WO2013146347A1 - Resin mixture, aqueous resin dispersion containing same, toner, and developer - Google Patents

Resin mixture, aqueous resin dispersion containing same, toner, and developer Download PDF

Info

Publication number
WO2013146347A1
WO2013146347A1 PCT/JP2013/057400 JP2013057400W WO2013146347A1 WO 2013146347 A1 WO2013146347 A1 WO 2013146347A1 JP 2013057400 W JP2013057400 W JP 2013057400W WO 2013146347 A1 WO2013146347 A1 WO 2013146347A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
molecular weight
trivalent
acid
unit derived
Prior art date
Application number
PCT/JP2013/057400
Other languages
French (fr)
Japanese (ja)
Inventor
清隆 深川
細川 隆史
俊英 芳谷
俊光 佐久間
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013146347A1 publication Critical patent/WO2013146347A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/123Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/127Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/20Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/0804Preparation methods whereby the components are brought together in a liquid dispersing medium
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08742Binders for toner particles comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08755Polyesters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08795Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their chemical properties, e.g. acidity, molecular weight, sensitivity to reactants

Definitions

  • the present invention relates to a resin mixture, an aqueous resin dispersion containing the same, a toner and a developer.
  • the electrophotographic method applied to various printing devices such as copiers is now widespread and can be used to instantly copy many good color images as well as black and white images.
  • This electrophotography is typically performed by the following apparatus and process (see FIG. 1).
  • the surface of the photosensitive member (latent image holding member) 1 using a photoconductive substance is charged by the charging unit 8 and exposed to light L to form a latent image electrically.
  • a toner image is formed by applying toner from the drum 3 stored in the toner supply chamber 2 to the latent image formed here.
  • the toner 5 is charged to a charge opposite to that of the photoreceptor.
  • the toner image is transferred onto the surface of a transfer medium such as paper 4 via an intermediate transfer body (not shown) as necessary.
  • a desired image can be obtained by fixing the transfer image 51 by heating, pressurization, solvent vapor or the like.
  • the toner remaining on the surface of the photoreceptor is cleaned by the cleaner 7 as necessary, and is used again for developing the toner image. Further, the photoconductor is neutralized by a static eliminator 9 to prepare for the next copy.
  • the toner contains a resin mainly composed of a high molecular compound, and the influence on the environment related to its production cannot be ignored. Since there is no external shape like a molded body, it tends to be overlooked, but there is a great potential for improving environmental compatibility as a resin product that is consumed in large quantities.
  • polymers derived from fossil fuels are usually used, and from the viewpoint of recent environmental problems, it is desired to replace them with those derived from natural resources with low equivalent carbon dioxide emission.
  • the present applicant has previously focused on a resin derived from a natural resource, dehydroabietic acid, and succeeded in synthesizing a polymer incorporating this in the main chain. And it has proposed using the polymer as resin for toners (refer the said patent document 1). This makes it possible to provide a high-performance toner using a natural material.
  • the present inventor was not satisfied with the above development results, and continued research and development seeking further improvements in performance in toner applications.
  • the development goal was to achieve both the reduction of the fixing temperature on the printing medium in electrophotography and the prevention of hot offset.
  • the fixing temperature is usually about 150 ° C., and it is preferable to lower this. As a result, the printing temperature can be reduced, and energy consumption can be reduced.
  • hot offset is a problem in the vicinity of 190 ° C., and the higher the generated temperature, the less likely to cause printing smearing.
  • the target temperature ranges are different, the two are in conflict with each other, and this problem cannot be solved by simply oscillating the temperature characteristics of the resin used in the toner in one direction.
  • the present invention contributes to the preservation of the global environment by utilizing a plant-derived compound, and the resin having a structure derived from dehydroabietic acid that has already achieved high performance in toner applications has been improved in toner.
  • An object of the present invention is to provide a resin mixture that realizes low-temperature fixability and hot-offset prevention properties, and exhibits good stability over time, an aqueous resin dispersion containing the same, a toner, and a developer.
  • the object of the present invention has been achieved by the following resin mixture, aqueous resin dispersion, toner, toner production method, developer, resin, and resin production method.
  • a resin mixture comprising a high molecular weight resin (A) having a weight average molecular weight of 35,000 or more and 120,000 or less and a low molecular weight resin (B) having a weight average molecular weight of 5,000 or more and less than 30,000.
  • the resin (A) has a repeating unit derived from dehydroabietic acid and a structural unit derived from a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b) in the main chain.
  • the resin (B) is a resin mixture having a repeating unit derived from dehydroabietic acid.
  • the proportion of the structural unit derived from the trivalent or higher polyvalent carboxylic acid (a) or the trivalent or higher polyhydric alcohol (b) is 1 to 20 mol% with respect to the total mol of the resin (A).
  • the resin mixture according to any one of [1] to [8].
  • a structural unit derived from a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b) is represented by the following formula (III-a) or (III-b): [1] ]
  • Ar represents an aromatic ring residue.
  • Z represents a cyclic or chain aliphatic hydrocarbon residue which may contain an ether bond.
  • the resin (A) comprises a tripolymer or higher polyvalent carboxylic acid (a) or a trivalent or higher carboxylic acid having a repeating unit derived from dehydroabietic acid and having a weight average molecular weight of 3,000 to 25,000.
  • the resin mixture according to any one of [1] to [10], wherein the resin mixture has a branched structure linked via a structural unit derived from the polyhydric alcohol (b).
  • X 1 is an alkylene group
  • X 2 is ** — C ( ⁇ O) —L a —C ( ⁇ O) — (** represents a bond bonded to a benzene ring
  • La is alkylene Y 1 to Y 3 are all —C ( ⁇ O) —, —O—, or an alkyleneoxy group bonded to a ring A or a benzene ring by a carbon atom.
  • [1] to [3] represents a group or an alkenylene group) 11].
  • the resin mixture as described in any one of [11].
  • An aqueous resin dispersion comprising the resin mixture according to any one of [1] to [12] in an aqueous medium.
  • a toner comprising the resin mixture according to any one of [1] to [12].
  • the resin (A) has a repeating unit derived from dehydroabietic acid and a structural unit derived from a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b) in the main chain.
  • the resin (B) has a repeating unit derived from dehydroabietic acid.
  • a developer comprising the toner according to [15] or [17] and a carrier.
  • substituents when there are a plurality of substituents or linking groups (hereinafter referred to as substituents) indicated by specific symbols, or when a plurality of substituents are specified simultaneously or alternatively,
  • the groups and the like may be the same as or different from each other. The same applies to the definition of the number of substituents and the like. Further, even if not specifically stated, when a plurality of substituents and the like are close (especially when adjacent), they may be connected to each other or condensed to form a ring.
  • the resin mixture of the present invention the aqueous resin dispersion containing the resin mixture, the toner and the developer contribute to the preservation of the global environment by utilizing a plant-derived compound, and improve the toner at a high level of low-temperature fixability, hot Demonstrates the prevention of offset and the stability over time (storability).
  • FIG. 1 is a side view of an apparatus schematically shown for explaining a copying machine based on electrophotography and a copying process thereof.
  • the resin mixture of the present invention contains a resin having a repeating unit derived from dehydroabietic acid (hereinafter, this may be referred to as a dehydroabietic acid skeleton [DA skeleton]).
  • DA skeleton dehydroabietic acid skeleton
  • This has good properties as a toner application while being derived from a plant (see Patent Document 1).
  • the reason is considered that the tricyclic portion including the benzene ring of the DA skeleton is structurally stable and contributes to the stabilization of the toner characteristics.
  • the present inventor made progress in improving and developing the resin having the DA skeleton by various molecular modifications and blending changes.
  • the polymer constituting the resin is made to have a specific molecular weight, a branched structure is imparted, and the polymer is similarly used in combination with a low molecular weight resin having a DA skeleton. It has been found that it is excellent in the prevention of offset.
  • the present invention has been made based on such findings. Hereinafter, the present invention will be described in detail focusing on preferred embodiments thereof.
  • Resin A used in the present invention is derived from a repeating unit derived from dehydroabietic acid (DA skeleton) and a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b) in the main chain. And a structural unit.
  • the weight average molecular weight of this resin is 35,000 or more and 120,000 or less.
  • the DA skeleton is preferably a repeating unit represented by the following formula (I) (hereinafter, the tricyclic portion may be referred to as “DA main skeleton”).
  • Ring A is a non-aromatic 6-membered ring, and examples thereof include a cyclohexane ring and a dehydrocyclohexene ring.
  • a dehydrocyclohexane ring 1 to 2 double bonds are preferable, and a cyclohexene ring and a cyclohexadiene ring are exemplified.
  • R may be substituted.
  • Ring Cy Ring Cy represents a saturated or unsaturated 6- or 7-membered ring which may contain a hetero atom, but a non-aromatic ring is preferred, and a non-aromatic 6-membered ring is preferred.
  • Ring Cy is preferably an aliphatic ring, and may have a carbon-carbon double bond in a ring-constituting part other than a shared part with a benzene ring, but preferably has no double bond.
  • the heterocyclic ring may have a double bond in a ring constituent part other than a shared part with the benzene ring, but preferably does not have a double bond.
  • hetero atom constituting the hetero ring examples include a nitrogen atom, an oxygen atom, and a sulfur atom, but a nitrogen atom is preferred, and the number of hetero atoms constituting the hetero ring is preferably one.
  • a heterocycle a 7-membered ring is preferred, and a constituent part constituting the heterocycle is more preferably contained in —C ( ⁇ O) NH—, and one of the parts connecting the benzene ring and ring A (dehydroabietine) More preferably, the bond at the 9th and 10th positions is a single bond and the other is —CH 2 C ( ⁇ O) NH—.
  • X 0 represents a single bond or a divalent linking group.
  • Ra represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
  • Preferable examples of the alkyl group, aryl group or heterocyclic group include examples of the substituent T
  • X 0 may form a bis group having a structure represented by the formula (I) through a single bond or the divalent linking group, and is derived from a copolymer component constituting the main chain. a bond or Y 1 and may be combined.
  • X 0 is preferably a single bond or an alkylene group
  • the alkylene group is preferably a methylene group.
  • the methylene group may be substituted with an alkyl group (preferably having 1 to 8 carbon atoms). Examples of the substituted methylene group include dimethylalkylene such as methylmethylene, dimethylmethylene, isopropylmethylene, and t-octylmethylene. It is done.
  • X 0 is particularly preferably an unsubstituted methylene group.
  • ** represents a bond bonded to the benzene ring.
  • L a represents an alkylene group or alkenylene group. If L a is an alkylene group, it preferably has 1 to 10 carbon atoms, more preferably 2 to 10, more preferably 2.
  • L a is an alkenylene group, it preferably has 2 to 10 carbon atoms, more preferably 2.
  • L b represents an alkylene group or an alkenylene group, preferably having 1 to 4 carbon atoms, more preferably 2, and further preferably —CH (CH 3 ) —.
  • L c represents an alkylene group or an alkenylene group, preferably having 1 to 4 carbon atoms, more preferably 3, and further preferably —C (CH 3 ) 2 —.
  • L e represents a hydrocarbon group, it preferably has 1 to 10 carbon atoms, more preferably 1-4.
  • Ar 1 represents an arylene group and is preferably phenylene.
  • ⁇ Y 1 Y 1 represents a divalent linking group, preferably the divalent linking group exemplified for X 0 (the bond ** binds to ring A), and the preferred range is also the same.
  • R R represents a substituent, and examples of such a group include a substituent T described later.
  • R is preferably an alkyl group, an alkenyl group, an alkoxy group or a halogen atom, more preferably an alkyl group, an alkenyl group or an alkoxy group, and particularly preferably an alkyl group.
  • the alkyl group or alkoxy group preferably has 1 to 8 carbon atoms, more preferably 1 to 3 carbon atoms. Of the alkyl groups, a methyl group and an isopropyl group are preferable.
  • ⁇ N1 n1 represents an integer of 0 to 18, preferably 1 to 5, and more preferably 3 to 5.
  • repeating unit (DA main skeleton) represented by the formula (I) include the structures represented by the following.
  • the structure represented by the formula (I) is preferably a structure represented by the following formula (IA) or (IB).
  • ring A, ring Cy, Y 1 , R and n1 have the same meanings as in formula (I), and preferred ranges are also the same.
  • X 1 represents a single bond or a divalent linking group.
  • the divalent linking group for X 1 include the divalent linking groups listed for X 0 .
  • X 1 is preferably a single bond or an alkylene group, and the alkylene group is preferably a methylene group.
  • the methylene group may be substituted with an alkyl group (preferably having 1 to 8 carbon atoms).
  • the substituted methylene group include dimethylalkylene such as methylmethylene, dimethylmethylene, isopropylmethylene, and t-octylmethylene. It is done.
  • X 0 is particularly preferably an unsubstituted methylene group.
  • X 2 , Y 2 , Y 3 represent a divalent linking group.
  • X 2 , Y 2 and Y 3 have the same meaning as Y 1 , and the preferred range is also the same.
  • the structure represented by the above formula (IA) or (IB) is preferably a structure represented by the following formula (IA-1) or (IB-1), and is represented by the following formula (IA-2) or (IB-2)
  • the structure represented by is more preferable.
  • Ring B represents a non-aromatic 6-membered ring.
  • Ring B may have a double bond in addition to the bond shared with the benzene ring. In this case, one double bond is preferred. That is, even if the bond shared with ring A is a double bond, the bond not shared with either the benzene ring or ring A may be a double bond.
  • R may be substituted, and as a substituent, in addition to substituent T described later, ⁇ O is preferable.
  • N2 represents an integer from 0 to 17.
  • X 1 , X 2 and Y 1 to Y 3 have the same meanings as the formula (IA-1) or (IB-1), and preferred ranges are also the same. .
  • X 1 is an alkylene group
  • X 2 is the above-mentioned **- C ( ⁇ O) —L a —C ( ⁇ O) — (** represents a bond bonded to the benzene ring
  • L a represents an alkylene group or an alkenylene group
  • —C ( ⁇ O) — Y 1 to Y 3 are all preferably —C ( ⁇ O) —, —O—, or an alkyleneoxy group bonded to the ring A or the benzene ring by a carbon atom
  • X 1 is a methylene group.
  • X 2 is ** — C ( ⁇ O) —L a ′ —C ( ⁇ O) — (L a ′ represents an alkylene group), and Y 1 to Y 3 are all —C ( ⁇ O )-Is more preferable.
  • ring A, ring Cy, X 0 , Y 1 , R and n1 have the same meanings as in formula (I), and preferred ranges are also the same.
  • G 1 represents a hydrogen atom or a hydroxyl group
  • G 2 represents a hydrogen atom, a hydroxyl group, or a hydroxy group, a carboxyl group, a mercapto group, an amino group, or an organic group having —N ⁇ C ⁇ O.
  • ring A, ring Cy, X 1 , R and n1 have the same meanings as formula (IA) or (IB), and preferred ranges are also the same.
  • G represents a carboxyl group, a hydroxyl group, a mercapto group, an amino group, —N ⁇ C ⁇ O, or an organic group substituted by these.
  • These preferred groups are, in short, the preferred groups mentioned for X 0 , X 2 , Y 1 , Y 2 , Y 3 in the formulas (I), (IA), (IB), and the benzene ring or ring A
  • a bond in which a hydrogen atom or a hydroxyl group is bonded to the bond on the side opposite to the bond bonded to is preferable.
  • the structure represented by the formula (I) does not limit stereoisomerism, and may be any stereoisomer or a mixture thereof.
  • the repeating unit including the structure represented by the formula (I) of the resin A is within the range represented by the formula (I), and even if it is one type of repeating unit, two or more different structures are used. May be a repeating unit.
  • the compound represented by the formula (I) preferably has a structure derived from dehydroabietic acid, an analog thereof or a compound derived therefrom.
  • dehydroabietic acid is one of the components constituting rosin contained in pine resin of plant origin. That is, since a material of natural origin can be used as its substrate, it is offset in the amount of carbon dioxide emission, and the equivalent emission amount can be greatly reduced as compared with a plastic material of fossil fuel origin. It is an environmentally-friendly material derived from biomass resources that is desired as a next-generation material.
  • dehydroabietic acid analogs or compounds derived therefrom include the following compounds.
  • dehydroabietic acid can be obtained, for example, from rosin.
  • Constituents contained in rosin vary depending on the method of collection and the production area of pine, but in general, abietic acid (1), neoabietic acid (2), parastrinic acid (3), levopimaric acid (4), It is a mixture of diterpene resin acids such as dehydroabietic acid (5), pimaric acid (6) and isopimaric acid (7).
  • diterpene resin acids the compounds represented by the above (1) to (4) are disproportionated by heat treatment in the presence of a certain metal catalyst, and dehydroabietic acid (5 ) And dihydroabietic acid (8).
  • dehydroabietic acid (5) can be obtained relatively easily by subjecting rosin, which is a mixture of various resin acids, to an appropriate chemical treatment, and can be produced industrially and inexpensively.
  • Dihydroabietic acid (8) and dehydroabietic acid (5) can be easily separated by a known method.
  • the dimerization can be synthesized by the method described in JP 2011-26569 A.
  • the reaction can proceed by adding a catalytic amount of N, N-dimethylformamide using oxalyl chloride.
  • the reaction may proceed by mixing the monomer with an aldehyde compound (for example, formalin, acetaldehyde) or a ketone compound (for example, acetone) and adding a catalytic amount of trifluoroacetic acid.
  • an aldehyde compound for example, formalin, acetaldehyde
  • a ketone compound for example, acetone
  • acylation to the benzene ring is easily synthesized by usual acylation, for example, Friedel-Crafts reaction with Lewis acid such as succinic anhydride and aluminum chloride or iron chloride.
  • dicarboxylic acid compounds or diol compounds can synthesize polyester resins by the condensation reaction of the former with a diol compound and the latter with a dicarboxylic acid compound, and those having one carboxyl group and one hydroxyl group
  • a polyester resin can be synthesized by condensation or condensation with another compound having one carboxyl group and one hydroxyl group.
  • resins other than polyester resins can be produced using these as raw materials.
  • the resin A has a structure derived from a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b).
  • Resin A may include only one type of structure derived from a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b), or a trivalent or higher polyvalent carboxylic acid (You may be comprised including 2 or more types of structures derived from a) or a trihydric or more polyhydric alcohol (b).
  • the trivalent or higher polyvalent carboxylic acid (a) may be any trivalent or higher polyvalent aliphatic or polyvalent aromatic carboxylic acid. preferable.
  • trivalent or higher polyvalent aliphatic carboxylic acid examples include citric acid, aconitic acid, butane-1,2,3,4-tetracarboxylic acid, 3-butene-1,2,3-tricarboxylic acid, and the like. It is done.
  • the structure derived from a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b) is a structure represented by the following formula (III-a) or (III-b): These compounds can incorporate a compound represented by the following formula (III-a ′) or (III-b ′) as a raw material monomer into a polymer.
  • ⁇ M1, m2 m1 and m2 represent an integer of 3 or more. m1 and m2 are preferably 3 to 6.
  • Ar represents an aromatic ring residue, and Ar may be either a benzene ring residue, a naphthalene ring residue, or an aromatic ring residue in which two or more aromatic rings are linked, but a benzene ring residue or a naphthalene ring Residues are preferred, and benzene ring residues are particularly preferred.
  • the compound represented by the formula (III-a ′) is used as the raw material monomer, it is preferable to use the —CO 2 H moiety as an acid anhydride, an acid halide such as —COCl, or an ester.
  • Examples of the raw material monomer for obtaining such a residue include the following compounds.
  • ⁇ Z Z represents a cyclic or chain aliphatic hydrocarbon residue (preferably having 3 to 6 carbon atoms) which may contain an ether bond. Of these, saturated aliphatic residues are preferable, and chain aliphatic groups are more preferable. Examples of the raw material monomer for obtaining such a residue include the following compounds.
  • the proportion of the structure derived from the trivalent or higher polyvalent carboxylic acid (a) or the trivalent or higher polyhydric alcohol (b) depends on these valences.
  • the content is preferably 1 to 20 mol%, more preferably 2 to 15 mol%, based on the total mol of each repeating unit.
  • the mol% contained in the resin A of the skeleton derived from dehydroabietic acid (DA skeleton) is 1 to 49.5 mol% with respect to the total components of the constituent raw materials or each repeating unit in the resin A. It is preferably 5 to 49.5 mol%.
  • the raw material monomer containing the DA skeleton is self-condensed containing both a hydroxyl group and a carboxyl group, it is preferably 2 to 99 mol%, more preferably 10 to 99 mol%.
  • raw material monomers such as diol compounds and dicarboxylic acid compounds other than the repeating unit containing the structure represented by formula (I) are based on the constituent raw materials in resin A or the total moles of each repeating unit.
  • the DA skeleton is preferably 1 to 49.5 mol%, more preferably 5 to 49.5 mol%.
  • Resin A is branched by the above trivalent or higher polyvalent carboxylic acid (a) or trivalent or higher polyhydric alcohol (b).
  • This branch is a straight chain having a weight average molecular weight of 1,000 or more. It is preferably branched from a main chain, more preferably branched from a linear main chain having a weight average molecular weight of 1,000 or more and 20,000 or less, and a straight chain having a weight average molecular weight of 1,500 or more and 15,000 or less. More preferably, it is branched from a chain-like main chain.
  • Such branching can be adjusted by a method of adding a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b) as a raw material monomer.
  • the above-mentioned trivalent or higher polyvalent carboxylic acid (a) or a derivative thereof or a trivalent or higher polyhydric alcohol (b) is added to a prepolymer having no branched structure, or (b) these It is possible to adjust by adding the polyvalent compound separately.
  • the method (b) is preferable from the viewpoint of adjusting the acid value, and the number of times of addition in divided addition is preferably 2 times or more, preferably 2 to 5 times, more preferably 2 to 3 times.
  • the weight average molecular weight (M high ) of the resin A is from 35,000 to 120,000, preferably from 40,000 to 120,000, more preferably from 50,000 to 120,000.
  • M high The weight average molecular weight of the resin A.
  • the molecular weight distribution (weight average molecular weight / number average molecular weight) of the resin (A) is preferably 7 to 25, and more preferably 7 to 20.
  • the weight average molecular weight, number average molecular weight, and molecular weight distribution in the present invention are values obtained by molecular weight measurement (polystyrene conversion) by gel permeation chromatography (GPC). Further, the weight average molecular weight of the polymer defined in the present invention is within a range in which no gel or THF-insoluble matter is usually observed even if the branch-crosslinking reaction proceeds. Unless otherwise specified, in this specification, tetrahydrofuran is used as a carrier, and molecular weight is indicated by a value using TSK-gel Super AWM-H (trade name) manufactured by Tosoh Corporation as a column.
  • the resin B used in the present invention is a resin containing a structure represented by the formula (I) in the main chain, and has a weight average molecular weight of 5,000 or more and less than 30,000. Also in the resin B, the structure represented by the formula (I) is the same as that of the resin A, and the preferred range is also the same. Also, the resin B preferably includes a structure derived from a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b), and is the same as the resin A except for the weight average molecular weight. .
  • the weight average molecular weight (M low ) of the resin (B) is 5,000 or more and less than 30,000, preferably 10,000 or more and less than 30,000, and preferably 15,000 or more and 25,000 or less. More preferred.
  • the weight average molecular weight By setting the weight average molecular weight to the lower limit value or more, the particle shape of the aqueous dispersion can be controlled.
  • the fixing lower limit temperature By setting the upper limit value or less, the fixing lower limit temperature can be set within a suitable range.
  • the molecular weight distribution (weight average molecular weight / number average molecular weight) of the resin (B) is preferably 2 to 6, and more preferably 3 to 6.
  • the measuring method of a weight average molecular weight, a number average molecular weight, and molecular weight distribution is the same as that of the said resin (A).
  • the resin (B) may or may not have a branch.
  • the resin (B) is a structural unit derived from a repeating unit derived from dehydroabietic acid and a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b) in the main chain. It is preferable that it has.
  • Resins A and B preferably have a repeating unit represented by the following formula (II) in addition to the repeating unit containing the structure represented by the above formula (I).
  • This repeating unit may incorporate two or more repeating units having different structures.
  • a polyester resin can be produced by self-condensation.
  • L 2 and L 3 represent —O—, —S—, —N (Ra) —, —C ( ⁇ O) — or —NHC ( ⁇ O) —.
  • Ra has the same definition as Ra in X 0 in formula (I).
  • the raw material monomer giving the repeating unit of the formula (II) may be replaced with the following groups in L 2 and L 3 of L 1 .
  • the following including L 2 or L 3 is preferable.
  • -O- -OH
  • -S- -SH
  • —N (Ra) — —NH
  • Ra In the case of —C ( ⁇ O) —: —CO 2 H or a derivative thereof (an carboxylic acid anhydride, halide, ester)
  • Ra has the same definition as Ra in X 0 in formula (I).
  • ⁇ L 1 L 1 represents a divalent linking group, an alkylene group (preferably having 1 to 18 carbon atoms), an alkenylene group (preferably having 2 to 18 carbon atoms), an alkynylene group (preferably having 2 to 18 carbon atoms), an arylene group ( Preferably 6 to 18 carbon atoms), a divalent heterocyclic group (preferably a 5- or 6-membered ring having 0 to 18 carbon atoms and containing any of an oxygen atom, a nitrogen atom and a sulfur atom as a ring-constituting atom) And combinations of these groups are preferred, and —O—, —S—, —SO—, —SO 2 —, —N (Ra) —, —C ( ⁇ O) are present in the linking chain formed by the combination of these groups.
  • an alkylene group preferably having 1 to 18 carbon atoms
  • an alkenylene group preferably having 2 to 18 carbon atoms
  • an alkynylene group preferably
  • Ra has the same definition as Ra in X 0 in formula (I).
  • the total carbon number of the divalent linking group is preferably 1-18.
  • Examples of the raw material monomer for obtaining the repeating unit of the formula (II) include a dicarboxylic acid compound or a derivative thereof, a diol compound, a diamine compound, a diisocyanate compound, and a compound having a hydroxyl group and a carboxyl group.
  • the resin A is preferably a polyester resin. Therefore, in the present invention, a dicarboxylic acid compound or a derivative thereof, or a diol compound is preferable.
  • a divalent carboxylic acid compound or a divalent alcohol compound is used to adjust the branching of the polymer chain. The branched component will be described later.
  • diol compound examples include ethylene glycol, 1,2-propanediol, 1.3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol, Alicyclic diols such as 1,12-dodecanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, cyclohexanediol, cyclohexanedimethanol, hydrogenated bisphenol A; bisphenol A ethylene oxide adducts, bisphenol A, etc. And aromatic diols such as propylene oxide adducts of bisphenols.
  • examples of bisphenol include bisphenol F, bisphenol S, bisphenol SF and the like in addition to bisphenol A.
  • dicarboxylic acid compound include aliphatic, aromatic or heterocyclic dicarboxylic acids.
  • aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, cyclohexanedicarboxylic acid, dicarboxylic acid, and the like.
  • saturated or unsaturated aliphatic dicarboxylic acids such as cyclohexanedicarboxylic acid, malonic acid, succinic acid, glutaric acid, pimelic acid, adipic acid, maleic acid and fumaric acid.
  • the resin of the present invention is a resin obtained by blending resin A and resin B. That is, the resin A and the resin B are those synthesized separately, and the resin of the present invention is a resin obtained by blending them.
  • the resin of the present invention preferably contains resin A: resin B at 30:70 to 70:30, preferably 40 to 60, when the total of resin A and resin B is 100 (mass basis). Is more preferable.
  • a substituent or a linking group for which substitution / non-substitution is not specified means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substitution / non-substitution.
  • Preferred substituents include the following substituent T.
  • substituent T examples include the following.
  • An alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl A group preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like
  • a cycloalkyl group preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohex
  • each of the groups listed as the substituent T may be further substituted with the substituent T described above.
  • the resin of the present invention can be produced by an ordinary polymer synthesis reaction.
  • the resin of the present invention is preferably a polyester resin.
  • a method described in New Polymer Experimental Science 3, Polymer Synthesis / Reaction (2), pages 78 to 95, Kyoritsu Publishing (1996) for example, ester Exchange polymerization, direct esterification, melt polymerization such as acid halide, low-temperature solution polymerization, high-temperature solution polycondensation, interfacial polycondensation, etc.).
  • a transesterification method and a direct ester method are preferably used.
  • the resin A of the present invention has a specific branched structure
  • the resin B preferably has such a branched structure.
  • the manufacturing method of resin A of this invention is demonstrated below, the preferable aspect of resin B can also be manufactured by the same method except a weight average molecular weight.
  • the resin can be obtained by reacting a prepolymer having a repeating unit derived from dehydroabietic acid with a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b). it can.
  • the molecular weight of the prepolymer is preferably 1000 to 20000 in terms of weight average molecular weight, and more preferably 1500 to 15000 in terms of weight average molecular weight.
  • the mixing ratio of the prepolymer to the trivalent or higher polyvalent carboxylic acid (a) or the trivalent or higher polyhydric alcohol (b) is preferably in the same range as described above as the copolymerization ratio.
  • the toner of the present invention includes an aqueous dispersion of a high molecular weight resin (A) having a weight average molecular weight of 35,000 or more and 120,000 or less, and a low molecular weight resin (B) having a weight average molecular weight of 5,000 or more and less than 30,000.
  • the aqueous dispersion, the crystalline polyester resin dispersion, and the colorant dispersion are prepared, and the dispersions are aggregated.
  • the resin (A) is derived from a repeating unit derived from dehydroabietic acid and a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b) in the main chain. With units.
  • Resin (B) has a repeating unit derived from dehydroabietic acid.
  • the weight average molecular weight, number average molecular weight, and molecular weight distribution of the resin (A) and resin (B) used herein are as defined above, including their preferred ranges.
  • the preparation of the toner will be described in detail focusing on preferred embodiments thereof.
  • Examples of the method of mixing the resin (A) and the resin (B) include melt mixing using a biaxial kneader, and a method of mixing after forming an aqueous resin dispersion. Although the preparation of the aqueous resin dispersion will be described in detail in the next section, it is particularly preferable to mix the aqueous resin dispersions from the viewpoint of controlling the dispersion state of the mixture.
  • the aqueous resin dispersion of the present embodiment (hereinafter also simply referred to as “resin dispersion”) is configured by dispersing the resin mixture (hereinafter also simply referred to as resin) in an aqueous medium.
  • resin dispersion is configured by dispersing the resin mixture (hereinafter also simply referred to as resin) in an aqueous medium.
  • the acid value of the resin is preferably 10 mgKOH / g or more and 18 mgKOH / g or less.
  • the hydrophilicity of the resin itself of the present invention is good when the acid value is not less than the above lower limit value, the dispersion stability of the resulting aqueous resin dispersion is good, aggregation can be suppressed, and the resin having a desired particle size It is preferable because particles can be obtained. Further, when the acid value is not more than the above upper limit, hydrophilicity is appropriate, generation of coarse particles can be suppressed, and a good particle size distribution can be obtained. Further, the acid value is more preferably 10 mgKOH / g or more and 15 mgKOH / g or less from the viewpoint of the dispersion stability.
  • the self-dispersibility is, for example, in the absence of a surfactant, when it is in a dispersed state (particularly a dispersed state by a phase inversion emulsification method), depending on a functional group (particularly an acidic group or a salt thereof) of the resin itself It means that it can be dispersed in an aqueous medium, and it means that a resin dispersion containing no free emulsifier can be constituted.
  • the dispersed state includes both an emulsified state (emulsion) in which a resin is dispersed in an aqueous medium and a dispersed state (suspension) in which a resin is dispersed in a solid state in an aqueous medium.
  • This resin is preferably a water-insoluble polymer.
  • the water-insoluble polymer is a polymer having a dissolution amount of 10 g or less when the polymer is dried at 105 ° C. for 2 hours and then dissolved in 100 g of water at 25 ° C., and the dissolution amount is preferably 5 g. Hereinafter, it is more preferably 1 g or less.
  • the dissolution amount is the dissolution amount when neutralized with sodium hydroxide or acetic acid according to the kind of the salt-forming group of the water-insoluble polymer.
  • phase inversion emulsification method for example, a resin is dissolved or dispersed in a solvent (for example, a hydrophilic organic solvent) and then poured into water as it is without adding a surfactant.
  • a solvent for example, a hydrophilic organic solvent
  • the dispersion state of the resin is a solution in which 30 g of resin is dissolved in 70 g of an organic solvent (for example, methyl ethyl ketone), a neutralizing agent that can neutralize 100% of the salt-forming group of the resin (if the salt-forming group is anionic) Sodium hydroxide, acetic acid if cationic) and 200 g of water are mixed and stirred (apparatus: stirring apparatus with stirring blades, rotation speed 200 rpm, 30 minutes, 25 ° C.), and then the organic solvent is obtained from the resulting mixture.
  • an organic solvent for example, methyl ethyl ketone
  • a neutralizing agent that can neutralize 100% of the salt-forming group of the resin (if the salt-forming group is anionic)
  • Sodium hydroxide, acetic acid if cationic) and 200 g of water are mixed and stirred (apparatus: stirring apparatus with stirring blades, rotation speed 200 rpm, 30 minutes, 25 ° C.), and then the organic
  • the binder for toner includes at least one of the above resins and includes other components (for example, a resin) as necessary.
  • the toner binder can be applied to either a dry kneading and pulverizing method or a wet method of granulating toner particles in a liquid.
  • this resin is excellent in self-dispersibility and dispersion stability, it can be suitably used in a wet method for granulating toner with the resin dispersed.
  • the toner binder of the present embodiment can contain at least one other resin as its component.
  • other resins include crystalline resins, and examples include polyester resins other than resins (hereinafter, also referred to as “other polyester resins”).
  • other polyester resins it is preferable to use a resin composition containing a resin (resin mixture) and a crystalline resin, particularly considering toner applications.
  • the “composition” means that two or more components exist in a specific composition substantially homogeneously.
  • substantially uniform means that each component may be unevenly distributed within the range where the effects of the invention are exerted.
  • the composition is not particularly limited as long as the above definition is satisfied, is not limited to a fluid liquid or a paste, and includes a solid or powder composed of a plurality of components. Furthermore, even when there is a sediment, it means that the composition maintains a dispersion state for a predetermined time by stirring.
  • a “mixture” includes a mixture in which two or more components are not uniformly distributed.
  • polyester resins are obtained, for example, mainly by polycondensation of polyvalent carboxylic acids and polyhydric alcohols.
  • polyvalent carboxylic acids include the dicarboxylic acids described above and trivalent or higher polyvalent carboxylic acids.
  • polyhydric alcohols include the diol compounds described above and trihydric or higher polyhydric alcohols.
  • the glass transition temperature (hereinafter sometimes abbreviated as “Tg”) of other polyester resins is preferably 40 ° C. or higher and 80 ° C. or lower, and more preferably 50 ° C. or higher and 70 ° C. or lower.
  • Tg of the polyester resin is 80 ° C. or lower, low-temperature fixability is obtained, and when the Tg is 40 ° C. or higher, sufficient heat storage properties and storability of fixed images are obtained.
  • the molecular weight (weight average molecular weight) of other polyester resins is preferably 5,000 or more and 40,000 or less from the viewpoints of resin manufacturability, fine dispersion during toner production, and compatible toner during melting.
  • other polyester resins contain at least 1 type of crystalline polyester resin.
  • the other polyester resin contains the crystalline polyester resin, the low-temperature fixability of the toner becomes better. Further, since the heating temperature in the fixing process is low, deterioration of the fixing device is suppressed.
  • the other polyester resin contains a crystalline polyester resin and an amorphous polyester resin, the crystalline polyester resin is compatible with the amorphous polyester resin when melted, and the toner viscosity is remarkably reduced. A toner having excellent image gloss can be obtained.
  • the crystalline polyester resins aliphatic crystalline polyester resins are particularly preferable because many of them have a preferable melting point as compared with aromatic crystalline resins.
  • the content of the crystalline polyester resin in the other polyester resins is preferably 2% by mass or more and 20% by mass or less, and more preferably 2% by mass or more and 14% by mass or less.
  • the content of the crystalline polyester resin is 2% by mass or more, the non-crystalline polyester resin can be sufficiently reduced in viscosity at the time of melting, and an improvement in low-temperature fixability is easily obtained.
  • the content of the crystalline polyester resin is 20% by mass or less, the deterioration of the charging property of the toner due to the presence of the crystalline polyester resin can be suppressed, so the image strength after fixing on the recording medium Is easy to obtain.
  • the melting point of the crystalline polyester resin is preferably in the range of 50 ° C. or higher and 100 ° C. or lower, preferably in the range of 55 ° C. or higher and 95 ° C. or lower, and more preferably in the range of 60 ° C. or higher and 90 ° C. or lower. . If the melting point of the crystalline polyester resin is 50 ° C. or higher, the storage stability of the toner and the storage stability of the toner image after fixing are good, and if it is 100 ° C. or lower, the low-temperature fixability is easily improved.
  • Such a crystalline polyester resin is preferably a resin described in paragraph Nos. 0124 to 0135 of International Publication No. 2011-125795A1, and can also be suitably applied to this embodiment.
  • the crystalline polyester resin is synthesized from an acid (dicarboxylic acid) component and an alcohol (diol) component.
  • the “acid-derived component” is a polyester resin, and before the polyester resin is synthesized.
  • the component part which was an acid component is pointed out, and the “alcohol-derived component” refers to the component part which was an alcohol component before the synthesis of the polyester resin.
  • Acid-derived constituent component examples include various dicarboxylic acids, but the acid-derived constituent component in the crystalline polyester resin according to the embodiment is a linear aliphatic dicarboxylic acid. Is desirable. For example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelic acid, sebacic acid, 1,9-nonanedicarboxylic acid, 1,10-decanedicarboxylic acid, 1,11-undecane Dicarboxylic acid, 1,12-dodecanedicarboxylic acid, 1,13-tridecanedicarboxylic acid, 1,14-tetradecanedicarboxylic acid, 1,16-hexadecanedicarboxylic acid, 1,18-octadecanedicarboxylic acid, etc., or lower alkyl esters thereof And acid anhydrides, but are not limited thereto
  • acid-derived component other components such as a dicarboxylic acid-derived component having a double bond and a dicarboxylic acid-derived component having a sulfonic acid group may be contained.
  • the “constituent mol%” here means 1 unit of each of the acid-derived constituent component in the entire acid-derived constituent component in the crystalline polyester resin or the alcohol constituent component in the entire alcohol-derived constituent component ( Mol).
  • Alcohol-derived constituent component is preferably an aliphatic diol, such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1, 6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-dodecanediol, 1,12-undecanediol, 1,13 -Tridecanediol, 1,14-tetradecanediol, 1,18-octadecanediol, 1,20-eicosanediol, and the like, but are not limited thereto.
  • aliphatic diol such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol
  • 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, and 1,10-decanediol are preferable in view of availability and cost.
  • the weight average molecular weight of the crystalline polyester resin is preferably 8,000 or more and 40,000 or less, and preferably 10,000 or more and 30 or less from the viewpoint of resin manufacturability, fine dispersion at the time of toner production, and a compatible toner at the time of melting. Is more preferable. If it is 8,000 or more, the resistance reduction of the crystalline polyester resin can be suppressed, so that the charging property can be prevented from decreasing. If it is 40,000 or less, the cost of resin synthesis is suppressed, and the low-temperature fixability is not adversely affected in order to prevent a decrease in sharp melt properties.
  • the toner binder of the present embodiment may contain other resins than the polyester resin.
  • resins such as polyethylene and polypropylene
  • styrene resins such as polystyrene and ⁇ -polymethylstyrene
  • (meth) acrylic resins such as polymethyl methacrylate and polyacrylonitrile
  • polyamide resins polycarbonate resins, polyether resins and These copolymer resins are exemplified.
  • the content of the resin (resin mixture) in the toner binder of the present embodiment is preferably 10 to 95% by mass, and more preferably 20 to 80% by mass in the total solid content.
  • the resin (resin mixture) can be suitably used particularly as a binder for toner.
  • the toner of the exemplary embodiment only needs to contain a pigment, a release agent, and the resin of the present invention. If necessary, a charge control agent, a carrier, an external additive and the like can be contained.
  • Inorganic fine powders and organic fine particles may be externally added for the purpose of imparting fluidity improvement and charge control to the toner.
  • silica fine particles and titania fine particles whose surface is treated with an alkyl group-containing coupling agent or the like are preferably used. These particles preferably have a number average primary particle size of 10 to 500 nm, and more preferably 0.1 to 20% by mass in the toner.
  • the pigment is not limited, and either an organic pigment or an inorganic pigment can be used.
  • organic pigments include azo pigments, polycyclic pigments, dye chelates, nitro pigments, nitroso pigments, and aniline black. Among these, azo pigments and polycyclic pigments are more preferable.
  • the inorganic pigment include titanium oxide, iron oxide, calcium carbonate, barium sulfate, aluminum hydroxide, barium yellow, cadmium red, chrome yellow, and carbon black. Among these, carbon black is particularly preferable as the black pigment. These are preferably added to the toner in an amount of, for example, 1 to 30% by mass, preferably 5 to 20% by mass, and 30 to 85% by mass when a magnetic material is used as the black pigment.
  • the binder may contain the above-mentioned resin, and it is more preferable to add, for example, 10 to 95% by mass, and further 20 to 80% by mass in the toner.
  • other commonly used binders can be used in combination.
  • ethylene resins such as polyethylene and polypropylene
  • styrene resins such as polystyrene and ⁇ -polymethylstyrene
  • (meth) acrylic resins such as polymethyl methacrylate and polyacrylonitrile
  • polyamide resins, polycarbonate resins, polyether resins and These copolymer resins are exemplified.
  • the toner binder may be used.
  • release agent all the release agents conventionally used for toner can be used. Specific examples include olefins such as low molecular weight polypropylene, low molecular weight polyethylene, and ethylene-propylene copolymer, microcrystalline wax, carnauba wax, sazol wax, and paraffin wax. The amount of these added is preferably 3 to 20% by mass, more preferably 5 to 18% by mass, in the toner.
  • -Charge control agent As a charge control agent, you may add as needed, but a colorless thing is preferable from the point of color development. Examples include quaternary ammonium salt structures, calixarene structures, azo complex dyes, and the like.
  • the addition amount of the charge control agent is preferably 0.5 to 10% by mass, and more preferably 1 to 5% by mass, in the toner.
  • the carrier either an uncoated carrier composed only of magnetic material particles such as iron or ferrite, or a resin-coated carrier in which the surface of the magnetic material particles is coated with a resin or the like may be used.
  • the average particle size of the carrier is preferably 30 to 150 ⁇ m in terms of volume average particle size.
  • External additives include silica fine particles, titanium oxide fine particles, alumina fine particles, cerium oxide fine particles, inorganic particles such as carbon black, polymer particles such as polycarbonate, polymethyl methacrylate, and silicone resin. Known particles can be used. Among these, two or more types of external additives are used, and at least one of the external additives has an average primary particle size (number average primary particles) in the range of 30 nm to 200 nm, and further in the range of 30 nm to 180 nm. Size).
  • the toner according to the exemplary embodiment preferably has an average circularity in the range of 0.960 to 0.980, and more preferably in the range of 0.960 to 0.970.
  • shape of the toner spherical toner is advantageous in terms of developability and transferability, but in terms of cleaning properties, it may be inferior to indeterminate toner.
  • the average circularity of the toner is in the above range, transfer efficiency and image density can be improved, high-quality image formation can be performed, and the cleaning property of the photoreceptor surface can be improved.
  • the volume average particle diameter D50 of the toner of the present embodiment is desirably 3 ⁇ m or more and 9 ⁇ m or less, more desirably 3.5 ⁇ m or more and 8.5 ⁇ m or less, and further desirably 4 ⁇ m or more and 8 ⁇ m or less. If the volume average particle diameter is equal to or greater than the lower limit value, it is possible to suppress a decrease in toner fluidity, and it is easy to maintain the chargeability of each particle. In addition, the charge distribution does not spread, preventing fogging on the background and preventing toner from spilling from the developer. Furthermore, the cleaning property is improved. If the volume average particle size is not more than the above upper limit value, a decrease in resolution can be suppressed, so that a sufficient image quality can be obtained and a recent demand for high image quality can be satisfied.
  • the volume average particle size distribution index GSDv is preferably 1.30 or less, more preferably 1.15 or more and 1.28 or less, and 1.17 or more and 1.26 or less. More preferably it is. If GSDv is larger than the upper limit, the image sharpness and resolution may be lowered. Further, since the ratio of the small particle size toner becomes high, electrostatic control may be difficult.
  • the volume average particle diameter D50 can be calculated based on the particle size distribution measured with a measuring instrument such as Coulter Counter TAII, Multisizer II (manufactured by Beckman Coulter, Inc.). Specifically, the cumulative distribution is drawn from the smaller diameter side with respect to the divided particle size range (channel), and the particle diameter at which the accumulation is 16% is defined as volume D16v and number D16P. In addition, the particle diameter which becomes 50% cumulative is defined as a volume D50v and a number D50P. Furthermore, the particle diameter that is 84% cumulative is defined as volume D84v and number D84P. Using these, the volume average particle size distribution index (GSDv) is calculated as (D84v / D16V) 1/2 .
  • the toner manufacturing method includes an aqueous dispersion of a high molecular weight resin (A) having a weight average molecular weight of 35,000 or more and 120,000 or less and a low dispersion having a weight average molecular weight of 5,000 or more and less than 30,000. It includes a step of preparing an aqueous dispersion of the molecular weight resin (B), a crystalline polyester resin dispersion, and a colorant dispersion, and a step of mixing each dispersion and aggregating the resin.
  • A high molecular weight resin
  • B a crystalline polyester resin dispersion
  • a colorant dispersion a colorant dispersion
  • a process for forming toner particles by a wet manufacturing method for example, aggregation coalescence method, suspension polymerization method, dissolution suspension granulation method, dissolution suspension method, dissolution emulsion aggregation aggregation method, etc.
  • a wet production method for producing toner particles in an aqueous medium is preferable, but an emulsion aggregation method is particularly desirable, and an emulsion aggregation method using a phase inversion emulsification method is more desirable. .
  • the emulsion aggregation method is a method of preparing dispersions (emulsion liquid, pigment dispersion liquid, etc.) each containing components (binder resin, colorant, etc.) contained in the toner, and mixing these dispersion liquids to combine the toner components.
  • aggregated particles are produced by agglomeration, and then the aggregated particles are heated to the melting point or glass transition temperature of the binder resin or higher to thermally fuse the aggregated particles.
  • the emulsion aggregation method makes it easier to produce toner with a smaller particle size and has a narrower particle size distribution compared to the dry kneading and pulverization method and other wet methods such as the melt suspension method and the dissolution suspension method. Easy to obtain. Further, the shape of the toner particles can be easily controlled as compared with the melt suspension method, the dissolution suspension method, and the like, and a uniform amorphous toner can be produced. Further, the structure of the toner, such as film formation, is controlled, and when a release agent or a crystalline polyester resin is contained, exposure of these surfaces is suppressed, so that deterioration of chargeability and storage stability is prevented.
  • a toner when a toner is prepared by an emulsion aggregation method using the binder for toner containing the resin, a toner having good resin particle stability in an aqueous resin dispersion, a small particle size and an excellent particle size distribution is prepared.
  • the details of the wet manufacturing method of the toner are disclosed in, for example, JP2009-229919A, JP2009-46559A, JP2009-151241, JP3344169A, and JP31411783A.
  • the methods described in Japanese Patent Application Laid-Open No. 2008-165017, Japanese Patent Application Laid-Open No. 2010-20170, Japanese Patent Application Laid-Open No. 2010-210959, and the like can also be suitably applied to this embodiment.
  • the image forming method to which the toner of the exemplary embodiment is applied is not particularly limited.
  • a method may be used in which an image is sequentially transferred to an intermediate transfer member or the like, and the image is formed on the intermediate transfer member or the like and then transferred to a recording medium such as paper to form an image.
  • Example 1 Synthesis Examples of Monomers Derived from Dehydroabietic Acid (DHA-1 to 3)
  • DHA-1 to 3 the structure of the synthesized monomer is 1 H-NMR, liquid chromatography Confirmed using graphy.
  • Oxalyl chloride (13 g) was added dropwise at room temperature to a mixture of dehydroabietic acid (30.0 g) and methylene chloride (60 ml). After stirring for 3 hours, the solvent was distilled off under reduced pressure, and 16 g of methanol was added dropwise thereto. After stirring at room temperature for 3 hours, excess methanol was distilled off under reduced pressure to obtain Intermediate Compound A (31 g). Intermediate compound A (31 g) and paraformaldehyde (2.1 g) were added to methylene chloride (150 ml), and sulfuric acid (50 ml) was added dropwise at 10 to 15 ° C.
  • Dehydroabietic acid (75 g) and succinic anhydride (38 g) were dissolved in methylene chloride (1 L), and anhydrous aluminum chloride was added in small portions (total 130 g) in several portions under ice cooling. After stirring at 10-15 ° C. for 2 hours, the reaction solution was poured into ice water. The produced white crystals were collected by filtration, washed with water, and further washed with methanol to obtain DHA-3 (72 g).
  • Polymerization example 1 DHA-1 (200 g), sebacic acid (manufactured by Wako Pure Chemical Industries, 10.5 g), dimethyl terephthalate (manufactured by Wako Pure Chemical Industries, 80.8 g), dodecenyl succinic anhydride (manufactured by Sanyo Chemical Industries, 69.3 g), 1, A mixture of 3-propanediol (Dupont, 55.4 g), cyclohexanedimethanol (Eastman Chemical, 45.0 g) and tetraethyl orthotitanate (Wako Pure Chemicals, 250 ⁇ L) was mixed at 240 ° C. under a nitrogen stream.
  • reaction time 3 After adding trimellitic anhydride (Wako Pure Chemicals, 9.99 g), the reaction was continued for another 35 minutes (# 2: reaction time 2), and trimellitic anhydride (Wako Pure Chemicals, 20 0.0 g) was added, and the reaction was allowed to proceed for 55 minutes (# 3: reaction time 3).
  • reaction product was taken out into a Teflon (registered trademark) heat-resistant container, and polymer H-1 (weight average molecular weight 87,000, molecular weight distribution 19.0, glass transition point 58 ° C., acid value 11 mgKOH / g). )
  • polymers H-2 to H-11 high molecular weight
  • polymers H-2 to H-11 high molecular weight
  • polymers L-1 to L-2 low molecular weight
  • comparative polymers cP-1 to cP-2 were obtained, respectively.
  • Table 1 shows the weight average molecular weight, molecular weight distribution, glass transition point, and acid value of each polymer obtained.
  • the mol% of the branched component is described as a ratio in the total monomer components.
  • Tg is the intermediate temperature between the descent start point and descent end point of the DSC chart
  • aqueous dispersion (aqueous resin dispersion)
  • aqueous resin dispersion A mixture of 10 g of the resin A described in Table 2 below and 7.5 g of methyl ethyl ketone was stirred at 60 ° C. and dissolved by heating. Next, 2.5 g of isopropanol was added and the mixture was allowed to cool to room temperature. Then, 0.55 ml of 10% by mass aqueous ammonia was added at room temperature, and 40 g of ion-exchanged water was gradually added to the solution at a flow rate of 1.57 g / ml. Phase inversion emulsification was performed.
  • an aqueous dispersion A (aqueous resin dispersion A).
  • an aqueous dispersion B (aqueous resin dispersion B) was produced in the same manner as in the production of the aqueous dispersion A except that the resin A was replaced with the resin B.
  • the reaction product in the system became viscous, it was air-cooled to stop the reaction, and a crystalline polyester resin (I) was synthesized.
  • the obtained crystalline polyester resin had a weight average molecular weight of 25,000 and a number average molecular weight of 5,800. Further, when the melting point (Tm) of the crystalline polyester resin (I) was measured using a differential scanning calorimeter (DSC) by the above-described measurement method, it showed a clear endothermic peak, and the endothermic peak temperature was 75 ° C. there were.
  • -Crystalline polyester resin (I) 90 parts by mass-Ionic surfactant (Neogen RK, Daiichi Kogyo Seiyaku): 2.0 parts by mass-Ion exchange water: 210 parts by mass
  • the above is mixed and heated to 100 ° C
  • the dispersion was heated to 110 ° C. with a pressure discharge type gorin homogenizer for 1 hour, the volume average particle size was 0.15 ⁇ m, and the solid content was 30% by mass.
  • a crystalline polyester resin dispersion was obtained.
  • release agent dispersion 60 parts by mass of paraffin wax (HNP-9: Nippon Seiwa Co., Ltd.), 6 parts by mass of an anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd., Neogen R) and 200 parts by mass of ion-exchanged water are mixed and heated to 100 ° C Then, the mixture was melted and dispersed with a high-pressure homogenizer (manufactured by Gorin) to obtain a release agent dispersion.
  • HNP-9 Nippon Seiwa Co., Ltd.
  • an anionic surfactant Daiichi Kogyo Seiyaku Co., Ltd., Neogen R
  • ion-exchanged water 200 parts by mass of ion-exchanged water
  • toner 280 parts by mass of ion-exchanged water, 2.8 parts by mass of anionic surfactant (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Neogen RK (20%)), dispersion of resin A prepared above (aqueous resin dispersion A) ) And a dispersion of resin B (aqueous resin dispersion B) according to the blend ratio of Table 2, 334 parts by mass of the resin dispersion mixed, and 33 parts by mass of the crystalline polyester resin dispersion prepared above were thermometers, The mixture was placed in a 3 L three-necked flask equipped with a pH meter and a stirrer, and stirred at a temperature of 30 ° C.
  • anionic surfactant manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Neogen RK (20%)
  • dispersion of resin A prepared above aqueous resin dispersion A
  • a dispersion B aqueous resin dispersion B
  • Each toner particle dispersion obtained above was filtered and washed with ion-exchanged water. Each toner particle was again dispersed in ion exchange water, filtered and washed. This operation was further repeated twice, and 1% nitric acid was added to each toner particle dispersion to adjust the pH to 4.0. Each toner particle dispersion was filtered, washed with ion-exchanged water until the electric conductivity of the filtrate was 15 ⁇ S / cm or less, and then dried under reduced pressure in an oven at 40 ° C. for 5 hours to obtain each toner particle. .
  • each obtained toner particle 1.5 parts by mass of hydrophobic silica (manufactured by Nippon Aerosil Co., Ltd., RY50) and 1.0 part by mass of hydrophobic titanium oxide (manufactured by Nippon Aerosil Co., Ltd., T805) was mixed and blended at 10,000 rpm for 30 seconds using a sample mill. Thereafter, each toner was obtained by sieving with a vibration sieving machine equipped with a screen having an opening of 45 ⁇ m.
  • the image fixability was evaluated by measuring the minimum fixing temperature of the image.
  • the fixing lower limit temperature was defined as the fixing belt temperature at which the remaining ratio of the image density after rubbing the obtained fixed image with the pad provided in the copying machine was 70% or more.
  • -Hot offset generation temperature (HOS temp.)- The developer obtained is mounted on a device (number of prints: 50 sheets / min) modified from a copier (Sharp, AR-505), and the temperature of the fixing belt is gradually increased from 90 ° C to 250 ° C. The image was output. After the image was printed at each temperature, the white transfer paper was continuously sent to the fixing belt under the same conditions, and the temperature of the fixing roller where the toner smears on the white paper first was defined as the hot offset occurrence temperature.
  • Example 2 Toner No. prepared in Example 1
  • the following evaluation was performed using 101 and 106.
  • -Resistance to hydrolysis 0.5 g of each toner is put in a molding jig (25 mm ⁇ ), and pressed using a simple molding machine (trade name: Table Press TB-50H, manufactured by NPa System) at room temperature of 25 ° C. and pressure of 30 MPa for 1 minute.
  • a plate-like sample was prepared.
  • the weight average molecular weight (Mw) of the sample after storing for 72 hours in the high temperature and high humidity of 80 degreeC / 85% RH was measured.
  • the molecular weight retention rate (%) obtained by the following formula was obtained and evaluated according to the following rank.
  • the molecular weight of the resin contained in the toner can be maintained even in a high temperature and high humidity environment by using the toner of the present invention, it is possible to suppress a change in toner performance with time. As a result, the fixing property of the toner can be kept good, and a good image can be stably formed over a long period of time.
  • Photoconductor (latent image carrier) 1 Photoconductor (latent image carrier) 2 Toner supply chamber 3 Drum 4 Paper 5 Toner 51 Transfer image 7 Cleaner 8 Charging means 9 Static eliminator L Exposure

Abstract

This resin mixture contains: a high-molecular-weight resin (A) having a weight average molecular weight of 35,000-120,000 inclusive; and a low-molecular-weight resin (B) having a weight average molecular weight of at least 5,000 and less than 30,000. Resin (A) has in the primary chain a repeating unit derived from dehydroabietic acid and a constituent unit derived from a tri- or higher-valent polyvalent carboxylic acid (a) or a tri- or higher-valent polyvalent alcohol (b). Resin (B) has a repeating unit derived from dehydroabietic acid.

Description

樹脂混合物、それを含む水性樹脂分散物、トナーおよび現像剤Resin mixture, aqueous resin dispersion containing the same, toner and developer
 本発明は、樹脂混合物、それを含む水性樹脂分散物、トナーおよび現像剤に関する。 The present invention relates to a resin mixture, an aqueous resin dispersion containing the same, a toner and a developer.
 コピー機をはじめとした各種の印刷機器に適用される電子写真法は、いまや広く普及し、これを利用して、白黒画像のみならず、良好なカラー画像を瞬時に多数複写することもできる。この電子写真法は典型的には下記のような装置及びプロセスで行われる(図1参照)。まず、光導電性物質を利用した感光体(潜像保持体)1の表面を帯電手段8により帯電し、そこに露光Lを施して電気的に潜像を形成する。ここで形成された潜像に、トナー供給室2に格納されたドラム3からトナーを付与し、トナー像を形成する。このとき、トナー5は上記感光体とは逆の電荷に帯電されている。その後、このトナー像を、必要により中間転写体(図示せず)を介して、紙4等の被転写体表面に転写する。この転写画像51を、加熱、加圧、溶剤蒸気等により定着することで所望の画像を得ることができる。上記の感光体表面に残ったトナーは、必要に応じてクリーナー7によりクリーニングし、再びトナー像の現像に利用される。さらに、感光体は次の複写に備えるため除電器9により除電される。 The electrophotographic method applied to various printing devices such as copiers is now widespread and can be used to instantly copy many good color images as well as black and white images. This electrophotography is typically performed by the following apparatus and process (see FIG. 1). First, the surface of the photosensitive member (latent image holding member) 1 using a photoconductive substance is charged by the charging unit 8 and exposed to light L to form a latent image electrically. A toner image is formed by applying toner from the drum 3 stored in the toner supply chamber 2 to the latent image formed here. At this time, the toner 5 is charged to a charge opposite to that of the photoreceptor. Thereafter, the toner image is transferred onto the surface of a transfer medium such as paper 4 via an intermediate transfer body (not shown) as necessary. A desired image can be obtained by fixing the transfer image 51 by heating, pressurization, solvent vapor or the like. The toner remaining on the surface of the photoreceptor is cleaned by the cleaner 7 as necessary, and is used again for developing the toner image. Further, the photoconductor is neutralized by a static eliminator 9 to prepare for the next copy.
 近年、電子写真分野の技術進化により、電子写真プロセスは複写機、プリンターのみならず、印刷用途にも使用されるようになってきた。装置の高速化、高信頼性はもとより、複写物が印刷物同等の高画質、色相を有することが益々厳しく要求されてきている。 In recent years, due to technological evolution in the field of electrophotography, the electrophotographic process has been used not only for copying machines and printers but also for printing applications. In addition to speeding up and high reliability of the apparatus, it has been increasingly demanded that the copy has the same high image quality and hue as the printed material.
国際公開第2011-125795A1号パンフレットInternational Publication No. 2011-125795A1 Pamphlet
 一方、トナーは高分子化合物を主体とした樹脂を含んでなるものであり、その製造に関する環境への影響は無視できない。成形体のような外形があるわけではないので、見落とされがちであるが、大量消費される樹脂製品として環境適合性の改善への可能性は大きい。現在流通されているトナーにおいては通常化石燃料由来のポリマーが用いられており、昨今の環境問題の観点からは二酸化炭素の換算排出量の低い天然資源由来のものへの代替が望まれる。 On the other hand, the toner contains a resin mainly composed of a high molecular compound, and the influence on the environment related to its production cannot be ignored. Since there is no external shape like a molded body, it tends to be overlooked, but there is a great potential for improving environmental compatibility as a resin product that is consumed in large quantities. In the currently distributed toners, polymers derived from fossil fuels are usually used, and from the viewpoint of recent environmental problems, it is desired to replace them with those derived from natural resources with low equivalent carbon dioxide emission.
 本出願人は先に天然資源のデヒドロアビエチン酸に由来する樹脂に注目し、これを主鎖に組み込んだ重合体を合成することに成功した。そして、その重合体をトナー用の樹脂として用いることを提案している(前記特許文献1参照)。これにより、天然素材を用いた高い性能のトナーの提供を可能としている。
 本発明者は、上記の開発結果に満足せず、トナー用途におけるさらなる性能の改良を模索し研究開発を継続した。とりわけ、電子写真法における印刷媒体への定着温度の低下とホットオフセットの発生防止との両立をその開発目標にすえた。具体的に言うと、定着温度の方は通常約150℃付近が対象となり、これをより低くすることが好ましい。それにより印刷温度の低減につなげることができ、消費エネルギーを削減することができる。一方、ホットオフセットは190℃付近での発生が問題となり、この発生温度がより高いものほど印刷汚れが発生しにくくなるため好ましい。すなわち、対象となる温度領域が異なるものの、両者はその方向において相反し、トナーに用いられる樹脂の温度特性を単に一方向に振ったのではこの課題を解決することはできない。
The present applicant has previously focused on a resin derived from a natural resource, dehydroabietic acid, and succeeded in synthesizing a polymer incorporating this in the main chain. And it has proposed using the polymer as resin for toners (refer the said patent document 1). This makes it possible to provide a high-performance toner using a natural material.
The present inventor was not satisfied with the above development results, and continued research and development seeking further improvements in performance in toner applications. In particular, the development goal was to achieve both the reduction of the fixing temperature on the printing medium in electrophotography and the prevention of hot offset. Specifically, the fixing temperature is usually about 150 ° C., and it is preferable to lower this. As a result, the printing temperature can be reduced, and energy consumption can be reduced. On the other hand, hot offset is a problem in the vicinity of 190 ° C., and the higher the generated temperature, the less likely to cause printing smearing. In other words, although the target temperature ranges are different, the two are in conflict with each other, and this problem cannot be solved by simply oscillating the temperature characteristics of the resin used in the toner in one direction.
 本発明は、植物起源の化合物を利用することにより地球環境の保全に貢献し、すでにトナー用途において高い性能を実現している上記デヒドロアビエチン酸に由来する構造を有する樹脂について、トナーにおける改良された低温定着性およびホットオフセットの防止性を実現し、さらに良好な経時の安定性を発揮する樹脂混合物、それを含む水性樹脂分散物、トナーおよび現像剤の提供を目的とする。 The present invention contributes to the preservation of the global environment by utilizing a plant-derived compound, and the resin having a structure derived from dehydroabietic acid that has already achieved high performance in toner applications has been improved in toner. An object of the present invention is to provide a resin mixture that realizes low-temperature fixability and hot-offset prevention properties, and exhibits good stability over time, an aqueous resin dispersion containing the same, a toner, and a developer.
 本発明の課題は、以下の樹脂混合物、水性樹脂分散物、トナー、トナーの製造方法、現像剤、樹脂、および、樹脂の製造方法によって達成された。 The object of the present invention has been achieved by the following resin mixture, aqueous resin dispersion, toner, toner production method, developer, resin, and resin production method.
〔1〕重量平均分子量が35,000以上120,000以下の高分子量樹脂(A)と、重量平均分子量が5,000以上30,000未満の低分子量樹脂(B)とを含む樹脂混合物であって、
 樹脂(A)は、主鎖に、デヒドロアビエチン酸に由来する繰り返し単位と、3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)に由来する構成単位とを有し、樹脂(B)はデヒドロアビエチン酸に由来する繰り返し単位を有する樹脂混合物。
〔2〕デヒドロアビエチン酸に由来する繰り返し単位が、下記式(IA)または(IB)で表される〔1〕に記載の樹脂混合物。
Figure JPOXMLDOC01-appb-C000006
[式中、環Aは非芳香族の6員環を表す。環Cyはヘテロ原子を含んでもよい飽和もしくは不飽和の6または7員環を表す。Xは単結合または2価の連結基を表す。X、Y、Y、Yは2価の連結基を表す。Rは環A、環Cy、およびベンゼン環に置換してもよい置換基を表す。n1は0~18の整数を表す。]
〔3〕デヒドロアビエチン酸に由来する繰り返し単位が、下記式(IA-1)または(IB-1)で表される繰り返し単位である〔1〕または〔2〕に記載の樹脂混合物。
Figure JPOXMLDOC01-appb-C000007
[式中、環A、X、X、Y~YおよびRは式(IA)または(IB)と同義である。環Bは非芳香族の6員環を表し、n2は0~17の整数を表す。]
〔4〕デヒドロアビエチン酸に由来する繰り返し単位が、下記式(IA-2)または(IB-2)で表される繰り返し単位である〔1〕~〔3〕のいずれか1つに記載の樹脂混合物。
Figure JPOXMLDOC01-appb-C000008
[式中、X、X、Y~Yは式(IA)または(IB)と同義である。]
〔5〕樹脂(A)および(B)がともに、下記式(II)で表される繰り返し単位を有する〔1〕~〔4〕のいずれか1つに記載の樹脂混合物。
Figure JPOXMLDOC01-appb-C000009
[式中、LおよびLは-O-、-S-、-N(Ra)-、-C(=O)-または-NHC(=O)-を表し、Lは2価の連結基を表す。Raは水素原子、アルキル基、アリール基またはヘテロ環基を表す。]
〔6〕樹脂(A)および(B)がともにポリエステル樹脂である〔1〕~〔5〕のいずれか1つに記載の樹脂混合物。
〔7〕固形分質量において、樹脂(A)と樹脂(B)との比率を、30:70~70:30(質量基準)で含有する〔1〕~〔6〕のいずれか1つに記載の樹脂混合物。
〔8〕樹脂(A)の分子量分布(重量平均分子量/数平均分子量)が7~25であり、樹脂(B)の分子量分布が2~6である〔1〕~〔7〕のいずれか1つに記載の樹脂混合物。
〔9〕3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)由来の構成単位の比率が、樹脂(A)の総モルに対して、1~20モル%である〔1〕~〔8〕のいずれか1つに記載の樹脂混合物。
〔10〕3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)由来の構成単位が、下記式(III-a)または(III-b)で表される〔1〕~〔9〕のいずれか1つに記載の樹脂混合物。
Figure JPOXMLDOC01-appb-C000010
[式中、Arは芳香環残基を表す。Zは、エーテル結合を含んでよい環状または鎖状の脂肪族炭化水素残基を表す。m1およびm2は3以上の整数を表す。*は結合手である。]
〔11〕樹脂(A)は、デヒドロアビエチン酸に由来する繰り返し単位を有する重量平均分子量3,000~25,000のプレポリマーが、3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)に由来する構成単位を介して連結された分岐構造を有する〔1〕~〔10〕のいずれか1つに記載の樹脂混合物。
〔12〕Xがアルキレン基であり、Xが**-C(=O)-L-C(=O)-(**はベンゼン環と結合する結合手を表し、Lはアルキレン基またはアルケニレン基を表す)、Y~Yがいずれも-C(=O)-、-O-、または環Aまたはベンゼン環に炭素原子で結合するアルキレンオキシ基である〔1〕~〔11〕のいずれか1つに記載の樹脂混合物。
〔13〕〔1〕~〔12〕のいずれか1つに記載の樹脂混合物を水性媒体中に含む水性樹脂分散物。
〔14〕さらに顔料と離型剤とを含有する〔13〕に記載の水性樹脂分散物。
〔15〕〔1〕~〔12〕のいずれか1つに記載の樹脂混合物を含むトナー。
〔16〕重量平均分子量が35,000以上120,000以下の高分子量樹脂(A)の水性分散物と、重量平均分子量が5,000以上30,000未満の低分子量樹脂(B)の水性分散物と、結晶性ポリエステル樹脂分散物と、着色剤分散物とを、作製する工程と、
 各分散物をそれぞれ混合し、樹脂を凝集させる工程と、を含み、
 樹脂(A)は、主鎖に、デヒドロアビエチン酸に由来する繰り返し単位と、3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)に由来する構成単位とを有し、樹脂(B)はデヒドロアビエチン酸に由来する繰り返し単位を有する、トナーの製造方法。
〔17〕〔16〕に記載の製造方法により製造されたトナー。
〔18〕〔15〕または〔17〕に記載のトナーとキャリアとを含む現像剤。
〔19〕主鎖に、デヒドロアビエチン酸に由来する繰り返し単位と、3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)由来の構成単位とを有する樹脂であって、重量平均分子量が35,000以上120,000以下であり、3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)由来の構成単位を介して分岐している樹脂。
〔20〕〔19〕に記載の樹脂の製造方法であって、デヒドロアビエチン酸に由来する繰り返し単位を有するプレポリマーと、3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)とを反応させる工程を含む樹脂の製造方法。
[1] A resin mixture comprising a high molecular weight resin (A) having a weight average molecular weight of 35,000 or more and 120,000 or less and a low molecular weight resin (B) having a weight average molecular weight of 5,000 or more and less than 30,000. And
The resin (A) has a repeating unit derived from dehydroabietic acid and a structural unit derived from a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b) in the main chain. The resin (B) is a resin mixture having a repeating unit derived from dehydroabietic acid.
[2] The resin mixture according to [1], wherein the repeating unit derived from dehydroabietic acid is represented by the following formula (IA) or (IB).
Figure JPOXMLDOC01-appb-C000006
[Wherein, ring A represents a non-aromatic 6-membered ring. Ring Cy represents a saturated or unsaturated 6- or 7-membered ring which may contain a hetero atom. X 1 represents a single bond or a divalent linking group. X 2 , Y 1 , Y 2 , Y 3 represent a divalent linking group. R represents a substituent that may be substituted on the ring A, the ring Cy, and the benzene ring. n1 represents an integer of 0 to 18. ]
[3] The resin mixture according to [1] or [2], wherein the repeating unit derived from dehydroabietic acid is a repeating unit represented by the following formula (IA-1) or (IB-1).
Figure JPOXMLDOC01-appb-C000007
[Wherein, ring A, X 1 , X 2 , Y 1 to Y 3 and R are as defined in formula (IA) or (IB). Ring B represents a non-aromatic 6-membered ring, and n2 represents an integer of 0 to 17. ]
[4] The resin according to any one of [1] to [3], wherein the repeating unit derived from dehydroabietic acid is a repeating unit represented by the following formula (IA-2) or (IB-2): blend.
Figure JPOXMLDOC01-appb-C000008
[Wherein, X 1 , X 2 and Y 1 to Y 3 have the same meanings as in formula (IA) or (IB). ]
[5] The resin mixture according to any one of [1] to [4], wherein both the resins (A) and (B) have a repeating unit represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000009
[Wherein L 2 and L 3 represent —O—, —S—, —N (Ra) —, —C (═O) — or —NHC (═O) —, and L 1 represents a divalent linkage. Represents a group. Ra represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group. ]
[6] The resin mixture according to any one of [1] to [5], wherein the resins (A) and (B) are both polyester resins.
[7] The ratio of the resin (A) to the resin (B) in the solid content mass is 30:70 to 70:30 (based on mass), and any one of [1] to [6] Resin mixture.
[8] The molecular weight distribution (weight average molecular weight / number average molecular weight) of the resin (A) is 7 to 25, and the molecular weight distribution of the resin (B) is 2 to 6. Any one of [1] to [7] The resin mixture described in 1.
[9] The proportion of the structural unit derived from the trivalent or higher polyvalent carboxylic acid (a) or the trivalent or higher polyhydric alcohol (b) is 1 to 20 mol% with respect to the total mol of the resin (A). The resin mixture according to any one of [1] to [8].
[10] A structural unit derived from a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b) is represented by the following formula (III-a) or (III-b): [1] ] The resin mixture as described in any one of [9].
Figure JPOXMLDOC01-appb-C000010
[In the formula, Ar represents an aromatic ring residue. Z represents a cyclic or chain aliphatic hydrocarbon residue which may contain an ether bond. m1 and m2 represent an integer of 3 or more. * Is a bond. ]
[11] The resin (A) comprises a tripolymer or higher polyvalent carboxylic acid (a) or a trivalent or higher carboxylic acid having a repeating unit derived from dehydroabietic acid and having a weight average molecular weight of 3,000 to 25,000. The resin mixture according to any one of [1] to [10], wherein the resin mixture has a branched structure linked via a structural unit derived from the polyhydric alcohol (b).
[12] X 1 is an alkylene group, X 2 is ** — C (═O) —L a —C (═O) — (** represents a bond bonded to a benzene ring, and La is alkylene Y 1 to Y 3 are all —C (═O) —, —O—, or an alkyleneoxy group bonded to a ring A or a benzene ring by a carbon atom. [1] to [3] represents a group or an alkenylene group) 11]. The resin mixture as described in any one of [11].
[13] An aqueous resin dispersion comprising the resin mixture according to any one of [1] to [12] in an aqueous medium.
[14] The aqueous resin dispersion according to [13], further comprising a pigment and a release agent.
[15] A toner comprising the resin mixture according to any one of [1] to [12].
[16] An aqueous dispersion of a high molecular weight resin (A) having a weight average molecular weight of 35,000 or more and 120,000 or less and an aqueous dispersion of a low molecular weight resin (B) having a weight average molecular weight of 5,000 or more and less than 30,000 Manufacturing a product, a crystalline polyester resin dispersion, and a colorant dispersion;
Mixing each dispersion, and aggregating the resin,
The resin (A) has a repeating unit derived from dehydroabietic acid and a structural unit derived from a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b) in the main chain. And the resin (B) has a repeating unit derived from dehydroabietic acid.
[17] A toner produced by the production method according to [16].
[18] A developer comprising the toner according to [15] or [17] and a carrier.
[19] A resin having a repeating unit derived from dehydroabietic acid and a structural unit derived from a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b) in the main chain. A resin having a weight average molecular weight of 35,000 or more and 120,000 or less and branched via a structural unit derived from a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b). .
[20] A process for producing a resin as described in [19], wherein a prepolymer having a repeating unit derived from dehydroabietic acid, a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol The manufacturing method of resin including the process made to react with (b).
 本明細書において、特定の符号で表示された置換基や連結基(以下、置換基等という)が複数あるとき、あるいは複数の置換基等を同時もしくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよい。このことは、置換基等の数の規定についても同様である。また、特に断らなくても、複数の置換基等が近接(特に、隣接するとき)するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい。 In the present specification, when there are a plurality of substituents or linking groups (hereinafter referred to as substituents) indicated by specific symbols, or when a plurality of substituents are specified simultaneously or alternatively, The groups and the like may be the same as or different from each other. The same applies to the definition of the number of substituents and the like. Further, even if not specifically stated, when a plurality of substituents and the like are close (especially when adjacent), they may be connected to each other or condensed to form a ring.
 本発明の樹脂混合物、それを含む水性樹脂分散物、トナーおよび現像剤は、植物起源の化合物を利用することにより地球環境の保全に貢献し、トナーにおいて改良された高いレベルの低温定着性、ホットオフセットの防止性、および経時の安定性(保存性)を発揮する。 The resin mixture of the present invention, the aqueous resin dispersion containing the resin mixture, the toner and the developer contribute to the preservation of the global environment by utilizing a plant-derived compound, and improve the toner at a high level of low-temperature fixability, hot Demonstrates the prevention of offset and the stability over time (storability).
電子写真法による複写機及びその複写プロセスを説明するために模式的に示した装置側面図である。1 is a side view of an apparatus schematically shown for explaining a copying machine based on electrophotography and a copying process thereof.
 本発明の樹脂混合物は、デヒドロアビエチン酸に由来する繰り返し単位(以下、これをデヒドロアビエチン酸骨格[DA骨格]と言うことがある。)を有する樹脂を含む。これは、植物由来でありながらトナー用途として良好な性質を有する(前記特許文献1参照)。この理由は、前記DA骨格のベンゼン環を含む三環状部位が構造的に安定であり、トナーの特性の安定化に寄与することが考えられる。このトナーを開発した後、本発明者は、前記DA骨格を有する樹脂について、さまざま分子修飾・配合変更等による改良開発を進めた。そうしたところ、上記樹脂を構成するポリマーを特定の分子量とした上で分岐構造を付与し、さらに同様にDA骨格を有する低分子量樹脂と組み合わせて用いることで、トナーにおける低温定着性だけでなく、ホットオフセットの防止性にも優れることを見出した。本発明はかかる知見に基づきなされたものである。以下、本発明についてその好ましい実施態様を中心に詳細に説明する。 The resin mixture of the present invention contains a resin having a repeating unit derived from dehydroabietic acid (hereinafter, this may be referred to as a dehydroabietic acid skeleton [DA skeleton]). This has good properties as a toner application while being derived from a plant (see Patent Document 1). The reason is considered that the tricyclic portion including the benzene ring of the DA skeleton is structurally stable and contributes to the stabilization of the toner characteristics. After developing this toner, the present inventor made progress in improving and developing the resin having the DA skeleton by various molecular modifications and blending changes. In such a case, the polymer constituting the resin is made to have a specific molecular weight, a branched structure is imparted, and the polymer is similarly used in combination with a low molecular weight resin having a DA skeleton. It has been found that it is excellent in the prevention of offset. The present invention has been made based on such findings. Hereinafter, the present invention will be described in detail focusing on preferred embodiments thereof.
<樹脂A>
 本発明で使用する樹脂Aは、主鎖に、デヒドロアビエチン酸に由来する繰り返し単位(DA骨格)と、3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)由来の構成単位とを有する樹脂である。この樹脂の重量平均分子量が35,000以上120,000以下である。当該DA骨格は、下記式(I)で表される繰り返し単位(以下、その三環状部位を「DA主骨格」ということがある。)であることが好ましい。
<Resin A>
Resin A used in the present invention is derived from a repeating unit derived from dehydroabietic acid (DA skeleton) and a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b) in the main chain. And a structural unit. The weight average molecular weight of this resin is 35,000 or more and 120,000 or less. The DA skeleton is preferably a repeating unit represented by the following formula (I) (hereinafter, the tricyclic portion may be referred to as “DA main skeleton”).
〔式(I)で表される構造を含む繰り返し単位〕 [Repeating unit containing structure represented by formula (I)]
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
・環A
 環Aは非芳香族の6員環であり、シクロヘキサン環やデヒドロシクロヘキセン環が挙げられ、デヒドロシクロへキサン環の場合、二重結合が1~2つが好ましく、シクロヘキセン環、シクロヘキサジエン環が挙げられる。環AはRが置換していてもよい。
・ Ring A
Ring A is a non-aromatic 6-membered ring, and examples thereof include a cyclohexane ring and a dehydrocyclohexene ring. In the case of a dehydrocyclohexane ring, 1 to 2 double bonds are preferable, and a cyclohexene ring and a cyclohexadiene ring are exemplified. . In ring A, R may be substituted.
・環Cy
 環Cyはヘテロ原子を含んでもよい飽和もしくは不飽和の6または7員環を表すが、非芳香族の環が好ましく、非芳香族の6員環が好ましい。環Cyは脂肪族の環が好ましく、ベンゼン環との共有部分以外の環構成部分に炭素-炭素二重結合を有してもよいが、二重結合を有さないものが好ましい。
 ヘテロ環としては、ベンゼン環との共有部分以外の環構成部分に二重結合を有してもよいが、二重結合を有さないものが好ましい。ヘテロ環を構成するヘテロ原子としては、窒素原子、酸素原子、硫黄原子が挙げられるが、窒素原子が好ましく、また、ヘテロ環を構成するヘテロ原子の数は1つであることが好ましい。なお、ヘテロ環の場合、7員環が好ましく、ヘテロ環を構成する構成部分に-C(=O)NH-に含むものがより好ましく、ベンゼン環と環Aを結合する部分の一方(デヒドロアビエチン酸の位置で示せば9位と10位の結合)が単結合、他方が-CHC(=O)NH-であるものがさらに好ましい。
・ Ring Cy
Ring Cy represents a saturated or unsaturated 6- or 7-membered ring which may contain a hetero atom, but a non-aromatic ring is preferred, and a non-aromatic 6-membered ring is preferred. Ring Cy is preferably an aliphatic ring, and may have a carbon-carbon double bond in a ring-constituting part other than a shared part with a benzene ring, but preferably has no double bond.
The heterocyclic ring may have a double bond in a ring constituent part other than a shared part with the benzene ring, but preferably does not have a double bond. Examples of the hetero atom constituting the hetero ring include a nitrogen atom, an oxygen atom, and a sulfur atom, but a nitrogen atom is preferred, and the number of hetero atoms constituting the hetero ring is preferably one. In the case of a heterocycle, a 7-membered ring is preferred, and a constituent part constituting the heterocycle is more preferably contained in —C (═O) NH—, and one of the parts connecting the benzene ring and ring A (dehydroabietine) More preferably, the bond at the 9th and 10th positions is a single bond and the other is —CH 2 C (═O) NH—.
・X
 Xは単結合または2価の連結基を表すが、2価の連結基としては、アルキレン基、シクロアルキレン基、アルケニレン基、アルキニレン基、アリーレン基、2価のヘテロ環基、-O-、-S-、-SO-、-SO-、-N(Ra)-、-C(=O)-またはこれらの基の組合せ(例えば、-アルキレン-O-、-C(=O)-O-、-N(Ra)-C(=O)-、-N(Ra)-SO-、-O-C(=O)-N(Ra)-)が挙げられる。ここでRaは水素原子、アルキル基、アリール基またはヘテロ環基を表す。アルキル基、アリール基またはヘテロ環基の好ましいものとしては、後記置換基Tの例が挙げられる。
・ X 0
X 0 represents a single bond or a divalent linking group. Examples of the divalent linking group include an alkylene group, a cycloalkylene group, an alkenylene group, an alkynylene group, an arylene group, a divalent heterocyclic group, —O—, —S—, —SO—, —SO 2 —, —N (Ra) —, —C (═O) — or a combination of these groups (eg, -alkylene-O—, —C (═O) —O -, -N (Ra) -C (= O)-, -N (Ra) -SO 2- , -O-C (= O) -N (Ra)-). Here, Ra represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group. Preferable examples of the alkyl group, aryl group or heterocyclic group include examples of the substituent T described later.
 Xは、単結合または前記2価の連結基を介して、式(I)で表される構造のビス体の基を形成してもよく、また、主鎖を構成する共重合成分由来の結合手またはYと結合してもよい。
 ビス体の基を形成する場合、Xは単結合またはアルキレン基が好ましく、アルキレン基としてはメチレン基が好ましい。このメチレン基はアルキル基(好ましくは炭素数1~8)が置換してもよく、置換したメチレン基としては、例えばメチルメチレン、ジメチルメチレン、イソプロピルメチレン、t-オクチルメチレンのようなジメチルアルキレンが挙げられる。Xは、無置換のメチレン基が特に好ましい。
X 0 may form a bis group having a structure represented by the formula (I) through a single bond or the divalent linking group, and is derived from a copolymer component constituting the main chain. a bond or Y 1 and may be combined.
In the case of forming a bis group, X 0 is preferably a single bond or an alkylene group, and the alkylene group is preferably a methylene group. The methylene group may be substituted with an alkyl group (preferably having 1 to 8 carbon atoms). Examples of the substituted methylene group include dimethylalkylene such as methylmethylene, dimethylmethylene, isopropylmethylene, and t-octylmethylene. It is done. X 0 is particularly preferably an unsubstituted methylene group.
 一方、主鎖を構成する共重合成分由来の結合手と結合する場合、Xは、-C(=O)-、-O-、**-C(=O)-L-C(=O)-、**-L-C(=O)-、**-L-Ar-O-、**-L-O-が好ましい。ここで**はベンゼン環と結合する結合手を表す。Lはアルキレン基またはアルケニレン基を表す。Lがアルキレン基の場合、炭素数は1~10であることが好ましく、2~10であることがより好ましく、2であることがさらに好ましい。Lがアルケニレン基の場合、炭素数は2~10であることが好ましく、2であることがより好ましい。Lはアルキレン基またはアルケニレン基を表し、炭素数は1~4であることが好ましく、2であることがより好ましく、-CH(CH)-であることがさらに好ましい。Lはアルキレン基またはアルケニレン基を表し、炭素数は1~4であることが好ましく、3であることがより好ましく、-C(CH-であることがさらに好ましい。Lは炭化水素基を表し、炭素数は1~10であることが好ましく、1~4であることがより好ましい。Arはアリーレン基を表し、フェニレンであることが好ましい。 On the other hand, in the case of bonding with a bond derived from a copolymerization component constituting the main chain, X 0 is —C (═O) —, —O—, ** — C (═O) —L a —C (= O)-, **-L b -C (= O)-, **-L c -Ar 1 -O-, **-L e -O- are preferred. Here, ** represents a bond bonded to the benzene ring. L a represents an alkylene group or alkenylene group. If L a is an alkylene group, it preferably has 1 to 10 carbon atoms, more preferably 2 to 10, more preferably 2. If L a is an alkenylene group, it preferably has 2 to 10 carbon atoms, more preferably 2. L b represents an alkylene group or an alkenylene group, preferably having 1 to 4 carbon atoms, more preferably 2, and further preferably —CH (CH 3 ) —. L c represents an alkylene group or an alkenylene group, preferably having 1 to 4 carbon atoms, more preferably 3, and further preferably —C (CH 3 ) 2 —. L e represents a hydrocarbon group, it preferably has 1 to 10 carbon atoms, more preferably 1-4. Ar 1 represents an arylene group and is preferably phenylene.
・Y
 Yは2価の連結基を表すが、好ましくはXで挙げた2価の連結基(結合手**は環Aと結合する)が挙げられ、好ましい範囲も同じである。
・ Y 1
Y 1 represents a divalent linking group, preferably the divalent linking group exemplified for X 0 (the bond ** binds to ring A), and the preferred range is also the same.
・R
 Rは置換基を表すが、このような基としては、後述の置換基Tが挙げられ、Rが環Cyまたは環Aに置換する場合は、Rは、=Oであってもよい。Rは、アルキル基、アルケニル基、アルコキシ基、ハロゲン原子が好ましく、アルキル基、アルケニル基、アルコキシ基がより好ましく、アルキル基が特に好ましい。アルキル基、アルコキシ基における炭素数は1~8が好ましく、1~3がより好ましい。アルキル基の中でも、メチル基、イソプロピル基が好ましい。
・ R
R represents a substituent, and examples of such a group include a substituent T described later. When R is substituted with ring Cy or ring A, R may be = 0. R is preferably an alkyl group, an alkenyl group, an alkoxy group or a halogen atom, more preferably an alkyl group, an alkenyl group or an alkoxy group, and particularly preferably an alkyl group. The alkyl group or alkoxy group preferably has 1 to 8 carbon atoms, more preferably 1 to 3 carbon atoms. Of the alkyl groups, a methyl group and an isopropyl group are preferable.
・n1
 n1は0~18の整数を表すが、1~5が好ましく、3~5がより好ましい。
・ N1
n1 represents an integer of 0 to 18, preferably 1 to 5, and more preferably 3 to 5.
 式(I)で表される繰り返し単位(DA主骨格)の具体例としては、下記で表される構造を挙げることができる。 Specific examples of the repeating unit (DA main skeleton) represented by the formula (I) include the structures represented by the following.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(I)で表される構造は、下記式(IA)または(IB)で表される構造が好ましい。 The structure represented by the formula (I) is preferably a structure represented by the following formula (IA) or (IB).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式中、環A、環Cy、Y、Rおよびn1は前記式(I)と同義であり、好ましい範囲も同じである。 In the formula, ring A, ring Cy, Y 1 , R and n1 have the same meanings as in formula (I), and preferred ranges are also the same.
・X
 Xは単結合または2価の連結基を表す。Xにおける2価の連結基としては、Xで挙げた2価の連結基が挙げられる。このうち、Xは単結合またはアルキレン基が好ましく、アルキレン基としてはメチレン基が好ましい。このメチレン基はアルキル基(好ましくは炭素数1~8)が置換してもよく、置換したメチレン基としては、例えばメチルメチレン、ジメチルメチレン、イソプロピルメチレン、t-オクチルメチレンのようにジメチルアルキレンが挙げられる。Xは、無置換のメチレン基が特に好ましい。
・ X 1
X 1 represents a single bond or a divalent linking group. Examples of the divalent linking group for X 1 include the divalent linking groups listed for X 0 . Among these, X 1 is preferably a single bond or an alkylene group, and the alkylene group is preferably a methylene group. The methylene group may be substituted with an alkyl group (preferably having 1 to 8 carbon atoms). Examples of the substituted methylene group include dimethylalkylene such as methylmethylene, dimethylmethylene, isopropylmethylene, and t-octylmethylene. It is done. X 0 is particularly preferably an unsubstituted methylene group.
 ・X、Y、Y
 X、YおよびYは2価の連結基を表す。X、YおよびYは、Yと同義であり、好ましい範囲も同じである。
・ X 2 , Y 2 , Y 3
X 2 , Y 2 and Y 3 represent a divalent linking group. X 2 , Y 2 and Y 3 have the same meaning as Y 1 , and the preferred range is also the same.
 上記式(IA)または(IB)で表される構造は、下記式(IA-1)または(IB-1)で表される構造が好ましく、下記式(IA-2)または(IB-2)で表される構造がさらに好ましい。 The structure represented by the above formula (IA) or (IB) is preferably a structure represented by the following formula (IA-1) or (IB-1), and is represented by the following formula (IA-2) or (IB-2) The structure represented by is more preferable.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(IA-1)または(IB-1)中、環A、X、X、Y~YおよびRは上記式(IA)または(IB)と同義であり、好ましい範囲も同じである。 In the formula (IA-1) or (IB-1), the rings A, X 1 , X 2 , Y 1 to Y 3 and R are the same as those in the above formula (IA) or (IB), and the preferred ranges are also the same. is there.
・環B
 環Bは非芳香族の6員環を表す。環Bはベンゼン環と共有する結合以外に二重結合を有してもよく、この場合、二重結合は1つが好ましい。すなわち、環Aと共有する結合が二重結合となっても、ベンゼン環や環Aのいずれとも共有していない結合が二重結合となってもよい。また、環BはRが置換してもよく、置換基としては後述の置換基Tに加え、=Oが好ましい。
・ Ring B
Ring B represents a non-aromatic 6-membered ring. Ring B may have a double bond in addition to the bond shared with the benzene ring. In this case, one double bond is preferred. That is, even if the bond shared with ring A is a double bond, the bond not shared with either the benzene ring or ring A may be a double bond. In ring B, R may be substituted, and as a substituent, in addition to substituent T described later, ═O is preferable.
 n2は0~17の整数を表す。 N2 represents an integer from 0 to 17.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(IA-2)または(IB-2)中、X、X、Y~Yは前記式(IA-1)または(IB-1)と同義であり、好ましい範囲も同じである。 In the formula (IA-2) or (IB-2), X 1 , X 2 and Y 1 to Y 3 have the same meanings as the formula (IA-1) or (IB-1), and preferred ranges are also the same. .
 式(IA)、(IB)、(IA-1)、(IB-1)、(IA-2)および(IB-2)において、Xがアルキレン基であり、Xが前述の**-C(=O)-L-C(=O)-(**はベンゼン環と結合する結合手を表し、Lはアルキレン基またはアルケニレン基を表す)、または-C(=O)-であり、Y~Yがいずれも-C(=O)-、-O-、または前記環Aまたはベンゼン環に炭素原子で結合するアルキレンオキシ基であるものが好ましく、Xがメチレン基であり、Xが**-C(=O)-L’-C(=O)-(L’はアルキレン基を表す)であり、Y~Yがいずれも-C(=O)-であるものがより好ましい。 In the formulas (IA), (IB), (IA-1), (IB-1), (IA-2) and (IB-2), X 1 is an alkylene group, and X 2 is the above-mentioned **- C (═O) —L a —C (═O) — (** represents a bond bonded to the benzene ring, L a represents an alkylene group or an alkenylene group), or —C (═O) — Y 1 to Y 3 are all preferably —C (═O) —, —O—, or an alkyleneoxy group bonded to the ring A or the benzene ring by a carbon atom, and X 1 is a methylene group. X 2 is ** — C (═O) —L a ′ —C (═O) — (L a ′ represents an alkylene group), and Y 1 to Y 3 are all —C (═O )-Is more preferable.
[樹脂Aの製造方法]
 式(I)で表される構造は、下記式(I’)で表される化合物を原料モノマーとしてポリマー鎖長に組み込むことができる。
[Method for producing resin A]
The structure represented by the formula (I) can be incorporated into the polymer chain length using a compound represented by the following formula (I ′) as a raw material monomer.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(I’)中、環A、環Cy、X、Y、Rおよびn1は式(I)と同義であり、好ましい範囲も同じである。Gは水素原子またはヒドロキシル基を表し、Gは水素原子、ヒドロキシル基、またはヒドロキシ基、カルボキシル基、メルカプト基、アミノ基または-N=C=Oを有する有機基を表す。 In formula (I ′), ring A, ring Cy, X 0 , Y 1 , R and n1 have the same meanings as in formula (I), and preferred ranges are also the same. G 1 represents a hydrogen atom or a hydroxyl group, and G 2 represents a hydrogen atom, a hydroxyl group, or a hydroxy group, a carboxyl group, a mercapto group, an amino group, or an organic group having —N═C═O.
 このうち、下記式(IA’)または(IB’)で表される化合物が好ましい。 Of these, compounds represented by the following formula (IA ′) or (IB ′) are preferable.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(IA’)または(IB’)中、環A、環Cy、X、Rおよびn1は式(IA)または(IB)と同義であり、好ましい範囲も同じである。Gはカルボキシル基、ヒドロキシル基、メルカプト基、アミノ基、-N=C=O、またはこれらが置換した有機基を表す。
 これらの好ましい基は、要するに、式(I)、(IA)、(IB)における、X、X、Y、Y、Yで挙げた好ましい基であって、ベンゼン環または環Aに結合する結合手とは反対側の結合手に水素原子またはヒドロキシル基を結合させたものが好ましい。
In formula (IA ′) or (IB ′), ring A, ring Cy, X 1 , R and n1 have the same meanings as formula (IA) or (IB), and preferred ranges are also the same. G represents a carboxyl group, a hydroxyl group, a mercapto group, an amino group, —N═C═O, or an organic group substituted by these.
These preferred groups are, in short, the preferred groups mentioned for X 0 , X 2 , Y 1 , Y 2 , Y 3 in the formulas (I), (IA), (IB), and the benzene ring or ring A A bond in which a hydrogen atom or a hydroxyl group is bonded to the bond on the side opposite to the bond bonded to is preferable.
 式(I)で表される構造は、立体異性を限定するものでなく、いずれの立体異性体であってもこれらの混合物であってもよい。
 ここで、樹脂Aは式(I)で表される構造を含む繰り返し単位は、式(I)で表される構造の範囲で、1種の構造の繰り返し単位でも、2種以上の異なった構造の繰り返し単位でもよい。
 また、式(I)で表される化合物は、デヒドロアビエチン酸、その類縁体もしくはこれらから誘導される化合物に由来する構造が好ましい。
The structure represented by the formula (I) does not limit stereoisomerism, and may be any stereoisomer or a mixture thereof.
Here, the repeating unit including the structure represented by the formula (I) of the resin A is within the range represented by the formula (I), and even if it is one type of repeating unit, two or more different structures are used. May be a repeating unit.
In addition, the compound represented by the formula (I) preferably has a structure derived from dehydroabietic acid, an analog thereof or a compound derived therefrom.
 なお、デヒドロアビエチン酸は、植物起源の松脂に含まれるロジンを構成する成分の1つである。すなわち、天然起源の材料をその基質として利用することができるため、二酸化炭素の排出量において相殺され、化石燃料起源のプラスチック材料に比し、大幅にその換算排出量を削減することができる。次世代材料として望まれる環境適合型の、バイオマス資源由来の素材である。 Note that dehydroabietic acid is one of the components constituting rosin contained in pine resin of plant origin. That is, since a material of natural origin can be used as its substrate, it is offset in the amount of carbon dioxide emission, and the equivalent emission amount can be greatly reduced as compared with a plastic material of fossil fuel origin. It is an environmentally-friendly material derived from biomass resources that is desired as a next-generation material.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 デヒドロアビエチン酸の類縁体もしくはこれらから誘導される化合物としては、以下の化合物が挙げられる。 Examples of dehydroabietic acid analogs or compounds derived therefrom include the following compounds.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 これらは、いずれもシグマ-アルドリッチ社、東京化成工業(株)から市販されているか、またはデヒドロアビエチン酸から合成することができる。
 特に、デヒドロアビエチン酸は、例えば、ロジンから得ることができる。ロジンに含まれる構成成分は、これら採取の方法や松の産地により異なるが、一般的には、アビエチン酸(1)、ネオアビエチン酸(2)、パラストリン酸(3)、レボピマール酸(4)、デヒドロアビエチン酸(5)、ピマール酸(6)、イソピマール酸(7)等のジテルペン系樹脂酸の混合物である。これらのジテルペン系樹脂酸のうち、上記(1)から(4)で表される各化合物は、ある種の金属触媒の存在下、加熱処理することにより不均化を起こし、デヒドロアビエチン酸(5)と、ジヒドロアビエチン酸(8)に変性する。このようにデヒドロアビエチン酸(5)は、種々の樹脂酸の混合物であるロジンに適切な化学処理を施すことにより比較的容易に得ることができ、工業的にも安価に製造することができる。なお、ジヒドロアビエチン酸(8)とデヒドロアビエチン酸(5)とは、公知の方法により容易に分離できる。
These are all commercially available from Sigma-Aldrich, Tokyo Chemical Industry Co., Ltd., or can be synthesized from dehydroabietic acid.
In particular, dehydroabietic acid can be obtained, for example, from rosin. Constituents contained in rosin vary depending on the method of collection and the production area of pine, but in general, abietic acid (1), neoabietic acid (2), parastrinic acid (3), levopimaric acid (4), It is a mixture of diterpene resin acids such as dehydroabietic acid (5), pimaric acid (6) and isopimaric acid (7). Among these diterpene resin acids, the compounds represented by the above (1) to (4) are disproportionated by heat treatment in the presence of a certain metal catalyst, and dehydroabietic acid (5 ) And dihydroabietic acid (8). Thus, dehydroabietic acid (5) can be obtained relatively easily by subjecting rosin, which is a mixture of various resin acids, to an appropriate chemical treatment, and can be produced industrially and inexpensively. Dihydroabietic acid (8) and dehydroabietic acid (5) can be easily separated by a known method.
 ここで、二量化は、特開2011-26569号公報に記載の方法で合成できる。具体的には、単結合で連結する場合、オキサリルクロリドを用い触媒量のN,N-ジメチルホルムアミドを添加して反応を進行させることができる。アルキレンで連結する場合は、上記オキサリルクロリドをジクロロメタンに代える方法などが挙げられる。あるいは、単量体をアルデヒド化合物(例えばホルマリン、アセトアルデヒド)、ケトン化合物(例えばアセトン)と混合し、触媒量のトリフルオロ酢酸を添加することで反応を進行させてもよい。また、本発明においては、アルキレン化の際に、ベンゼン環の異なる位置にアルキレン化が起こっても、これらを混合して使用することもできる。
 また、ベンゼン環へのアシル化は、通常のアシル化、例えば無水コハク酸と塩化アルミニウム、塩化鉄のようなルイス酸によるフリーデル・クラフツ反応で容易に合成される。
Here, the dimerization can be synthesized by the method described in JP 2011-26569 A. Specifically, when linking with a single bond, the reaction can proceed by adding a catalytic amount of N, N-dimethylformamide using oxalyl chloride. When connecting with alkylene, the method of replacing the said oxalyl chloride with a dichloromethane etc. is mentioned. Alternatively, the reaction may proceed by mixing the monomer with an aldehyde compound (for example, formalin, acetaldehyde) or a ketone compound (for example, acetone) and adding a catalytic amount of trifluoroacetic acid. In the present invention, even when alkyleneation occurs at different positions on the benzene ring, these may be used in combination.
Further, acylation to the benzene ring is easily synthesized by usual acylation, for example, Friedel-Crafts reaction with Lewis acid such as succinic anhydride and aluminum chloride or iron chloride.
 上記の化合物のうち、ジカルボン酸化合物またはジオール化合物は、前者はジオール化合物と、後者はジカルボン酸化合物との縮合反応により、ポリエステル樹脂を合成でき、カルボキシル基とヒドロキシル基を1つずつ有するものは自己縮合または他のカルボキシル基とヒドロキシル基を1つずつ有する化合物と縮合することでポリエステル樹脂を合成できる。
 また、これらを原料として、ポリエステル樹脂以外の樹脂も製造できる。
Among the above compounds, dicarboxylic acid compounds or diol compounds can synthesize polyester resins by the condensation reaction of the former with a diol compound and the latter with a dicarboxylic acid compound, and those having one carboxyl group and one hydroxyl group A polyester resin can be synthesized by condensation or condensation with another compound having one carboxyl group and one hydroxyl group.
Moreover, resins other than polyester resins can be produced using these as raw materials.
(共重合構成単位)
 本発明において、樹脂Aは、3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)由来の構造を有する。樹脂Aは、3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)由来の構造を1種のみ含んで構成されてもよく、3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)由来の構造を2種以上含んで構成されてもよい。3価以上の多価カルボン酸(a)としては、3価以上の多価脂肪族または多価芳香族のカルボン酸のいずれであってもよいが、3価以上の多価芳香族カルボン酸が好ましい。3価以上の多価脂肪族カルボン酸としては、例えば、クエン酸、アコニット酸、ブタン-1,2,3,4-テトラカルボン酸、3-ブテン-1,2,3-トリカルボン酸等が挙げられる。
(Copolymerization unit)
In the present invention, the resin A has a structure derived from a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b). Resin A may include only one type of structure derived from a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b), or a trivalent or higher polyvalent carboxylic acid ( You may be comprised including 2 or more types of structures derived from a) or a trihydric or more polyhydric alcohol (b). The trivalent or higher polyvalent carboxylic acid (a) may be any trivalent or higher polyvalent aliphatic or polyvalent aromatic carboxylic acid. preferable. Examples of the trivalent or higher polyvalent aliphatic carboxylic acid include citric acid, aconitic acid, butane-1,2,3,4-tetracarboxylic acid, 3-butene-1,2,3-tricarboxylic acid, and the like. It is done.
 本発明においては、3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)由来の構造は、下記式(III-a)または(III-b)で表される構造が好ましく、これらは下記式(III-a’)または(III-b’)で表される化合物を原料モノマーとしてポリマーに組み込むことができる。 In the present invention, the structure derived from a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b) is a structure represented by the following formula (III-a) or (III-b): These compounds can incorporate a compound represented by the following formula (III-a ′) or (III-b ′) as a raw material monomer into a polymer.
Figure JPOXMLDOC01-appb-C000021
・*は結合手を表す。
Figure JPOXMLDOC01-appb-C000021
* Represents a bond.
・m1、m2
 m1およびm2は3以上の整数を表す。m1、m2は3~6が好ましい。
・ M1, m2
m1 and m2 represent an integer of 3 or more. m1 and m2 are preferably 3 to 6.
・Ar
 Arは芳香環残基を表し、Arは、ベンゼン環残基でもナフタレン環残基でも、2つ以上の芳香環が連結した芳香環残基のいずれでも構わないが、ベンゼン環残基またはナフタレン環残基が好ましく、ベンゼン環残基が特に好ましい。
・ Ar
Ar represents an aromatic ring residue, and Ar may be either a benzene ring residue, a naphthalene ring residue, or an aromatic ring residue in which two or more aromatic rings are linked, but a benzene ring residue or a naphthalene ring Residues are preferred, and benzene ring residues are particularly preferred.
 なお、原料モノマーとして式(III-a’)で表される化合物を用いる場合、-COH部分を酸無水物、-COCl等の酸ハロゲン化物、エステルとして使用するのが好ましい。 When the compound represented by the formula (III-a ′) is used as the raw material monomer, it is preferable to use the —CO 2 H moiety as an acid anhydride, an acid halide such as —COCl, or an ester.
 このような残基を得るための原料モノマーは、下記化合物が挙げられる。 Examples of the raw material monomer for obtaining such a residue include the following compounds.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 これらは、原料モノマーとして使用する場合は、酸無水物、ハロゲン化物、エステル化合物として使用することが好ましい。 These are preferably used as acid anhydrides, halides, and ester compounds when used as raw material monomers.
・Z
 Zは、エーテル結合を含んでよい環状または鎖状の脂肪族炭化水素残基(好ましくは、炭素数が3~6である)を表す。なかでも、飽和の脂肪族残基が好ましく、鎖状の脂肪族基がより好ましい。このような残基を得るための原料モノマーとしては、下記化合物が挙げられる。
・ Z
Z represents a cyclic or chain aliphatic hydrocarbon residue (preferably having 3 to 6 carbon atoms) which may contain an ether bond. Of these, saturated aliphatic residues are preferable, and chain aliphatic groups are more preferable. Examples of the raw material monomer for obtaining such a residue include the following compounds.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 本発明においては、上記3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)由来の構造の比率は、これらの価数にもよるが、樹脂Aにおける構成原料もしくは各繰り返し単位の総モルに対して、1~20モル%であることが好ましく、2~15モル%であることがより好ましい。 In the present invention, the proportion of the structure derived from the trivalent or higher polyvalent carboxylic acid (a) or the trivalent or higher polyhydric alcohol (b) depends on these valences. The content is preferably 1 to 20 mol%, more preferably 2 to 15 mol%, based on the total mol of each repeating unit.
 このため、デヒドロアビエチン酸に由来する骨格(DA骨格)の樹脂A中に含有するモル%は樹脂Aにおける構成原料もしくは各繰り返し単位の総モルに対して、1~49.5モル%であることが好ましく、5~49.5モル%であることがより好ましい。DA骨格を含む原料モノマーがヒドロキシル基とカルボキシル基の両方を含む自己縮合の場合、2~99モル%が好ましく、10~99モル%であることがより好ましい。
 一方、自己縮合でない場合、式(I)で表される構造を含む繰り返し単位以外のジオール化合物やジカルボン酸化合物等の原料モノマーは、樹脂Aにおける構成原料もしくは各繰り返し単位の総モルに対して、DA骨格が1~49.5モル%であることが好ましく、5~49.5モル%であることがより好ましい。
For this reason, the mol% contained in the resin A of the skeleton derived from dehydroabietic acid (DA skeleton) is 1 to 49.5 mol% with respect to the total components of the constituent raw materials or each repeating unit in the resin A. It is preferably 5 to 49.5 mol%. When the raw material monomer containing the DA skeleton is self-condensed containing both a hydroxyl group and a carboxyl group, it is preferably 2 to 99 mol%, more preferably 10 to 99 mol%.
On the other hand, when it is not self-condensation, raw material monomers such as diol compounds and dicarboxylic acid compounds other than the repeating unit containing the structure represented by formula (I) are based on the constituent raw materials in resin A or the total moles of each repeating unit. The DA skeleton is preferably 1 to 49.5 mol%, more preferably 5 to 49.5 mol%.
 また、樹脂Aは上記の3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)で分岐されるが、この分岐は重量平均分子量1,000以上の直鎖状の主鎖から分岐されるのが好ましく、重量平均分子量1,000以上20,000以下の直鎖状の主鎖から分岐されるのがより好ましく、重量平均分子量1,500以上15,000以下の直鎖状の主鎖から分岐されるのがさらに好ましい。このような分岐の調整は、原料モノマーの3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)の添加方法で調整できる。 Resin A is branched by the above trivalent or higher polyvalent carboxylic acid (a) or trivalent or higher polyhydric alcohol (b). This branch is a straight chain having a weight average molecular weight of 1,000 or more. It is preferably branched from a main chain, more preferably branched from a linear main chain having a weight average molecular weight of 1,000 or more and 20,000 or less, and a straight chain having a weight average molecular weight of 1,500 or more and 15,000 or less. More preferably, it is branched from a chain-like main chain. Such branching can be adjusted by a method of adding a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b) as a raw material monomer.
 例えば、(イ)分岐構造を有さないプレポリマーに、上記3価以上の多価カルボン酸(a)もしくはその誘導体または3価以上の多価アルコール(b)を添加する、もしくは(ロ)これらの多価化合物を分割添加することで調整できる。本発明の3価以上の多価カルボン酸(a)を添加する場合においては、(ロ)の方法が酸価調整の観点から好ましく、分割添加する場合の添加回数は、2回以上、好ましくは2~5回、より好ましくは2~3回である。 For example, (a) the above-mentioned trivalent or higher polyvalent carboxylic acid (a) or a derivative thereof or a trivalent or higher polyhydric alcohol (b) is added to a prepolymer having no branched structure, or (b) these It is possible to adjust by adding the polyvalent compound separately. In the case of adding the trivalent or higher polyvalent carboxylic acid (a) of the present invention, the method (b) is preferable from the viewpoint of adjusting the acid value, and the number of times of addition in divided addition is preferably 2 times or more, preferably 2 to 5 times, more preferably 2 to 3 times.
 樹脂Aの重量平均分子量(Mhigh)は、35,000以上120,000以下であるが、40,000以上120,000以下が好ましく、50,000以上120,000以下がより好ましい。この分子量を前記下限値以上とすることで、ホットオフセットの発生を抑制することができる。前記上限値以下とすることで、定着下限温度を好適な範囲とすることができる。 The weight average molecular weight (M high ) of the resin A is from 35,000 to 120,000, preferably from 40,000 to 120,000, more preferably from 50,000 to 120,000. By setting the molecular weight to be equal to or higher than the lower limit, occurrence of hot offset can be suppressed. By setting the upper limit value or less, the fixing lower limit temperature can be set within a suitable range.
 前記樹脂(A)の分子量分布(重量平均分子量/数平均分子量)は7~25であることが好ましく、7~20であることがより好ましい。 The molecular weight distribution (weight average molecular weight / number average molecular weight) of the resin (A) is preferably 7 to 25, and more preferably 7 to 20.
 なお、本発明における重量平均分子量、数平均分子量および分子量分布は、ゲルパーミエーションクロマトグラフェィー(GPC)による分子量測定(ポリスチレン換算)で得られた値である。また、本発明で規定されるポリマーの重量平均分子量であれば、たとえ分岐-架橋反応が進行してもゲルやTHF不溶分は通常見られない範囲である。
 なお、本明細書では特に断らない限り、キャリアとしてはテトラヒドロフランを用い、カラムとしてはトーソー(TOSOH)株式会社製 TSK-gel Super AWM-H(商品名)を用いた値で分子量を示す。
The weight average molecular weight, number average molecular weight, and molecular weight distribution in the present invention are values obtained by molecular weight measurement (polystyrene conversion) by gel permeation chromatography (GPC). Further, the weight average molecular weight of the polymer defined in the present invention is within a range in which no gel or THF-insoluble matter is usually observed even if the branch-crosslinking reaction proceeds.
Unless otherwise specified, in this specification, tetrahydrofuran is used as a carrier, and molecular weight is indicated by a value using TSK-gel Super AWM-H (trade name) manufactured by Tosoh Corporation as a column.
<樹脂B>
 本発明で使用する樹脂Bは、主鎖に、前記式(I)で表される構造を含む樹脂であり、その重量平均分子量が5,000以上30,000未満である。
 樹脂Bにおいても前記式(I)で表される構造は樹脂Aと同様であり、好ましい範囲も同じである。
 また、樹脂Bにおいても、3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)由来の構造を含むことが好ましく、重量平均分子量以外は、樹脂Aと同様である。
<Resin B>
The resin B used in the present invention is a resin containing a structure represented by the formula (I) in the main chain, and has a weight average molecular weight of 5,000 or more and less than 30,000.
Also in the resin B, the structure represented by the formula (I) is the same as that of the resin A, and the preferred range is also the same.
Also, the resin B preferably includes a structure derived from a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b), and is the same as the resin A except for the weight average molecular weight. .
 樹脂(B)の重量平均分子量(Mlow)は5,000以上30,000未満であり、10,000以上30,000未満であることが好ましく、15,000以上25,000以下であることがより好ましい。この重量平均分子量を前記下限値以上とすることで、水性分散物の粒形を制御することができる。前記上限値以下とすることで、定着下限温度を好適な範囲とすることができる。 The weight average molecular weight (M low ) of the resin (B) is 5,000 or more and less than 30,000, preferably 10,000 or more and less than 30,000, and preferably 15,000 or more and 25,000 or less. More preferred. By setting the weight average molecular weight to the lower limit value or more, the particle shape of the aqueous dispersion can be controlled. By setting the upper limit value or less, the fixing lower limit temperature can be set within a suitable range.
 前記樹脂(B)の分子量分布(重量平均分子量/数平均分子量)は2~6であることが好ましく、3~6であることがより好ましい。
 なお、重量平均分子量、数平均分子量および分子量分布の測定方法は、前記樹脂(A)のときと同様である。
 樹脂(B)は分岐を有していても有してなくてもよい。なかでも、樹脂(B)は、主鎖に、デヒドロアビエチン酸に由来する繰り返し単位と、3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)に由来する構成単位とを有するものであることが好ましい。なお、本明細書で分岐の有無は通常の意味で解釈し判断すればよいが、厳密な対比が必要な場合などは、重量平均分子量が1,000以上の側鎖がある場合に、これを分岐とみなすこととする。
The molecular weight distribution (weight average molecular weight / number average molecular weight) of the resin (B) is preferably 2 to 6, and more preferably 3 to 6.
In addition, the measuring method of a weight average molecular weight, a number average molecular weight, and molecular weight distribution is the same as that of the said resin (A).
The resin (B) may or may not have a branch. Among them, the resin (B) is a structural unit derived from a repeating unit derived from dehydroabietic acid and a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b) in the main chain. It is preferable that it has. In this specification, the presence or absence of branching may be interpreted and judged in the usual sense. However, when a strict comparison is required, etc., when there is a side chain having a weight average molecular weight of 1,000 or more, this is determined. Consider it a branch.
(その他の構成単位)
 樹脂AおよびBは、上記式(I)で表される構造を含む繰り返し単位以外に、下記式(II)で表される繰り返し単位を有することが好ましい。この繰り返し単位は構造の異なった繰り返し単位を2種以上組み込んでも構わない。ただし、前述のように、式(I)で表される構造を有する原料モノマーが、ヒドロキシル基とカルボキシル基を有する場合は、自己縮合によりポリエステル樹脂が製造できる。
(Other structural units)
Resins A and B preferably have a repeating unit represented by the following formula (II) in addition to the repeating unit containing the structure represented by the above formula (I). This repeating unit may incorporate two or more repeating units having different structures. However, as described above, when the raw material monomer having the structure represented by the formula (I) has a hydroxyl group and a carboxyl group, a polyester resin can be produced by self-condensation.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
・L
 式(II)中、LおよびLは-O-、-S-、-N(Ra)-、-C(=O)-または-NHC(=O)-を表す。Raは式(I)中のXにおけるRaの定義と同義である。
・ L 2
In the formula (II), L 2 and L 3 represent —O—, —S—, —N (Ra) —, —C (═O) — or —NHC (═O) —. Ra has the same definition as Ra in X 0 in formula (I).
 式(II)の繰り返し単位を与える原料モノマーは、LのLおよびLに以下の基を置き換えればよい。LまたはLを含む記は下記のものが好ましい。
   -O-の場合:-OH
   -S-の場合:-SH
   -N(Ra)-の場合:-NH(Ra)
   -C(=O)-の場合:-COHまたはこの誘導体
     (カルボン酸の無水物、ハロゲン化物、エステル)
   -NHC(=O)-の場合:-N=C=O
 ここでRaは式(I)中のXにおけるRaの定義と同義である。
The raw material monomer giving the repeating unit of the formula (II) may be replaced with the following groups in L 2 and L 3 of L 1 . The following including L 2 or L 3 is preferable.
In the case of -O-: -OH
For -S-: -SH
In the case of —N (Ra) —: —NH (Ra)
In the case of —C (═O) —: —CO 2 H or a derivative thereof (an carboxylic acid anhydride, halide, ester)
In the case of —NHC (═O) —: —N═C═O
Here, Ra has the same definition as Ra in X 0 in formula (I).
・L
 Lは2価の連結基を表し、アルキレン基(好ましくは炭素数1~18)、アルケニレン基(好ましくは炭素数2~18)、アルキニレン基(好ましくは炭素数2~18)、アリーレン基(好ましくは炭素数6~18)、2価のヘテロ環基(好ましくは炭素数0~18で、環構成原子として酸素原子、窒素原子および硫黄原子のいずれかを含む5または6員環が好ましい)およびこれらの基の組合せが好ましく、これらの基の組合せによる連結鎖中に、-O-、-S-、-SO-、-SO-、-N(Ra)-、-C(=O)-またはこれらの基の組合せ(例えば、-アルキレン-O-、-C(=O)-O-、-N(Ra)-C(=O)-、-N(Ra)-SO-、-O-C(=O)-N(Ra)-)が介在して連結されていてもよい。ここでRaは式(I)中のXにおけるRaの定義と同義である。
 また、2価の連結基の総炭素数は1~18が好ましい。
・ L 1
L 1 represents a divalent linking group, an alkylene group (preferably having 1 to 18 carbon atoms), an alkenylene group (preferably having 2 to 18 carbon atoms), an alkynylene group (preferably having 2 to 18 carbon atoms), an arylene group ( Preferably 6 to 18 carbon atoms), a divalent heterocyclic group (preferably a 5- or 6-membered ring having 0 to 18 carbon atoms and containing any of an oxygen atom, a nitrogen atom and a sulfur atom as a ring-constituting atom) And combinations of these groups are preferred, and —O—, —S—, —SO—, —SO 2 —, —N (Ra) —, —C (═O) are present in the linking chain formed by the combination of these groups. -Or a combination of these groups (eg, -alkylene-O-, -C (= O) -O-, -N (Ra) -C (= O)-, -N (Ra) -SO 2 -,- O—C (═O) —N (Ra) —) may be linked via Here, Ra has the same definition as Ra in X 0 in formula (I).
The total carbon number of the divalent linking group is preferably 1-18.
 式(II)の繰り返し単位を得るための原料モノマーは、ジカルボン酸化合物もしくはその誘導体、ジオール化合物、ジアミン化合物、ジイソシアネート化合物、ヒドロキシル基とカルボキシル基を有する化合物が挙げられる。
 本発明では、樹脂Aは好ましくはポリエステル樹脂である。従って、本発明において、好ましくは、ジカルボン酸化合物もしくはその誘導体、またはジオール化合物が好ましい。ここで、本発明においては、ポリマー鎖の分岐を調整するため、2価のカルボン酸化合物または2価のアルコール化合物を使用する。分岐成分に関しては、以後に説明する。
Examples of the raw material monomer for obtaining the repeating unit of the formula (II) include a dicarboxylic acid compound or a derivative thereof, a diol compound, a diamine compound, a diisocyanate compound, and a compound having a hydroxyl group and a carboxyl group.
In the present invention, the resin A is preferably a polyester resin. Therefore, in the present invention, a dicarboxylic acid compound or a derivative thereof, or a diol compound is preferable. Here, in the present invention, a divalent carboxylic acid compound or a divalent alcohol compound is used to adjust the branching of the polymer chain. The branched component will be described later.
 ジオール化合物としては、エチレングリコール、1,2-プロパンジオール、1.3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,10-デカンジオール、1,12-ドデカンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、シクロヘキサンジオール、シクロヘキサンジメタノール、水添ビスフェノールAなどの脂環式ジオール類;ビスフェノールA等のビスフェノールのエチレンオキサイド付加物、ビスフェノールA等のビスフェノールのプロピレンオキサイド付加物などの芳香族ジオール類が挙げられる。
 ここで、ビスフェノールとしては、ビスフェノールA以外に、ビスフェノールF、ビスフェノールS、ビスフェノールSFなどが挙げられる。
 ジカルボン酸化合物としては、脂肪族、芳香族またはヘテロ環のジカルボン酸が挙げられ、具体的には、例えば、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸類や、シクロヘキサンジカルボン酸、ジシクロヘキサンジカルボン酸、、マロン酸、コハク酸、グルタル酸、ピメリン酸、アジピン酸、マレイン酸、フマル酸等の飽和または不飽和の脂肪族ジカルボン酸類が挙げられる。
Examples of the diol compound include ethylene glycol, 1,2-propanediol, 1.3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol, Alicyclic diols such as 1,12-dodecanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, cyclohexanediol, cyclohexanedimethanol, hydrogenated bisphenol A; bisphenol A ethylene oxide adducts, bisphenol A, etc. And aromatic diols such as propylene oxide adducts of bisphenols.
Here, examples of bisphenol include bisphenol F, bisphenol S, bisphenol SF and the like in addition to bisphenol A.
Examples of the dicarboxylic acid compound include aliphatic, aromatic or heterocyclic dicarboxylic acids. Specifically, for example, aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, cyclohexanedicarboxylic acid, dicarboxylic acid, and the like. Examples thereof include saturated or unsaturated aliphatic dicarboxylic acids such as cyclohexanedicarboxylic acid, malonic acid, succinic acid, glutaric acid, pimelic acid, adipic acid, maleic acid and fumaric acid.
<ブレンド樹脂>
 本発明の樹脂は、樹脂Aと樹脂Bをブレンドした樹脂である。すなわち、樹脂Aと樹脂Bは、別々に合成されたものを使用するものであり、本発明の樹脂はこれらをブレンドした樹脂である。本発明の樹脂は、樹脂Aおよび樹脂Bの合計で100(質量基準)としたとき、樹脂A:樹脂Bを30:70~70:30で含有することが好ましく、40~60で含有することがさらに好ましい。
<Blend resin>
The resin of the present invention is a resin obtained by blending resin A and resin B. That is, the resin A and the resin B are those synthesized separately, and the resin of the present invention is a resin obtained by blending them. The resin of the present invention preferably contains resin A: resin B at 30:70 to 70:30, preferably 40 to 60, when the total of resin A and resin B is 100 (mass basis). Is more preferable.
<置換基T>
 本明細書において置換・無置換を明記していない置換基または連結基については、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Tが挙げられる。
<Substituent T>
In the present specification, a substituent or a linking group for which substitution / non-substitution is not specified means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substitution / non-substitution. Preferred substituents include the following substituent T.
 置換基Tとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素原子数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素原子数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素原子数2~20のヘテロ環基、好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5または6員環のヘテロ環基が好ましく、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素原子数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アミノ基(好ましくは炭素原子数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素原子数0~20のスルホンアミド基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(好ましくは炭素原子数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル、ベンゾイル等)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、スルホンアミド基((好ましくは炭素原子数0~20のスルファモイル基、例えば、メタンスルホンアミド、ベンゼンスルホンアミド、N-メチルメタンスルスルホンアミド、N-エチルベンゼンスルホンアミド等)、アルキルチオ基(好ましくは炭素原子数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素原子数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、アルキルもしくはアリールスルホニル基(好ましくは炭素原子数1~20のアルキルもしくはアリールスルホニル基、例えば、メチルスルホニル、エチルスルホニル、ベンゼンスルホニル等)、ヒドロキシル基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)であり、より好ましくはアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基、ヒドロキシル基またはハロゲン原子であり、特に好ましくはアルキル基、アルケニル基、ヘテロ環基、アルコキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基またはヒドロキシル基である。
 また、これらの置換基Tで挙げた各基は、上記の置換基Tがさらに置換していてもよい。
Examples of the substituent T include the following.
An alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.), alkenyl A group (preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like), an alkynyl group (preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like), A cycloalkyl group (preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc.), an aryl group (preferably an aryl group having 6 to 26 carbon atoms, for example, Phenyl, 1-naphthyl, 4-methoxyphenyl, -Chlorophenyl, 3-methylphenyl, etc.), heterocyclic groups (preferably heterocyclic groups of 2 to 20 carbon atoms, preferably 5- or 6-membered heterocycles having at least one oxygen atom, sulfur atom, nitrogen atom) A cyclic group is preferred, for example, 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzimidazolyl, 2-thiazolyl, 2-oxazolyl, etc.), an alkoxy group (preferably an alkoxy group having 1 to 20 carbon atoms, for example, Methoxy, ethoxy, isopropyloxy, benzyloxy, etc.), aryloxy groups (preferably aryloxy groups having 6 to 26 carbon atoms, such as phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc.), An alkoxycarbonyl group (preferably an alkoxycarbonyl group having 2 to 20 carbon atoms) Nyl groups such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl and the like, amino groups (preferably containing an amino group having 0 to 20 carbon atoms, alkylamino group, arylamino group, such as amino, N, N-dimethyl) Amino, N, N-diethylamino, N-ethylamino, anilino, etc.), sulfamoyl groups (preferably sulfonamido groups having 0 to 20 carbon atoms, such as N, N-dimethylsulfamoyl, N-phenylsulfamoyl) Etc.), an acyl group (preferably an acyl group having 1 to 20 carbon atoms such as acetyl, propionyl, butyryl, benzoyl etc.), an acyloxy group (preferably an acyloxy group having 1 to 20 carbon atoms such as acetyloxy, Benzoyloxy, etc.), carbamoyl groups (preferably those having 1 to 20 carbon atoms) Rubamoyl groups such as N, N-dimethylcarbamoyl and N-phenylcarbamoyl), acylamino groups (preferably acylamino groups having 1 to 20 carbon atoms such as acetylamino and benzoylamino), sulfonamide groups (preferably Is a sulfamoyl group having 0 to 20 carbon atoms, such as methanesulfonamide, benzenesulfonamide, N-methylmethanesulfonamide, N-ethylbenzenesulfonamide, etc., an alkylthio group (preferably an alkylthio having 1 to 20 carbon atoms) Groups such as methylthio, ethylthio, isopropylthio, benzylthio, etc., arylthio groups (preferably arylthio groups having 6 to 26 carbon atoms, such as phenylthio, 1-naphthylthio, 3-methylphenylthio, 4-methoxyphenylthio ), An alkyl or arylsulfonyl group (preferably an alkyl or arylsulfonyl group having 1 to 20 carbon atoms, such as methylsulfonyl, ethylsulfonyl, benzenesulfonyl, etc.), a hydroxyl group, a cyano group, a halogen atom (such as a fluorine atom, chlorine) Atoms, bromine atoms, iodine atoms, etc.), more preferably alkyl groups, alkenyl groups, aryl groups, heterocyclic groups, alkoxy groups, aryloxy groups, alkoxycarbonyl groups, amino groups, acylamino groups, hydroxyl groups or halogen atoms. And particularly preferably an alkyl group, an alkenyl group, a heterocyclic group, an alkoxy group, an alkoxycarbonyl group, an amino group, an acylamino group or a hydroxyl group.
In addition, each of the groups listed as the substituent T may be further substituted with the substituent T described above.
<樹脂A、Bの製造方法>
 本発明の樹脂は、通常のポリマー合成反応で製造することができる。
 本発明の樹脂はポリエステル樹脂であることが好ましく、例えば、新高分子実験学3、高分子の合成・反応(2)、78~95頁、共立出版(1996年)に記載の方法(例えば、エステル交換法、直接エステル化法、酸ハライド法等の溶融重合法、低音溶液重合法、高温溶液重縮合法、界面重縮合法など)などが挙げられ、本発明では製造コストを低減できる観点から特にエステル交換法および直接エステル法が好ましく用いられる。
<Method for producing resins A and B>
The resin of the present invention can be produced by an ordinary polymer synthesis reaction.
The resin of the present invention is preferably a polyester resin. For example, a method described in New Polymer Experimental Science 3, Polymer Synthesis / Reaction (2), pages 78 to 95, Kyoritsu Publishing (1996) (for example, ester Exchange polymerization, direct esterification, melt polymerization such as acid halide, low-temperature solution polymerization, high-temperature solution polycondensation, interfacial polycondensation, etc.). A transesterification method and a direct ester method are preferably used.
 特に、本発明の樹脂Aは特定の分岐構造を有するものであり、また樹脂Bもこのような分岐構造を有することが好ましい。
 以下に、本発明の樹脂Aの製造方法を説明するが、樹脂Bの好ましい態様も、重量平均分子量以外は同じ方法で製造できる。
In particular, the resin A of the present invention has a specific branched structure, and the resin B preferably has such a branched structure.
Although the manufacturing method of resin A of this invention is demonstrated below, the preferable aspect of resin B can also be manufactured by the same method except a weight average molecular weight.
 前記の樹脂は、デヒドロアビエチン酸に由来する繰り返し単位を有するプレポリマーと、3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)とを反応させることにより得ることができる。プレポリマーの分子量としては、重量平均分子量で1000以上20000以下が好ましく、重量平均分子量で1500以上15000以下がより好ましい。プレポリマーと3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)との混合比率は、先にその共重合比として述べたものと同じ範囲であることが好ましい。 The resin can be obtained by reacting a prepolymer having a repeating unit derived from dehydroabietic acid with a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b). it can. The molecular weight of the prepolymer is preferably 1000 to 20000 in terms of weight average molecular weight, and more preferably 1500 to 15000 in terms of weight average molecular weight. The mixing ratio of the prepolymer to the trivalent or higher polyvalent carboxylic acid (a) or the trivalent or higher polyhydric alcohol (b) is preferably in the same range as described above as the copolymerization ratio.
 本発明のトナーは、重量平均分子量が35,000以上120,000以下の高分子量樹脂(A)の水性分散物と、重量平均分子量が5,000以上30,000未満の低分子量樹脂(B)の水性分散物と、結晶性ポリエステル樹脂分散物と、着色剤分散物とを作製する工程と、各分散物を凝集させる工程により作製される。ここで、前記樹脂(A)は、主鎖に、デヒドロアビエチン酸に由来する繰り返し単位と、3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)に由来する構成単位とを有する。樹脂(B)はデヒドロアビエチン酸に由来する繰り返し単位を有する。ここで用いる樹脂(A)および樹脂(B)の重量平均分子量、数平均分子量および分子量分布は、その好ましい範囲を含め、先に述べたのと同義である。以下、このトナーの調製についてその好ましい実施態様を中心に詳細に説明する。 The toner of the present invention includes an aqueous dispersion of a high molecular weight resin (A) having a weight average molecular weight of 35,000 or more and 120,000 or less, and a low molecular weight resin (B) having a weight average molecular weight of 5,000 or more and less than 30,000. The aqueous dispersion, the crystalline polyester resin dispersion, and the colorant dispersion are prepared, and the dispersions are aggregated. Here, the resin (A) is derived from a repeating unit derived from dehydroabietic acid and a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b) in the main chain. With units. Resin (B) has a repeating unit derived from dehydroabietic acid. The weight average molecular weight, number average molecular weight, and molecular weight distribution of the resin (A) and resin (B) used herein are as defined above, including their preferred ranges. Hereinafter, the preparation of the toner will be described in detail focusing on preferred embodiments thereof.
 樹脂(A)および樹脂(B)を混合する方法としては、二軸混練機を用いた溶融混合や、水性樹脂分散物とした後に混合する方法などが挙げられる。水性樹脂分散物の調製については、次項で詳しく述べるが、混合物の分散状態を制御するという観点では、水性樹脂分散物同士を混ぜ合わせることが特に好ましい。 Examples of the method of mixing the resin (A) and the resin (B) include melt mixing using a biaxial kneader, and a method of mixing after forming an aqueous resin dispersion. Although the preparation of the aqueous resin dispersion will be described in detail in the next section, it is particularly preferable to mix the aqueous resin dispersions from the viewpoint of controlling the dispersion state of the mixture.
〔水性樹脂分散物〕
 本実施形態のトナーの調製には、樹脂微粒子の分散物を利用することが好ましい。この観点から、本実施形態の水性樹脂分散物(以下、単に「樹脂分散物」ともいう)は、前記樹脂混合物(以下、単に樹脂ということがある。)が水性媒体中に分散されて構成される。特に樹脂の酸価が10mgKOH/g以上18mgKOH/g以下であることが好ましい。酸価が上記下限値以上であると、本発明の樹脂自体の親水性が良好であるため、得られる水性樹脂分散物の分散安定性が良好で、凝集が抑制でき、所望の粒子径の樹脂粒子を得ることができるので好ましい。また、酸価が上記上限値以下であると、親水性が適切であり、粗大粒子の発生が抑制でき、良好な粒度分布を得ることができる。またさらに酸価が10mgKOH/g以上15mgKOH/g以下であると上記の分散安定性の点でより好ましい。
(Aqueous resin dispersion)
For the preparation of the toner of this embodiment, it is preferable to use a dispersion of resin fine particles. From this viewpoint, the aqueous resin dispersion of the present embodiment (hereinafter also simply referred to as “resin dispersion”) is configured by dispersing the resin mixture (hereinafter also simply referred to as resin) in an aqueous medium. The In particular, the acid value of the resin is preferably 10 mgKOH / g or more and 18 mgKOH / g or less. Since the hydrophilicity of the resin itself of the present invention is good when the acid value is not less than the above lower limit value, the dispersion stability of the resulting aqueous resin dispersion is good, aggregation can be suppressed, and the resin having a desired particle size It is preferable because particles can be obtained. Further, when the acid value is not more than the above upper limit, hydrophilicity is appropriate, generation of coarse particles can be suppressed, and a good particle size distribution can be obtained. Further, the acid value is more preferably 10 mgKOH / g or more and 15 mgKOH / g or less from the viewpoint of the dispersion stability.
 ここで自己分散性とは、例えば、界面活性剤の不存在下、分散状態(特に転相乳化法による分散状態)としたとき、樹脂自身が有する官能基(特に酸性基又はその塩)によって、水性媒体中で分散状態となり得ることを意味し、遊離の乳化剤を含有しない樹脂分散物を構成し得ることを意味する。 Here, the self-dispersibility is, for example, in the absence of a surfactant, when it is in a dispersed state (particularly a dispersed state by a phase inversion emulsification method), depending on a functional group (particularly an acidic group or a salt thereof) of the resin itself It means that it can be dispersed in an aqueous medium, and it means that a resin dispersion containing no free emulsifier can be constituted.
 また分散状態とは、水性媒体中に樹脂が液体状態で分散された乳化状態(エマルション)、及び、水性媒体中に樹脂が固体状態で分散された分散状態(サスペンション)の両方の状態を含むものである。
 この樹脂は水不溶性ポリマーであることが好ましい。水不溶性ポリマーとは、ポリマーを105℃で2時間乾燥させた後、25℃の水100g中に溶解させたときに、その溶解量が10g以下であるポリマーをいい、その溶解量が好ましくは5g以下、更に好ましくは1g以下である。前記溶解量は、水不溶性ポリマーの塩生成基の種類に応じて、水酸化ナトリウム又は酢酸で100%中和した時の溶解量である。
The dispersed state includes both an emulsified state (emulsion) in which a resin is dispersed in an aqueous medium and a dispersed state (suspension) in which a resin is dispersed in a solid state in an aqueous medium. .
This resin is preferably a water-insoluble polymer. The water-insoluble polymer is a polymer having a dissolution amount of 10 g or less when the polymer is dried at 105 ° C. for 2 hours and then dissolved in 100 g of water at 25 ° C., and the dissolution amount is preferably 5 g. Hereinafter, it is more preferably 1 g or less. The dissolution amount is the dissolution amount when neutralized with sodium hydroxide or acetic acid according to the kind of the salt-forming group of the water-insoluble polymer.
 樹脂の乳化又は分散状態、すなわち樹脂の水性分散物の調製方法としては、転相乳化法が挙げられる。転相乳化法としては、例えば、樹脂を溶媒(例えば、親水性有機溶剤等)中に溶解又は分散させた後、界面活性剤を添加せずにそのまま水中に投入し、樹脂が有する塩生成基(例えば、酸性基)を中和した状態で、攪拌、混合し、前記溶媒を除去した後、乳化又は分散状態となった水性分散物を得る方法が挙げられる。 As a method for preparing an emulsified or dispersed state of the resin, that is, an aqueous dispersion of the resin, a phase inversion emulsification method may be mentioned. As the phase inversion emulsification method, for example, a resin is dissolved or dispersed in a solvent (for example, a hydrophilic organic solvent) and then poured into water as it is without adding a surfactant. A method of obtaining an aqueous dispersion in an emulsified or dispersed state after stirring and mixing with the neutralized (for example, acidic group) and removing the solvent.
 前記樹脂の分散状態とは、樹脂30gを70gの有機溶媒(例えば、メチルエチルケトン)に溶解した溶液、前記樹脂の塩生成基を100%中和できる中和剤(塩生成基がアニオン性であれば水酸化ナトリウム、カチオン性であれば酢酸)、及び水200gを混合、攪拌(装置:攪拌羽根付き攪拌装置、回転数200rpm、30分間、25℃)した後、得られた混合液から該有機溶媒を除去した後でも、分散状態が25℃で少なくとも1週間安定に存在することを目視で確認することができる状態をいう。 The dispersion state of the resin is a solution in which 30 g of resin is dissolved in 70 g of an organic solvent (for example, methyl ethyl ketone), a neutralizing agent that can neutralize 100% of the salt-forming group of the resin (if the salt-forming group is anionic) Sodium hydroxide, acetic acid if cationic) and 200 g of water are mixed and stirred (apparatus: stirring apparatus with stirring blades, rotation speed 200 rpm, 30 minutes, 25 ° C.), and then the organic solvent is obtained from the resulting mixture. The state where it can be visually confirmed that the dispersed state is stably present at 25 ° C. for at least one week even after removing.
〔トナー用バインダー〕
 本実施形態のトナー用バインダーは、前記樹脂の少なくとも1種を含有し、必要に応じてその他の成分(例えば、樹脂)を含んで構成される。前記トナー用バインダーは、乾式法である溶融混練粉砕法や液中でトナー粒子を造粒する湿式法のいずれにも適用可能である。特にこの樹脂は、自己分散性と分散安定性に優れることから、樹脂を分散状態としてトナーを造粒する湿式法に好適に用いることができる。
[Binder for toner]
The binder for toner according to the exemplary embodiment includes at least one of the above resins and includes other components (for example, a resin) as necessary. The toner binder can be applied to either a dry kneading and pulverizing method or a wet method of granulating toner particles in a liquid. In particular, since this resin is excellent in self-dispersibility and dispersion stability, it can be suitably used in a wet method for granulating toner with the resin dispersed.
 また本実施形態のトナー用バインダーは、その成分としてその他の樹脂の少なくとも1種を含むことができる。その他の樹脂としては結晶性樹脂が挙げられ、例えば、樹脂以外のポリエステル樹脂(以下、「その他のポリエステル樹脂」ともいう)を挙げることができる。本発明においては、特にトナー用途を考慮して、樹脂(樹脂混合物)と結晶性樹脂とを含有する樹脂組成物とすることが好ましい。 The toner binder of the present embodiment can contain at least one other resin as its component. Examples of other resins include crystalline resins, and examples include polyester resins other than resins (hereinafter, also referred to as “other polyester resins”). In the present invention, it is preferable to use a resin composition containing a resin (resin mixture) and a crystalline resin, particularly considering toner applications.
 なお、本発明において「組成物」とは、2以上の成分が特定の組成で実質的に均質に存在していることを言う。ここで実質的に均一とは発明の作用効果を奏する範囲で各成分が偏在していていもよいことを意味する。また、組成物とは上記の定義を満たす限り形態は特に限定されず、流動性の液体やペーストに限定されず、複数の成分からなる固体や粉末等も含む意味である。さらに、沈降物があるような場合でも、攪拌により所定時間分散状態を保つようなものも組成物に含む意味である。これに対し、「混合物」とは、2種以上の成分が均一に分布していない状態のものを含むものである。 In the present invention, the “composition” means that two or more components exist in a specific composition substantially homogeneously. Here, “substantially uniform” means that each component may be unevenly distributed within the range where the effects of the invention are exerted. The composition is not particularly limited as long as the above definition is satisfied, is not limited to a fluid liquid or a paste, and includes a solid or powder composed of a plurality of components. Furthermore, even when there is a sediment, it means that the composition maintains a dispersion state for a predetermined time by stirring. In contrast, a “mixture” includes a mixture in which two or more components are not uniformly distributed.
 その他のポリエステル樹脂は、例えば、主として多価カルボン酸類と多価アルコール類との縮重合により得られるものである。 Other polyester resins are obtained, for example, mainly by polycondensation of polyvalent carboxylic acids and polyhydric alcohols.
 上記多価カルボン酸類の例としては、前記で説明したジカルボン酸や3価以上の多価カルボン酸が挙げられる。上記多価アルコール類の例としては、前記で説明したジオール化合物や3価以上の多価アルコールが挙げられる。 Examples of the polyvalent carboxylic acids include the dicarboxylic acids described above and trivalent or higher polyvalent carboxylic acids. Examples of the polyhydric alcohols include the diol compounds described above and trihydric or higher polyhydric alcohols.
 その他のポリエステル樹脂のガラス転移温度(以下「Tg」と略記することがある)は40℃以上80℃以下であることが好ましく、50℃以上70℃以下がより好ましい。ポリエステル樹脂のTgが80℃以下であることにより低温定着性が得られ、Tgが40℃以上であることにより、十分な熱保管性及び定着画像の保存性が得られる。
 また、その他のポリエステル樹脂の分子量(重量平均分子量)は、樹脂の製造性、トナー製造時の微分散化や、溶融時の相溶性トナーの観点から、5,000以上40,000以下が好ましい。
The glass transition temperature (hereinafter sometimes abbreviated as “Tg”) of other polyester resins is preferably 40 ° C. or higher and 80 ° C. or lower, and more preferably 50 ° C. or higher and 70 ° C. or lower. When the Tg of the polyester resin is 80 ° C. or lower, low-temperature fixability is obtained, and when the Tg is 40 ° C. or higher, sufficient heat storage properties and storability of fixed images are obtained.
The molecular weight (weight average molecular weight) of other polyester resins is preferably 5,000 or more and 40,000 or less from the viewpoints of resin manufacturability, fine dispersion during toner production, and compatible toner during melting.
・結晶性ポリエステル樹脂
 その他のポリエステル樹脂は、結晶性ポリエステル樹脂の少なくとも1種を含有することが好ましい。その他のポリエステル樹脂が結晶性ポリエステル樹脂を含有することにより、トナーの低温定着性がより良好となる。また定着工程における加熱温度が低いため、定着器の劣化が抑制される。その他のポリエステル樹脂が、結晶性ポリエステル樹脂及び非結晶性ポリエステル樹脂を含有することにより、溶融時に結晶性ポリエステル樹脂が非結晶性ポリエステル樹脂と相溶してトナー粘度を著しく低下させ、低温定着性や画像光沢性にすぐれたトナーが得られる。
 また、結晶性ポリエステル樹脂のなかでも、脂肪族結晶性ポリエステル樹脂は、芳香族結晶性樹脂に比べ、好ましい融点を有するものが多いため、特に好ましい。
-Crystalline polyester resin It is preferable that other polyester resins contain at least 1 type of crystalline polyester resin. When the other polyester resin contains the crystalline polyester resin, the low-temperature fixability of the toner becomes better. Further, since the heating temperature in the fixing process is low, deterioration of the fixing device is suppressed. When the other polyester resin contains a crystalline polyester resin and an amorphous polyester resin, the crystalline polyester resin is compatible with the amorphous polyester resin when melted, and the toner viscosity is remarkably reduced. A toner having excellent image gloss can be obtained.
Among the crystalline polyester resins, aliphatic crystalline polyester resins are particularly preferable because many of them have a preferable melting point as compared with aromatic crystalline resins.
 その他のポリエステル樹脂中における結晶性ポリエステル樹脂の含有量は、2質量%以上20質量%以下が好ましく、2質量%以上14質量%以下がより好ましい。上記結晶性ポリエステル樹脂の含有量が2質量%以上あれば、溶融時に非結晶性ポリエステル樹脂を十分に低粘度化することができ、低温定着性の向上が得られ易い。また上記結晶性ポリエステル樹脂の含有量が20質量%以下であれば、結晶性ポリエステル樹脂の存在に起因するトナーの帯電性の悪化を抑制することができるので、記録媒体への定着後の画像強度が得られ易い。 The content of the crystalline polyester resin in the other polyester resins is preferably 2% by mass or more and 20% by mass or less, and more preferably 2% by mass or more and 14% by mass or less. When the content of the crystalline polyester resin is 2% by mass or more, the non-crystalline polyester resin can be sufficiently reduced in viscosity at the time of melting, and an improvement in low-temperature fixability is easily obtained. Further, if the content of the crystalline polyester resin is 20% by mass or less, the deterioration of the charging property of the toner due to the presence of the crystalline polyester resin can be suppressed, so the image strength after fixing on the recording medium Is easy to obtain.
 結晶性ポリエステル樹脂の融点は、50℃以上100℃以下の範囲であることが好ましく、55℃以上95℃以下の範囲であることが好ましく、60℃以上90℃以下の範囲であることがより好ましい。結晶性ポリエステル樹脂の融点が50℃以上あれば、トナーの保存性や、定着後のトナー画像の保存性が良く、また100℃以下であれば、低温定着性の向上が得られ易い。
 このような結晶性ポリエステル樹脂は、国際公開第2011-125795A1号パンフレットの段落番号0124~0135に記載の樹脂が好ましく、本実施形態においても好適に適用することができる。
The melting point of the crystalline polyester resin is preferably in the range of 50 ° C. or higher and 100 ° C. or lower, preferably in the range of 55 ° C. or higher and 95 ° C. or lower, and more preferably in the range of 60 ° C. or higher and 90 ° C. or lower. . If the melting point of the crystalline polyester resin is 50 ° C. or higher, the storage stability of the toner and the storage stability of the toner image after fixing are good, and if it is 100 ° C. or lower, the low-temperature fixability is easily improved.
Such a crystalline polyester resin is preferably a resin described in paragraph Nos. 0124 to 0135 of International Publication No. 2011-125795A1, and can also be suitably applied to this embodiment.
 結晶性ポリエステル樹脂は、酸(ジカルボン酸)成分とアルコール(ジオール)成分とから合成されるものであり、下記において、「酸由来構成成分」とは、ポリエステル樹脂において、ポリエステル樹脂の合成前には酸成分であった構成部位を指し、「アルコール由来構成成分」とは、ポリエステル樹脂の合成前にはアルコール成分であった構成部位を指す。 The crystalline polyester resin is synthesized from an acid (dicarboxylic acid) component and an alcohol (diol) component. In the following, the “acid-derived component” is a polyester resin, and before the polyester resin is synthesized. The component part which was an acid component is pointed out, and the "alcohol-derived component" refers to the component part which was an alcohol component before the synthesis of the polyester resin.
 酸由来構成成分
 前記酸由来構成成分となるための酸としては、種々のジカルボン酸が挙げられるが実施の形態に係る結晶性ポリエステル樹脂における酸由来構成成分としては、直鎖型の脂肪族ジカルボン酸が望ましい。例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼリン酸、セバシン酸、1,9-ノナンジカルボン酸、1,10-デカンジカルボン酸、1,11-ウンデカンジカルボン酸、1,12-ドデカンジカルボン酸、1,13-トリデカンジカルボン酸、1,14-テトラデカンジカルボン酸、1,16-ヘキサデカンジカルボン酸、1,18-オクタデカンジカルボン酸など、あるいはその低級アルキルエステルや酸無水物が挙げられるが、この限りではない。これらの中では、入手容易性を考慮するとアジピン酸、セバシン酸、1,10-デカンジカルボン酸が好ましい。
Acid-derived constituent component Examples of the acid for forming the acid-derived constituent component include various dicarboxylic acids, but the acid-derived constituent component in the crystalline polyester resin according to the embodiment is a linear aliphatic dicarboxylic acid. Is desirable. For example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelic acid, sebacic acid, 1,9-nonanedicarboxylic acid, 1,10-decanedicarboxylic acid, 1,11-undecane Dicarboxylic acid, 1,12-dodecanedicarboxylic acid, 1,13-tridecanedicarboxylic acid, 1,14-tetradecanedicarboxylic acid, 1,16-hexadecanedicarboxylic acid, 1,18-octadecanedicarboxylic acid, etc., or lower alkyl esters thereof And acid anhydrides, but are not limited thereto. Of these, adipic acid, sebacic acid, and 1,10-decanedicarboxylic acid are preferable in view of availability.
 酸由来構成成分としては、その他として2重結合を持つジカルボン酸由来構成成分、スルホン酸基を持つジカルボン酸由来構成成分等の構成成分を含有していてもよい。 As the acid-derived component, other components such as a dicarboxylic acid-derived component having a double bond and a dicarboxylic acid-derived component having a sulfonic acid group may be contained.
 なお、ここでの「構成モル%」とは、結晶性ポリエステル樹脂における酸由来構成成分全体中の当該酸由来構成成分、または、アルコール由来構成成分全体中の当該アルコール構成成分を、各1単位(モル)としたときの百分率を指す。 The “constituent mol%” here means 1 unit of each of the acid-derived constituent component in the entire acid-derived constituent component in the crystalline polyester resin or the alcohol constituent component in the entire alcohol-derived constituent component ( Mol).
 アルコール由来構成成分
 アルコール由来構成成分となるためのアルコールとしては、脂肪族ジオールが望ましく、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9―ノナンジオール、1,10-デカンジオール、1,11-ドデカンジオール、1,12-ウンデカンジオール、1,13-トリデカンジオール、1,14-テトラデカンジオール、1,18-オクタデカンジオール、1,20-エイコサンジオール、などが挙げられるが、この限りではない。これらの中では、入手容易性やコストを考慮すると1,4-ブタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオールが好ましい。
Alcohol-derived constituent component The alcohol to be an alcohol-derived constituent component is preferably an aliphatic diol, such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1, 6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-dodecanediol, 1,12-undecanediol, 1,13 -Tridecanediol, 1,14-tetradecanediol, 1,18-octadecanediol, 1,20-eicosanediol, and the like, but are not limited thereto. Of these, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, and 1,10-decanediol are preferable in view of availability and cost.
 結晶性ポリエステル樹脂の重量平均分子量は、樹脂の製造性、トナー製造時の微分散化や、溶融時の相溶性トナーの観点から、8,000以上40,000以下が好ましく、10,000以上30,000以下がさらに好ましい。8,000以上あれば、結晶性ポリエステル樹脂の抵抗低下を抑制することができるので、帯電性の低下を防止することができる。40,000以下であれば、樹脂合成のコストを抑え、また、シャープメルト性の低下を防止するために低温定着性に悪影響を与えない。 The weight average molecular weight of the crystalline polyester resin is preferably 8,000 or more and 40,000 or less, and preferably 10,000 or more and 30 or less from the viewpoint of resin manufacturability, fine dispersion at the time of toner production, and a compatible toner at the time of melting. Is more preferable. If it is 8,000 or more, the resistance reduction of the crystalline polyester resin can be suppressed, so that the charging property can be prevented from decreasing. If it is 40,000 or less, the cost of resin synthesis is suppressed, and the low-temperature fixability is not adversely affected in order to prevent a decrease in sharp melt properties.
 本実施形態のトナー用バインダーは、その他のポリエステル樹脂以外の樹脂を含んでいてもよい。例えば、ポリエチレン、ポリプロピレン等のエチレン系樹脂;ポリスチレン、α-ポリメチルスチレン等のスチレン系樹脂;ポリメチルメタアクリレート、ポリアクリロニトリル等の(メタ)アクリル系樹脂;ポリアミド樹脂、ポリカーボネート樹脂、ポリエーテル樹脂及びこれらの共重合樹脂等が挙げられる。 The toner binder of the present embodiment may contain other resins than the polyester resin. For example, ethylene resins such as polyethylene and polypropylene; styrene resins such as polystyrene and α-polymethylstyrene; (meth) acrylic resins such as polymethyl methacrylate and polyacrylonitrile; polyamide resins, polycarbonate resins, polyether resins and These copolymer resins are exemplified.
 本実施形態のトナー用バインダー中における樹脂(樹脂混合物)の含有率としては、全固形分中、例えば10~95質量%であることが好ましく、20~80質量%であることがより好ましい。 The content of the resin (resin mixture) in the toner binder of the present embodiment is preferably 10 to 95% by mass, and more preferably 20 to 80% by mass in the total solid content.
<トナー>
 前記樹脂(樹脂混合物)は、特にトナー用バインダーとして好適に使用することができる。本実施形態のトナーは、顔料、離型剤及び本発明の樹脂を含有していればよい。必要に応じて、荷電制御剤、キャリア、外添剤等を含有することができる。
<Toner>
The resin (resin mixture) can be suitably used particularly as a binder for toner. The toner of the exemplary embodiment only needs to contain a pigment, a release agent, and the resin of the present invention. If necessary, a charge control agent, a carrier, an external additive and the like can be contained.
 トナーに対して流動性向上や帯電制御等を付与する目的で、無機微粉末、有機微粒子を外部添加してもよい。例えば、表面をアルキル基含有のカップリング剤等で処理したシリカ微粒子、チタニア微粒子が好ましく用いられる。なお、これらは数平均一次粒子サイズが10~500nmのものが好ましく、さらにはトナー中に0.1~20質量%添加するのが好ましい。 Inorganic fine powders and organic fine particles may be externally added for the purpose of imparting fluidity improvement and charge control to the toner. For example, silica fine particles and titania fine particles whose surface is treated with an alkyl group-containing coupling agent or the like are preferably used. These particles preferably have a number average primary particle size of 10 to 500 nm, and more preferably 0.1 to 20% by mass in the toner.
 顔料としては限定的でなく、有機顔料及び無機顔料のいずれを使用することもできる。有機顔料としては、例えば、アゾ顔料、多環式顔料、染料キレート、ニトロ顔料、ニトロソ顔料、アニリンブラック、などが挙げられる。これらの中でも、アゾ顔料、多環式顔料などがより好ましい。また、無機顔料としては、例えば、酸化チタン、酸化鉄、炭酸カルシウム、硫酸バリウム、水酸化アルミニウム、バリウムイエロー、カドミウムレッド、クロムイエロー、カーボンブラック、などが挙げられる。これらの中でも、黒色顔料としてはカーボンブラックが特に好ましい。これらはトナー中に例えば1~30質量%、好ましくは5~20質量%、黒色顔料として磁性体を用いた場合は30~85質量%添加するのが好ましい。 The pigment is not limited, and either an organic pigment or an inorganic pigment can be used. Examples of organic pigments include azo pigments, polycyclic pigments, dye chelates, nitro pigments, nitroso pigments, and aniline black. Among these, azo pigments and polycyclic pigments are more preferable. Examples of the inorganic pigment include titanium oxide, iron oxide, calcium carbonate, barium sulfate, aluminum hydroxide, barium yellow, cadmium red, chrome yellow, and carbon black. Among these, carbon black is particularly preferable as the black pigment. These are preferably added to the toner in an amount of, for example, 1 to 30% by mass, preferably 5 to 20% by mass, and 30 to 85% by mass when a magnetic material is used as the black pigment.
・バインダー
 バインダーとしては、前記の樹脂を含んでいればよく、トナー中に例えば10~95質量%、さらには20~80質量%添加するのがより好ましい。また、一般に使用される他のバインダーを併用することもできる。例えば、ポリエチレン、ポリプロピレン等のエチレン系樹脂;ポリスチレン、α-ポリメチルスチレン等のスチレン系樹脂;ポリメチルメタアクリレート、ポリアクリロニトリル等の(メタ)アクリル系樹脂;ポリアミド樹脂、ポリカーボネート樹脂、ポリエーテル樹脂及びこれらの共重合樹脂等が挙げられる。
 さらに前記トナー用バインダーを用いて構成してもよい。
-Binder The binder may contain the above-mentioned resin, and it is more preferable to add, for example, 10 to 95% by mass, and further 20 to 80% by mass in the toner. Also, other commonly used binders can be used in combination. For example, ethylene resins such as polyethylene and polypropylene; styrene resins such as polystyrene and α-polymethylstyrene; (meth) acrylic resins such as polymethyl methacrylate and polyacrylonitrile; polyamide resins, polycarbonate resins, polyether resins and These copolymer resins are exemplified.
Further, the toner binder may be used.
・離型剤
 離型剤としては、トナー用に従来使用されている離型剤は全て使用することができる。具体的には、低分子量ポリプロピレン、低分子量ポリエチレン、エチレン-プロピレン共重合体等のオレフィン類、マイクロクリスタリンワックス、カルナバワックス、サゾールワックス、パラフィンワックス等が挙げられる。これらの添加量はトナー中に例えば3~20質量%、さらには5~18質量%添加することがより好ましい。
-Release agent As a release agent, all the release agents conventionally used for toner can be used. Specific examples include olefins such as low molecular weight polypropylene, low molecular weight polyethylene, and ethylene-propylene copolymer, microcrystalline wax, carnauba wax, sazol wax, and paraffin wax. The amount of these added is preferably 3 to 20% by mass, more preferably 5 to 18% by mass, in the toner.
・荷電制御剤
 荷電制御剤としては、必要に応じて添加してもよいが、発色性の点から無色のものが好ましい。例えば4級アンモニウム塩構造のもの、カリックスアレン構造を有するもの、アゾ錯体染料などが挙げられる。荷電制御剤の添加量は、トナー中に例えば0.5~10質量%、さらには1~5質量%添加することがより好ましい。
-Charge control agent As a charge control agent, you may add as needed, but a colorless thing is preferable from the point of color development. Examples include quaternary ammonium salt structures, calixarene structures, azo complex dyes, and the like. The addition amount of the charge control agent is preferably 0.5 to 10% by mass, and more preferably 1 to 5% by mass, in the toner.
・キャリア
 キャリアとしては、鉄・フェライト等の磁性材料粒子のみで構成される非被覆キャリア、磁性材料粒子表面を樹脂等によって被覆した樹脂被覆キャリアのいずれを使用してもよい。このキャリアの平均粒子サイズは体積平均粒子サイズで30~150μmが好ましい。
-Carrier As the carrier, either an uncoated carrier composed only of magnetic material particles such as iron or ferrite, or a resin-coated carrier in which the surface of the magnetic material particles is coated with a resin or the like may be used. The average particle size of the carrier is preferably 30 to 150 μm in terms of volume average particle size.
・外添剤
 外添剤としては、表面を疎水化処理したシリカ微粒子、酸化チタン微粒子、アルミナ微粒子、酸化セリウム微粒子、カーボンブラック等の無機微粒子やポリカーボネート、ポリメチルメタクリレート、シリコーン樹脂等のポリマー粒子等、公知の粒子が使用できる。これらのうち2種以上の外添剤を使用し、該外添剤の少なくとも1種は、30nm以上200nm以下の範囲、さらには30nm以上180nm以下の範囲の平均1次粒子径(数平均一次粒子サイズ)を有することが好ましい。
・ External additives External additives include silica fine particles, titanium oxide fine particles, alumina fine particles, cerium oxide fine particles, inorganic particles such as carbon black, polymer particles such as polycarbonate, polymethyl methacrylate, and silicone resin. Known particles can be used. Among these, two or more types of external additives are used, and at least one of the external additives has an average primary particle size (number average primary particles) in the range of 30 nm to 200 nm, and further in the range of 30 nm to 180 nm. Size).
・トナーの特性
 さらに、本実施形態のトナーは、平均円形度が0.960以上0.980以下の範囲であることが好ましく、0.960以上0.970以下の範囲であることがより好ましい。トナーの形状は、球形トナーが現像性、転写性の点では有利であるが、クリーニング性の面では不定形トナーに比べ劣ることがある。トナーの平均円形度が上記範囲の形状であることにより、転写効率、画像の緻密性が向上し、高画質な画像形成を行うことができ、また、感光体表面のクリーニング性を高めることができる。
-Toner Characteristics Further, the toner according to the exemplary embodiment preferably has an average circularity in the range of 0.960 to 0.980, and more preferably in the range of 0.960 to 0.970. As for the shape of the toner, spherical toner is advantageous in terms of developability and transferability, but in terms of cleaning properties, it may be inferior to indeterminate toner. When the average circularity of the toner is in the above range, transfer efficiency and image density can be improved, high-quality image formation can be performed, and the cleaning property of the photoreceptor surface can be improved. .
 また、本実施形態のトナーの体積平均粒径D50は3μm以上9μm以下であることが望ましく、より望ましくは3.5μm以上8.5μm以下であり、さらに望ましくは4μm以上8μm以下である。体積平均粒径が前記下限値以上であれば、トナーの流動性低下を抑えられるので、各粒子の帯電性を維持しやすい。また、帯電分布が広がらず、背景へのかぶりを防止し現像器からトナーがこぼれにくくなる。さらに、クリーニング性が良くなる。体積平均粒径が上記上限値以下であれば、解像度の低下を抑えられるため、十分な画質を得ることができ、近年の高画質要求を満たすことが可能となる。 Further, the volume average particle diameter D50 of the toner of the present embodiment is desirably 3 μm or more and 9 μm or less, more desirably 3.5 μm or more and 8.5 μm or less, and further desirably 4 μm or more and 8 μm or less. If the volume average particle diameter is equal to or greater than the lower limit value, it is possible to suppress a decrease in toner fluidity, and it is easy to maintain the chargeability of each particle. In addition, the charge distribution does not spread, preventing fogging on the background and preventing toner from spilling from the developer. Furthermore, the cleaning property is improved. If the volume average particle size is not more than the above upper limit value, a decrease in resolution can be suppressed, so that a sufficient image quality can be obtained and a recent demand for high image quality can be satisfied.
 トナーの粒子径分布指標としては、体積平均粒度分布指標GSDvが1.30以下であることが好ましく、1.15以上1.28以下であることがより好ましく、1.17以上1.26以下であることがさらに好ましい。GSDvが上記上限値より大きいと、画像の鮮明度、解像度が低下する場合がある。また小粒径トナーの比率が高くなるため、静電気的制御が困難となる場合がある。 As the particle size distribution index of the toner, the volume average particle size distribution index GSDv is preferably 1.30 or less, more preferably 1.15 or more and 1.28 or less, and 1.17 or more and 1.26 or less. More preferably it is. If GSDv is larger than the upper limit, the image sharpness and resolution may be lowered. Further, since the ratio of the small particle size toner becomes high, electrostatic control may be difficult.
 なお、上記体積平均粒径D50は、例えば、コールターカウンターTAII、マルチサイザーII(ベックマン-コールター社製)等の測定器で測定される粒度分布を基にして算定できる。具体的には、分割された粒度範囲(チャネル)に対して体積、数をそれぞれ小径側から累積分布を描いて、累積16%となる粒径を体積D16v、数D16Pとする。また、累積50%となる粒径を体積D50v、数D50Pとする。さらに、累積84%となる粒径を体積D84v、数D84Pと定義する。これらを用いて、体積平均粒度分布指標(GSDv)は(D84v/D16V)1/2として算出される。 The volume average particle diameter D50 can be calculated based on the particle size distribution measured with a measuring instrument such as Coulter Counter TAII, Multisizer II (manufactured by Beckman Coulter, Inc.). Specifically, the cumulative distribution is drawn from the smaller diameter side with respect to the divided particle size range (channel), and the particle diameter at which the accumulation is 16% is defined as volume D16v and number D16P. In addition, the particle diameter which becomes 50% cumulative is defined as a volume D50v and a number D50P. Furthermore, the particle diameter that is 84% cumulative is defined as volume D84v and number D84P. Using these, the volume average particle size distribution index (GSDv) is calculated as (D84v / D16V) 1/2 .
〔トナーの製造方法〕
 本実施形態にかかるトナーの製造方法は、重量平均分子量が35,000以上120,000以下の高分子量樹脂(A)の水性分散物と、重量平均分子量が5,000以上30,000未満の低分子量樹脂(B)の水性分散物と、結晶性ポリエステル樹脂分散物と、着色剤分散物とを、作製する工程と、各分散物をそれぞれ混合し、樹脂を凝集させる工程とを含む。また、湿式製法(例えば、凝集合一法、懸濁重合法、溶解懸濁造粒法、溶解懸濁法、溶解乳化凝集合一法等)によりトナー粒子を形成する工程と、トナー粒子を洗浄する工程と、を含むことが好ましい。
 トナー粒子を形成する方法としては、上記の通り、水系媒体中でトナー粒子を生成する湿式製法が好適であるが、特に乳化凝集法が望ましく、転相乳化法を用いた乳化凝集法がさらに望ましい。
[Toner Production Method]
The toner manufacturing method according to the present embodiment includes an aqueous dispersion of a high molecular weight resin (A) having a weight average molecular weight of 35,000 or more and 120,000 or less and a low dispersion having a weight average molecular weight of 5,000 or more and less than 30,000. It includes a step of preparing an aqueous dispersion of the molecular weight resin (B), a crystalline polyester resin dispersion, and a colorant dispersion, and a step of mixing each dispersion and aggregating the resin. In addition, a process for forming toner particles by a wet manufacturing method (for example, aggregation coalescence method, suspension polymerization method, dissolution suspension granulation method, dissolution suspension method, dissolution emulsion aggregation aggregation method, etc.) and washing the toner particles It is preferable to include the process to do.
As a method for forming toner particles, as described above, a wet production method for producing toner particles in an aqueous medium is preferable, but an emulsion aggregation method is particularly desirable, and an emulsion aggregation method using a phase inversion emulsification method is more desirable. .
 乳化凝集法とは、トナーに含まれる成分(結着樹脂、着色剤等)を含む分散液(乳化液、顔料分散液等)をそれぞれ調製し、これらの分散液を混合してトナー成分同士を凝集させて凝集粒子を作り、その後凝集粒子を結着樹脂の融点又はガラス転移温度以上に加熱して凝集粒子を熱融合させる方法である。 The emulsion aggregation method is a method of preparing dispersions (emulsion liquid, pigment dispersion liquid, etc.) each containing components (binder resin, colorant, etc.) contained in the toner, and mixing these dispersion liquids to combine the toner components. In this method, aggregated particles are produced by agglomeration, and then the aggregated particles are heated to the melting point or glass transition temperature of the binder resin or higher to thermally fuse the aggregated particles.
 乳化凝集法は、乾式法である混錬粉砕法や、他の湿式法である溶融懸濁法、溶解懸濁法等に比べ、小粒径のトナーを作製しやすく、また粒度分布の狭い均一なトナーを得やすい。また、溶融懸濁法、溶解懸濁法等に比べトナー粒子の形状制御が容易であり、均一な不定形トナーを作製することができる。さらに、被膜形成などトナーの構造が制御され、離型剤や結晶性ポリエステル樹脂を含有する場合はこれらの表面露出が抑制されるため、帯電性や保存性の悪化が防止される。
 さらに前記の樹脂を含むトナー用バインダーを用い、乳化凝集法によりトナーを作製すると、水性樹脂分散物における樹脂粒子安定性が良く、小粒径で粒度分布の優れたトナーが作製される。
 尚、トナーの湿式製法の詳細については、例えば、特開2009-229919号公報、特開2009-46559号公報、特開2009-151241号公報、特許3344169号公報、および特許3141783号公報、特開2008-165017号公報、特開2010-20170号公報、特開2010-210959号公報等に記載の方法を本実施形態においても好適に適用することができる。
The emulsion aggregation method makes it easier to produce toner with a smaller particle size and has a narrower particle size distribution compared to the dry kneading and pulverization method and other wet methods such as the melt suspension method and the dissolution suspension method. Easy to obtain. Further, the shape of the toner particles can be easily controlled as compared with the melt suspension method, the dissolution suspension method, and the like, and a uniform amorphous toner can be produced. Further, the structure of the toner, such as film formation, is controlled, and when a release agent or a crystalline polyester resin is contained, exposure of these surfaces is suppressed, so that deterioration of chargeability and storage stability is prevented.
Further, when a toner is prepared by an emulsion aggregation method using the binder for toner containing the resin, a toner having good resin particle stability in an aqueous resin dispersion, a small particle size and an excellent particle size distribution is prepared.
The details of the wet manufacturing method of the toner are disclosed in, for example, JP2009-229919A, JP2009-46559A, JP2009-151241, JP3344169A, and JP31411783A. The methods described in Japanese Patent Application Laid-Open No. 2008-165017, Japanese Patent Application Laid-Open No. 2010-20170, Japanese Patent Application Laid-Open No. 2010-210959, and the like can also be suitably applied to this embodiment.
<画像形成方法>
 本実施形態のトナーが適用される画像形成方法としては、特に限定されるものではないが、例えば感光体上に画像を形成した後に転写を行い、画像を形成する方法や、感光体に形成された画像を逐次中間転写体等へ転写し、画像を中間転写体等に形成した後に紙等の記録媒体へ転写し画像を形成する方法等が挙げられる。
<Image forming method>
The image forming method to which the toner of the exemplary embodiment is applied is not particularly limited. For example, a method of forming an image after forming an image on a photoconductor to form an image, or an image forming method formed on the photoconductor. For example, a method may be used in which an image is sequentially transferred to an intermediate transfer member or the like, and the image is formed on the intermediate transfer member or the like and then transferred to a recording medium such as paper to form an image.
 以下に、実施例に基づき本発明について更に詳細に説明するが、本発明がこれに限定して解釈されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not construed as being limited thereto.
(実施例1)
[合成例]
 デヒドロアビエチン酸に由来するモノマー(DHA-1~3)の合成例
 以下のデヒドロアビエチン酸に由来するモノマーの合成例においては、合成されたモノマーの構造をいずれの場合もH-NMR、液体クロマトグラフィーを用いて確認した。
Example 1
[Synthesis example]
Synthesis Examples of Monomers Derived from Dehydroabietic Acid (DHA-1 to 3) In the following synthesis examples of monomers derived from dehydroabietic acid, the structure of the synthesized monomer is 1 H-NMR, liquid chromatography Confirmed using graphy.
(合成例1) (Synthesis Example 1)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 デヒドロアビエチン酸(30.0g)と塩化メチレン(60ml)の混合物に、塩化オキサリル(13g)を室温で滴下した。3時間撹拌した後、溶媒を減圧留去し、そこにメタノール16gを滴下した。室温で3時間撹拌後、過剰のメタノールを減圧留去し、中間化合物A(31g)を得た。
 中間化合物A(31g)およびパラホルムアルデヒド(2.1g)を塩化メチレン(150ml)に加え、そこに硫酸(50ml)を10~15℃で滴下した。滴下後、室温で5時間撹拌した後、氷水500mlを加え、有機層を分離した。有機層を洗液が中性になるまで水洗後、無水硫酸マグネシウムで乾燥し、次いで塩化メチレンを留去した。残渣にメタノール50mlを加え、室温で3時間撹拌した後、白色結晶を濾取、乾燥してDHA-1(20.2g)を得た。
Oxalyl chloride (13 g) was added dropwise at room temperature to a mixture of dehydroabietic acid (30.0 g) and methylene chloride (60 ml). After stirring for 3 hours, the solvent was distilled off under reduced pressure, and 16 g of methanol was added dropwise thereto. After stirring at room temperature for 3 hours, excess methanol was distilled off under reduced pressure to obtain Intermediate Compound A (31 g).
Intermediate compound A (31 g) and paraformaldehyde (2.1 g) were added to methylene chloride (150 ml), and sulfuric acid (50 ml) was added dropwise at 10 to 15 ° C. After dripping, after stirring at room temperature for 5 hours, 500 ml of ice water was added, and the organic layer was separated. The organic layer was washed with water until the washing solution became neutral, dried over anhydrous magnesium sulfate, and then methylene chloride was distilled off. 50 ml of methanol was added to the residue, and the mixture was stirred at room temperature for 3 hours, and then white crystals were collected by filtration and dried to obtain DHA-1 (20.2 g).
(合成例2) (Synthesis Example 2)
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 酢酸(100ml)に氷冷下、硫酸(30ml)を滴下した。次いで、デヒドロアビエチン酸(荒川化学工業製、30.0g)とパラホルムアルデヒド(2.1g)を室温で加え、40℃に昇温して、3時間撹拌した。得られた反応液を1Lの冷水に注ぎ、酢酸エチルで抽出した。抽出液を洗液がほぼ中性になるまで水洗し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残渣にメタノール80mlを加え、白色結晶を濾取、乾燥してDHA-2(19.8g)を得た。 Sulfuric acid (30 ml) was added dropwise to acetic acid (100 ml) under ice cooling. Next, dehydroabietic acid (Arakawa Chemical Industries, 30.0 g) and paraformaldehyde (2.1 g) were added at room temperature, the temperature was raised to 40 ° C., and the mixture was stirred for 3 hours. The resulting reaction solution was poured into 1 L of cold water and extracted with ethyl acetate. The extract was washed with water until the washing became almost neutral, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. 80 ml of methanol was added to the residue, and white crystals were collected by filtration and dried to obtain DHA-2 (19.8 g).
(合成例3) (Synthesis Example 3)
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 デヒドロアビエチン酸(75g)および無水コハク酸(38g)を塩化メチレン(1L)に溶かし、氷冷下、無水塩化アルミニウムを数回に分けて少量ずつ(合計で130g)加えた。10~15℃で2時間撹拌した後、反応液を氷水に注いだ。生成した白色結晶を濾取、水洗後、さらにメタノールで洗浄してDHA-3(72g)を得た。 Dehydroabietic acid (75 g) and succinic anhydride (38 g) were dissolved in methylene chloride (1 L), and anhydrous aluminum chloride was added in small portions (total 130 g) in several portions under ice cooling. After stirring at 10-15 ° C. for 2 hours, the reaction solution was poured into ice water. The produced white crystals were collected by filtration, washed with water, and further washed with methanol to obtain DHA-3 (72 g).
[重合例]
(重合例1)
 DHA-1(200g)、セバシン酸(和光純薬製、10.5g)、テレフタル酸ジメチル(和光純薬製、80.8g)、ドデセニル無水コハク酸(三洋化成製、69.3g)、1,3-プロパンジオール(Dupont社製、55.4g)、シクロヘキサンジメタノール(イーストマンケミカル社製、45.0g)およびオルトチタン酸テトラエチル(和光純薬製、250μL)の混合物を窒素気流下、240℃で30分間加熱撹拌し、生成した水およびメタノールを留去した。次いで、270℃に昇温し、重合の進行に伴い生成する水およびメタノールを留去しながら、そのまま4時間(#1:反応時間1)加熱攪拌した。次いでトリメリット酸無水物(和光純薬製、9.99g)を添加後、反応をさらに35分間(#2:反応時間2)継続し、さらに、トリメリット酸無水物(和光純薬製、20.0g)を添加し、55分間(#3:反応時間3)反応を行った。その後、得られた反応物をテフロン(登録商標)加工の耐熱容器に取り出し、重合体H-1(重量平均分子量87,000、分子量分布19.0、ガラス転位点58℃、酸価11mgKOH/g)を得た。
[Polymerization example]
(Polymerization example 1)
DHA-1 (200 g), sebacic acid (manufactured by Wako Pure Chemical Industries, 10.5 g), dimethyl terephthalate (manufactured by Wako Pure Chemical Industries, 80.8 g), dodecenyl succinic anhydride (manufactured by Sanyo Chemical Industries, 69.3 g), 1, A mixture of 3-propanediol (Dupont, 55.4 g), cyclohexanedimethanol (Eastman Chemical, 45.0 g) and tetraethyl orthotitanate (Wako Pure Chemicals, 250 μL) was mixed at 240 ° C. under a nitrogen stream. And stirred for 30 minutes, and the water and methanol produced were distilled off. Next, the temperature was raised to 270 ° C., and water and methanol produced as the polymerization proceeded, while stirring for 4 hours (# 1: reaction time 1). Next, after adding trimellitic anhydride (Wako Pure Chemicals, 9.99 g), the reaction was continued for another 35 minutes (# 2: reaction time 2), and trimellitic anhydride (Wako Pure Chemicals, 20 0.0 g) was added, and the reaction was allowed to proceed for 55 minutes (# 3: reaction time 3). Thereafter, the obtained reaction product was taken out into a Teflon (registered trademark) heat-resistant container, and polymer H-1 (weight average molecular weight 87,000, molecular weight distribution 19.0, glass transition point 58 ° C., acid value 11 mgKOH / g). )
 重合例1において、下記、表Aに従い、各モノマーの種類と量を変更し、反応時間を変更した以外は重合例1と同様にして、重合体H-2~H-11(高分子量)、重合体L-1~L-2(低分子量)および比較重合体cP-1~cP-2をそれぞれ得た。得られた各重合体の重量平均分子量、分子量分布、ガラス転移点、および酸価は、表1に示した。 In Polymerization Example 1, polymers H-2 to H-11 (high molecular weight) were obtained in the same manner as in Polymerization Example 1, except that the type and amount of each monomer were changed according to Table A below, and the reaction time was changed. Polymers L-1 to L-2 (low molecular weight) and comparative polymers cP-1 to cP-2 were obtained, respectively. Table 1 shows the weight average molecular weight, molecular weight distribution, glass transition point, and acid value of each polymer obtained.
 [表A]
Figure JPOXMLDOC01-appb-I000028
[Table A]
Figure JPOXMLDOC01-appb-I000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-T000030
 * 分岐成分のmol%は、全モノマー成分中の比率で記載している。
Figure JPOXMLDOC01-appb-T000030
* The mol% of the branched component is described as a ratio in the total monomer components.
<表の注記>
 SA:セバシン酸
 TPA-Me:テレフタル酸ジメチル
 DSA:ドデセニル無水コハク酸
 PDO:1,3-プロパンジオール
 CHDM:シクロヘキサンジメタノール
 TMAN:トリメリット酸無水物(3官能)
 PMDA:ピロメリット酸無水物(4官能)
 MA:メリト酸(6官能)
 GLY:グリセリン(3官能)
 酸価およびTgの測定方法は下記のとおり。
<Notes on the table>
SA: sebacic acid TPA-Me: dimethyl terephthalate DSA: dodecenyl succinic anhydride PDO: 1,3-propanediol CHDM: cyclohexanedimethanol TMAN: trimellitic anhydride (trifunctional)
PMDA: pyromellitic anhydride (tetrafunctional)
MA: Mellitic acid (hexafunctional)
GLY: Glycerin (trifunctional)
The acid value and Tg are measured as follows.
 上記表1において、プレポリマーの重量平均分子量(Mw)が複数記載されているのは、プレポリマーの重量平均分子量が記載の値になった段階で分岐成分を添加したことを表す。 In Table 1 above, a plurality of prepolymer weight average molecular weights (Mw) being described indicate that a branching component was added when the prepolymer weight average molecular weight reached the described value.
-酸価-
 酸価は、JIS規格(JIS K 0070:1992)記載の方法により測定した。得られた重合体の物性値を表1に示した。
-Acid value-
The acid value was measured by the method described in JIS standard (JIS K 0070: 1992). Table 1 shows the physical property values of the obtained polymer.
-Tg-
 示差走査熱量計(SIIテクノロジー社製、DSC6200)を用いて下記の条件で測定した。測定は同一の試料で二回実施し、二回目の測定結果を採用した。
 ・測定室内の雰囲気:窒素(50mL/min)
 ・昇温速度:10℃/min
 ・測定開始温度:0℃
 ・測定終了温度:200℃
 ・試料パン:アルミニウム製パン
 ・測定試料の質量:5mg
 ・Tgの算定:DSCチャートの下降開始点と下降終了点の中間温度をTgとした
-Tg-
It measured on condition of the following using the differential scanning calorimeter (the product made by SII technology, DSC6200). The measurement was performed twice on the same sample, and the second measurement result was adopted.
・ Atmosphere in measurement chamber: Nitrogen (50 mL / min)
・ Raising rate: 10 ° C / min
・ Measurement start temperature: 0 ℃
-Measurement end temperature: 200 ° C
-Sample pan: Aluminum pan-Mass of measurement sample: 5 mg
-Calculation of Tg: Tg is the intermediate temperature between the descent start point and descent end point of the DSC chart
(水性分散物(水性樹脂分散物)の作製)
 下記表2に記載の樹脂A10gと、メチルエチルケトン7.5gの混合物を60℃で攪拌し、加熱溶解させた。次いで、イソプロパノール2.5gを加え、室温まで放冷した後、10質量%アンモニア水0.55mlを室温で加え、さらにこの溶液中にイオン交換水40gを流量1.57g/mlで徐々に加え、転相乳化させた。その後、減圧下、エバポレーターで溶媒を留去して、水性分散物A(水性樹脂分散物A)を作製した。
 また、水性分散物Aの作製において、樹脂Aを樹脂Bに代えたこと以外は水性分散物Aの作製と同様にして、水性分散物B(水性樹脂分散物B)を作製した。
(Preparation of aqueous dispersion (aqueous resin dispersion))
A mixture of 10 g of the resin A described in Table 2 below and 7.5 g of methyl ethyl ketone was stirred at 60 ° C. and dissolved by heating. Next, 2.5 g of isopropanol was added and the mixture was allowed to cool to room temperature. Then, 0.55 ml of 10% by mass aqueous ammonia was added at room temperature, and 40 g of ion-exchanged water was gradually added to the solution at a flow rate of 1.57 g / ml. Phase inversion emulsification was performed. Thereafter, the solvent was distilled off with an evaporator under reduced pressure to prepare an aqueous dispersion A (aqueous resin dispersion A).
Further, in the production of the aqueous dispersion A, an aqueous dispersion B (aqueous resin dispersion B) was produced in the same manner as in the production of the aqueous dispersion A except that the resin A was replaced with the resin B.
(結晶性ポリエステル樹脂分散物)
 加熱乾燥した三口フラスコに、モノマー組成比で1,10-デカンジカルボン酸100モル%と、1,9-ノナンジオール100モル%とを投入し、触媒としてジブチル錫オキサイドを0.3質量%となるように入れた後、減圧操作により容器内の空気を窒素ガスにより不活性雰囲気下とし、機械攪拌にて180℃で5時間攪拌・還流を行った。
その後、減圧下にて230℃まで徐々に昇温し、この温度で2時間攪拌した。系中の反応物が粘稠な状態となったところで空冷し、反応を停止させ、結晶性ポリエステル樹脂(I)を合成した。
 得られた結晶性ポリエステル樹脂の重量平均分子量は25000、数平均分子量は5800であった。また、結晶性ポリエステル樹脂(I)の融点(Tm)を、前述の測定方法により、示差走査熱量計(DSC)を用いて測定したところ、明確な吸熱ピークを示し、吸熱ピーク温度は75℃であった。
(Crystalline polyester resin dispersion)
Into a heat-dried three-necked flask, 100 mol% of 1,10-decanedicarboxylic acid and 100 mol% of 1,9-nonanediol are added in a monomer composition ratio, and dibutyltin oxide becomes 0.3 mass% as a catalyst. Then, the air in the container was brought into an inert atmosphere with nitrogen gas by a depressurization operation, and stirred and refluxed at 180 ° C. for 5 hours with mechanical stirring.
Then, it heated up gradually to 230 degreeC under pressure reduction, and stirred at this temperature for 2 hours. When the reaction product in the system became viscous, it was air-cooled to stop the reaction, and a crystalline polyester resin (I) was synthesized.
The obtained crystalline polyester resin had a weight average molecular weight of 25,000 and a number average molecular weight of 5,800. Further, when the melting point (Tm) of the crystalline polyester resin (I) was measured using a differential scanning calorimeter (DSC) by the above-described measurement method, it showed a clear endothermic peak, and the endothermic peak temperature was 75 ° C. there were.
・結晶性ポリエステル樹脂(I):90質量部
・イオン性界面活性剤(ネオゲンRK、第一工業製薬):2.0質量部
・イオン交換水:210質量部
 以上を混合して100℃に加熱して、IKA製ウルトラタラックスT50にて分散後、圧力吐出型ゴーリンホモジナイザーで110℃に加温して分散処理を1時間行い、体積平均粒径が0.15μm、固形分量が30質量%の結晶性ポリエステル樹脂分散物を得た。
-Crystalline polyester resin (I): 90 parts by mass-Ionic surfactant (Neogen RK, Daiichi Kogyo Seiyaku): 2.0 parts by mass-Ion exchange water: 210 parts by mass The above is mixed and heated to 100 ° C Then, after dispersion with IKA Ultra Turrax T50, the dispersion was heated to 110 ° C. with a pressure discharge type gorin homogenizer for 1 hour, the volume average particle size was 0.15 μm, and the solid content was 30% by mass. A crystalline polyester resin dispersion was obtained.
(着色剤分散物の調製)
 シアン顔料(大日精化社製、Pigment Blue 15:3、銅フタロシアニン)100質量部、アニオン界面活性剤(第一工業製薬社製、ネオゲンR)10質量部およびイオン交換水350質量部を混合し、高圧衝撃式分散機(HJP30006、スギノマシン社製)にて1時間分散してシアン着色剤分散物を得た。
(Preparation of colorant dispersion)
100 parts by mass of a cyan pigment (manufactured by Dainichi Seika Co., Ltd., Pigment Blue 15: 3, copper phthalocyanine), 10 parts by mass of an anionic surfactant (Neogen R, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and 350 parts by mass of ion-exchanged water were mixed. The mixture was dispersed with a high-pressure impact disperser (HJP30006, manufactured by Sugino Machine Co.) for 1 hour to obtain a cyan colorant dispersion.
(離型剤分散物の調製)
 パラフィンワックス(HNP-9:日本精蝋社製)60質量部、アニオン界面活性剤(第一工業製薬社製、ネオゲンR)6質量部およびイオン交換水200質量部を混合し、100℃に加熱して融解させ、高圧ホモジナイザー(ゴーリン社製)にて分散し、離型剤分散物を得た。
(Preparation of release agent dispersion)
60 parts by mass of paraffin wax (HNP-9: Nippon Seiwa Co., Ltd.), 6 parts by mass of an anionic surfactant (Daiichi Kogyo Seiyaku Co., Ltd., Neogen R) and 200 parts by mass of ion-exchanged water are mixed and heated to 100 ° C Then, the mixture was melted and dispersed with a high-pressure homogenizer (manufactured by Gorin) to obtain a release agent dispersion.
(トナーの作製)
 イオン交換水280質量部、アニオン界面活性剤(第一工業製薬(株)社製、ネオゲンRK(20%))2.8質量部、上記で調製した樹脂Aの分散物(水性樹脂分散物A)と、樹脂Bの分散物(水性樹脂分散物B)を表2のブレンド比に従い、混合した樹脂分散物334質量部、および上記で調製した結晶性ポリエステル樹脂分散物33質量部を温度計、pH計、攪拌機を備えた3Lの三口フラスコに入れ、温度30℃、回転数150rpmにて30分間攪拌した。
 次いで、攪拌して得られた分散物に上記着色剤分散物60質量部、および上記離型剤分散物80質量部を加え、5分間攪拌した。さらに、1%硝酸を少しずつ添加してpHが3.0となるように調整した。その後、ポリ塩化アルミニウム0.4質量部を添加し、50℃まで昇温した後結晶性ポリエステル樹脂分散物180部を加えた。50℃を保ったまま、これを30分間攪拌した後、5質量%水酸化ナトリウム水溶液を加えてpHが9.0となるように調整した。続いて90℃まで昇温して、この温度で3時間攪拌した後、冷却して各々のトナー粒子分散液を得た。
(Production of toner)
280 parts by mass of ion-exchanged water, 2.8 parts by mass of anionic surfactant (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., Neogen RK (20%)), dispersion of resin A prepared above (aqueous resin dispersion A) ) And a dispersion of resin B (aqueous resin dispersion B) according to the blend ratio of Table 2, 334 parts by mass of the resin dispersion mixed, and 33 parts by mass of the crystalline polyester resin dispersion prepared above were thermometers, The mixture was placed in a 3 L three-necked flask equipped with a pH meter and a stirrer, and stirred at a temperature of 30 ° C. and a rotation speed of 150 rpm for 30 minutes.
Next, 60 parts by weight of the colorant dispersion and 80 parts by weight of the release agent dispersion were added to the dispersion obtained by stirring, and stirred for 5 minutes. Further, 1% nitric acid was added little by little to adjust the pH to 3.0. Thereafter, 0.4 parts by mass of polyaluminum chloride was added, the temperature was raised to 50 ° C., and 180 parts of a crystalline polyester resin dispersion was added. This was stirred for 30 minutes while maintaining 50 ° C., and then 5% by mass aqueous sodium hydroxide solution was added to adjust the pH to 9.0. Subsequently, the temperature was raised to 90 ° C., stirred at this temperature for 3 hours, and then cooled to obtain each toner particle dispersion.
(トナー粒子の調製)
 上記で得られた各トナー粒子分散液をろ過し、イオン交換水で洗浄した。各トナー粒子を再度、イオン交換水に分散し、ろ過、洗浄した。この操作をさらに2度繰り返した後、各トナー粒子分散液に1%硝酸を添加してpHが4.0となるように調整した。各トナー粒子分散液をろ過し、ろ液の電気伝導度が15μS/cm以下になるまでイオン交換水にて洗浄した後、40℃のオーブン中で5時間減圧乾燥して各トナー粒子を得た。さらに、得られた各トナー粒子100質量部に対して、疎水性シリカ(日本アエロジル社製、RY50)1.5質量部と疎水性酸化チタン(日本アエロジル社製、T805)1.0質量部とを加え、サンプルミルを用いて10000rpmで30秒間混合ブレンドした。その後、目開き45μmの篩い(screen)を備えた振動篩い機(vibrating machine)で篩い分けして各々のトナーを得た。
(Preparation of toner particles)
Each toner particle dispersion obtained above was filtered and washed with ion-exchanged water. Each toner particle was again dispersed in ion exchange water, filtered and washed. This operation was further repeated twice, and 1% nitric acid was added to each toner particle dispersion to adjust the pH to 4.0. Each toner particle dispersion was filtered, washed with ion-exchanged water until the electric conductivity of the filtrate was 15 μS / cm or less, and then dried under reduced pressure in an oven at 40 ° C. for 5 hours to obtain each toner particle. . Furthermore, with respect to 100 parts by mass of each obtained toner particle, 1.5 parts by mass of hydrophobic silica (manufactured by Nippon Aerosil Co., Ltd., RY50) and 1.0 part by mass of hydrophobic titanium oxide (manufactured by Nippon Aerosil Co., Ltd., T805) Was mixed and blended at 10,000 rpm for 30 seconds using a sample mill. Thereafter, each toner was obtained by sieving with a vibration sieving machine equipped with a screen having an opening of 45 μm.
(キャリアの調製)
 シリコン樹脂(東レ・ダウコーニング社製SR2411)300質量部、トルエン1200質量部および平均粒径50μmのフェライト芯材5kgを回転円盤型流動層コーティング装置に入れ、フェライト芯材の表面をシリコン樹脂で被覆した。次いで被覆物を取り出し、250℃で2時間加熱し、被覆膜を熟成してキャリアとした。
(Preparation of carrier)
300 parts by mass of silicon resin (SR2411 manufactured by Toray Dow Corning Co., Ltd.), 1200 parts by mass of toluene and 5 kg of ferrite core material having an average particle size of 50 μm are placed in a rotating disk type fluidized bed coating apparatus, and the surface of the ferrite core material is coated with silicon resin did. Subsequently, the coating was taken out and heated at 250 ° C. for 2 hours, and the coating film was aged to prepare a carrier.
(現像剤の調製)
 トナー濃度が5質量%、全量が1kgとなるよう上記の調製方法によって得られた各トナーと上記キャリアを混合して各現像剤を得た。
 これらの各現像剤を使用し、以下の評価を行なった。
(Preparation of developer)
Each developer obtained by the above preparation method was mixed with the above carrier so that the toner concentration was 5% by mass and the total amount was 1 kg to obtain each developer.
Each of these developers was used, and the following evaluation was performed.
(評価)
-定着下限温度(min. temp.)-
 複写機(シャープ社製、AR-505)の定着器を取り外した画像形成装置により、未定着画像を形成した。詳細には、当該複写機を用いて、転写紙(富士ゼロックス製P紙)にベタ画像で1.0±0.05mg/cmのトナーが現像されるようにトナーの適用量の調整を行いながら未定着画像を形成した。次いで、上記複写機内の加熱ロール(定着ベルト)及び加圧ベルトを備える定着器について、定着温度が可変となるように改造した複写機を用いて、当該定着温度を変えながら、未定着画像を加熱して定着画像を形成した。画像の定着性の評価は、当該画像の定着下限温度を測定して行った。なお、定着下限温度は、得られた定着画像を上記複写機が備えるパットで擦った後の画像濃度の残存率が70%以上となる定着ベルト温度をもって定着下限温度とした。
~評価基準~
 A:150℃未満
 B:150℃以上160℃未満
 C:160℃以上
(Evaluation)
-Minimum fixing temperature (min. Temp.)-
An unfixed image was formed by an image forming apparatus from which a fixing device of a copying machine (manufactured by Sharp Corporation, AR-505) was removed. Specifically, using the copying machine, the toner application amount is adjusted so that 1.0 ± 0.05 mg / cm 2 of toner is developed as a solid image on transfer paper (P paper manufactured by Fuji Xerox). An unfixed image was formed. Next, with respect to the fixing device including the heating roll (fixing belt) and the pressure belt in the copying machine, an unfixed image is heated while changing the fixing temperature by using a copying machine modified so that the fixing temperature is variable. Thus, a fixed image was formed. The image fixability was evaluated by measuring the minimum fixing temperature of the image. The fixing lower limit temperature was defined as the fixing belt temperature at which the remaining ratio of the image density after rubbing the obtained fixed image with the pad provided in the copying machine was 70% or more.
-Evaluation criteria-
A: Less than 150 ° C. B: 150 ° C. or more and less than 160 ° C. C: 160 ° C. or more
-ホットオフセット発生温度(H.O.S. temp.)-
 複写機(シャープ社製、AR-505)を改造した装置(印字枚数:50枚/分)に、得られた現像剤を実装し、定着ベルトの温度を90℃から250℃へと順次上昇させながら、画像出しを行った。各温度で画像出しを行った後、続けて白紙の転写紙を同様の条件下で定着ベルトに送り、該白紙にトナー汚れが最初に生じる定着ローラーの温度をホットオフセット発生温度とした。
~評価基準~
 A:220℃以上
 B:220℃未満190℃以上
 C:190℃未満
-Hot offset generation temperature (HOS temp.)-
The developer obtained is mounted on a device (number of prints: 50 sheets / min) modified from a copier (Sharp, AR-505), and the temperature of the fixing belt is gradually increased from 90 ° C to 250 ° C. The image was output. After the image was printed at each temperature, the white transfer paper was continuously sent to the fixing belt under the same conditions, and the temperature of the fixing roller where the toner smears on the white paper first was defined as the hot offset occurrence temperature.
-Evaluation criteria-
A: 220 ° C. or higher B: less than 220 ° C. 190 ° C. or higher C: less than 190 ° C.
 得られた結果を、下記表2にまとめて示す。 The results obtained are summarized in Table 2 below.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
*1:水性分散物の質量比
*2:分岐なし
*3:c11~c17は比較例
* 1: Mass ratio of aqueous dispersion * 2: No branching * 3: c11 to c17 are comparative examples
 上記表1より、本発明のトナーはいずれも画像の定着性に優れ、しかもホットオフセット発生が低減されていることがわかる。 From Table 1 above, it can be seen that all of the toners of the present invention are excellent in image fixability and have reduced occurrence of hot offset.
(実施例2)
 実施例1で調製したトナーNo.101および106を使用し、以下の評価を行なった。
-耐加水分解性-
 各トナー0.5gをそれぞれ成形用治具(25mmΦ)に入れ、簡易成形器(商品名:テーブルプレスTB-50H、NPaシステム社製)を用い、室温25℃、圧力30MPaで1分間プレスして、プレート状のサンプルを作製した。80℃/85%RHの高温高湿中で72時間保管した後のサンプルと初期のサンプルとの重量平均分子量(Mw)を測定した。耐加水分解性の評価は、下記式で求めた分子量保持率(%)を求め、下記のランクで評価した。
(Example 2)
Toner No. prepared in Example 1 The following evaluation was performed using 101 and 106.
-Resistance to hydrolysis-
0.5 g of each toner is put in a molding jig (25 mmΦ), and pressed using a simple molding machine (trade name: Table Press TB-50H, manufactured by NPa System) at room temperature of 25 ° C. and pressure of 30 MPa for 1 minute. A plate-like sample was prepared. The weight average molecular weight (Mw) of the sample after storing for 72 hours in the high temperature and high humidity of 80 degreeC / 85% RH was measured. For the evaluation of hydrolysis resistance, the molecular weight retention rate (%) obtained by the following formula was obtained and evaluated according to the following rank.
分子量保持率(%)=(72時間後の重量平均分子量/初期の重量平均分子量)×100 Molecular weight retention (%) = (weight average molecular weight after 72 hours / initial weight average molecular weight) × 100
~評価基準~
 A:分子量保持率90%以上
 B:分子量保持率80%以上90%未満
 C:分子量保持率80%未満
-Evaluation criteria-
A: Molecular weight retention 90% or more B: Molecular weight retention 80% or more and less than 90% C: Molecular weight retention 80% or less
-高温高湿環境での保存性-
 80℃/85%RHの高温高湿中で72時間保管した後のトナーNo.101および106を使用し、実施例1と同様にして現像剤を調製し、この現像剤を用いて、複写機「AR-505」(シャープ社製)を改造した装置(印字枚数:50枚/分)にて前記ホットオフセット発生温度を評価した。
~評価基準~
 A:220℃以上
 B:220℃未満190℃以上
 C:190℃未満
-Preservability in high temperature and high humidity environment-
Toner No. after storage in high temperature and high humidity of 80 ° C./85% RH for 72 hours. 101 and 106 were used, and a developer was prepared in the same manner as in Example 1. Using this developer, a copier “AR-505” (manufactured by Sharp) was remodeled (number of printed sheets: 50 / Minutes), the hot offset occurrence temperature was evaluated.
-Evaluation criteria-
A: 220 ° C. or higher B: less than 220 ° C. 190 ° C. or higher C: less than 190 ° C.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
*1:特開2008-165017号公報の段落番号0190~0192に記載の方法に準拠して作成した石油系トナー * 1: Petroleum toner prepared according to the method described in paragraph Nos. 0190 to 0192 of JP2008-165017A
 以上より、本発明のトナーを用いることで高温高湿環境下においても、トナー中に含まれる樹脂の分子量を保持することができるため、トナー性能の経時変化を抑えることができる。この結果、トナーの定着性を良好に保つことができ、長期間にわたって良好な画像を安定して形成することができる。 As described above, since the molecular weight of the resin contained in the toner can be maintained even in a high temperature and high humidity environment by using the toner of the present invention, it is possible to suppress a change in toner performance with time. As a result, the fixing property of the toner can be kept good, and a good image can be stably formed over a long period of time.
1 感光体(潜像保持体)
2 トナー供給室
3 ドラム
4 紙
5 トナー
51 転写画像
7 クリーナー
8 帯電手段
9 除電器
L 露光
1 Photoconductor (latent image carrier)
2 Toner supply chamber 3 Drum 4 Paper 5 Toner 51 Transfer image 7 Cleaner 8 Charging means 9 Static eliminator L Exposure

Claims (20)

  1.  重量平均分子量が35,000以上120,000以下の高分子量樹脂(A)と、重量平均分子量が5,000以上30,000未満の低分子量樹脂(B)とを含む樹脂混合物であって、
     前記樹脂(A)は、主鎖に、デヒドロアビエチン酸に由来する繰り返し単位と、3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)に由来する構成単位とを有し、樹脂(B)はデヒドロアビエチン酸に由来する繰り返し単位を有する樹脂混合物。
    A resin mixture comprising a high molecular weight resin (A) having a weight average molecular weight of 35,000 or more and 120,000 or less and a low molecular weight resin (B) having a weight average molecular weight of 5,000 or more and less than 30,000,
    The resin (A) includes a repeating unit derived from dehydroabietic acid and a structural unit derived from a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b) in the main chain. A resin mixture in which the resin (B) has a repeating unit derived from dehydroabietic acid.
  2.  前記デヒドロアビエチン酸に由来する繰り返し単位が、下記式(IA)または(IB)で表される請求項1に記載の樹脂混合物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、環Aは非芳香族の6員環を表す。環Cyはヘテロ原子を含んでもよい飽和もしくは不飽和の6または7員環を表す。Xは単結合または2価の連結基を表す。X、Y、Y、Yは2価の連結基を表す。Rは環A、環Cy、およびベンゼン環に置換してもよい置換基を表す。n1は0~18の整数を表す。]
    The resin mixture according to claim 1, wherein the repeating unit derived from dehydroabietic acid is represented by the following formula (IA) or (IB).
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, ring A represents a non-aromatic 6-membered ring. Ring Cy represents a saturated or unsaturated 6- or 7-membered ring which may contain a hetero atom. X 1 represents a single bond or a divalent linking group. X 2 , Y 1 , Y 2 , Y 3 represent a divalent linking group. R represents a substituent that may be substituted on the ring A, the ring Cy, and the benzene ring. n1 represents an integer of 0 to 18. ]
  3.  前記デヒドロアビエチン酸に由来する繰り返し単位が、下記式(IA-1)または(IB-1)で表される繰り返し単位である請求項1または2に記載の樹脂混合物。
    Figure JPOXMLDOC01-appb-C000002
    [式中、環A、X、X、Y~YおよびRは前記式(IA)または(IB)と同義である。環Bは非芳香族の6員環を表し、n2は0~17の整数を表す。]
    The resin mixture according to claim 1 or 2, wherein the repeating unit derived from dehydroabietic acid is a repeating unit represented by the following formula (IA-1) or (IB-1).
    Figure JPOXMLDOC01-appb-C000002
    [Wherein, ring A, X 1 , X 2 , Y 1 to Y 3 and R are as defined in the above formula (IA) or (IB). Ring B represents a non-aromatic 6-membered ring, and n2 represents an integer of 0 to 17. ]
  4.  前記デヒドロアビエチン酸に由来する繰り返し単位が、下記式(IA-2)または(IB-2)で表される繰り返し単位である請求項1~3のいずれか1項に記載の樹脂混合物。
    Figure JPOXMLDOC01-appb-C000003
    [式中、X、X、Y~Yは前記式(IA)または(IB)と同義である。]
    The resin mixture according to any one of claims 1 to 3, wherein the repeating unit derived from dehydroabietic acid is a repeating unit represented by the following formula (IA-2) or (IB-2).
    Figure JPOXMLDOC01-appb-C000003
    [Wherein, X 1 , X 2 and Y 1 to Y 3 have the same meanings as those in the formula (IA) or (IB). ]
  5.  前記樹脂(A)および(B)がともに、下記式(II)で表される繰り返し単位を有する請求項1~4のいずれか1項に記載の樹脂混合物。
    Figure JPOXMLDOC01-appb-C000004
    [式中、LおよびLは-O-、-S-、-N(Ra)-、-C(=O)-または-NHC(=O)-を表し、Lは2価の連結基を表す。Raは水素原子、アルキル基、アリール基またはヘテロ環基を表す。]
    The resin mixture according to any one of claims 1 to 4, wherein both the resins (A) and (B) have a repeating unit represented by the following formula (II).
    Figure JPOXMLDOC01-appb-C000004
    [Wherein L 2 and L 3 represent —O—, —S—, —N (Ra) —, —C (═O) — or —NHC (═O) —, and L 1 represents a divalent linkage. Represents a group. Ra represents a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group. ]
  6.  前記樹脂(A)および(B)がともにポリエステル樹脂である請求項1~5のいずれか1項に記載の樹脂混合物。 The resin mixture according to any one of claims 1 to 5, wherein the resins (A) and (B) are both polyester resins.
  7.  固形分質量において、前記樹脂(A)と前記樹脂(B)との比率を、30:70~70:30(質量基準)で含有する請求項1~6のいずれか1項に記載の樹脂混合物。 The resin mixture according to any one of claims 1 to 6, which contains a ratio of the resin (A) to the resin (B) in a solid mass of 30:70 to 70:30 (mass basis). .
  8.  前記樹脂(A)の分子量分布(重量平均分子量/数平均分子量)が7~25であり、前記樹脂(B)の分子量分布が2~6である請求項1~7のいずれか1項に記載の樹脂混合物。 The molecular weight distribution (weight average molecular weight / number average molecular weight) of the resin (A) is 7 to 25, and the molecular weight distribution of the resin (B) is 2 to 6. Resin mixture.
  9.  前記3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)由来の構成単位の比率が、樹脂(A)の総モルに対して、1~20モル%である請求項1~8のいずれか1項に記載の樹脂混合物。 The ratio of the structural unit derived from the trivalent or higher polyvalent carboxylic acid (a) or the trivalent or higher polyhydric alcohol (b) is 1 to 20 mol% with respect to the total mole of the resin (A). Item 9. The resin mixture according to any one of Items 1 to 8.
  10.  前記3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)由来の構成単位が、下記式(III-a)または(III-b)で表される請求項1~9のいずれか1項に記載の樹脂混合物。
    Figure JPOXMLDOC01-appb-C000005
    [式中、Arは芳香環残基を表す。Zは、エーテル結合を含んでよい環状または鎖状の脂肪族炭化水素残基を表す。m1およびm2は3以上の整数を表す。*は結合手である。]
    The structural unit derived from the trivalent or higher polyvalent carboxylic acid (a) or the trivalent or higher polyhydric alcohol (b) is represented by the following formula (III-a) or (III-b): 10. The resin mixture according to any one of 9 above.
    Figure JPOXMLDOC01-appb-C000005
    [In the formula, Ar represents an aromatic ring residue. Z represents a cyclic or chain aliphatic hydrocarbon residue which may contain an ether bond. m1 and m2 represent an integer of 3 or more. * Is a bond. ]
  11.  前記樹脂(A)は、デヒドロアビエチン酸に由来する繰り返し単位を有する重量平均分子量3,000~25,000のプレポリマーが、前記3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)に由来する構成単位を介して連結された分岐構造を有する請求項1~10のいずれか1項に記載の樹脂混合物。 In the resin (A), a prepolymer having a repeating unit derived from dehydroabietic acid and having a weight average molecular weight of 3,000 to 25,000 is a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyvalent carboxylic acid. The resin mixture according to any one of claims 1 to 10, which has a branched structure linked via a structural unit derived from a monohydric alcohol (b).
  12.  Xがアルキレン基であり、Xが**-C(=O)-L-C(=O)-(**はベンゼン環と結合する結合手を表し、Lはアルキレン基またはアルケニレン基を表す)、Y~Yがいずれも-C(=O)-、-O-、または前記環Aまたはベンゼン環に炭素原子で結合するアルキレンオキシ基である請求項1~11のいずれか1項に記載の樹脂混合物。 X 1 is an alkylene group, X 2 is ** - C (= O) -L a -C (= O) - (** represents a bond that binds to the benzene ring, L a is alkylene or alkenylene And Y 1 to Y 3 are each —C (═O) —, —O—, or an alkyleneoxy group bonded to the ring A or the benzene ring by a carbon atom. The resin mixture according to claim 1.
  13.  請求項1~12のいずれか1項に記載の樹脂混合物を水性媒体中に含む水性樹脂分散物。 An aqueous resin dispersion comprising the resin mixture according to any one of claims 1 to 12 in an aqueous medium.
  14.  さらに顔料と離型剤とを含有する請求項13に記載の水性樹脂分散物。 The aqueous resin dispersion according to claim 13, further comprising a pigment and a release agent.
  15.  請求項1~12のいずれか1項に記載の樹脂混合物を含むトナー。 A toner comprising the resin mixture according to any one of claims 1 to 12.
  16.  重量平均分子量が35,000以上120,000以下の高分子量樹脂(A)の水性分散物と、重量平均分子量が5,000以上30,000未満の低分子量樹脂(B)の水性分散物と、結晶性ポリエステル樹脂分散物と、着色剤分散物とを、作製する工程と、
     前記各分散物をそれぞれ混合し、樹脂を凝集させる工程と、を含み、
     前記樹脂(A)は、主鎖に、デヒドロアビエチン酸に由来する繰り返し単位と、3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)に由来する構成単位とを有し、樹脂(B)はデヒドロアビエチン酸に由来する繰り返し単位を有する、トナーの製造方法。
    An aqueous dispersion of a high molecular weight resin (A) having a weight average molecular weight of 35,000 or more and 120,000 or less, and an aqueous dispersion of a low molecular weight resin (B) having a weight average molecular weight of 5,000 or more and less than 30,000, Producing a crystalline polyester resin dispersion and a colorant dispersion;
    Mixing each of the dispersions and aggregating the resin,
    The resin (A) includes a repeating unit derived from dehydroabietic acid and a structural unit derived from a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b) in the main chain. And a resin (B) having a repeating unit derived from dehydroabietic acid.
  17.  請求項16に記載の製造方法により製造されたトナー。 A toner produced by the production method according to claim 16.
  18.  請求項15または17に記載のトナーとキャリアとを含む現像剤。 A developer comprising the toner according to claim 15 or 17 and a carrier.
  19.  主鎖に、デヒドロアビエチン酸に由来する繰り返し単位と、3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)由来の構成単位とを有する樹脂であって、重量平均分子量が35,000以上120,000以下であり、前記3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)由来の構成単位を介して分岐している樹脂。 A resin having a repeating unit derived from dehydroabietic acid and a structural unit derived from a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b) in the main chain, the weight average A resin having a molecular weight of 35,000 or more and 120,000 or less and branched via a structural unit derived from the trivalent or higher polyvalent carboxylic acid (a) or the trivalent or higher polyhydric alcohol (b).
  20.  請求項19に記載の樹脂の製造方法であって、
     デヒドロアビエチン酸に由来する繰り返し単位を有するプレポリマーと、3価以上の多価カルボン酸(a)または3価以上の多価アルコール(b)とを反応させる工程を含む前記樹脂の製造方法。
    A method for producing a resin according to claim 19,
    A method for producing the resin, comprising a step of reacting a prepolymer having a repeating unit derived from dehydroabietic acid with a trivalent or higher polyvalent carboxylic acid (a) or a trivalent or higher polyhydric alcohol (b).
PCT/JP2013/057400 2012-03-30 2013-03-15 Resin mixture, aqueous resin dispersion containing same, toner, and developer WO2013146347A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012081836A JP2013209564A (en) 2012-03-30 2012-03-30 Resin mixture, aqueous resin dispersion including the same, toner and developer
JP2012-081836 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013146347A1 true WO2013146347A1 (en) 2013-10-03

Family

ID=49259608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057400 WO2013146347A1 (en) 2012-03-30 2013-03-15 Resin mixture, aqueous resin dispersion containing same, toner, and developer

Country Status (2)

Country Link
JP (1) JP2013209564A (en)
WO (1) WO2013146347A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108264454A (en) * 2016-12-30 2018-07-10 上海医药工业研究院 A kind of preparation method of phloroglucin analog derivative and intermediate
CN113166379A (en) * 2018-11-30 2021-07-23 三菱化学株式会社 Polyester resin, coating agent, adhesive, resin composition, ink, and method for producing polyester resin

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017125923A (en) * 2016-01-13 2017-07-20 花王株式会社 Electrophotographic toner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225244A (en) * 1987-03-14 1988-09-20 Konica Corp Electrostatic image developing toner
JP2010210997A (en) * 2009-03-11 2010-09-24 Canon Inc Toner and production method of toner
JP2011026569A (en) * 2009-06-25 2011-02-10 Fujifilm Corp Novel dehydroabietic acid polymer
WO2011125795A1 (en) * 2010-03-31 2011-10-13 富士フイルム株式会社 Polymer derived from dehydroabietic acid and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225244A (en) * 1987-03-14 1988-09-20 Konica Corp Electrostatic image developing toner
JP2010210997A (en) * 2009-03-11 2010-09-24 Canon Inc Toner and production method of toner
JP2011026569A (en) * 2009-06-25 2011-02-10 Fujifilm Corp Novel dehydroabietic acid polymer
WO2011125795A1 (en) * 2010-03-31 2011-10-13 富士フイルム株式会社 Polymer derived from dehydroabietic acid and uses thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108264454A (en) * 2016-12-30 2018-07-10 上海医药工业研究院 A kind of preparation method of phloroglucin analog derivative and intermediate
CN108264454B (en) * 2016-12-30 2021-05-28 上海医药工业研究院 Preparation method of phloroglucinol derivative and intermediate
CN113166379A (en) * 2018-11-30 2021-07-23 三菱化学株式会社 Polyester resin, coating agent, adhesive, resin composition, ink, and method for producing polyester resin
US11898003B2 (en) 2018-11-30 2024-02-13 Mitsubishi Chemical Corporation Polyester resin, coating agent, adhesive, resin composition, ink, and method for producing polyester resin

Also Published As

Publication number Publication date
JP2013209564A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP5267701B2 (en) Polyester resin for toner, toner, developer, toner cartridge, process cartridge, and image forming apparatus
JP4990048B2 (en) Binder resin composition for toner and toner
JP2007093809A (en) Electrostatic charge image developing toner and method for manufacturing electrostatic charge image developing toner
US8962230B2 (en) Electrostatic-image developing toner, electrostatic image developer, toner cartridge, process cartridge, image-forming apparatus, and method for forming image
JP5954866B2 (en) Binder resin for toner
JP6233332B2 (en) Toner for electrostatic image development
JP5556467B2 (en) Toner for developing electrostatic image, developer for developing electrostatic image, toner cartridge, process cartridge, image forming method, and image forming apparatus
WO2013146347A1 (en) Resin mixture, aqueous resin dispersion containing same, toner, and developer
JP5858876B2 (en) Resin, method for producing the same, and toner using the same
JP2011232666A (en) Method for producing polyester resin for toner, polyester resin for toner, and toner
JP5689852B2 (en) Resin, resin composition, method for producing the same, and toner using the same
JP6251949B2 (en) Polyester resin composition for toner, electrostatic charge image developing toner, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus and image forming method
JP5858892B2 (en) Resin, production method thereof, and toner using the same
WO2013038955A1 (en) Resin composition and method for manufacturing same, and toner using same
JP6919197B2 (en) Binder resin for toner, toner and its manufacturing method
JP2013203815A (en) Resin and production method of the same, and toner using the same
JP5920163B2 (en) Polyester resin for toner, toner, developer, toner cartridge, process cartridge, and image forming apparatus
JP2014191082A (en) Toner for electrostatic charge image development, developer for electrostatic charge image development, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP2016065955A (en) Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP6295705B2 (en) Polyester resin for toner, toner for developing electrostatic image, developer for electrostatic image, toner cartridge, process cartridge, image forming apparatus, and image forming method
JP5915300B2 (en) Toner, developer, toner cartridge, process cartridge, and image forming apparatus
JP2015152912A (en) Polyester resin for toner, toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, process cartridge, image forming apparatus, and image forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767548

Country of ref document: EP

Kind code of ref document: A1