WO2013145915A1 - Electron-beam-excited uv emission device - Google Patents

Electron-beam-excited uv emission device Download PDF

Info

Publication number
WO2013145915A1
WO2013145915A1 PCT/JP2013/053484 JP2013053484W WO2013145915A1 WO 2013145915 A1 WO2013145915 A1 WO 2013145915A1 JP 2013053484 W JP2013053484 W JP 2013053484W WO 2013145915 A1 WO2013145915 A1 WO 2013145915A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
semiconductor light
light emitting
emitting element
ultraviolet
Prior art date
Application number
PCT/JP2013/053484
Other languages
French (fr)
Japanese (ja)
Inventor
隆博 井上
前岨 剛
真典 山口
寛之 高田
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2013145915A1 publication Critical patent/WO2013145915A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/52Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space
    • H01J61/523Heating or cooling particular parts of the lamp
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J63/00Cathode-ray or electron-stream lamps
    • H01J63/02Details, e.g. electrode, gas filling, shape of vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J63/00Cathode-ray or electron-stream lamps
    • H01J63/02Details, e.g. electrode, gas filling, shape of vessel
    • H01J63/04Vessels provided with luminescent coatings; Selection of materials for the coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J63/00Cathode-ray or electron-stream lamps
    • H01J63/06Lamps with luminescent screen excited by the ray or stream

Definitions

  • the present invention relates to an electron beam excitation type ultraviolet radiation device including an electron beam source and a semiconductor light emitting element that emits ultraviolet rays by an electron beam emitted from the electron beam source.
  • An electron beam excitation type ultraviolet radiation device that emits ultraviolet rays from a semiconductor light emitting element by irradiating an electron beam is expected as a light source that emits ultraviolet rays with a small size and high output.
  • an electron beam excitation type ultraviolet radiation device (1) a vacuum container having an ultraviolet transmissive window, a laser structure having a semiconductor light emitting element disposed on the inner surface of the light transmissive window in the vacuum container, and a vacuum container Comprising an electron beam source disposed on the inner surface of the bottom wall facing the light transmission window in (refer to Patent Document 1), (2) electrons from one side of the semiconductor light emitting element by an electron gun from an oblique direction Light is emitted from one surface of the semiconductor light emitting element where the electron beam is incident by entering the line, and this light is radiated to the outside from a light transmission window disposed facing one surface of the semiconductor light emitting element. (See Patent Document 2) and the like.
  • one surface of the semiconductor light emitting element is used as a light emitting surface and the other surface is used as an incident surface of the electron beam. It is impossible to cool from either one side or the other side having a large area, and thus it is difficult to efficiently cool the semiconductor light emitting device. As a result, the semiconductor light-emitting element generates heat at a high temperature, thereby reducing the light-emitting efficiency of the semiconductor light-emitting element and not emitting high-output light. There's a problem.
  • the semiconductor light emitting element can be cooled from the back surface, the light emission efficiency of the semiconductor light emitting element is not lowered and high output light is maintained.
  • it is necessary to dispose an electron gun obliquely in front of one surface of the semiconductor light emitting device it is difficult to further reduce the size.
  • an electron beam source is arranged at a peripheral position of the semiconductor light emitting element, and an electron beam from the electron beam source is incident on one surface of the semiconductor light emitting element, thereby A configuration in which light is emitted from one side is conceivable.
  • the semiconductor light emitting element can be cooled from the other surface of the semiconductor light emitting element, and the electron beam source is disposed at the peripheral position of the semiconductor light emitting element, so that the size can be reduced.
  • the electron beam excitation type ultraviolet radiation device having such a configuration, since the incident angle of the electron beam from the electron beam source with respect to one surface of the semiconductor light emitting device is extremely small, the electron beam is inside the active layer of the semiconductor light emitting device. It has been found that it does not enter sufficiently, and therefore, it is difficult to obtain ultraviolet light with a very low luminous efficiency and high output.
  • the present invention has been made based on the circumstances as described above, and an object of the present invention is to efficiently irradiate a semiconductor light emitting element with an electron beam and to radiate high-power ultraviolet rays, and to reduce the size.
  • An object of the present invention is to provide an electron beam excitation type ultraviolet radiation device capable of efficiently cooling a semiconductor light emitting element.
  • the electron beam excitation type ultraviolet radiation device of the present invention includes a vacuum vessel having an ultraviolet extraction window, A high thermal conductivity support member provided in the vacuum vessel and having a support surface inclined with respect to the ultraviolet extraction window; A semiconductor light emitting device disposed on the support surface of the support member; And an electron beam source for supplying an electron beam to the semiconductor light emitting device.
  • the support member has a plurality of support surfaces, and the semiconductor light emitting elements are arranged close to each other on each support surface.
  • the electron beam source is provided corresponding to each of the semiconductor light emitting elements.
  • an electron beam focusing electrode for focusing the electron beam from the electron beam source toward the semiconductor light emitting element is provided.
  • the electron beam source is located at the peripheral position of the semiconductor light emitting element. Even when the electron beam is disposed, the incident angle of the electron beam from the electron beam source with respect to the one surface of the semiconductor light emitting device is sufficiently large, so that the electron beam is efficiently incident on the semiconductor light emitting device, and high output ultraviolet rays are emitted. Can radiate.
  • the electron beam source can be disposed at the peripheral position of the semiconductor light emitting element, the apparatus can be miniaturized.
  • the support member on which the semiconductor light emitting element is disposed has high thermal conductivity, the semiconductor light emitting element can be efficiently cooled via the support member, and thus the light emission efficiency of the semiconductor light emitting element is not reduced. High UV output can be maintained.
  • the support member has a plurality of support surfaces, and according to the configuration in which the semiconductor light emitting elements are arranged close to each other on each support surface, since the ultraviolet radiation area is large, higher output ultraviolet light is maintained. be able to.
  • FIG. 1A and 1B are explanatory views showing a configuration of an example of an electron beam excitation type ultraviolet radiation device of the present invention, wherein FIG. 1A is a side sectional view, and FIG. 1B is a plan view showing a state in which an ultraviolet extraction window is removed. is there.
  • the electron beam excitation type ultraviolet radiation device has a vacuum container 10 whose outer shape is sealed in a negative pressure state and has a rectangular parallelepiped shape.
  • the vacuum container 10 is opened on one side (the upper surface in FIG. 1A).
  • a rectangular plate-shaped ultraviolet extraction window 15 which is disposed in the opening of the container base 11 and is hermetically sealed to the container base 11.
  • a columnar high thermal conductivity support member 16 extending in a direction perpendicular to the ultraviolet extraction window 15 from the bottom wall 12 of the container base 11 toward the ultraviolet extraction window 15 has a base end.
  • the container body 11 is fixed to the bottom wall 12, and the tip thereof is provided in a state of being spaced apart from the ultraviolet ray extraction window 15.
  • Two semicircular support surfaces 17 that are inclined with respect to the ultraviolet light extraction window 15 are formed at the tip of the support member 16.
  • one rectangular plate-shaped semiconductor light emitting element 20 is disposed close to each other with the surface 20 a inclined with respect to the ultraviolet light extraction window 15. ing.
  • the semiconductor light emitting element 20 At a peripheral position of each of the semiconductor light emitting elements 20, specifically, at a position between each of the semiconductor light emitting elements 20 and the side walls 13 a and 13 b approaching the semiconductor light emitting element 20 in the container base 11, the semiconductor light emitting element 20 is provided.
  • an electron beam source 30 in which an electron beam emitting portion 32 is formed on the surface of the support substrate 31 is arranged in such a posture that the electron beam emitting portion 32 faces the surface 20a of the semiconductor light emitting element 20. Yes.
  • the electron beam source 30 is arranged in a posture facing the semiconductor light emitting element 20 so that the surface of the electron beam emitting portion 32 is perpendicular to the ultraviolet ray extraction window 15.
  • the electron beam source 30 is fixed to the bottom wall 12 of the container base 11 via a holding member 37. Between the semiconductor light emitting element 20 and the electron beam source 30, a ring-shaped electron beam focusing electrode 40 that focuses the electron beam from the electron beam source 30 toward the semiconductor light emitting element 20 is disposed. .
  • the electron beam focusing electrode 40 is fixed to the bottom wall 12 of the container base 11 via a holding member 41.
  • a charge-up prevention member 45 is provided on the inner surface of the ultraviolet extraction window 15 in the vacuum container 10 to prevent the inner surface of the ultraviolet extraction window 15 from being charged.
  • the charge-up prevention member 45 in this example is in a stripe shape in which a plurality of metal lines are formed so as to be parallel and spaced apart from each other, and an ultraviolet ray transmitting portion is formed by a slit between the metal lines.
  • the semiconductor light emitting element 20 and the electron beam source 30 are electrons provided to the outside of the vacuum vessel 10 for applying an acceleration voltage via a conductive wire (not shown) drawn from the inside of the vacuum vessel 10 to the outside. It is electrically connected to acceleration means (not shown). Further, the electron beam source 30 and the electron beam focusing electrode 40 focus the electron beam provided outside the vacuum vessel 10 via a conductive wire (not shown) drawn from the inside of the vacuum vessel 10 to the outside. For this purpose, it is electrically connected to an electron beam focusing power source (not shown).
  • an insulator such as glass such as quartz glass or ceramic such as alumina can be used.
  • transmit the light from the semiconductor light-emitting device 20 is used, For example, quartz glass, sapphire, etc. can be used.
  • the pressure inside the vacuum vessel 10 is, for example, 10 ⁇ 4 to 10 ⁇ 6 Pa.
  • An example of the dimensions of the vacuum container 10 is that the outer dimensions of the container base 11 are 40 mm ⁇ 40 mm ⁇ 20 mm, the thickness of the container base 11 is 2 mm, the opening of the container base 11 is 36 mm ⁇ 36 mm, The dimensions are 40 mm ⁇ 40 mm ⁇ 2 mm.
  • the support surface 17 of the support member 16 is formed so as to be inclined with respect to the ultraviolet ray extraction window 15, but the inclination angle of the support surface 17 with respect to the ultraviolet ray extraction window 15 is preferably 15 to 45 °.
  • the inclination angle is less than 15 °, the incident angle of the electron beam from the electron beam source 30 with respect to one surface of the semiconductor light emitting device 20 becomes small, so that the electron beam enters the active layer of the semiconductor light emitting device 20. Therefore, the light emission efficiency of the semiconductor light emitting element 20 may be reduced.
  • the semiconductor light emitting element 20 is formed on a substrate 21 made of, for example, sapphire, a buffer layer 22 made of, for example, AlN formed on one surface of the substrate 21, and on one surface of the buffer layer 22.
  • the active layer 25 has a single quantum well structure or a multiple quantum well structure.
  • the substrate 21 is bonded to the support surface 17 of the support member 16 by brazing or the like with the active layer 25 facing the ultraviolet extraction window 15 in the vacuum vessel 10.
  • the thickness of the substrate 21 is, for example, 10 to 1000 ⁇ m
  • the thickness of the buffer layer 22 is, for example, 100 to 1000 nm.
  • the distance between the active layer 25 and the electron beam source 30 in the semiconductor light emitting device 20 is, for example, 5 to 15 mm. Further, the distance between the surface 20a from which the ultraviolet light is emitted in the semiconductor light emitting element 20 and the inner surface of the ultraviolet light extraction window 15 is, for example, 3 to 25 mm.
  • the active layer 25 is a single quantum well structure or a multiple quantum well structure consisting of each In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1, x + y ⁇ 1), a single or A plurality of quantum well layers 26 and a single or a plurality of barrier layers 27 are alternately stacked on the buffer layer 22 in this order.
  • the thickness of each quantum well layer 26 is, for example, 0.5 to 50 nm.
  • the barrier layer 27 has a composition selected such that the forbidden band width is larger than that of the quantum well layer 26.
  • AlN may be used, and each thickness is larger than the well width of the quantum well layer 26.
  • a large value is set, specifically, for example, 1 to 100 nm.
  • the period of the quantum well layer 26 constituting the active layer 25 is appropriately set in consideration of the total thickness of the quantum well layer 26, the barrier layer 27 and the active layer 25, the acceleration voltage of the electron beam used, etc. 1 to 100.
  • the semiconductor light emitting element 20 can be formed by, for example, MOCVD (metal organic chemical vapor deposition). Specifically, by using a carrier gas composed of hydrogen and nitrogen and a source gas composed of trimethylaluminum and ammonia, vapor deposition is performed on the (0001) plane of the sapphire substrate 21 to have a required thickness. After forming the buffer layer 22 made of AlN, vapor phase growth is performed on the buffer layer 22 using a carrier gas made of hydrogen gas and nitrogen gas and a source gas made of trimethylaluminum, trimethylgallium, trimethylindium and ammonia.
  • MOCVD metal organic chemical vapor deposition
  • active layer 25 having a in x Al y Ga 1-xy N (0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1, x + y ⁇ 1) single or multiple quantum well structure consisting of having the required thickness
  • the semiconductor light emitting device 20 can be formed.
  • each step of forming the buffer layer 22, the quantum well layer 26, and the barrier layer 27 conditions such as a processing temperature, a processing pressure, and a growth rate of each layer are determined according to the buffer layer 22, the quantum well layer 26, and the barrier layer 27 to be formed. It can set suitably according to a composition, thickness, etc. of this.
  • a processing temperature when forming the quantum well layer 26 made of InAlGaN, trimethylindium is used as a source gas in addition to the above, and the processing temperature is set lower than when the quantum well layer 26 made of AlGaN is formed. That's fine.
  • the method for forming the semiconductor multilayer film is not limited to the MOCVD method, and for example, an MBE method (molecular beam epitaxy method) or the like can also be used.
  • the electron beam emitter 32 of the electron beam source 30 carbon nanotubes are formed on a support substrate 31, and the support substrate 31 of the electron beam source 30 is formed on a plate-like base 33. It is fixed. Further, in the electron beam source 30, a net-like extraction electrode 35 for emitting electrons from the electron beam emission part 32 is arranged so as to face the electron beam emission part 31 while being spaced apart from the electron beam emission part 31. It is fixed to the base 33 via a holding member 36. The support substrate 31 and the extraction electrode 35 are connected to an electron beam emission power source (not shown) provided outside the vacuum vessel 10 via a conductive wire (not shown) drawn from the inside of the vacuum vessel 10 to the outside. Electrically connected.
  • an electron beam emission power source not shown
  • a conductive wire not shown
  • An example of the size of the electron beam source 30 is that the size of the support substrate 31 is 10 mm ⁇ , the thickness is 0.15 mm, the size of the electron beam emitter 32 is 3 mm ⁇ , the thickness is 0.025 mm, and the electrons in the electron beam emitter 32 are The area of the surface from which the line is emitted is 7 mm 2 .
  • a metal material containing iron, nickel, cobalt, or chromium can be used as a material constituting the support substrate 31 .
  • a method for forming the electron beam emitting portion 32 made of carbon nanotubes on the support substrate 31 is not particularly limited, and a known method can be used.
  • the support substrate 31 having a metal catalyst layer formed on the surface is heated.
  • a carbon source gas such as CO or acetylene
  • a screen printing method or the like in which a paste containing carbon nanotube powder and an organic binder in a liquid medium is prepared, and this paste is applied to the surface of the support substrate 31 by screen printing and dried. it can.
  • a metal material containing any of iron, nickel, cobalt, and chromium can be used as a material constituting the extraction electrode 35.
  • the electron beam focusing electrode 40 As a material constituting the electron beam focusing electrode 40, a metal material containing any of iron, nickel, cobalt, chromium, aluminum, silver, copper, titanium, and zirconium can be used. As an example of the dimensions of the electron beam focusing electrode 40, the inner diameter is 7 to 10 mm, the outer diameter is 9 to 12 mm, and the thickness is 0.1 to 1 mm.
  • the material of the metal wire forming the charge-up prevention member 45 is a metal such as aluminum, silver, gold, platinum, stainless steel, chromium, nickel, titanium, zirconium, etc. Can be used. Taking an example of the dimension of the metal wire forming the charge-up prevention member 45, the width of the metal wire is 100 ⁇ m, the thickness is 20 ⁇ m, and the arrangement pitch of the metal wires is 1500 ⁇ m.
  • the electron beam excitation type ultraviolet radiation device when a voltage is applied between the electron beam source 30 and the extraction electrode 35, electrons are emitted from the electron beam emitting portion 32 in the electron beam source 30 toward the extraction electrode 35. Is released. The electrons are accelerated toward the semiconductor light emitting device 20 by an acceleration voltage applied between the semiconductor light emitting device 20 and the electron beam source 30 to form an electron beam. The electron beam is focused toward the semiconductor light emitting element 20 by the electron beam focusing electrode 40 and then incident on the surface 20 a of the semiconductor light emitting element 20, that is, the surface of the active layer 25. In the semiconductor light emitting device 20, the active layer 25 is excited by the incidence of an electron beam. Thereby, ultraviolet rays are emitted from the surface 20 a on which the electron beam in the semiconductor light emitting element 20 is incident, and are emitted to the outside of the vacuum vessel 10 through the ultraviolet extraction window 15 in the vacuum vessel 10.
  • the voltage applied between the electron beam source 30 and the extraction electrode 35 is, for example, 1 to 5 kV.
  • the acceleration voltage of the electron beam is preferably 8 to 13 kV.
  • the voltage applied between the electron beam source 30 and the electron beam focusing electrode 40 is, for example, ⁇ 0.1 to ⁇ 2 kV.
  • the support surface 17 on which the semiconductor light emitting element 20 in the support member 16 is disposed is inclined with respect to the ultraviolet light extraction window 15. Therefore, even when the electron beam source 30 is arranged at a peripheral position of the semiconductor light emitting element 20, the incident angle of the electron beam from the electron beam source 30 with respect to one surface of the semiconductor light emitting element 20 can be sufficiently increased. . Therefore, an electron beam can be efficiently incident on the semiconductor light emitting element 20 and high-output ultraviolet rays can be emitted. In addition, since the electron beam source 30 can be disposed at the peripheral position of the semiconductor light emitting element 20, the apparatus can be miniaturized.
  • the support member 16 on which the semiconductor light emitting element 20 is disposed has high thermal conductivity, the semiconductor light emitting element 20 can be efficiently cooled via the support member 16. Therefore, the light emission efficiency of the semiconductor light emitting element 20 is not lowered, and high output ultraviolet rays can be maintained.
  • the support member has a plurality of support surfaces, and the semiconductor light emitting elements are arranged close to each other on each support surface, thereby increasing the ultraviolet radiation area and maintaining higher output ultraviolet light. it can.
  • one support surface 17 that is inclined with respect to the ultraviolet extraction window 15 is formed at the tip of the support member 16.
  • a plurality of (four in the illustrated example) semiconductor light-emitting elements 20 are arranged close to each other on the support surface 17 in a posture in which the surface 20 a is inclined with respect to the ultraviolet light extraction window 15.
  • One electron beam source 30 is arranged at a peripheral position of these semiconductor light emitting elements 20 in such a posture that the electron beam emitting portion 32 faces each surface 20 a of the semiconductor light emitting element 20.
  • FIG. 4 one support surface 17 that is inclined with respect to the ultraviolet extraction window 15 is formed at the tip of the support member 16.
  • a plurality of (four in the illustrated example) semiconductor light-emitting elements 20 are arranged close to each other on the support surface 17 in a posture in which the surface 20 a is inclined with respect to the ultraviolet light extraction window 15.
  • One electron beam source 30 is arranged at a peripheral position of these semiconductor light emitting elements 20 in such a posture that the electron beam emitting portion 32 faces each
  • the semiconductor light emitting elements 20 are arranged close to each other on each of the support surfaces 17 in a posture in which the surface 20 a is inclined with respect to the ultraviolet light extraction window 15.
  • four electron beam sources 30 are arranged such that their electron beam emitting portions 32 face the surface 20 a of the semiconductor light emitting elements 20. Is arranged in.

Abstract

Provided is an electron-beam-excited UV emission device in which: an electron beam is efficiently beamed onto a semiconductor light-emitting element; high-output UV light can be emitted; the size can be made more compact; and the semiconductor light-emitting element can be efficiently cooled. This invention is characterized in being provided with: a vacuum container having a UV extraction window; a highly thermally conductive support member provided in the vacuum container, the support member having a support surface inclined with respect to the UV extraction window; the semiconductor light-emitting element disposed on the support surface of the support member; and an electron beam source for supplying an electron beam to the semiconductor light-emitting element.

Description

電子線励起型紫外線放射装置Electron beam excitation type ultraviolet radiation device
 本発明は、電子線源と、この電子線源から放射された電子線によって紫外線を放射する半導体発光素子とを備えてなる電子線励起型紫外線放射装置に関するものである。 The present invention relates to an electron beam excitation type ultraviolet radiation device including an electron beam source and a semiconductor light emitting element that emits ultraviolet rays by an electron beam emitted from the electron beam source.
 電子線を照射することによって半導体発光素子から紫外線を放射させる電子線励起型紫外線放射装置は、小型で出力の高い紫外線を放射する光源として期待されている。
 このような電子線励起型紫外線放射装置としては、(1)紫外線透過窓を有する真空容器と、この真空容器における光透過窓の内面に配置された半導体発光素子を有するレーザー構造体と、真空容器における光透過窓に対向する底壁の内面に配置された電子線源とよりなるもの(特許文献1参照。)、(2)電子銃によって半導体発光素子の一面に対してその斜めの方向から電子線を入射することにより、当該半導体発光素子における電子線が入射された一面から光が出射され、この光が半導体発光素子の一面に対向して配置された光透過窓から外部に放射されるもの(特許文献2参照)などが知られている。
An electron beam excitation type ultraviolet radiation device that emits ultraviolet rays from a semiconductor light emitting element by irradiating an electron beam is expected as a light source that emits ultraviolet rays with a small size and high output.
As such an electron beam excitation type ultraviolet radiation device, (1) a vacuum container having an ultraviolet transmissive window, a laser structure having a semiconductor light emitting element disposed on the inner surface of the light transmissive window in the vacuum container, and a vacuum container Comprising an electron beam source disposed on the inner surface of the bottom wall facing the light transmission window in (refer to Patent Document 1), (2) electrons from one side of the semiconductor light emitting element by an electron gun from an oblique direction Light is emitted from one surface of the semiconductor light emitting element where the electron beam is incident by entering the line, and this light is radiated to the outside from a light transmission window disposed facing one surface of the semiconductor light emitting element. (See Patent Document 2) and the like.
 しかしながら、上記(1)の電子線励起型紫外線放射装置においては、半導体発光素子の一面が光出射面として利用され、その他面が電子線の入射面として利用されているため、半導体発光素子をその面積の大きい一面および他面のいずれからも冷却することができず、従って、半導体発光素子を効率よく冷却することが困難である。その結果、半導体発光素子が高い温度に発熱し、これにより、半導体発光素子の発光効率が低下して出力の高い光が放射されず、また、発熱によって半導体発光素子に早期に故障が生じる、という問題がある。
 また、上記(2)の電子線励起型紫外線放射装置においては、半導体発光素子をその裏面から冷却することができるため、半導体発光素子の発光効率が低下することがなくて高い出力の光を維持することが可能であるが、半導体発光素子の一面の斜め前方に電子銃を配置することが必要となるため、より小型化を図ることが困難である。
However, in the electron beam excitation type ultraviolet radiation device of the above (1), one surface of the semiconductor light emitting element is used as a light emitting surface and the other surface is used as an incident surface of the electron beam. It is impossible to cool from either one side or the other side having a large area, and thus it is difficult to efficiently cool the semiconductor light emitting device. As a result, the semiconductor light-emitting element generates heat at a high temperature, thereby reducing the light-emitting efficiency of the semiconductor light-emitting element and not emitting high-output light. There's a problem.
Further, in the electron beam excitation type ultraviolet radiation device of (2) above, since the semiconductor light emitting element can be cooled from the back surface, the light emission efficiency of the semiconductor light emitting element is not lowered and high output light is maintained. However, since it is necessary to dispose an electron gun obliquely in front of one surface of the semiconductor light emitting device, it is difficult to further reduce the size.
 このような問題を解決するためには、半導体発光素子の周辺位置に電子線源を配置し、当該電子線源からの電子線を半導体発光素子の一面に入射することにより、当該半導体発光素子の一面から光を放射する構成が考えられる。このような構成によれば、半導体発光素子の他面から当該半導体発光素子を冷却することができると共に、電子線源が半導体発光素子の周辺位置に配置されるので、小型化が可能となる。
 しかしながら、このような構成の電子線励起型紫外線放射装置においては、半導体発光素子の一面に対する電子線源からの電子線の入射角度が極めて小さいため、電子線が半導体発光素子の活性層の内部に十分に進入せず、従って、発光効率が極めて低く、高い出力の紫外線を得ることが困難であることが判明した。
In order to solve such a problem, an electron beam source is arranged at a peripheral position of the semiconductor light emitting element, and an electron beam from the electron beam source is incident on one surface of the semiconductor light emitting element, thereby A configuration in which light is emitted from one side is conceivable. According to such a configuration, the semiconductor light emitting element can be cooled from the other surface of the semiconductor light emitting element, and the electron beam source is disposed at the peripheral position of the semiconductor light emitting element, so that the size can be reduced.
However, in the electron beam excitation type ultraviolet radiation device having such a configuration, since the incident angle of the electron beam from the electron beam source with respect to one surface of the semiconductor light emitting device is extremely small, the electron beam is inside the active layer of the semiconductor light emitting device. It has been found that it does not enter sufficiently, and therefore, it is difficult to obtain ultraviolet light with a very low luminous efficiency and high output.
特許第3667188号公報Japanese Patent No. 3667188 特開平09-214027号公報Japanese Patent Application Laid-Open No. 09-214027
 本発明は、以上のような事情に基づいてなされたものであって、その目的は、半導体発光素子に電子線が効率よく入射されて、出力の高い紫外線を放射することができ、小型化が可能で、半導体発光素子を効率よく冷却することができる電子線励起型紫外線放射装置を提供することにある。 The present invention has been made based on the circumstances as described above, and an object of the present invention is to efficiently irradiate a semiconductor light emitting element with an electron beam and to radiate high-power ultraviolet rays, and to reduce the size. An object of the present invention is to provide an electron beam excitation type ultraviolet radiation device capable of efficiently cooling a semiconductor light emitting element.
 本発明の電子線励起型紫外線放射装置は、紫外線取り出し窓を有する真空容器と、
 この真空容器内に設けられた、当該紫外線取り出し窓に対して傾斜する支持面を有する高熱伝導性の支持部材と、
 この支持部材における前記支持面に配置された半導体発光素子と、
 この半導体発光素子に電子線を供給する電子線源とを備えてなることを特徴とする。
The electron beam excitation type ultraviolet radiation device of the present invention includes a vacuum vessel having an ultraviolet extraction window,
A high thermal conductivity support member provided in the vacuum vessel and having a support surface inclined with respect to the ultraviolet extraction window;
A semiconductor light emitting device disposed on the support surface of the support member;
And an electron beam source for supplying an electron beam to the semiconductor light emitting device.
 本発明の電子線励起型紫外線放射装置においては、前記支持部材は複数の前記支持面を有し、各支持面に前記半導体発光素子が互いに近接して配置されていることが好ましい。 このような電子線励起型紫外線放射装置においては、前記半導体発光素子の各々に対応して前記電子線源が設けられていることが好ましい。 In the electron beam excitation type ultraviolet radiation device of the present invention, it is preferable that the support member has a plurality of support surfaces, and the semiconductor light emitting elements are arranged close to each other on each support surface. In such an electron beam excitation type ultraviolet radiation device, it is preferable that the electron beam source is provided corresponding to each of the semiconductor light emitting elements.
 また、本発明の電子線励起型紫外線放射装置においては、前記電子線源からの電子線を前記半導体発光素子に向かって集束させる電子線集束用電極が設けられていることが好ましい。 Further, in the electron beam excitation type ultraviolet radiation device of the present invention, it is preferable that an electron beam focusing electrode for focusing the electron beam from the electron beam source toward the semiconductor light emitting element is provided.
 本発明の電子線励起型紫外線放射装置によれば、支持部材における半導体発光素子が配置される支持面が紫外線取り出し窓に対して傾斜しているため、当該半導体発光素子の周辺位置に電子線源を配置した場合であっても、半導体発光素子の一面に対する電子線源からの電子線の入射角度が十分に大きく、従って、半導体発光素子に電子線が効率よく入射されて、出力の高い紫外線を放射することができる。
 また、半導体発光素子の周辺位置に電子線源を配置することができるので、装置の小型化を図ることができる。
 また、半導体発光素子が配置される支持部材は高熱伝導性を有するため、半導体発光素子を支持部材を介して効率よく冷却することができ、従って、半導体発光素子の発光効率が低下することがなく、高い出力の紫外線を維持することができる。
 また、支持部材は複数の支持面を有し、各支持面に半導体発光素子が互いに近接して配置されている構成によれば、紫外線の放射面積が大きいため、一層高い出力の紫外線を維持することができる。
According to the electron beam excitation type ultraviolet radiation device of the present invention, since the support surface on which the semiconductor light emitting element is arranged in the support member is inclined with respect to the ultraviolet light extraction window, the electron beam source is located at the peripheral position of the semiconductor light emitting element. Even when the electron beam is disposed, the incident angle of the electron beam from the electron beam source with respect to the one surface of the semiconductor light emitting device is sufficiently large, so that the electron beam is efficiently incident on the semiconductor light emitting device, and high output ultraviolet rays are emitted. Can radiate.
In addition, since the electron beam source can be disposed at the peripheral position of the semiconductor light emitting element, the apparatus can be miniaturized.
In addition, since the support member on which the semiconductor light emitting element is disposed has high thermal conductivity, the semiconductor light emitting element can be efficiently cooled via the support member, and thus the light emission efficiency of the semiconductor light emitting element is not reduced. High UV output can be maintained.
In addition, the support member has a plurality of support surfaces, and according to the configuration in which the semiconductor light emitting elements are arranged close to each other on each support surface, since the ultraviolet radiation area is large, higher output ultraviolet light is maintained. be able to.
本発明の電子線励起型紫外線放射装置の一例における構成を示す説明図であり、(a)は側面断面図、(b)は、紫外線取り出し窓を取り外した状態を示す平面図である。It is explanatory drawing which shows the structure in an example of the electron beam excitation type | mold ultraviolet radiation device of this invention, (a) is side sectional drawing, (b) is a top view which shows the state which removed the ultraviolet extraction window. 図1に示す電子線励起型紫外線放射装置における半導体発光素子の構成を示す説明用断面図である。It is sectional drawing for description which shows the structure of the semiconductor light-emitting element in the electron beam excitation type | mold ultraviolet radiation device shown in FIG. 図1に示す電子線励起型紫外線放射装置における電子線源の構成を示す説明用断面図である。It is sectional drawing for description which shows the structure of the electron beam source in the electron beam excitation type | mold ultraviolet radiation apparatus shown in FIG. 本発明の電子線励起型紫外線放射装置の他の例における要部の構成を示す説明図であり、(a)は平面図図、(b)は側面断面図である。It is explanatory drawing which shows the structure of the principal part in the other example of the electron beam excitation type | mold ultraviolet radiation device of this invention, (a) is a top view, (b) is side sectional drawing. 本発明の電子線励起型紫外線放射装置の更に他の例における要部の構成を示す説明図であり、(a)は平面図、(b)は側面断面図である。It is explanatory drawing which shows the structure of the principal part in the further another example of the electron beam excitation type | mold ultraviolet radiation device of this invention, (a) is a top view, (b) is side sectional drawing.
 図1は、本発明の電子線励起型紫外線放射装置の一例における構成を示す説明図であり、(a)は側面断面図、(b)は、紫外線取り出し窓を取り外した状態を示す平面図である。
 この電子線励起型紫外線放射装置は、内部が負圧の状態で密閉された外形が直方体状の真空容器10を有し、この真空容器10は、一面(図1(a)において上面)に開口を有する容器基体11と、この容器基体11の開口に配置されて当該容器基体11に気密に封着された、矩形の板状の紫外線取り出し窓15とによって構成されている。
1A and 1B are explanatory views showing a configuration of an example of an electron beam excitation type ultraviolet radiation device of the present invention, wherein FIG. 1A is a side sectional view, and FIG. 1B is a plan view showing a state in which an ultraviolet extraction window is removed. is there.
The electron beam excitation type ultraviolet radiation device has a vacuum container 10 whose outer shape is sealed in a negative pressure state and has a rectangular parallelepiped shape. The vacuum container 10 is opened on one side (the upper surface in FIG. 1A). And a rectangular plate-shaped ultraviolet extraction window 15 which is disposed in the opening of the container base 11 and is hermetically sealed to the container base 11.
 真空容器10内には、容器基体11における底壁12から紫外線取り出し窓15に向かって当該紫外線取り出し窓15に対して垂直な方向に伸びる柱状の高熱電導性の支持部材16が、その基端が容器本体11における底壁12に固定され、その先端が紫外線取り出し窓15から離間して位置された状態で設けられている。この支持部材16の先端には、それぞれ紫外線取り出し窓15に対して傾斜する2つの半円状の支持面17が形成されている。
 支持部材16における2つの支持面17の各々には、それぞれ矩形の板状の1つの半導体発光素子20が、その表面20aが紫外線取り出し窓15に対して傾斜した姿勢で、互いに近接して配置されている。
In the vacuum vessel 10, a columnar high thermal conductivity support member 16 extending in a direction perpendicular to the ultraviolet extraction window 15 from the bottom wall 12 of the container base 11 toward the ultraviolet extraction window 15 has a base end. The container body 11 is fixed to the bottom wall 12, and the tip thereof is provided in a state of being spaced apart from the ultraviolet ray extraction window 15. Two semicircular support surfaces 17 that are inclined with respect to the ultraviolet light extraction window 15 are formed at the tip of the support member 16.
On each of the two support surfaces 17 in the support member 16, one rectangular plate-shaped semiconductor light emitting element 20 is disposed close to each other with the surface 20 a inclined with respect to the ultraviolet light extraction window 15. ing.
 半導体発光素子20の各々の周辺位置、具体的には半導体発光素子20の各々と容器基体11における当該半導体発光素子20に接近する側壁13a,13bとの間の位置には、当該半導体発光素子20に対応して、支持基板31の表面上に電子線放出部32が形成されてなる電子線源30が、当該電子線放出部32が当該半導体発光素子20の表面20aを臨む姿勢で配置されている。図示の例では、電子線源30は、電子線放出部32の表面が紫外線取り出し窓15に対して垂直となるよう半導体発光素子20に向いた姿勢で配置されている。この電子線源30は、保持部材37を介して容器基体11における底壁12に固定されている。
 また、半導体発光素子20と電子線源30との間には、当該電子線源30からの電子線を半導体発光素子20に向かって集束させるリング状の電子線集束用電極40が配置されている。この電子線集束用電極40は、保持部材41を介して容器基体11における底壁12に固定されている。
 また、真空容器10における紫外線取り出し窓15の内面には、当該紫外線取り出し窓15の内面が帯電することを防止するチャージアップ防止部材45が設けられている。この例のチャージアップ防止部材45は、複数の金属線が互いに離間して平行に並ぶよう形成されてなるストライプ状のものであり、各金属線間のスリットによって紫外線透過部が形成されている。
At a peripheral position of each of the semiconductor light emitting elements 20, specifically, at a position between each of the semiconductor light emitting elements 20 and the side walls 13 a and 13 b approaching the semiconductor light emitting element 20 in the container base 11, the semiconductor light emitting element 20 is provided. Corresponding to the above, an electron beam source 30 in which an electron beam emitting portion 32 is formed on the surface of the support substrate 31 is arranged in such a posture that the electron beam emitting portion 32 faces the surface 20a of the semiconductor light emitting element 20. Yes. In the illustrated example, the electron beam source 30 is arranged in a posture facing the semiconductor light emitting element 20 so that the surface of the electron beam emitting portion 32 is perpendicular to the ultraviolet ray extraction window 15. The electron beam source 30 is fixed to the bottom wall 12 of the container base 11 via a holding member 37.
Between the semiconductor light emitting element 20 and the electron beam source 30, a ring-shaped electron beam focusing electrode 40 that focuses the electron beam from the electron beam source 30 toward the semiconductor light emitting element 20 is disposed. . The electron beam focusing electrode 40 is fixed to the bottom wall 12 of the container base 11 via a holding member 41.
A charge-up prevention member 45 is provided on the inner surface of the ultraviolet extraction window 15 in the vacuum container 10 to prevent the inner surface of the ultraviolet extraction window 15 from being charged. The charge-up prevention member 45 in this example is in a stripe shape in which a plurality of metal lines are formed so as to be parallel and spaced apart from each other, and an ultraviolet ray transmitting portion is formed by a slit between the metal lines.
 半導体発光素子20および電子線源30は、真空容器10の内部から外部に引き出された導電線(図示省略)を介して、真空容器10の外部に設けられた、加速電圧を印加するための電子加速手段(図示省略)に電気的に接続されている。また、電子線源30および電子線集束用電極40は、真空容器10の内部から外部に引き出された導電線(図示省略)を介して、真空容器10の外部に設けられた、電子線を集束するための電子線集束用電源(図示省略)に電気的に接続されている。 The semiconductor light emitting element 20 and the electron beam source 30 are electrons provided to the outside of the vacuum vessel 10 for applying an acceleration voltage via a conductive wire (not shown) drawn from the inside of the vacuum vessel 10 to the outside. It is electrically connected to acceleration means (not shown). Further, the electron beam source 30 and the electron beam focusing electrode 40 focus the electron beam provided outside the vacuum vessel 10 via a conductive wire (not shown) drawn from the inside of the vacuum vessel 10 to the outside. For this purpose, it is electrically connected to an electron beam focusing power source (not shown).
 真空容器10における容器基体11を構成する材料としては、石英ガラス等のガラス、アルミナ等のセラミックなどの絶縁物を用いることができる。
 また、真空容器10における紫外線取り出し窓15を構成する材料としては、半導体発光素子20からの光を透過し得るものが用いられ、例えば石英ガラス、サファイアなどを用いることができる。
 また、真空容器10の内部の圧力は、例えば10-4~10-6Paである。
 真空容器10の寸法の一例を挙げると、容器基体11の外形の寸法が40mm×40mm×20mm、容器基体11の肉厚が2mm、容器基体11の開口が36mm×36mmで、紫外線取り出し窓15の寸法が40mm×40mm×2mmである。
As a material constituting the container base 11 in the vacuum container 10, an insulator such as glass such as quartz glass or ceramic such as alumina can be used.
Moreover, as a material which comprises the ultraviolet extraction window 15 in the vacuum vessel 10, the material which can permeate | transmit the light from the semiconductor light-emitting device 20 is used, For example, quartz glass, sapphire, etc. can be used.
The pressure inside the vacuum vessel 10 is, for example, 10 −4 to 10 −6 Pa.
An example of the dimensions of the vacuum container 10 is that the outer dimensions of the container base 11 are 40 mm × 40 mm × 20 mm, the thickness of the container base 11 is 2 mm, the opening of the container base 11 is 36 mm × 36 mm, The dimensions are 40 mm × 40 mm × 2 mm.
 支持部材16における支持面17は、紫外線取り出し窓15に対して傾斜した状態で形成されているが、紫外線取り出し窓15に対する支持面17の傾斜角度は15~45°であることが好ましい。この傾斜角度が15°未満である場合には、半導体発光素子20の一面に対する電子線源30からの電子線の入射角度が小さくなるため、電子線が半導体発光素子20の活性層の内部に進入しにくくなり、従って、半導体発光素子20の発光効率が低下するおそれがある。一方、この傾斜角度が45°を超える場合には、半導体発光素子20から放射される紫外線を紫外線取り出し窓15から外部に取り出しにくくなり、従って、紫外線の取り出し効率が低下するおそれがある。
 また、支持部材16を構成する材料としては、銅などの熱伝導性の高い金属や、ダイヤモンドなどを用いることができる。
The support surface 17 of the support member 16 is formed so as to be inclined with respect to the ultraviolet ray extraction window 15, but the inclination angle of the support surface 17 with respect to the ultraviolet ray extraction window 15 is preferably 15 to 45 °. When the inclination angle is less than 15 °, the incident angle of the electron beam from the electron beam source 30 with respect to one surface of the semiconductor light emitting device 20 becomes small, so that the electron beam enters the active layer of the semiconductor light emitting device 20. Therefore, the light emission efficiency of the semiconductor light emitting element 20 may be reduced. On the other hand, when the inclination angle exceeds 45 °, it becomes difficult to extract the ultraviolet rays emitted from the semiconductor light emitting element 20 to the outside from the ultraviolet extraction window 15, and thus there is a possibility that the extraction efficiency of the ultraviolet rays is lowered.
Moreover, as a material which comprises the supporting member 16, metals with high heat conductivity, such as copper, diamond, etc. can be used.
 半導体発光素子20は、図2に示すように、例えばサファイアよりなる基板21と、この基板21の一面上に形成された例えばAlNよりなるバッファ層22と、このバッファ層22の一面上に形成された、単一量子井戸構造または多重量子井戸構造を有する活性層25とにより構成されている。
 この例における半導体発光素子20は、活性層25が真空容器10における紫外線取り出し窓15に対向した状態で、基板21が支持部材16の支持面17にロウ付け等で接合されている。
 基板21の厚みは、例えば10~1000μmであり、バッファ層22の厚みは、例えば100~1000nmである。
 また、半導体発光素子20における活性層25と電子線源30との離間距離は、例えば5~15mmである。
 また、半導体発光素子20における紫外線が出射される表面20aと紫外線取り出し窓15の内面との距離は、例えば3~25mmである。
As shown in FIG. 2, the semiconductor light emitting element 20 is formed on a substrate 21 made of, for example, sapphire, a buffer layer 22 made of, for example, AlN formed on one surface of the substrate 21, and on one surface of the buffer layer 22. The active layer 25 has a single quantum well structure or a multiple quantum well structure.
In the semiconductor light emitting device 20 in this example, the substrate 21 is bonded to the support surface 17 of the support member 16 by brazing or the like with the active layer 25 facing the ultraviolet extraction window 15 in the vacuum vessel 10.
The thickness of the substrate 21 is, for example, 10 to 1000 μm, and the thickness of the buffer layer 22 is, for example, 100 to 1000 nm.
In addition, the distance between the active layer 25 and the electron beam source 30 in the semiconductor light emitting device 20 is, for example, 5 to 15 mm.
Further, the distance between the surface 20a from which the ultraviolet light is emitted in the semiconductor light emitting element 20 and the inner surface of the ultraviolet light extraction window 15 is, for example, 3 to 25 mm.
 活性層25は、それぞれInAlGa1-x-y N(0≦x<1,0<y≦1,x+y≦1)からなる単一量子井戸構造または多重量子井戸構造であり、単一または複数の量子井戸層26と単一または複数の障壁層27とが、バッファ層22上にこの順で交互に積層されて構成されている。
 量子井戸層26の各々の厚みは、例えば0.5~50nmである。また、障壁層27はその禁制帯幅が量子井戸層26のそれよりも大きくなるように組成を選択され、一例としては、AlNを用いればよく、各々の厚みは量子井戸層26の井戸幅より大きく設定され、具体的には、例えば1~100nmである。
 活性層25を構成する量子井戸層26の周期は、量子井戸層26、障壁層27および活性層25全体の厚みや、用いられる電子線の加速電圧などを考慮して適宜設定されるが、通常、1~100である。
The active layer 25 is a single quantum well structure or a multiple quantum well structure consisting of each In x Al y Ga 1-xy N (0 ≦ x <1,0 <y ≦ 1, x + y ≦ 1), a single or A plurality of quantum well layers 26 and a single or a plurality of barrier layers 27 are alternately stacked on the buffer layer 22 in this order.
The thickness of each quantum well layer 26 is, for example, 0.5 to 50 nm. The barrier layer 27 has a composition selected such that the forbidden band width is larger than that of the quantum well layer 26. For example, AlN may be used, and each thickness is larger than the well width of the quantum well layer 26. A large value is set, specifically, for example, 1 to 100 nm.
The period of the quantum well layer 26 constituting the active layer 25 is appropriately set in consideration of the total thickness of the quantum well layer 26, the barrier layer 27 and the active layer 25, the acceleration voltage of the electron beam used, etc. 1 to 100.
 上記の半導体発光素子20は、例えばMOCVD法(有機金属気相成長法)によって形成することができる。具体的には、水素および窒素からなるキャリアガスと、トリメチルアルミニウムおよびアンモニアからなる原料ガスとを用い、サファイアよりなる基板21の(0001)面上に気相成長させることにより、所要の厚みを有するAlNからなるバッファ層22を形成した後、水素ガスおよび窒素ガスからなるキャリアガスと、トリメチルアルミニウム、トリメチルガリウム、トリメチルインジウムおよびアンモニアからなる原料ガスとを用い、バッファ層22上に気相成長させることにより、所要の厚みを有するInAlGa1-x-y N(0≦x<1,0<y≦1,x+y≦1)からなる単一量子井戸構造または多重量子井戸構造を有する活性層25を形成し、以て、半導体発光素子20を形成することができる。 The semiconductor light emitting element 20 can be formed by, for example, MOCVD (metal organic chemical vapor deposition). Specifically, by using a carrier gas composed of hydrogen and nitrogen and a source gas composed of trimethylaluminum and ammonia, vapor deposition is performed on the (0001) plane of the sapphire substrate 21 to have a required thickness. After forming the buffer layer 22 made of AlN, vapor phase growth is performed on the buffer layer 22 using a carrier gas made of hydrogen gas and nitrogen gas and a source gas made of trimethylaluminum, trimethylgallium, trimethylindium and ammonia. Accordingly, active layer 25 having a in x Al y Ga 1-xy N (0 ≦ x <1,0 <y ≦ 1, x + y ≦ 1) single or multiple quantum well structure consisting of having the required thickness Thus, the semiconductor light emitting device 20 can be formed.
 上記のバッファ層22、量子井戸層26および障壁層27の各形成工程において、処理温度、処理圧力および各層の成長速度などの条件は、形成すべきバッファ層22、量子井戸層26および障壁層27の組成や厚み等に応じて適宜に設定することができる。
 また、InAlGaNよりなる量子井戸層26を形成する場合には、原料ガスとして、上記のものに加えてトリメチルインジウムを用い、処理温度をAlGaNよりなる量子井戸層26を形成する場合よりも低く設定すればよい。
 また、半導体多層膜の形成方法は、MOCVD法に限定されるものではなく、例えばMBE法(分子線エピタキシー法)なども用いることができる。
In each step of forming the buffer layer 22, the quantum well layer 26, and the barrier layer 27, conditions such as a processing temperature, a processing pressure, and a growth rate of each layer are determined according to the buffer layer 22, the quantum well layer 26, and the barrier layer 27 to be formed. It can set suitably according to a composition, thickness, etc. of this.
In addition, when forming the quantum well layer 26 made of InAlGaN, trimethylindium is used as a source gas in addition to the above, and the processing temperature is set lower than when the quantum well layer 26 made of AlGaN is formed. That's fine.
The method for forming the semiconductor multilayer film is not limited to the MOCVD method, and for example, an MBE method (molecular beam epitaxy method) or the like can also be used.
 図3に示すように、電子線源30における電子線放出部32においては、カーボンナノチューブが支持基板31上に形成されており、電子線源30における支持基板31は、板状のベース33上に固定されている。また、電子線源30には、電子線放出部32から電子を放出するための網状の引き出し電極35が当該電子線放出部31に離間して対向するよう配置され、この引き出し電極35は、電極保持部材36を介してベース33に固定されている。支持基板31および引き出し電極35は、真空容器10の内部から外部に引き出された導電線(図示省略)を介して、真空容器10の外部に設けられた、電子線放出用電源(図示省略)に電気的に接続されている。
 電子線源30の寸法の一例を挙げると、支持基板31の寸法が、10mmφ、厚みが0.15mm、電子線放出部32の寸法が3mmφ、厚みが0.025mm、電子線放出部32における電子線が放射される面の面積が7mmである。
As shown in FIG. 3, in the electron beam emitter 32 of the electron beam source 30, carbon nanotubes are formed on a support substrate 31, and the support substrate 31 of the electron beam source 30 is formed on a plate-like base 33. It is fixed. Further, in the electron beam source 30, a net-like extraction electrode 35 for emitting electrons from the electron beam emission part 32 is arranged so as to face the electron beam emission part 31 while being spaced apart from the electron beam emission part 31. It is fixed to the base 33 via a holding member 36. The support substrate 31 and the extraction electrode 35 are connected to an electron beam emission power source (not shown) provided outside the vacuum vessel 10 via a conductive wire (not shown) drawn from the inside of the vacuum vessel 10 to the outside. Electrically connected.
An example of the size of the electron beam source 30 is that the size of the support substrate 31 is 10 mmφ, the thickness is 0.15 mm, the size of the electron beam emitter 32 is 3 mmφ, the thickness is 0.025 mm, and the electrons in the electron beam emitter 32 are The area of the surface from which the line is emitted is 7 mm 2 .
 支持基板31を構成する材料としては、鉄、ニッケル、コバルト、クロムのいずれかを含む金属材料などを用いることができる。
 支持基板31上にカーボンナノチューブよりなる電子線放出部32を形成する方法としては、特に限定されず公知の方法を用いることができ、例えば表面に金属触媒層が形成された支持基板31を加熱し、COやアセチレン等のカーボンソースガスを供給することにより、支持基板31の表面に形成された金属触媒層上にカーボンを堆積してカーボンナノチューブを形成する熱CVD法、アーク放電法等によって形成されたカーボンナノチューブの粉体および有機バインダーが液状媒体中に含有されてなるペーストを調製し、このペーストをスクリーン印刷によって支持基板31の表面に塗布して乾燥するスクリーン印刷法などを好適に用いることができる。
 また、引き出し電極35を構成する材料としては、鉄、ニッケル、コバルト、クロムのいずれかを含む金属材料などを用いることができる。
As a material constituting the support substrate 31, a metal material containing iron, nickel, cobalt, or chromium can be used.
A method for forming the electron beam emitting portion 32 made of carbon nanotubes on the support substrate 31 is not particularly limited, and a known method can be used. For example, the support substrate 31 having a metal catalyst layer formed on the surface is heated. , By supplying a carbon source gas such as CO or acetylene, and depositing carbon on the metal catalyst layer formed on the surface of the support substrate 31 to form carbon nanotubes. It is preferable to use a screen printing method or the like in which a paste containing carbon nanotube powder and an organic binder in a liquid medium is prepared, and this paste is applied to the surface of the support substrate 31 by screen printing and dried. it can.
In addition, as a material constituting the extraction electrode 35, a metal material containing any of iron, nickel, cobalt, and chromium can be used.
 電子線集束用電極40を構成する材料としては、 鉄、ニッケル、コバルト、クロム、アルミニウム、銀、銅、チタン、ジルコニウムのいずれかを含む金属材料などを用いることができる。
 電子線集束用電極40の寸法の一例を示すと、内径が7~10mm、外径が9~12mm、厚みが0.1~1mmである。
As a material constituting the electron beam focusing electrode 40, a metal material containing any of iron, nickel, cobalt, chromium, aluminum, silver, copper, titanium, and zirconium can be used.
As an example of the dimensions of the electron beam focusing electrode 40, the inner diameter is 7 to 10 mm, the outer diameter is 9 to 12 mm, and the thickness is 0.1 to 1 mm.
 チャージアップ防止部材45を構成する材料、図示の例では、チャージアップ防止部材45を形成する金属線の材質としては、アルミニウム、銀、金、白金、ステンレス、クロム、ニッケル、チタン、ジルコニウムなどの金属を用いることができる。
 チャージアップ防止部材45を形成する金属線の寸法等の一例を挙げると、金属線の幅が100μm、厚みが20μmで、金属線の配置ピッチが1500μmである。
The material constituting the charge-up prevention member 45, in the illustrated example, the material of the metal wire forming the charge-up prevention member 45 is a metal such as aluminum, silver, gold, platinum, stainless steel, chromium, nickel, titanium, zirconium, etc. Can be used.
Taking an example of the dimension of the metal wire forming the charge-up prevention member 45, the width of the metal wire is 100 μm, the thickness is 20 μm, and the arrangement pitch of the metal wires is 1500 μm.
 上記の電子線励起型紫外線放射装置においては、電子線源30と引き出し電極35との間に電圧が印加されると、当該電子線源30における電子線放出部32から引き出し電極35に向かって電子が放出される。この電子は、半導体発光素子20と電子線源30との間に印加された加速電圧によって、半導体発光素子20に向かって加速されて電子線が形成される。この電子線は、電子線集束用電極40によって半導体発光素子20に向かって集束した後、半導体発光素子20の表面20aすなわち活性層25の表面から内部に入射される。そして、半導体発光素子20においては、電子線が入射されることによって活性層25が励起される。これにより、当該半導体発光素子20における電子線が入射された表面20aから紫外線が放射され、真空容器10における紫外線取り出し窓15を介して当該真空容器10の外部に出射される。 In the electron beam excitation type ultraviolet radiation device, when a voltage is applied between the electron beam source 30 and the extraction electrode 35, electrons are emitted from the electron beam emitting portion 32 in the electron beam source 30 toward the extraction electrode 35. Is released. The electrons are accelerated toward the semiconductor light emitting device 20 by an acceleration voltage applied between the semiconductor light emitting device 20 and the electron beam source 30 to form an electron beam. The electron beam is focused toward the semiconductor light emitting element 20 by the electron beam focusing electrode 40 and then incident on the surface 20 a of the semiconductor light emitting element 20, that is, the surface of the active layer 25. In the semiconductor light emitting device 20, the active layer 25 is excited by the incidence of an electron beam. Thereby, ultraviolet rays are emitted from the surface 20 a on which the electron beam in the semiconductor light emitting element 20 is incident, and are emitted to the outside of the vacuum vessel 10 through the ultraviolet extraction window 15 in the vacuum vessel 10.
 以上において、電子線源30と引き出し電極35との間に印加される電圧は、例えば1~5kVである。
 また、電子線の加速電圧は、8~13kVであることが好ましい。加速電圧が過小である場合には、高い出力の紫外線を得ることが困難となる。一方、加速電圧が過大である場合には、半導体発光素子20からX線が発生しやすくなり、また、電子線のエネルギーにより、半導体発光素子20がダメージを受けやすくなるため、好ましくない。
 また、電子線源30と電子線集束用電極40との間に印加される電圧は、例えば-0.1~-2kVである。
In the above, the voltage applied between the electron beam source 30 and the extraction electrode 35 is, for example, 1 to 5 kV.
The acceleration voltage of the electron beam is preferably 8 to 13 kV. When the acceleration voltage is too low, it is difficult to obtain high output ultraviolet rays. On the other hand, if the acceleration voltage is excessive, X-rays are likely to be generated from the semiconductor light emitting element 20, and the semiconductor light emitting element 20 is easily damaged by the energy of the electron beam, which is not preferable.
The voltage applied between the electron beam source 30 and the electron beam focusing electrode 40 is, for example, −0.1 to −2 kV.
 このような電子線励起型紫外線放射装置では、支持部材16における半導体発光素子20が配置される支持面17が紫外線取り出し窓15に対して傾斜している。そのため、当該半導体発光素子20の周辺位置に電子線源30を配置した場合であっても、半導体発光素子20の一面に対する電子線源30からの電子線の入射角度が十分に大きくすることができる。従って、半導体発光素子20に電子線が効率よく入射されて、出力の高い紫外線を放射することができる。
 また、半導体発光素子20の周辺位置に電子線源30を配置することができるので、装置の小型化を図ることができる。
 また、半導体発光素子20が配置される支持部材16は高熱伝導性を有するため、半導体発光素子20を支持部材16を介して効率よく冷却することができる。従って、半導体発光素子20の発光効率が低下することがなく、高い出力の紫外線を維持することができる。
 また、支持部材は複数の支持面を有し、各支持面に半導体発光素子が互いに近接して配置されていることにより、紫外線の放射面積が大きくなり、一層高い出力の紫外線を維持することができる。
In such an electron beam excitation type ultraviolet radiation device, the support surface 17 on which the semiconductor light emitting element 20 in the support member 16 is disposed is inclined with respect to the ultraviolet light extraction window 15. Therefore, even when the electron beam source 30 is arranged at a peripheral position of the semiconductor light emitting element 20, the incident angle of the electron beam from the electron beam source 30 with respect to one surface of the semiconductor light emitting element 20 can be sufficiently increased. . Therefore, an electron beam can be efficiently incident on the semiconductor light emitting element 20 and high-output ultraviolet rays can be emitted.
In addition, since the electron beam source 30 can be disposed at the peripheral position of the semiconductor light emitting element 20, the apparatus can be miniaturized.
In addition, since the support member 16 on which the semiconductor light emitting element 20 is disposed has high thermal conductivity, the semiconductor light emitting element 20 can be efficiently cooled via the support member 16. Therefore, the light emission efficiency of the semiconductor light emitting element 20 is not lowered, and high output ultraviolet rays can be maintained.
In addition, the support member has a plurality of support surfaces, and the semiconductor light emitting elements are arranged close to each other on each support surface, thereby increasing the ultraviolet radiation area and maintaining higher output ultraviolet light. it can.
 以上、本発明の電子線励起型紫外線放射装置の実施の形態について説明したが、本発明は上記の実施の形態に限定されず、以下のように種々の変更を加えることが可能である。 例えば、図4に示す例では、支持部材16の先端に、紫外線取り出し窓15に対して傾斜する1つの支持面17が形成されている。この支持面17に、その表面20aが紫外線取り出し窓15に対して傾斜した姿勢で、複数(図示の例では4つ)の半導体発光素子20が、互いに近接して配置されている。これらの半導体発光素子20の周辺位置には、1つの電子線源30が、その電子線放出部32が半導体発光素子20の各々の表面20aを臨む姿勢で配置されている。
 また、図5に示す例では、支持部材16の先端に、それぞれ紫外線取り出し窓15に対して傾斜する4つの扇状の支持面17が形成されている。これらの支持面17の各々に、その表面20aが紫外線取り出し窓15に対して傾斜した姿勢で、半導体発光素子20が、互いに近接して配置されている。これらの半導体発光素子20の各々の周辺位置には、当該半導体発光素子20に対応して、4つの電子線源30が、その電子線放出部32が当該半導体発光素子20の表面20aを臨む姿勢で配置されている。
As mentioned above, although the embodiment of the electron beam excitation type ultraviolet radiation device of the present invention has been described, the present invention is not limited to the above embodiment, and various modifications can be made as follows. For example, in the example shown in FIG. 4, one support surface 17 that is inclined with respect to the ultraviolet extraction window 15 is formed at the tip of the support member 16. A plurality of (four in the illustrated example) semiconductor light-emitting elements 20 are arranged close to each other on the support surface 17 in a posture in which the surface 20 a is inclined with respect to the ultraviolet light extraction window 15. One electron beam source 30 is arranged at a peripheral position of these semiconductor light emitting elements 20 in such a posture that the electron beam emitting portion 32 faces each surface 20 a of the semiconductor light emitting element 20.
In the example shown in FIG. 5, four fan-shaped support surfaces 17 that are inclined with respect to the ultraviolet light extraction window 15 are formed at the tip of the support member 16. The semiconductor light emitting elements 20 are arranged close to each other on each of the support surfaces 17 in a posture in which the surface 20 a is inclined with respect to the ultraviolet light extraction window 15. At each peripheral position of these semiconductor light emitting elements 20, corresponding to the semiconductor light emitting elements 20, four electron beam sources 30 are arranged such that their electron beam emitting portions 32 face the surface 20 a of the semiconductor light emitting elements 20. Is arranged in.
10 真空容器
11 容器基体
12 底壁
13a,13b 側壁
15 紫外線取り出し窓
16 支持部材
17 支持面
20 半導体発光素子
20a 表面
21 基板
22 バッファ層
25 活性層
26 量子井戸層
27 障壁層
30 電子線源
31 支持基板
32 電子線放出部
33 ベース
35 引き出し電極
36 電極保持部材
37 保持部材
40 電子線集束用電極
41 保持部材
45 チャージアップ防止部材
DESCRIPTION OF SYMBOLS 10 Vacuum container 11 Container base 12 Bottom wall 13a, 13b Side wall 15 Ultraviolet extraction window 16 Support member 17 Support surface 20 Semiconductor light-emitting device 20a Surface 21 Substrate 22 Buffer layer 25 Active layer 26 Quantum well layer 27 Barrier layer 30 Electron source 31 Support Substrate 32 Electron beam emitter 33 Base 35 Extraction electrode 36 Electrode holding member 37 Holding member 40 Electron beam focusing electrode 41 Holding member 45 Charge-up prevention member

Claims (4)

  1.  紫外線取り出し窓を有する真空容器と、
     この真空容器内に設けられた、当該紫外線取り出し窓に対して傾斜する支持面を有する高熱伝導性の支持部材と、
     この支持部材における前記支持面に配置された半導体発光素子と、
     この半導体発光素子に電子線を供給する電子線源とを備えてなることを特徴とする電子線励起型紫外線放射装置。
    A vacuum vessel having an ultraviolet extraction window;
    A high thermal conductivity support member provided in the vacuum vessel and having a support surface inclined with respect to the ultraviolet extraction window;
    A semiconductor light emitting device disposed on the support surface of the support member;
    An electron beam excitation type ultraviolet radiation device comprising an electron beam source for supplying an electron beam to the semiconductor light emitting element.
  2.  前記支持部材は複数の前記支持面を有し、各支持面に前記半導体発光素子が互いに近接して配置されていることを特徴とする請求項1に記載の電子線励起型紫外線放射装置。 2. The electron beam excitation type ultraviolet radiation device according to claim 1, wherein the support member has a plurality of the support surfaces, and the semiconductor light emitting elements are arranged close to each other on each support surface.
  3.  前記半導体発光素子の各々に対応して前記電子線源が設けられていることを特徴とする請求項2に記載の電子線励起型紫外線放射装置。 The electron beam excitation type ultraviolet radiation device according to claim 2, wherein the electron beam source is provided corresponding to each of the semiconductor light emitting elements.
  4.  前記電子線源からの電子線を前記半導体発光素子に向かって集束させる電子線集束用電極が設けられていることを特徴とする請求項1乃至請求項3のいずれかに記載の電子線励起型紫外線放射装置。 4. The electron beam excitation type according to claim 1, further comprising an electron beam focusing electrode for focusing an electron beam from the electron beam source toward the semiconductor light emitting element. UV radiation device.
PCT/JP2013/053484 2012-03-29 2013-02-14 Electron-beam-excited uv emission device WO2013145915A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012075908A JP2013207146A (en) 2012-03-29 2012-03-29 Electron beam exciting type ultraviolet ray radiation device
JP2012-075908 2012-03-29

Publications (1)

Publication Number Publication Date
WO2013145915A1 true WO2013145915A1 (en) 2013-10-03

Family

ID=49259197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053484 WO2013145915A1 (en) 2012-03-29 2013-02-14 Electron-beam-excited uv emission device

Country Status (3)

Country Link
JP (1) JP2013207146A (en)
TW (1) TW201340511A (en)
WO (1) WO2013145915A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3413412A3 (en) * 2017-05-19 2019-04-17 Palo Alto Research Center, Incorporated Electron beam pumped non-c-plane uv emitters

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102240023B1 (en) 2014-11-03 2021-04-15 삼성전자주식회사 Ultraviolet light emitting apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09214027A (en) * 1996-02-01 1997-08-15 Matsushita Electric Ind Co Ltd Electron-beam excited laser device
JP2001251001A (en) * 2000-03-03 2001-09-14 Canon Inc Electron beam excited laser device
WO2012063585A1 (en) * 2010-11-10 2012-05-18 ウシオ電機株式会社 Electron-beam-pumped light source

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09214027A (en) * 1996-02-01 1997-08-15 Matsushita Electric Ind Co Ltd Electron-beam excited laser device
JP2001251001A (en) * 2000-03-03 2001-09-14 Canon Inc Electron beam excited laser device
WO2012063585A1 (en) * 2010-11-10 2012-05-18 ウシオ電機株式会社 Electron-beam-pumped light source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3413412A3 (en) * 2017-05-19 2019-04-17 Palo Alto Research Center, Incorporated Electron beam pumped non-c-plane uv emitters

Also Published As

Publication number Publication date
TW201340511A (en) 2013-10-01
JP2013207146A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JP5548204B2 (en) UV irradiation equipment
TWI520455B (en) Electron beam excited light source
JP5943738B2 (en) Deep ultraviolet laser light source
WO2013145915A1 (en) Electron-beam-excited uv emission device
JP5192097B2 (en) UV irradiation equipment
JP5736736B2 (en) Electron beam excitation type light source
JP2013135035A (en) Electron beam pumped light source device
JP2015046415A (en) Nitride semiconductor light-emitting element, and electron beam excitation type light source device
JP5370408B2 (en) Electron beam excitation type light source device
JP5299405B2 (en) Electron beam excitation type light source
JP5659712B2 (en) Electron beam excitation type light source
JP2012209448A (en) Electron beam excitation type light source device
JP2013033640A (en) Electron beam excited light source device
JP2012195144A (en) Electron beam source device and electron beam excitation type light source device
JP2013222648A (en) Electron beam radiation device
JP2013149716A (en) Vacuum vessel device
JP2012212637A (en) Electron beam source device and electron beam excitation type light source device
JP2017084505A (en) Vacuum switch
JP4630596B2 (en) Manufacturing method of semiconductor laser device
JP2014049591A (en) Electron beam pumped light source
JP2020129653A (en) Light emitting device and manufacturing method thereof
JP2006127924A (en) Modulation type far-ultraviolet solid light emitting device
JP2014022542A (en) Electron beam excitation light source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769565

Country of ref document: EP

Kind code of ref document: A1