WO2013145978A1 - Light source module and liquid crystal display device - Google Patents

Light source module and liquid crystal display device Download PDF

Info

Publication number
WO2013145978A1
WO2013145978A1 PCT/JP2013/054477 JP2013054477W WO2013145978A1 WO 2013145978 A1 WO2013145978 A1 WO 2013145978A1 JP 2013054477 W JP2013054477 W JP 2013054477W WO 2013145978 A1 WO2013145978 A1 WO 2013145978A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
light source
light guide
source module
Prior art date
Application number
PCT/JP2013/054477
Other languages
French (fr)
Japanese (ja)
Inventor
花野 雅昭
和也 生田
栗本 英治
翔太 井上
秀明 名倉
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013145978A1 publication Critical patent/WO2013145978A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity

Definitions

  • the present invention relates to a light source module and a liquid crystal display device including a side edge (also referred to as a side light) type light guide plate that emits light from a light source in a planar shape by a light guide plate.
  • the present invention relates to prevention of non-uniform luminance distribution when a light guide plate having a streak-like uneven shape is used.
  • a backlight having a side edge type light guide plate that emits light from a light source in a planar shape by a light guide plate is frequently used.
  • the light guide 110 has a light diffusion pattern in which a plurality of grooves 111 having a substantially V-shaped cross section are formed on the emission surface. And a light reflection pattern in which a plurality of grooves 112 having a substantially V-shaped cross section are formed along a direction intersecting the traveling direction of the principal ray on the light reflection surface facing the emission surface.
  • the light introduced into the light guide 110 is repeatedly diffused and reflected by the light diffusion pattern and the light reflection pattern, and a bright display screen in which the brightness balance and the brightness peak are freely adjusted is obtained. Yes.
  • the backlight device 200 disclosed in Patent Document 2 includes light sources 210A and 210B in which a plurality of LED packages 201 are linearly arranged, and one flat surface portion is in the plane.
  • the light guide plate 220 is a reflection surface on which a plurality of reflection portions 221... Are formed, and the other flat surface portion is an emission surface from which light is emitted.
  • the light sources 210A and 210B are arranged along the side surfaces 222A and 222B along the vertical direction of the light guide plate 220, and the arrangement intervals of the plurality of LED packages 201 of the light sources 210A and 210B are widened toward the upper side in the vertical direction, and reflected.
  • interval of the some reflection part 221 of a surface is so narrow that it goes to the upper side of a perpendicular direction.
  • the backlight device 200 is designed to improve the uniformity of the luminance distribution on the exit surface from which light is emitted in the edge light type backlight device 200.
  • the light guide plate 220 when the light guide plate 220 is erected in the vertical direction, the temperature on the upper side of the light guide plate 220 is increased due to convection, and the luminance of the light sources 210A and 210B on the upper side of the light guide plate 220 is increased. In this case, the luminance distribution becomes uneven. Therefore, in the backlight device 200, the arrangement pitch of the light sources 210A and 210B is increased toward the upper side of the light guide plate 220.
  • the arrangement pitch of the light sources 210 ⁇ / b> A and 210 ⁇ / b> B is changed in this way, the amount of light emitted from the exit surface of the light guide plate 220 decreases as it goes to the upper side of the light guide plate 220. Therefore, in the backlight device 200, the arrangement interval of the reflecting portions 221 is narrowed toward the upper side in the vertical direction.
  • JP 2004-037982 A (published on April 05, 2004) JP 2010-282911 A (released on December 16, 2010)
  • the brightness of the central portion is increased, and the brightness is gradually decreased toward the edge of the screen. That is, it is possible to feel a natural quality by making a mountain-shaped luminance distribution having a peak at the center.
  • a display device using a cathode ray tube has a distribution in which the luminance of the central portion is high, and the viewer is accustomed to the luminance distribution of the cathode ray tube. For this reason, the distribution in which the brightness is high in a strip shape at the center of the screen is uncomfortable and inferior in quality.
  • the straightness of the LED exit light is high, so the direction is parallel to the entrance surface. The spread of light to the can be suppressed.
  • the pattern density of the optical path changing unit is relatively increased in order to increase the luminance of the central portion of the light guide, light extraction is sufficiently performed in the central region, so that light is incident.
  • FIGS. 9A and 9B which are explanatory diagrams of the present embodiment, the pattern density of the optical path changing portion is lower in the both end regions than in the central region. For this reason, light extraction is not sufficient and leakage light is generated. As a result, the luminance distribution is disturbed.
  • the present invention has been made in view of the above-described conventional problems, and its purpose is to suppress the light leakage occurring at the end portion when the exit surface has a cross-sectional shape, and uneven luminance distribution. It is an object of the present invention to provide a light source module and a liquid crystal display device that can be realized.
  • the light source module of the present invention includes a light guide plate that emits light incident in a direction perpendicular to the end surface from at least one of a pair of opposed end surfaces, and light that is incident on the light guide plate.
  • a light source module comprising: a plurality of light sources incident on the light guide plate; and a plurality of light path conversion units for extracting light guided inside the light guide plate on a surface opposite to the light exit surface of the light guide plate.
  • a plurality of streaky irregularities are formed on a light exit surface of the light guide plate along a direction perpendicular to an end face on which the light is incident.
  • the incident end face is characterized in that the center has a larger amount of light than the end.
  • the light source module includes a light guide plate that emits light that has entered in a direction perpendicular to the end surface from at least one of a pair of opposing end surfaces, and a plurality of light that enters the light guide plate.
  • a light source and a plurality of optical path conversion units for extracting light guided inside the light guide plate are provided on a surface of the light guide plate opposite to the light exit surface.
  • a plurality of streak-like irregularities along the direction perpendicular to the end face on which the light is incident are formed on the exit surface of the light guide plate.
  • the straightness in the emitted light of the light source is high.
  • the spread of light in a direction parallel to the incident surface can be suppressed.
  • the pattern density of the optical path conversion unit is relatively increased in order to increase the luminance of the central portion of the light guide plate, light extraction is sufficiently performed in the central region, so that the light incident surface The light leakage at the opposite end face is small, but the pattern density is lower in the both end regions than in the central region, so that the light extraction is not sufficient and leakage light is generated. As a result, the luminance distribution is disturbed.
  • the light quantity at the center is larger than that at the end part at the end face where the light is incident.
  • a light quantity distribution by a plurality of light sources is created in a direction parallel to the end face on which light is incident, and a natural luminance distribution can be realized on the exit surface of the light guide plate.
  • the exit surface has a cross-sectional shape, it is possible to provide a light source module capable of suppressing the light leakage generated at the end portion and making the luminance distribution non-uniform.
  • the arrangement density per unit area in the plurality of light sources provided along the end face of the light guide plate is larger at the center than on the end side.
  • the arrangement density per unit area in the plurality of light sources is made larger at the center than at the end side.
  • the luminance on the end side of the light guide plate can be reduced, so that light leakage generated at the end can be suppressed.
  • the luminances emitted from the light sources can be the same.
  • the arrangement density per unit area of the plurality of light sources is made larger at the center than at the end side under the condition that the luminances emitted from the respective light sources are the same.
  • the brightness on the end side of the light guide plate can be reduced with a simple configuration without controlling the light amount of the light source, and light leakage occurring at the end is suppressed. can do.
  • the arrangement positions of the plurality of light sources provided along the end face of the light guide plate are arranged such that the arrangement pitch of each light source is at least one or more light sources as it moves from the center to the end side. Preferably, it is set to increase stepwise.
  • the luminance of each light source is such that the central light source is the largest on the end face where the light is incident, and the light source is lighter on the end side.
  • the light amount at the center is larger than the end side at the end surface where light enters. A light amount distribution can be obtained.
  • the power input to each light source in the plurality of light sources provided along the end face of the light guide plate is larger in the central light source than in the end light source.
  • the amount of light at the center is greater than the end side at the end surface where the light is incident. The distribution of the amount of light can be obtained.
  • At least one of the arrangement density of the light sources, the luminance of each light source, and the power of each light source is set so that the ratio of the minimum luminance to the maximum luminance when each of the nine luminances is measured is 50% or more. It is preferable that it is set.
  • a liquid crystal display device of the present invention is characterized by including the light source module described above.
  • a liquid crystal display device provided with a light source module capable of suppressing the light leakage generated at the end and making the luminance distribution non-uniform when the exit surface has a cross-sectional shape is provided. Can do.
  • a plurality of streak-like uneven shapes along the direction perpendicular to the end surface on which light is incident are formed on the exit surface of the light guide plate.
  • the liquid crystal display device of the present invention includes the light source module described above as described above.
  • FIG. 1 illustrates an embodiment of a light source module according to the present invention, and is a diagram illustrating a light amount distribution and LED placement positions. It is a disassembled perspective view which shows the structure of the liquid crystal display device provided with the said light source module. It is principal part sectional drawing which shows the structure of the liquid crystal display device provided with the said light source module. It is a principal part perspective view which fractures
  • (A)-(d) is sectional drawing which shows the various shapes of the uneven
  • (A) is a top view which shows the breadth of the propagation light in the light-guide plate which consists of flat plates
  • (b) is a front view which shows the spread of the propagation light in the light-guide plate which consists of flat plates.
  • (A) is a top view which shows the breadth of the propagation light in the light-guide plate which has an uneven
  • (b) is a front view which shows the spread of the propagation light in the light guide plate which has an uneven
  • (A) is a top view which shows the luminance distribution of a light-guide plate when a light source is uniformly arrange
  • (b) is optical path conversion in the light-guide plate which has an uneven
  • FIG. 6 is a graph showing an arrangement density pattern when LEDs are provided with an average arrangement density of 0.93 (pieces / unit length) up to ⁇ 25% of the left and right dimensions of the end face of FIG. 5 is a graph showing an arrangement density pattern when LEDs are provided with an average arrangement density of 0.92 (pieces / unit length) up to ⁇ 25% in the horizontal dimension of the end face of the light guide plate.
  • FIGS. 1 to 19 An embodiment of the present invention will be described with reference to FIGS. 1 to 19 as follows.
  • FIG. 2 is an exploded perspective view showing a configuration of a liquid crystal display device provided with the light source module of the present embodiment.
  • FIG. 3 is a cross-sectional view of the main part showing the configuration of the liquid crystal display device.
  • the liquid crystal display device 1 including the light source module 10 includes a chassis 2, a light source module 10, a liquid crystal panel 3, and a bezel 4 in order from the rear.
  • 10 includes a reflection sheet 11, a light guide plate 20, a lower diffusion sheet 17, and an upper diffusion sheet 18.
  • the configurations of the lower diffusion sheet 17 and the upper diffusion sheet 18 are examples, and for example, a so-called microlens sheet may be used.
  • a light source provided with an LED 12, a LED substrate 13, and a reflector 14 on the side of at least one end face 20a of the pair of end faces 20a and 20a of the light guide plate 20 of the light source module 10 is provided.
  • a unit 15 is provided.
  • a plurality of optical path conversion units 16 for taking out light guided inside the light guide plate 20 is provided on the lower surface 20c as a surface opposite to the light exit surface 20b of the light guide plate 20. ing.
  • the optical path conversion unit 16 is made of, for example, a scatterer formed by printing ink containing a microprism, a microlens, or a diffusing material.
  • the light from the LED 12 is incident on one end face 20a of the light guide plate 20, and the light is guided while being totally reflected inside the light guide plate 20, and a plurality of optical paths provided on the lower surface 20c of the light guide plate 20
  • the total reflection condition is broken by the conversion unit 16, and the liquid crystal panel 3 is irradiated with light from the emission surface 20 b of the light guide plate 20 through the lower diffusion sheet 17 and the upper diffusion sheet 18.
  • the light source module 10 of the present embodiment employs a side edge (also referred to as side light) method.
  • a side edge also referred to as side light
  • the reflection sheet 11 is disposed on a surface other than the light exit surface 20b of the light guide plate 20 and the surface on which the LEDs 12 are disposed, and is incident on the light guide plate 20 again, most of the light is emitted from the light exit surface 20b.
  • the light source unit 15 is provided on only one of the pair of end surfaces 20a along the longitudinal direction of the light guide plate 20, for example.
  • the present invention is not necessarily limited thereto, and the light source unit 15 may be provided on both the pair of end surfaces 20 a along the longitudinal direction of the light guide plate 20.
  • the light source unit 15 may be provided on at least one of the pair of end surfaces 20 a along the short direction of the light guide plate 20.
  • the light guide plate 20 in the light source module 10 has a shape of the emission surface 20 b along a direction perpendicular to the end surface 20 a on which light from the plurality of LEDs 12 in the light source unit 15 is incident.
  • a plurality of streak-like uneven bodies T are formed.
  • the plurality of streak-like concavo-convex shapes T are formed by arranging a plurality of curved structures each having a curved surface having an arcuate cross section. This uneven
  • the light guide plate 20 includes a plurality of concave and convex shapes T each having a curved surface having a ridge line parallel to the short direction on the light emission surface 20b.
  • the concavo-convex shaped body T is a structure formed on the emission surface 20 b of the light guide plate 20, and is not provided on the light guide plate 20 as a separate member from the light guide plate 20.
  • the light scattered by the optical path changing unit 16 is caused by the uneven shape T as shown in FIG.
  • the emitted light is refracted toward the center of the concavo-convex shaped body T.
  • the uneven shape body T can suppress the spread of light to the side, and the straightness of the emitted light can be improved. That is, the light beam emitted from the light guide plate 20 is collected. As a result, the average luminance of the entire screen in the liquid crystal panel 3 can be improved.
  • a prism sheet is provided between the lower diffusion sheet 17 and the upper diffusion sheet 18 to ensure the function of increasing the straightness of the emitted light. It was.
  • the light guide plate 20 by providing the light guide plate 20 with a plurality of concavo-convex shaped bodies T, the average luminance of the entire screen in the liquid crystal panel 3 can be improved as compared with the case where a prism sheet is provided. It is possible. For this reason, in the light source module 10 of this Embodiment, the prism sheet is not provided.
  • the present invention is not necessarily limited to this, and a prism sheet can be provided.
  • the height of the light guide plate 20 in the vertical direction is set to H
  • the pitch between the concavo-convex shaped bodies T is set to P.
  • the aspect ratio H / P is 0.1 ⁇ H / P ⁇ 0.5 It is preferable to have a relationship satisfying This is because by setting the aspect ratio H / P in the range of 0.1 to 0.5, fluctuation due to light interference can be reduced and characteristic fluctuation of the light source module 10 can be suppressed.
  • the specific shape of the concavo-convex shape body T for providing such an effect is preferably a semicircular cross section as shown in FIG.
  • the light can be efficiently extracted at various incident angles from the vertical light A rising vertically to the light C guided at a shallow angle, and the light can be emitted from the emission surface.
  • the thickness of the light guide plate 20 is the same, the shape shown in FIG. 6A can easily ensure a larger cross-sectional area than the prism shape described later.
  • the uneven surface T having a semicircular cross section is formed on the light exit surface 20b of the light guide plate 20
  • the light coupling efficiency on the light incident surface from the LED 12 is high, and light leakage hardly occurs.
  • Such a shape can be formed by extruding the light guide plate 20.
  • the structure of the concavo-convex shaped body T is not necessarily the semicircular cross-section shown in FIG. 6A, but may be a shape shown in FIGS. 6B, 6C, and 6D.
  • FIG. 6 (b) is a structure in which a prism with an apex angle of 90 ° is formed on the exit surface 20b of the light guide plate 20.
  • the vertical light A becomes return light without breaking the total reflection condition.
  • the light C guided at a shallow angle is once emitted from the emission surface because the total reflection condition is broken. However, the light again enters the adjacent prism and returns to the light guide plate 20.
  • the concave / convex shaped body T shown in FIG. 6C is formed by forming a prism having an apex angle of 5 ° on the light exit surface of the light guide plate 20.
  • the vertical light A and the light C guided at a shallow angle are both emitted from the emission surface because the total reflection conditions are broken.
  • the probability that these lights will re-enter the adjacent prism increases.
  • the concavo-convex shaped body T shown in FIG. 6D has a structure having a concave cylinder surface that is recessed with respect to the emission surface 20 b of the light guide plate 20.
  • the vertical light A does not become return light due to total reflection. Therefore, the concavo-convex shape body T shown in FIG. 6D can emit light from the light guide plate 20 more efficiently than the configuration shown in FIGS. 6B and 6C. .
  • the liquid crystal display device 1 such as a television is originally easy to see that the luminance at the center of the screen in the liquid crystal panel 3 is high and the luminance decreases toward the end side. ing.
  • a side edge also referred to as a side light
  • an optical path conversion unit is arranged in a conventional light guide plate having a flat emission surface.
  • the pattern is arranged so that the density is higher at the center of the lower surface of the light guide plate.
  • a conventional light guide plate having a flat emission surface for example, by increasing the LED arrangement density, that is, by reducing the LED arrangement pitch in consideration of light leakage from the side surface of the light guide plate.
  • the brightness at the center of the screen is increased.
  • the LED arrangement density is increased by reducing the LED arrangement pitch, it is applied to the light guide plate 20 having the emission surface 20b having a plurality of streak-like uneven bodies T ... FIG.
  • the light from the LED 12 of the light source unit 15 that has entered from the end face of the light guide plate 20 has high straightness, so that the light from the side surface of the light guide plate 20 is shown in FIG.
  • Light leakage from the side surface of the light guide plate is reduced. That is, since the light rays are confined by the concavo-convex shape body T, the light rays reaching the side surface are reduced.
  • the luminance of the emission surface 20b in the vicinity of the side surface of the light guide plate 20 increases, the luminance at the center of the screen of the liquid crystal panel 3 increases, and the ideal system of luminance distribution that the luminance decreases toward the end side is broken.
  • the optical path changing unit 16 at the center of the light guide plate 20 is increased in order to increase the brightness at the center of the screen in the liquid crystal panel 3, light leakage from the side surface is caused as shown in FIGS. Since the screen edge S becomes brighter, the luminance distribution is disturbed. That is, as shown in FIG. 9B, since the LED light has a straight traveling property, the LED light at both ends of the light guide plate 20 is hardly involved in the luminance of the central region.
  • the ratio of light extraction between the both end regions and the central region of the light guide plate 20 is substantially proportional to the average pattern density of the optical path conversion unit 16 in each region. Furthermore, when producing a luminance distribution in which the luminance is highest at the center and lower at both side edges, light that is not extracted in both side edge regions is surely leaked light.
  • the distribution of the amount of light by the plurality of LEDs 12 is such that the center side is closer to the end side than the end side, as shown in FIG.
  • the amount of light is increasing.
  • the luminance distribution of the light guide plate 20 is adjusted by adjusting the LEDs 12 instead of the method of adjusting the pattern density of the optical path conversion unit 16.
  • the brightness of each LED 12 is assumed to be the same.
  • the present invention is not necessarily limited to this, and the brightness of each LED 12 can be different from each other.
  • 10 to 15 are graphs showing an example of the arrangement density pattern of the LEDs 12 provided on the end surface 20a of the light guide plate 20 in the light source module 10.
  • FIG. 16 (a) and 16 (b) are plan views showing specific LED 12 arrangement positions in the LED 12 arrangement density pattern shown in FIG. 10 to 15, the LED density on the vertical axis represents the LED arrangement density, and is defined by the number of LEDs 12 per unit length as the arrangement density of LEDs 12 per unit area. .
  • the unit of LED density on the vertical axis is pieces / cm.
  • the horizontal axis indicates the horizontal dimension of the light guide plate 20 from 0 to ⁇ 100% from the center to the left and right ends.
  • the arrangement density of the LEDs 12 is basically larger in the center in the direction along the end surface 20a of the light guide plate 20 than in the end side. ing.
  • the arrangement density of the LEDs 12 is a curve in which the arrangement pitch of each LED 12 becomes a gentle curve in the direction along the end surface 20 a of the light guide plate 20 from the center to the end side. It can be assumed that it decreases continuously.
  • a luminance distribution reflecting the arrangement density distribution of the LEDs 12 in this graph can be obtained on the emission surface 20 b of the light guide plate 20.
  • the arrangement density of the LEDs 12 is such that the arrangement pitch of the LEDs 12 is gradually increased in the direction along the end surface 20 a of the light guide plate 20 from the center to the end side. It can be said that it is decreasing. Thus, when the number of LEDs 12 is small, such a step-like density distribution can be obtained.
  • the arrangement density of the LEDs 12 is such that the arrangement pitch of the LEDs 12 is gradually increased from the center to the end side in the direction along the end surface 20 a of the light guide plate 20. It can be said that it is decreasing.
  • the arrangement density pattern of the LEDs 12 is such that the central region has the maximum density.
  • the center is not the maximum but has the maximum arrangement density in the vicinity of the center, the light guide plate 20 A luminance distribution having the maximum luminance at the center can be obtained.
  • the arrangement density of the LEDs 12 is such that the arrangement pitch of the LEDs 12 is continuously linear in the direction along the end surface 20 a of the light guide plate 20 from the center to the end side. It can be said that it is decreasing.
  • the gradient of decrease in the arrangement density is stronger than the arrangement density pattern of the LEDs 12 shown in FIG.
  • the luminance distribution does not decrease linearly.
  • the arrangement density of the LEDs 12 is such that the center is the maximum density in the direction along the end surface 20 a of the light guide plate 20, and has a minimum value and a maximum value between both ends.
  • the value can be an arrangement density pattern that does not exceed the center density.
  • the luminance in the vicinity of the end portion of the light guide plate 20 can be partially increased, so that the luminance at the end portion in the longitudinal direction should not be excessively decreased. Is possible.
  • the arrangement density of the LEDs 12 has the maximum density in the central region in the direction along the end face 20a of the light guide plate 20, and the arrangement density of the LEDs 12 is reduced by about 10% in other cases.
  • An arrangement density pattern can be obtained.
  • the density at the both ends decreases along the direction of the end face 20a of the light guide plate 20, and thus the opposite side to the light incident surface of the LEDs 12 at both ends.
  • the amount of light leakage from the end face 20a is small.
  • the LED 12 is disposed at a uniform density at the same pitch in the arrangement density pattern of the LEDs 12, and the others are rough at the equal pitch. That is, the arrangement positions of the plurality of LEDs 12 provided along the end surface 20a of the light guide plate 20 are arranged such that the arrangement pitch of each LED 12 becomes closer to the end side from the center, and six LEDs 12 become dense at the center. The both ends are rougher than that, and are set so as to increase in two stages.
  • positioning position of this LED12 is an illustration, Comprising: You may set so that it may become large in steps for every other one or more LED12.
  • FIG. 17A is a graph showing an arrangement density pattern when the LEDs 12 are provided at equal pitches within ⁇ 25% in the left-right dimension of the end face of the light guide plate 20 in the light source module 10, and FIG. It is a graph which shows the arrangement
  • the arrangement density pattern of the LEDs 12 in FIG. 17A is one LED 12 per unit length and is arranged at an equal pitch, so the average density in the arrangement density pattern of the LEDs 12 is It is 1.
  • the unit length is, for example, 1 cm
  • the pitch of the LEDs 12 is, for example, 10 mm.
  • FIG. 17B as in FIG. 11, the arrangement pitch of the LEDs 12 decreases continuously in stages from the center to the end side, and the average arrangement density of the LEDs 12 Is 0.93 (piece / unit length).
  • FIG. 17 (c) is a modified example of FIG. 10 or FIG. 10, in which the arrangement pitch of each LED 12 is continuously reduced step by step from the center to the end side.
  • the average arrangement density of the LEDs 12 is 0.92 (pieces / unit length).
  • the luminance distribution on the light guide plate 20 has a decrease in luminance within ⁇ 5% at the center of the light guide plate 20.
  • the brightness rapidly decreases as shown by the solid line in FIG. 18, whereas in the case of the LEDs 12 having the unequal pitch, the broken lines in FIG.
  • luminance fall in the both ends of the light-guide plate 20 is relieve
  • the incident light quantity of the LED 12 in the B region is reduced by 10% with respect to the A region.
  • the maximum extraction pattern density of the optical path changing unit 16 that is, the pattern density with a small leakage light ratio can be formed, and the entire loss can be suppressed.
  • the luminance of the central LED 12 is the highest in the direction along the end surface where the light is incident, and the luminance can be decreased as the LED 12 becomes the end side.
  • the luminance of the central LED 12 is, for example, 500 cd / m 2
  • the luminance of the LED 12 on the end side is, for example, 300 cd / m 2.
  • the power input to each LED 12 in the plurality of LEDs 12 provided along the end surface 20a of the light guide plate 20 is made larger at the center LED 12 than at the end LED 12.
  • positioning pitch of LED12 may be equal pitch.
  • the following criteria can be used as the luminance distribution of the entire light guide plate 20.
  • the luminance of each of the nine points is set so that the ratio of the minimum luminance to the maximum luminance is 50% or more.
  • the arrangement pitch of the LEDs 12 may be adjusted to be 50% or more at the position of W (width) / 9, and the luminance of the LED 12 in the center is W ( You may set it high so that it may become 50% or more compared with the point of (width) / 9. Alternatively, the power may be adjusted similarly.
  • the light source module 10 that can surely make the luminance distribution non-uniform on the emission surface 20b of the light guide plate 20 of the light source module 10.
  • the light source module 10 includes the light guide plate 20 that emits the light incident in the direction perpendicular to the end surface 20a from at least one of the pair of opposed end surfaces 20a, and the light guide plate 20. And a plurality of optical path conversion units for extracting light guided inside the light guide plate 20 to the lower surface 20c of the light guide plate 20 opposite to the light exit surface 20b. 16. A plurality of streak-like uneven bodies T are formed on the exit surface 20b of the light guide plate 20 along a direction perpendicular to the end surface 20a on which light is incident.
  • the LED 12 travels straight in the exit light. Therefore, the spread of light in a direction parallel to the incident surface can be suppressed.
  • the pattern density of the optical path conversion unit 16 is relatively increased in order to increase the luminance of the central portion of the light guide plate 20, light extraction is sufficient in the central region of the light guide plate 20. Therefore, light leakage at the opposite end surface of the light incident surface is small, but since the pattern density is lower than the central region in both end regions, light extraction is not sufficient and leakage light is generated. As a result, the luminance distribution is disturbed.
  • the distribution of the amount of light by the plurality of LEDs 12 is such that the amount of light at the center is larger than that at the end of the end surface 20a where light enters.
  • a light quantity distribution is created by the plurality of LEDs 12...
  • a natural luminance distribution can be realized on the exit face 20b of the light guide plate 20.
  • the exit surface 20b has a cross-sectional shape, it is possible to provide the light source module 10 that can suppress the light leakage generated at the end portion and make the luminance distribution non-uniform.
  • the arrangement density per unit area in the plurality of LEDs 12 provided along the end surface 20a of the light guide plate 20 is larger at the center than at the end side.
  • the arrangement density per unit area in the plurality of light sources is made larger at the center than at the end side.
  • the luminance on the end side of the light guide plate 20 can be reduced, so that light leakage occurring at the end can be suppressed.
  • the luminances emitted from the respective LEDs 12 are the same.
  • the arrangement density per unit area of the plurality of LEDs 12 is made larger at the center than at the end side under the condition that the luminances emitted from the LEDs 12 are the same.
  • the brightness of the LEDs 12 is the same, the brightness on the end side of the light guide plate 20 can be reduced with a simple configuration without controlling the amount of light of the LEDs 12, and light leakage occurring at the ends can be prevented. Can be suppressed.
  • positioning position of several LED12 provided along the end surface 20a of the light-guide plate 20 is at least the arrangement
  • One or more light sources are set to increase in steps.
  • the brightness of each LED 12 is preferably such that the center LED 12 is the largest on the end face 20a on which the light is incident and the LED 12 on the end side becomes smaller.
  • the light quantity distribution is adjusted by changing the luminance of the LED 12.
  • the luminance of the LEDs 12 are equal, by adjusting the luminance of the LEDs 12, the light amount is larger at the center than at the end side on the end surface 20a on which light is incident. The distribution of the amount of light can be obtained.
  • the power input to each LED 12 in the plurality of LEDs 12 provided along the end surface 20a of the light guide plate 20 is larger in the central light source than in the end light source.
  • the light quantity distribution is adjusted by adjusting the power input to the LED 12.
  • the amount of light at the center is larger than that at the ends on the end surface 20a where light enters.
  • the distribution of the amount of light can be obtained.
  • Any of the arrangement density of LEDs 12, the brightness of each LED 12, or the power of each LED 12 is set so that the ratio of the minimum brightness to the maximum brightness when measuring each of the 9 brightnesses at 4 points is 50% or more. It is preferable that at least one is set.
  • the light source module 10 that can surely make the luminance distribution non-uniform on the emission surface of the light guide plate 20 of the light source module 10.
  • liquid crystal display device 1 of the present embodiment includes an overlying light source module 10.
  • the light source module 10 which can suppress the light leakage which generate
  • the liquid crystal display device 1 can be provided.
  • the present invention relates to a light source module and a liquid crystal display device including a side edge (also referred to as a sidelight) type light guide plate that emits light from a light source in a planar shape by a light guide plate.
  • a light source module such as a backlight.
  • the liquid crystal display device can be applied to a liquid crystal display device such as a monitor of a television, a tablet, or a personal computer.

Abstract

Provided are a light source module and liquid crystal display device that, in a case where the emission surface has a cross-sectional shape, suppress light leak occurring at the edges and enable luminance distribution to be nonuniform. The light source module is provided with the following: a light guide plate for emitting from an emission surface light incident on an end surface in an orthogonal direction from at least one of a pair of opposing end surfaces; a plurality of LEDs (12) for projecting light onto the light guide plate; and a plurality of light path changing units for extracting light guided inside the light guide plate to a lower surface opposite the light emission surface of the light guide plate. On the emission surface of the light guide plate, a plurality of stripe-shaped uneven members are formed along the direction orthogonal to the end surface on which light is incident. The distribution of the light volume of the plurality of LEDs (12) is such that the light volume is greater in the center of the end surface on which light is incident than the edges thereof.

Description

光源モジュール及び液晶表示装置Light source module and liquid crystal display device
 本発明は、光源からの光を導光板によって面状に出射させるサイドエッジ(サイドライトともいう)型導光板を備えた光源モジュール及び液晶表示装置に関するものであり、詳細には、出射面に複数の筋状の凹凸形状が形成された導光板を用いた場合の輝度分布の不均一化防止に関する。 The present invention relates to a light source module and a liquid crystal display device including a side edge (also referred to as a side light) type light guide plate that emits light from a light source in a planar shape by a light guide plate. The present invention relates to prevention of non-uniform luminance distribution when a light guide plate having a streak-like uneven shape is used.
 近年、液晶表示装置においては、薄型化を図るために、光源からの光を導光板によって面状に出射させるサイドエッジ型導光板を備えたバックライトが多用されている。 In recent years, in a liquid crystal display device, in order to reduce the thickness, a backlight having a side edge type light guide plate that emits light from a light source in a planar shape by a light guide plate is frequently used.
 このようなサイドエッジ型導光板として、例えば特許文献1に開示された液晶表示装置が知られている。上記特許文献1の液晶表示装置100では、図20(a)(b)に示すように、導光体110が出射面に断面略V字状の複数の溝111…を形成した光拡散パターンを有し、出射面と対向する光反射面に主光線の進行方向と交差する方向に沿って断面略V字状の複数の溝112を形成した光反射パターンを形成している。これにより、導光体110内に導入された光は光拡散パターン及び光反射パターンにより拡散及び反射を繰り返し、輝度バランスと輝度ピークとが自在に調整された明るい表示画面が得られるようになっている。 As such a side edge type light guide plate, for example, a liquid crystal display device disclosed in Patent Document 1 is known. In the liquid crystal display device 100 of Patent Document 1, as shown in FIGS. 20A and 20B, the light guide 110 has a light diffusion pattern in which a plurality of grooves 111 having a substantially V-shaped cross section are formed on the emission surface. And a light reflection pattern in which a plurality of grooves 112 having a substantially V-shaped cross section are formed along a direction intersecting the traveling direction of the principal ray on the light reflection surface facing the emission surface. As a result, the light introduced into the light guide 110 is repeatedly diffused and reflected by the light diffusion pattern and the light reflection pattern, and a bright display screen in which the brightness balance and the brightness peak are freely adjusted is obtained. Yes.
 また、例えば特許文献2に開示されたバックライト装置200は、図21に示すように、複数のLEDパッケージ201…が直線状に配置された光源210A・210Bと、一方の平坦面部が面内に複数の反射部221…が形成された反射面であり、他方の平坦面部が光を射出する射出面である導光板220とを備えている。上記光源210A・210Bは導光板220の鉛直方向に沿った側面222A・222Bに沿って配置され、光源210A・210Bの複数のLEDパッケージ201…の配置間隔は鉛直方向の上側に向かうほど広く、反射面の複数の反射部221の配置間隔は鉛直方向の上側に向かうほど狭くなっている。 Further, for example, as shown in FIG. 21, the backlight device 200 disclosed in Patent Document 2 includes light sources 210A and 210B in which a plurality of LED packages 201 are linearly arranged, and one flat surface portion is in the plane. The light guide plate 220 is a reflection surface on which a plurality of reflection portions 221... Are formed, and the other flat surface portion is an emission surface from which light is emitted. The light sources 210A and 210B are arranged along the side surfaces 222A and 222B along the vertical direction of the light guide plate 220, and the arrangement intervals of the plurality of LED packages 201 of the light sources 210A and 210B are widened toward the upper side in the vertical direction, and reflected. The arrangement | positioning space | interval of the some reflection part 221 of a surface is so narrow that it goes to the upper side of a perpendicular direction.
 この構成により、バックライト装置200では、エッジライト方式のバックライト装置200において、光を射出する射出面における輝度分布の均一性の向上を図るものとなっている。 With this configuration, the backlight device 200 is designed to improve the uniformity of the luminance distribution on the exit surface from which light is emitted in the edge light type backlight device 200.
 すなわち、導光板220を鉛直方向に立設させると、対流により導光板220の上部側の温度が高くなり、導光板220の上部側の光源210A・210Bの輝度が高くなり、結果として、射出面における輝度分布の不均一化が発生する。そこで、バックライト装置200では、光源210A・210Bの配設ピッチを導光板220の上部側に行くほど大きくしている。 That is, when the light guide plate 220 is erected in the vertical direction, the temperature on the upper side of the light guide plate 220 is increased due to convection, and the luminance of the light sources 210A and 210B on the upper side of the light guide plate 220 is increased. In this case, the luminance distribution becomes uneven. Therefore, in the backlight device 200, the arrangement pitch of the light sources 210A and 210B is increased toward the upper side of the light guide plate 220.
 一方、このように、光源210A・210Bの配設ピッチを変化させると、導光板220の上部側に行くほど、導光板220の射出面からの出射光量が少なくなる。そこで、バックライト装置200では、反射部221の配置間隔を鉛直方向の上側に向かうほど狭くしている。 On the other hand, when the arrangement pitch of the light sources 210 </ b> A and 210 </ b> B is changed in this way, the amount of light emitted from the exit surface of the light guide plate 220 decreases as it goes to the upper side of the light guide plate 220. Therefore, in the backlight device 200, the arrangement interval of the reflecting portions 221 is narrowed toward the upper side in the vertical direction.
特開2004-037982号公報(2004年04月05日公開)JP 2004-037982 A (published on April 05, 2004) 特開2010-282911号公報(2010年12月16日公開)JP 2010-282911 A (released on December 16, 2010)
 一般的に、液晶表示装置においては中央部分の輝度を高くし、画面の端部に向かうにつれて輝度をなだらかに低下させる。すなわち、中心部分にピークを有する山形の輝度分布にすることによって、自然な品位に感じることができる。これは、ブラウン管を用いた表示装置が中央部分の輝度が高くなるような分布を有しており、視聴者はブラウン管の輝度分布に慣れていることに起因する。このため、画面中央部に帯状に輝度が高いような分布は違和感を抱くことになり、品位としては劣ることになる。 Generally, in a liquid crystal display device, the brightness of the central portion is increased, and the brightness is gradually decreased toward the edge of the screen. That is, it is possible to feel a natural quality by making a mountain-shaped luminance distribution having a peak at the center. This is because a display device using a cathode ray tube has a distribution in which the luminance of the central portion is high, and the viewer is accustomed to the luminance distribution of the cathode ray tube. For this reason, the distribution in which the brightness is high in a strip shape at the center of the screen is uncomfortable and inferior in quality.
 ところで、上記従来の特許文献1に開示された液晶表示装置100のように出射面に断面形状を有する導光体110では、LED出射光の直進性が高いため、入射面に対して平行な方向への光の拡がりを抑えることができる。 By the way, in the light guide 110 having a cross-sectional shape on the exit surface like the liquid crystal display device 100 disclosed in the above-mentioned conventional patent document 1, the straightness of the LED exit light is high, so the direction is parallel to the entrance surface. The spread of light to the can be suppressed.
 しかしながら、LEDが均一配置されている場合には、導光体の中心部分の輝度を上げるために光路変換部のパターン密度を相対的に上げると、中央領域では光取り出しが十分行われるため入光面の対向端面での光漏れは少ないが、本実施の形態の説明図である図9(a)(b)に示すように、両端領域では中央領域に対して光路変換部のパターン密度が低いために光取り出しが十分ではなく漏れ光が発生する。この結果、輝度分布が乱れるという問題点を有している。 However, when the LEDs are uniformly arranged, if the pattern density of the optical path changing unit is relatively increased in order to increase the luminance of the central portion of the light guide, light extraction is sufficiently performed in the central region, so that light is incident. Although light leakage at the opposite end face of the surface is small, as shown in FIGS. 9A and 9B, which are explanatory diagrams of the present embodiment, the pattern density of the optical path changing portion is lower in the both end regions than in the central region. For this reason, light extraction is not sufficient and leakage light is generated. As a result, the luminance distribution is disturbed.
 このような場合に、光源の配設ピッチを変更することが考えられるが、特許文献2に開示されたバックライト装置200のような光源の配設ピッチでは、出射面に断面形状を有する導光体を用いておらず、かつ課題が異なるので、本課題を解決することはできない。 In such a case, it is conceivable to change the arrangement pitch of the light sources. However, in the arrangement pitch of the light sources such as the backlight device 200 disclosed in Patent Document 2, the light guide having a cross-sectional shape on the exit surface. Since the body is not used and the problem is different, this problem cannot be solved.
 本発明は、上記従来の問題点に鑑みてなされたものであって、その目的は、出射面に断面形状を有する場合に、端部に発生する光漏れを抑制して、輝度分布の不均一化を図り得る光源モジュール及び液晶表示装置を提供することにある。 The present invention has been made in view of the above-described conventional problems, and its purpose is to suppress the light leakage occurring at the end portion when the exit surface has a cross-sectional shape, and uneven luminance distribution. It is an object of the present invention to provide a light source module and a liquid crystal display device that can be realized.
 本発明の光源モジュールは、上記の課題を解決するために、対向する一対の端面の少なくとも一方から該端面に垂直な方向に入射した光を出射面から出射する導光板と、上記導光板に光を入射する複数の光源と、上記導光板における光の出射面とは反対側の面に該導光板の内部にて導光される光を取り出すための複数の光路変換部とを備えた光源モジュールにおいて、上記導光板の出射面には、上記光が入射する端面に垂直な方向に沿った複数の筋状の凹凸形状が形成されていると共に、上記複数の光源による光量の分布は、光が入射する端面において、中央の方が端部側よりも光量が大きいことを特徴としている。 In order to solve the above-described problems, the light source module of the present invention includes a light guide plate that emits light incident in a direction perpendicular to the end surface from at least one of a pair of opposed end surfaces, and light that is incident on the light guide plate. A light source module comprising: a plurality of light sources incident on the light guide plate; and a plurality of light path conversion units for extracting light guided inside the light guide plate on a surface opposite to the light exit surface of the light guide plate. In the light guide plate, a plurality of streaky irregularities are formed on a light exit surface of the light guide plate along a direction perpendicular to an end face on which the light is incident. The incident end face is characterized in that the center has a larger amount of light than the end.
 上記の発明によれば、光源モジュールは、対向する一対の端面の少なくとも一方から該端面に垂直な方向に入射した光を出射面から出射する導光板と、上記導光板に光を入射する複数の光源と、上記導光板における光の出射面とは反対側の面に該導光板の内部にて導光される光を取り出すための複数の光路変換部とを備えている。そして、導光板の出射面には、上記光が入射する端面に垂直な方向に沿った複数の筋状の凹凸形状が形成されている。 According to the above invention, the light source module includes a light guide plate that emits light that has entered in a direction perpendicular to the end surface from at least one of a pair of opposing end surfaces, and a plurality of light that enters the light guide plate. A light source and a plurality of optical path conversion units for extracting light guided inside the light guide plate are provided on a surface of the light guide plate opposite to the light exit surface. A plurality of streak-like irregularities along the direction perpendicular to the end face on which the light is incident are formed on the exit surface of the light guide plate.
 このように、導光板の出射面に、光が入射する端面に垂直な方向に沿った複数の筋状の凹凸形状が形成されている場合には、光源の出射光における直進性が高いため、入射面に対して平行な方向への光の拡がりを抑えることができる。 Thus, when a plurality of streaky irregularities along the direction perpendicular to the end surface on which light is incident is formed on the exit surface of the light guide plate, the straightness in the emitted light of the light source is high. The spread of light in a direction parallel to the incident surface can be suppressed.
 しかしながら、光源が均一配置されている場合には、導光板の中心部分の輝度を上げるために光路変換部のパターン密度を相対的に上げると、中央領域では光取り出しが十分行われるため入光面の対向端面での光漏れは少ないが、両端領域では中央領域に対してパターン密度が低いために光取り出しが十分ではなく漏れ光が発生する。この結果、輝度分布が乱れるという問題点を有している。 However, when the light sources are uniformly arranged, if the pattern density of the optical path conversion unit is relatively increased in order to increase the luminance of the central portion of the light guide plate, light extraction is sufficiently performed in the central region, so that the light incident surface The light leakage at the opposite end face is small, but the pattern density is lower in the both end regions than in the central region, so that the light extraction is not sufficient and leakage light is generated. As a result, the luminance distribution is disturbed.
 そこで、本発明では、複数の光源による光量の分布は、光が入射する端面において、中央の方が端部側よりも光量が大きくなっている。これにより、光が入射する端面に平行な方向において、複数の光源による光量の分布をつくることとなり、導光板の出射面で自然な輝度分布を実現することが可能になる。 Therefore, in the present invention, in the distribution of the light quantity by the plurality of light sources, the light quantity at the center is larger than that at the end part at the end face where the light is incident. As a result, a light quantity distribution by a plurality of light sources is created in a direction parallel to the end face on which light is incident, and a natural luminance distribution can be realized on the exit surface of the light guide plate.
 したがって、出射面に断面形状を有する場合に、端部に発生する光漏れを抑制して、輝度分布の不均一化を図り得る光源モジュールを提供することができる。 Therefore, when the exit surface has a cross-sectional shape, it is possible to provide a light source module capable of suppressing the light leakage generated at the end portion and making the luminance distribution non-uniform.
 本発明の光源モジュールでは、前記導光板の端面に沿って設けられる複数の光源における単位面積当たりの配設密度は、中央の方が端部側よりも大きいことが好ましい。 In the light source module of the present invention, it is preferable that the arrangement density per unit area in the plurality of light sources provided along the end face of the light guide plate is larger at the center than on the end side.
 これにより、光量分布調整として、複数の光源における単位面積当たりの配設密度を、中央の方が端部側よりも大きくなるようにする。この結果、導光板における端部側の輝度を低減することができるので、端部に発生する光漏れを抑制することができる。 Thereby, as the light amount distribution adjustment, the arrangement density per unit area in the plurality of light sources is made larger at the center than at the end side. As a result, the luminance on the end side of the light guide plate can be reduced, so that light leakage generated at the end can be suppressed.
 本発明の光源モジュールでは、前記各光源から出射される輝度は、互いに同一であるとすることができる。 In the light source module of the present invention, the luminances emitted from the light sources can be the same.
 これにより、各光源から出射される輝度を互いに同一とした条件下において、複数の光源における単位面積当たりの配設密度を、中央の方が端部側よりも大きくなるようにする。 Thereby, the arrangement density per unit area of the plurality of light sources is made larger at the center than at the end side under the condition that the luminances emitted from the respective light sources are the same.
 したがって、光源の輝度が同一であるので、光源の光量制御を行うことなく、簡単な構成にて、導光板における端部側の輝度を低減することができ、端部に発生する光漏れを抑制することができる。 Therefore, since the brightness of the light source is the same, the brightness on the end side of the light guide plate can be reduced with a simple configuration without controlling the light amount of the light source, and light leakage occurring at the end is suppressed. can do.
 本発明の光源モジュールでは、前記導光板の端面に沿って設けられる複数の光源の配設位置は、中央から端部側になるに伴って各光源の配設ピッチが少なくとも1つ以上の光源毎に段階的に大きくなるように設定されていることが好ましい。 In the light source module of the present invention, the arrangement positions of the plurality of light sources provided along the end face of the light guide plate are arranged such that the arrangement pitch of each light source is at least one or more light sources as it moves from the center to the end side. Preferably, it is set to increase stepwise.
 これにより、導光板における端部側の輝度を低減するための、具体的な複数の光源の配設位置を提供することができる。 Thereby, it is possible to provide a specific arrangement position of a plurality of light sources for reducing the luminance on the end side of the light guide plate.
 本発明の光源モジュールでは、前記各光源の輝度は、光が入射する端面において、中央の光源が最も大きく、端部側の光源になるほど小さくなっていることが好ましい。 In the light source module of the present invention, it is preferable that the luminance of each light source is such that the central light source is the largest on the end face where the light is incident, and the light source is lighter on the end side.
 これにより、光源の輝度を変化させることにより、光量分布調整を行う。この結果、例えば、光源の配設ピッチが等しい場合であっても、光源の輝度を調整することにより、光が入射する端面において、中央の方が端部側よりも光量が大きくなっているという光量の分布を得ることができる。 This adjusts the light intensity distribution by changing the brightness of the light source. As a result, for example, even when the arrangement pitches of the light sources are equal, by adjusting the luminance of the light sources, the light amount at the center is larger than the end side at the end surface where light enters. A light amount distribution can be obtained.
 本発明の光源モジュールでは、前記導光板の端面に沿って設けられる複数の光源における各光源に入力される電力は、中央の光源の方が端部の光源よりも大きいことが好ましい。 In the light source module of the present invention, it is preferable that the power input to each light source in the plurality of light sources provided along the end face of the light guide plate is larger in the central light source than in the end light source.
 これにより、光源に入力する電力を調整することにより、光量分布調整を行う。この結果、例えば、光源の配設ピッチが等しい場合であっても、光源に入力する電力を調整することにより、光が入射する端面において、中央の方が端部側よりも光量が大きくなっているという光量の分布を得ることができる。 This adjusts the light intensity distribution by adjusting the power input to the light source. As a result, for example, even when the arrangement pitches of the light sources are equal, by adjusting the power input to the light sources, the amount of light at the center is greater than the end side at the end surface where the light is incident. The distribution of the amount of light can be obtained.
 本発明の光源モジュールでは、前記導光板の中心点と、該導光板の縦及び横の中心線における該導光板の左右の各端部からW(横幅)/9の位置又は上下の各端部からV(縦幅)/9の位置の4点、並びに該導光板の左右の各端部からW(横幅)/9かつ上下の各端部からV(縦幅)/9の位置の4点との9点の各輝度を測定したときの最大輝度に対する最小輝度の比が50%以上となるように、前記光源の配設密度、各光源の輝度又は各光源の電力のいずれか少なくとも1つが設定されていることが好ましい。 In the light source module of the present invention, the position of W (width) / 9 from the center point of the light guide plate and the left and right end portions of the light guide plate at the vertical and horizontal center lines of the light guide plate or the upper and lower end portions 4 points at the position of V (vertical width) / 9 and 4 points at the position of W (horizontal width) / 9 from the left and right ends of the light guide plate and V (vertical width) / 9 from each of the upper and lower ends At least one of the arrangement density of the light sources, the luminance of each light source, and the power of each light source is set so that the ratio of the minimum luminance to the maximum luminance when each of the nine luminances is measured is 50% or more. It is preferable that it is set.
 これにより、光源モジュールの導光板の出射面において、確実に、輝度分布の不均一化を図り得る光源モジュールを提供することができる。 Thereby, it is possible to provide a light source module that can surely make the luminance distribution non-uniform on the exit surface of the light guide plate of the light source module.
 本発明の液晶表示装置は、上記の課題を解決するために、前記記載の光源モジュールを備えていることを特徴としている。 In order to solve the above problems, a liquid crystal display device of the present invention is characterized by including the light source module described above.
 上記の発明によれば、出射面に断面形状を有する場合に、端部に発生する光漏れを抑制して、輝度分布の不均一化を図り得る光源モジュールを備えた液晶表示装置を提供することができる。 According to the above invention, a liquid crystal display device provided with a light source module capable of suppressing the light leakage generated at the end and making the luminance distribution non-uniform when the exit surface has a cross-sectional shape is provided. Can do.
 本発明の光源モジュールは、以上のように、導光板の出射面には、光が入射する端面に垂直な方向に沿った複数の筋状の凹凸形状が形成されていると共に、上記複数の光源による光量の分布は、光が入射する端面において、中央の方が端部側よりも光量が大きいものである。 As described above, in the light source module of the present invention, a plurality of streak-like uneven shapes along the direction perpendicular to the end surface on which light is incident are formed on the exit surface of the light guide plate. The distribution of the amount of light by means that the amount of light at the center is larger than that at the end of the end surface where light enters.
 本発明の液晶表示装置は、以上のように、前記記載の光源モジュールを備えているものである。 The liquid crystal display device of the present invention includes the light source module described above as described above.
 それゆえ、出射面に断面形状を有する場合に、端部に発生する光漏れを抑制して、輝度分布の不均一化を図り得る光源モジュール及び液晶表示装置を提供するという効果を奏する。 Therefore, there is an effect of providing a light source module and a liquid crystal display device capable of suppressing the light leakage generated at the end and making the luminance distribution non-uniform when the exit surface has a cross-sectional shape.
本発明における光源モジュールの実施の一形態を示すものであって、光量分布及びLEDの配設位置を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates an embodiment of a light source module according to the present invention, and is a diagram illustrating a light amount distribution and LED placement positions. 上記光源モジュールを備えた液晶表示装置の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the liquid crystal display device provided with the said light source module. 上記光源モジュールを備えた液晶表示装置の構成を示す要部断面図である。It is principal part sectional drawing which shows the structure of the liquid crystal display device provided with the said light source module. 上記光源モジュールの構成を一部破断して示す要部斜視図である。It is a principal part perspective view which fractures | ruptures and shows the structure of the said light source module partially. 上記光源モジュールにおける導光板の出射面に形成された凹凸形状体からの出射光を示す断面図である。It is sectional drawing which shows the emitted light from the uneven | corrugated shaped body formed in the output surface of the light-guide plate in the said light source module. (a)~(d)は、上記光源モジュールにおける導光板の出射面に形成された凹凸形状体の各種の形状を示す断面図である。(A)-(d) is sectional drawing which shows the various shapes of the uneven | corrugated shaped body formed in the output surface of the light-guide plate in the said light source module. (a)は平板からなる導光板における伝搬光の広がりを示す平面図であり、(b)は平板からなる導光板における伝搬光の広がりを示す正面図である。(A) is a top view which shows the breadth of the propagation light in the light-guide plate which consists of flat plates, (b) is a front view which shows the spread of the propagation light in the light-guide plate which consists of flat plates. (a)は凹凸形状体を有する導光板における伝搬光の広がりを示す平面図であり、(b)は凹凸形状体を有する導光板における伝搬光の広がりを示す正面図である。(A) is a top view which shows the breadth of the propagation light in the light-guide plate which has an uneven | corrugated shaped body, (b) is a front view which shows the spread of the propagation light in the light guide plate which has an uneven | corrugated shaped body. (a)は凹凸形状体を有する導光板において、光源が均一に配設された場合の導光板の輝度分布を示す平面図であり、(b)は凹凸形状体を有する導光板において、光路変換部のパターン密度を変化させた場合の導光板の輝度分布を示す平面図である。(A) is a top view which shows the luminance distribution of a light-guide plate when a light source is uniformly arrange | positioned in the light-guide plate which has an uneven | corrugated shaped body, (b) is optical path conversion in the light-guide plate which has an uneven | corrugated shaped body. It is a top view which shows the luminance distribution of the light-guide plate at the time of changing the pattern density of a part. 上記光源モジュールにおける導光板の端面に設けられたLEDの配設密度パターンの一例を示すグラフである。It is a graph which shows an example of the arrangement | positioning density pattern of LED provided in the end surface of the light-guide plate in the said light source module. 上記光源モジュールにおける導光板の端面に設けられたLEDの配設密度パターンにおける他の一例を示すグラフである。It is a graph which shows another example in the arrangement | positioning density pattern of LED provided in the end surface of the light-guide plate in the said light source module. 上記光源モジュールにおける導光板の端面に設けられたLEDの配設密度パターンのさらに他の一例を示すグラフである。It is a graph which shows another example of the arrangement | positioning density pattern of LED provided in the end surface of the light-guide plate in the said light source module. 上記光源モジュールにおける導光板の端面に設けられたLEDの配設密度パターンのさらに他の一例を示すグラフである。It is a graph which shows another example of the arrangement | positioning density pattern of LED provided in the end surface of the light-guide plate in the said light source module. 上記光源モジュールにおける導光板の端面に設けられたLEDの配設密度パターンのさらに他の一例を示すグラフである。It is a graph which shows another example of the arrangement | positioning density pattern of LED provided in the end surface of the light-guide plate in the said light source module. 上記光源モジュールにおける導光板の端面に設けられたLEDの配設密度パターンのさらに他の一例を示すグラフである。It is a graph which shows another example of the arrangement | positioning density pattern of LED provided in the end surface of the light-guide plate in the said light source module. (a)(b)は、図15に示すLEDの配設密度パターンの具体的なLEDの配設位置を示す平面図である。(A) and (b) are top views which show the specific LED arrangement position of the LED arrangement density pattern shown in FIG. (a)は上記光源モジュールにおける導光板の端面の左右寸法±25%までにLEDが等ピッチに設けられたときの配設密度パターンを示すグラフであり、(b)は上記光源モジュールにおける導光板の端面の左右寸法±25%までにLEDが平均配設密度0.93(個/単位長さ)にて設けられたときの配設密度パターンを示すグラフであり、(c)は上記光源モジュールにおける導光板の端面の左右寸法±25%までにLEDが平均配設密度0.92(個/単位長さ)にて設けられたときの配設密度パターンを示すグラフである。(A) is a graph which shows the arrangement | positioning density pattern when LED is provided in equal pitch to the left-right dimension +/- 25% of the end surface of the light-guide plate in the said light source module, (b) is the light-guide plate in the said light source module FIG. 6 is a graph showing an arrangement density pattern when LEDs are provided with an average arrangement density of 0.93 (pieces / unit length) up to ± 25% of the left and right dimensions of the end face of FIG. 5 is a graph showing an arrangement density pattern when LEDs are provided with an average arrangement density of 0.92 (pieces / unit length) up to ± 25% in the horizontal dimension of the end face of the light guide plate. 図17(a)(b)(c)に示すLEDの配設密度パターンにおける導光板の左右寸法±25%までの輝度分布を示すグラフである。It is a graph which shows the luminance distribution to the horizontal dimension +/- 25% of the light-guide plate in the arrangement | positioning density pattern of LED shown to Fig.17 (a) (b) (c). 上記導光板の輝度むらを測定するための導光板上の9点を示す平面図である。It is a top view which shows nine points on the light-guide plate for measuring the brightness nonuniformity of the said light-guide plate. (a)は従来の光源モジュールにおける導光板の構成を示す平面図であり、(b)は上記導光板の構成を示す底面図である。(A) is a top view which shows the structure of the light guide plate in the conventional light source module, (b) is a bottom view which shows the structure of the said light guide plate. 従来の他の光源モジュールにおける導光板の構成を示す平面図である。It is a top view which shows the structure of the light-guide plate in the other conventional light source module.
 本発明の一実施形態について図1~図19に基づいて説明すれば、以下のとおりである。 An embodiment of the present invention will be described with reference to FIGS. 1 to 19 as follows.
 (液晶表示装置の構成)
 最初に、本実施の形態の光源モジュールを備えた液晶表示装置の全体構成について、図2及び図3に基づいて説明する。図2は、本実施の形態の光源モジュールを備えた液晶表示装置の構成を示す分解斜視図である。また、図3は液晶表示装置の構成を示す要部断面図である。
(Configuration of liquid crystal display device)
First, an overall configuration of a liquid crystal display device including the light source module according to the present embodiment will be described with reference to FIGS. FIG. 2 is an exploded perspective view showing a configuration of a liquid crystal display device provided with the light source module of the present embodiment. FIG. 3 is a cross-sectional view of the main part showing the configuration of the liquid crystal display device.
 本実施の形態の光源モジュール10を備えた液晶表示装置1は、図2に示すように、後ろから順に、シャーシ2、光源モジュール10、液晶パネル3、ベゼル4にて構成されており、光源モジュール10は、反射シート11、導光板20、下拡散シート17及び上拡散シート18を備えている。尚、下拡散シート17及び上拡散シート18の構成は一例であり、例えば、所謂マイクロレンズシートを用いても構わない。 As shown in FIG. 2, the liquid crystal display device 1 including the light source module 10 according to the present embodiment includes a chassis 2, a light source module 10, a liquid crystal panel 3, and a bezel 4 in order from the rear. 10 includes a reflection sheet 11, a light guide plate 20, a lower diffusion sheet 17, and an upper diffusion sheet 18. Note that the configurations of the lower diffusion sheet 17 and the upper diffusion sheet 18 are examples, and for example, a so-called microlens sheet may be used.
 上記光源モジュール10の導光板20における一対の端面20a・20aにおける少なくとも一方の端面20aの側方には、図3に示すように、光源としてのLED12、LED基板13、及びリフレクタ14を備えた光源ユニット15が設けられている。また、導光板20における光の出射面20bとは反対側の面としての下面20cには、該導光板20の内部にて導光される光を取り出すための複数の光路変換部16が設けられている。この光路変換部16は、例えば、マイクロプリズム、マイクロレンズ又は拡散材を含有したインクの印刷による散乱体からなっている。 As shown in FIG. 3, a light source provided with an LED 12, a LED substrate 13, and a reflector 14 on the side of at least one end face 20a of the pair of end faces 20a and 20a of the light guide plate 20 of the light source module 10 is provided. A unit 15 is provided. In addition, a plurality of optical path conversion units 16 for taking out light guided inside the light guide plate 20 is provided on the lower surface 20c as a surface opposite to the light exit surface 20b of the light guide plate 20. ing. The optical path conversion unit 16 is made of, for example, a scatterer formed by printing ink containing a microprism, a microlens, or a diffusing material.
 これによって、LED12からの光を導光板20における一方の端面20aに入射させ、該光が導光板20の内部を全反射しながら導光し、導光板20の下面20cに設けられた複数の光路変換部16によって全反射条件が崩れて、導光板20の出射面20bから下拡散シート17及び上拡散シート18を通して液晶パネル3に光を照射するようになっている。 Thus, the light from the LED 12 is incident on one end face 20a of the light guide plate 20, and the light is guided while being totally reflected inside the light guide plate 20, and a plurality of optical paths provided on the lower surface 20c of the light guide plate 20 The total reflection condition is broken by the conversion unit 16, and the liquid crystal panel 3 is irradiated with light from the emission surface 20 b of the light guide plate 20 through the lower diffusion sheet 17 and the upper diffusion sheet 18.
 したがって、本実施の形態の光源モジュール10は、サイドエッジ(サイドライトともいう)方式を採用している。尚、導光板20からは出射面20b以外からの面からも光は出射する。しかし、導光板20の出射面20b及びLED12が配置される面以外の面には反射シート11が配置され、再度導光板20に入射するようになっているため、殆どの光は出射面20bから出射される。尚、ここでは、光源ユニット15は、導光板20における例えば長手方向に沿う一対の端面20aの一方のみに設けられている。ただし、必ずしもこれに限らず、光源ユニット15は、導光板20における長手方向に沿う一対の端面20aの両方に設けられていてもよい。また、光源ユニット15は、導光板20における短手方向に沿う一対の端面20aの少なくとも一方に設けられていてもよい。 Therefore, the light source module 10 of the present embodiment employs a side edge (also referred to as side light) method. Note that light is emitted from the light guide plate 20 from surfaces other than the emission surface 20b. However, since the reflection sheet 11 is disposed on a surface other than the light exit surface 20b of the light guide plate 20 and the surface on which the LEDs 12 are disposed, and is incident on the light guide plate 20 again, most of the light is emitted from the light exit surface 20b. Emitted. Here, the light source unit 15 is provided on only one of the pair of end surfaces 20a along the longitudinal direction of the light guide plate 20, for example. However, the present invention is not necessarily limited thereto, and the light source unit 15 may be provided on both the pair of end surfaces 20 a along the longitudinal direction of the light guide plate 20. In addition, the light source unit 15 may be provided on at least one of the pair of end surfaces 20 a along the short direction of the light guide plate 20.
 (光源モジュールの構成)
 本実施の形態の光源モジュール10における導光板20は、図4に示すように、出射面20bの形状が、光源ユニット15における複数の上記LED12の光が入射する端面20aに垂直な方向に沿った複数の筋状の凹凸形状体Tとなっている。具体的には、複数の筋状の凹凸形状体Tは、断面円弧状の曲面にて構成された曲面構造体が複数並んで構成されている。この凹凸形状体T…は、例えば、導光板20の短手方向に沿って筋状のパターンとして形成されている。すなわち、導光板20は、光の出射面20bに、短手方向に平行に稜線を有する曲面で構成された凹凸形状体Tを複数有している。この凹凸形状体Tは、導光板20の出射面20b自体に形成された構造体であり、導光板20に該導光板20とは別の部材として設けられたものではない。
(Configuration of light source module)
As shown in FIG. 4, the light guide plate 20 in the light source module 10 according to the present embodiment has a shape of the emission surface 20 b along a direction perpendicular to the end surface 20 a on which light from the plurality of LEDs 12 in the light source unit 15 is incident. A plurality of streak-like uneven bodies T are formed. Specifically, the plurality of streak-like concavo-convex shapes T are formed by arranging a plurality of curved structures each having a curved surface having an arcuate cross section. This uneven | corrugated shaped body T ... is formed as a streak pattern along the transversal direction of the light-guide plate 20, for example. In other words, the light guide plate 20 includes a plurality of concave and convex shapes T each having a curved surface having a ridge line parallel to the short direction on the light emission surface 20b. The concavo-convex shaped body T is a structure formed on the emission surface 20 b of the light guide plate 20, and is not provided on the light guide plate 20 as a separate member from the light guide plate 20.
 上記複数の筋状の凹凸形状体T…を有する出射面20bを備えた導光板20においては、図5に示すように、光路変換部16にて散乱された光は、凹凸形状体Tによって、出射光が凹凸形状体Tの中央側に屈折する。このため、凹凸形状体Tにより側方への光の拡がりを抑えることができ、出射光の直進性を向上させることができる。つまり、導光板20から出射された光束は集光される。この結果、液晶パネル3における画面全体の平均輝度を向上させることができるというメリットを有するものとなっている。 In the light guide plate 20 including the emission surface 20b having the plurality of streaky uneven shapes T, the light scattered by the optical path changing unit 16 is caused by the uneven shape T as shown in FIG. The emitted light is refracted toward the center of the concavo-convex shaped body T. For this reason, the uneven shape body T can suppress the spread of light to the side, and the straightness of the emitted light can be improved. That is, the light beam emitted from the light guide plate 20 is collected. As a result, the average luminance of the entire screen in the liquid crystal panel 3 can be improved.
 ところで、従来の平面からなる出射面を有する導光板の場合には、下拡散シート17と上拡散シート18との間にプリズムシートを設けることによってこの出射光の直進性を増大させる機能を確保していた。しかし、本実施の形態の光源モジュール10では、導光板20に複数の凹凸形状体Tを設けることによって、プリズムシートを設けた場合よりも、液晶パネル3における画面全体の平均輝度を向上させることが可能となっている。このため、本実施の形態の光源モジュール10では、プリズムシートを設けていない。ただし、必ずしもこれに限らず、プリズムシートを設けることは可能である。 By the way, in the case of a light guide plate having a conventional light exit surface, a prism sheet is provided between the lower diffusion sheet 17 and the upper diffusion sheet 18 to ensure the function of increasing the straightness of the emitted light. It was. However, in the light source module 10 according to the present embodiment, by providing the light guide plate 20 with a plurality of concavo-convex shaped bodies T, the average luminance of the entire screen in the liquid crystal panel 3 can be improved as compared with the case where a prism sheet is provided. It is possible. For this reason, in the light source module 10 of this Embodiment, the prism sheet is not provided. However, the present invention is not necessarily limited to this, and a prism sheet can be provided.
 ここで、このような出射光の直進性を向上させるためには、図5に示すように、導光板20の垂直な方向の高さをHとし、凹凸形状体T同士のピッチをPとしたときのアスペクト比H/Pは、
  0.1<H/P<0.5
を満たす関係を有していることが好ましい。アスペクト比H/Pを0.1~0.5の範囲に設定することにより、光の干渉による変動を小さくすることができ、光源モジュール10の特性変動を抑えることができるためである。
Here, in order to improve such straightness of the emitted light, as shown in FIG. 5, the height of the light guide plate 20 in the vertical direction is set to H, and the pitch between the concavo-convex shaped bodies T is set to P. The aspect ratio H / P is
0.1 <H / P <0.5
It is preferable to have a relationship satisfying This is because by setting the aspect ratio H / P in the range of 0.1 to 0.5, fluctuation due to light interference can be reduced and characteristic fluctuation of the light source module 10 can be suppressed.
 このような効果を持たせるための凹凸形状体Tの具体的な形状は、図6(a)に示すように、断面半円形となっていることが好ましい。この場合、垂直に立ち上がった垂直光Aから浅い角度で導光する光Cまで、様々な入射角度に対して効率的に光を取り出し、出射面から光を出射させることができる。また、導光板20の厚さが同じである場合、図6(a)に示された形状は、後述するプリズム形状よりも大きな断面積を確保し易い。その結果、導光板20の出射面20bに出射面に断面半円形の凹凸形状体Tが形成された構成では、LED12からの光の入射面での光結合効率が高く、光漏れが起き難い。このような形状は、導光板20を押し出し成形することにより形成することができる。 The specific shape of the concavo-convex shape body T for providing such an effect is preferably a semicircular cross section as shown in FIG. In this case, the light can be efficiently extracted at various incident angles from the vertical light A rising vertically to the light C guided at a shallow angle, and the light can be emitted from the emission surface. Further, when the thickness of the light guide plate 20 is the same, the shape shown in FIG. 6A can easily ensure a larger cross-sectional area than the prism shape described later. As a result, in the configuration in which the uneven surface T having a semicircular cross section is formed on the light exit surface 20b of the light guide plate 20, the light coupling efficiency on the light incident surface from the LED 12 is high, and light leakage hardly occurs. Such a shape can be formed by extruding the light guide plate 20.
 ここで、凹凸形状体Tの構造は、必ずしも、図6(a)に示す断面半円形でなく、図6(b)(c)(d)に示す形状とすることも可能である。 Here, the structure of the concavo-convex shaped body T is not necessarily the semicircular cross-section shown in FIG. 6A, but may be a shape shown in FIGS. 6B, 6C, and 6D.
 図6(b)に示す凹凸形状体Tは、導光板20の出射面20bに頂角90°のプリズムが形成されたものからなっている。この場合、垂直光Aは、全反射条件を崩さず戻り光となってしまう。また、浅い角度で導光する光Cについては、全反射条件が崩れ一旦出射面から出射する。しかし、再度、隣のプリズムに入射してしまい導光板20内に戻ってしまう。 6 (b) is a structure in which a prism with an apex angle of 90 ° is formed on the exit surface 20b of the light guide plate 20. In this case, the vertical light A becomes return light without breaking the total reflection condition. Further, the light C guided at a shallow angle is once emitted from the emission surface because the total reflection condition is broken. However, the light again enters the adjacent prism and returns to the light guide plate 20.
 図6(c)に示す凹凸形状体Tは、導光板20の出射面に頂角5°のプリズムが形成されたものからなっている。この場合、垂直光A及び浅い角度で導光する光Cは、いずれも全反射条件が崩れ出射面から出射される。しかし、これらの光が隣のプリズムに再入射する確率が増加する。 The concave / convex shaped body T shown in FIG. 6C is formed by forming a prism having an apex angle of 5 ° on the light exit surface of the light guide plate 20. In this case, the vertical light A and the light C guided at a shallow angle are both emitted from the emission surface because the total reflection conditions are broken. However, the probability that these lights will re-enter the adjacent prism increases.
 したがって、図6(b)(c)のように、導光板20の出射面20bにプリズムが形成された場合、導光板20内に光を閉じ込めるために導光板20から光を出射させる効率が低下してしまう場合がある。 Therefore, as shown in FIGS. 6B and 6C, when a prism is formed on the light emission surface 20b of the light guide plate 20, the efficiency of emitting light from the light guide plate 20 to confine light in the light guide plate 20 is reduced. May end up.
 また、図6(d)に示す凹凸形状体Tは、導光板20の出射面20bに対し窪んだ凹シリンダ面を有する構造となっている。この場合、垂直光Aが全反射により戻り光になることがない。このため、図6(d)に示す凹凸形状体Tは、図6(b)(c)に示された構成と比較して、効率的に導光板20から光を出射させることが可能である。 Further, the concavo-convex shaped body T shown in FIG. 6D has a structure having a concave cylinder surface that is recessed with respect to the emission surface 20 b of the light guide plate 20. In this case, the vertical light A does not become return light due to total reflection. Therefore, the concavo-convex shape body T shown in FIG. 6D can emit light from the light guide plate 20 more efficiently than the configuration shown in FIGS. 6B and 6C. .
 (輝度分布の不均一化対策)
 上述した複数の筋状の凹凸形状体T…を有する出射面20bを備えた導光板20を用いた光源モジュール10においては、出射光の直進性が向上するので、液晶パネル3における画面全体の平均輝度を向上させることができるというメリットを有している。しかしながら、逆に、複数の筋状の凹凸形状体T…を有する出射面20bを備えた導光板20を用いたことによる輝度分布の不均一化が発生するという新たな課題が発生する。
(Measures against uneven luminance distribution)
In the light source module 10 using the light guide plate 20 having the emission surface 20b having the plurality of streaky uneven shapes T described above, the straightness of the emitted light is improved, so that the average of the entire screen in the liquid crystal panel 3 is improved. It has the merit that the luminance can be improved. However, on the contrary, there arises a new problem that non-uniformity of the luminance distribution occurs due to the use of the light guide plate 20 provided with the emission surface 20b having a plurality of streak-like uneven bodies T.
 すなわち、前述したように、本来、テレビ等の液晶表示装置1は、液晶パネル3における画面中央の輝度が高く、端部側になるほど輝度が下がっているようになっているのが、見易いとされている。 That is, as described above, the liquid crystal display device 1 such as a television is originally easy to see that the luminance at the center of the screen in the liquid crystal panel 3 is high and the luminance decreases toward the end side. ing.
 したがって、サイドエッジ(サイドライトともいう)方式を採用する光源モジュールにおいて、LED12の配設ピッチを均一にした場合においては、平面からなる出射面を有する従来の導光板では、光路変換部の配設密度を導光板の下面における中央が高くなるようにパターン配置している。 Therefore, in a light source module that employs a side edge (also referred to as a side light) system, when the arrangement pitch of the LEDs 12 is made uniform, in a conventional light guide plate having a flat emission surface, an optical path conversion unit is arranged. The pattern is arranged so that the density is higher at the center of the lower surface of the light guide plate.
 この場合、平面からなる出射面を有する従来の導光板では、図7(a)に示すように、導光板の端面から入射したLEDからの光は、放射状に広がりながら導光板の内部を伝搬される。この結果、図7(b)に示すように、導光板の側面からの光漏れが多くなる。 In this case, in a conventional light guide plate having a flat exit surface, as shown in FIG. 7A, light from the LED incident from the end face of the light guide plate is propagated in the light guide plate while spreading radially. The As a result, as shown in FIG. 7B, light leakage from the side surface of the light guide plate increases.
 したがって、平面からなる出射面を有する従来の導光板では、導光板の側面からの光漏れを考慮して、例えば、LEDの配設密度を大きくして、つまりLEDの配設ピッチを小さくして画面中央の輝度が高くなるようにしている。 Therefore, in a conventional light guide plate having a flat emission surface, for example, by increasing the LED arrangement density, that is, by reducing the LED arrangement pitch in consideration of light leakage from the side surface of the light guide plate. The brightness at the center of the screen is increased.
 しかしながら、LEDの配設ピッチを小さくすることによりLEDの配設密度を大きくしたものを、複数の筋状の凹凸形状体T…を有する出射面20bを備えた導光板20に適用すると、図8(a)に示すように、導光板20の端面から入射した光源ユニット15の上記LED12からの光は直進性が高いために、図8(b)に示すように、導光板20の側面からの導光板の側面からの光漏れが少なくなる。つまり、凹凸形状体Tにより、光線が閉じ込められるので、側面に到達する光線が少なくなる。この結果、導光板20における側面近傍の出射面20bの輝度が高くなり、液晶パネル3における画面中央の輝度が高く、かつ端部側になるほど輝度が下がるという輝度分布の理想系が崩れる。 However, when the LED arrangement density is increased by reducing the LED arrangement pitch, it is applied to the light guide plate 20 having the emission surface 20b having a plurality of streak-like uneven bodies T ... FIG. As shown in FIG. 8A, the light from the LED 12 of the light source unit 15 that has entered from the end face of the light guide plate 20 has high straightness, so that the light from the side surface of the light guide plate 20 is shown in FIG. Light leakage from the side surface of the light guide plate is reduced. That is, since the light rays are confined by the concavo-convex shape body T, the light rays reaching the side surface are reduced. As a result, the luminance of the emission surface 20b in the vicinity of the side surface of the light guide plate 20 increases, the luminance at the center of the screen of the liquid crystal panel 3 increases, and the ideal system of luminance distribution that the luminance decreases toward the end side is broken.
 そこで、液晶パネル3における画面中央の輝度を高くするために、導光板20の画面中央の光路変換部16を増加すると、図9(a)(b)に示すように、側面からの光漏れが多くなり、画面端部Sが明るくなるので、輝度分布が乱れるという課題が発生する。すなわち、図9(b)に示すように、LED光が直進性を有しているので、導光板20の両側端のLED光は中央領域の輝度に殆ど関与していない。また、導光板20の両側端部領域と中央領域との光取り出しの比率は、各領域の光路変換部16の平均パターン密度にほぼ比例する。さらに、中央を一番輝度が高く、両側端で低くする輝度分布を作製する場合は、両側端領域では取り出されない光が確実に漏れ光となる。 Therefore, when the optical path changing unit 16 at the center of the light guide plate 20 is increased in order to increase the brightness at the center of the screen in the liquid crystal panel 3, light leakage from the side surface is caused as shown in FIGS. Since the screen edge S becomes brighter, the luminance distribution is disturbed. That is, as shown in FIG. 9B, since the LED light has a straight traveling property, the LED light at both ends of the light guide plate 20 is hardly involved in the luminance of the central region. In addition, the ratio of light extraction between the both end regions and the central region of the light guide plate 20 is substantially proportional to the average pattern density of the optical path conversion unit 16 in each region. Furthermore, when producing a luminance distribution in which the luminance is highest at the center and lower at both side edges, light that is not extracted in both side edge regions is surely leaked light.
 この場合に、光漏れを遮光テープ等で塞ぐことが可能であるが、LED光束に対する効率が低下する。また、LEDの個別制御を行うことによって、導光板20の両端の入光光束を下げるという方法を採ることは可能であるが、コストアップの要因となる。すなわち、エネルギーの有効利用、効率的な利用という精神に反することになる。 In this case, it is possible to block the light leakage with a light shielding tape or the like, but the efficiency with respect to the LED luminous flux decreases. Moreover, although it is possible to take the method of lowering the incident light beam at both ends of the light guide plate 20 by performing individual control of the LEDs, it causes an increase in cost. In other words, it goes against the spirit of effective and efficient use of energy.
 そこで、本実施の形態の光源モジュール10では、複数のLED12…による光量の分布は、光が入射する導光板20の端面20aにおいて、図1に示すように、中央の方が端部側よりも光量が大きくなっている。 Therefore, in the light source module 10 of the present embodiment, the distribution of the amount of light by the plurality of LEDs 12 is such that the center side is closer to the end side than the end side, as shown in FIG. The amount of light is increasing.
 すなわち、本実施の形態では、光路変換部16のパターン密度の調整による方法ではなく、LED12を調整することにより、導光板20の輝度分布を調整するようにしている。この場合、各LED12の輝度は、互いに同一であるとしている。ただし、必ずしもこれに限らず、各LED12の輝度を互いに異ならせることは可能である。 That is, in the present embodiment, the luminance distribution of the light guide plate 20 is adjusted by adjusting the LEDs 12 instead of the method of adjusting the pattern density of the optical path conversion unit 16. In this case, the brightness of each LED 12 is assumed to be the same. However, the present invention is not necessarily limited to this, and the brightness of each LED 12 can be different from each other.
 ここで、複数のLED12…による光量の分布を中央の方が端部側よりも光量が大きくする方法として、LED12の配設密度を調整する方法と、LED12の輝度を調整する方法とがある。 Here, as a method of making the light amount distribution at the center larger than the end side in the light amount distribution by the plurality of LEDs 12..., There are a method of adjusting the arrangement density of the LEDs 12 and a method of adjusting the luminance of the LEDs 12.
 最初に、LED12の配設密度を調整することにより、光量の分布を調整する方法について、図10~図15及び図16(a)(b)に基づいて説明する。図10~図15は、光源モジュール10における導光板20の端面20aに設けられたLED12の配設密度パターンの一例を示すグラフである。図16(a)(b)は、図15に示すLED12の配設密度パターンにおける具体的なLED12の配設位置を示す平面図である。尚、図10~図15において、縦軸のLED密度は、LED配設密度を示しており、単位面積当たりのLED12の配設密度としての単位長さ当たりのLED12の個数にて定義している。具体的には、縦軸のLED密度の単位は、個/cmである。また、横軸は導光板20の左右方向寸法を中央から左右端部まで0~±100%として示している。 First, a method for adjusting the distribution of the amount of light by adjusting the arrangement density of the LEDs 12 will be described with reference to FIGS. 10 to 15 and FIGS. 16 (a) and 16 (b). 10 to 15 are graphs showing an example of the arrangement density pattern of the LEDs 12 provided on the end surface 20a of the light guide plate 20 in the light source module 10. FIG. 16 (a) and 16 (b) are plan views showing specific LED 12 arrangement positions in the LED 12 arrangement density pattern shown in FIG. 10 to 15, the LED density on the vertical axis represents the LED arrangement density, and is defined by the number of LEDs 12 per unit length as the arrangement density of LEDs 12 per unit area. . Specifically, the unit of LED density on the vertical axis is pieces / cm. In addition, the horizontal axis indicates the horizontal dimension of the light guide plate 20 from 0 to ± 100% from the center to the left and right ends.
 ここで、本実施の形態では、図10~図15のいずれにおいても、基本的にLED12の配設密度は、導光板20の端面20aに沿う方向において中央の方が端部側よりも大きくなっている。 Here, in this embodiment, in any of FIGS. 10 to 15, the arrangement density of the LEDs 12 is basically larger in the center in the direction along the end surface 20a of the light guide plate 20 than in the end side. ing.
 まず、図10に示すように、LED12の配設密度は、導光板20の端面20aに沿う方向において、中央から端部側になるに伴って各LED12の配設ピッチがなだらかな曲線となって連続的に減少しているとすることができる。このようなLED12の配設密度を採用した場合には、導光板20の出射面20bでは、このグラフにおけるLED12の配設密度分布を反映した輝度分布を得ることができる。 First, as shown in FIG. 10, the arrangement density of the LEDs 12 is a curve in which the arrangement pitch of each LED 12 becomes a gentle curve in the direction along the end surface 20 a of the light guide plate 20 from the center to the end side. It can be assumed that it decreases continuously. When such an arrangement density of the LEDs 12 is adopted, a luminance distribution reflecting the arrangement density distribution of the LEDs 12 in this graph can be obtained on the emission surface 20 b of the light guide plate 20.
 次に、図11に示すように、LED12の配設密度は、導光板20の端面20aに沿う方向において、中央から端部側になるに伴って段階的に各LED12の配設ピッチが連続的に減少しているとすることができる。このように、LED12の個数が少ない場合は、このような階段状の密度分布となり得る。 Next, as shown in FIG. 11, the arrangement density of the LEDs 12 is such that the arrangement pitch of the LEDs 12 is gradually increased in the direction along the end surface 20 a of the light guide plate 20 from the center to the end side. It can be said that it is decreasing. Thus, when the number of LEDs 12 is small, such a step-like density distribution can be obtained.
 次に、図12に示すように、LED12の配設密度は、導光板20の端面20aに沿う方向において、中央から端部側になるに伴って段階的に各LED12の配設ピッチが連続的に減少しているとすることができる。ただし、中心は最大密度ではないが、中央領域が最大密度となるLED12の配設密度パターンとなっている。このように、凹凸形状体Tを有する導光板20においてもある程度の伝搬光の拡がりは存在するため、中心が最大でなくとも中心近傍で最大の配設密度を有するのであれば、導光板20の中央において輝度が最大となる輝度分布を得ることができる。 Next, as shown in FIG. 12, the arrangement density of the LEDs 12 is such that the arrangement pitch of the LEDs 12 is gradually increased from the center to the end side in the direction along the end surface 20 a of the light guide plate 20. It can be said that it is decreasing. However, although the center is not the maximum density, the arrangement density pattern of the LEDs 12 is such that the central region has the maximum density. As described above, even in the light guide plate 20 having the concavo-convex shape body T, there is a certain amount of propagation of the propagation light. Therefore, if the center is not the maximum but has the maximum arrangement density in the vicinity of the center, the light guide plate 20 A luminance distribution having the maximum luminance at the center can be obtained.
 次に、図13に示すように、LED12の配設密度は、導光板20の端面20aに沿う方向において、中央から端部側になるに伴って各LED12の配設ピッチが連続的に線形に減少しているとすることができる。この例では、図10に示すLED12の配設密度パターンよりは配設密度の減少の勾配は強くなる。しかし、導光板20の輝度分布においては、導光板20の内部において伝搬光の拡がりは存在するので、線形的に減少する輝度分布になるわけではない。 Next, as shown in FIG. 13, the arrangement density of the LEDs 12 is such that the arrangement pitch of the LEDs 12 is continuously linear in the direction along the end surface 20 a of the light guide plate 20 from the center to the end side. It can be said that it is decreasing. In this example, the gradient of decrease in the arrangement density is stronger than the arrangement density pattern of the LEDs 12 shown in FIG. However, in the luminance distribution of the light guide plate 20, since the spread of the propagation light exists inside the light guide plate 20, the luminance distribution does not decrease linearly.
 次に、図14に示すように、LED12の配設密度は、導光板20の端面20aに沿う方向において、中心が最大密度であり、両端までの間に極小値と極大値を有し、極大値は中心の密度を超えていない配設密度パターンとすることができる。 Next, as shown in FIG. 14, the arrangement density of the LEDs 12 is such that the center is the maximum density in the direction along the end surface 20 a of the light guide plate 20, and has a minimum value and a maximum value between both ends. The value can be an arrangement density pattern that does not exceed the center density.
 このようなLED12の配設密度を採用した場合には、導光板20における端部近傍の輝度を部分的に上げることができるため、長手方向の端部の輝度を下げ過ぎない設計とすることが可能である。 When such an arrangement density of the LEDs 12 is adopted, the luminance in the vicinity of the end portion of the light guide plate 20 can be partially increased, so that the luminance at the end portion in the longitudinal direction should not be excessively decreased. Is possible.
 例えば、後述するように、導光板20における中心と端部から1/9点での輝度比を重視する輝度規格に合わせた分布を作ることが可能になる。 For example, as will be described later, it is possible to create a distribution in accordance with a luminance standard that places importance on the luminance ratio at 1/9 points from the center and end of the light guide plate 20.
 次に、図15に示すように、LED12の配設密度は、導光板20の端面20aに沿う方向において、中央領域で最大密度を有し、それ以外はLED12の配設密度が約10%下がっている配設密度パターンとすることができる。 Next, as shown in FIG. 15, the arrangement density of the LEDs 12 has the maximum density in the central region in the direction along the end face 20a of the light guide plate 20, and the arrangement density of the LEDs 12 is reduced by about 10% in other cases. An arrangement density pattern can be obtained.
 このようなLED12の配設密度を採用した場合には、導光板20の端面20a方向に沿って、両端部での密度が小さくなるために、両端部でのLED12の入光面とは反対側の端面20aの光漏れ量は小さくなる。 When such an arrangement density of the LEDs 12 is adopted, the density at the both ends decreases along the direction of the end face 20a of the light guide plate 20, and thus the opposite side to the light incident surface of the LEDs 12 at both ends. The amount of light leakage from the end face 20a is small.
 このLED12の配設密度パターンにおけるLED12の配設位置は、図16(a)に示すように、中央部分が等ピッチで密となっており、それ以外が等ピッチで粗となっている。つまり、導光板20の端面20aに沿って設けられる複数のLED12の配設位置は、中央から端部側になるに伴って各LED12の配設ピッチが、中央では6つLED12が密になっており、それよりも両端部側が粗となっており、2段階に大きくなるように設定されている。尚、このLED12の配設位置は、例示であって、他の1つ以上のLED12毎に段階的に大きくなるように設定されていてもよい。 As shown in FIG. 16 (a), the LED 12 is disposed at a uniform density at the same pitch in the arrangement density pattern of the LEDs 12, and the others are rough at the equal pitch. That is, the arrangement positions of the plurality of LEDs 12 provided along the end surface 20a of the light guide plate 20 are arranged such that the arrangement pitch of each LED 12 becomes closer to the end side from the center, and six LEDs 12 become dense at the center. The both ends are rougher than that, and are set so as to increase in two stages. In addition, the arrangement | positioning position of this LED12 is an illustration, Comprising: You may set so that it may become large in steps for every other one or more LED12.
 尚、このようなLED12の配置は、図16(b)に示すように、図16(a)に示すLED12の配設位置を有するLED基板13を2等分したものを製造し、互いに反対向きに着き合わせて使用してもよい。これにより、部品点数の増加を防止することができる。 In addition, as shown in FIG.16 (b), such arrangement | positioning of LED12 manufactures what divided LED board 13 which has the arrangement position of LED12 shown in FIG. You may wear it together. Thereby, an increase in the number of parts can be prevented.
 次に、LED12の配設密度パターンと、導光板20の輝度分布との関係について、図17(a)(b)(c)及び図18に基づいて説明する。図17(a)は光源モジュール10における導光板20の端面の左右寸法±25%までにLED12が等ピッチに設けられたときの配設密度パターンを示すグラフであり、(b)は同じくLED12が平均配設密度0.93(個/単位長さ)にて設けられたときの配設密度パターンを示すグラフであり、(c)は同じく、LED12が平均配設密度0.92(個/単位長さ)にて設けられたときの配設密度パターンを示すグラフである。また、図18は、図17(a)(b)(c)に示すLEDの配設密度パターンにおける導光板の左右寸法±25%までの輝度分布を示すグラフである。 Next, the relationship between the arrangement density pattern of the LEDs 12 and the luminance distribution of the light guide plate 20 will be described with reference to FIGS. 17 (a), (b), (c) and FIG. FIG. 17A is a graph showing an arrangement density pattern when the LEDs 12 are provided at equal pitches within ± 25% in the left-right dimension of the end face of the light guide plate 20 in the light source module 10, and FIG. It is a graph which shows the arrangement | positioning density pattern when it is provided by the average arrangement | positioning density of 0.93 (piece | unit / unit length), (c) is the LED12 with an average arrangement density of 0.92 (piece / unit) similarly. It is a graph which shows the arrangement | positioning density pattern when it is provided by (length). 18 is a graph showing the luminance distribution up to ± 25% in the left-right dimension of the light guide plate in the LED arrangement density pattern shown in FIGS. 17 (a), 17 (b), and 17 (c).
 すなわち、LED12の配設密度パターンは、図17(a)では、LED12が単位長さ当たり1個設けられて、等ピッチにて配設されているので、LED12の配設密度パターンにおける平均密度は1となっている。尚、単位長さは例えば1cmであり、LED12のピッチは例えば10mmである。また、図17(b)では、前記図11と同様に、中央から端部側になるに伴って段階的に各LED12の配設ピッチが連続的に減少しており、LED12の平均配設密度は、0.93(個/単位長さ)となっている。さらに、図17(c)では、前記図10又は図10の変形例となっており、中央から端部側になるに伴って段階的に各LED12の配設ピッチが連続的に減少しており、LED12の平均配設密度は、0.92(個/単位長さ)となっている。 That is, the arrangement density pattern of the LEDs 12 in FIG. 17A is one LED 12 per unit length and is arranged at an equal pitch, so the average density in the arrangement density pattern of the LEDs 12 is It is 1. The unit length is, for example, 1 cm, and the pitch of the LEDs 12 is, for example, 10 mm. Also, in FIG. 17B, as in FIG. 11, the arrangement pitch of the LEDs 12 decreases continuously in stages from the center to the end side, and the average arrangement density of the LEDs 12 Is 0.93 (piece / unit length). Further, FIG. 17 (c) is a modified example of FIG. 10 or FIG. 10, in which the arrangement pitch of each LED 12 is continuously reduced step by step from the center to the end side. The average arrangement density of the LEDs 12 is 0.92 (pieces / unit length).
 これらの場合における導光板20での輝度分布は、図18に示すように、いずれにおいても、導光板20の中央では輝度の低下は-5%以内である。一方、導光板20の両端では、等ピッチのLED12の場合には図18において実線にて示すように急激に輝度が低下する一方、不等ピッチのLED12の場合には図18において破線にて示すように、導光板20の両端における輝度低下は緩和されている。このように、不等ピッチのLED12の配設とすることによって、導光板20中央の輝度を確保しつつ、導光板20の端部が極端に暗くならない輝度分布を作ることができる。例えば、図9(b)に示すように、例えば、B領域での漏れ光が10%存在する場合は、B領域でのLED12の入射光量をA領域に対して10%低くすることによって、B領域においても光路変換部16の最大取り出しのパターン密度、つまり漏れ光割合が少ないパターン密度の形成を行うことができ、全体の損失を抑えることができる。また、無駄にLED12を増加する必要がなく消費電力の低減に繋がる。 In these cases, as shown in FIG. 18, the luminance distribution on the light guide plate 20 has a decrease in luminance within −5% at the center of the light guide plate 20. On the other hand, at both ends of the light guide plate 20, in the case of the LEDs 12 having the same pitch, the brightness rapidly decreases as shown by the solid line in FIG. 18, whereas in the case of the LEDs 12 having the unequal pitch, the broken lines in FIG. Thus, the brightness | luminance fall in the both ends of the light-guide plate 20 is relieve | moderated. In this way, by arranging the LEDs 12 with unequal pitches, it is possible to create a luminance distribution in which the end of the light guide plate 20 does not become extremely dark while ensuring the luminance at the center of the light guide plate 20. For example, as shown in FIG. 9B, for example, when there is 10% leakage light in the B region, the incident light quantity of the LED 12 in the B region is reduced by 10% with respect to the A region. Also in the region, the maximum extraction pattern density of the optical path changing unit 16, that is, the pattern density with a small leakage light ratio can be formed, and the entire loss can be suppressed. Moreover, there is no need to increase the number of LEDs 12 unnecessarily, leading to a reduction in power consumption.
 上述したように、複数のLED12…による光量の分布を中央の方が端部側よりも光量を大きくする方法として、LED12の配設密度を調整する方法がある一方、LED12の輝度を調整する方法も考えられる。 As described above, there is a method of adjusting the arrangement density of the LEDs 12 as a method of making the light amount distribution at the center larger than the end side of the distribution of the light amounts of the plurality of LEDs 12. Is also possible.
 すなわち、例えば、各LED12の輝度として、光が入射する端面に沿う方向において、中央のLED12の輝度が最も大きく、端部側のLED12になるほど小さくすることが可能である。例えば、中央のLED12の輝度として、例えば500cd/m2のものを使用し、端部側のLED12の輝度として例えば300cd/m2のものを使用する。 That is, for example, as the luminance of each LED 12, the luminance of the central LED 12 is the highest in the direction along the end surface where the light is incident, and the luminance can be decreased as the LED 12 becomes the end side. For example, the luminance of the central LED 12 is, for example, 500 cd / m 2, and the luminance of the LED 12 on the end side is, for example, 300 cd / m 2.
 これにより、中央の方が端部側よりも光量が大きくなっているという光量分布を得ることができる。この結果、液晶パネル3の画面端部に発生する光漏れを抑制し、輝度分布の不均一化を図ることができる。 Thereby, it is possible to obtain a light amount distribution in which the light amount in the center is larger than that on the end side. As a result, it is possible to suppress light leakage generated at the screen edge of the liquid crystal panel 3 and to make the luminance distribution non-uniform.
 また、LED12の輝度を調整する方法として、LED12に入力する電力を調整することも可能である。具体的には、導光板20の端面20aに沿って設けられる複数のLED12における各LED12に入力される電力を、中央のLED12の方が端部のLED12よりも大きくする。 Also, as a method of adjusting the brightness of the LED 12, it is possible to adjust the power input to the LED 12. Specifically, the power input to each LED 12 in the plurality of LEDs 12 provided along the end surface 20a of the light guide plate 20 is made larger at the center LED 12 than at the end LED 12.
 これにより、中央の方が端部側よりも光量が大きくなっているという光量分布を得ることができる。この結果、液晶パネル3の画面端部に発生する光漏れを抑制し、輝度分布の不均一化を図ることができる。 Thereby, it is possible to obtain a light amount distribution in which the light amount in the center is larger than that on the end side. As a result, it is possible to suppress light leakage generated at the screen edge of the liquid crystal panel 3 and to make the luminance distribution non-uniform.
 尚、これらのように、LED12の輝度又は電力を調整する場合においては、LED12の配設ピッチは等ピッチであってもよい。 In addition, when adjusting the brightness | luminance or electric power of LED12 like these, the arrangement | positioning pitch of LED12 may be equal pitch.
 ここで、導光板20全体の輝度分布として、以下の判断基準を用いることができる。 Here, the following criteria can be used as the luminance distribution of the entire light guide plate 20.
 すなわち、図19に示すように、導光板20の中心点と、該導光板20の縦及び横の中心線における該導光板20の左右の各端部からW(横幅)/9の位置又は上下の各端部からV(縦幅)/9の位置の4点、並びに該導光板20の左右の各端部からW(横幅)/9かつ上下の各端部からV(縦幅)/9の位置の4点との9点の各輝度を測定する。 That is, as shown in FIG. 19, the position of W (horizontal width) / 9 from the center point of the light guide plate 20 and the left and right end portions of the light guide plate 20 at the vertical and horizontal center lines of the light guide plate 20 or the top and bottom 4 points at a position of V (vertical width) / 9 from each end of the light guide, W (horizontal width) / 9 from the left and right ends of the light guide plate 20, and V (vertical width) / 9 from each of the top and bottom ends Measure the luminance at 9 points with 4 points at the position.
 このとき、9点の各輝度が、最大輝度に対する最小輝度の比が50%以上となっているようにする。そして、このような輝度の比となるように、LED12の配設ピッチがW(横幅)/9の位置で50%以上となるように調整してもよく、中央部のLED12の輝度がW(横幅)/9の点に比較して50%以上となるように高く設定してもよい。或いは、電力を同様に調整してもよい。 At this time, the luminance of each of the nine points is set so that the ratio of the minimum luminance to the maximum luminance is 50% or more. In order to obtain such a luminance ratio, the arrangement pitch of the LEDs 12 may be adjusted to be 50% or more at the position of W (width) / 9, and the luminance of the LED 12 in the center is W ( You may set it high so that it may become 50% or more compared with the point of (width) / 9. Alternatively, the power may be adjusted similarly.
 これにより、光源モジュール10の導光板20の出射面20bにおいて、確実に、輝度分布の不均一化を図り得る光源モジュール10を提供することができる。 Thereby, it is possible to provide the light source module 10 that can surely make the luminance distribution non-uniform on the emission surface 20b of the light guide plate 20 of the light source module 10.
 このように、本実施の形態の光源モジュール10は、対向する一対の端面20aの少なくとも一方から該端面20aに垂直な方向に入射した光を出射面20bから出射する導光板20と、導光板20に光を入射する複数のLED12…と、導光板20における光の出射面20bとは反対側の下面20cに該導光板20の内部にて導光される光を取り出すための複数の光路変換部16とを備えている。そして、導光板20の出射面20bには、光が入射する端面20aに垂直な方向に沿った複数の筋状の凹凸形状体Tが形成されている。 As described above, the light source module 10 according to the present embodiment includes the light guide plate 20 that emits the light incident in the direction perpendicular to the end surface 20a from at least one of the pair of opposed end surfaces 20a, and the light guide plate 20. And a plurality of optical path conversion units for extracting light guided inside the light guide plate 20 to the lower surface 20c of the light guide plate 20 opposite to the light exit surface 20b. 16. A plurality of streak-like uneven bodies T are formed on the exit surface 20b of the light guide plate 20 along a direction perpendicular to the end surface 20a on which light is incident.
 このように、導光板20の出射面20bに、光が入射する端面20aに垂直な方向に沿った複数の筋状の凹凸形状体Tが形成されている場合には、LED12の出射光における直進性が高いため、入射面に対して平行な方向への光の拡がりを抑えることができる。 As described above, in the case where a plurality of streaky uneven bodies T are formed on the exit surface 20b of the light guide plate 20 along the direction perpendicular to the end surface 20a on which light is incident, the LED 12 travels straight in the exit light. Therefore, the spread of light in a direction parallel to the incident surface can be suppressed.
 しかしながら、LED12が均一配置されている場合には、導光板20の中心部分の輝度を上げるために光路変換部16のパターン密度を相対的に上げると、導光板20の中央領域では光取り出しが十分行われるため入光面の対向端面での光漏れは少ないが、両端領域では中央領域に対してパターン密度が低いために光取り出しが十分ではなく漏れ光が発生する。この結果、輝度分布が乱れるという問題点を有している。 However, when the LEDs 12 are uniformly arranged, if the pattern density of the optical path conversion unit 16 is relatively increased in order to increase the luminance of the central portion of the light guide plate 20, light extraction is sufficient in the central region of the light guide plate 20. Therefore, light leakage at the opposite end surface of the light incident surface is small, but since the pattern density is lower than the central region in both end regions, light extraction is not sufficient and leakage light is generated. As a result, the luminance distribution is disturbed.
 そこで、本実施の形態では、複数のLED12による光量の分布は、光が入射する端面20aにおいて、中央の方が端部側よりも光量が大きくなっている。これにより、光が入射する端面20aに平行な方向において、複数のLED12…による光量の分布をつくることとなり、導光板20の出射面20bで自然な輝度分布を実現することが可能になる。 Therefore, in the present embodiment, the distribution of the amount of light by the plurality of LEDs 12 is such that the amount of light at the center is larger than that at the end of the end surface 20a where light enters. As a result, in the direction parallel to the end face 20a on which the light is incident, a light quantity distribution is created by the plurality of LEDs 12... And a natural luminance distribution can be realized on the exit face 20b of the light guide plate 20.
 したがって、出射面20bに断面形状を有する場合に、端部に発生する光漏れを抑制して、輝度分布の不均一化を図り得る光源モジュール10を提供することができる。 Therefore, when the exit surface 20b has a cross-sectional shape, it is possible to provide the light source module 10 that can suppress the light leakage generated at the end portion and make the luminance distribution non-uniform.
 また、本実施の形態の光源モジュール10では、導光板20の端面20aに沿って設けられる複数のLED12における単位面積当たりの配設密度は、中央の方が端部側よりも大きい。 Further, in the light source module 10 of the present embodiment, the arrangement density per unit area in the plurality of LEDs 12 provided along the end surface 20a of the light guide plate 20 is larger at the center than at the end side.
 これにより、光量分布調整として、複数の光源における単位面積当たりの配設密度を、中央の方が端部側よりも大きくなるようにする。この結果、導光板20における端部側の輝度を低減することができるので、端部に発生する光漏れを抑制することができる。 Thereby, as the light amount distribution adjustment, the arrangement density per unit area in the plurality of light sources is made larger at the center than at the end side. As a result, the luminance on the end side of the light guide plate 20 can be reduced, so that light leakage occurring at the end can be suppressed.
 また、本実施の形態の光源モジュール10では、各LED12から出射される輝度は、互いに同一である。 Further, in the light source module 10 of the present embodiment, the luminances emitted from the respective LEDs 12 are the same.
 これにより、各LED12から出射される輝度を互いに同一とした条件下において、複数のLED12における単位面積当たりの配設密度を、中央の方が端部側よりも大きくなるようにする。 Thereby, the arrangement density per unit area of the plurality of LEDs 12 is made larger at the center than at the end side under the condition that the luminances emitted from the LEDs 12 are the same.
 したがって、LED12の輝度が同一であるので、LED12の光量制御を行うことなく、簡単な構成にて、導光板20における端部側の輝度を低減することができ、端部に発生する光漏れを抑制することができる。 Therefore, since the brightness of the LEDs 12 is the same, the brightness on the end side of the light guide plate 20 can be reduced with a simple configuration without controlling the amount of light of the LEDs 12, and light leakage occurring at the ends can be prevented. Can be suppressed.
 また、本実施の形態の光源モジュール10では、導光板20の端面20aに沿って設けられる複数のLED12の配設位置は、中央から端部側になるに伴って各LED12の配設ピッチが少なくとも1つ以上の光源毎に段階的に大きくなるように設定されている。 Moreover, in the light source module 10 of this Embodiment, the arrangement | positioning position of several LED12 provided along the end surface 20a of the light-guide plate 20 is at least the arrangement | positioning pitch of each LED12 as it becomes an edge part side from the center. One or more light sources are set to increase in steps.
 これにより、導光板20における端部側の輝度を低減するための、具体的な複数のLED12の配設位置を提供することができる。 Thereby, it is possible to provide a specific arrangement position of the plurality of LEDs 12 for reducing the luminance on the end portion side of the light guide plate 20.
 また、本実施の形態の光源モジュール10では、各LED12の輝度は、光が入射する端面20aにおいて、中央のLED12が最も大きく、端部側のLED12になるほど小さくなっていることが好ましい。 In the light source module 10 of the present embodiment, the brightness of each LED 12 is preferably such that the center LED 12 is the largest on the end face 20a on which the light is incident and the LED 12 on the end side becomes smaller.
 これにより、LED12の輝度を変化させることにより、光量分布調整を行う。この結果、例えば、LED12の配設ピッチが等しい場合であっても、LED12の輝度を調整することにより、光が入射する端面20aにおいて、中央の方が端部側よりも光量が大きくなっているという光量の分布を得ることができる。 Thereby, the light quantity distribution is adjusted by changing the luminance of the LED 12. As a result, for example, even when the arrangement pitches of the LEDs 12 are equal, by adjusting the luminance of the LEDs 12, the light amount is larger at the center than at the end side on the end surface 20a on which light is incident. The distribution of the amount of light can be obtained.
 本実施の形態の光源モジュール10では、導光板20の端面20aに沿って設けられる複数のLED12における各LED12に入力される電力は、中央の光源の方が端部の光源よりも大きい。 In the light source module 10 of the present embodiment, the power input to each LED 12 in the plurality of LEDs 12 provided along the end surface 20a of the light guide plate 20 is larger in the central light source than in the end light source.
 これにより、LED12に入力する電力を調整することにより、光量分布調整を行う。この結果、例えば、LED12の配設ピッチが等しい場合であっても、LED12に入力する電力を調整することにより、光が入射する端面20aにおいて、中央の方が端部側よりも光量が大きくなっているという光量の分布を得ることができる。 Thereby, the light quantity distribution is adjusted by adjusting the power input to the LED 12. As a result, for example, even when the arrangement pitches of the LEDs 12 are equal, by adjusting the electric power input to the LEDs 12, the amount of light at the center is larger than that at the ends on the end surface 20a where light enters. The distribution of the amount of light can be obtained.
 本実施の形態の光源モジュール10では、導光板20の中心点と、該導光板20の縦及び横の中心線における該導光板20の左右の各端部からW(横幅)/9の位置又は上下の各端部からV(縦幅)/9の位置の4点、並びに該導光板の左右の各端部からW(横幅)/9かつ上下の各端部からV(縦幅)/9の位置の4点との9点の各輝度を測定したときの最大輝度に対する最小輝度の比が50%以上となるように、LED12の配設密度、各LED12の輝度又は各LED12の電力のいずれか少なくとも1つが設定されていることが好ましい。 In the light source module 10 of the present embodiment, the position of W (horizontal width) / 9 from the center point of the light guide plate 20 and the left and right ends of the light guide plate 20 at the vertical and horizontal center lines of the light guide plate 20 or Four points at the position of V (vertical width) / 9 from the upper and lower ends, W (horizontal width) / 9 from the left and right ends of the light guide plate, and V (vertical width) / 9 from the upper and lower ends Any of the arrangement density of LEDs 12, the brightness of each LED 12, or the power of each LED 12 is set so that the ratio of the minimum brightness to the maximum brightness when measuring each of the 9 brightnesses at 4 points is 50% or more. It is preferable that at least one is set.
 これにより、光源モジュール10の導光板20の出射面において、確実に、輝度分布の不均一化を図り得る光源モジュール10光源モジュールを提供することができる。 Thereby, it is possible to provide the light source module 10 that can surely make the luminance distribution non-uniform on the emission surface of the light guide plate 20 of the light source module 10.
 また、本実施の形態の液晶表示装置1は、上載の光源モジュール10を備えている。 In addition, the liquid crystal display device 1 of the present embodiment includes an overlying light source module 10.
 上記の構成によれば、導光板20の出射面20bに凹凸形状体Tを有する場合に、端部に発生する光漏れを抑制して、輝度分布の不均一化を図り得る光源モジュール10を備えた液晶表示装置1を提供することができる。 According to said structure, when it has the uneven | corrugated shaped body T in the output surface 20b of the light-guide plate 20, the light source module 10 which can suppress the light leakage which generate | occur | produces at an edge part and can aim at nonuniformity of luminance distribution is provided. The liquid crystal display device 1 can be provided.
 尚、本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. Embodiments are also included in the technical scope of the present invention.
 本発明は、光源からの光を導光板によって面状に出射させるサイドエッジ(サイドライトともいう)型導光板を備えた光源モジュール及び液晶表示装置に関するものであり、例えば、バックライト等の光源モジュールに適用できると共に、液晶表示装置は例えばテレビ、タブレット、パソコンのモニター等の液晶表示装置に適用することが可能である。 The present invention relates to a light source module and a liquid crystal display device including a side edge (also referred to as a sidelight) type light guide plate that emits light from a light source in a planar shape by a light guide plate. For example, a light source module such as a backlight. In addition, the liquid crystal display device can be applied to a liquid crystal display device such as a monitor of a television, a tablet, or a personal computer.
 1     液晶表示装置
 3     液晶パネル
10     光源モジュール
12     LED(光源)
15     光源ユニット
16     光路変換部
17     下拡散シート
18     上拡散シート
20     導光板
20a    端面
20b    出射面
20c    下面(面)
 T     凹凸形状体
DESCRIPTION OF SYMBOLS 1 Liquid crystal display device 3 Liquid crystal panel 10 Light source module 12 LED (light source)
DESCRIPTION OF SYMBOLS 15 Light source unit 16 Optical path conversion part 17 Lower diffusion sheet 18 Upper diffusion sheet 20 Light guide plate 20a End surface 20b Output surface 20c Lower surface (surface)
T Uneven shape body

Claims (8)

  1.  対向する一対の端面の少なくとも一方から該端面に垂直な方向に入射した光を出射面から出射する導光板と、上記導光板に光を入射する複数の光源と、上記導光板における光の出射面とは反対側の面に該導光板の内部にて導光される光を取り出すための複数の光路変換部とを備えた光源モジュールにおいて、
     上記導光板の出射面には、上記光が入射する端面に垂直な方向に沿った複数の筋状の凹凸形状が形成されていると共に、
     上記複数の光源による光量の分布は、光が入射する端面において、中央の方が端部側よりも光量が大きいことを特徴とする光源モジュール。
    A light guide plate that emits from the exit surface light incident in a direction perpendicular to the end surface from at least one of a pair of opposing end surfaces, a plurality of light sources that enter the light to the light guide plate, and a light exit surface of the light guide plate In a light source module comprising a plurality of optical path conversion units for extracting light guided inside the light guide plate on the opposite side surface,
    On the exit surface of the light guide plate, a plurality of streaky irregularities along the direction perpendicular to the end surface on which the light is incident are formed, and
    The light quantity distribution by the plurality of light sources is characterized in that the light quantity at the center is larger than the edge side at the end face where the light is incident.
  2.  前記導光板の端面に沿って設けられる複数の光源における単位面積当たりの配設密度は、中央の方が端部側よりも大きいことを特徴とする請求項1記載の光源モジュール。 2. The light source module according to claim 1, wherein the arrangement density per unit area in the plurality of light sources provided along the end face of the light guide plate is larger in the center than in the end side.
  3.  前記各光源から出射される輝度は、互いに同一であることを特徴とする請求項2記載の光源モジュール。 The light source module according to claim 2, wherein the luminances emitted from the light sources are the same.
  4.  前記導光板の端面に沿って設けられる複数の光源の配設位置は、中央から端部側になるに伴って各光源の配設ピッチが少なくとも1つ以上の光源毎に段階的に大きくなるように設定されていることを特徴とする請求項3記載の光源モジュール。 As for the arrangement positions of the plurality of light sources provided along the end face of the light guide plate, the arrangement pitch of each light source is increased stepwise for at least one or more light sources as it moves from the center to the end side. The light source module according to claim 3, wherein the light source module is set as follows.
  5.  前記各光源の輝度は、光が入射する端面において、中央の光源が最も大きく、端部側の光源になるほど小さくなっていることを特徴とする請求項1記載の光源モジュール。 The light source module according to claim 1, wherein the brightness of each light source is such that the central light source is the largest at the end face where the light is incident, and decreases as the light source is on the end side.
  6.  前記導光板の端面に沿って設けられる複数の光源における各光源に入力される電力は、中央の光源の方が端部の光源よりも大きいことを特徴とする請求項5記載の光源モジュール。 6. The light source module according to claim 5, wherein the power input to each light source in the plurality of light sources provided along the end face of the light guide plate is larger in the central light source than in the end light source.
  7.  前記導光板の中心点と、該導光板の縦及び横の中心線における該導光板の左右の各端部からW(横幅)/9の位置又は上下の各端部からV(縦幅)/9の位置の4点、並びに該導光板の左右の各端部からW(横幅)/9かつ上下の各端部からV(縦幅)/9の位置の4点との9点の各輝度を測定したときの最大輝度に対する最小輝度の比が50%以上となるように、前記光源の配設密度、各光源の輝度又は各光源の電力のいずれか少なくとも1つが設定されていることを特徴とする請求項1~6のいずれか1項に記載の光源モジュール。 From the center point of the light guide plate and the left and right ends of the light guide plate at the vertical and horizontal center lines of the light guide plate, W (horizontal width) / 9 positions or V (vertical width) / 9 points of brightness, 4 points at 9 positions, and 4 points at W (horizontal width) / 9 from the left and right ends of the light guide plate and V (vertical width) / 9 from the top and bottom ends At least one of the arrangement density of the light sources, the luminance of each light source, and the power of each light source is set so that the ratio of the minimum luminance to the maximum luminance when measuring is 50% or more. The light source module according to any one of claims 1 to 6.
  8.  請求項1~7のいずれか1項に記載の光源モジュールを備えていることを特徴とする液晶表示装置。 A liquid crystal display device comprising the light source module according to any one of claims 1 to 7.
PCT/JP2013/054477 2012-03-30 2013-02-22 Light source module and liquid crystal display device WO2013145978A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-081950 2012-03-30
JP2012081950A JP2013211215A (en) 2012-03-30 2012-03-30 Light source module and liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2013145978A1 true WO2013145978A1 (en) 2013-10-03

Family

ID=49259258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054477 WO2013145978A1 (en) 2012-03-30 2013-02-22 Light source module and liquid crystal display device

Country Status (2)

Country Link
JP (1) JP2013211215A (en)
WO (1) WO2013145978A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051852A1 (en) * 2015-09-24 2017-03-30 シャープ株式会社 Illumination device, display device, and television receiver

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267780A (en) * 2005-03-25 2006-10-05 Funai Electric Co Ltd Liquid crystal display apparatus
JP2008177170A (en) * 2007-01-22 2008-07-31 Samsung Electronics Co Ltd Backlight assembly and display device equipped with this
JP2009301805A (en) * 2008-06-11 2009-12-24 Sharp Corp Backlight unit and liquid crystal display device
WO2011024498A1 (en) * 2009-08-31 2011-03-03 シャープ株式会社 Illuminating apparatus and display apparatus
WO2012141098A1 (en) * 2011-04-13 2012-10-18 シャープ株式会社 Lighting device and display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5530620B2 (en) * 2008-10-30 2014-06-25 日立コンシューマエレクトロニクス株式会社 Liquid crystal display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267780A (en) * 2005-03-25 2006-10-05 Funai Electric Co Ltd Liquid crystal display apparatus
JP2008177170A (en) * 2007-01-22 2008-07-31 Samsung Electronics Co Ltd Backlight assembly and display device equipped with this
JP2009301805A (en) * 2008-06-11 2009-12-24 Sharp Corp Backlight unit and liquid crystal display device
WO2011024498A1 (en) * 2009-08-31 2011-03-03 シャープ株式会社 Illuminating apparatus and display apparatus
WO2012141098A1 (en) * 2011-04-13 2012-10-18 シャープ株式会社 Lighting device and display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051852A1 (en) * 2015-09-24 2017-03-30 シャープ株式会社 Illumination device, display device, and television receiver
CN108027117A (en) * 2015-09-24 2018-05-11 夏普株式会社 Lighting device, display device and radiovisor
JPWO2017051852A1 (en) * 2015-09-24 2018-07-05 シャープ株式会社 Lighting device, display device, and television receiver
EP3354963A4 (en) * 2015-09-24 2018-09-26 Sharp Kabushiki Kaisha Illumination device, display device, and television receiver
US20200241195A1 (en) * 2015-09-24 2020-07-30 Sharp Kabushiki Kaisha Lighting device, display device, and television device
US10908348B2 (en) 2015-09-24 2021-02-02 Sharp Kabushiki Kaisha Lighting device, display device, and television device

Also Published As

Publication number Publication date
JP2013211215A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
JP5667888B2 (en) BACKLIGHT UNIT AND VIDEO DISPLAY DEVICE USING THE SAME
US10338302B2 (en) Light source device
JP6334497B2 (en) Lighting module
JP5429633B2 (en) Surface light emitting device and liquid crystal display device
TWI457658B (en) A video display device and a backlight device used therefor
US20140211506A1 (en) Illumination device and display device
US8408777B2 (en) Planar illumination device
US8882326B2 (en) Light guide plate and surface light source device
US20150226908A1 (en) Spread illuminating apparatus
US20140218970A1 (en) Light guide plate, backlight source and liquid crystal display device
US8297828B2 (en) Light guide panel
JP2009140905A (en) Light guide plate and backlight
WO2013145978A1 (en) Light source module and liquid crystal display device
JP6238250B2 (en) Lighting device
JP5851312B2 (en) Light source module and liquid crystal display device including the same
KR100960398B1 (en) Light Guide Plate with patterns for enhancement of brightness and improvement of uniformity of brightness, and Backlight Unit and LCD employing the same
CN214503947U (en) Light guide plate and light source module
WO2011039896A1 (en) Light source module and electronic apparatus with same
JP2009158468A (en) Backlight
JP2013211216A (en) Light source module, and liquid crystal display device
CN216411626U (en) Light guide plate and light source module
JP2013211217A (en) Light source module and liquid crystal display device having the same
KR100869147B1 (en) Light guide panel for back light unit
KR100844157B1 (en) Light guide panel having a structure for changing an incidence angle and back light unit using the same
KR100557447B1 (en) Diffusion Plate Of Backlight Assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769086

Country of ref document: EP

Kind code of ref document: A1