WO2013145768A1 - Cylindrical battery - Google Patents

Cylindrical battery Download PDF

Info

Publication number
WO2013145768A1
WO2013145768A1 PCT/JP2013/002151 JP2013002151W WO2013145768A1 WO 2013145768 A1 WO2013145768 A1 WO 2013145768A1 JP 2013002151 W JP2013002151 W JP 2013002151W WO 2013145768 A1 WO2013145768 A1 WO 2013145768A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery case
battery
stainless steel
thickness
negative electrode
Prior art date
Application number
PCT/JP2013/002151
Other languages
French (fr)
Japanese (ja)
Inventor
柿沼 彰
慧介 米田
増本 兼人
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/347,947 priority Critical patent/US9231234B2/en
Priority to JP2014500583A priority patent/JP5512057B2/en
Priority to EP13768096.3A priority patent/EP2752913B1/en
Priority to CN201380002995.9A priority patent/CN103797607B/en
Priority to KR1020147007750A priority patent/KR101476963B1/en
Publication of WO2013145768A1 publication Critical patent/WO2013145768A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/107Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/167Lids or covers characterised by the methods of assembling casings with lids by crimping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/171Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cylindrical battery equipped with a battery case, such as a lithium ion secondary battery.
  • lithium ion secondary batteries have been widely used as power sources for driving electronic devices such as portable digital devices.
  • a portable device such as a smartphone that requires a heavy load with multiple functions
  • an improvement in battery characteristics such as energy density and load characteristics and a reduction in weight are required for a battery used as a power source.
  • improvement in long-term reliability and safety is required.
  • a lithium ion secondary battery usually includes a metal battery case.
  • the thickness of the battery case is reduced to increase the internal volume, and the battery case is filled with power generation elements at a high density.
  • the density can be improved. Reducing the thickness of the battery case is particularly effective for a small battery in that the internal volume is increased.
  • a lithium ion battery using a metal-resin laminate sheet instead of the battery case.
  • this thin sheet encloses battery components such as positive and negative electrodes, a separator, and an electrolytic solution, thereby realizing improvement in energy density and weight reduction.
  • a battery case is used, and the battery case achieves high strength and high sealing performance while reducing its thickness. It is very important to do.
  • an object of the present invention is to provide a small cylindrical battery in which both improvement in battery characteristics and improvement in long-term reliability and safety are realized.
  • the inventors of the present invention have made intensive efforts to find a condition in which improvement in battery characteristics and improvement in long-term reliability and safety can be achieved in a small cylindrical battery.
  • a cylindrical battery according to the present invention includes a bottomed cylindrical battery case, an electrode group housed in the battery case together with an electrolyte, a sealing member fitted in an opening of the battery case, a sealing member, and the battery case. An opening portion of the battery case is sealed by drawing the opening end portion of the battery case.
  • the battery case is made of stainless steel. Further, the outer diameter of the battery case is 10 mm or less, and the thickness of the battery case is 0.05 mm or more and 0.2 mm or less.
  • the cylindrical battery according to the present invention achieves both improved battery characteristics and improved long-term reliability and safety.
  • FIG. 1 is a longitudinal sectional view conceptually showing a cylindrical battery according to an embodiment of the present invention.
  • a cylindrical battery according to the present invention includes a bottomed cylindrical battery case, an electrode group housed in the battery case together with an electrolyte, a sealing member fitted in an opening of the battery case, a sealing member, and the battery case. An opening portion of the battery case is sealed by drawing the opening end portion of the battery case.
  • the battery case is made of stainless steel.
  • the outer diameter of the battery case is 10 mm or less, and the thickness of the battery case is 0.05 mm or more and 0.2 mm or less.
  • stainless steel has a significantly higher tensile fracture strength than iron (Fe) and aluminum (Al).
  • SUS316L austenitic stainless steel
  • the inventors of the present invention have a high sealing performance in a small cylindrical battery whose outer diameter is 10 mm or less, particularly when the thickness of the battery case is 0.05 mm or more and 0.2 mm or less. I found out that it would be realized. In addition, the present inventors have found that these conditions are particularly preferable for a small cylindrical battery whose outer diameter is 6 mm or less.
  • the thickness of the battery case is a condition for enhancing the sealing property. Very important.
  • the battery case contracts in the squeezed portion of the battery case (that is, the diameter of the battery case is reduced).
  • the diameter of the battery case before the drawing process is 15 mm or more
  • the shrinkage change rate of the battery case 1 by the drawing process is small and hardly affects the sealing performance.
  • the diameter of the battery case 1 before the drawing process is 10 mm or less
  • the shrinkage change rate of the battery case 1 due to the drawing process becomes large, and the roundness is reduced or the wrinkles are abnormal at the opening end of the battery case. Deformation easily occurs. Such a problem is conspicuous when the diameter of the battery case before drawing is 6 mm or less, which lowers the sealing performance.
  • the inventors have made the battery case 1 made of stainless steel and the thickness of the battery case 1 is 0.05 mm. It has been found that high sealing performance is realized when the thickness is 0.2 mm or less.
  • the battery case is preferably made of a material having a wide potential window and high acid corrosion resistance.
  • stainless steel such as SUS316L is very strong with respect to the potential on the reduction side, and has a wider potential window on the oxidation side than iron or copper, though not as much as aluminum.
  • a reduction potential is applied to aluminum in the presence of lithium ions, lithium is deposited on the surface to form an alloy with lithium. Since such an alloying reaction involves volume expansion, when the battery case is made of aluminum, the battery case becomes brittle and its strength decreases, and therefore it is difficult to achieve long-term reliability of the battery. is there.
  • Stainless steel has higher acid corrosion resistance than iron, copper and aluminum. This is because stainless steel has a protective layer on its surface.
  • lithium ion batteries lithium hexafluorophosphate (LiPF 6 ) is generally used as a supporting electrolyte.
  • a supporting electrolyte constitutes an electrolytic solution having high ionic conductivity and can realize excellent load characteristics.
  • lithium hexafluorophosphate hydrolyzes in the presence of moisture to generate hydrofluoric acid (HF), which is a strong acid. Therefore, in lithium-ion batteries, in addition to suppressing the entry of moisture from the outside by enhancing the sealing performance, it is important to improve the acid corrosion resistance of the battery case in order to achieve long-term reliability. is there. This is because the corrosion of the battery case causes intrusion of moisture and accelerates the progress of the corrosion.
  • HF hydrofluoric acid
  • the cylindrical battery according to the present invention it is possible to achieve both the improvement of battery characteristics and the improvement of long-term reliability and safety.
  • the thickness of the battery case can be made uniform, the battery case can be easily molded and quality controlled.
  • the stainless steel constituting the battery case is an austenitic stainless steel having a low carbon content.
  • the stainless steel constituting the battery case is preferably stainless steel having a carbon content of 0.08% by mass or less.
  • the carbon content in the stainless steel is more preferably 0.05% by mass or less, and particularly preferably 0.03% by mass or less.
  • the stainless steel with such a low carbon content has a high elongation and a high tensile strength at break. Therefore, stainless steel with a low carbon content has high workability. That is, when forming the battery case 1, it is easy to stretch and thin the stainless steel, and the processing accuracy is high.
  • a battery case having a large ratio of height to diameter can be easily formed with high accuracy by, for example, deep drawing. Therefore, the battery case 1 having a thickness of 0.05 mm or more and 0.2 mm or less can be formed easily and with high accuracy, and as a result, a cylindrical battery having high sealing performance is stably manufactured. It becomes possible.
  • the stainless steel constituting the battery case 1 is stainless steel having a copper content of 1.0% by mass or more and 6.0% by mass or less. More preferably, copper content is 1.5 mass% or more and 5.0 mass% or less.
  • the stainless steel containing copper has high tensile fracture strength, elongation rate, and acid corrosion resistance, and has low contact resistance on the stainless steel surface as shown in Table 2.
  • the protective layer which raises acid corrosion resistance is normally formed in the surface of stainless steel, and when stainless steel does not contain copper, this protective layer becomes a cause which enlarges contact resistance.
  • the resistance of the protective layer is reduced, and as a result, the contact resistance is reduced.
  • the battery case is preferably formed by deep drawing a stainless steel plate having a small thickness to form a bottomed cylinder. According to deep drawing, it is possible to obtain a battery case having a small and uniform thickness and a small variation in shape and thickness. Also, deep drawing reduces material loss. Therefore, in the cylindrical battery, it is possible to achieve both improvement in battery characteristics and improvement in long-term reliability and safety.
  • FIG. 1 is a longitudinal sectional view conceptually showing a cylindrical battery according to an embodiment of the present invention.
  • a cylindrical battery includes a bottomed cylindrical battery case 1, an electrode group 5 housed in the battery case 1 together with a nonaqueous electrolyte, and a sealing member fitted in the opening of the battery case 1. 8 and a gasket 9 interposed between the sealing member 8 and the battery case 1.
  • the battery case 1 is formed by deep drawing a stainless steel material having a uniform thickness.
  • the outer diameter of the battery case 1 is 10 mm or less, and particularly preferably 6 mm or less.
  • the thickness of the battery case 1 is 0.05 mm or more and 0.2 mm or less.
  • the ratio of the side wall thickness (side thickness) to the bottom thickness (bottom thickness) of the battery case 1 is 0.20 or more and 1.20 or less, preferably 0.33 or more and 1.05 or less. is there.
  • the stainless steel constituting the battery case 1 is preferably an austenitic stainless steel having a low carbon content.
  • the stainless steel constituting the battery case 1 is preferably stainless steel having a carbon content of 0.08% by mass or less. Furthermore, the carbon content in the stainless steel is more preferably 0.05% by mass or less, and particularly preferably 0.03% by mass or less.
  • the stainless steel constituting the battery case 1 preferably contains copper.
  • the content of copper is preferably 1.0% by mass or more and 6.0% by mass or less, and particularly preferably 1.5% by mass or more and 5.0% by mass or less. .
  • the sealing member 8 and the gasket 9 are members that seal the opening of the battery case 1. Specifically, the sealing member 8 and the gasket 9 are inserted into the opening of the battery case 1 such that the gasket 9 is interposed between the sealing member 8 and the battery case 1. The opening end of the battery case 1 is drawn, and the opening end is caulked to the sealing member 8. Therefore, the gasket 9 is in close contact with the side surface of the sealing member 8 and the inner surface of the battery case 1 in a compressed state. In this way, the opening of the battery case 1 is sealed. Further, a perforated disk 11 made of an electrical insulating material is fitted into a protruding portion of the sealing member 8 exposed to the outside of the battery case 1. The disk 11 prevents an electrical short circuit between the sealing member 8 and the battery case 1.
  • the gasket 9 is made of polypropylene (PP), polyethylene (PE), polyphenylene sulfide (PPS), perfluoroalkylethylene-hexafluoropropylene copolymer (PFA), cross-linked rubber, or the like.
  • PP polypropylene
  • PE polyethylene
  • PPS polyphenylene sulfide
  • PFA perfluoroalkylethylene-hexafluoropropylene copolymer
  • cross-linked rubber or the like.
  • PFA is preferable because it has low moisture permeability and can suppress the ingress of moisture into the battery, which can cause deterioration of the lithium ion battery.
  • the electrode group 5 includes a negative electrode plate 2, a positive electrode plate 3, and a separator 4.
  • the negative electrode plate 2 and the positive electrode plate 3 are overlapped with each other and wound with the separator 4 interposed therebetween.
  • the winding end portion of at least one of the negative electrode plate 2 and the positive electrode plate 3 is fixed to the outer peripheral surface of the electrode group 5 with a fixing tape so that the electrode group 5 is not displaced.
  • the electrode group 5 is housed in the battery case 1 together with a non-aqueous electrolyte (not shown). According to such an electrode group 5, the reaction area becomes large, and it is possible to realize a heavy load characteristic.
  • each of the negative electrode plate 2 and the positive electrode plate 3 is composed of a core material that is a current collector and a mixture layer (including an active material) formed on the surface of the core material. And in order to increase battery capacity, the mixture layer is formed in the surface of the core material in the compressed state. For this reason, in the electrode group 5, if the radius at the beginning of winding of the negative electrode plate 2 and the positive electrode plate 3 is too small, the mixture layer peels off from the core material, and this causes electrical damage in the battery case 1. There is a risk of a short circuit (internal short circuit). On the other hand, when the winding start radius is too large, the amount of the active material stored in the battery case 1 is reduced, and the battery capacity is reduced.
  • the diameter R of the winding core is preferably 0.6 mm or more and 3.0 mm or less, and 0.8 mm or more and less than 1.5 mm. It is particularly preferred.
  • the space In the vicinity of the central axis of the electrode group 5, there is a space where no active material is present.
  • the space preferably has a diameter of 3.0 mm or less, and particularly preferably has a diameter of less than 1.5 mm. .
  • a negative electrode lead 6 is electrically connected to the negative electrode plate 2 (specifically, a negative electrode core material to be described later), and the end of the negative electrode lead 6 is joined to the inner surface of the side wall of the battery case 1 by spot welding or the like.
  • the negative electrode lead 6 may be simply brought into contact with the inner surface of the side wall of the battery case 1.
  • the negative electrode plate 2 is electrically connected to the battery case 1, and the battery case 1 functions as a negative electrode terminal.
  • nickel, iron, stainless steel, copper, or the like is used for the negative electrode lead 6.
  • the negative electrode lead 6 has a characteristic of being bent by a small pressure, and the shape thereof is not particularly limited, but a strip having a margin for welding with the negative electrode core and a margin for welding with the battery case 1. Examples thereof include an ellipse or a polygon inscribed in the shape and the strip shape. Further, the thickness of the negative electrode lead 6 is preferably 10 ⁇ m or more and 120 ⁇ m or less, and particularly preferably 20 ⁇ m or more and 80 ⁇ m or less.
  • a positive electrode lead 7 is electrically connected to the positive electrode plate 3 (specifically, a positive electrode core material to be described later), and an end of the positive electrode lead 7 is joined to the sealing member 8 by spot welding or the like. .
  • the positive electrode plate 3 is electrically connected to the sealing member 8, and the sealing member 8 functions as a positive electrode terminal.
  • the positive electrode lead 7 has a characteristic of being bent with a small pressure, and the shape thereof is not particularly limited, but examples thereof include a strip shape.
  • the thickness of the positive electrode lead 7 is preferably 40 ⁇ m or more and 150 ⁇ m or less, and particularly preferably 50 ⁇ m or more and 100 ⁇ m or less.
  • a ring-shaped intermediate member 10 made of an electrical insulating material is disposed between the electrode group 5 and the sealing member 8, and the positive electrode lead 7 passes through the inner side of the intermediate member 10 and the positive electrode plate 3. It is connected to the sealing member 8. Thereby, the intermediate member 10 prevents an electrical short circuit between the negative electrode and the positive electrode.
  • the negative electrode plate 2 includes a negative electrode core material that is a negative electrode current collector, and a negative electrode mixture layer formed on the surface of the negative electrode core material.
  • the negative electrode plate 2 is formed, for example, by depositing a negative electrode active material in a thin film on the surface of the negative electrode core material.
  • the negative electrode core material is a metal foil.
  • a long conductive substrate having a porous structure or a nonporous structure is used.
  • As a material for the negative electrode core material for example, stainless steel, nickel, copper, or the like is used.
  • the thickness of the negative electrode core material is not particularly limited, but is preferably 1 ⁇ m or more and 500 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 20 ⁇ m or less. According to the negative electrode core material having such a thickness, the negative electrode plate 2 can be reduced in weight while maintaining the strength of the negative electrode plate 2.
  • the negative electrode mixture layer contains a negative electrode active material. Therefore, the negative electrode active material will be described in detail below.
  • the negative electrode mixture layer preferably contains a binder or the like in addition to the negative electrode active material.
  • a negative electrode active material a material capable of occluding and releasing lithium ions is used. Examples of such a negative electrode active material include metals, metal fibers, carbon materials, oxides, nitrides, silicon compounds, tin compounds, and various alloy materials. Specific examples of the carbon material include, for example, various natural graphites, cokes, graphitized carbon, carbon fibers, spherical carbon, various artificial graphites, and amorphous carbon.
  • a simple substance such as silicon (Si) or tin (Sn), or a silicon compound or tin compound has a large capacity density.
  • silicon, tin, a silicon compound, or a tin compound as the negative electrode active material.
  • the silicon compound include, for example, SiOx (where 0.05 ⁇ x ⁇ 1.95), or B, Mg, Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn, Nb, Ta, Examples thereof include a silicon alloy in which a part of Si is substituted with at least one element selected from the group consisting of V, W, Zn, C, N, and Sn, or a silicon solid solution.
  • tin compound examples include Ni 2 Sn 4 , Mg 2 Sn, SnO x (where 0 ⁇ x ⁇ 2), SnO 2 , SnSiO 3 and the like.
  • a negative electrode active material may be used individually by 1 type among the negative electrode active materials enumerated above, and may be used in combination of 2 or more type.
  • the positive electrode plate 3 includes a positive electrode core material that is a positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode core material.
  • the positive electrode core material is a metal foil.
  • a long conductive substrate having a porous structure or a nonporous structure is used.
  • the material for the positive electrode core material for example, aluminum or the like is used.
  • the thickness of the positive electrode core material is not particularly limited, but is preferably 8 ⁇ m or more and 25 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 15 ⁇ m or less. According to the positive electrode core material having such a thickness, it is possible to configure the electrode group 5 that is smoothly curved and has a small diameter.
  • the positive electrode mixture layer includes a positive electrode active material, a binder, and a conductive agent. Therefore, the positive electrode active material, the binder, and the conductive agent will be described in detail below.
  • a positive electrode active material a lithium-containing composite oxide is preferable.
  • a positive electrode active material surface-treated with a metal oxide, a lithium oxide, a conductive agent, or the like may be used as the positive electrode active material. Examples of the surface treatment include a hydrophobic treatment.
  • the average particle diameter of the positive electrode active material is preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the average particle diameter of the positive electrode active material is less than 5 ⁇ m, the surface area of the active material particles becomes extremely large. For this reason, the amount of the binder for obtaining the adhesive strength that enables handling of the positive electrode plate 3 is extremely increased. For this reason, the amount of active material per electrode plate is reduced, and the capacity is reduced.
  • the thickness exceeds 20 ⁇ m, coating stripes are likely to occur when the positive electrode mixture slurry is applied to the positive electrode core material.
  • Binder for example, PVDF, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, polyacrylic Acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoropolypropylene, styrene butadiene rubber or carboxy
  • binders for example, PVDF, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacryl
  • PVDF and derivatives thereof are chemically stable in the non-aqueous electrolyte secondary battery, and sufficiently bind the positive electrode mixture layer and the positive electrode core material, Since the positive electrode active material constituting the positive electrode mixture layer, the binder, and the conductive agent are sufficiently bound, good charge / discharge cycle characteristics and discharge performance can be obtained. Therefore, it is preferable to use PVDF or a derivative thereof as the binder of this embodiment. In addition, PVDF and its derivatives are preferable in terms of cost because they are inexpensive.
  • PVDF polyvinyl styrene
  • N-methylpyrrolidone N-methylpyrrolidone
  • powdered PVDF is dissolved in a positive electrode mixture slurry. The case where it is made to use is mentioned.
  • the conductive agent examples include graphites such as natural graphite or artificial graphite, carbon blacks such as acetylene black (AB), ketjen black, channel black, furnace black, lamp black or thermal black, carbon fiber or metal.
  • Conductive fibers such as fibers, metal powders such as carbon fluoride and aluminum, conductive whiskers such as zinc oxide or potassium titanate, conductive metal oxides such as titanium oxide, or organic conductivity such as phenylene derivatives Materials and the like.
  • ⁇ Separator> For the separator 4, a microporous thin film, a woven fabric, a non-woven fabric, or the like having high ion permeability and having a predetermined mechanical strength and electrical insulation is used.
  • a polyolefin such as polypropylene or polyethylene as the material for the separator 4. Since polyolefin has excellent durability and a shutdown function, the safety of the lithium ion secondary battery can be improved.
  • the thickness of the separator 4 is generally 10 ⁇ m or more and 300 ⁇ m or less, and preferably 10 ⁇ m or more and 40 ⁇ m or less. Further, the thickness of the separator 4 is more preferably 15 ⁇ m or more and 30 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the microporous thin film may be a single layer film made of one kind of material, or a composite film or multilayer film made of one kind or two or more kinds of materials. There may be.
  • the porosity of the separator 4 is preferably 30% or more and 70% or less, and particularly preferably 35% or more and 60% or less. Here, the porosity indicates the ratio of the volume of the entire hole to the total volume of the separator 4.
  • Nonaqueous electrolyte As the non-aqueous electrolyte stored in the battery case 1, a liquid, gel-like, or solid non-aqueous electrolyte can be used.
  • the liquid non-aqueous electrolyte contains an electrolyte salt (for example, lithium salt) and a non-aqueous solvent in which the electrolyte salt is dissolved.
  • the gel-like non-aqueous electrolyte includes a non-aqueous electrolyte and a polymer material that holds the non-aqueous electrolyte.
  • the polymer material examples include polyvinylidene fluoride, polyacrylonitrile, polyethylene oxide, polyvinyl chloride, polyacrylate, and polyvinylidene fluoride hexafluoropropylene.
  • the solid non-aqueous electrolyte includes a polymer solid electrolyte.
  • the nonaqueous solvent and electrolyte salt contained in the liquid nonaqueous electrolyte will be described in detail below.
  • Non-aqueous solvent As the non-aqueous solvent for dissolving the electrolyte salt, a known non-aqueous solvent can be used. Although the kind of this non-aqueous solvent is not specifically limited, For example, cyclic carbonate ester, chain
  • specific examples of the cyclic carbonate include propylene carbonate (PC) and ethylene carbonate (EC).
  • Specific examples of the chain carbonate include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), and the like.
  • cyclic carboxylic acid ester examples include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • GBL ⁇ -butyrolactone
  • VL ⁇ -valerolactone
  • the non-aqueous solvent one of the non-aqueous solvents listed above may be used alone, or two or more thereof may be used in combination.
  • electrolyte salt examples of the electrolyte salt dissolved in the non-aqueous solvent include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , and lower aliphatic. Lithium carboxylate, LiCl, LiBr, LiI, chloroborane lithium, borates, imide salts and the like are used.
  • borates include, for example, bis (1,2-benzenediolate (2-)-O, O ′) lithium borate, bis (2,3-naphthalenedioleate (2-)-O , O ′) lithium borate, bis (2,2′-biphenyldiolate (2-)-O, O ′) lithium borate, or bis (5-fluoro-2-olate-1-benzenesulfonic acid-O , O ′) lithium borate and the like.
  • imide salts for example, lithium bistrifluoromethanesulfonate imide ((CF 3 SO 2 ) 2 NLi), lithium trifluoromethanesulfonate nonafluorobutanesulfonate (LiN (CF 3 SO 2 ) (C 4 F 9 SO 2)), or the like bispentafluoroethanesulfonyl imide lithium ((C 2 F 5 SO 2 ) 2 NLi) and the like.
  • the electrolyte salt one of the electrolyte salts listed above may be used alone, or two or more thereof may be used in combination.
  • the amount of the electrolyte salt dissolved in the non-aqueous solvent is preferably 0.5 mol / m 3 or more and 2 mol / m 3 or less.
  • the liquid nonaqueous electrolyte may contain an additive that decomposes on, for example, the negative electrode to form a film having high lithium ion conductivity and increases the charge / discharge efficiency of the battery.
  • additives having such a function include vinylene carbonate (VC), 4-methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4-ethyl vinylene carbonate, 4,5-diethyl vinylene carbonate, 4 -Propyl vinylene carbonate, 4,5-dipropyl vinylene carbonate, 4-phenyl vinylene carbonate, 4,5-diphenyl vinylene carbonate, vinyl ethylene carbonate (VEC), divinyl ethylene carbonate, and the like.
  • An additive may be used individually by 1 type among the additives enumerated above, and may be used in combination of 2 or more type.
  • the additives listed above at least one selected from the group consisting of vinylene carbonate, vinyl ethylene carbonate, and divinyl ethylene carbonate is preferable.
  • the additive may be one in which some of the hydrogen atoms of the additives listed above are substituted with fluorine atoms.
  • the liquid non-aqueous electrolyte may contain, in addition to the electrolyte salt and the non-aqueous solvent, for example, a known benzene derivative that decomposes during overcharge to form a film on the electrode and inactivate the battery.
  • a known benzene derivative that decomposes during overcharge to form a film on the electrode and inactivate the battery.
  • the benzene derivative having such a function those having a phenyl group and a cyclic compound group adjacent to the phenyl group are preferable.
  • specific examples of the benzene derivative include, for example, cyclohexylbenzene, biphenyl, diphenyl ether, and the like.
  • cyclic compound group contained in the benzene derivative examples include, for example, a phenyl group, a cyclic ether group, a cyclic ester group, a cycloalkyl group, or a phenoxy group.
  • a benzene derivative may be used individually by 1 type among the benzene derivatives enumerated above, and may be used in combination of 2 or more type.
  • the content of the benzene derivative with respect to the non-aqueous solvent is preferably 10 vol% or less of the entire non-aqueous solvent.
  • Example 1 (Preparation of positive electrode plate)
  • the positive electrode active material LiNi 0.82 Co 0.15 Al 0.03 O 2 having an average particle diameter of 10 ⁇ m was prepared.
  • a binder 4.7 vol% PVDF was prepared with respect to 100 vol% of the positive electrode active material.
  • a conductive agent 4.5 vol% acetylene black was prepared with respect to 100 vol% of the positive electrode active material.
  • NMP N-methylpyrrolidone
  • was prepared as a solvent and the prepared binder was dissolved in this solvent to prepare a solution.
  • the positive electrode mixture slurry was prepared by mixing the prepared positive electrode active material, the electrically conductive agent, and the solution.
  • an aluminum foil having a thickness of 15 ⁇ m was prepared as a positive electrode core material, a positive electrode mixture slurry was applied to both surfaces of the aluminum foil, and then dried. Thereafter, the positive electrode core material coated with the positive electrode mixture slurry on both sides and dried was rolled to produce a plate-shaped positive electrode plate having a thickness of 0.12 mm.
  • the positive electrode plate 3 having a thickness of 0.12 mm, a width of 30.5 mm, and a length of 19.0 mm was produced by cutting the positive electrode plate into a width of 30.5 mm and a length of 19.0 mm.
  • scaly graphite having an average particle size of 20 ⁇ m was prepared.
  • a binder 4.7 vol% SBR was prepared with respect to 100 vol% of the negative electrode active material.
  • a conductive agent 4.5 vol% acetylene black was prepared with respect to 100 vol% of the negative electrode active material.
  • pure water was prepared as a solvent, and the prepared binder was dissolved in this solvent to prepare a solution.
  • the negative mix slurry was prepared by mixing the prepared negative electrode active material, the electrically conductive agent, and a solution.
  • a copper foil having a thickness of 8 ⁇ m was prepared as a negative electrode core material, a negative electrode mixture slurry was applied to both surfaces of the copper foil, and then dried. Thereafter, the negative electrode core material coated with the negative electrode mixture slurry on both sides and dried was rolled to produce a plate-shaped negative electrode plate having a thickness of 0.15 mm. Then, the negative electrode plate 2 having a thickness of 0.15 mm, a width of 29.5 mm, and a length of 37.0 mm was produced by cutting the negative electrode plate into a width of 29.5 mm and a length of 37.0 mm.
  • non-aqueous electrolyte As a non-aqueous solvent, a mixed solvent in which ethylene carbonate and dimethyl carbonate were mixed so that the volume ratio was 1: 3 was prepared. LiPF 6 was prepared as an electrolyte salt. Then, 5 wt% vinylene carbonate is added to the prepared nonaqueous solvent as an additive for increasing the charge / discharge efficiency of the battery, and the electrolyte salt is such that the molar concentration with respect to the nonaqueous solvent is 1.4 mol / m 3. LiPF 6 was dissolved, thereby preparing a nonaqueous electrolyte.
  • the positive electrode lead 7 made of aluminum was attached to the positive electrode core material of the prepared positive electrode plate 3, and the negative electrode lead 6 made of nickel was attached to the negative electrode core material of the prepared negative electrode plate 2. Thereafter, the negative electrode plate 2 and the positive electrode plate 3 were wound in a state where a polyethylene separator 4 (thickness: 16 ⁇ m) was interposed between them, thereby producing an electrode group 5. Further, a battery case 1 having a thickness of 0.1 mm and an outer diameter of 3.5 mm using SUS316L (austenitic stainless steel having no copper content and a carbon content of 0.03% by mass or less). was made.
  • Example 1 The intermediate member 10 was disposed on the upper end of the electrode group 5.
  • the negative electrode lead 6 was welded to the battery case 1 and the positive electrode lead 7 was welded to the sealing member 8.
  • the electrode group 5 was housed in the battery case 1.
  • a nonaqueous electrolyte was injected into the battery case 1 by a decompression method.
  • a gasket 9 made of a sealing member 8 and PFA was inserted into the opening of the battery case 1 so that the gasket 9 was interposed between the battery case 1 and the sealing member 8.
  • the cylindrical battery of diameter 3.5mm and height 35mm was produced by crimping the opening edge part of the battery case 1 to the sealing member 8.
  • FIG. This cylindrical battery was referred to as Example 1.
  • Example 2 As the stainless steel constituting the battery case 1, an austenitic stainless steel having a copper content of 3.80% by mass was used. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Example 2.
  • Example 3 SUS316L was used as a material constituting the battery case 1, and the thickness of the battery case 1 (outer diameter 3.5 mm) was 0.15 mm. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Example 3.
  • Example 4 SUS316L was used as the material constituting the battery case 1, and the thickness of the battery case 1 (outer diameter 3.5 mm) was 0.20 mm. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Example 4.
  • the cylindrical batteries of Examples 1 to 4 and the cylindrical batteries of Comparative Examples 1 to 3 were each manufactured in five pieces, and for these cylindrical batteries, the average value of the energy density, the rate of occurrence of liquid leakage, and the internal short circuit The incidence was determined. These results are shown in Table 3.
  • the internal short-circuit occurrence rate is a short-circuit occurrence rate when a tip of a round bar having a diameter of 1.0 mm is pressed against the side surface of the cylindrical battery and a stress of 1.5 kgf is applied in this state.
  • the long-term reliability test was further performed on the cylindrical batteries of Examples 1 to 4 and the cylindrical batteries of Comparative Examples 1 to 3. Specifically, these cylindrical batteries were stored in an atmosphere of 85 ° C.-90% RH for 20 days, and then the expansion rate of the battery case 1 and the maintenance rate of the battery capacity were determined. In addition, the rate of increase in the outer diameter of the battery case 1 was determined as the expansion rate of the battery case 1. The battery capacity retention rate was determined based on the initial battery capacity. These results are shown in Table 4.
  • Example 1 and Comparative Example 2 in Tables 3 and 4 the following differences were observed even though the thickness of the battery case 1 was the same 0.10 mm. That is, in Comparative Example 2 in which the material of the battery case 1 is iron, an internal short circuit is likely to occur and the battery case 1 is easily expanded, whereas in Example 1 in which the material of the battery case 1 is SUS316L, An internal short circuit did not occur and the battery case 1 did not expand. This is because the strength of SUS316L is higher than the strength of iron (Fe), and thus the strength of the battery case 1 made of SUS316L is increased.
  • the expansion of the battery case 1 in Comparative Example 2 is considered to be due to the generation of hydrogen gas due to the influence of moisture that has entered the battery case.
  • Example 1 By comparing Example 1 and Example 2 in Tables 3 and 4, even if the stainless steel constituting the battery case 1 contains copper, the copper adversely affects battery characteristics and long-term reliability. It was found that it does not affect. Note that the copper contained in the stainless steel reduces the contact resistance on the surface of the stainless steel.
  • Example 5 SUS316L was used as a material constituting the battery case 1, and the outer diameter of the battery case 1 (thickness 0.1 mm) was 6 mm. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Example 5.
  • Example 6 SUS316L was used as a material constituting the battery case 1, and the outer diameter of the battery case 1 (thickness 0.1 mm) was 10 mm. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Example 6.
  • Comparative Example 8 Iron (Fe) was used as a material constituting the battery case 1, and the outer diameter of the battery case 1 (thickness 0.1 mm) was 15 mm. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Comparative Example 8.
  • the cylindrical batteries of Examples 1, 5, and 6 and the cylindrical batteries of Comparative Examples 2 and 4 to 9 were each manufactured in five pieces.
  • the occurrence rate of liquid leakage and the occurrence of internal short circuit The rate and the maintenance rate of the battery capacity were determined. These results are shown in Table 5.
  • the internal short-circuit occurrence rate is a short-circuit occurrence rate when a tip of a round bar having a diameter of 1.0 mm is pressed against the side surface of the cylindrical battery and a stress of 1.5 kgf is applied in this state.
  • the maintenance rate of the battery capacity was obtained after storing the cylindrical battery in an atmosphere of 85 ° C.-90% RH for 20 days.
  • the battery capacity retention rate was determined based on the initial battery capacity.
  • Example 7 As a material constituting the battery case 1, SUS316 (austenitic stainless steel having a carbon content of 0.08% by mass or less) was used. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Example 7.
  • Comparative Example 10 As a material constituting the battery case 1, SUS430 (ferritic stainless steel having a carbon content of 0.12% by mass or less) was used. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was designated as Comparative Example 10.
  • Example 5 Each of the cylindrical batteries of Examples 1 and 7 and the cylindrical battery of Comparative Example 10 were produced, and the liquid leakage occurrence rate and the battery capacity maintenance rate were determined for these cylindrical batteries. These results are shown in Table 6. The battery capacity retention rate was determined after storing the cylindrical battery in an atmosphere of 85 ° C.-90% RH for 20 days. The battery capacity retention rate was determined based on the initial battery capacity.
  • Stainless steel with a low carbon content has a high elongation and a high tensile strength at break as shown in Table 1. Therefore, stainless steel with a low carbon content has high workability. That is, when forming the battery case 1, it is easy to stretch and thin the stainless steel, and the processing accuracy is high. Therefore, the battery case 1 having a small thickness can be formed easily and with high accuracy, and as a result, it is possible to stably manufacture a cylindrical battery having high sealing performance.
  • the stainless steel constituting the battery case is preferably a stainless steel having a carbon content of 0.08% by mass or less, particularly a stainless steel having a carbon content of 0.03% by mass or less. preferable.
  • the sealing performance and the capacity retention rate are improved, and as a result, both improvement in battery characteristics and improvement in long-term reliability and safety are achieved.
  • Example 8 a cylindrical battery was manufactured under the condition that the negative electrode lead 6 was simply brought into contact with the battery case 1 without welding. Other manufacturing conditions are the same as those in Example 2. The cylindrical battery produced in this way was referred to as Example 8.
  • Example 9 a cylindrical battery was manufactured under the condition that the negative electrode lead 6 was simply brought into contact with the battery case 1 without welding. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Example 9.
  • a protective layer that enhances acid corrosion resistance is usually formed on the surface of the stainless steel.
  • this protective layer increases the contact resistance.
  • the resistance of the protective layer is reduced, and as a result, the contact resistance is reduced.
  • the negative electrode lead 6 can be omitted by mixing copper in the stainless steel constituting the battery case 1. Further, in the cylindrical battery in which the negative electrode lead 6 is welded to the battery case 1 (Example 2), for example, even when the welding is broken during use, the negative electrode lead 6 may be in contact with the battery case 1. In this case, a low internal resistance state is maintained.
  • the cylindrical battery according to the present invention can be used as a power source in various electronic devices such as portable digital devices.

Abstract

Provided is a compact cylindrical battery which achieves both the improvement of battery characteristics and the improvement of long-term reliability and safety. A cylindrical battery is provided with: a closed-end cylindrical battery case (1); an electrode group (5) housed, together with an electrolyte, in the battery case (1); a sealing member (8) fitted in an opening of the battery case (1); and a gasket (9) interposed between the sealing member (8) and the battery case (1), and the opening of the battery case (1) is sealed by drawing an open end of the battery case (1). The battery case (1) is produced from stainless steel. Further, the outer diameter of the battery case (1) is 10 mm or less, and the thickness of the battery case (1) is 0.05-0.2 mm inclusive.

Description

円筒型電池Cylindrical battery
 本発明は、リチウムイオン二次電池等、電池ケースを備えた円筒型電池に関する。 The present invention relates to a cylindrical battery equipped with a battery case, such as a lithium ion secondary battery.
 近年、ポータブルデジタル機器等の電子機器において、その電子機器を駆動させる電源として、リチウムイオン二次電池が広く使用されている。特に、スマートフォン等、多機能で強負荷を必要とする携帯機器においては、その電源として用いられる電池に対して、エネルギ密度や負荷特性等の電池特性の向上、並びに軽量化が求められている。更には、長期信頼性及び安全性の向上が求められている。 In recent years, lithium ion secondary batteries have been widely used as power sources for driving electronic devices such as portable digital devices. In particular, in a portable device such as a smartphone that requires a heavy load with multiple functions, an improvement in battery characteristics such as energy density and load characteristics and a reduction in weight are required for a battery used as a power source. Furthermore, improvement in long-term reliability and safety is required.
 リチウムイオン二次電池は、通常、金属製の電池ケースを備えており、電池ケースの厚さを小さくして内容積を大きくすると共に、電池ケースに発電要素を高密度で充填することにより、エネルギ密度を向上させることが出来る。電池ケースの厚さを小さくすることは、内容積を大きくするという点で、小型の電池に対して特に有効である。他の例として、電池ケースに代えて、金属-樹脂ラミネートシートを用いたリチウムイオン電池が存在する。この場合、この薄いシートにより、正負極、セパレータ、電解液等の電池構成要素を内包することで、エネルギ密度の向上と共に軽量化が実現される。 A lithium ion secondary battery usually includes a metal battery case. The thickness of the battery case is reduced to increase the internal volume, and the battery case is filled with power generation elements at a high density. The density can be improved. Reducing the thickness of the battery case is particularly effective for a small battery in that the internal volume is increased. As another example, there is a lithium ion battery using a metal-resin laminate sheet instead of the battery case. In this case, this thin sheet encloses battery components such as positive and negative electrodes, a separator, and an electrolytic solution, thereby realizing improvement in energy density and weight reduction.
特開2009-181754号公報JP 2009-181754 A 特開2008-223087号公報JP 2008-223087 A 特開2007-227339号公報JP 2007-227339 A
 しかし、リチウムイオン二次電池等の電池において、電池特性の向上と、長期信頼性及び安全性の向上とを両立させることは困難であった。例えば、リチウムイオン二次電池においては、一般的に、電池ケースの材料として鉄やアルミニウム等が用いられる。このため、エネルギ密度の向上のために電池ケースを構成する金属板の厚さを小さくすると、電池ケースの強度が低下する。電池ケースの強度の低下は、封止性の低下や、充放電サイクルの繰返しによって生じる電極板の膨張やガスが原因となって起こる内圧上昇に対する許容度の低下を招く。その結果、電池ケースの変形や電池特性の劣化が生じ易くなり、長期信頼性を実現することが困難になる。 However, in batteries such as lithium ion secondary batteries, it has been difficult to achieve both improved battery characteristics and improved long-term reliability and safety. For example, in a lithium ion secondary battery, iron, aluminum, or the like is generally used as a battery case material. For this reason, if the thickness of the metal plate which comprises a battery case is made small for the improvement of an energy density, the intensity | strength of a battery case will fall. A decrease in the strength of the battery case results in a decrease in sealing performance and a decrease in tolerance for an increase in internal pressure caused by gas plate expansion and gas caused by repeated charge / discharge cycles. As a result, deformation of the battery case and deterioration of battery characteristics are likely to occur, and it becomes difficult to achieve long-term reliability.
 又、電池ケースに代えて金属-樹脂ラミネートシートを用いた場合、エネルギ密度は向上するものの、電池ケースの強度の低下によって生じる問題が顕在化することになる。例えば、通常の充放電サイクルを繰り返すだけで、電解液の分解によってガスが発生し、これにより内圧が上昇して電池が著しく膨張する。又、リード部付近での封止性が脆弱であるため、電池外部から内部へ水分が侵入し易い。このため、その水分に起因してガスが発生し、これにより内圧が上昇して電池が膨張する。これらの膨張は、ラミネートシートによる封止を破壊する虞がある。 In addition, when a metal-resin laminate sheet is used instead of the battery case, although the energy density is improved, a problem caused by a decrease in the strength of the battery case becomes obvious. For example, simply by repeating a normal charge / discharge cycle, gas is generated by the decomposition of the electrolyte, which increases the internal pressure and significantly expands the battery. Further, since the sealing performance in the vicinity of the lead portion is fragile, moisture easily enters from the outside to the inside of the battery. For this reason, gas is generated due to the moisture, thereby increasing the internal pressure and expanding the battery. These expansions may destroy the sealing by the laminate sheet.
 この様に、電池特性の向上と長期信頼性及び安全性の向上との両立には、電池ケースを用いると共に、電池ケースにおいて、その厚さを小さくしつつ高い強度と高い封止性とを実現することが、非常に重要である。 In this way, to improve battery characteristics and improve long-term reliability and safety, a battery case is used, and the battery case achieves high strength and high sealing performance while reducing its thickness. It is very important to do.
 そこで、電池ケースの開口部にかしめ封口を施したときに高い封止性が得られる様に、電池ケースのうち開口部の厚さのみを大きくすることにより、電池ケースの開口部の強度を高める技術が提案されている(例えば、特許文献1参照)。しかし、この様な電池ケースは、形状が複雑であるが故に成型加工や品質管理が難しく、大量生産にはあまり適していない。 Therefore, the strength of the opening of the battery case is increased by increasing only the thickness of the opening of the battery case so that high sealing performance can be obtained when the opening of the battery case is caulked. A technique has been proposed (see, for example, Patent Document 1). However, such a battery case is not suitable for mass production because it has a complicated shape and is difficult to mold and control quality.
 又、異種金属の添加と熱処理とにより強度が高められたアルミニウム合金材を、電池ケースの材料に用いる技術が提案されている(例えば、特許文献2参照)。しかし、単に電池ケースの強度を高めただけでは、電池ケースの加工性が低下し、高い封止性を実現することが困難になる。 In addition, a technique has been proposed in which an aluminum alloy material whose strength is increased by the addition of a different metal and a heat treatment is used as a battery case material (see, for example, Patent Document 2). However, simply increasing the strength of the battery case reduces the workability of the battery case and makes it difficult to achieve high sealing performance.
 そこで本発明の目的は、電池特性の向上と長期信頼性及び安全性の向上との両立が実現された小型の円筒型電池を提供することである。 Therefore, an object of the present invention is to provide a small cylindrical battery in which both improvement in battery characteristics and improvement in long-term reliability and safety are realized.
 本発明者らは、鋭意努力することにより、小型の円筒型電池において電池特性の向上と長期信頼性及び安全性の向上とが両立される条件を見出した。 The inventors of the present invention have made intensive efforts to find a condition in which improvement in battery characteristics and improvement in long-term reliability and safety can be achieved in a small cylindrical battery.
 本発明に係る円筒型電池は、有底円筒状の電池ケースと、電池ケースに電解質と共に収納された電極群と、電池ケースの開口部に嵌め込まれた封口部材と、封口部材と電池ケースとの間に介在したガスケットとを備え、電池ケースの開口端部に絞り加工を施すことにより電池ケースの開口部が封止されている。そして、電池ケースは、ステンレス鋼から構成されている。又、電池ケースの外径は10mm以下であり、電池ケースの厚さは0.05mm以上0.2mm以下である。 A cylindrical battery according to the present invention includes a bottomed cylindrical battery case, an electrode group housed in the battery case together with an electrolyte, a sealing member fitted in an opening of the battery case, a sealing member, and the battery case. An opening portion of the battery case is sealed by drawing the opening end portion of the battery case. The battery case is made of stainless steel. Further, the outer diameter of the battery case is 10 mm or less, and the thickness of the battery case is 0.05 mm or more and 0.2 mm or less.
 本発明に係る円筒型電池によれば、電池特性の向上と長期信頼性及び安全性の向上との両立が実現される。 The cylindrical battery according to the present invention achieves both improved battery characteristics and improved long-term reliability and safety.
 本発明の新規な特徴を添付の特許請求の範囲に記述するが、本発明は、構成及び内容の両方に関し、本発明の他の目的及び特徴と併せ、図面を照合した以下の詳細な説明により更によく理解されるであろう。 The novel features of the invention are set forth in the appended claims, and the invention will be described both in terms of structure and content, together with other objects and features of the invention, and by the following detailed description in conjunction with the drawings. It will be better understood.
本発明の実施形態に係る円筒型電池を概念的に示した縦断面図である。1 is a longitudinal sectional view conceptually showing a cylindrical battery according to an embodiment of the present invention.
 先ず、本発明に係る円筒型電池について説明する。
 本発明に係る円筒型電池は、有底円筒状の電池ケースと、電池ケースに電解質と共に収納された電極群と、電池ケースの開口部に嵌め込まれた封口部材と、封口部材と電池ケースとの間に介在したガスケットとを備え、電池ケースの開口端部に絞り加工を施すことにより電池ケースの開口部が封止されている。そして、電池ケースは、ステンレス鋼から構成されている。又、電池ケースの外径は10mm以下であり、電池ケースの厚さは0.05mm以上0.2mm以下である。
First, the cylindrical battery according to the present invention will be described.
A cylindrical battery according to the present invention includes a bottomed cylindrical battery case, an electrode group housed in the battery case together with an electrolyte, a sealing member fitted in an opening of the battery case, a sealing member, and the battery case. An opening portion of the battery case is sealed by drawing the opening end portion of the battery case. The battery case is made of stainless steel. The outer diameter of the battery case is 10 mm or less, and the thickness of the battery case is 0.05 mm or more and 0.2 mm or less.
 表1に示される様に、ステンレス鋼は、鉄(Fe)やアルミニウム(Al)に比べて、著しく高い引張り破壊強度を有している。尚、表1には、ステンレス鋼の一例としてSUS316L(オーステナイト系ステンレス鋼)が挙げられている。従って、本発明の様に電池ケースの材料にステンレス鋼を用いることにより、電池ケースの厚さを全体的に均一な状態のまま小さくした場合でも、電池ケースにおいて高い強度が維持される。又、ステンレス鋼は、強度が高いにも拘らず、その加工性に優れている。従って、電池ケースにおいて、高い封止性が実現されることになる。 As shown in Table 1, stainless steel has a significantly higher tensile fracture strength than iron (Fe) and aluminum (Al). In Table 1, SUS316L (austenitic stainless steel) is listed as an example of stainless steel. Therefore, by using stainless steel as the material of the battery case as in the present invention, high strength is maintained in the battery case even when the thickness of the battery case is reduced as a whole in a uniform state. Stainless steel is excellent in workability despite its high strength. Therefore, high sealing performance is realized in the battery case.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 そして、本発明者らは、電池ケースの外径が10mm以下である小型の円筒型電池において、特に電池ケースの厚さが0.05mm以上0.2mm以下である場合に、高い封止性が実現されることを見出した。又、本発明者らは、これらの条件が、電池ケースの外径が6mm以下である小型の円筒型電池に特に好ましいことを見出した。この様に、小型の円筒型電池において、電池ケースの開口端部に絞り加工を施すことにより電池ケースの開口部を封止する場合、封止性を高めるための条件として電池ケースの厚さは非常に重要である。 The inventors of the present invention have a high sealing performance in a small cylindrical battery whose outer diameter is 10 mm or less, particularly when the thickness of the battery case is 0.05 mm or more and 0.2 mm or less. I found out that it would be realized. In addition, the present inventors have found that these conditions are particularly preferable for a small cylindrical battery whose outer diameter is 6 mm or less. Thus, in a small cylindrical battery, when sealing the opening of the battery case by drawing the opening end of the battery case, the thickness of the battery case is a condition for enhancing the sealing property. Very important.
 電池ケースの開口端部に絞り加工が施されると、電池ケースのうち絞られた部分において、電池ケースが収縮することになる(即ち、電池ケースの直径が小さくなる)。絞り加工前の電池ケースの直径が15mm以上である場合、絞り加工による電池ケース1の収縮変化率は小さく、封止性等に殆ど影響しない。しかし、絞り加工前の電池ケース1の直径が10mm以下である場合、絞り加工による電池ケース1の収縮変化率は大きくなり、電池ケースの開口端部において、真円度の低下やシワ等の異常な変形が生じ易くなる。この様な問題は、絞り加工前の電池ケースの直径が6mm以下である場合に顕著であり、封止性を低下させる。この様に、絞り加工による電池ケース1の収縮変化率が大きい小型の円筒型電池において、本発明者らは、電池ケース1がステンレス鋼から構成され、且つ電池ケース1の厚さが0.05mm以上0.2mm以下である場合に、高い封止性が実現されることを見出した。 When the drawing process is performed on the opening end of the battery case, the battery case contracts in the squeezed portion of the battery case (that is, the diameter of the battery case is reduced). When the diameter of the battery case before the drawing process is 15 mm or more, the shrinkage change rate of the battery case 1 by the drawing process is small and hardly affects the sealing performance. However, when the diameter of the battery case 1 before the drawing process is 10 mm or less, the shrinkage change rate of the battery case 1 due to the drawing process becomes large, and the roundness is reduced or the wrinkles are abnormal at the opening end of the battery case. Deformation easily occurs. Such a problem is conspicuous when the diameter of the battery case before drawing is 6 mm or less, which lowers the sealing performance. In this way, in a small cylindrical battery having a large shrinkage change rate of the battery case 1 due to drawing, the inventors have made the battery case 1 made of stainless steel and the thickness of the battery case 1 is 0.05 mm. It has been found that high sealing performance is realized when the thickness is 0.2 mm or less.
 円筒型電池がリチウムイオン電池である場合、電池ケースは、広い電位窓と高い酸腐食耐性とを有した材料から構成されることが好ましい。この点、SUS316L等のステンレス鋼は、還元側の電位に対して非常に強く、酸化側については、アルミニウム程ではないが、鉄や銅よりも広い電位窓を有する。尚、アルミニウムは、リチウムイオンの存在下で還元電位が印加されると表面にリチウムが析出し、リチウムとの合金を生成する。その様な合金化反応は体積の膨張を伴うため、電池ケースがアルミニウムから構成されている場合、電池ケースが脆化してその強度が低下し、従って電池の長期信頼性を実現することが困難である。 When the cylindrical battery is a lithium ion battery, the battery case is preferably made of a material having a wide potential window and high acid corrosion resistance. In this respect, stainless steel such as SUS316L is very strong with respect to the potential on the reduction side, and has a wider potential window on the oxidation side than iron or copper, though not as much as aluminum. In addition, when a reduction potential is applied to aluminum in the presence of lithium ions, lithium is deposited on the surface to form an alloy with lithium. Since such an alloying reaction involves volume expansion, when the battery case is made of aluminum, the battery case becomes brittle and its strength decreases, and therefore it is difficult to achieve long-term reliability of the battery. is there.
 又、ステンレス鋼は、鉄、銅、アルミニウムより高い酸腐食耐性を有している。これは、ステンレス鋼が、その表面に保護層を有しているためである。リチウムイオン電池では、一般的に、支持電解質に六フッ化リン酸リチウム(LiPF)が用いられる。この様な支持電解質は、高いイオン伝導性を有する電解液を構成すると共に、優れた負荷特性を実現することが出来る。その一方で、六フッ化リン酸リチウムは、水分が存在すると加水分解して、強酸であるフッ酸(HF)を生成する。このため、リチウムイオン電池では、封止性を高めることによって外部からの水分の侵入を抑制することに加えて、電池ケースの酸腐食耐性を高めることが、長期信頼性を実現する上で重要である。なぜなら、電池ケースの腐食は、水分の侵入を招き、腐食の進行を加速させるからである。 Stainless steel has higher acid corrosion resistance than iron, copper and aluminum. This is because stainless steel has a protective layer on its surface. In lithium ion batteries, lithium hexafluorophosphate (LiPF 6 ) is generally used as a supporting electrolyte. Such a supporting electrolyte constitutes an electrolytic solution having high ionic conductivity and can realize excellent load characteristics. On the other hand, lithium hexafluorophosphate hydrolyzes in the presence of moisture to generate hydrofluoric acid (HF), which is a strong acid. Therefore, in lithium-ion batteries, in addition to suppressing the entry of moisture from the outside by enhancing the sealing performance, it is important to improve the acid corrosion resistance of the battery case in order to achieve long-term reliability. is there. This is because the corrosion of the battery case causes intrusion of moisture and accelerates the progress of the corrosion.
 この様に、本発明に係る円筒型電池によれば、電池特性の向上と長期信頼性及び安全性の向上との両立が実現される。又、電池ケースの厚さを均一にすることが出来るので、電池ケースの成型加工や品質管理が容易である。 Thus, according to the cylindrical battery according to the present invention, it is possible to achieve both the improvement of battery characteristics and the improvement of long-term reliability and safety. In addition, since the thickness of the battery case can be made uniform, the battery case can be easily molded and quality controlled.
 上記円筒型電池の好ましい具体的構成において、電池ケースを構成するステンレス鋼は、カーボン含有量が小さいオーステナイト系ステンレス鋼である。又、電池ケースを構成するステンレス鋼は、カーボンの含有量が0.08質量%以下のステンレス鋼であることが好ましい。更に、ステンレス鋼中のカーボンの含有量は、0.05質量%以下であることがより好ましく、0.03質量%以下であることが特に好ましい。 In a preferable specific configuration of the cylindrical battery, the stainless steel constituting the battery case is an austenitic stainless steel having a low carbon content. The stainless steel constituting the battery case is preferably stainless steel having a carbon content of 0.08% by mass or less. Furthermore, the carbon content in the stainless steel is more preferably 0.05% by mass or less, and particularly preferably 0.03% by mass or less.
 この様にカーボン含有量の小さいステンレス鋼は、表1に示す様に、伸び率が大きく、且つ引張り破断強度が高い。従って、カーボン含有量の小さいステンレス鋼は、高い加工性を有している。即ち、電池ケース1を形成する際に、ステンレス鋼を引き伸ばして薄く加工することが容易であり、又、加工精度も高い。例えば、細長い円筒型電池において、高さと直径との比が大きい電池ケースを、例えば深絞り加工により、容易に且つ高い精度で形成することが出来る。よって、厚さが0.05mm以上0.2mm以下である電池ケース1を、容易且つ高い精度で形成することが出来、その結果、高い封止性を有した円筒型電池を安定して製造することが可能となる。 As shown in Table 1, the stainless steel with such a low carbon content has a high elongation and a high tensile strength at break. Therefore, stainless steel with a low carbon content has high workability. That is, when forming the battery case 1, it is easy to stretch and thin the stainless steel, and the processing accuracy is high. For example, in an elongated cylindrical battery, a battery case having a large ratio of height to diameter can be easily formed with high accuracy by, for example, deep drawing. Therefore, the battery case 1 having a thickness of 0.05 mm or more and 0.2 mm or less can be formed easily and with high accuracy, and as a result, a cylindrical battery having high sealing performance is stably manufactured. It becomes possible.
 上記円筒型電池の好ましい他の具体的構成において、電池ケース1を構成するステンレス鋼は、銅の含有量が1.0質量%以上6.0質量%以下であるステンレス鋼である。より好ましくは、銅の含有量は、1.5質量%以上5.0質量%以下である。この様に、銅を含有したステンレス鋼は、引張り破壊強度、伸び率、及び酸腐食耐性が何れも高く、且つ、表2に示される様にステンレス鋼表面における接触抵抗が小さい。尚、ステンレス鋼の表面には、通常、酸腐食耐性を高める保護層が形成されており、ステンレス鋼に銅が含まれていない場合には、この保護層が接触抵抗を大きくする原因となる。一方、ステンレス鋼に銅が含まれることにより、保護層の抵抗が小さくなり、その結果として接触抵抗が小さくなる。 In another preferable specific configuration of the cylindrical battery, the stainless steel constituting the battery case 1 is stainless steel having a copper content of 1.0% by mass or more and 6.0% by mass or less. More preferably, copper content is 1.5 mass% or more and 5.0 mass% or less. Thus, the stainless steel containing copper has high tensile fracture strength, elongation rate, and acid corrosion resistance, and has low contact resistance on the stainless steel surface as shown in Table 2. In addition, the protective layer which raises acid corrosion resistance is normally formed in the surface of stainless steel, and when stainless steel does not contain copper, this protective layer becomes a cause which enlarges contact resistance. On the other hand, when stainless steel contains copper, the resistance of the protective layer is reduced, and as a result, the contact resistance is reduced.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 銅を含有したステンレス鋼によれば、新たな表面層や端子を形成せずに、機器との電気的な接触を容易に得ることが出来る。又、電池内部において電極との接触面積を大きくすることにより、電池ケースと電極とを溶接等で接合しなくても電池の内部抵抗が低減され、その結果、良好な負荷特性が得られる。 According to stainless steel containing copper, it is possible to easily obtain electrical contact with equipment without forming a new surface layer or terminal. Further, by increasing the contact area with the electrode inside the battery, the internal resistance of the battery is reduced without joining the battery case and the electrode by welding or the like, and as a result, good load characteristics can be obtained.
 上述した様に、ステンレス鋼は高い強度を有している。そのため、ステンレス鋼を所望の形状に加工する際、大きな力が必要となる。そこで、電池ケースは、厚さの小さいステンレス鋼板を深絞りして有底円筒状に形成したものであることが好ましい。深絞りによれば、厚さが小さく且つ均一であり、更に形状や厚さにバラツキが小さい電池ケースを得ることが出来る。又、深絞りによれば、材料の損失が小さい。よって、円筒型電池において、電池特性の向上と長期信頼性及び安全性の向上とを両立させることが出来る。 As described above, stainless steel has high strength. Therefore, a large force is required when processing stainless steel into a desired shape. Accordingly, the battery case is preferably formed by deep drawing a stainless steel plate having a small thickness to form a bottomed cylinder. According to deep drawing, it is possible to obtain a battery case having a small and uniform thickness and a small variation in shape and thickness. Also, deep drawing reduces material loss. Therefore, in the cylindrical battery, it is possible to achieve both improvement in battery characteristics and improvement in long-term reliability and safety.
 尚、ステンレス鋼を有底円筒状に加工するための方法として、インパクトプレス工法やDI(Drawing & Ironing)工法等の工法が存在する。しかし、これらの工法では、加工成型の際に大きな力を均等に印加し続ける必要があり、その制御が難しいため、電池ケースの形状や厚さにバラツキが生じ易い。特に電池ケースの厚さを小さくした場合、穴があいたり、破断したりする。又、ステンレス鋼を有底円筒状に加工するための方法として、円柱状の材料を切削する方法が存在する。しかし、この方法では、電池ケースの形状にバラツキが生じ難くなるものの、材料の損失が大きく効率的でない。 As methods for processing stainless steel into a bottomed cylindrical shape, there are methods such as an impact press method and a DI (Drawing & Ironing) method. However, in these methods, it is necessary to apply a large force evenly during the processing and molding, and it is difficult to control the shape. Therefore, the shape and thickness of the battery case are likely to vary. In particular, when the thickness of the battery case is reduced, holes are formed or fractured. In addition, as a method for processing stainless steel into a bottomed cylindrical shape, there is a method of cutting a columnar material. However, with this method, although it is difficult for variations in the shape of the battery case to occur, material loss is large and it is not efficient.
 次に、本発明の実施形態について、図面に沿って具体的に説明する。尚、本発明の各部構成は実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。
 図1は、本発明の実施形態に係る円筒型電池を概念的に示した縦断面図である。図1に示す様に、円筒型電池は、有底円筒状の電池ケース1と、電池ケース1に非水電解質と共に収納された電極群5と、電池ケース1の開口部に嵌め込まれた封口部材8と、封口部材8と電池ケース1との間に介在したガスケット9とを備えている。
Next, embodiments of the present invention will be specifically described with reference to the drawings. In addition, each part structure of this invention is not restricted to embodiment, A various deformation | transformation is possible within the technical scope as described in a claim.
FIG. 1 is a longitudinal sectional view conceptually showing a cylindrical battery according to an embodiment of the present invention. As shown in FIG. 1, a cylindrical battery includes a bottomed cylindrical battery case 1, an electrode group 5 housed in the battery case 1 together with a nonaqueous electrolyte, and a sealing member fitted in the opening of the battery case 1. 8 and a gasket 9 interposed between the sealing member 8 and the battery case 1.
 ≪電池ケース≫
 電池ケース1は、均一な厚さを持ったステンレス鋼材に深絞り加工を施すことにより形成されている。電池ケース1の外径は、10mm以下であり、6mm以下であることが特に好ましい。電池ケース1の厚さは、0.05mm以上0.2mm以下である。尚、電池ケース1の側壁の厚さ(側厚)と底部の厚さ(底厚)との比は、0.20以上1.20以下であり、好ましくは0.33以上1.05以下である。
≪Battery case≫
The battery case 1 is formed by deep drawing a stainless steel material having a uniform thickness. The outer diameter of the battery case 1 is 10 mm or less, and particularly preferably 6 mm or less. The thickness of the battery case 1 is 0.05 mm or more and 0.2 mm or less. The ratio of the side wall thickness (side thickness) to the bottom thickness (bottom thickness) of the battery case 1 is 0.20 or more and 1.20 or less, preferably 0.33 or more and 1.05 or less. is there.
 電池ケース1を構成するステンレス鋼は、カーボン含有量が小さいオーステナイト系ステンレス鋼であることが好ましい。又、電池ケース1を構成するステンレス鋼は、カーボンの含有量が0.08質量%以下のステンレス鋼であることが好ましい。更に、ステンレス鋼中のカーボンの含有量は、0.05質量%以下であることがより好ましく、0.03質量%以下であることが特に好ましい。 The stainless steel constituting the battery case 1 is preferably an austenitic stainless steel having a low carbon content. The stainless steel constituting the battery case 1 is preferably stainless steel having a carbon content of 0.08% by mass or less. Furthermore, the carbon content in the stainless steel is more preferably 0.05% by mass or less, and particularly preferably 0.03% by mass or less.
 電池ケース1を構成するステンレス鋼には、銅が含有されていていることが好ましい。この様な電池ケース1において、銅の含有量は、1.0質量%以上6.0質量%以下であることが好ましく、1.5質量%以上5.0質量%以下であることが特に好ましい。 The stainless steel constituting the battery case 1 preferably contains copper. In such a battery case 1, the content of copper is preferably 1.0% by mass or more and 6.0% by mass or less, and particularly preferably 1.5% by mass or more and 5.0% by mass or less. .
 ≪封口部材及びガスケット≫
 封口部材8及びガスケット9は、電池ケース1の開口部を密閉する部材である。具体的には、封口部材8及びガスケット9は、封口部材8と電池ケース1との間にガスケット9が介在する様に、電池ケース1の開口部に挿入されている。そして、電池ケース1の開口端部に絞り加工が施され、その開口端部が封口部材8にかしめられている。従って、ガスケット9は、圧縮された状態で封口部材8の側面及び電池ケース1の内面に密着している。この様にして、電池ケース1の開口部は封止されている。又、封口部材8のうち、電池ケース1の外部に露出した突起部には、電気絶縁材からなる有孔の円板11が嵌め込まれている。この円板11は、封口部材8と電池ケース1との間が電気的に短絡することを防止している。
≪Sealing member and gasket≫
The sealing member 8 and the gasket 9 are members that seal the opening of the battery case 1. Specifically, the sealing member 8 and the gasket 9 are inserted into the opening of the battery case 1 such that the gasket 9 is interposed between the sealing member 8 and the battery case 1. The opening end of the battery case 1 is drawn, and the opening end is caulked to the sealing member 8. Therefore, the gasket 9 is in close contact with the side surface of the sealing member 8 and the inner surface of the battery case 1 in a compressed state. In this way, the opening of the battery case 1 is sealed. Further, a perforated disk 11 made of an electrical insulating material is fitted into a protruding portion of the sealing member 8 exposed to the outside of the battery case 1. The disk 11 prevents an electrical short circuit between the sealing member 8 and the battery case 1.
 ガスケット9には、その材料として、ポリプロピレン(PP)、ポリエチレン(PE)、ポリフェニレンサルファイド(PPS)、パーフルオロアルキルエチレン-六フッ化プロピレン共重合体(PFA)、架橋形ゴム等が用いられる。特にPFAは、透湿度が低く、リチウムイオン電池の劣化を進行させ得る電池内部への水分の侵入を抑制することが出来る点で好ましい。 The gasket 9 is made of polypropylene (PP), polyethylene (PE), polyphenylene sulfide (PPS), perfluoroalkylethylene-hexafluoropropylene copolymer (PFA), cross-linked rubber, or the like. In particular, PFA is preferable because it has low moisture permeability and can suppress the ingress of moisture into the battery, which can cause deterioration of the lithium ion battery.
 ≪電極群≫
 電極群5は、負極板2と、正極板3と、セパレータ4とを有している。電極群5において、負極板2及び正極板3は、これらの間にセパレータ4を介在させた状態で、互いに重ねられると共に捲回されている。電極群5に巻ずれが生じない様に、負極板2及び正極板3の少なくとも何れか一方の巻き終わりの部分が、固定テープにより電極群5の外周面に固定されている。そして、電極群5は、非水電解質(図示せず)と共に、電池ケース1に収納されている。この様な電極群5によれば、反応面積が大きくなり、強負荷特性の実現が可能となる。
≪Electrode group≫
The electrode group 5 includes a negative electrode plate 2, a positive electrode plate 3, and a separator 4. In the electrode group 5, the negative electrode plate 2 and the positive electrode plate 3 are overlapped with each other and wound with the separator 4 interposed therebetween. The winding end portion of at least one of the negative electrode plate 2 and the positive electrode plate 3 is fixed to the outer peripheral surface of the electrode group 5 with a fixing tape so that the electrode group 5 is not displaced. The electrode group 5 is housed in the battery case 1 together with a non-aqueous electrolyte (not shown). According to such an electrode group 5, the reaction area becomes large, and it is possible to realize a heavy load characteristic.
 負極板2及び正極板3は各々、後述する様に、集電体である芯材と、芯材の表面に形成された合剤層(活物質を含む)とから構成されている。そして、電池容量を増大させるべく、合剤層は、圧縮した状態で芯材の表面に形成されている。このため、電極群5において、負極板2及び正極板3の巻き始めの半径が小さ過ぎると、合剤層が芯材から剥離し、それが原因となって電池ケース1内にて電気的な短絡(内部短絡)が生じる虞がある。その一方で、巻き始めの半径が大き過ぎると、電池ケース1内に収納される活物質の量が減少し、電池容量が小さくなる。よって、適度な半径で、負極板2及び正極板3を巻き始める必要がある。例えば、巻芯を用いて負極板2及び正極板3を捲回する場合、巻芯の直径Rは、0.6mm以上3.0mm以下であることが好ましく、0.8mm以上1.5mm未満であることが特に好ましい。電極群5の中心軸付近には、活物質が存在しない空間が存在しており、その空間は、直径が3.0mm以下であることが好ましく、直径が1.5mm未満であることが特に好ましい。 As will be described later, each of the negative electrode plate 2 and the positive electrode plate 3 is composed of a core material that is a current collector and a mixture layer (including an active material) formed on the surface of the core material. And in order to increase battery capacity, the mixture layer is formed in the surface of the core material in the compressed state. For this reason, in the electrode group 5, if the radius at the beginning of winding of the negative electrode plate 2 and the positive electrode plate 3 is too small, the mixture layer peels off from the core material, and this causes electrical damage in the battery case 1. There is a risk of a short circuit (internal short circuit). On the other hand, when the winding start radius is too large, the amount of the active material stored in the battery case 1 is reduced, and the battery capacity is reduced. Therefore, it is necessary to start winding the negative electrode plate 2 and the positive electrode plate 3 with an appropriate radius. For example, when winding the negative electrode plate 2 and the positive electrode plate 3 using a winding core, the diameter R of the winding core is preferably 0.6 mm or more and 3.0 mm or less, and 0.8 mm or more and less than 1.5 mm. It is particularly preferred. In the vicinity of the central axis of the electrode group 5, there is a space where no active material is present. The space preferably has a diameter of 3.0 mm or less, and particularly preferably has a diameter of less than 1.5 mm. .
 負極板2(具体的には、後述する負極芯材)には、負極リード6が電気的に接続されており、負極リード6の端部が、電池ケース1の側壁内面にスポット溶接等により接合されている。尚、電池ケース1を構成するステンレス鋼が銅を含有している場合、負極リード6を電池ケース1の側壁内面に単に接触させてもよい。この様に、負極板2は、電池ケース1に電気的に接続され、電池ケース1は、負極端子として機能している。負極リード6には、その材料として、例えば、ニッケル、鉄、ステンレス鋼、銅等が用いられる。負極リード6は、小さな圧力で湾曲する特性を有したものであり、その形状として、特に限定されるものではないが、負極芯材との溶接しろ及び電池ケース1との溶接しろを持った短冊形状や、その短冊形状に内接する楕円又は多角形等が挙げられる。又、負極リード6の厚さは、10μm以上120μm以下であることが好ましく、20μm以上80μm以下であることが特に好ましい。 A negative electrode lead 6 is electrically connected to the negative electrode plate 2 (specifically, a negative electrode core material to be described later), and the end of the negative electrode lead 6 is joined to the inner surface of the side wall of the battery case 1 by spot welding or the like. Has been. When the stainless steel constituting the battery case 1 contains copper, the negative electrode lead 6 may be simply brought into contact with the inner surface of the side wall of the battery case 1. Thus, the negative electrode plate 2 is electrically connected to the battery case 1, and the battery case 1 functions as a negative electrode terminal. For example, nickel, iron, stainless steel, copper, or the like is used for the negative electrode lead 6. The negative electrode lead 6 has a characteristic of being bent by a small pressure, and the shape thereof is not particularly limited, but a strip having a margin for welding with the negative electrode core and a margin for welding with the battery case 1. Examples thereof include an ellipse or a polygon inscribed in the shape and the strip shape. Further, the thickness of the negative electrode lead 6 is preferably 10 μm or more and 120 μm or less, and particularly preferably 20 μm or more and 80 μm or less.
 正極板3(具体的には、後述する正極芯材)には、正極リード7が電気的に接続されており、正極リード7の端部が、封口部材8にスポット溶接等により接合されている。この様に、正極板3は、封口部材8に電気的に接続され、封口部材8は、正極端子として機能している。正極リード7には、その材料として、例えば、アルミニウムが用いられる。正極リード7は、小さな圧力で湾曲する特性を有したものであり、その形状として、特に限定されるものではないが、短冊形状等が挙げられる。又、正極リード7の厚さは、40μm以上150μm以下であることが好ましく、50μm以上100μm以下であることが特に好ましい。 A positive electrode lead 7 is electrically connected to the positive electrode plate 3 (specifically, a positive electrode core material to be described later), and an end of the positive electrode lead 7 is joined to the sealing member 8 by spot welding or the like. . Thus, the positive electrode plate 3 is electrically connected to the sealing member 8, and the sealing member 8 functions as a positive electrode terminal. As the material of the positive electrode lead 7, for example, aluminum is used. The positive electrode lead 7 has a characteristic of being bent with a small pressure, and the shape thereof is not particularly limited, but examples thereof include a strip shape. The thickness of the positive electrode lead 7 is preferably 40 μm or more and 150 μm or less, and particularly preferably 50 μm or more and 100 μm or less.
 尚、電極群5と封口部材8との間には、電気絶縁材からなるリング状の中間部材10が配置されており、正極リード7は、中間部材10の内側を通って、正極板3と封口部材8とに接続されている。これにより、負極と正極との間が電気的に短絡することが、中間部材10により防止されている。 A ring-shaped intermediate member 10 made of an electrical insulating material is disposed between the electrode group 5 and the sealing member 8, and the positive electrode lead 7 passes through the inner side of the intermediate member 10 and the positive electrode plate 3. It is connected to the sealing member 8. Thereby, the intermediate member 10 prevents an electrical short circuit between the negative electrode and the positive electrode.
 <負極板>
 負極板2は、負極集電体である負極芯材と、負極芯材の表面に形成された負極合剤層とから構成されている。負極板2は、例えば、負極芯材の表面に負極活物質を薄膜状に堆積させることにより形成される。負極芯材は金属箔であり、負極芯材には、例えば、多孔性構造又は無孔性構造を持った長尺の導電性基板が用いられる。負極芯材の材料として、例えば、ステンレス鋼、ニッケル、又は銅等が用いられる。負極芯材の厚さは、特に限定されないが、1μm以上500μm以下であることが好ましく、5μm以上20μm以下であることが特に好ましい。この様な厚さの負極芯材によれば、負極板2の強度を保持しながら負極板2を軽量化することが出来る。
<Negative electrode plate>
The negative electrode plate 2 includes a negative electrode core material that is a negative electrode current collector, and a negative electrode mixture layer formed on the surface of the negative electrode core material. The negative electrode plate 2 is formed, for example, by depositing a negative electrode active material in a thin film on the surface of the negative electrode core material. The negative electrode core material is a metal foil. For the negative electrode core material, for example, a long conductive substrate having a porous structure or a nonporous structure is used. As a material for the negative electrode core material, for example, stainless steel, nickel, copper, or the like is used. The thickness of the negative electrode core material is not particularly limited, but is preferably 1 μm or more and 500 μm or less, and particularly preferably 5 μm or more and 20 μm or less. According to the negative electrode core material having such a thickness, the negative electrode plate 2 can be reduced in weight while maintaining the strength of the negative electrode plate 2.
 負極合剤層は、負極活物質を含んでいる。そこで、負極活物質について、以下に詳細に説明する。尚、負極合剤層には、負極活物質の他に、結着剤等が含まれていることが好ましい。
 (負極活物質)
 負極活物質には、リチウムイオンの吸蔵及び放出が可能な物質が用いられる。この様な負極活物質として、例えば、金属、金属繊維、炭素材料、酸化物、窒化物、珪素化合物、錫化合物又は各種合金材料等が挙げられる。炭素材料の具体例として、例えば、各種天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、各種人造黒鉛又は非晶質炭素等が挙げられる。
The negative electrode mixture layer contains a negative electrode active material. Therefore, the negative electrode active material will be described in detail below. The negative electrode mixture layer preferably contains a binder or the like in addition to the negative electrode active material.
(Negative electrode active material)
As the negative electrode active material, a material capable of occluding and releasing lithium ions is used. Examples of such a negative electrode active material include metals, metal fibers, carbon materials, oxides, nitrides, silicon compounds, tin compounds, and various alloy materials. Specific examples of the carbon material include, for example, various natural graphites, cokes, graphitized carbon, carbon fibers, spherical carbon, various artificial graphites, and amorphous carbon.
 ここで、珪素(Si)又は錫(Sn)等の単体、若しくは珪素化合物又は錫化合物は、容量密度が大きい。このため、負極活物質として、珪素、錫、珪素化合物、又は錫化合物を用いることが好ましい。珪素化合物の具体例として、例えば、SiOx(但し0.05<x<1.95)、又はB、Mg、Ni、Ti、Mo、Co、Ca、Cr、Cu、Fe、Mn、Nb、Ta、V、W、Zn、C、N及びSnからなる元素群から選択された少なくとも1種以上の元素でSiの一部を置換した珪素合金、若しくは珪素固溶体等が挙げられる。又、錫化合物の具体例として、例えば、NiSn、MgSn、SnO(但し0<x<2)、SnO、又はSnSiO等が挙げられる。尚、負極活物質は、上記に列挙された負極活物質のうち1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Here, a simple substance such as silicon (Si) or tin (Sn), or a silicon compound or tin compound has a large capacity density. For this reason, it is preferable to use silicon, tin, a silicon compound, or a tin compound as the negative electrode active material. Specific examples of the silicon compound include, for example, SiOx (where 0.05 <x <1.95), or B, Mg, Ni, Ti, Mo, Co, Ca, Cr, Cu, Fe, Mn, Nb, Ta, Examples thereof include a silicon alloy in which a part of Si is substituted with at least one element selected from the group consisting of V, W, Zn, C, N, and Sn, or a silicon solid solution. Specific examples of the tin compound include Ni 2 Sn 4 , Mg 2 Sn, SnO x (where 0 <x <2), SnO 2 , SnSiO 3 and the like. In addition, a negative electrode active material may be used individually by 1 type among the negative electrode active materials enumerated above, and may be used in combination of 2 or more type.
 <正極板>
 正極板3は、正極集電体である正極芯材と、正極芯材の表面に形成された正極合剤層とから構成されている。正極芯材は金属箔であり、正極芯材には、例えば、多孔性構造又は無孔性構造を持った長尺の導電性基板が用いられる。正極芯材の材料として、例えば、アルミニウム等が用いられる。正極芯材の厚さは、特に限定されないが、8μm以上25μm以下であることが好ましく、10μm以上15μm以下であることが特に好ましい。この様な厚さの正極芯材によれば、滑らかに湾曲した直径の小さな電極群5を構成することが出来る。
<Positive electrode plate>
The positive electrode plate 3 includes a positive electrode core material that is a positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode core material. The positive electrode core material is a metal foil. For the positive electrode core material, for example, a long conductive substrate having a porous structure or a nonporous structure is used. As the material for the positive electrode core material, for example, aluminum or the like is used. The thickness of the positive electrode core material is not particularly limited, but is preferably 8 μm or more and 25 μm or less, and particularly preferably 10 μm or more and 15 μm or less. According to the positive electrode core material having such a thickness, it is possible to configure the electrode group 5 that is smoothly curved and has a small diameter.
 正極合剤層は、正極活物質、結着剤、及び導電剤を含んでいる。そこで、正極活物質、結着剤、及び導電剤について、以下に詳細に説明する。
 (正極活物質)
 正極活物質として、リチウム含有複合酸化物が好ましく、例えばLiCoO、LiNiO、LiMnO、LiCoNi1-x、LiCo1-x、LiNi1-x、LiNi1/3Co1/3Mn1/3、LiMn、LiMnMO、LiMePO、LiMePOF(但し、Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb及びBのうちの少なくとも1つである。xは0<x<1である。Meは、Fe、Mn、Co、Niから選択される少なくとも1種を含む金属元素である)、更には、これら含リチウム化合物の一部の元素が異種元素で置換されたものが挙げられる。又、正極活物質として、金属酸化物、リチウム酸化物、又は導電剤等で表面処理された正極活物質を用いても良い。表面処理として、例えば、疎水化処理が挙げられる。
The positive electrode mixture layer includes a positive electrode active material, a binder, and a conductive agent. Therefore, the positive electrode active material, the binder, and the conductive agent will be described in detail below.
(Positive electrode active material)
As the positive electrode active material, a lithium-containing composite oxide is preferable. For example, LiCoO 2 , LiNiO 2 , LiMnO 2 , LiCo x Ni 1-x O 2 , LiCo x M 1-x O 2 , LiNi x M 1-x O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMn 2 O 4 , LiMnMO 4 , LiMePO 4 , Li 2 MePO 4 F (where M is Na, Mg, Sc, Y, Mn, Fe, Co , Ni, Cu, Zn, Al, Cr, Pb, Sb and B. x is 0 <x <1, Me is at least selected from Fe, Mn, Co, Ni In addition, one of these lithium-containing compounds may be substituted with a different element. Further, as the positive electrode active material, a positive electrode active material surface-treated with a metal oxide, a lithium oxide, a conductive agent, or the like may be used. Examples of the surface treatment include a hydrophobic treatment.
 正極活物質の平均粒子径は、5μm以上20μm以下であることが好ましい。正極活物質の平均粒子径が5μm未満であると、活物質粒子の表面積が極めて大きくなる。このため、正極板3のハンドリングが可能となる接着強度を得るための結着剤量が極端に多くなる。このため極板あたりの活物質量が減少することになり容量が低下してしまう。一方、20μmを超えると、正極芯材に正極合剤スラリを塗工する際に、塗工スジが発生し易い。 The average particle diameter of the positive electrode active material is preferably 5 μm or more and 20 μm or less. When the average particle diameter of the positive electrode active material is less than 5 μm, the surface area of the active material particles becomes extremely large. For this reason, the amount of the binder for obtaining the adhesive strength that enables handling of the positive electrode plate 3 is extremely increased. For this reason, the amount of active material per electrode plate is reduced, and the capacity is reduced. On the other hand, when the thickness exceeds 20 μm, coating stripes are likely to occur when the positive electrode mixture slurry is applied to the positive electrode core material.
 (結着剤)
 結着剤として、例えば、PVDF、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム又はカルボキシメチルセルロース等が挙げられる。又は、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸及びヘキサジエンから選択された2種以上の材料を共重合させた共重合体、又は選択された2種以上の材料を混合した混合物が挙げられる。
(Binder)
As binders, for example, PVDF, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, polyacrylic Acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoropolypropylene, styrene butadiene rubber or carboxy Examples include methyl cellulose. Or two kinds selected from tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid and hexadiene Examples thereof include a copolymer obtained by copolymerizing the above materials, or a mixture obtained by mixing two or more selected materials.
 上記に列挙した結着剤の中でも、特に、PVDF及びその誘導体は、非水電解質二次電池内において化学的に安定であり、正極合剤層と正極芯材とを充分に結着させると共に、正極合剤層を構成する正極活物質と、結着剤と、導電剤とを充分に結着させるため、良好な充放電サイクル特性及び放電性能が得られる。そのため、本実施形態の結着剤として、PVDF又はその誘導体を用いることが好ましい。加えて、PVDF及びその誘導体は、安価であるためコスト面でも好ましい。尚、結着剤としてPVDFを用いた正極を作製するには、正極の作製の際に、例えばPVDFをNメチルピロリドンに溶解させて用いる場合、又は粉末状のPVDFを正極合剤スラリ中に溶解させて用いる場合が挙げられる。 Among the binders listed above, in particular, PVDF and derivatives thereof are chemically stable in the non-aqueous electrolyte secondary battery, and sufficiently bind the positive electrode mixture layer and the positive electrode core material, Since the positive electrode active material constituting the positive electrode mixture layer, the binder, and the conductive agent are sufficiently bound, good charge / discharge cycle characteristics and discharge performance can be obtained. Therefore, it is preferable to use PVDF or a derivative thereof as the binder of this embodiment. In addition, PVDF and its derivatives are preferable in terms of cost because they are inexpensive. In order to prepare a positive electrode using PVDF as a binder, for example, when PVDF is dissolved in N-methylpyrrolidone and used, or powdered PVDF is dissolved in a positive electrode mixture slurry. The case where it is made to use is mentioned.
 (導電剤)
 導電剤として、例えば、天然黒鉛又は人造黒鉛等のグラファイト類、アセチレンブラック(AB:acetylene black)、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック又はサーマルブラック等のカーボンブラック類、炭素繊維又は金属繊維等の導電性繊維類、フッ化カーボン、アルミニウム等の金属粉末類、酸化亜鉛又はチタン酸カリウム等の導電性ウィスカー類、酸化チタン等の導電性金属酸化物、若しくはフェニレン誘導体等の有機導電性材料等が挙げられる。
(Conductive agent)
Examples of the conductive agent include graphites such as natural graphite or artificial graphite, carbon blacks such as acetylene black (AB), ketjen black, channel black, furnace black, lamp black or thermal black, carbon fiber or metal. Conductive fibers such as fibers, metal powders such as carbon fluoride and aluminum, conductive whiskers such as zinc oxide or potassium titanate, conductive metal oxides such as titanium oxide, or organic conductivity such as phenylene derivatives Materials and the like.
 <セパレータ>
 セパレータ4には、大きなイオン透過度を持ち、所定の機械的強度と電気絶縁性とを兼ね備えた微多孔薄膜、織布又は不織布等が用いられる。特に、セパレータ4には、その材料として、例えばポリプロピレン、ポリエチレン等のポリオレフィンを用いることが好ましい。ポリオレフィンは、耐久性に優れ且つシャットダウン機能を有するため、リチウムイオン二次電池の安全性を向上させることが出来る。
<Separator>
For the separator 4, a microporous thin film, a woven fabric, a non-woven fabric, or the like having high ion permeability and having a predetermined mechanical strength and electrical insulation is used. In particular, it is preferable to use a polyolefin such as polypropylene or polyethylene as the material for the separator 4. Since polyolefin has excellent durability and a shutdown function, the safety of the lithium ion secondary battery can be improved.
 セパレータ4の厚さは、一般的には10μm以上300μm以下であり、10μm以上40μm以下であることが好ましい。又、セパレータ4の厚さは、15μm以上30μm以下であることがより好ましく、10μm以上25μm以下であることが特に好ましい。又、セパレータ4として微多孔薄膜を用いる場合には、微多孔薄膜は、1種の材料からなる単層膜であってもよく、1種又は2種以上の材料からなる複合膜又は多層膜であってもよい。又、セパレータ4の空孔率は、30%以上70%以下であることが好ましく、35%以上60%以下であることが特に好ましい。ここで空孔率とは、セパレータ4の全体積に対する孔全体の容積の比率を示す。 The thickness of the separator 4 is generally 10 μm or more and 300 μm or less, and preferably 10 μm or more and 40 μm or less. Further, the thickness of the separator 4 is more preferably 15 μm or more and 30 μm or less, and particularly preferably 10 μm or more and 25 μm or less. When a microporous thin film is used as the separator 4, the microporous thin film may be a single layer film made of one kind of material, or a composite film or multilayer film made of one kind or two or more kinds of materials. There may be. Further, the porosity of the separator 4 is preferably 30% or more and 70% or less, and particularly preferably 35% or more and 60% or less. Here, the porosity indicates the ratio of the volume of the entire hole to the total volume of the separator 4.
 <非水電解質>
 電池ケース1に収納される非水電解質として、液状、ゲル状、又は固体状の非水電解質を用いることが出来る。液状の非水電解質は、電解質塩(例えば、リチウム塩)と、この電解質塩を溶解させる非水溶媒とを含んでいる。ゲル状の非水電解質は、非水電解質と、この非水電解質を保持する高分子材料とを含んでいる。この高分子材料として、例えば、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリエチレンオキサイド、ポリ塩化ビニル、ポリアクリレート、又はポリビニリデンフルオライドヘキサフルオロプロピレン等が挙げられる。固体状の非水電解質は、高分子固体電解質を含んでいる。
<Nonaqueous electrolyte>
As the non-aqueous electrolyte stored in the battery case 1, a liquid, gel-like, or solid non-aqueous electrolyte can be used. The liquid non-aqueous electrolyte contains an electrolyte salt (for example, lithium salt) and a non-aqueous solvent in which the electrolyte salt is dissolved. The gel-like non-aqueous electrolyte includes a non-aqueous electrolyte and a polymer material that holds the non-aqueous electrolyte. Examples of the polymer material include polyvinylidene fluoride, polyacrylonitrile, polyethylene oxide, polyvinyl chloride, polyacrylate, and polyvinylidene fluoride hexafluoropropylene. The solid non-aqueous electrolyte includes a polymer solid electrolyte.
 液状の非水電解質に含まれる非水溶媒及び電解質塩について、以下に詳細に説明する。 The nonaqueous solvent and electrolyte salt contained in the liquid nonaqueous electrolyte will be described in detail below.
 (非水溶媒)
 電解質塩を溶解させる非水溶媒として、公知の非水溶媒を使用することが出来る。この非水溶媒の種類は特に限定されないが、例えば、環状炭酸エステル、鎖状炭酸エステル、又は環状カルボン酸エステル等が用いられる。ここで環状炭酸エステルの具体的として、例えば、プロピレンカーボネート(PC;propylene carbonate)又はエチレンカーボネート(EC;ethylene carbonate)等が挙げられる。又、鎖状炭酸エステルの具体的として、例えば、ジエチルカーボネート(DEC;diethyl carbonate)、エチルメチルカーボネート(EMC;ethylmethyl carbonate)、又はジメチルカーボネート(DMC;dimethyl carbonate)等が挙げられる。又、環状カルボン酸エステルの具体例として、例えば、γ-ブチロラクトン(GBL;gamma-butyrolactone)又はγ-バレロラクトン(GVL;gamma-valerolactone)等が挙げられる。非水溶媒は、上記に列挙された非水溶媒のうち1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Non-aqueous solvent)
As the non-aqueous solvent for dissolving the electrolyte salt, a known non-aqueous solvent can be used. Although the kind of this non-aqueous solvent is not specifically limited, For example, cyclic carbonate ester, chain | strand-shaped carbonate ester, or cyclic carboxylic acid ester etc. are used. Here, specific examples of the cyclic carbonate include propylene carbonate (PC) and ethylene carbonate (EC). Specific examples of the chain carbonate include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), and the like. Specific examples of the cyclic carboxylic acid ester include γ-butyrolactone (GBL) and γ-valerolactone (GVL). As the non-aqueous solvent, one of the non-aqueous solvents listed above may be used alone, or two or more thereof may be used in combination.
 (電解質塩)
 非水溶媒に溶解させる電解質塩として、例えば、LiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCFSO、LiCFCO、LiAsF、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、クロロボランリチウム、ホウ酸塩類、又はイミド塩類等が用いられる。ここでホウ酸塩類の具体例として、例えば、ビス(1,2-ベンゼンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,3-ナフタレンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,2’-ビフェニルジオレート(2-)-O,O’)ホウ酸リチウム、又はビス(5-フルオロ-2-オレート-1-ベンゼンスルホン酸-O,O’)ホウ酸リチウム等が挙げられる。又、イミド塩類の具体例として、例えば、ビストリフルオロメタンスルホン酸イミドリチウム((CFSONLi)、トリフルオロメタンスルホン酸ノナフルオロブタンスルホン酸イミドリチウム(LiN(CFSO)(CSO))、又はビスペンタフルオロエタンスルホン酸イミドリチウム((CSONLi)等が挙げられる。電解質塩は、上記に列挙された電解質塩のうち1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(Electrolyte salt)
Examples of the electrolyte salt dissolved in the non-aqueous solvent include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , and lower aliphatic. Lithium carboxylate, LiCl, LiBr, LiI, chloroborane lithium, borates, imide salts and the like are used. Here, specific examples of borates include, for example, bis (1,2-benzenediolate (2-)-O, O ′) lithium borate, bis (2,3-naphthalenedioleate (2-)-O , O ′) lithium borate, bis (2,2′-biphenyldiolate (2-)-O, O ′) lithium borate, or bis (5-fluoro-2-olate-1-benzenesulfonic acid-O , O ′) lithium borate and the like. As specific examples of imide salts, for example, lithium bistrifluoromethanesulfonate imide ((CF 3 SO 2 ) 2 NLi), lithium trifluoromethanesulfonate nonafluorobutanesulfonate (LiN (CF 3 SO 2 ) (C 4 F 9 SO 2)), or the like bispentafluoroethanesulfonyl imide lithium ((C 2 F 5 SO 2 ) 2 NLi) and the like. As the electrolyte salt, one of the electrolyte salts listed above may be used alone, or two or more thereof may be used in combination.
 非水溶媒に対する電解質塩の溶解量は、0.5mol/m以上2mol/m以下であることが好ましい。 The amount of the electrolyte salt dissolved in the non-aqueous solvent is preferably 0.5 mol / m 3 or more and 2 mol / m 3 or less.
 液状の非水電解質は、電解質塩及び非水溶媒以外に、例えば負極上で分解してリチウムイオン伝導性の高い被膜を形成し、電池の充放電効率を高める添加剤を含んでいてもよい。このような機能を持つ添加剤として、例えば、ビニレンカーボネート(VC;vinylene carbonate)、4-メチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、4-エチルビニレンカーボネート、4,5-ジエチルビニレンカーボネート、4-プロピルビニレンカーボネート、4,5-ジプロピルビニレンカーボネート、4-フェニルビニレンカーボネート、4,5-ジフェニルビニレンカーボネート、ビニルエチレンカーボネート(VEC;vinyl ethylene carbonate)、又はジビニルエチレンカーボネート等が挙げられる。添加剤は、上記に列挙された添加剤のうち1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。特に、上記に列挙された添加剤のうち、ビニレンカーボネート、ビニルエチレンカーボネート及びジビニルエチレンカーボネートよりなる群から選択された少なくとも1種が好ましい。尚、添加剤は、上記に列挙された添加剤の水素原子の一部がフッ素原子で置換されたものであってもよい。 In addition to the electrolyte salt and the nonaqueous solvent, the liquid nonaqueous electrolyte may contain an additive that decomposes on, for example, the negative electrode to form a film having high lithium ion conductivity and increases the charge / discharge efficiency of the battery. Examples of additives having such a function include vinylene carbonate (VC), 4-methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4-ethyl vinylene carbonate, 4,5-diethyl vinylene carbonate, 4 -Propyl vinylene carbonate, 4,5-dipropyl vinylene carbonate, 4-phenyl vinylene carbonate, 4,5-diphenyl vinylene carbonate, vinyl ethylene carbonate (VEC), divinyl ethylene carbonate, and the like. An additive may be used individually by 1 type among the additives enumerated above, and may be used in combination of 2 or more type. In particular, among the additives listed above, at least one selected from the group consisting of vinylene carbonate, vinyl ethylene carbonate, and divinyl ethylene carbonate is preferable. The additive may be one in which some of the hydrogen atoms of the additives listed above are substituted with fluorine atoms.
 更に、液状の非水電解質は、電解質塩及び非水溶媒以外に、例えば過充電時に分解して電極上に被膜を形成し、電池を不活性化させる公知のベンゼン誘導体を含んでいてもよい。このような機能を持つベンゼン誘導体として、フェニル基及び該フェニル基に隣接する環状化合物基を有するものが好ましい。ここで、ベンゼン誘導体の具体例として、例えば、シクロヘキシルベンゼン、ビフェニル、又はジフェニルエーテル等が挙げられる。又、ベンゼン誘導体に含まれる環状化合物基の具体例として、例えば、フェニル基、環状エーテル基、環状エステル基、シクロアルキル基、又はフェノキシ基等が挙げられる。ベンゼン誘導体は、上記に列挙されたベンゼン誘導体のうち1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。但し、ベンゼン誘導体の非水溶媒に対する含有量は、非水溶媒全体の10vol%以下であることが好ましい。 Furthermore, the liquid non-aqueous electrolyte may contain, in addition to the electrolyte salt and the non-aqueous solvent, for example, a known benzene derivative that decomposes during overcharge to form a film on the electrode and inactivate the battery. As the benzene derivative having such a function, those having a phenyl group and a cyclic compound group adjacent to the phenyl group are preferable. Here, specific examples of the benzene derivative include, for example, cyclohexylbenzene, biphenyl, diphenyl ether, and the like. Specific examples of the cyclic compound group contained in the benzene derivative include, for example, a phenyl group, a cyclic ether group, a cyclic ester group, a cycloalkyl group, or a phenoxy group. A benzene derivative may be used individually by 1 type among the benzene derivatives enumerated above, and may be used in combination of 2 or more type. However, the content of the benzene derivative with respect to the non-aqueous solvent is preferably 10 vol% or less of the entire non-aqueous solvent.
 以下、本発明の実施例について具体的に説明する。
 <実施例1>
 (正極板の作製)
 正極活物質として、平均粒子径が10μmのLiNi0.82Co0.15Al0.03を準備した。結着剤として、正極活物質100vol%に対して4.7vol%のPVDFを準備した。導電剤として、正極活物質100vol%に対して4.5vol%のアセチレンブラックを準備した。又、溶剤として、N-メチルピロリドン(NMP)を準備し、この溶剤に、準備した結着剤を溶解させることにより、溶液を調製した。そして、準備した正極活物質、導電剤、及び溶液を混合することにより、正極合剤スラリを調製した。
Examples of the present invention will be specifically described below.
<Example 1>
(Preparation of positive electrode plate)
As the positive electrode active material, LiNi 0.82 Co 0.15 Al 0.03 O 2 having an average particle diameter of 10 μm was prepared. As a binder, 4.7 vol% PVDF was prepared with respect to 100 vol% of the positive electrode active material. As a conductive agent, 4.5 vol% acetylene black was prepared with respect to 100 vol% of the positive electrode active material. Further, N-methylpyrrolidone (NMP) was prepared as a solvent, and the prepared binder was dissolved in this solvent to prepare a solution. And the positive electrode mixture slurry was prepared by mixing the prepared positive electrode active material, the electrically conductive agent, and the solution.
 次に、正極芯材として、厚さが15μmであるアルミニウム箔を準備し、このアルミニウム箔の両面に正極合剤スラリを塗布し、その後、乾燥させた。更にその後、両面に正極合剤スラリが塗布・乾燥された正極芯材を圧延し、厚さ0.12mmの板状の正極用板を作製した。そして、この正極用板を幅30.5mm、長さ19.0mmに裁断することにより、厚さ0.12mm、幅30.5mm、長さ19.0mmの正極板3を作製した。 Next, an aluminum foil having a thickness of 15 μm was prepared as a positive electrode core material, a positive electrode mixture slurry was applied to both surfaces of the aluminum foil, and then dried. Thereafter, the positive electrode core material coated with the positive electrode mixture slurry on both sides and dried was rolled to produce a plate-shaped positive electrode plate having a thickness of 0.12 mm. The positive electrode plate 3 having a thickness of 0.12 mm, a width of 30.5 mm, and a length of 19.0 mm was produced by cutting the positive electrode plate into a width of 30.5 mm and a length of 19.0 mm.
 (負極板の作製)
 負極活物質として、平均粒子径が20μmの鱗片状黒鉛を準備した。結着剤として、負極活物質100vol%に対して4.7vol%のSBRを準備した。導電剤として負極活物質100vol%に対して4.5vol%のアセチレンブラックを準備した。又、溶剤として純水を準備し、この溶剤に、準備した結着剤を溶解させることにより、溶液を調製した。そして、準備した負極活物質、導電剤、及び溶液を混合することにより、負極合剤スラリを調製した。
(Preparation of negative electrode plate)
As the negative electrode active material, scaly graphite having an average particle size of 20 μm was prepared. As a binder, 4.7 vol% SBR was prepared with respect to 100 vol% of the negative electrode active material. As a conductive agent, 4.5 vol% acetylene black was prepared with respect to 100 vol% of the negative electrode active material. Also, pure water was prepared as a solvent, and the prepared binder was dissolved in this solvent to prepare a solution. And the negative mix slurry was prepared by mixing the prepared negative electrode active material, the electrically conductive agent, and a solution.
 次に、負極芯材として、厚さが8μmである銅箔を準備し、この銅箔の両面に負極合剤スラリを塗布し、その後、乾燥させた。更にその後、両面に負極合剤スラリが塗布・乾燥された負極芯材を圧延し、厚さ0.15mmの板状の負極用板を作製した。そして、この負極用板を幅29.5mm、長さ37.0mmに裁断することにより、厚さ0.15mm、幅29.5mm、長さ37.0mmの負極板2を作製した。 Next, a copper foil having a thickness of 8 μm was prepared as a negative electrode core material, a negative electrode mixture slurry was applied to both surfaces of the copper foil, and then dried. Thereafter, the negative electrode core material coated with the negative electrode mixture slurry on both sides and dried was rolled to produce a plate-shaped negative electrode plate having a thickness of 0.15 mm. Then, the negative electrode plate 2 having a thickness of 0.15 mm, a width of 29.5 mm, and a length of 37.0 mm was produced by cutting the negative electrode plate into a width of 29.5 mm and a length of 37.0 mm.
 (非水電解質の調製)
 非水溶媒として、体積比が1:3となる様にエチレンカーボネートとジメチルカーボネートとが混合された混合溶媒を準備した。電解質塩として、LiPFを準備した。そして、準備した非水溶媒に、電池の充放電効率を高める添加剤として5wt%のビニレンカーボネートを添加すると共に、非水溶媒に対するモル濃度が1.4mol/mとなる様に電解質塩であるLiPFを溶解させ、これにより非水電解質を調製した。
(Preparation of non-aqueous electrolyte)
As a non-aqueous solvent, a mixed solvent in which ethylene carbonate and dimethyl carbonate were mixed so that the volume ratio was 1: 3 was prepared. LiPF 6 was prepared as an electrolyte salt. Then, 5 wt% vinylene carbonate is added to the prepared nonaqueous solvent as an additive for increasing the charge / discharge efficiency of the battery, and the electrolyte salt is such that the molar concentration with respect to the nonaqueous solvent is 1.4 mol / m 3. LiPF 6 was dissolved, thereby preparing a nonaqueous electrolyte.
 (円筒型電池の作製)
 先ず、準備した正極板3の正極芯材に、アルミニウム製の正極リード7を取り付け、又、準備した負極板2の負極芯材に、ニッケル製の負極リード6を取り付けた。その後、負極板2と正極板3とを、それらの間にポリエチレン製のセパレータ4(厚さ16μm)を介在させた状態で捲回し、これにより電極群5を作製した。更に、SUS316L(銅の含有がなく、カーボン含有量が0.03質量%以下であるオーステナイト系ステンレス鋼)を用い、厚さが0.1mmであり且つ外径が3.5mmである電池ケース1を作製した。
(Production of cylindrical battery)
First, the positive electrode lead 7 made of aluminum was attached to the positive electrode core material of the prepared positive electrode plate 3, and the negative electrode lead 6 made of nickel was attached to the negative electrode core material of the prepared negative electrode plate 2. Thereafter, the negative electrode plate 2 and the positive electrode plate 3 were wound in a state where a polyethylene separator 4 (thickness: 16 μm) was interposed between them, thereby producing an electrode group 5. Further, a battery case 1 having a thickness of 0.1 mm and an outer diameter of 3.5 mm using SUS316L (austenitic stainless steel having no copper content and a carbon content of 0.03% by mass or less). Was made.
 次に、電極群5の上端に中間部材10を配置した。そして、負極リード6を電池ケース1に溶接すると共に、正極リード7を封口部材8に溶接した。そして、電極群5を電池ケース1内に収納した。その後、減圧方式により、電池ケース1内に非水電解質を注入した。更にその後、電池ケース1の開口部に、封口部材8及びPFAからなるガスケット9を、電池ケース1と封口部材8との間にガスケット9が介在する様に挿入した。そして、電池ケース1の開口端部を封口部材8にかしめることにより、直径3.5mm、高さ35mmの円筒型電池を作製した。この円筒型電池を実施例1とした。 Next, the intermediate member 10 was disposed on the upper end of the electrode group 5. The negative electrode lead 6 was welded to the battery case 1 and the positive electrode lead 7 was welded to the sealing member 8. The electrode group 5 was housed in the battery case 1. Thereafter, a nonaqueous electrolyte was injected into the battery case 1 by a decompression method. Thereafter, a gasket 9 made of a sealing member 8 and PFA was inserted into the opening of the battery case 1 so that the gasket 9 was interposed between the battery case 1 and the sealing member 8. And the cylindrical battery of diameter 3.5mm and height 35mm was produced by crimping the opening edge part of the battery case 1 to the sealing member 8. FIG. This cylindrical battery was referred to as Example 1.
 <実施例2>
 電池ケース1を構成するステンレス鋼として、銅の含有量が3.80質量%であるオーステナイト系ステンレス鋼を用いた。その他の作製条件は、実施例1と同じである。この様に作製した円筒型電池を、実施例2とした。
<Example 2>
As the stainless steel constituting the battery case 1, an austenitic stainless steel having a copper content of 3.80% by mass was used. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Example 2.
 <実施例3>
 電池ケース1を構成する材料としてSUS316Lを用い、又、電池ケース1(外径3.5mm)の厚さを0.15mmとした。その他の作製条件は、実施例1と同じである。この様に作製した円筒型電池を、実施例3とした。
<Example 3>
SUS316L was used as a material constituting the battery case 1, and the thickness of the battery case 1 (outer diameter 3.5 mm) was 0.15 mm. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Example 3.
 <実施例4>
 電池ケース1を構成する材料としてSUS316Lを用い、又、電池ケース1(外径3.5mm)の厚さを0.20mmとした。その他の作製条件は、実施例1と同じである。この様に作製した円筒型電池を、実施例4とした。
<Example 4>
SUS316L was used as the material constituting the battery case 1, and the thickness of the battery case 1 (outer diameter 3.5 mm) was 0.20 mm. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Example 4.
 <比較例1>
 電池ケース1を構成する材料としてSUS316Lを用い、又、電池ケース1(外径3.5mm)の厚さを0.25mmとした。その他の作製条件は、実施例1と同じである。この様に作製した円筒型電池を、比較例1とした。
<Comparative Example 1>
SUS316L was used as a material constituting the battery case 1, and the thickness of the battery case 1 (outer diameter 3.5 mm) was 0.25 mm. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Comparative Example 1.
 <比較例2>
 電池ケース1(厚さ0.1mm、外径3.5mm)を構成する材料として鉄(Fe)を用いた。その他の作製条件は、実施例1と同じである。この様に作製した円筒型電池を、比較例2とした。
<Comparative example 2>
Iron (Fe) was used as a material constituting the battery case 1 (thickness 0.1 mm, outer diameter 3.5 mm). Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Comparative Example 2.
 <比較例3>
 電池ケース1を構成する材料として鉄(Fe)を用い、又、電池ケース1(外径3.5mm)の厚さを0.2mmとした。その他の作製条件は、実施例1と同じである。この様に作製した円筒型電池を、比較例3とした。
<Comparative Example 3>
Iron (Fe) was used as a material constituting the battery case 1, and the thickness of the battery case 1 (outer diameter 3.5 mm) was 0.2 mm. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Comparative Example 3.
 実施例1~4の円筒型電池、並びに比較例1~3の円筒型電池を、それぞれ5個ずつ作製し、これらの円筒型電池について、エネルギ密度の平均値、液漏れ発生率、及び内部ショート発生率を求めた。これらの結果が、表3に示されている。尚、内部ショート発生率は、円筒型電池の側面に直径1.0mmの丸棒の先端を押し当て、この状態で1.5kgfの応力を負荷したときのショート発生率である。 The cylindrical batteries of Examples 1 to 4 and the cylindrical batteries of Comparative Examples 1 to 3 were each manufactured in five pieces, and for these cylindrical batteries, the average value of the energy density, the rate of occurrence of liquid leakage, and the internal short circuit The incidence was determined. These results are shown in Table 3. The internal short-circuit occurrence rate is a short-circuit occurrence rate when a tip of a round bar having a diameter of 1.0 mm is pressed against the side surface of the cylindrical battery and a stress of 1.5 kgf is applied in this state.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~4の円筒型電池、並びに比較例1~3の円筒型電池について、更に、長期信頼性試験を行った。具体的には、これらの円筒型電池を85℃-90%RH雰囲気下で20日間保存した後、電池ケース1の膨張率と電池容量の維持率とを求めた。尚、電池ケース1の膨張率として、電池ケース1の外径の増加量の割合を求めた。又、電池容量の維持率は、初期の電池容量を基準として求めた。これらの結果が、表4に示されている。 The long-term reliability test was further performed on the cylindrical batteries of Examples 1 to 4 and the cylindrical batteries of Comparative Examples 1 to 3. Specifically, these cylindrical batteries were stored in an atmosphere of 85 ° C.-90% RH for 20 days, and then the expansion rate of the battery case 1 and the maintenance rate of the battery capacity were determined. In addition, the rate of increase in the outer diameter of the battery case 1 was determined as the expansion rate of the battery case 1. The battery capacity retention rate was determined based on the initial battery capacity. These results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3において実施例1~4と比較例1とを比較することにより、電池ケース1の厚さが大きい比較例1ではエネルギ密度が小さく、電池ケース1の厚さが小さくなる程、エネルギ密度が大きくなることが分かった。これは、電池ケース1の厚さが小さくなるのに伴って、(発電要素が収納される)電池ケース1の内容積が大きくなるからである。 By comparing Examples 1 to 4 and Comparative Example 1 in Table 3, the energy density is small in Comparative Example 1 where the thickness of the battery case 1 is large, and the energy density decreases as the thickness of the battery case 1 decreases. It turns out that it grows. This is because as the thickness of the battery case 1 decreases, the internal volume of the battery case 1 (which stores the power generation element) increases.
 表3及び表4において実施例1と比較例2とを比較することにより、電池ケース1の厚さが同じ0.10mmであるにも拘らず、次の様な違いが見られた。即ち、電池ケース1の材料が鉄である比較例2では、内部短絡が発生し易く、且つ電池ケース1が膨張し易かったのに対し、電池ケース1の材料がSUS316Lである実施例1では、内部短絡が発生せず、且つ電池ケース1が膨張しなかった。これは、SUS316Lの強度が、鉄(Fe)の強度よりも高く、従ってSUS316Lから構成された電池ケース1の強度が高くなったからである。尚、比較例2での電池ケース1の膨張は、電池ケース内に侵入した水分の影響で水素ガスが発生したためであると考えられる。 By comparing Example 1 and Comparative Example 2 in Tables 3 and 4, the following differences were observed even though the thickness of the battery case 1 was the same 0.10 mm. That is, in Comparative Example 2 in which the material of the battery case 1 is iron, an internal short circuit is likely to occur and the battery case 1 is easily expanded, whereas in Example 1 in which the material of the battery case 1 is SUS316L, An internal short circuit did not occur and the battery case 1 did not expand. This is because the strength of SUS316L is higher than the strength of iron (Fe), and thus the strength of the battery case 1 made of SUS316L is increased. The expansion of the battery case 1 in Comparative Example 2 is considered to be due to the generation of hydrogen gas due to the influence of moisture that has entered the battery case.
 表3において実施例1~4と比較例1とを比較することにより、電池ケース1の材料が同じSUS316Lであって外径が同じ3.5mmであるにも拘らず、電池ケース1の厚さが0.25mmである比較例1では液漏れが発生し易いのに対し、その厚さが0.20mm以下である実施例1~4では液漏れが発生しないことが分かった。即ち、実施例1~4において、高い封止性が実現されることが分かった。これは、実施例1~4において、真円度の低下やシワ等の異常な形状が生じず、従って液漏れを生じる経路が形成されないからである。 By comparing Examples 1 to 4 and Comparative Example 1 in Table 3, the thickness of the battery case 1 despite the fact that the material of the battery case 1 is the same SUS316L and the outer diameter is the same 3.5 mm. In Comparative Example 1 in which the thickness is 0.25 mm, liquid leakage is likely to occur, whereas in Examples 1 to 4 in which the thickness is 0.20 mm or less, liquid leakage does not occur. That is, it was found that high sealing performance was achieved in Examples 1 to 4. This is because in Examples 1 to 4, there is no occurrence of an abnormal shape such as a decrease in roundness or wrinkles, and therefore a path that causes liquid leakage is not formed.
 表4において実施例1~4と比較例1とを比較することにより、電池ケース1の材料が同じSUS316Lであるにも拘らず、電池ケース1の厚さが0.25mmである比較例1では容量維持率が著しく低くなるのに対し、その厚さが0.20mm以下である実施例1~4では容量維持率が50%以上と高くなることが分かった。これは、実施例1~4において、真円度の低下やシワ等の異常な形状が生じず、従って電解液の蒸発や外部からの水分の侵入が抑制されるからである。 By comparing Examples 1 to 4 and Comparative Example 1 in Table 4, in Comparative Example 1 where the thickness of the battery case 1 is 0.25 mm even though the material of the battery case 1 is the same SUS316L. It was found that, while the capacity retention rate was remarkably lowered, in Examples 1 to 4 whose thickness was 0.20 mm or less, the capacity retention rate was increased to 50% or more. This is because in Examples 1 to 4, there is no occurrence of an abnormal shape such as a decrease in roundness or wrinkles, and therefore, evaporation of the electrolyte and entry of moisture from the outside are suppressed.
 一方、電池ケース1の材料が鉄(Fe)である比較例2及び3では、容量維持率が著しく低かった。これは、電池ケース1の強度が低いため、水素ガスの発生に伴い電池ケース1が膨張し易く、従って、封止性(表3の液漏れ発生率参照)が低下して電池特性が劣化したからである。又、強酸であるフッ酸の発生により電池ケースが腐食し、その腐食が、水分の侵入を招き、腐食の進行を加速させたために、高い電池容量を維持することが出来なくなったということも考えられる。 On the other hand, in Comparative Examples 2 and 3 in which the material of the battery case 1 was iron (Fe), the capacity retention rate was remarkably low. This is because the strength of the battery case 1 is low, so that the battery case 1 easily expands with the generation of hydrogen gas. Therefore, the sealing property (see the liquid leakage occurrence rate in Table 3) is lowered and the battery characteristics are deteriorated. Because. In addition, it is thought that the battery case corroded due to the generation of hydrofluoric acid, which is a strong acid, and the corrosion caused the invasion of moisture and accelerated the progress of corrosion, so that it was impossible to maintain a high battery capacity. It is done.
 表3及び表4において実施例1と実施例2とを比較することにより、電池ケース1を構成するステンレス鋼に銅が含有されていたとしても、その銅が、電池特性や長期信頼性に悪影響を及ぼさないことが分かった。尚、ステンレス鋼に含まれる銅は、ステンレス鋼の表面での接触抵抗を低下させる。 By comparing Example 1 and Example 2 in Tables 3 and 4, even if the stainless steel constituting the battery case 1 contains copper, the copper adversely affects battery characteristics and long-term reliability. It was found that it does not affect. Note that the copper contained in the stainless steel reduces the contact resistance on the surface of the stainless steel.
 これらの結果から、次のことが分かった。即ち、電池ケース1の強度を高めるためには、電池ケース1の材料としてステンレス鋼を用いることが好ましい。これにより、内部短絡が発生し難くなる。そして、これに加えて電池ケース1の厚さを0.2mm以下にすることにより、エネルギ密度が向上すると供に封止性及び容量維持率が向上し、その結果、電池特性の向上と長期信頼性及び安全性の向上とが両立される。 These results revealed the following. That is, in order to increase the strength of the battery case 1, it is preferable to use stainless steel as the material of the battery case 1. Thereby, an internal short circuit becomes difficult to occur. In addition to this, by making the thickness of the battery case 1 0.2 mm or less, as the energy density is improved, the sealing property and the capacity retention rate are improved. As a result, the battery characteristics are improved and the long-term reliability is improved. Improved in safety and safety.
 <実施例5>
 電池ケース1を構成する材料としてSUS316Lを用い、又、電池ケース1(厚さ0.1mm)の外径を6mmとした。その他の作製条件は、実施例1と同じである。この様に作製した円筒型電池を、実施例5とした。
<Example 5>
SUS316L was used as a material constituting the battery case 1, and the outer diameter of the battery case 1 (thickness 0.1 mm) was 6 mm. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Example 5.
 <実施例6>
 電池ケース1を構成する材料としてSUS316Lを用い、又、電池ケース1(厚さ0.1mm)の外径を10mmとした。その他の作製条件は、実施例1と同じである。この様に作製した円筒型電池を、実施例6とした。
<Example 6>
SUS316L was used as a material constituting the battery case 1, and the outer diameter of the battery case 1 (thickness 0.1 mm) was 10 mm. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Example 6.
 <比較例4>
 電池ケース1を構成する材料としてSUS316Lを用い、又、電池ケース1(厚さ0.1mm)の外径を15mmとした。その他の作製条件は、実施例1と同じである。この様に作製した円筒型電池を、比較例4とした。
<Comparative Example 4>
SUS316L was used as a material constituting the battery case 1, and the outer diameter of the battery case 1 (thickness 0.1 mm) was 15 mm. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Comparative Example 4.
 <比較例5>
 電池ケース1を構成する材料としてSUS316Lを用い、又、電池ケース1の厚さを0.2mm、外径を15mmとした。その他の作製条件は、実施例1と同じである。この様に作製した円筒型電池を、比較例5とした。
<Comparative Example 5>
SUS316L was used as a material constituting the battery case 1, and the thickness of the battery case 1 was 0.2 mm and the outer diameter was 15 mm. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Comparative Example 5.
 <比較例6>
 電池ケース1を構成する材料として鉄(Fe)を用い、又、電池ケース1(厚さ0.1mm)の外径を6mmとした。その他の作製条件は、実施例1と同じである。この様に作製した円筒型電池を、比較例6とした。
<Comparative Example 6>
Iron (Fe) was used as a material constituting the battery case 1, and the outer diameter of the battery case 1 (thickness 0.1 mm) was 6 mm. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Comparative Example 6.
 <比較例7>
 電池ケース1を構成する材料として鉄(Fe)を用い、又、電池ケース1(厚さ0.1mm)の外径を10mmとした。その他の作製条件は、実施例1と同じである。この様に作製した円筒型電池を、比較例7とした。
<Comparative Example 7>
Iron (Fe) was used as a material constituting the battery case 1, and the outer diameter of the battery case 1 (thickness 0.1 mm) was 10 mm. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Comparative Example 7.
 <比較例8>
 電池ケース1を構成する材料として鉄(Fe)を用い、又、電池ケース1(厚さ0.1mm)の外径を15mmとした。その他の作製条件は、実施例1と同じである。この様に作製した円筒型電池を、比較例8とした。
<Comparative Example 8>
Iron (Fe) was used as a material constituting the battery case 1, and the outer diameter of the battery case 1 (thickness 0.1 mm) was 15 mm. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Comparative Example 8.
 <比較例9>
 電池ケース1を構成する材料として鉄(Fe)を用い、又、電池ケース1の厚さを0.2mm、外径を15mmとした。その他の作製条件は、実施例1と同じである。この様に作製した円筒型電池を、比較例9とした。
<Comparative Example 9>
Iron (Fe) was used as a material constituting the battery case 1, and the thickness of the battery case 1 was 0.2 mm and the outer diameter was 15 mm. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Comparative Example 9.
 実施例1、5、及び6の円筒型電池、並びに比較例2、及び4~9の円筒型電池を、それぞれ5個ずつ作製し、これらの円筒型電池について、液漏れ発生率、内部ショート発生率、及び電池容量の維持率を求めた。これらの結果が、表5に示されている。尚、内部ショート発生率は、円筒型電池の側面に直径1.0mmの丸棒の先端を押し当て、この状態で1.5kgfの応力を負荷したときのショート発生率である。電池容量の維持率は、円筒型電池を85℃-90%RH雰囲気下で20日間保存した後に求めた。又、電池容量の維持率は、初期の電池容量を基準として求めた。 The cylindrical batteries of Examples 1, 5, and 6 and the cylindrical batteries of Comparative Examples 2 and 4 to 9 were each manufactured in five pieces. For these cylindrical batteries, the occurrence rate of liquid leakage and the occurrence of internal short circuit The rate and the maintenance rate of the battery capacity were determined. These results are shown in Table 5. The internal short-circuit occurrence rate is a short-circuit occurrence rate when a tip of a round bar having a diameter of 1.0 mm is pressed against the side surface of the cylindrical battery and a stress of 1.5 kgf is applied in this state. The maintenance rate of the battery capacity was obtained after storing the cylindrical battery in an atmosphere of 85 ° C.-90% RH for 20 days. The battery capacity retention rate was determined based on the initial battery capacity.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5において実施例1、5、及び6と比較例4とを比較することにより、電池ケース1の材料が同じSUS316Lであって厚さが同じ0.10mmであるにも拘らず、次の様な違いが見られた。即ち、電池ケース1の外径が15mmである比較例4では、内部短絡が発生し易かったのに対し、その外径が10mm以下である実施例1、5、及び6では、内部短絡が発生しなかった。これは、次の様な理由によるものである。即ち、電池ケース1が強度の高いSUS316Lから構成されている場合であっても、電池ケース1の外径が大きい場合には、電池ケース1の側面の曲率が小さくなり、その結果、外力に対して電池ケース1が変形し易くなる。これに対して、電池ケース1の外径が小さくなると、電池ケース1の側面の曲率が大きくなり、その結果、外力に対して電池ケース1が変形し難くなる。 By comparing Examples 1, 5, and 6 with Comparative Example 4 in Table 5, the material of the battery case 1 is the same SUS316L and the thickness is 0.10 mm. The difference was seen. That is, in Comparative Example 4 in which the outer diameter of the battery case 1 was 15 mm, an internal short circuit was likely to occur, whereas in Examples 1, 5, and 6 in which the outer diameter was 10 mm or less, an internal short circuit occurred. I did not. This is due to the following reason. That is, even when the battery case 1 is made of SUS316L having a high strength, when the outer diameter of the battery case 1 is large, the curvature of the side surface of the battery case 1 is reduced, and as a result, the external force is reduced. Thus, the battery case 1 is easily deformed. On the other hand, when the outer diameter of the battery case 1 is reduced, the curvature of the side surface of the battery case 1 is increased, and as a result, the battery case 1 is hardly deformed by an external force.
 一方、電池ケース1の材料が鉄(Fe)である比較例2、及び6~8では、内部ショート発生率が著しく高かった。これは、電池ケース1の強度が低く、従って外力に対して電池ケース1が変形し易いからである。又、比較例2、及び6~8では、電池ケース1の強度が低いため、液漏れが発生し易かった。更に、比較例2、及び6~8では、容量維持率が著しく低かった。これは、電池ケース1の強度が低いため、水素ガスの発生に伴い電池ケース1が膨張し易く、従って、封止性が低下して電池特性が劣化したからである。又、強酸であるフッ酸の発生により電池ケースが腐食し、その腐食が、水分の侵入を招き、腐食の進行を加速させたために、高い電池容量を維持することが出来なくなったということも考えられる。 On the other hand, in Comparative Examples 2 and 6 to 8 where the material of the battery case 1 was iron (Fe), the occurrence rate of internal short circuit was remarkably high. This is because the strength of the battery case 1 is low, and therefore the battery case 1 is easily deformed by an external force. Further, in Comparative Examples 2 and 6 to 8, since the strength of the battery case 1 was low, liquid leakage was likely to occur. Further, in Comparative Examples 2 and 6 to 8, the capacity retention rate was remarkably low. This is because the battery case 1 is low in strength, so that the battery case 1 easily expands with the generation of hydrogen gas. Therefore, the sealing performance is lowered and the battery characteristics are deteriorated. In addition, it is thought that the battery case corroded due to the generation of hydrofluoric acid, which is a strong acid, and the corrosion caused the invasion of moisture and accelerated the progress of corrosion, so that it was impossible to maintain a high battery capacity. It is done.
 これらの結果から、次のことが分かった。即ち、電池ケース1の強度を高めるためには、電池ケース1の材料としてステンレス鋼を用いることが好ましい。これにより、内部短絡が発生し難くなる。そして、これに加えて電池ケース1の外径を10mm以下にすることにより、封止性及び容量維持率が向上し、その結果、電池特性の向上と長期信頼性及び安全性の向上とが両立される。尚、比較例5及び9の結果から、電池ケース1の外径が大きい場合(10mmより大きい場合)、電池ケース1の材料によらず、電池ケース1の厚さを大きくすることにより、長期信頼性及び安全性が向上する。しかし、電池ケース1の外径が小さい場合(10mm以下の場合)には、電池ケース1の厚さを大きくすると、内容積の低下が顕著となり、又、絞り加工による封止が困難になって封止性が低下する。 These results revealed the following. That is, in order to increase the strength of the battery case 1, it is preferable to use stainless steel as the material of the battery case 1. Thereby, an internal short circuit becomes difficult to occur. In addition to this, by making the outer diameter of the battery case 1 10 mm or less, the sealing property and the capacity maintenance ratio are improved, and as a result, both the improvement of battery characteristics and the improvement of long-term reliability and safety are achieved. Is done. From the results of Comparative Examples 5 and 9, when the outer diameter of the battery case 1 is large (when it is larger than 10 mm), the long-term reliability can be obtained by increasing the thickness of the battery case 1 regardless of the material of the battery case 1. And safety are improved. However, when the outer diameter of the battery case 1 is small (when it is 10 mm or less), if the thickness of the battery case 1 is increased, the decrease in the internal volume becomes significant, and sealing by drawing becomes difficult. Sealability is reduced.
 <実施例7>
 電池ケース1を構成する材料として、SUS316(カーボン含有量が0.08質量%以下であるオーステナイト系ステンレス鋼)を用いた。その他の作製条件は、実施例1と同じである。この様に作製した円筒型電池を、実施例7とした。
<Example 7>
As a material constituting the battery case 1, SUS316 (austenitic stainless steel having a carbon content of 0.08% by mass or less) was used. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Example 7.
 <比較例10>
 電池ケース1を構成する材料として、SUS430(カーボン含有量が0.12質量%以下であるフェライト系ステンレス鋼)を用いた。その他の作製条件は、実施例1と同じである。この様に作製した円筒型電池を、比較例10とした。
<Comparative Example 10>
As a material constituting the battery case 1, SUS430 (ferritic stainless steel having a carbon content of 0.12% by mass or less) was used. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was designated as Comparative Example 10.
 実施例1及び7の円筒型電池、並びに比較例10の円筒型電池をそれぞれ5個ずつ作製し、これらの円筒型電池について、液漏れ発生率、及び電池容量の維持率を求めた。これらの結果が、表6に示されている。尚、電池容量の維持率は、円筒型電池を85℃-90%RH雰囲気下で20日間保存した後に求めた。又、電池容量の維持率は、初期の電池容量を基準として求めた。 Example 5 Each of the cylindrical batteries of Examples 1 and 7 and the cylindrical battery of Comparative Example 10 were produced, and the liquid leakage occurrence rate and the battery capacity maintenance rate were determined for these cylindrical batteries. These results are shown in Table 6. The battery capacity retention rate was determined after storing the cylindrical battery in an atmosphere of 85 ° C.-90% RH for 20 days. The battery capacity retention rate was determined based on the initial battery capacity.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示される結果から、カーボン含有量が0.08質量%以下である実施例1及び7では、液漏れが発生し難く、又、容量維持率が高いことが分かった。そして、より好ましくは、カーボン含有量は0.03質量%以下であることが分かった。 From the results shown in Table 6, it was found that in Examples 1 and 7 having a carbon content of 0.08% by mass or less, liquid leakage hardly occurred and the capacity retention rate was high. And more preferably, the carbon content was found to be 0.03% by mass or less.
 カーボン含有量の小さいステンレス鋼は、表1に示す様に、伸び率が大きく、且つ引張り破断強度が高い。従って、カーボン含有量の小さいステンレス鋼は、高い加工性を有している。即ち、電池ケース1を形成する際に、ステンレス鋼を引き伸ばして薄く加工することが容易であり、又、加工精度も高い。よって、厚さの小さい電池ケース1を、容易且つ高い精度で形成することが出来、その結果、高い封止性を有した円筒型電池を安定して製造することが可能となる。 Stainless steel with a low carbon content has a high elongation and a high tensile strength at break as shown in Table 1. Therefore, stainless steel with a low carbon content has high workability. That is, when forming the battery case 1, it is easy to stretch and thin the stainless steel, and the processing accuracy is high. Therefore, the battery case 1 having a small thickness can be formed easily and with high accuracy, and as a result, it is possible to stably manufacture a cylindrical battery having high sealing performance.
 この結果から、次のことが分かった。即ち、電池ケースを構成するステンレス鋼は、カーボンの含有量が0.08質量%以下のステンレス鋼であることが好ましく、カーボンの含有量が0.03質量%以下のステンレス鋼であることが特に好ましい。これにより、封止性及び容量維持率が向上し、その結果、電池特性の向上と長期信頼性及び安全性の向上とが両立される。 From this result, we found the following. That is, the stainless steel constituting the battery case is preferably a stainless steel having a carbon content of 0.08% by mass or less, particularly a stainless steel having a carbon content of 0.03% by mass or less. preferable. As a result, the sealing performance and the capacity retention rate are improved, and as a result, both improvement in battery characteristics and improvement in long-term reliability and safety are achieved.
 <実施例8>
 実施例2において、負極リード6を電池ケース1に溶接せずに単に接触させるという条件で、円筒型電池を作製した。その他の作製条件は、実施例2と同じである。この様に作製した円筒型電池を、実施例8とした。
<Example 8>
In Example 2, a cylindrical battery was manufactured under the condition that the negative electrode lead 6 was simply brought into contact with the battery case 1 without welding. Other manufacturing conditions are the same as those in Example 2. The cylindrical battery produced in this way was referred to as Example 8.
 <実施例9>
 実施例1において、負極リード6を電池ケース1に溶接せずに単に接触させるという条件で、円筒型電池を作製した。その他の作製条件は、実施例1と同じである。この様に作製した円筒型電池を、実施例9とした。
<Example 9>
In Example 1, a cylindrical battery was manufactured under the condition that the negative electrode lead 6 was simply brought into contact with the battery case 1 without welding. Other manufacturing conditions are the same as those in Example 1. The cylindrical battery produced in this way was referred to as Example 9.
 実施例8及び9の円筒型電池について、内部抵抗を求めた。その結果が、表7に示されている。 For the cylindrical batteries of Examples 8 and 9, the internal resistance was determined. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7に示される結果から、負極リード6を電池ケース1に単に接触させた場合、銅の含有がない実施例9では内部抵抗が著しく大きくなるのに対し、銅が含有された実施例8では内部抵抗が著しく小さくなることが分かった。即ち、オーステナイト系ステンレス鋼に銅を混在させることにより、ステンレス鋼表面での接触抵抗が低下することが分かった。 From the results shown in Table 7, when the negative electrode lead 6 is simply brought into contact with the battery case 1, the internal resistance is remarkably increased in Example 9 in which copper is not contained, whereas in Example 8 in which copper is contained. It was found that the internal resistance was significantly reduced. That is, it was found that the contact resistance on the surface of the stainless steel is reduced by mixing copper in the austenitic stainless steel.
 これは、次の様な理由によるものである。即ち、ステンレス鋼の表面には、通常、酸腐食耐性を高める保護層が形成されており、ステンレス鋼に銅が含まれていない場合には、この保護層が接触抵抗を大きくする原因となる。一方、ステンレス鋼に銅が含まれることにより、保護層の抵抗が小さくなり、その結果として接触抵抗が小さくなる。 This is due to the following reasons. That is, a protective layer that enhances acid corrosion resistance is usually formed on the surface of the stainless steel. When the stainless steel does not contain copper, this protective layer increases the contact resistance. On the other hand, when stainless steel contains copper, the resistance of the protective layer is reduced, and as a result, the contact resistance is reduced.
 よって、電池ケース1を構成するステンレス鋼に銅を混在させることにより、電池ケース1と負極リード6との溶接を省略することが可能となる。又、負極リード6が電池ケース1に溶接された円筒型電池(実施例2)において、例えば使用中にその溶接が破断した場合であっても、負極リード6が電池ケース1に接触していれば、内部抵抗の低い状態が維持されることになる。 Therefore, welding of the battery case 1 and the negative electrode lead 6 can be omitted by mixing copper in the stainless steel constituting the battery case 1. Further, in the cylindrical battery in which the negative electrode lead 6 is welded to the battery case 1 (Example 2), for example, even when the welding is broken during use, the negative electrode lead 6 may be in contact with the battery case 1. In this case, a low internal resistance state is maintained.
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形及び改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の特許請求の範囲は、本発明の真の精神及び範囲から逸脱することなく、すべての変形及び改変を包含する、と解釈されるべきものである。 Although the present invention has been described in terms of the presently preferred embodiments, such disclosure should not be construed as limiting. Various changes and modifications will no doubt become apparent to those skilled in the art to which the present invention pertains after reading the above disclosure. Accordingly, the appended claims are to be construed as encompassing all modifications and alterations without departing from the true spirit and scope of this invention.
 本発明に係る円筒型電池は、ポータブルデジタル機器等、様々な電子機器において、その電源として用いることが出来る。 The cylindrical battery according to the present invention can be used as a power source in various electronic devices such as portable digital devices.
1 電池ケース
2 負極板
3 正極板
4 セパレータ
5 電極群
6 負極リード
7 正極リード
8 封口部材
9 ガスケット
10 中間部材
11 円板
DESCRIPTION OF SYMBOLS 1 Battery case 2 Negative electrode plate 3 Positive electrode plate 4 Separator 5 Electrode group 6 Negative electrode lead 7 Positive electrode lead 8 Sealing member 9 Gasket 10 Intermediate member 11 Disc

Claims (5)

  1.  有底円筒状の電池ケースと、前記電池ケースに電解質と共に収納された電極群と、前記電池ケースの開口部に嵌め込まれた封口部材と、前記封口部材と前記電池ケースとの間に介在したガスケットとを備え、前記電池ケースの開口端部に絞り加工を施すことにより前記電池ケースの開口部が封止された円筒型電池であって、
     前記電池ケースは、ステンレス鋼から構成されており、
     前記電池ケースの外径は10mm以下であり、
     前記電池ケースの厚さは0.05mm以上0.2mm以下である、
    円筒型電池。
    A cylindrical battery case with a bottom, an electrode group housed in the battery case together with an electrolyte, a sealing member fitted in an opening of the battery case, and a gasket interposed between the sealing member and the battery case And a cylindrical battery in which the opening of the battery case is sealed by drawing the opening end of the battery case,
    The battery case is made of stainless steel,
    The outer diameter of the battery case is 10 mm or less,
    The thickness of the battery case is 0.05 mm or more and 0.2 mm or less,
    Cylindrical battery.
  2.  前記電池ケースを構成する前記ステンレス鋼は、オーステナイト系ステンレス鋼である、請求項1に記載の円筒型電池。 The cylindrical battery according to claim 1, wherein the stainless steel constituting the battery case is austenitic stainless steel.
  3.  前記電池ケースを構成する前記ステンレス鋼は、カーボンの含有量が0.08質量%以下のステンレス鋼である、請求項1又は請求項2に記載の円筒型電池。 The cylindrical battery according to claim 1 or 2, wherein the stainless steel constituting the battery case is stainless steel having a carbon content of 0.08 mass% or less.
  4.  前記電池ケースを構成する前記ステンレス鋼は、銅の含有量が1.0質量%以上6.0質量%以下のステンレス鋼である、請求項1乃至請求項3の何れか1つに記載の円筒型電池。 The cylinder according to any one of claims 1 to 3, wherein the stainless steel constituting the battery case is stainless steel having a copper content of 1.0 mass% to 6.0 mass%. Type battery.
  5.  前記電池ケースの外径は6mm以下である、請求項1乃至請求項4の何れか1つに記載の円筒型電池。 The cylindrical battery according to any one of claims 1 to 4, wherein an outer diameter of the battery case is 6 mm or less.
PCT/JP2013/002151 2012-03-30 2013-03-29 Cylindrical battery WO2013145768A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/347,947 US9231234B2 (en) 2012-03-30 2013-03-29 Cylindrical battery
JP2014500583A JP5512057B2 (en) 2012-03-30 2013-03-29 Cylindrical battery
EP13768096.3A EP2752913B1 (en) 2012-03-30 2013-03-29 Cylindrical battery
CN201380002995.9A CN103797607B (en) 2012-03-30 2013-03-29 Cylinder battery
KR1020147007750A KR101476963B1 (en) 2012-03-30 2013-03-29 Cylindrical battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-079165 2012-03-30
JP2012079165 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013145768A1 true WO2013145768A1 (en) 2013-10-03

Family

ID=49259061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002151 WO2013145768A1 (en) 2012-03-30 2013-03-29 Cylindrical battery

Country Status (6)

Country Link
US (1) US9231234B2 (en)
EP (1) EP2752913B1 (en)
JP (1) JP5512057B2 (en)
KR (1) KR101476963B1 (en)
CN (1) CN103797607B (en)
WO (1) WO2013145768A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2930779A4 (en) * 2013-03-01 2016-01-20 Panasonic Ip Man Co Ltd Lithium ion secondary battery
CN108140757A (en) * 2015-10-30 2018-06-08 松下知识产权经营株式会社 Cylindrical battery seal body and use its cylindrical battery
US10615426B2 (en) 2015-07-10 2020-04-07 Panasonic Intellectual Property Management Co., Ltd. Wound battery including notched current collector sheet

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106463654B (en) * 2014-07-24 2019-09-10 松下知识产权经营株式会社 Cylinder battery
WO2017017930A1 (en) 2015-07-24 2017-02-02 パナソニックIpマネジメント株式会社 Wound battery
US10431853B2 (en) * 2017-05-02 2019-10-01 Apple Inc. Rechargeable battery features and components
CN108767157A (en) * 2018-05-31 2018-11-06 浙江智造热成型科技有限公司 A kind of high intensity battery case
KR20200112246A (en) * 2019-03-21 2020-10-05 주식회사 엘지화학 A battery module having a module housing of a thin plate type and a battery pack including the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927304A (en) * 1995-07-11 1997-01-28 Fuji Elelctrochem Co Ltd Manufacture of tubular battery
JP2001234296A (en) * 2000-02-21 2001-08-28 Nisshin Steel Co Ltd Stainless steel sheet for battery case, and its manufacturing method
JP2004311167A (en) * 2003-04-04 2004-11-04 Hitachi Maxell Ltd Lithium ion secondary battery
JP2006179244A (en) * 2004-12-21 2006-07-06 Sanyo Electric Co Ltd Lithium secondary battery
JP2007227339A (en) 2006-01-25 2007-09-06 Nippon Steel Corp RESIN-COATED Ni-PLATED STEEL PLATE
WO2007142270A1 (en) * 2006-06-09 2007-12-13 Panasonic Corporation Battery can and method of producing the same
JP2008223087A (en) 2007-03-13 2008-09-25 Mitsubishi Alum Co Ltd Aluminum alloy sheet for secondary battery case and its manufacturing method
JP2009181754A (en) 2008-01-29 2009-08-13 Fdk Energy Co Ltd Positive electrode can for alkaline battery, and alkaline battery

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729557A (en) * 1993-07-12 1995-01-31 Fuji Photo Film Co Ltd Nonaqueous battery
JPH1167163A (en) 1997-08-25 1999-03-09 Toshiba Battery Co Ltd Battery and battery container
ID21860A (en) * 1997-09-30 1999-08-05 Matsushita Electric Ind Co Ltd PRISM BATTERY MAKING METHOD
US6770304B2 (en) 1997-11-10 2004-08-03 Memorial Sloan-Kettering Cancer Center Process for producing arsenic trioxide formulations and methods for treating cancer using arsenic trioxide or melarsoprol
KR100337539B1 (en) * 1998-12-24 2002-07-18 성재갑 Lithium ion battery using square cans containing cotton containing depressions
JP4853935B2 (en) 2000-09-01 2012-01-11 日立マクセルエナジー株式会社 Alkaline battery
CN2574229Y (en) 2001-04-11 2003-09-17 日立马库塞鲁株式会社 Flat non-aqueous electrolyte cell
US6670071B2 (en) 2002-01-15 2003-12-30 Quallion Llc Electric storage battery construction and method of manufacture
US20060035147A1 (en) 2003-01-15 2006-02-16 Quallion Llc Battery
JP4491208B2 (en) 2003-08-29 2010-06-30 パナソニック株式会社 Battery can, manufacturing method thereof, and battery
US20080248375A1 (en) * 2007-03-26 2008-10-09 Cintra George M Lithium secondary batteries
CN101340009A (en) * 2007-07-05 2009-01-07 黄穗阳 Polymer electrolyte hard packaging lithium ionic cell
CN101789528B (en) * 2010-02-11 2013-03-06 广州市云通磁电有限公司 Cylinder-type nickel-metal hydride battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927304A (en) * 1995-07-11 1997-01-28 Fuji Elelctrochem Co Ltd Manufacture of tubular battery
JP2001234296A (en) * 2000-02-21 2001-08-28 Nisshin Steel Co Ltd Stainless steel sheet for battery case, and its manufacturing method
JP2004311167A (en) * 2003-04-04 2004-11-04 Hitachi Maxell Ltd Lithium ion secondary battery
JP2006179244A (en) * 2004-12-21 2006-07-06 Sanyo Electric Co Ltd Lithium secondary battery
JP2007227339A (en) 2006-01-25 2007-09-06 Nippon Steel Corp RESIN-COATED Ni-PLATED STEEL PLATE
WO2007142270A1 (en) * 2006-06-09 2007-12-13 Panasonic Corporation Battery can and method of producing the same
JP2008223087A (en) 2007-03-13 2008-09-25 Mitsubishi Alum Co Ltd Aluminum alloy sheet for secondary battery case and its manufacturing method
JP2009181754A (en) 2008-01-29 2009-08-13 Fdk Energy Co Ltd Positive electrode can for alkaline battery, and alkaline battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2752913A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2930779A4 (en) * 2013-03-01 2016-01-20 Panasonic Ip Man Co Ltd Lithium ion secondary battery
US10615426B2 (en) 2015-07-10 2020-04-07 Panasonic Intellectual Property Management Co., Ltd. Wound battery including notched current collector sheet
CN108140757A (en) * 2015-10-30 2018-06-08 松下知识产权经营株式会社 Cylindrical battery seal body and use its cylindrical battery

Also Published As

Publication number Publication date
CN103797607B (en) 2016-01-06
EP2752913B1 (en) 2016-11-23
EP2752913A1 (en) 2014-07-09
JPWO2013145768A1 (en) 2015-12-10
CN103797607A (en) 2014-05-14
JP5512057B2 (en) 2014-06-04
US20140242448A1 (en) 2014-08-28
KR20140046081A (en) 2014-04-17
EP2752913A4 (en) 2014-11-26
KR101476963B1 (en) 2014-12-24
US9231234B2 (en) 2016-01-05

Similar Documents

Publication Publication Date Title
US20200235354A1 (en) Battery and method for manufacturing battery
JP5512057B2 (en) Cylindrical battery
JP6070540B2 (en) Secondary battery and electrolyte
JP5173181B2 (en) Lithium ion secondary battery and method for producing negative electrode plate for lithium ion secondary battery
US20080299457A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing positive electrode of nonaqueous electrolyte secondary battery
US20110111276A1 (en) Electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5264271B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2008311164A (en) Nonaqueous electrolyte secondary battery and manufacturing method of electrode for nonaqueous electrolyte secondary battery
JP2010080105A (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP5325227B2 (en) Non-aqueous electrolyte secondary battery electrode plate, method for producing the same, and non-aqueous electrolyte secondary battery
JP2008186704A (en) Positive electrode plate for non-aqueous secondary battery and non-aqueous secondary battery
JP2014225324A (en) Nonaqueous electrolyte secondary cell
US20110189518A1 (en) Nonaqueous electrolyte secondary battery
JP2011100694A (en) Nonaqueous electrolyte secondary battery
JP2013131427A (en) Laminated battery
JP5145693B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
WO2009122717A1 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP5768219B2 (en) battery
US20220367916A1 (en) Electrolyte and lithium metal secondary battery comprising same
US20110287297A1 (en) Nonaqueous electrolyte secondary battery
JP2022153188A (en) lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768096

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500583

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147007750

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14347947

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013768096

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013768096

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE