 ホヤ レンズ タイランド リミテッド Polymerizable composition for optical member
JP2020003654A (en) * 2018-06-28 2020-01-09 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd Optical member polymerizable composition
KR20210013616A (en) * 2018-06-28 2021-02-04 호야 렌즈 타일랜드 리미티드 Polymerizable composition for optical member
KR102537660B1 (en) * 2018-06-28 2023-05-26 호야 렌즈 타일랜드 리미티드 Polymerizable composition for optical members
JP7332251B2 (en) 2018-06-28 2023-08-23 ホヤ レンズ タイランド リミテッド Polymerizable composition for optical members
US11760831B2 (en) 2018-06-28 2023-09-19 Hoya Lens Thailand Ltd. Polymerizable composition for optical member

Also Published As

Publication number Publication date
JP6095646B2 (en) 2017-03-15
CN104203526B (en) 2016-11-09
JPWO2013146481A1 (en) 2015-12-10
CN104203526A (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP6095646B2 (en) Manufacturing method of plastic lens
JP6077146B2 (en) Method for producing resin for urethane-based optical material, resin composition, and produced optical material
US10066081B2 (en) Polymerizable composition for optical materials
KR102081524B1 (en) Polymerizable composition for optical materials, optical material and plastic lens obtained from the composition
JP5016211B2 (en) Manufacturing method of plastic lens
JP6468284B2 (en) Optical material composition, production method thereof, and optical material obtained from optical material composition
US10954341B2 (en) Polymerizable composition for optical material, optical material, process for preparing polymerizable composition for optical material, and method of manufacturing optical material
KR101827334B1 (en) Novel episulfide compound and optical material composition including same
JP6276754B2 (en) Light-resistant polyurethane composition
EP3650480A1 (en) Polymerizable composition for optical materials and molded body
JP2023121821A (en) Polymerizable composition for optical material, optical material, and use thereof
KR101815951B1 (en) Novel sulfur compound and composition for optical materials containing same
TW201506083A (en) Composition for optical material
JPWO2016031975A1 (en) Optical resin composition, optical member obtained by curing optical resin composition, and plastic lens for spectacles
KR101961941B1 (en) Polythiourethane plastic lens
JP2004345123A (en) Plastic lens manufacturing method
JP6352398B2 (en) Polyisocyanate monomer composition for optical member, optical member and method for producing the same
KR101687272B1 (en) Optical material composition, and application for same
JP5835526B2 (en) Novel thiol compound and optical material composition using the same
KR101569435B1 (en) Method for producing optical material
WO2020022369A1 (en) Method for setting polymerization conditions and method for producing optical material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507759

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769628

Country of ref document: EP

Kind code of ref document: A1