WO2013145272A1 - Information processing device and program - Google Patents

Information processing device and program Download PDF

Info

Publication number
WO2013145272A1
WO2013145272A1 PCT/JP2012/058639 JP2012058639W WO2013145272A1 WO 2013145272 A1 WO2013145272 A1 WO 2013145272A1 JP 2012058639 W JP2012058639 W JP 2012058639W WO 2013145272 A1 WO2013145272 A1 WO 2013145272A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power
unit
value
information processing
Prior art date
Application number
PCT/JP2012/058639
Other languages
French (fr)
Japanese (ja)
Inventor
山口裕二
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2012/058639 priority Critical patent/WO2013145272A1/en
Publication of WO2013145272A1 publication Critical patent/WO2013145272A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/263Arrangements for using multiple switchable power supplies, e.g. battery and AC

Definitions

  • the present invention relates to an information processing apparatus equipped with a plurality of power supply apparatuses.
  • an electronic apparatus equipped with a plurality of power supply devices there are electronic devices equipped with a plurality of power supply devices to supply necessary power.
  • the power consumption of the electronic device varies depending on the load.
  • one or more power supply devices are selectively operated in accordance with the required amount of power.
  • a blade server that is an electronic device equipped with multiple server blades each capable of operating as a single server, operate as many power supply units as necessary to supply the required amount of power according to the number of server blades to be operated Is done.
  • the conversion efficiency of the power supply device varies depending on the load, that is, output power. In terms of power saving of the electronic device, it is desirable to increase the conversion efficiency of the entire power supply device. For this reason, among conventional electronic devices, there is an electronic device that specifies a combination of power supply devices that achieves optimum conversion efficiency in accordance with a required amount of power, and operates the power supply device of the specified combination. In the conventional electronic device, since the combination power supply device that achieves the optimum conversion efficiency is operated according to the required electric energy, the power consumption can be suppressed.
  • the combination of the power supply devices that are actually specified varies depending on the amount of power required, and the conversion efficiency of the combination of the specified power supply devices varies depending on the amount of power and the content of the combination. For this reason, high conversion efficiency in an electronic device is not always realizable even if the optimal combination is specified from among the mounted power supply devices. For this reason, there is a possibility that an electronic device equipped with a plurality of power supply devices is desired to always maintain a desired conversion efficiency.
  • an object of the present invention is to provide a technique for enabling a desired conversion efficiency to be maintained in an electronic device including a plurality of power supply devices.
  • one system to which the present invention is applied can supply DC power from each of a plurality of power supply devices, and the amount of DC power required for each of the plurality of power supply devices and the plurality of power supply devices.
  • a setting unit that sets the relationship between the conversion efficiency indicating the efficiency of conversion from each AC power supply input to a DC power supply output as a condition, and a power supply device group that supplies DC power from a plurality of power supply devices,
  • a specifying unit that specifies to satisfy
  • a desired conversion efficiency can be maintained in an electronic device equipped with a plurality of power supply devices.
  • FIG. 1 is a diagram illustrating an example of a functional configuration of a power optimization support device according to the present embodiment.
  • the power supply optimization support apparatus 1 supports the user (designer or user of an electronic device) to determine a power supply device that is appropriate as a power supply device to be mounted on the electronic device. It has been realized.
  • FIGS. 2 to 6 Before explaining the power optimization support device 1 according to the present embodiment, refer to FIGS. 2 to 6 for the conversion efficiency obtained by the selective operation of the power device mounted on the electronic device and the plurality of power devices. Will be described in detail.
  • 80PLUS has been established as a standard for power conversion efficiency of a power supply for a computer, which is one of electronic devices.
  • the 80PLUS standard requires that a conversion efficiency of 80% or more be satisfied when converting from an AC input to a DC output in a power supply apparatus that requires a plurality of different power supplies.
  • the 80PLUS standards include 80PLUS, 80PLUS BRONZE, 80PLUS SILVER, 80PLUS GOLD, and 80PLUS PLATINUM.
  • FIG. 2 is a diagram for explaining the conversion efficiency characteristics corresponding to the output of a power supply device that satisfies the 80PLUS®GOLD standard.
  • the vertical axis represents conversion efficiency (ratio) and the horizontal axis represents output (%).
  • the power supply device that satisfies the 80PLUS GOLD standard has a relatively flat conversion efficiency from the low output region to the high output region. 3 to 6 described later, similarly, the vertical axis represents the conversion efficiency (ratio) and the horizontal axis represents the output (%).
  • the output (%) is the percentage obtained by dividing the actual output by the rating.
  • FIG. 3 is a diagram for explaining a change in output-conversion efficiency characteristics depending on the number of power supply devices to be operated when the number of power supply devices satisfying the 80PLUS GOLD standard is two.
  • the conversion efficiency is expressed as “power supply efficiency” in FIG. P1 represents an output-conversion efficiency characteristic when one power supply apparatus operates, and P2 represents a conversion efficiency characteristic (composite characteristic) corresponding to an output when two power supply apparatuses operate.
  • the output (%) represents the rating of one power supply device as 100%.
  • “characteristic” is used to mean “conversion efficiency characteristic corresponding to output”. Characteristics obtained by a plurality of power supply devices are hereinafter referred to as “composite characteristics”. Note that the description of “power efficiency” and output (%) in the diagrams for explaining changes in the conversion efficiency characteristics corresponding to the outputs of FIGS. 4 to 6 described later are the same as those in FIG.
  • a number of power supply devices capable of supplying the required power amount are operated according to the required power amount. For this reason, the operation of the power supply apparatus is started or stopped (ON (ON) / OFF (OFF)) in accordance with a change in the required electric energy.
  • the overall composite characteristic shown in FIG. 4 corresponds to the highest change in conversion efficiency depending on the amount of power supplied.
  • the overall combined characteristics in the range in which power is supplied by one power supply apparatus match the characteristics of one power supply apparatus, and power is supplied by two power supply apparatuses.
  • the overall combined characteristics in the range coincide with the combined characteristics of the two power supply devices. From this, the total composite characteristic is the number of power supply devices used for power supply for each number of power supply devices used for power supply (for each range in which power is supplied depending on the number of power supply devices used for power supply). It changes to the composite characteristics of the power supply.
  • FIG. 5 is a diagram for explaining a change in output-conversion efficiency characteristics depending on the number of power supply devices to be operated when there are eight power supply devices satisfying the 80PLUS GOLD standard.
  • P1 to P8 represent characteristics when 1 to 8 power supply devices operate.
  • the output (%) assumes that the rating of one power supply device is 100%.
  • FIG. 6 is a diagram for explaining output-conversion efficiency characteristics obtained by the entire power supply apparatus when there are eight power supply apparatuses satisfying the 80PLUS GOLD standard.
  • the power optimization support device 1 allows the user to specify the range of power amount and the lower limit value of the conversion efficiency to be maintained within the range as a condition, and satisfy the specified condition. It is realized as a combination of power supply devices.
  • a user who is presented with a combination of power supply devices that satisfies the condition can maintain the conversion efficiency at or above the desired conversion efficiency even if the power consumption fluctuates by installing the power supply device of the presented combination in an electronic device. Will be able to. Since the conversion efficiency of the electronic device can be maintained higher than the desired conversion efficiency, the power consumption of the electronic device can be further suppressed.
  • the relationship between the electric energy presented as the condition and the conversion efficiency may be different from the above.
  • a power optimization support device 1 illustrated in FIG. 1 includes a main body 2, an operation unit 3, and an output processing unit 4.
  • the main body 2 includes an input unit 21, a control unit 22, an output unit 23, a power supply specifying unit 24, and a storage unit 25.
  • the operation unit 3 is a device that a user (designer) of the power optimization support device 1 operates to input various instructions or data.
  • the operation unit 3 corresponds to, for example, a keyboard and a pointing device such as a mouse.
  • the combination of the conditions to be satisfied by the power supply device to be mounted on the electronic device, that is, the assumed power amount range and the conversion efficiency to be maintained within the range is specified by an operation on the operation unit 3. .
  • only one set of the electric energy range and conversion efficiency is specified, but a plurality of sets may be specified. This is because, as shown in FIGS. 5 and 6, it is difficult to maintain higher conversion efficiency in the low output region than in the high output region.
  • the output processing unit 4 is a device that processes data output from the main body 2. Specifically, the output processing unit 4 corresponds to, for example, a display device and a medium driving device capable of writing data on a recording medium such as an optical disk device.
  • the output processing unit 4 and the operation unit 3 may be a terminal device connected to the main body 2 via a cable or a network.
  • the operation unit 3 outputs information (operation information) indicating the content of the operation performed by the user.
  • the input unit 21 of the main body 2 inputs the operation information output from the operation unit 3 and outputs the input operation information to the control unit 22.
  • the control unit 22 analyzes the operation information input from the input unit 21 to recognize the instruction requested by the user or the data requested to be input, and performs control according to the recognized instruction or data.
  • the control unit 22 instructs the output unit 23 to create a screen to be displayed and output the created screen so that the user can perform various instructions or data input.
  • the user can perform various instructions or data input through operations on the operation unit 3 while confirming the screen displayed on the output processing unit 4.
  • the input of the above condition is performed when the user requests to present a combination of power supply devices, for example.
  • the control unit 22 causes the output unit 23 to output a condition input screen for inputting conditions.
  • the condition input screen includes an input area for inputting conditions, a button for requesting (instructing) presentation of a combination of power supply devices that satisfy the input conditions (hereinafter referred to as “execution button”), A button for instructing cancellation (hereinafter referred to as “cancel button”) and the like are arranged.
  • the control unit 22 analyzes the operation information input from the input unit 21, specifies data (numerical values) to be displayed in the input area, controls the output unit 23, and the specified data is stored in the input area.
  • the arranged condition input screen is displayed on the output processing unit 4. Accordingly, when the user clicks the execution button by the operation unit 3, the control unit 22 regards the data displayed in the input area of the condition input screen as a condition and outputs it to the power supply specifying unit 24.
  • the range of electric energy and the conversion efficiency (lower limit value) to be maintained within the range are specified.
  • the power value that is the lower limit value of the power amount range is expressed as the required minimum power value Ps
  • the power value that is the upper limit value of the power amount range is expressed as the required maximum power value Pb
  • the conversion efficiency is expressed as the required power supply efficiency ⁇ A.
  • the conversion efficiency is hereinafter referred to as “power supply efficiency”.
  • the power supply specifying unit 24 specifies a combination of power supply devices that satisfy the conditions input from the control unit 22.
  • the combination is specified with reference to the power supply module table 25a stored in the storage unit 25.
  • the specific result is stored in the storage unit 25 as the necessary number determination table 25b.
  • FIG. 7 is a diagram for explaining an example of the contents of the power module table.
  • the type of power supply device that can be mounted on an electronic device is usually different for each electronic device.
  • the procurement of the power supply device is usually limited to the types selected in advance.
  • the power supply module table 25a is a table representing the types of power supply devices that can be mounted on the electronic device. As shown in FIG. 7, the power supply module table 25a defines a capacity (W) for each power supply device.
  • the capacity (W) is a rated power value. Unless otherwise specified, capacity is used to indicate rating.
  • “PA”, “PB”, and “PN” in FIG. 7 represent the types of power supply modules.
  • the power supply device is described as “power supply module”.
  • the power supply device is referred to as a power supply module.
  • FIG. 7 shows power supply modules having different capacities (ratings). This is because the characteristics of power supply modules having the same capacity cannot be distinguished based on the above assumption.
  • p is a rated power value of the power supply module
  • x is an arbitrary output power value (0 ⁇ x ⁇ p).
  • Equation (1) can be used for calculating the power supply efficiency ⁇ regardless of the number of power supply modules.
  • FIG. 8 is a diagram for explaining the contents of the necessary number determination table.
  • the required number determination table is a table representing the types of power modules to be operated and the number of power modules to be operated according to the amount of power to be supplied.
  • a capacity (W) and a required number are defined for each power consumption reference value.
  • the power consumption reference value is a power value at which the operation of one power supply module is newly started or one power supply module is to be stopped.
  • the capacity (W) is the capacity of the power supply module that is the target of operation start or stop.
  • the required number is the number of power supply modules to be operated in a situation where the power consumption is below the reference value. Therefore, in the example shown in FIG.
  • one power supply module having a capacity of 400 W is operated until the power consumption value is 310.0 W, and when the power consumption value exceeds 310.0 W, the capacity is 400 W. This means that one power supply module should be newly operated.
  • five power supply modules with a capacity of 400 W are operated up to a power consumption value of 1066.7 W. If the power consumption value exceeds 1066.7 W, one power supply with a capacity of 800 W is used. Indicates that the module should be run anew.
  • the power consumption reference value corresponds to the output at the intersection of two different characteristics in FIG. 3 and FIG.
  • the characteristics of the power supply module (here, including the combined characteristics) are expressed by Expression (1)
  • the power consumption reference value is an output power value x that satisfies the following relationship.
  • Po is a rated power value when an arbitrary number of power supply modules is assumed
  • Pn is a rated power value when one power supply module is further added.
  • the average power supply efficiency is about 88.6% in a 2000 W rated power supply module in which the power supply efficiency ⁇ can be calculated by Equation (1).
  • the average power supply efficiency is about 90.1%.
  • about 1.5% improvement The improvement, power cost, and carbon dioxide emission can be suppressed.
  • the power supply specifying unit 24 includes a first power supply selection unit 24a, a second power supply selection unit 24b, and a table creation unit 24c.
  • the first power supply selection unit 24a assumes only the same type of power supply modules, selects one type of power supply module that satisfies the conditions input from the control unit 22, and specifies the required number of the selected power supply modules.
  • One type of the selected power supply module is one of the types of power supply modules represented in the power supply module table 25a stored in the storage unit 25.
  • the second power supply selection unit 24b selects another type of power supply module to be combined with the type of power supply module selected by the first power supply selection unit 24a.
  • What is selected as another type of power supply module is a power supply module having a capacity larger than that of the already selected type of power supply module.
  • the type of the power supply module extracted first is referred to as a “first type”
  • the type of the power supply module extracted next is referred to as a “second type”.
  • the maximum number of types of power supply modules is two so that many types of power supply modules are not mounted on the electronic device. Three or more types of power supply modules may be extracted.
  • a power supply module having a capacity of 400 W is a first type power supply module
  • a power supply module having a capacity of 800 W is a second type power supply module.
  • the power supply module having a capacity of 800 W is the power supply module to be operated in the sixth.
  • the power consumption reference value satisfying the expression (2) corresponds to the output at the intersection of two different characteristics with one power supply module in FIGS.
  • the power supply efficiency ⁇ at the intersection of the two characteristics is lower than the power supply efficiency in the periphery. Therefore, by checking whether or not the power supply efficiency ⁇ at the power value x satisfying Expression (2) is equal to or greater than the required power supply efficiency ⁇ A, the power supply module that can be the second type, the second type of power supply
  • the power consumption reference value for starting the operation of the module can be specified.
  • the power supply efficiency ⁇ has a relatively large local decrease in the low output range and a relatively small local decrease in the high output range.
  • the reason why the first power supply selection unit 24a and the second power supply selection unit 24b select the type of the power supply module is that the overall combined characteristics are taken into consideration.
  • the first power supply selection unit 24a specifies the type and number of power supply modules that can satisfy the required power supply efficiency ⁇ A with the required minimum power value Ps. In the output range exceeding the required minimum power value Ps, it is relatively easy to satisfy the required power supply efficiency ⁇ A. This means that there is a possibility that the required power efficiency ⁇ A can be satisfied even when a power module having a larger capacity than that of the first type power module is combined. Therefore, the second power source selection unit 24b is allowed to specify the power modules that can be combined as the second type power source modules. The combination of the power supply modules is determined by the specification by the second power supply selection unit 24b.
  • the table creation unit 24c receives the combination result of the power supply modules from the second power selection unit 24b, creates a necessary number determination table 25b as shown in FIG.
  • the necessary number determination table 25 b is output to the output processing unit 4 via the output unit 23 under the control of the control unit 22.
  • the necessary number determination table 25b is displayed in order to present a combination of power supply devices that satisfy the conditions specified by the user, and in addition to the power supply module in the electronic device on which the power module of the presented combination is mounted. It can be output as management data. Therefore, the output processing unit 4 has a configuration including a medium driving device capable of writing data on a recording medium, or a terminal device connected to the main body 2 via a cable or a network.
  • the power supply specifying unit 24 is realized, for example, by causing a computer to execute a program for assisting a user in determining a power supply module to be mounted on an electronic device (hereinafter referred to as “power supply optimization support software”).
  • FIG. 11 is a diagram illustrating an example of a hardware configuration of a computer to which the present embodiment can be applied.
  • a configuration example of a computer that can be used as the main body 2 of the power optimization support device 1, that is, a computer that is a target for executing the power optimization support software will be specifically described.
  • the computer shown in FIG. 11 includes a CPU 61, a memory 62, an input device 63, an output device 64, an external storage device 65, a medium drive device 66, and a network connection device 67, which are connected to each other via a bus 68. It has become.
  • the configuration illustrated in FIG. 11 is an example, and is not limited to the configuration illustrated in FIG.
  • the CPU 61 controls the entire computer. Although only one is shown in FIG. 11, a plurality of CPUs 61 may be mounted.
  • the memory 62 is a semiconductor memory such as a RAM that temporarily stores a program or data stored in the external storage device 65 (or portable recording medium 69) during program execution, data update, or the like.
  • the CPU 61 performs overall control by reading the program into the memory 62 and executing it.
  • the input device 63 is, for example, a device that enables connection with an operation device operated by an operator such as a keyboard and a mouse, that is, the operation unit 3 in FIG.
  • the operation device outputs operation information representing the content of the operation performed by the user.
  • the input device 63 inputs operation information from the operation device, converts the input operation information into a form that can be recognized by the CPU 61, and outputs the converted operation information to the CPU 61.
  • the output device 64 is, for example, a display control device connected to a display device.
  • a display device exists as a part of the output processing unit 4 illustrated in FIG. 1, the display device is connected to the output device 64.
  • the external storage device 65 is a large-capacity storage device such as a hard disk device.
  • the power module table 25a and the necessary number determination table 25b are stored in the external storage device 65, for example.
  • an OS Operating System
  • the power optimization support software and the like are stored in the external storage device 65.
  • the medium driving device 66 accesses a portable recording medium 69 such as an optical disk or a magneto-optical disk.
  • the medium driving device 66 can be used as a part of the output processing unit 4 shown in FIG.
  • the network connection device 67 enables communication with an external device via a communication network, for example. This network connection device 67 can be used as the output unit 23 shown in FIG.
  • each component of the main body 2 of the power optimization support device 1 shown in FIG. It corresponds to a component or is realized by a combination of components.
  • the power optimization support software may be recorded on the recording medium 69 or may be acquired from an external device via the network connection device 67. Therefore, the storage device or recording medium in which the power optimization support software is stored is not particularly limited.
  • the input unit 21 corresponds to the input device 63.
  • the control unit 22 is realized by the CPU 61, the memory 62, the external storage device 65, and the bus 68.
  • the output unit 23 is realized by the CPU 61, the memory 62, the output device 64, the external storage device 65, the network connection device 67, and the bus 68.
  • the output unit 23 is realized by the CPU 61, the memory 62, the output device 64, the external storage device 65, the medium driving device 66, and the bus 68.
  • a part of the output processing unit 4 includes a CPU 61, a memory 62, an external storage device 65, a medium driving device 66, And the bus 68.
  • the storage unit 25 corresponds to the external storage device 65.
  • the power supply specifying unit 24 is realized by the CPU 61, the memory 62, the external storage device 65, and the bus 68.
  • FIG. 9 is a flowchart of the first power supply module determination process.
  • This first power supply module determination process is a process for determining a power supply module of the first type from among the power supply modules represented in the power supply module table 25a shown in FIG.
  • the first power supply module determination process is executed when the user clicks the execution button in a state where the condition is input in the input area of the condition input screen.
  • the first power supply selection unit 24a is realized by the CPU 61 executing the first power supply module determination process.
  • the power consumption reference value is expressed as “Px”.
  • the CPU 61 selects a power supply module having the maximum capacity among the power supply modules shown in the power supply module table 25a as an investigation target (S1).
  • the CPU 61 assigns 1 to a variable N1 for specifying the minimum required number of the first type power supply modules (S2).
  • the CPU 61 uses the formula (1) and the formula (2), and the power consumption reference value Px when the power module currently being investigated is operated by the number obtained by adding 1 to the value of the variable N1, and the power supply Calculate the efficiency ⁇ .
  • the value of the variable N1 is 1, the calculated power consumption reference value Px is a value for starting the operation of one more power supply module in a situation where one power supply module is operating. That is, when the capacity of the power supply module to be investigated is Pu and the number of power supply modules is N1, the power consumption reference value Px is Po ⁇ N1 and Pu ⁇ (N1 + 1), respectively, in Equation (2). ).
  • the CPU 61 that has calculated the power consumption reference value Px and the power supply efficiency ⁇ next determines whether or not the calculated power consumption reference value Px is less than the required minimum power value Ps (S4). If the power consumption reference value Px is smaller than the required minimum power value Ps, the determination in S4 is Yes, and then the CPU 61 increments the value of the variable N1 (S5). After the increment, the process returns to S3. As a result, the number necessary for the output exceeding the required minimum power value Ps in the power module to be investigated is counted using the variable N1.
  • the determination in S4 is No and the process proceeds to S7.
  • the CPU 61 determines whether or not the calculated power efficiency ⁇ is less than the required power efficiency ⁇ A. If the calculated power efficiency ⁇ is smaller than the required power efficiency ⁇ A, the determination is yes and the process proceeds to S8. If the calculated power efficiency ⁇ is equal to or greater than the required power efficiency ⁇ A, the determination is no and the process proceeds to S6.
  • the determination of No in S7 means that the power module having the maximum capacity that can satisfy the required power efficiency ⁇ A with the required minimum power value Ps is identified among the power modules represented in the power module table 25a. Accordingly, in S6, the CPU 61 determines the identified power supply module as the first type power supply module, and determines the value of the variable N1 as the necessary minimum number of the first type power supply modules. Thereafter, the first power supply determination process ends.
  • the CPU 61 refers to the power supply module table 25a and determines whether or not there is a power supply module having a capacity smaller than that of the power supply module to be investigated. If there are other power supply modules to be investigated, the determination in S8 is Yes. Thus, the CPU 61 newly selects a power module having the next smallest capacity after the power module to be investigated as a new investigation object (S9). Thereafter, the process returns to S2. Accordingly, a search for a power supply module that can satisfy the required power supply efficiency ⁇ A with the required minimum power value Ps while sequentially changing the investigation target is performed.
  • the determination in S8 is No.
  • the determination of No here means that there is no power supply module that can satisfy the specified condition.
  • the CPU 61 determines that the condition cannot be satisfied (S10), and outputs a result for notifying the user that the condition cannot be satisfied (S11). Thereafter, the first power supply determination process ends.
  • the above result output is performed on the display device when the display device exists as a part of the output processing unit 4 shown in FIG. As a result, the user reviews the conditions or selects a power supply module that can be mounted.
  • FIG. 10 is a flowchart of the second power supply module determination process.
  • the second power supply module determination process is a process for determining a second type of power supply module to be combined with the first type of power supply module determined by the execution of the first power supply module determination process. Therefore, the execution condition is that S6 is executed and the first power supply module determination process is ended.
  • the necessary number determination table 25b is also created by executing the second power supply module determination process. It is assumed that the determined necessary minimum number of power supply modules of the first type is assigned to the variable N1.
  • the CPU 61 selects a power supply module having a capacity larger than that of the first type power supply module from among the power supply modules represented in the power supply module table 25a (S21). For example, the power supply module having the maximum capacity is selected as the investigation target. This is because there is a possibility that the total number of power supply modules can be reduced more as the capacity of the power supply modules is larger.
  • the power module with the largest capacity has been determined as the first type power module.
  • the power module having the largest capacity is determined as the first type power module, the power module to be investigated cannot be selected in S21. For this reason, although not particularly shown, when the power module to be investigated cannot be selected, the process proceeds to S28 described later.
  • the CPU 61 assigns 0 to a variable N2 for specifying the further required number of the first type power supply modules.
  • the CPU 61 uses the formula (1) and the formula (2) to calculate the power consumption reference value Px when the power module currently being investigated is assumed to be the second type power module.
  • the power supply efficiency ⁇ is calculated.
  • the calculated power consumption reference value Px is Po ⁇ Pn in Equation (2), where Pu is the capacity of the first type power supply module and Pv is the capacity of the power supply module to be investigated. It is a value calculated by setting (N1 + N2), Pu ⁇ (N1 + N2) + Pv.
  • the CPU 61 that has calculated the power consumption reference value Px and the power efficiency ⁇ next determines whether the calculated power efficiency ⁇ is less than the required power efficiency ⁇ A (S24). When the calculated power supply efficiency ⁇ is smaller than the required power supply efficiency ⁇ A, the determination in S24 is Yes and the process proceeds to S25. When the calculated power supply efficiency ⁇ is equal to or greater than the required power supply efficiency ⁇ A, the determination in S24 is No and the process proceeds to S29.
  • the CPU 61 determines whether or not the calculated power consumption reference value Px is greater than the required maximum power value Pb. If the power consumption reference value Px is greater than the required maximum power value Pb, the determination in S25 is Yes and the process proceeds to S27. If the power consumption reference value Px is less than or equal to the required maximum power value Pb, the determination in S25 is No. If the determination in S25 is No, the CPU 61 increments the value of the variable N2 (S26) and returns to S23. Accordingly, in the present embodiment, the power supply module that can be determined as the second type of power supply module is checked in consideration of the possibility of supplying power larger than the required maximum power value Pb.
  • the CPU 61 refers to the power supply module table 25a and determines whether or not there is a power supply module having a capacity smaller than that of the power supply module to be investigated. If there is a power module having a capacity larger than that of the first type power module and currently having a smaller capacity than the power module to be investigated, the determination in S27 is Yes and the process returns to S21. As a result, the power module having the next smallest capacity after the power module to be investigated is newly selected as the investigation object.
  • the determination in S27 is No.
  • the determination of No here means that there is no power module as the second type power module. Accordingly, the CPU 61 creates and outputs the necessary number determination table 25b assuming only the first type of power supply module (S28). After outputting the necessary number determination table 25b, the second power supply module determination process ends.
  • the required number determination table 25b is stored in the external storage device 65, and is output via the output device 64 or the network connection device 67, for example. Thereby, the user can visually confirm the combination result of the power supply modules and can use the output necessary number determination table 25b.
  • the determination of No in S24 above means that the second type power supply module has been identified.
  • the CPU 61 substitutes 1 for a variable N3 for specifying the required number of the second type power supply modules.
  • the CPU 61 calculates the power consumption reference value Px when the number of the second type power supply modules is increased by one using the equations (1) and (2) (S30).
  • the power consumption reference value Px is expressed as Pu ⁇ (N1 + N2), where Po and Pn in Equation (2) are Pu and Pv, respectively, when the capacity of the first type power supply module is Pu and the capacity of the second type power supply module is Pv.
  • the power efficiency ⁇ at the calculated power consumption reference value Px is not less than or equal to the required power efficiency ⁇ A (FIGS. 5 and 6). Therefore, the power supply efficiency ⁇ is not calculated.
  • the CPU 61 determines whether or not the calculated power consumption reference value Px is less than the requested maximum power value Pb (S31). When the power consumption reference value Px is smaller than the required maximum power value Pb, the determination in S31 is Yes. If the determination in S31 is Yes, the CPU 61 increments the value of the variable N3 (S32) and returns to S30. Thereby, the confirmation of the required number of the second type power supply modules is continued. If the power consumption reference value Px is greater than or equal to the required maximum power value Pb, the determination in S31 is No and the process proceeds to S28. In S28 of the transfer destination, the necessary number determination table 25b assuming two types of power supply modules is created and output.
  • the second type power supply module is determined based on the determination of No in S24, but the second type power supply module may be determined using another method.
  • the power supply module for which the determination in S24 is No is extracted from all the power supply modules to be investigated, and the power supply module having the smallest total number of power supply modules among the extracted power supply modules is the second type power supply module. It is also good. Assuming the upper limit of the number of power supply modules mounted on the electronic device, the type of power supply module and the number of power supply modules of each type may be determined so as to be equal to or less than the specified upper limit number.
  • condition designation is performed by the user
  • condition designation may be arbitrarily performed by setting the condition in advance. That is, the control unit 22 may be able to specify the condition without specifying the condition by the user.
  • FIG. 12 is a diagram illustrating a configuration example of the electronic device according to the present embodiment.
  • the electronic device 120 according to the present embodiment includes a main device 121 and a power supply system 122.
  • the power supply system 122 is a system that receives AC (Alternating Current) power from the outside, converts it into DC (Direct Current) power, and supplies it to the main device 121.
  • the type of the electronic device 120 is not particularly limited, but when the electronic device 120 is a blade server, the main device 121 is a processing system including a plurality of server blades.
  • the power supply system 122 includes a power management device 125, a power supply module 126, a power meter 127, and a plurality of power supply modules 128 (128-1 to 128-N).
  • the power module 126 is dedicated to supplying power to the power management device 125.
  • the power management apparatus 125 operates by supplying power from the power supply module 126, and includes an interface (denoted as “I / F” in FIG. 12) 1251, a CPU 1252, and a memory 1253.
  • the memory 1253 is nonvolatile, and stores the necessary number determination table 25b and the power management table 1253a in addition to the firmware that is a program executed by the CPU 1252.
  • the CPU 1252 refers to the necessary number determination table 25b and the power management table 1253a to manage the mounted power supply module 128.
  • FIG. 14 is a diagram illustrating an example of the contents of the power management table.
  • the power management table 1253a is used by the CPU 1252 to grasp the current state of each power module 128 and to select the power module 128 to be operated / stopped according to the amount of power to be supplied to the main device 121.
  • the power management table 1253 a stores information on a power module number, a capacity, a life stress, and a state for each power module 128.
  • Identification information is assigned to the power supply module 128 mounted on the electronic device 120.
  • the power module number information is identification information, and the numbers “1” to “7” shown in FIG. 14 represent the power module numbers actually assigned to the respective power modules 128.
  • the capacity information represents the capacity (rated) of the corresponding power supply module 128.
  • the status information represents the status of the corresponding power supply module 128. “ON” and “OFF” in FIG. 14 represent operation and stop, respectively. The status information can also indicate a failure or the like.
  • the lifetime of semiconductor devices depends on temperature stress. For this reason, the lifetime of a power supply module also changes with temperature stress.
  • the dependence of the lifetime on the semiconductor device due to temperature stress can be evaluated using, for example, Arrhenius's law, that is, the Arrhenius model.
  • the operating temperature in designing the semiconductor device is used.
  • An actual temperature may be used as T2. If the value of the acceleration coefficient ⁇ obtained by the above equation (4) is 2, for example, if the state where the value of 2 is obtained continues permanently, the expected life is that the state where the temperature is T1 is permanent. Therefore, it is half of the life L1 when it is assumed to continue continuously.
  • the temperature of the power supply module 128 changes depending on the environmental temperature, the output status such as the usage rate, the usage time, and the like.
  • the acceleration coefficient ⁇ obtained from the equation (4) represents that the expected life is shortened as the value increases. Therefore, in the present embodiment, the acceleration coefficient ⁇ is obtained at regular intervals, and the accumulated value St of the obtained acceleration coefficient ⁇ is calculated, whereby the calculated accumulated value St is used as the stress that the power supply module 128 has received. It is used as information indicating the size of, that is, the remaining life.
  • the life stress information represents the calculated accumulated value St.
  • the accumulated value St is expressed as “lifetime stress value”.
  • the calculated life stress value St is stored in the power management table 1253a as life stress information.
  • “A2”, “B2”, “C2” and the like shown in FIG. 14 represent life stress values St actually stored in the power management table 1253a as life stress information.
  • the power supply module 128 does not fail during operation. Therefore, when the power supply module 128 is newly operated, it is desirable to select the power supply module 128 having the minimum life stress value St among the types of power supply modules 128 to be operated. When the power supply module 128 is newly stopped, it is desirable to select the power supply module 128 having the maximum life stress value St among the types of power supply modules 128 to be stopped. For this reason, the CPU 1252 refers to the power management table 1253a and reflects the life stress value St stored in the table 1253a in the selection of the power module 128 to be newly operated or stopped.
  • the occurrence of the power supply module 128 to be newly operated or stopped is specified with reference to the necessary number determination table 25b.
  • the power value measured by the wattmeter 127 is used as the amount of power to be supplied to the main device 121.
  • the power value measured by the wattmeter 127 is used for management of the power supply module 128 by enabling the power value consumed by the main device 121 to be confirmed in real time so that appropriate management can be quickly performed.
  • the CPU 1252 refers to the required number determination table 25b and operates the necessary power supply module 128 according to the power value measured by the power meter 127, thereby maintaining the power supply efficiency equal to or higher than the required power supply efficiency ⁇ A. A necessary amount of power can be supplied to the device 121.
  • the power management device 125 is connected to a LAN (Local Area Network) (not shown) and an external device, for example.
  • the interface 1251 can communicate with such an external device.
  • the required number determination table 25b is acquired from the external device and stored in the memory 1253.
  • the power management table 1253a can be acquired from an external device and can be updated from the external device. This is to cope with replacement of the power supply module 128 mounted on the electronic device 120.
  • FIG. 13 is a diagram illustrating an example of a functional configuration of the power management apparatus.
  • the power management apparatus 125 includes an information acquisition unit 131, a power selection unit 132, and a power control unit 133 as functional configurations.
  • the information acquisition unit 131 acquires the power management table 1253a, a part of the power management table 1253a, or the necessary number determination table 25b, stores the acquired power management table 1253a or the necessary number determination table 25b in the memory 1253, and each table. Update according to need of 1253a and 25b is realized.
  • the lifetime stress value St is calculated by each power supply module 128.
  • the information acquisition unit 131 also acquires the life stress value St from each power supply module 128 and the power value measured by the wattmeter 127.
  • the power supply selection unit 132 refers to the power management table 1253a and the necessary number determination table 25b, and selects a power supply module 128 to be newly operated or stopped according to the power value measured by the wattmeter 127.
  • the power supply control unit 133 operates or stops the power supply module 128 to be operated or stopped according to the selection result by the power supply selection unit 132.
  • the electronic device 120 according to the present embodiment is realized by mounting the power management device 125.
  • the components 131 to 133 provided as the functional configuration of the power management apparatus 125 may be mounted in a form distributed to two or more components in the electronic device 120.
  • the electronic apparatus 120 according to the present embodiment can be variously modified.
  • FIG. 15 is a flowchart of the power management process.
  • This power management process is a process for operating or stopping any one of the power supply modules 128 according to the power value measured by the wattmeter 127.
  • the CPU 1252 executes the firmware stored in the memory 1253. Realized.
  • FIG. 15 shows a flow of extracted processing after extracting power to be managed for power management after power is supplied to the power management device 125, that is, after the CPU 1252 starts executing firmware. Next, the power management process will be described in detail with reference to FIG.
  • the CPU 1252 instructs all the power supply modules 128 to operate (S51).
  • the CPU 1252 acquires the lifetime stress value St from each power supply module 128 (S52), and stores the acquired lifetime stress value St as lifetime stress information in the power management table 1253a (S53).
  • the CPU 1252 acquires the measured power value from the wattmeter 127 and presents the currently set power consumption reference value (referred to as “current reference value” in FIG. 15; hereinafter, distinguished from the power consumption reference value that is not set). Therefore, the relationship between the notation and the power value is checked (S54).
  • the measured power value is described as “power consumption value”.
  • the notation “power consumption value” is used.
  • the power consumption reference value currently set is indicated as “current reference value” in FIG.
  • the notation “power consumption value” is used.
  • the power supply module 128 When the power supply module 128 is operated or stopped depending on the magnitude relationship between the power consumption value and the power consumption reference value, the power supply module 128 may be frequently operated or stopped due to slight fluctuations in the power consumption value. There is. Therefore, in the present embodiment, it is possible to avoid a situation in which the operation of the power supply module 128 or the stoppage of the power supply module 128 is frequently performed by giving a practical range to the power consumption reference value. I have to. As a result, the operation of the new power supply module is started when the upper limit of the power consumption reference value is exceeded, and the new power supply module is stopped when it is less than the lower limit of the power consumption reference value. Yes.
  • the value specifying the width is referred to as “SH value”.
  • the SH value When the SH value is used, the upper side of the power consumption reference value is represented by the power consumption reference value + SH value, and the lower side of the power consumption reference value is represented by the product power reference value ⁇ SH value.
  • the CPU 1252 determines the content of the check result. If the power consumption value is less than the current power consumption reference value set by subtracting the SH value, that is, if the relationship of power consumption value ⁇ current reference value ⁇ SH value is satisfied, this is determined in S55. , The process proceeds to S57. If the power consumption value exceeds the currently set power consumption reference value plus the SH value, that is, if the relationship of power consumption value> current reference value + SH value is satisfied, this is the case in S55. The determination is made and the process proceeds to S59.
  • the power consumption value is not less than a value obtained by subtracting the SH value from the power consumption reference value currently being set and does not exceed the value obtained by adding the SH value to the power consumption reference value currently being set, that is, the power supply If it is not necessary to perform either operation or stop of the module, this is determined in S55, and the process returns to S54.
  • the power consumption value is not less than a value obtained by subtracting the SH value from the currently set power consumption reference value, and does not exceed a value obtained by adding the SH value to the currently set power consumption reference value. The case is described as “Other”.
  • the CPU 1252 refers to the necessary number determination table 25b and newly sets a power consumption reference value that is one lower than the current reference value as the current reference value.
  • the CPU 1252 refers to the necessary number determination table 25b and the power management table 1253a and selects and stops the power supply module 128 having the highest life stress value St among the types of power supply modules 128 to be stopped.
  • the CPU 1252 updates the status information of the power supply module 128 to be stopped from “ON” to “OFF” (S58). Thereafter, the process returns to S54.
  • the CPU 1252 refers to the necessary number determination table 25b, and sets a power consumption reference value that is one higher than the current reference value as the current reference value.
  • the CPU 1252 refers to the necessary number determination table 25b and the power management table 1253a, selects and activates the power supply module 128 having the lowest life stress value St among the types of power supply modules 128 to be activated.
  • the CPU 1252 updates the state information of the power supply module 128 to be activated from “OFF” to “ON” (S60). Thereafter, the process returns to S54.
  • the process of S54 is actually executed at a predetermined time interval, for example.
  • the life stress information in the power management table 25b is updated each time the life stress value St is acquired from the power module 128. Thereby, the life stress value St of each power supply module 128 updated as needed is reflected in the selection of the power supply module 128 to be operated or stopped.
  • FIG. 16 is a diagram illustrating a configuration example of the power supply device according to the present embodiment.
  • the power supply device can be mounted on the electronic device 120 according to the present embodiment as the power supply module 128.
  • a battery 166 As shown in FIG. 16, the DC power supply unit 161, the control unit 162, the memory 163, the program ROM 164, and the DC power supply unit 165. , And a battery 166.
  • the DC power supply unit 165 is a dedicated power supply that supplies power to be supplied to the control unit 162.
  • the DC power supply unit 161 is a power supply for supplying power to the main device 121. Since the power supply module 128 is required to supply power stably to the main device 121, the temperature sensor 161 a for measuring the temperature used for calculating the life stress value St is provided in the DC power supply unit 161.
  • the control unit 162 is a device that controls the entire power supply module 128, and is, for example, a CPU.
  • the control unit 162 controls the power supply module 128 by executing a program (firmware) stored in the program ROM 164.
  • the memory 163 is used for a work for executing a program and for storing a life stress value St.
  • the calculation of the life stress value St is realized by executing a life stress value calculation process shown in FIG.
  • the life stress value calculation process is a process that is executed each time a predetermined time elapses by a timer interrupt function installed in the control unit 162, for example.
  • the control unit 162 obtains temperature information representing the measured temperature from the temperature sensor 161a (S71).
  • the control unit 162 calculates the acceleration coefficient ⁇ from Expression (4) using the temperature represented by the obtained temperature information, and adds the calculated acceleration coefficient ⁇ to the life stress value St stored in the memory 163.
  • a new life stress value St is obtained, and the newly obtained life stress value St is stored in the memory 163 (S72).
  • the latest life stress value St is always stored in the memory 163.
  • the life stress value St can be calculated without the input of AC power from the outside. This is to evaluate the influence of temperature stress when there is no AC power input, in other words, to always calculate the life stress value St. Since the life stress value St can always be updated, the power management apparatus 125 can select the power supply module 128 to be newly operated or newly stopped with higher accuracy. Thereby, an advantage is obtained for more stable operation of the electronic device 120.
  • the control unit 162 has a function of communicating with the power management device 125 and other power supply modules 128. Thereby, processing for responding to a request from the power management device 125 or another power supply module 126 is performed.
  • FIG. 18 is a flowchart of a request response process for responding to a request from the power management apparatus.
  • the control unit 162 responds to the request from the power management apparatus 125 by executing a request response process as shown in FIG.
  • control unit 162 checks the request from the power management apparatus 125 and confirms the request content (S81). When the request from the power management device 125 is transmission of the life stress value St, this is determined in S81 and the process proceeds to S82.
  • control unit 162 reads the life stress value St from the memory 163. Next, the control unit 162 transmits the read life stress value St to the power management apparatus 125. After the transmission of the life stress value St, the request handling process ends.
  • the control unit 162 sends out a control signal, for example, and activates the DC power supply unit 161. After the DC power supply unit 161 is activated, the request handling process ends.
  • the control unit 162 stops the DC power supply unit 161, for example, by terminating the transmission of the control signal. After the DC power supply unit 161 is stopped, the request handling process ends.
  • the output balance may vary depending on the power supply module 128. It is desirable that the output balance is equal or almost the same for each power supply module 128 that is operated. From this, the control part 162 of each power supply module 128 performs the output balance adjustment process as shown in FIG.
  • control unit 162 obtains the rated capacity of the own DC power supply unit 161 and the current output capacity as information indicating the power supply status of the own DC power supply unit 161.
  • the rated capacity is stored in, for example, the program ROM 164, and the output capacity is obtained from the DC power supply unit 161.
  • control unit 162 compares the output rate C and the average output rate CC, and determines the relationship between the output rate C and the average output rate CC. Accordingly, if the output rate C is less than the average output rate CC, this is determined in S97. As a result, the control unit 162 performs control to increase power, that is, output capacity (S98).
  • the control for increasing the output capacity is performed by increasing the output voltage, for example. After the control for increasing the output capacity is performed, the output balance adjustment process ends.
  • the control unit 162 performs control for reducing the power, that is, the output capacity (S98).
  • the control for reducing the output capacity is performed by, for example, lowering the output voltage. After the control for reducing the output capacity is performed, the output balance adjustment process ends.
  • the controller 162 of the operating power supply module 128 executes the output balance adjustment process as described above as needed. Thereby, the output balance of the operating power supply module 128 is maintained within a relatively narrow range. As a result, power supply in which multiple types of power supply modules 128 are multiplexed can be performed more stably.
  • each power supply module 128 may monitor the power supplied from each power supply module 128 by another device and control the device.

Abstract

In one system in which the present invention is applied it is possible for DC power to be supplied from each of a plurality of power source devices, and this system has: a setting unit which sets, as a condition, a relationship between a DC power amount requested with respect to each of the plurality of power source devices, and a conversion efficiency indicating the efficiency of conversion from AC power source input of each of the plurality of power source devices to DC power source output; and a specifying unit which specifies, in such a way that the condition is satisfied, a power source device group that supplies DC power, from among the plurality of power source devices.

Description

情報処理装置、及びプログラムInformation processing apparatus and program
 本発明は、複数の電源装置が搭載される情報処理装置に関する。 The present invention relates to an information processing apparatus equipped with a plurality of power supply apparatuses.
 電子機器のなかには、必要な電力を供給するために電源装置を複数、搭載した電子機器がある。電子機器の消費電力は、負荷によって変動する。このことから、電源装置を複数、搭載した電子機器では、必要とする電力量に応じて、1つ以上の電源装置を選択的に動作させることが行われる。例えばそれぞれが1台のサーバとして動作可能なサーバブレードを複数、搭載した電子機器であるブレードサーバでは、動作させるサーバブレードの数に応じて、必要な電力量を供給できるだけの数の電源装置を動作させることが行われる。そのように電源装置のなかで実際に動作させる電源装置を選択することにより、言い換えれば、動作させる必要のない電源装置を動作させないことにより、電子機器全体の消費電力を抑えることができる。 Among electronic devices, there are electronic devices equipped with a plurality of power supply devices to supply necessary power. The power consumption of the electronic device varies depending on the load. For this reason, in an electronic apparatus equipped with a plurality of power supply devices, one or more power supply devices are selectively operated in accordance with the required amount of power. For example, in a blade server that is an electronic device equipped with multiple server blades each capable of operating as a single server, operate as many power supply units as necessary to supply the required amount of power according to the number of server blades to be operated Is done. By selecting the power supply device that is actually operated among the power supply devices, in other words, by not operating the power supply device that does not need to be operated, the power consumption of the entire electronic device can be suppressed.
 ブレードサーバのような電子機器では、これまで、信頼性や処理能力等が問われ、消費電力については比較的に重視されていなかった。しかし、最近では、環境への配慮が要求されるようになってきている。環境を配慮した場合、電子機器では、製造コストの上昇を招いても、消費電力をより抑えることを重視することが考えられる。 In electronic devices such as blade servers, reliability and processing capacity have been questioned so far, and power consumption has not been relatively important. Recently, however, consideration for the environment has been demanded. In consideration of the environment, in electronic devices, it may be considered to place importance on further reducing power consumption even if the manufacturing cost increases.
 電源装置の変換効率は、負荷、つまり出力電力によって変化する。電子機器の省電力化の面では、電源装置全体の変換効率はより高くすることが望ましい。このことから、従来の電子機器のなかには、必要な電力量に応じて、最適な変換効率となる電源装置の組み合わせを特定し、特定した組み合わせの電源装置を動作させる電子機器がある。その従来の電子機器では、必要な電力量に応じて、最適な変換効率となる組み合わせの電源装置を動作させることから、消費電力を抑えることができる。 The conversion efficiency of the power supply device varies depending on the load, that is, output power. In terms of power saving of the electronic device, it is desirable to increase the conversion efficiency of the entire power supply device. For this reason, among conventional electronic devices, there is an electronic device that specifies a combination of power supply devices that achieves optimum conversion efficiency in accordance with a required amount of power, and operates the power supply device of the specified combination. In the conventional electronic device, since the combination power supply device that achieves the optimum conversion efficiency is operated according to the required electric energy, the power consumption can be suppressed.
 実際に特定される電源装置の組み合わせは、必要とする電力量によって変化し、特定された電源装置の組み合わせの変換効率は、その電力量、及びその組み合わせ内容によって変化する。このため、電子機器における高い変換効率は、搭載された電源装置のなかから最適な組み合わせを特定したとしても、常に実現できるとは限らない。このことから、複数の電源装置を搭載する電子機器では、常に所望の変換効率を維持できるようにすることが望まれる可能性がある。 The combination of the power supply devices that are actually specified varies depending on the amount of power required, and the conversion efficiency of the combination of the specified power supply devices varies depending on the amount of power and the content of the combination. For this reason, high conversion efficiency in an electronic device is not always realizable even if the optimal combination is specified from among the mounted power supply devices. For this reason, there is a possibility that an electronic device equipped with a plurality of power supply devices is desired to always maintain a desired conversion efficiency.
特開2009-201244号公報JP 2009-201244 A 特開2010-16921号公報JP 2010-16921 A
 1側面では、本発明は、複数の電源装置を搭載する電子機器において所望の変換効率を維持できるようにするための技術を提供することを目的とする。 In one aspect, an object of the present invention is to provide a technique for enabling a desired conversion efficiency to be maintained in an electronic device including a plurality of power supply devices.
 第1の案では、本発明を適用した1システムは、複数の電源装置の各々から直流電力が供給可能であり、 複数の電源装置の各々に対して要求される直流電力量と、複数の電源装置の各々の交流電源入力から直流電源出力に変換される効率を示す変換効率との関係を条件として設定する設定部と、複数の電源装置の中から、直流電力を供給する電源装置群を、条件を満たすように特定する特定部と、を有する。 In the first proposal, one system to which the present invention is applied can supply DC power from each of a plurality of power supply devices, and the amount of DC power required for each of the plurality of power supply devices and the plurality of power supply devices. A setting unit that sets the relationship between the conversion efficiency indicating the efficiency of conversion from each AC power supply input to a DC power supply output as a condition, and a power supply device group that supplies DC power from a plurality of power supply devices, And a specifying unit that specifies to satisfy
 本発明を適用した1システムでは、複数の電源装置を搭載する電子機器において、所望の変換効率を維持させることができる。 In one system to which the present invention is applied, a desired conversion efficiency can be maintained in an electronic device equipped with a plurality of power supply devices.
本実施形態による電源最適化支援装置の機能構成例を説明する図である。It is a figure explaining the function structural example of the power supply optimization assistance apparatus by this embodiment. 80PLUS GOLDの規格を満たす電源装置の出力-変換効率特性を説明する図である。It is a figure explaining the output-conversion efficiency characteristic of the power supply device which satisfy | fills 80PLUS GOLD standard. 80PLUS GOLDの規格を満たす電源装置の個数が2個であった場合に、動作させる電源装置の個数による出力-変換効率特性の変化を説明する図である。It is a figure explaining the change of the output-conversion efficiency characteristic by the number of the power supply devices to be operated when the number of the power supply devices satisfying the 80PLUS GOLD standard is two. 80PLUS GOLDの規格を満たす電源装置の個数が2個であった場合に、その個数の電源装置によって実現される出力-変換効率特性の変化を説明する図である。It is a figure explaining the change of the output-conversion efficiency characteristic implement | achieved by the power supply device of the number, when the number of the power supply devices which satisfy | fill the 80PLUS GOLD standard is two. 80PLUS GOLDの規格を満たす電源装置の個数が8個であった場合に、動作させる電源装置の個数による出力-変換効率特性の変化を説明する図である。It is a figure explaining the change of the output-conversion efficiency characteristic by the number of the power supply devices to be operated when the number of the power supply devices satisfying the 80PLUS GOLD standard is eight. 80PLUS GOLDの規格を満たす電源装置の個数が8個であった場合に、その個数の電源装置によって実現される出力-変換効率特性の変化を説明する図である。It is a figure explaining the change of the output-conversion efficiency characteristic implement | achieved by the power supply device of the number, when the number of the power supply devices which satisfy | fill the 80PLUS GOLD standard is eight. 電源モジュールテーブルの内容例を説明する図である。It is a figure explaining the example of the content of a power supply module table. 必要数決定テーブルの内容を説明する図である。It is a figure explaining the content of the required number determination table. 第1の電源モジュール決定処理のフローチャートである。It is a flowchart of a 1st power supply module determination process. 第2の電源モジュール決定処理のフローチャートである。It is a flowchart of a 2nd power supply module determination process. 本実施形態を適用可能なコンピュータのハードウェア構成の一例を表す図である。It is a figure showing an example of the hardware constitutions of the computer which can apply this embodiment. 本実施形態による電子機器の構成例を説明する図である。It is a figure explaining the example of composition of the electronic equipment by this embodiment. 電源管理装置の機能構成例を説明する図である。It is a figure explaining the example of functional composition of a power management device. 電源管理テーブルの内容例を説明する図である。It is a figure explaining the example of the content of a power management table. 電源管理処理のフローチャートである。It is a flowchart of a power management process. 本実施形態による電源装置の構成例を説明する図である。It is a figure explaining the structural example of the power supply device by this embodiment. 寿命ストレス値算出処理のフローチャートである。It is a flowchart of a lifetime stress value calculation process. 要求対応処理のフローチャートである。It is a flowchart of a request response process. 出力バランス調整処理のフローチャートである。It is a flowchart of an output balance adjustment process.
 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。
 図1は、本実施形態による電源最適化支援装置の機能構成例を説明する図である。本実施形態による電源最適化支援装置1は、ユーザ(電子機器の設計者、或いは使用者等)が、電子機器に搭載させる電源装置として適切と云える電源装置を決定するのを支援するものとして実現されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram illustrating an example of a functional configuration of a power optimization support device according to the present embodiment. The power supply optimization support apparatus 1 according to the present embodiment supports the user (designer or user of an electronic device) to determine a power supply device that is appropriate as a power supply device to be mounted on the electronic device. It has been realized.
 本実施形態による電源最適化支援装置1を説明する前に、電子機器に搭載される電源装置、及び複数の電源装置の選択的な動作によって得られる変換効率について、図2~図6を参照して具体的に説明する。 Before explaining the power optimization support device 1 according to the present embodiment, refer to FIGS. 2 to 6 for the conversion efficiency obtained by the selective operation of the power device mounted on the electronic device and the plurality of power devices. Will be described in detail.
 近年、電子機器の一つであるコンピュータ用の電源装置の電力変換効率に関する規格として80PLUSが策定されている。この80PLUSの規格は、複数の異なる電力供給が求められる電源装置において、交流入力から直流出力に変換する際に、80%以上の変換効率を満たすことを要求する。80PLUSの規格には、80PLUS、80PLUS BRONZE、80PLUS SILVER、80PLUS GOLD、80PLUS PLATINUM、という規格が存在する。 In recent years, 80PLUS has been established as a standard for power conversion efficiency of a power supply for a computer, which is one of electronic devices. The 80PLUS standard requires that a conversion efficiency of 80% or more be satisfied when converting from an AC input to a DC output in a power supply apparatus that requires a plurality of different power supplies. The 80PLUS standards include 80PLUS, 80PLUS BRONZE, 80PLUS SILVER, 80PLUS GOLD, and 80PLUS PLATINUM.
 図2は、80PLUS GOLDの規格を満たす電源装置の出力に対応する 変換効率特性を説明する図である。図2において、縦軸に変換効率(比率)、横軸に出力(%)をそれぞれ取っている。図2に表すように、80PLUS GOLDの規格を満たす電源装置は、低出力領域から高出力領域まで比較的に変換効率がフラットな特性となっている。後述する図3~図6でも同様に、縦軸に変換効率(比率)、横軸に出力(%)をそれぞれ取っている。出力(%)は、実際の出力を定格で割った値を百分率で表したものである。 FIG. 2 is a diagram for explaining the conversion efficiency characteristics corresponding to the output of a power supply device that satisfies the 80PLUS®GOLD standard. In FIG. 2, the vertical axis represents conversion efficiency (ratio) and the horizontal axis represents output (%). As shown in FIG. 2, the power supply device that satisfies the 80PLUS GOLD standard has a relatively flat conversion efficiency from the low output region to the high output region. 3 to 6 described later, similarly, the vertical axis represents the conversion efficiency (ratio) and the horizontal axis represents the output (%). The output (%) is the percentage obtained by dividing the actual output by the rating.
 図3は、80PLUS GOLDの規格を満たす電源装置の個数が2個であった場合に、動作させる電源装置の個数による出力-変換効率特性の変化を説明する図である。変換効率は図3中「電源効率」と表記している。P1は、動作する電源装置が1個の場合の出力-変換効率特性を表し、P2は動作する電源装置が2個の場合の出力に対応する変換効率特性(合成特性)を表している。出力(%)は、1個の電源装置の定格を100%として表している。以降、特に断らない限り、「特性」は「出力に対応する変換効率特性」を指す意味で用いる。複数の電源装置によって得られる特性は以降「合成特性」と表記する。なお、後述する図4~図6の出力に対応する変換効率特性の変化を説明する図における「電源効率」及び出力(%)の説明は、図3と同様であるため、説明を省略する。 FIG. 3 is a diagram for explaining a change in output-conversion efficiency characteristics depending on the number of power supply devices to be operated when the number of power supply devices satisfying the 80PLUS GOLD standard is two. The conversion efficiency is expressed as “power supply efficiency” in FIG. P1 represents an output-conversion efficiency characteristic when one power supply apparatus operates, and P2 represents a conversion efficiency characteristic (composite characteristic) corresponding to an output when two power supply apparatuses operate. The output (%) represents the rating of one power supply device as 100%. Hereinafter, unless otherwise specified, “characteristic” is used to mean “conversion efficiency characteristic corresponding to output”. Characteristics obtained by a plurality of power supply devices are hereinafter referred to as “composite characteristics”. Note that the description of “power efficiency” and output (%) in the diagrams for explaining changes in the conversion efficiency characteristics corresponding to the outputs of FIGS. 4 to 6 described later are the same as those in FIG.
 複数の電源装置を搭載させる電子機器では、必要な電力量に応じて、必要な電力量を供給可能な数の電源装置を動作させる。そのため、必要な電力量の変化に応じて、電源装置の動作開始、或いは停止(オン(ON)/オフ(OFF))が行われる。電源装置全体の変換効率を高く維持するためには、電源装置の動作開始、或いは停止は、特性P1と特性P2の交点、つまり特性P1と特性P2が一致する電力量で行うのが望ましい。特性P1と特性P2の交点で1個の電源装置を動作開始、或いは停止させる場合、電源装置全体の合成特性(ここでは、2個の電源装置を選択的に動作させることで電力が供給される範囲全体での特性。固定の複数の電源装置を動作させた場合の合成特性と区別するために、以降、「全体合成特性」と表記)は、図4に表すものとなる。 In an electronic device equipped with a plurality of power supply devices, a number of power supply devices capable of supplying the required power amount are operated according to the required power amount. For this reason, the operation of the power supply apparatus is started or stopped (ON (ON) / OFF (OFF)) in accordance with a change in the required electric energy. In order to keep the conversion efficiency of the entire power supply device high, it is desirable to start or stop the operation of the power supply device at the intersection of the characteristics P1 and P2, that is, the amount of power at which the characteristics P1 and P2 match. When the operation of one power supply device is started or stopped at the intersection of the characteristics P1 and the characteristics P2, the combined characteristics of the entire power supply apparatus (here, power is supplied by selectively operating the two power supply apparatuses) Characteristics in the entire range (hereinafter referred to as “overall combined characteristics” in order to distinguish from combined characteristics when a plurality of fixed power supply devices are operated) are as shown in FIG.
 図4に表す全体合成特性は、供給する電力量による、最も高い変換効率の変化に相当する。図3及び図4から明らかなように、1個の電源装置により電力を供給する範囲での全体合成特性は、1個の電源装置の特性と一致し、2個の電源装置により電力を供給する範囲での全体合成特性は、2個の電源装置の合成特性と一致する。このことから、全体合成特性は、電力の供給に用いる電源装置の数毎(電力の供給に用いる電源装置における数により電力が供給される範囲毎)に、電力の供給に用いる電源装置における数の電源装置の合成特性に変化するものとなる。 The overall composite characteristic shown in FIG. 4 corresponds to the highest change in conversion efficiency depending on the amount of power supplied. As is apparent from FIG. 3 and FIG. 4, the overall combined characteristics in the range in which power is supplied by one power supply apparatus match the characteristics of one power supply apparatus, and power is supplied by two power supply apparatuses. The overall combined characteristics in the range coincide with the combined characteristics of the two power supply devices. From this, the total composite characteristic is the number of power supply devices used for power supply for each number of power supply devices used for power supply (for each range in which power is supplied depending on the number of power supply devices used for power supply). It changes to the composite characteristics of the power supply.
 図5は、80PLUS GOLDの規格を満たす電源装置が8個であった場合に、動作させる電源装置の個数による出力-変換効率特性の変化を説明する図である。P1~P8はそれぞれ、動作する電源装置が1~8個の場合の特性を表している。出力(%)は、1個の電源装置の定格を100%としている。図6は、80PLUS GOLDの規格を満たす電源装置が8個であった場合に、電源装置全体で得られる出力-変換効率特性を説明する図である。 FIG. 5 is a diagram for explaining a change in output-conversion efficiency characteristics depending on the number of power supply devices to be operated when there are eight power supply devices satisfying the 80PLUS GOLD standard. P1 to P8 represent characteristics when 1 to 8 power supply devices operate. The output (%) assumes that the rating of one power supply device is 100%. FIG. 6 is a diagram for explaining output-conversion efficiency characteristics obtained by the entire power supply apparatus when there are eight power supply apparatuses satisfying the 80PLUS GOLD standard.
 図3及び図4に表すように、2個の電源装置を選択的に動作させる場合、電源装置を停止、或いは動作開始させるポイント、つまり特性P1と合成特性P2の交点、及び特性P1と合成特性P2の交点の付近では変換効率の比較的に大きな谷が存在し、谷の部分で変換効率は相対的に最も低くなる。しかし、電源装置の数が多くなる程、全体としての合成特性はよりフラットになり、特性P1と合成特性P2の交点の位置は相対的に低出力領域に移ることになる。このため、図5及び図6に表すように、電源装置を動作させる数が増える程、より広範囲で変換効率をより高く維持させることができる。 As shown in FIGS. 3 and 4, when two power supply devices are selectively operated, points at which the power supply devices are stopped or started, that is, the intersections of the characteristics P1 and the composite characteristics P2, and the characteristics P1 and the composite characteristics There is a valley having a relatively large conversion efficiency in the vicinity of the intersection of P2, and the conversion efficiency is relatively lowest in the valley portion. However, as the number of power supply devices increases, the overall composite characteristic becomes flatter, and the position of the intersection of the characteristic P1 and the composite characteristic P2 moves to a relatively low output region. For this reason, as shown in FIGS. 5 and 6, the conversion efficiency can be maintained higher in a wider range as the number of operating power supply devices increases.
 上記のようなことから、幅広い電力量の範囲で変換効率を高く維持するうえでは、電源装置の数は多くするのが望ましい。電子機器が必要とする電力量の範囲は、その電子機器に搭載されるハードウェア資源から推定することができる。このようなことから、本実施形態による電源最適化支援装置1は、ユーザに電力量の範囲、及びその範囲内で維持させるべき変換効率の下限値を条件として指定させ、指定された条件を満たす電源装置の組み合わせを提示するものとして実現されている。 For the above reasons, it is desirable to increase the number of power supply devices in order to maintain high conversion efficiency over a wide range of electric energy. The range of the amount of power required by the electronic device can be estimated from the hardware resources installed in the electronic device. For this reason, the power optimization support device 1 according to the present embodiment allows the user to specify the range of power amount and the lower limit value of the conversion efficiency to be maintained within the range as a condition, and satisfy the specified condition. It is realized as a combination of power supply devices.
 条件を満たす電源装置の組み合わせを提示されたユーザは、提示された組み合わせの電源装置を電子機器に搭載させることにより、消費電力が変動しても、変換効率は所望の変換効率以上に維持させることができるようになる。電子機器の変換効率が所望の変換効率以上に維持できることから、電子機器の消費電力もより抑えることができるようになる。条件として提示する電力量と変換効率の関係は、上記とは異なるものであっても良い。 A user who is presented with a combination of power supply devices that satisfies the condition can maintain the conversion efficiency at or above the desired conversion efficiency even if the power consumption fluctuates by installing the power supply device of the presented combination in an electronic device. Will be able to. Since the conversion efficiency of the electronic device can be maintained higher than the desired conversion efficiency, the power consumption of the electronic device can be further suppressed. The relationship between the electric energy presented as the condition and the conversion efficiency may be different from the above.
 図1の説明に戻る。
 図1に表す電源最適化支援装置1は、本体2、操作部3、及び出力処理部4を備える。本体2は、入力部21、制御部22、出力部23、電源特定部24、及び記憶部25を備える。
Returning to the description of FIG.
A power optimization support device 1 illustrated in FIG. 1 includes a main body 2, an operation unit 3, and an output processing unit 4. The main body 2 includes an input unit 21, a control unit 22, an output unit 23, a power supply specifying unit 24, and a storage unit 25.
 操作部3は、電源最適化支援装置1のユーザ(設計者)が各種指示、或いはデータの入力のために操作する装置である。具体的には、操作部3は例えばキーボード、及びマウス等のポインティングデバイス等が相当する。電子機器に搭載させる対象となる電源装置が満たすべき条件、つまり、想定する電力量の範囲と、その範囲内で維持させるべき変換効率と、の組み合わせは、操作部3への操作により指定される。本実施形態では、電力量の範囲と変換効率の組は、1つのみ指定させるようにしているが、複数組、指定可能としても良い。これは、図5及び図6に表すように、低出力領域では高出力領域より高い変換効率を維持させるのが困難だからである。 The operation unit 3 is a device that a user (designer) of the power optimization support device 1 operates to input various instructions or data. Specifically, the operation unit 3 corresponds to, for example, a keyboard and a pointing device such as a mouse. The combination of the conditions to be satisfied by the power supply device to be mounted on the electronic device, that is, the assumed power amount range and the conversion efficiency to be maintained within the range is specified by an operation on the operation unit 3. . In the present embodiment, only one set of the electric energy range and conversion efficiency is specified, but a plurality of sets may be specified. This is because, as shown in FIGS. 5 and 6, it is difficult to maintain higher conversion efficiency in the low output region than in the high output region.
 出力処理部4は、本体2から出力されるデータを処理する装置である。具体的には、出力処理部4は、例えば表示装置、及び光ディスク装置等の記録媒体にデータを書き込み可能な媒体駆動装置等が相当する。出力処理部4及び操作部3は、本体2とケーブル、或いはネットワークを介して接続させた端末装置であっても良い。 The output processing unit 4 is a device that processes data output from the main body 2. Specifically, the output processing unit 4 corresponds to, for example, a display device and a medium driving device capable of writing data on a recording medium such as an optical disk device. The output processing unit 4 and the operation unit 3 may be a terminal device connected to the main body 2 via a cable or a network.
 操作部3は、ユーザが行った操作内容を表す情報(操作情報)を出力する。本体2の入力部21は、操作部3から出力された操作情報を入力し、入力した操作情報を制御部22に出力する。制御部22は、入力部21から入力した操作情報を解析することにより、ユーザが要求した指示、或いは入力を要求したデータを認識し、認識した指示、或いはデータに応じた制御を行う。各種指示、或いはデータ入力をユーザが行えるように、制御部22は、出力部23に指示して、表示させるべき画面の作成、作成した画面の出力を出力部23に行わせる。それにより、ユーザは、出力処理部4に表示された画面を確認しながら、操作部3への操作を通して、各種指示、或いはデータ入力を行うことができる。 The operation unit 3 outputs information (operation information) indicating the content of the operation performed by the user. The input unit 21 of the main body 2 inputs the operation information output from the operation unit 3 and outputs the input operation information to the control unit 22. The control unit 22 analyzes the operation information input from the input unit 21 to recognize the instruction requested by the user or the data requested to be input, and performs control according to the recognized instruction or data. The control unit 22 instructs the output unit 23 to create a screen to be displayed and output the created screen so that the user can perform various instructions or data input. Thus, the user can perform various instructions or data input through operations on the operation unit 3 while confirming the screen displayed on the output processing unit 4.
 本実施形態では、上記条件の入力は、例えば電源装置の組み合わせの提示をユーザが要求した場合に行わせるようにしている。制御部22は、操作部3を介してユーザがその要求を行った場合、条件を入力するための条件入力画面を出力部23に出力させる。特には図示していないが、条件入力画面には、条件を入力する入力エリア、入力された条件を満たす電源装置の組み合わせの提示を要求(指示)するためのボタン(以降「実行ボタン」)、キャンセルを指示するためのボタン(以降「キャンセルボタン」)等が配置されている。 In the present embodiment, the input of the above condition is performed when the user requests to present a combination of power supply devices, for example. When the user makes a request through the operation unit 3, the control unit 22 causes the output unit 23 to output a condition input screen for inputting conditions. Although not specifically shown, the condition input screen includes an input area for inputting conditions, a button for requesting (instructing) presentation of a combination of power supply devices that satisfy the input conditions (hereinafter referred to as “execution button”), A button for instructing cancellation (hereinafter referred to as “cancel button”) and the like are arranged.
 制御部22は、入力部21から入力される操作情報を解析して、入力エリア内に表示させるべきデータ(数値)を特定し、出力部23を制御して、特定したデータが入力エリア内に配置された条件入力画面を出力処理部4に表示させる。それにより、ユーザが操作部3により上記実行ボタンをクリックした場合、制御部22は、条件入力画面の入力エリア内に表示させていたデータを条件と見なし、電源特定部24に出力する。 The control unit 22 analyzes the operation information input from the input unit 21, specifies data (numerical values) to be displayed in the input area, controls the output unit 23, and the specified data is stored in the input area. The arranged condition input screen is displayed on the output processing unit 4. Accordingly, when the user clicks the execution button by the operation unit 3, the control unit 22 regards the data displayed in the input area of the condition input screen as a condition and outputs it to the power supply specifying unit 24.
 入力する条件としては、上記のように、電力量の範囲、及びその範囲内で維持させるべき変換効率(の下限値)を指定させるようにしている。以降、電力量の範囲の下限値となる電力値は要求最小電力値Ps、電力量の範囲の上限値となる電力値は要求最大電力値Pb、変換効率は要求電源効率ηAとそれぞれ表記する。変換効率は以降、「電源効率」と表記する。 As input conditions, as described above, the range of electric energy and the conversion efficiency (lower limit value) to be maintained within the range are specified. Hereinafter, the power value that is the lower limit value of the power amount range is expressed as the required minimum power value Ps, the power value that is the upper limit value of the power amount range is expressed as the required maximum power value Pb, and the conversion efficiency is expressed as the required power supply efficiency ηA. The conversion efficiency is hereinafter referred to as “power supply efficiency”.
 電源特定部24は、制御部22から入力した条件を満たす電源装置の組み合わせの特定を行う。組み合わせの特定は、記憶部25に記憶されている電源モジュールテーブル25aを参照して行われる。特定結果は、必要数決定テーブル25bとして記憶部25に保存される。 The power supply specifying unit 24 specifies a combination of power supply devices that satisfy the conditions input from the control unit 22. The combination is specified with reference to the power supply module table 25a stored in the storage unit 25. The specific result is stored in the storage unit 25 as the necessary number determination table 25b.
 図7は、電源モジュールテーブルの内容例を説明する図である。
 電子機器に搭載可能な電源装置の種類は、電子機器毎によって異なるのが普通である。また、電源装置の調達は、予め選定した種類に限定して行われるのが普通である。電源モジュールテーブル25aは、電子機器に搭載可能な電源装置の種類を表すテーブルである。図7に表すように、電源モジュールテーブル25aには、電源装置毎に、その容量(W)が定義されている。容量(W)とは定格の電力値のことである。特に断らない限り、容量は定格を指す意味で用いる。図7中の「PA」「PB」及び「PN」は何れも電源モジュールの種類を表している。図7中、電源装置は「電源モジュール」と表記している。以降、電源装置は電源モジュールと表記する。
FIG. 7 is a diagram for explaining an example of the contents of the power module table.
The type of power supply device that can be mounted on an electronic device is usually different for each electronic device. In addition, the procurement of the power supply device is usually limited to the types selected in advance. The power supply module table 25a is a table representing the types of power supply devices that can be mounted on the electronic device. As shown in FIG. 7, the power supply module table 25a defines a capacity (W) for each power supply device. The capacity (W) is a rated power value. Unless otherwise specified, capacity is used to indicate rating. “PA”, “PB”, and “PN” in FIG. 7 represent the types of power supply modules. In FIG. 7, the power supply device is described as “power supply module”. Hereinafter, the power supply device is referred to as a power supply module.
 本実施形態では、混乱を避け、理解を容易とするために、以下のように特性、つまり電源効率ηの出力による変化が表される80PLUS GOLDの電源モジュールを想定する。図7では、容量(定格)が異なる電源モジュールを表している。これは、上記想定により、同じ容量の電源モジュールの特性は区別できないためである。
 η=F(p,x)=-0.2×(x/p)+0.24×(x/p)+0.83
                    ・・・(1)
ここで、p:電源モジュールの定格電力値、x:任意の出力電力値(0≦x≦p)、である。
In the present embodiment, in order to avoid confusion and facilitate understanding, an 80PLUS GOLD power supply module is assumed in which the characteristics, that is, changes due to the output of the power supply efficiency η are expressed as follows. FIG. 7 shows power supply modules having different capacities (ratings). This is because the characteristics of power supply modules having the same capacity cannot be distinguished based on the above assumption.
η = F (p, x) = − 0.2 × (x / p) 2 + 0.24 × (x / p) +0.83
... (1)
Here, p is a rated power value of the power supply module, and x is an arbitrary output power value (0 ≦ x ≦ p).
 複数の電源モジュールでは、式(1)中のpとして、複数の電源モジュールの定格電力値の累算値を用いれば良い。このことから、式(1)は、電源モジュールの数に係わらず、電源効率ηの算出に用いることができる。 In the plurality of power supply modules, an accumulated value of the rated power values of the plurality of power supply modules may be used as p in the expression (1). Therefore, Equation (1) can be used for calculating the power supply efficiency η regardless of the number of power supply modules.
 図8は、必要数決定テーブルの内容を説明する図である。
 必要数決定テーブルは、供給すべき電力量に応じて、動作させるべき電力モジュールの種類、及び動作させるべき電力モジュールの数を表すテーブルである。図8に表すように、必要数決定テーブルには、消費電力基準値毎に、容量(W)、及び必要数が定義されている。消費電力基準値は、新たに1個の電源モジュールの動作を開始させるか、或いは1個の電源モジュールを停止させるべき電力値である。容量(W)は、動作開始、或いは停止の対象となる電源モジュールの容量である。必要数は、消費電力基準値以下の状況時に動作させるべき電源モジュールの数である。このことから、図8に表す例は、例えば消費電力値が310.0Wまでは容量が400Wの1個の電源モジュールを動作させ、その消費電力値が310.0Wを越えた場合、容量が400Wの1個の電源モジュールを新たに動作させるべきであることを表している。また、その例は、例えば消費電力値が1066.7Wまでは容量が400Wの5個の電源モジュールを動作させ、その消費電力値が1066.7Wを越えた場合、容量が800Wの1個の電源モジュールを新たに動作させるべきであることを表している。
FIG. 8 is a diagram for explaining the contents of the necessary number determination table.
The required number determination table is a table representing the types of power modules to be operated and the number of power modules to be operated according to the amount of power to be supplied. As shown in FIG. 8, in the required number determination table, a capacity (W) and a required number are defined for each power consumption reference value. The power consumption reference value is a power value at which the operation of one power supply module is newly started or one power supply module is to be stopped. The capacity (W) is the capacity of the power supply module that is the target of operation start or stop. The required number is the number of power supply modules to be operated in a situation where the power consumption is below the reference value. Therefore, in the example shown in FIG. 8, for example, one power supply module having a capacity of 400 W is operated until the power consumption value is 310.0 W, and when the power consumption value exceeds 310.0 W, the capacity is 400 W. This means that one power supply module should be newly operated. In addition, for example, five power supply modules with a capacity of 400 W are operated up to a power consumption value of 1066.7 W. If the power consumption value exceeds 1066.7 W, one power supply with a capacity of 800 W is used. Indicates that the module should be run anew.
 上記消費電力基準値は、図3及び図5において、電源モジュールの数が1個、異なる2つの特性の交点での出力に相当する。電源モジュールの特性(ここでは合成特性を含む)が式(1)により表される場合、消費電力基準値は以下の関係を満たす出力電力値xとなる。
 F(Po,x)=F(Pn,x)=η ・・・ (2)
ここで、Po:任意の個数の電源モジュールを想定した場合の定格電力値、Pn:更に1個の電源モジュールを加えた場合の定格電力値、である。
The power consumption reference value corresponds to the output at the intersection of two different characteristics in FIG. 3 and FIG. When the characteristics of the power supply module (here, including the combined characteristics) are expressed by Expression (1), the power consumption reference value is an output power value x that satisfies the following relationship.
F (Po, x) = F (Pn, x) = η (2)
Here, Po is a rated power value when an arbitrary number of power supply modules is assumed, and Pn is a rated power value when one power supply module is further added.
 例えば1個の容量が400Wの電源モジュールに2個目の容量が400Wの電源モジュールを動作させる消費電力基準値xは、式(1)及び(2)から、以下の関係を満たす必要がある。
  -0.2×(x/400)+0.24×(x/400)+0.83
 =-0.2×(x/800)+0.24×(x/800)+0.83=η
                   ・・・ (3)
For example, the power consumption reference value x for operating one power supply module with a capacity of 400 W and a second power supply module with a capacity of 400 W needs to satisfy the following relationship from equations (1) and (2).
−0.2 × (x / 400) 2 + 0.24 × (x / 400) +0.83
= −0.2 × (x / 800) 2 + 0.24 × (x / 800) + 0.83 = η
(3)
 この式(3)から、消費電力基準値xとして310Wが求まり、310W時の電源効率ηは約0.894となる。 From this equation (3), 310 W is obtained as the power consumption reference value x, and the power supply efficiency η at 310 W is about 0.894.
 ここで、最小電力値aから最大電力値bまでの平均電源効率(%)は、その電力幅(=b-a)の電源効率ηの積分値をその電力幅で割って得られる値と定義する。最小電力値aを100W、最大電力値bを2000Wとした場合、式(1)により電源効率ηが計算できる2000W定格の電源モジュールでは平均電源効率は約88.6%となる。これに対し、その2000W定格の電源モジュールの代わりに、式(1)により電源効率ηが計算できる400W定格の電源モジュールのみを8個、用いた場合、平均電源効率は約90.1%となり、約1.5%改善できる。その改善分、電力コスト、及び二酸化炭素の放出量を抑えることができる。 Here, the average power efficiency (%) from the minimum power value a to the maximum power value b is defined as a value obtained by dividing the integral value of the power efficiency η of the power width (= ba) by the power width. To do. When the minimum power value a is 100 W and the maximum power value b is 2000 W, the average power supply efficiency is about 88.6% in a 2000 W rated power supply module in which the power supply efficiency η can be calculated by Equation (1). On the other hand, instead of the 2000 W rated power supply module, when only eight 400 W rated power supply modules whose power efficiency η can be calculated by Equation (1) are used, the average power supply efficiency is about 90.1%. About 1.5% improvement. The improvement, power cost, and carbon dioxide emission can be suppressed.
 本実施形態では、図8に表すように、複種類の電源モジュールの組み合わせを提示可能にしている。これは、電源モジュールに要するコストを考慮した場合、電子機器に搭載する電源モジュールはより少なくすることが望ましいからである。 In this embodiment, as shown in FIG. 8, a combination of multiple types of power supply modules can be presented. This is because it is desirable to reduce the number of power supply modules mounted on the electronic device in consideration of the cost required for the power supply modules.
 電源特定部24は、図1に表すように、第1の電源選択部24a、第2の電源選択部24b及びテーブル作成部24cを備えている。 As shown in FIG. 1, the power supply specifying unit 24 includes a first power supply selection unit 24a, a second power supply selection unit 24b, and a table creation unit 24c.
 第1の電源選択部24aは、同じ種類の電源モジュールのみを想定し、制御部22から入力した条件を満たす電源モジュールの1種類を選択し、選択した電源モジュールの必要数を特定する。選択される電源モジュールの1種類は、記憶部25に記憶された電源モジュールテーブル25aに表された種類の電源モジュールのうちの何れかである。 The first power supply selection unit 24a assumes only the same type of power supply modules, selects one type of power supply module that satisfies the conditions input from the control unit 22, and specifies the required number of the selected power supply modules. One type of the selected power supply module is one of the types of power supply modules represented in the power supply module table 25a stored in the storage unit 25.
 第2の電源選択部24bは、第1の電源選択部24aによって選択された種類の電源モジュールと組み合わせられる他の種類の電源モジュールを選択する。他の種類の電源モジュールとして選択対象とされるのは、既に選択された種類の電源モジュールよりも大きい容量の電源モジュールである。以降、最初に抽出される電源モジュールの種類は「第1の種類」、次に抽出される電源モジュールの種類は「第2の種類」とそれぞれ呼ぶことにする。本実施形態では、電子機器に多くの種類の電源モジュールを搭載しないように、電源モジュールの種類は最大で2種類としている。3種類以上の電源モジュールを抽出するようにしても良い。 The second power supply selection unit 24b selects another type of power supply module to be combined with the type of power supply module selected by the first power supply selection unit 24a. What is selected as another type of power supply module is a power supply module having a capacity larger than that of the already selected type of power supply module. Hereinafter, the type of the power supply module extracted first is referred to as a “first type”, and the type of the power supply module extracted next is referred to as a “second type”. In the present embodiment, the maximum number of types of power supply modules is two so that many types of power supply modules are not mounted on the electronic device. Three or more types of power supply modules may be extracted.
 図8に例を表す必要数決定テーブルには、容量が400Wと800Wの2種類の電源モジュールが表されている。容量が400Wの電源モジュールは、第1の種類の電源モジュールであり、容量が800Wの電源モジュールは、第2の種類の電源モジュールである。 In the required number determination table shown in FIG. 8 as an example, two types of power supply modules with capacities of 400 W and 800 W are shown. A power supply module having a capacity of 400 W is a first type power supply module, and a power supply module having a capacity of 800 W is a second type power supply module.
 図8に表す例では、容量が800Wの電源モジュールは、6個目に動作させるべき電源モジュールとなっている。第1の種類の電源モジュールと組み合わせる第2の種類の電源モジュールの選択では、指定された条件を満たすことが前提となる。このことから、図8に表す例は、Poを2000(=400×5)W、Pnを2800(=2000+800)Wとした場合に、式(2)を満たす電源効率ηが要求電源効率ηA以上となったことを表している。 In the example shown in FIG. 8, the power supply module having a capacity of 800 W is the power supply module to be operated in the sixth. The selection of the second type power supply module to be combined with the first type power supply module is premised on the specified condition being satisfied. Therefore, in the example shown in FIG. 8, when Po is 2000 (= 400 × 5) W and Pn is 2800 (= 2000 + 800) W, the power efficiency η satisfying the formula (2) is equal to or higher than the required power efficiency ηA. It represents that.
 上記のように、式(2)を満たす消費電力基準値は、図3及び図5において、電源モジュールの数が1個、異なる2つの特性の交点での出力に相当する。2つの特性の交点での電源効率ηは、周辺での電源効率よりも低くなる。そのため、式(2)を満たす電力値xでの電源効率ηが要求電源効率ηA以上か否かを確認することにより、第2の種類とすることが可能な電源モジュール、第2の種類の電源モジュールを動作開始させる消費電力基準値を特定することができる。 As described above, the power consumption reference value satisfying the expression (2) corresponds to the output at the intersection of two different characteristics with one power supply module in FIGS. The power supply efficiency η at the intersection of the two characteristics is lower than the power supply efficiency in the periphery. Therefore, by checking whether or not the power supply efficiency η at the power value x satisfying Expression (2) is equal to or greater than the required power supply efficiency ηA, the power supply module that can be the second type, the second type of power supply The power consumption reference value for starting the operation of the module can be specified.
 図5及び図6に表すように、電源効率ηは、低出力範囲では局所的な低下が比較的に大きく、高出力範囲では局所的な低下が比較的に小さい。第1の電源選択部24a、及び第2の電源選択部24bによりそれぞれ電源モジュールの種類を選択させるのは、そのような全体合成特性を考慮したためである。 As shown in FIGS. 5 and 6, the power supply efficiency η has a relatively large local decrease in the low output range and a relatively small local decrease in the high output range. The reason why the first power supply selection unit 24a and the second power supply selection unit 24b select the type of the power supply module is that the overall combined characteristics are taken into consideration.
 より具体的には、第1の電源選択部24aは、要求最小電力値Psで要求電源効率ηAを満たすことができる電源モジュールの種類と数を特定する。要求最小電力値Psを越える出力範囲では、要求電源効率ηAを満たすのは比較的に容易となる。これは、第1の種類の電源モジュールよりも容量の大きい電源モジュールを組み合わせても要求電源効率ηAを満たすことができる可能性があることを意味する。このことから、第2の電源選択部24bに、組み合わせ可能な電源モジュールを第2の種類の電源モジュールとして特定させる。第2の電源選択部24bによる特定が行われることにより、電源モジュールの組み合わせが確定する。 More specifically, the first power supply selection unit 24a specifies the type and number of power supply modules that can satisfy the required power supply efficiency ηA with the required minimum power value Ps. In the output range exceeding the required minimum power value Ps, it is relatively easy to satisfy the required power supply efficiency ηA. This means that there is a possibility that the required power efficiency ηA can be satisfied even when a power module having a larger capacity than that of the first type power module is combined. Therefore, the second power source selection unit 24b is allowed to specify the power modules that can be combined as the second type power source modules. The combination of the power supply modules is determined by the specification by the second power supply selection unit 24b.
 テーブル作成部24cは、第2の電源選択部24bから電源モジュールの組み合わせ結果を入力し、図8に表すような必要数決定テーブル25bを作成して記憶部25に保存する。必要数決定テーブル25bは、制御部22の制御により、出力部23を介して出力処理部4に出力される。本実施形態では、必要数決定テーブル25bは、ユーザが指定した条件を満たす電源装置の組み合わせを提示するために表示させる他に、提示された組み合わせの電源モジュールを搭載させる電子機器での電源モジュールの管理用データとして出力可能とさせている。このことから、出力処理部4は、記録媒体にデータを書き込み可能な媒体駆動装置等を含む構成か、或いは本体2とケーブル、若しくはネットワークを介して接続させた端末装置等となる。 The table creation unit 24c receives the combination result of the power supply modules from the second power selection unit 24b, creates a necessary number determination table 25b as shown in FIG. The necessary number determination table 25 b is output to the output processing unit 4 via the output unit 23 under the control of the control unit 22. In the present embodiment, the necessary number determination table 25b is displayed in order to present a combination of power supply devices that satisfy the conditions specified by the user, and in addition to the power supply module in the electronic device on which the power module of the presented combination is mounted. It can be output as management data. Therefore, the output processing unit 4 has a configuration including a medium driving device capable of writing data on a recording medium, or a terminal device connected to the main body 2 via a cable or a network.
 上記電源特定部24は、例えば電子機器に搭載させる電源モジュールをユーザが決定するのを支援するためのプログラム(以降「電源最適化支援ソフトウェア」と表記)をコンピュータに実行させることで実現される。図11は、本実施形態を適用可能なコンピュータのハードウェア構成の一例を表す図である。ここで図11を参照して、上記電源最適化支援装置1の本体2として使用可能なコンピュータ、つまり電源最適化支援ソフトウェアを実行させる対象となるコンピュータの構成例について具体的に説明する。 The power supply specifying unit 24 is realized, for example, by causing a computer to execute a program for assisting a user in determining a power supply module to be mounted on an electronic device (hereinafter referred to as “power supply optimization support software”). FIG. 11 is a diagram illustrating an example of a hardware configuration of a computer to which the present embodiment can be applied. Here, with reference to FIG. 11, a configuration example of a computer that can be used as the main body 2 of the power optimization support device 1, that is, a computer that is a target for executing the power optimization support software will be specifically described.
 図11に表すコンピュータは、CPU61、メモリ62、入力装置63、出力装置64、外部記憶装置65、媒体駆動装置66、及びネットワーク接続装置67を有し、これらがバス68によって互いに接続された構成となっている。図11に表す構成は一例であり、図11に表す構成に限定されるものではない。 The computer shown in FIG. 11 includes a CPU 61, a memory 62, an input device 63, an output device 64, an external storage device 65, a medium drive device 66, and a network connection device 67, which are connected to each other via a bus 68. It has become. The configuration illustrated in FIG. 11 is an example, and is not limited to the configuration illustrated in FIG.
 CPU61は、当該コンピュータ全体の制御を行う。図11には一つのみ表しているが、CPU61は複数、搭載されていても良い。
 メモリ62は、プログラム実行、データ更新等の際に、外部記憶装置65(あるいは可搬型の記録媒体69)に記憶されているプログラムあるいはデータを一時的に格納するRAM等の半導体メモリである。CPU61は、プログラムをメモリ62に読み出して実行することにより、全体の制御を行う。
The CPU 61 controls the entire computer. Although only one is shown in FIG. 11, a plurality of CPUs 61 may be mounted.
The memory 62 is a semiconductor memory such as a RAM that temporarily stores a program or data stored in the external storage device 65 (or portable recording medium 69) during program execution, data update, or the like. The CPU 61 performs overall control by reading the program into the memory 62 and executing it.
 入力装置63は、例えば、キーボード、マウス等のオペレータが操作する操作装置、つまり図1の操作部3との接続を可能にする装置である。その操作装置は、ユーザが行った操作の内容を表す操作情報を出力する。入力装置63は、操作装置から操作情報を入力し、入力した操作情報をCPU61が認識可能な形に変換し、変換後の操作情報をCPU61に出力する。 The input device 63 is, for example, a device that enables connection with an operation device operated by an operator such as a keyboard and a mouse, that is, the operation unit 3 in FIG. The operation device outputs operation information representing the content of the operation performed by the user. The input device 63 inputs operation information from the operation device, converts the input operation information into a form that can be recognized by the CPU 61, and outputs the converted operation information to the CPU 61.
 出力装置64は、例えば表示装置と接続された表示制御装置である。図1に表す出力処理部4の一部として表示装置が存在する場合、表示装置は出力装置64と接続される。外部記憶装置65は、例えばハードディスク装置等の大容量の記憶装置である。電源モジュールテーブル25a、及び必要数決定テーブル25bは、例えば外部記憶装置65に保存される。プログラムとしては、OS(Operating System)、上記電源最適化支援ソフトウェア等がこの外部記憶装置65に格納されている。 The output device 64 is, for example, a display control device connected to a display device. When a display device exists as a part of the output processing unit 4 illustrated in FIG. 1, the display device is connected to the output device 64. The external storage device 65 is a large-capacity storage device such as a hard disk device. The power module table 25a and the necessary number determination table 25b are stored in the external storage device 65, for example. As programs, an OS (Operating System), the power optimization support software, and the like are stored in the external storage device 65.
 媒体駆動装置66は、光ディスクや光磁気ディスク等の可搬型の記録媒体69にアクセスするものである。この媒体駆動装置66は、図1に表す出力処理部4の一部として用いることができる。ネットワーク接続装置67は、例えば通信ネットワークを介した外部装置との通信を可能とさせるものである。このネットワーク接続装置67は、図1に表す出力部23として用いることができる。 The medium driving device 66 accesses a portable recording medium 69 such as an optical disk or a magneto-optical disk. The medium driving device 66 can be used as a part of the output processing unit 4 shown in FIG. The network connection device 67 enables communication with an external device via a communication network, for example. This network connection device 67 can be used as the output unit 23 shown in FIG.
 図1に機能構成を表す電源最適化支援装置1の本体2は、上記電源最適化支援ソフトウェアをOSの制御下でCPU61に実行させることで実現させることができる。その電源最適化支援ソフトウェアがOSと共に外部記憶装置65に格納されていると想定した場合、図1に表す電源最適化支援装置1の本体2の各構成要素は、例えば以下のような図11の構成要素に対応するか、或いは構成要素の組み合わせによって実現される。電源最適化支援ソフトウェアは、記録媒体69に記録されていても良く、ネットワーク接続装置67を介して外部装置から取得しても良い。このことから、電源最適化支援ソフトウェアが格納される記憶装置、或いは記録媒体は、特に限定されない。 1 can be realized by causing the CPU 61 to execute the power optimization support software under the control of the OS. Assuming that the power optimization support software is stored in the external storage device 65 together with the OS, each component of the main body 2 of the power optimization support device 1 shown in FIG. It corresponds to a component or is realized by a combination of components. The power optimization support software may be recorded on the recording medium 69 or may be acquired from an external device via the network connection device 67. Therefore, the storage device or recording medium in which the power optimization support software is stored is not particularly limited.
 入力部21は、入力装置63に対応する。制御部22は、CPU61、メモリ62、外部記憶装置65、及びバス68によって実現される。出力部23は、CPU61、メモリ62、出力装置64、外部記憶装置65、ネットワーク接続装置67、及びバス68によって実現される。出力部23は、CPU61、メモリ62、出力装置64、外部記憶装置65、媒体駆動装置66、及びバス68によって実現される。必要数決定テーブル25bが媒体駆動装置66に搭載された記録媒体69に格納されると想定した場合、出力処理部4の一部は、CPU61、メモリ62、外部記憶装置65、媒体駆動装置66、及びバス68によって実現される。記憶部25は、外部記憶装置65に対応する。電源特定部24は、CPU61、メモリ62、外部記憶装置65、及びバス68によって実現される。 The input unit 21 corresponds to the input device 63. The control unit 22 is realized by the CPU 61, the memory 62, the external storage device 65, and the bus 68. The output unit 23 is realized by the CPU 61, the memory 62, the output device 64, the external storage device 65, the network connection device 67, and the bus 68. The output unit 23 is realized by the CPU 61, the memory 62, the output device 64, the external storage device 65, the medium driving device 66, and the bus 68. Assuming that the required number determination table 25b is stored in the recording medium 69 mounted on the medium driving device 66, a part of the output processing unit 4 includes a CPU 61, a memory 62, an external storage device 65, a medium driving device 66, And the bus 68. The storage unit 25 corresponds to the external storage device 65. The power supply specifying unit 24 is realized by the CPU 61, the memory 62, the external storage device 65, and the bus 68.
 以降は、図9及び図10に表すフローチャートを参照して、上記電源特定部24を実現させる電源最適化支援装置1の動作について詳細に説明する。図9及び図10にそれぞれフローチャートを表す処理は、上記CPU61が、上記電源最適化支援ソフトウェアを実行することで実現される。 Hereinafter, the operation of the power supply optimization support apparatus 1 for realizing the power supply specifying unit 24 will be described in detail with reference to the flowcharts shown in FIGS. 9 and 10. The processing shown in the flowcharts in FIGS. 9 and 10 is realized by the CPU 61 executing the power optimization support software.
 図9は、第1の電源モジュール決定処理のフローチャートである。この第1の電源モジュール決定処理は、図7に表す電源モジュールテーブル25aに表される電源モジュールのなかから第1の種類とする電源モジュールを決定するための処理である。第1の電源モジュール決定処理は、上記条件入力画面の入力エリアに条件が入力された状態でユーザが実行ボタンをクリック操作することで実行される。第1の電源選択部24aは、第1の電源モジュール決定処理をCPU61が実行することで実現される。図9では、消費電力基準値は「Px」と表記している。 FIG. 9 is a flowchart of the first power supply module determination process. This first power supply module determination process is a process for determining a power supply module of the first type from among the power supply modules represented in the power supply module table 25a shown in FIG. The first power supply module determination process is executed when the user clicks the execution button in a state where the condition is input in the input area of the condition input screen. The first power supply selection unit 24a is realized by the CPU 61 executing the first power supply module determination process. In FIG. 9, the power consumption reference value is expressed as “Px”.
 先ず、CPU61は、電源モジュールテーブル25aに表されている電源モジュールのなかで容量が最大の電源モジュールを調査対象として選択する(S1)。次にCPU61は、第1の種類の電源モジュールの最小必要数を特定するための変数N1に1を代入する(S2)。その後、CPU61は、式(1)及び式(2)を用いて、現在、調査対象としている電源モジュールを変数N1の値に1を加えた数だけ動作させる場合の消費電力基準値Px、及び電源効率ηを計算する。計算される消費電力基準値Pxは、変数N1の値が1であった場合、1個の電源モジュールが動作している状況で更に1個の電源モジュールの動作を開始させるための値である。つまり、消費電力基準値Pxは、調査対象とする電源モジュールの容量をPu、電源モジュールの数をN1とした場合、式(2)中のPo及びPnはそれぞれ、Pu×N1、Pu×(N1+1)、とすることにより算出される値である。 First, the CPU 61 selects a power supply module having the maximum capacity among the power supply modules shown in the power supply module table 25a as an investigation target (S1). Next, the CPU 61 assigns 1 to a variable N1 for specifying the minimum required number of the first type power supply modules (S2). Thereafter, the CPU 61 uses the formula (1) and the formula (2), and the power consumption reference value Px when the power module currently being investigated is operated by the number obtained by adding 1 to the value of the variable N1, and the power supply Calculate the efficiency η. When the value of the variable N1 is 1, the calculated power consumption reference value Px is a value for starting the operation of one more power supply module in a situation where one power supply module is operating. That is, when the capacity of the power supply module to be investigated is Pu and the number of power supply modules is N1, the power consumption reference value Px is Po × N1 and Pu × (N1 + 1), respectively, in Equation (2). ).
 消費電力基準値Px、及び電源効率ηの計算を行ったCPU61は、次に、計算した消費電力基準値Pxが要求最小電力値Ps未満か否か判定する(S4)。消費電力基準値Pxが要求最小電力値Psより小さい場合、S4の判定はYesとなり、次にCPU61は、変数N1の値をインクリメントする(S5)。そのインクリメントを行った後は上記S3に戻る。それにより、現在、調査対象とする電源モジュールで要求最小電力値Ps以上の出力に必要な数が変数N1を用いてカウントされることとなる。 The CPU 61 that has calculated the power consumption reference value Px and the power supply efficiency η next determines whether or not the calculated power consumption reference value Px is less than the required minimum power value Ps (S4). If the power consumption reference value Px is smaller than the required minimum power value Ps, the determination in S4 is Yes, and then the CPU 61 increments the value of the variable N1 (S5). After the increment, the process returns to S3. As a result, the number necessary for the output exceeding the required minimum power value Ps in the power module to be investigated is counted using the variable N1.
 一方、消費電力基準値Pxが要求最小電力値Ps以上であった場合、S4の判定はNoとなってS7に移行する。S7では、CPU61は、計算した電源効率ηが要求電源効率ηA未満か否か判定する。計算した電源効率ηが要求電源効率ηAより小さい場合、判定はYesとなってS8に移行する。計算した電源効率ηが要求電源効率ηA以上であった場合、判定はNoとなってS6に移行する。 On the other hand, if the power consumption reference value Px is equal to or greater than the required minimum power value Ps, the determination in S4 is No and the process proceeds to S7. In S7, the CPU 61 determines whether or not the calculated power efficiency η is less than the required power efficiency ηA. If the calculated power efficiency η is smaller than the required power efficiency ηA, the determination is yes and the process proceeds to S8. If the calculated power efficiency η is equal to or greater than the required power efficiency ηA, the determination is no and the process proceeds to S6.
 S7でのNoの判定は、電源モジュールテーブル25aに表される電源モジュールのなかで、要求最小電力値Psで要求電源効率ηAを満たすことができる最大容量の電源モジュールが特定されたことを意味する。このことから、S6では、CPU61は、特定された電源モジュールを第1の種類の電源モジュールとして決定し、変数N1の値を決定した第1の種類の電源モジュールの必要最小数として決定する。その後、第1の電源決定処理が終了する。 The determination of No in S7 means that the power module having the maximum capacity that can satisfy the required power efficiency ηA with the required minimum power value Ps is identified among the power modules represented in the power module table 25a. . Accordingly, in S6, the CPU 61 determines the identified power supply module as the first type power supply module, and determines the value of the variable N1 as the necessary minimum number of the first type power supply modules. Thereafter, the first power supply determination process ends.
 S8では、CPU61は、電源モジュールテーブル25aを参照し、現在、調査対象とする電源モジュールより容量の小さい電源モジュールが有るか否か判定する。他に調査対象とすべき電源モジュールが残っていた場合、S8の判定はYesとなる。このことから、CPU61は、現在、調査対象とする電源モジュールの次に容量の小さい電源モジュールを新たに調査対象として選択する(S9)。その後は上記S2に戻る。それにより、調査対象を順次、変更しつつ、要求最小電力値Psで要求電源効率ηAを満たすことができる電源モジュールの探索が行われる。 In S8, the CPU 61 refers to the power supply module table 25a and determines whether or not there is a power supply module having a capacity smaller than that of the power supply module to be investigated. If there are other power supply modules to be investigated, the determination in S8 is Yes. Thus, the CPU 61 newly selects a power module having the next smallest capacity after the power module to be investigated as a new investigation object (S9). Thereafter, the process returns to S2. Accordingly, a search for a power supply module that can satisfy the required power supply efficiency ηA with the required minimum power value Ps while sequentially changing the investigation target is performed.
 他に調査対象とすべき電源モジュールが残っていない場合、S8の判定はNoとなる。ここでのNoの判定は、指定された条件を満たすことが可能な電源モジュールが存在しないことを意味する。このことから、CPU61は、条件を満たすことが不可能と決定し(S10)、条件を満たすことが不可能な旨をユーザに通知するための結果出力を行う(S11)。その後、第1の電源決定処理が終了する。 If there are no other power supply modules to be investigated, the determination in S8 is No. The determination of No here means that there is no power supply module that can satisfy the specified condition. Thus, the CPU 61 determines that the condition cannot be satisfied (S10), and outputs a result for notifying the user that the condition cannot be satisfied (S11). Thereafter, the first power supply determination process ends.
 上記結果出力は、図1に表す出力処理部4の一部として表示装置が存在する場合、表示装置に対して行われる。それにより、ユーザは、条件の再検討、或いは搭載可能とする電源モジュールの選定作業、等を行うこととなる。 The above result output is performed on the display device when the display device exists as a part of the output processing unit 4 shown in FIG. As a result, the user reviews the conditions or selects a power supply module that can be mounted.
 図10は、第2の電源モジュール決定処理のフローチャートである。第2の電源モジュール決定処理は、上記第1の電源モジュール決定処理の実行により決定された第1の種類の電源モジュールと組み合わせるべき第2の種類の電源モジュールを決定するための処理である。そのため、上記S6が実行されて第1の電源モジュール決定処理が終了することが実行条件となっている。必要数決定テーブル25bの作成も、第2の電源モジュール決定処理の実行によって行われる。第1の種類の電源モジュールの決定された必要最小数は、変数N1に代入されていると想定する。 FIG. 10 is a flowchart of the second power supply module determination process. The second power supply module determination process is a process for determining a second type of power supply module to be combined with the first type of power supply module determined by the execution of the first power supply module determination process. Therefore, the execution condition is that S6 is executed and the first power supply module determination process is ended. The necessary number determination table 25b is also created by executing the second power supply module determination process. It is assumed that the determined necessary minimum number of power supply modules of the first type is assigned to the variable N1.
 先ず、CPU61は、電源モジュールテーブル25aに表される電源モジュールのなかから第1の種類の電源モジュールより容量の大きい電源モジュールを調査対象として選択する(S21)。例えば容量が最大の電源モジュールを調査対象として選択する。これは、電源モジュールの容量が大きいほど、電源モジュールの総数をより多く減らせる可能性があるからである。 First, the CPU 61 selects a power supply module having a capacity larger than that of the first type power supply module from among the power supply modules represented in the power supply module table 25a (S21). For example, the power supply module having the maximum capacity is selected as the investigation target. This is because there is a possibility that the total number of power supply modules can be reduced more as the capacity of the power supply modules is larger.
 容量が最大の電源モジュールが第1の種類の電源モジュールとして決定されている可能性がある。容量が最大の電源モジュールが第1の種類の電源モジュールとして決定されていた場合、S21で調査対象の電源モジュールを選択できない。このことから、特には図示していないが、調査対象の電源モジュールを選択できない場合、後述するS28に移行するようになっている。 There is a possibility that the power module with the largest capacity has been determined as the first type power module. When the power module having the largest capacity is determined as the first type power module, the power module to be investigated cannot be selected in S21. For this reason, although not particularly shown, when the power module to be investigated cannot be selected, the process proceeds to S28 described later.
 次にCPU61は、第1の種類の電源モジュールの更に必要とする数を特定するための変数N2に0を代入する。変数N2に0を代入すると、CPU61は、式(1)及び式(2)を用いて、現在、調査対象としている電源モジュールを第2の種類の電源モジュールと想定した場合の消費電力基準値Px、及び電源効率ηを計算する。計算される消費電力基準値Pxは、第1の種類の電源モジュールの容量をPu、調査対象とする電源モジュールの容量をPvとした場合、式(2)中のPo及びPnはそれぞれ、Pu×(N1+N2)、Pu×(N1+N2)+Pv、とすることにより算出される値である。 Next, the CPU 61 assigns 0 to a variable N2 for specifying the further required number of the first type power supply modules. When 0 is substituted into the variable N2, the CPU 61 uses the formula (1) and the formula (2) to calculate the power consumption reference value Px when the power module currently being investigated is assumed to be the second type power module. , And the power supply efficiency η is calculated. The calculated power consumption reference value Px is Po × Pn in Equation (2), where Pu is the capacity of the first type power supply module and Pv is the capacity of the power supply module to be investigated. It is a value calculated by setting (N1 + N2), Pu × (N1 + N2) + Pv.
 消費電力基準値Px、及び電源効率ηの計算を行ったCPU61は、次に、計算した電源効率ηが要求電源効率ηA未満か否か判定する(S24)。計算した電源効率ηが要求電源効率ηAより小さい場合、S24の判定はYesとなってS25に移行する。計算した電源効率ηが要求電源効率ηA以上だった場合、S24の判定はNoとなってS29に移行する。 The CPU 61 that has calculated the power consumption reference value Px and the power efficiency η next determines whether the calculated power efficiency η is less than the required power efficiency ηA (S24). When the calculated power supply efficiency η is smaller than the required power supply efficiency ηA, the determination in S24 is Yes and the process proceeds to S25. When the calculated power supply efficiency η is equal to or greater than the required power supply efficiency ηA, the determination in S24 is No and the process proceeds to S29.
 S25では、CPU61は、計算した消費電力基準値Pxが要求最大電力値Pbより大きいか否か判定する。消費電力基準値Pxが要求最大電力値Pbより大きい場合、S25の判定はYesとなってS27に移行する。消費電力基準値Pxが要求最大電力値Pb以下だった場合、S25の判定はNoとなる。S25の判定がNoとなった場合、CPU61は、変数N2の値をインクリメントし(S26)、上記S23に戻る。それにより、本実施形態では、要求最大電力値Pbより大きい電力を供給する可能性を考慮して、第2の種類の電源モジュールとして決定可能な電源モジュールの確認を行うようにしている。 In S25, the CPU 61 determines whether or not the calculated power consumption reference value Px is greater than the required maximum power value Pb. If the power consumption reference value Px is greater than the required maximum power value Pb, the determination in S25 is Yes and the process proceeds to S27. If the power consumption reference value Px is less than or equal to the required maximum power value Pb, the determination in S25 is No. If the determination in S25 is No, the CPU 61 increments the value of the variable N2 (S26) and returns to S23. Accordingly, in the present embodiment, the power supply module that can be determined as the second type of power supply module is checked in consideration of the possibility of supplying power larger than the required maximum power value Pb.
 S27では、CPU61は、電源モジュールテーブル25aを参照し、現在、調査対象とする電源モジュールより容量の小さい電源モジュールが有るか否か判定する。第1の種類の電源モジュールより容量が大きく、且つ現在、調査対象とする電源モジュールより容量の小さい電源モジュールが存在していた場合、S27の判定はYesとなって上記S21に戻る。それにより、現在、調査対象とする電源モジュールの次に容量の小さい電源モジュールが新たに調査対象として選択される。 In S27, the CPU 61 refers to the power supply module table 25a and determines whether or not there is a power supply module having a capacity smaller than that of the power supply module to be investigated. If there is a power module having a capacity larger than that of the first type power module and currently having a smaller capacity than the power module to be investigated, the determination in S27 is Yes and the process returns to S21. As a result, the power module having the next smallest capacity after the power module to be investigated is newly selected as the investigation object.
 調査対象となる電源モジュールが存在しない場合、S27の判定はNoとなる。ここでのNoの判定は、第2の種類の電源モジュールとする電源モジュールが存在しないことを意味する。このことから、CPU61は、第1の種類の電源モジュールのみを想定した必要数決定テーブル25bを作成し出力する(S28)。必要数決定テーブル25bを出力した後、第2の電源モジュール決定処理が終了する。 If the power module to be investigated does not exist, the determination in S27 is No. The determination of No here means that there is no power module as the second type power module. Accordingly, the CPU 61 creates and outputs the necessary number determination table 25b assuming only the first type of power supply module (S28). After outputting the necessary number determination table 25b, the second power supply module determination process ends.
 必要数決定テーブル25bは、外部記憶装置65に保存され、例えば出力装置64、或いはネットワーク接続装置67を介して出力される。それにより、ユーザは電源モジュールの組み合わせ結果を視覚的に確認することができると共に、出力された必要数決定テーブル25bを利用することができる。 The required number determination table 25b is stored in the external storage device 65, and is output via the output device 64 or the network connection device 67, for example. Thereby, the user can visually confirm the combination result of the power supply modules and can use the output necessary number determination table 25b.
 上記S24でのNoの判定は、第2の種類の電源モジュールが特定されたことを意味する。S24の判定がNoとなって移行するS29では、CPU61は、第2の種類の電源モジュールの必要数を特定するための変数N3に1を代入する。次にCPU61は、式(1)及び式(2)を用いて、第2の種類の電源モジュールの数を1つ増やした場合の消費電力基準値Pxを計算する(S30)。消費電力基準値Pxは、第1の種類の電源モジュールの容量をPu、第2の種類の電源モジュールの容量をPvとした場合、式(2)中のPo及びPnはそれぞれ、Pu×(N1+N2)+Pv×N3、Pu×(N1+N2)+Pv×(N3+1)、とすることにより算出される値である。算出された消費電力基準値Pxでの電源効率ηは要求電源効率ηA以下にはならない(図5及び図6)。このことから、電源効率ηは計算しない。 The determination of No in S24 above means that the second type power supply module has been identified. In S29, in which the determination in S24 is No and shifts, the CPU 61 substitutes 1 for a variable N3 for specifying the required number of the second type power supply modules. Next, the CPU 61 calculates the power consumption reference value Px when the number of the second type power supply modules is increased by one using the equations (1) and (2) (S30). The power consumption reference value Px is expressed as Pu × (N1 + N2), where Po and Pn in Equation (2) are Pu and Pv, respectively, when the capacity of the first type power supply module is Pu and the capacity of the second type power supply module is Pv. ) + Pv × N3, Pu × (N1 + N2) + Pv × (N3 + 1). The power efficiency η at the calculated power consumption reference value Px is not less than or equal to the required power efficiency ηA (FIGS. 5 and 6). Therefore, the power supply efficiency η is not calculated.
 次にCPU61は、計算した消費電力基準値Pxが要求最大電力値Pb未満か否か判定する(S31)。消費電力基準値Pxが要求最大電力値Pbより小さい場合、S31の判定はYesとなる。S31の判定がYesとなった場合、CPU61は、変数N3の値をインクリメントし(S32)、上記S30に戻る。それにより、第2の種類の電源モジュールの必要数の確認を継続する。消費電力基準値Pxが要求最大電力値Pb以上だった場合、S31の判定はNoとなって上記S28に移行する。移行先のS28では、2種類の電源モジュールを想定した必要数決定テーブル25bを作成し出力することとなる。 Next, the CPU 61 determines whether or not the calculated power consumption reference value Px is less than the requested maximum power value Pb (S31). When the power consumption reference value Px is smaller than the required maximum power value Pb, the determination in S31 is Yes. If the determination in S31 is Yes, the CPU 61 increments the value of the variable N3 (S32) and returns to S30. Thereby, the confirmation of the required number of the second type power supply modules is continued. If the power consumption reference value Px is greater than or equal to the required maximum power value Pb, the determination in S31 is No and the process proceeds to S28. In S28 of the transfer destination, the necessary number determination table 25b assuming two types of power supply modules is created and output.
 なお、本実施形態では、S24でのNoの判定により第2の種類の電源モジュールを決定しているが、別の方法を用いて第2の種類の電源モジュールを決定しても良い。例えば調査対象となる全ての電源モジュールのなかからS24の判定がNoとなる電源モジュールを抽出し、抽出した電源モジュールのなかで電源モジュールの総数が最も少なくなる電源モジュールを第2の種類の電源モジュールとしても良い。電子機器に搭載される電源モジュールの数の上限を想定し、指定された上限数以下となるように、電源モジュールの種類、及び各種類の電源モジュールの数を決定するようにしても良い。 In the present embodiment, the second type power supply module is determined based on the determination of No in S24, but the second type power supply module may be determined using another method. For example, the power supply module for which the determination in S24 is No is extracted from all the power supply modules to be investigated, and the power supply module having the smallest total number of power supply modules among the extracted power supply modules is the second type power supply module. It is also good. Assuming the upper limit of the number of power supply modules mounted on the electronic device, the type of power supply module and the number of power supply modules of each type may be determined so as to be equal to or less than the specified upper limit number.
 また、条件指定はユーザに行わせているが、予め条件を設定することにより、条件指定は任意に行わせるようにしても良い。つまりユーザが条件を指定しなくとも、制御部22が条件を指定できるようにしても良い。 In addition, although the condition designation is performed by the user, the condition designation may be arbitrarily performed by setting the condition in advance. That is, the control unit 22 may be able to specify the condition without specifying the condition by the user.
 次に、本実施形態による電子機器について説明する。
 図12は、本実施形態による電子機器の構成例を説明する図である。本実施形態による電子機器120は、主装置121と、電源システム122とを備える。電源システム122は、外部からAC(Alternating Current)電力を入力し、DC(Direct Current)電力に変換して主装置121に供給するシステムである。電子機器120の種類は特に限定されるものではないが、電子機器120がブレードサーバであった場合、主装置121は、複数のサーバブレードを含む処理システムである。
Next, the electronic apparatus according to the present embodiment will be described.
FIG. 12 is a diagram illustrating a configuration example of the electronic device according to the present embodiment. The electronic device 120 according to the present embodiment includes a main device 121 and a power supply system 122. The power supply system 122 is a system that receives AC (Alternating Current) power from the outside, converts it into DC (Direct Current) power, and supplies it to the main device 121. The type of the electronic device 120 is not particularly limited, but when the electronic device 120 is a blade server, the main device 121 is a processing system including a plurality of server blades.
 電源システム122は、電源管理装置125、電源モジュール126、電力計127、及び複数の電源モジュール128(128-1~128-N)を含む。 The power supply system 122 includes a power management device 125, a power supply module 126, a power meter 127, and a plurality of power supply modules 128 (128-1 to 128-N).
 電源モジュール126は、電源管理装置125への電力供給専用である。電源管理装置125は、電源モジュール126からの電力供給によって動作し、インターフェイス(図12中「I/F」と表記)1251、CPU1252、及びメモリ1253を備えている。 The power module 126 is dedicated to supplying power to the power management device 125. The power management apparatus 125 operates by supplying power from the power supply module 126, and includes an interface (denoted as “I / F” in FIG. 12) 1251, a CPU 1252, and a memory 1253.
 メモリ1253は、不揮発性であり、CPU1252が実行するプログラムであるファームウェアの他に、上記必要数決定テーブル25b、及び電源管理テーブル1253aを格納している。CPU1252は、必要数決定テーブル25b、及び電源管理テーブル1253aを参照し、搭載された電源モジュール128を管理する。 The memory 1253 is nonvolatile, and stores the necessary number determination table 25b and the power management table 1253a in addition to the firmware that is a program executed by the CPU 1252. The CPU 1252 refers to the necessary number determination table 25b and the power management table 1253a to manage the mounted power supply module 128.
 図14は、電源管理テーブルの内容例を説明する図である。電源管理テーブル1253aは、CPU1252が各電源モジュール128の現在の状態を把握し、主装置121に供給すべき電力量に応じて動作/停止させる電源モジュール128を選択するために用いられる。図14に表すように、電源管理テーブル1253aには、電源モジュール128毎に、電源モジュール番号、容量、寿命ストレス、及び状態の各情報が格納される。 FIG. 14 is a diagram illustrating an example of the contents of the power management table. The power management table 1253a is used by the CPU 1252 to grasp the current state of each power module 128 and to select the power module 128 to be operated / stopped according to the amount of power to be supplied to the main device 121. As illustrated in FIG. 14, the power management table 1253 a stores information on a power module number, a capacity, a life stress, and a state for each power module 128.
 電子機器120に搭載された電源モジュール128には、識別情報が割り当てられる。上記電源モジュール番号情報はその識別情報であり、図14中に表記の「1」~「7」の数字は、実際に各電源モジュール128に割り当てられた電源モジュール番号を表している。容量情報は、対応する電源モジュール128の容量(定格)を表す。状態情報は、対応する電源モジュール128の状態を表す。図14中の「ON」「OFF」はそれぞれ、動作、停止を表している。状態情報は、他に、故障、等も表すことができる。 Identification information is assigned to the power supply module 128 mounted on the electronic device 120. The power module number information is identification information, and the numbers “1” to “7” shown in FIG. 14 represent the power module numbers actually assigned to the respective power modules 128. The capacity information represents the capacity (rated) of the corresponding power supply module 128. The status information represents the status of the corresponding power supply module 128. “ON” and “OFF” in FIG. 14 represent operation and stop, respectively. The status information can also indicate a failure or the like.
 図14に表す電源管理テーブル1253aでは、必要数決定テーブル25bが図8に表すような内容の場合に、必要最小数の電源モジュール128のみを電子機器120に搭載することを想定している。搭載した電源モジュール128に発生する不具合に対応できるように、実際には各種類の電源モジュール128を冗長化することが望ましい。つまり、容量が400W、及び800Wの各電源モジュール128はそれぞれ5+β(βは1以上の整数)個、2+β個以上、電子機器120に搭載させることが望ましい。 In the power management table 1253a shown in FIG. 14, when the necessary number determination table 25b has the contents as shown in FIG. 8, it is assumed that only the necessary minimum number of power supply modules 128 are mounted on the electronic device 120. Actually, it is desirable to make each type of power supply module 128 redundant so as to cope with a problem occurring in the mounted power supply module 128. That is, it is desirable to mount 5 + β (β is an integer of 1 or more), 2 + β or more power supply modules 128 having capacities of 400 W and 800 W, respectively, on the electronic device 120.
 半導体装置の寿命は、温度ストレスに依存する。このため、電源モジュールの寿命も温度ストレスによって変化する。半導体装置の温度ストレスによる寿命の依存性は、例えばアレニウスの法則、つまりアレニウスモデルを用いて評価することができる。 The lifetime of semiconductor devices depends on temperature stress. For this reason, the lifetime of a power supply module also changes with temperature stress. The dependence of the lifetime on the semiconductor device due to temperature stress can be evaluated using, for example, Arrhenius's law, that is, the Arrhenius model.
 このアレニウスモデルでは、半導体装置の寿命が変化する度合いを表す加速係数αは、次式により求められる。
 α=L1/L2=exp(Ea/k・(1/T1-1/T2))
                   ・・・ (4)
ここで、T1:半導体装置の温度(K)
    T2:半導体装置の温度(K)
    L1:温度T1での装置寿命
    L2:温度T2での装置寿命
     k:ボルツマン定数(=8.6173×10-5(eV/K)
    Ea:活性化エネルギー(eV):用いられる部品によって異なる固有の値
In this Arrhenius model, the acceleration coefficient α representing the degree to which the lifetime of the semiconductor device changes is obtained by the following equation.
α = L1 / L2 = exp (Ea / k · (1 / T1-1 / T2))
(4)
Here, T1: Temperature of the semiconductor device (K)
T2: Temperature of the semiconductor device (K)
L1: Device life at temperature T1 L2: Device life at temperature T2 k: Boltzmann constant (= 8.6173 × 10 −5 (eV / K)
Ea: activation energy (eV): a specific value that varies depending on the component used
 上記T1としては、半導体装置の設計上の使用温度が用いられる。T2としては、実際の温度を用いれば良い。上記式(4)により求められた加速係数αの値が例えば2であった場合、2の値が得られた状態が恒久的に継続すると、期待される寿命は、温度がT1の状態が恒久的に継続することを想定したときの寿命L1の半分となる。 As the T1, the operating temperature in designing the semiconductor device is used. An actual temperature may be used as T2. If the value of the acceleration coefficient α obtained by the above equation (4) is 2, for example, if the state where the value of 2 is obtained continues permanently, the expected life is that the state where the temperature is T1 is permanent. Therefore, it is half of the life L1 when it is assumed to continue continuously.
 電源モジュール128の温度は、環境温度、使用率等の出力状況、使用時間等によって変化する。式(4)から求められる加速係数αは、その値が大きくなるほど、期待される寿命が短くなることを表す。このことから、本実施形態では、一定時間毎に加速係数αを求め、求めた加速係数αの累算値Stを算出することにより、算出した累算値Stを、電源モジュール128が受けたストレスの大きさ、つまり残りの寿命を表す情報として用いている。寿命ストレス情報は、算出された累算値Stを表す。以降、累算値Stは「寿命ストレス値」と表記する。 The temperature of the power supply module 128 changes depending on the environmental temperature, the output status such as the usage rate, the usage time, and the like. The acceleration coefficient α obtained from the equation (4) represents that the expected life is shortened as the value increases. Therefore, in the present embodiment, the acceleration coefficient α is obtained at regular intervals, and the accumulated value St of the obtained acceleration coefficient α is calculated, whereby the calculated accumulated value St is used as the stress that the power supply module 128 has received. It is used as information indicating the size of, that is, the remaining life. The life stress information represents the calculated accumulated value St. Hereinafter, the accumulated value St is expressed as “lifetime stress value”.
 寿命ストレス値Stは、加速係数αを求める時間間隔をDとすると、例えば次式により求めることができる。
 St=Σα/D   ・・・ (5)
The life stress value St can be obtained by the following equation, for example, where D is the time interval for obtaining the acceleration coefficient α.
St = Σα / D (5)
 時間間隔Dが一定であった場合、式(5)中のDは無視することができる。このことから、寿命ストレス値Stの実際の計算は、現在の寿命ストレス値Stに、新たに求めた加速係数αを加算することで行えば良い。 When time interval D is constant, D in equation (5) can be ignored. Therefore, the actual calculation of the life stress value St may be performed by adding the newly obtained acceleration coefficient α to the current life stress value St.
 算出された寿命ストレス値Stは、寿命ストレス情報として電源管理テーブル1253aに格納される。図14中に表記の「A2」「B2」「C2」等は、実際に寿命ストレス情報として電源管理テーブル1253aに保存された寿命ストレス値Stを表している。 The calculated life stress value St is stored in the power management table 1253a as life stress information. “A2”, “B2”, “C2” and the like shown in FIG. 14 represent life stress values St actually stored in the power management table 1253a as life stress information.
 電源モジュール128は動作させている間に故障しないことが望まれる。そのため、新たに電源モジュール128を動作させる場合、動作させるべき種類の電源モジュール128のなかで寿命ストレス値Stが最小の電源モジュール128を選択するのが望ましいことになる。新たに電源モジュール128を停止させる場合、停止の対象となる種類の電源モジュール128のなかで寿命ストレス値Stが最大の電源モジュール128を選択するのが望ましいことになる。このようなことから、CPU1252は、電源管理テーブル1253aを参照し、そのテーブル1253aに格納されている寿命ストレス値Stを、新たに動作、或いは停止させる電源モジュール128の選択に反映させる。 It is desirable that the power supply module 128 does not fail during operation. Therefore, when the power supply module 128 is newly operated, it is desirable to select the power supply module 128 having the minimum life stress value St among the types of power supply modules 128 to be operated. When the power supply module 128 is newly stopped, it is desirable to select the power supply module 128 having the maximum life stress value St among the types of power supply modules 128 to be stopped. For this reason, the CPU 1252 refers to the power management table 1253a and reflects the life stress value St stored in the table 1253a in the selection of the power module 128 to be newly operated or stopped.
 新たに動作、或いは停止させる電源モジュール128の発生は、上記必要数決定テーブル25bを参照して特定される。主装置121に供給すべき電力量としては、電力計127が計測した電力値が用いられる。電力計127が計測した電力値を電源モジュール128の管理に用いるのは、主装置121が消費している電力値をリアルタイムに確認できるようにすることで、適切な管理を迅速に行えるようにするためである。CPU1252が、必要数決定テーブル25bを参照し、電力計127が計測した電力値に応じて、必要な電源モジュール128を動作させることにより、上記要求電源効率ηA以上の電源効率を維持させつつ、主装置121に必要な電力量を供給することができる。 The occurrence of the power supply module 128 to be newly operated or stopped is specified with reference to the necessary number determination table 25b. As the amount of power to be supplied to the main device 121, the power value measured by the wattmeter 127 is used. The power value measured by the wattmeter 127 is used for management of the power supply module 128 by enabling the power value consumed by the main device 121 to be confirmed in real time so that appropriate management can be quickly performed. Because. The CPU 1252 refers to the required number determination table 25b and operates the necessary power supply module 128 according to the power value measured by the power meter 127, thereby maintaining the power supply efficiency equal to or higher than the required power supply efficiency ηA. A necessary amount of power can be supplied to the device 121.
 電源管理装置125は、例えば不図示のLAN(Local Area Network)と外部装置と接続されている。インターフェイス1251は、そのような外部装置との間の通信が可能である。それにより、必要数決定テーブル25bは、外部装置から取得されてメモリ1253に格納される。電源管理テーブル1253aは、外部装置から取得可能であると共に、外部装置から更新も行えるようになっている。これは、電子機器120に搭載される電源モジュール128の交換、等に対応するためである。 The power management device 125 is connected to a LAN (Local Area Network) (not shown) and an external device, for example. The interface 1251 can communicate with such an external device. Thereby, the required number determination table 25b is acquired from the external device and stored in the memory 1253. The power management table 1253a can be acquired from an external device and can be updated from the external device. This is to cope with replacement of the power supply module 128 mounted on the electronic device 120.
 図13は、電源管理装置の機能構成例を説明する図である。上記電源管理装置125は、図13に表すように、機能構成として、情報取得部131、電源選択部132、及び電源制御部133を備えている。 FIG. 13 is a diagram illustrating an example of a functional configuration of the power management apparatus. As illustrated in FIG. 13, the power management apparatus 125 includes an information acquisition unit 131, a power selection unit 132, and a power control unit 133 as functional configurations.
 情報取得部131は、電源管理テーブル1253a、電源管理テーブル1253aの一部、或いは必要数決定テーブル25bの取得、取得した電源管理テーブル1253a、或いは必要数決定テーブル25bのメモリ1253への保存、各テーブル1253a及び25bの必要に応じた更新を実現させる。上記寿命ストレス値Stは、各電源モジュール128に計算させるようにしている。このことから、情報取得部131は、各電源モジュール128からの寿命ストレス値Stの取得、電力計127が計測した電力値の取得も行う。 The information acquisition unit 131 acquires the power management table 1253a, a part of the power management table 1253a, or the necessary number determination table 25b, stores the acquired power management table 1253a or the necessary number determination table 25b in the memory 1253, and each table. Update according to need of 1253a and 25b is realized. The lifetime stress value St is calculated by each power supply module 128. Thus, the information acquisition unit 131 also acquires the life stress value St from each power supply module 128 and the power value measured by the wattmeter 127.
 電源選択部132は、電源管理テーブル1253a、及び必要数決定テーブル25bを参照し、電力計127が計測した電力値に応じて、新たに動作、或いは停止させるべき電源モジュール128を選択する。電源制御部133は、電源選択部132による選択結果に従って、動作、或いは停止させるべき電源モジュール128を動作、或いは停止させる。 The power supply selection unit 132 refers to the power management table 1253a and the necessary number determination table 25b, and selects a power supply module 128 to be newly operated or stopped according to the power value measured by the wattmeter 127. The power supply control unit 133 operates or stops the power supply module 128 to be operated or stopped according to the selection result by the power supply selection unit 132.
 このようなことから、本実施形態による電子機器120は、電源管理装置125の搭載によって実現されている。電源管理装置125が機能構成として備える構成要素131~133は、電子機器120内の2つ以上の構成要素に分散する形で搭載させても良い。このこともあり、本実施形態による電子機器120は、様々な変形を行うことができる。 For this reason, the electronic device 120 according to the present embodiment is realized by mounting the power management device 125. The components 131 to 133 provided as the functional configuration of the power management apparatus 125 may be mounted in a form distributed to two or more components in the electronic device 120. For this reason, the electronic apparatus 120 according to the present embodiment can be variously modified.
 図15は、電源管理処理のフローチャートである。この電源管理処理は、電力計127が計測した電力値に応じて、何れかの電源モジュール128を動作、或いは停止させるための処理であり、メモリ1253に格納されたファームウェアをCPU1252が実行することで実現される。図15には、電源管理装置125に電力が供給された後に、つまりCPU1252がファームウェアの実行を開始した後に、電源管理のために行われる処理を抽出し、抽出した処理の流れを表している。次に図15を参照して、電源管理処理について詳細に説明する。 FIG. 15 is a flowchart of the power management process. This power management process is a process for operating or stopping any one of the power supply modules 128 according to the power value measured by the wattmeter 127. The CPU 1252 executes the firmware stored in the memory 1253. Realized. FIG. 15 shows a flow of extracted processing after extracting power to be managed for power management after power is supplied to the power management device 125, that is, after the CPU 1252 starts executing firmware. Next, the power management process will be described in detail with reference to FIG.
 先ず、CPU1252は、全電源モジュール128に動作を指示する(S51)。次にCPU1252は、各電源モジュール128から寿命ストレス値Stを取得し(S52)、取得した寿命ストレス値Stを寿命ストレス情報として電源管理テーブル1253aに保存する(S53)。その後、CPU1252は、計測された電力値を電力計127から取得し、現在、設定中の消費電力基準値(図15中「現在基準値」と表記。以降、設定中でない消費電力基準値と区別するために、その表記を用いる)とその電力値との関係をチェックする(S54)。 First, the CPU 1252 instructs all the power supply modules 128 to operate (S51). Next, the CPU 1252 acquires the lifetime stress value St from each power supply module 128 (S52), and stores the acquired lifetime stress value St as lifetime stress information in the power management table 1253a (S53). Thereafter, the CPU 1252 acquires the measured power value from the wattmeter 127 and presents the currently set power consumption reference value (referred to as “current reference value” in FIG. 15; hereinafter, distinguished from the power consumption reference value that is not set). Therefore, the relationship between the notation and the power value is checked (S54).
 図15中、計測された電力値は「消費電力値」と表記している。以降、「消費電力値」という表記を用いる。現在、設定中の消費電力基準値は、図15中「現在基準値」と表記している。以降、設定中でない消費電力基準値と区別するために、「消費電力値」という表記を用いる。 In FIG. 15, the measured power value is described as “power consumption value”. Hereinafter, the notation “power consumption value” is used. The power consumption reference value currently set is indicated as “current reference value” in FIG. Hereinafter, in order to distinguish from the power consumption reference value that is not being set, the notation “power consumption value” is used.
 消費電力値と消費電力基準値の大小関係により電源モジュール128の動作、或いは停止を行う場合、消費電力値の僅かな変動により、電源モジュール128の動作、或いは停止を頻繁に行うことになる可能性がある。このことから、本実施形態では、消費電力基準値に事実上の幅を持たせることにより、電源モジュール128の動作、或いは電源モジュール128の停止を頻繁に行うような状況となるのを回避するようにしている。それにより、新たな電源モジュールの動作は、消費電力基準値の上側を越えた場合に開始させ、新たな電源モジュールの停止は、消費電力基準値の下側未満となった場合に行うようにしている。以降、その幅を指定する値は「SH値」と表記する。そのSH値を用いた場合、消費電力基準値の上側は、消費電力基準値+SH値、により表され、消費電力基準値の下側は、商品電力基準値-SH値、により表される。 When the power supply module 128 is operated or stopped depending on the magnitude relationship between the power consumption value and the power consumption reference value, the power supply module 128 may be frequently operated or stopped due to slight fluctuations in the power consumption value. There is. Therefore, in the present embodiment, it is possible to avoid a situation in which the operation of the power supply module 128 or the stoppage of the power supply module 128 is frequently performed by giving a practical range to the power consumption reference value. I have to. As a result, the operation of the new power supply module is started when the upper limit of the power consumption reference value is exceeded, and the new power supply module is stopped when it is less than the lower limit of the power consumption reference value. Yes. Hereinafter, the value specifying the width is referred to as “SH value”. When the SH value is used, the upper side of the power consumption reference value is represented by the power consumption reference value + SH value, and the lower side of the power consumption reference value is represented by the product power reference value−SH value.
 S54でのチェック後に移行するS55では、CPU1252は、チェック結果の内容の判定を行う。消費電力値が、現在、設定中の消費電力基準値からSH値を引いた値未満、つまり消費電力値<現在基準値-SH値の関係が満たされている場合、S55ではそのことが判定され、S57に移行する。消費電力値が、現在、設定中の消費電力基準値からSH値を加えた値を越えている、つまり消費電力値>現在基準値+SH値の関係が満たされている場合、S55ではそのことが判定され、S59に移行する。消費電力値が、現在、設定中の消費電力基準値からSH値を引いた値未満でなく、且つ現在、設定中の消費電力基準値からSH値を加えた値を越えていない場合、つまり電源モジュールの動作、及び停止の何れも行わせる必要のない場合、S55ではそのことが判定され、上記S54に戻る。図15中、消費電力値が、現在、設定中の消費電力基準値からSH値を引いた値未満でなく、且つ現在、設定中の消費電力基準値からSH値を加えた値を越えていない場合を「その他」と表記している。 In S55 to which the process proceeds after the check in S54, the CPU 1252 determines the content of the check result. If the power consumption value is less than the current power consumption reference value set by subtracting the SH value, that is, if the relationship of power consumption value <current reference value−SH value is satisfied, this is determined in S55. , The process proceeds to S57. If the power consumption value exceeds the currently set power consumption reference value plus the SH value, that is, if the relationship of power consumption value> current reference value + SH value is satisfied, this is the case in S55. The determination is made and the process proceeds to S59. When the power consumption value is not less than a value obtained by subtracting the SH value from the power consumption reference value currently being set and does not exceed the value obtained by adding the SH value to the power consumption reference value currently being set, that is, the power supply If it is not necessary to perform either operation or stop of the module, this is determined in S55, and the process returns to S54. In FIG. 15, the power consumption value is not less than a value obtained by subtracting the SH value from the currently set power consumption reference value, and does not exceed a value obtained by adding the SH value to the currently set power consumption reference value. The case is described as “Other”.
 S57では、CPU1252は、必要数決定テーブル25bを参照し、現在基準値より一つ低い消費電力基準値を新たに現在基準値として設定する。次にCPU1252は、必要数決定テーブル25b、及び電源管理テーブル1253aを参照し、停止させるべき種類の電源モジュール128のなかで寿命ストレス値Stが最も高い電源モジュール128を選択して停止させる。新たな停止に合わせて、CPU1252は、停止させる電源モジュール128の状態情報を「ON」から「OFF」に更新する(以上S58)。その後、上記S54に戻る。 In S57, the CPU 1252 refers to the necessary number determination table 25b and newly sets a power consumption reference value that is one lower than the current reference value as the current reference value. Next, the CPU 1252 refers to the necessary number determination table 25b and the power management table 1253a and selects and stops the power supply module 128 having the highest life stress value St among the types of power supply modules 128 to be stopped. In accordance with the new stop, the CPU 1252 updates the status information of the power supply module 128 to be stopped from “ON” to “OFF” (S58). Thereafter, the process returns to S54.
 一方、S59では、CPU1252は、必要数決定テーブル25bを参照し、現在基準値より一つ高い消費電力基準値を新たに現在基準値として設定する。次にCPU1252は、必要数決定テーブル25b、及び電源管理テーブル1253aを参照し、起動させるべき種類の電源モジュール128のなかで寿命ストレス値Stが最も低い電源モジュール128を選択して起動させる。新たな起動に合わせて、CPU1252は、起動させる電源モジュール128の状態情報を「OFF」から「ON」に更新する(以上S60)。その後、上記S54に戻る。 On the other hand, in S59, the CPU 1252 refers to the necessary number determination table 25b, and sets a power consumption reference value that is one higher than the current reference value as the current reference value. Next, the CPU 1252 refers to the necessary number determination table 25b and the power management table 1253a, selects and activates the power supply module 128 having the lowest life stress value St among the types of power supply modules 128 to be activated. In accordance with the new activation, the CPU 1252 updates the state information of the power supply module 128 to be activated from “OFF” to “ON” (S60). Thereafter, the process returns to S54.
 S54の処理は、実際には、例えば予め定めた時間間隔で実行される。電源管理テーブル25b中の寿命ストレス情報は、電源モジュール128から寿命ストレス値Stを取得する度に更新される。それにより、動作させるべき、或いは停止させるべき電源モジュール128の選択に、随時、更新される各電源モジュール128の寿命ストレス値Stが反映される。 The process of S54 is actually executed at a predetermined time interval, for example. The life stress information in the power management table 25b is updated each time the life stress value St is acquired from the power module 128. Thereby, the life stress value St of each power supply module 128 updated as needed is reflected in the selection of the power supply module 128 to be operated or stopped.
 以降は、本実施形態による電源装置について詳細に説明する。
 図16は、本実施形態による電源装置の構成例を説明する図である。
 その電源装置は、本実施形態による電子機器120に電源モジュール128として搭載可能なものであり、図16に表すように、DC電源部161、制御部162、メモリ163、プログラムROM164、DC電源部165、及び電池166を備えている。
Hereinafter, the power supply device according to the present embodiment will be described in detail.
FIG. 16 is a diagram illustrating a configuration example of the power supply device according to the present embodiment.
The power supply device can be mounted on the electronic device 120 according to the present embodiment as the power supply module 128. As shown in FIG. 16, the DC power supply unit 161, the control unit 162, the memory 163, the program ROM 164, and the DC power supply unit 165. , And a battery 166.
 DC電源部165は、制御部162に供給すべき電力を供給する専用の電源である。これに対し、DC電源部161は、主装置121への電力供給を行うための電源である。電源モジュール128は、主装置121への安定した電力供給が求められることから、寿命ストレス値Stの算出に用いる温度を測定するための温度センサ161aは、DC電源部161に設けられている。 The DC power supply unit 165 is a dedicated power supply that supplies power to be supplied to the control unit 162. On the other hand, the DC power supply unit 161 is a power supply for supplying power to the main device 121. Since the power supply module 128 is required to supply power stably to the main device 121, the temperature sensor 161 a for measuring the temperature used for calculating the life stress value St is provided in the DC power supply unit 161.
 制御部162は、電源モジュール128全体を制御する装置であり、例えばCPUである。制御部162は、プログラムROM164に格納されたプログラム(ファームウェア)を実行することにより、電源モジュール128の制御を行う。メモリ163は、プログラムの実行のためのワーク用、及び寿命ストレス値Stの保存用に用いられる。 The control unit 162 is a device that controls the entire power supply module 128, and is, for example, a CPU. The control unit 162 controls the power supply module 128 by executing a program (firmware) stored in the program ROM 164. The memory 163 is used for a work for executing a program and for storing a life stress value St.
 寿命ストレス値Stの算出は、図17に表す寿命ストレス値算出処理の実行によって実現される。寿命ストレス値算出処理は、例えば制御部162に搭載されたタイマ割り込み機能によって一定時間が経過する度に実行される処理である。 The calculation of the life stress value St is realized by executing a life stress value calculation process shown in FIG. The life stress value calculation process is a process that is executed each time a predetermined time elapses by a timer interrupt function installed in the control unit 162, for example.
 寿命ストレス値算出処理では、先ず、制御部162は、測定された温度を表す温度情報を温度センサ161aから入手する(S71)。次に、制御部162は、入手した温度情報が表す温度を用いて、式(4)から加速係数αを計算し、計算した加速係数αをメモリ163に格納された寿命ストレス値Stに加算することで新しい寿命ストレス値Stを求め、新たに求めた寿命ストレス値Stをメモリ163に保存する(S72)。それにより、メモリ163には、常に最新の寿命ストレス値Stが保存される。 In the life stress value calculation process, first, the control unit 162 obtains temperature information representing the measured temperature from the temperature sensor 161a (S71). Next, the control unit 162 calculates the acceleration coefficient α from Expression (4) using the temperature represented by the obtained temperature information, and adds the calculated acceleration coefficient α to the life stress value St stored in the memory 163. Thus, a new life stress value St is obtained, and the newly obtained life stress value St is stored in the memory 163 (S72). Thereby, the latest life stress value St is always stored in the memory 163.
 本実施形態では、電池166を搭載することにより、上記寿命ストレス値Stの算出は、外部からのAC電力の入力がなくとも行えるようにしている。これは、AC電力の入力がない状況のときの温度ストレスの影響を評価、言い換えれば、常に寿命ストレス値Stの算出を行えるようにするためである。寿命ストレス値Stの更新を常に行えることから、電源管理装置125は、新たに動作させるべき、或いは新たに停止させるべき電源モジュール128をより高精度に選択できることとなる。それにより、電子機器120のより安定した運用に利点が得られる。 In the present embodiment, by installing the battery 166, the life stress value St can be calculated without the input of AC power from the outside. This is to evaluate the influence of temperature stress when there is no AC power input, in other words, to always calculate the life stress value St. Since the life stress value St can always be updated, the power management apparatus 125 can select the power supply module 128 to be newly operated or newly stopped with higher accuracy. Thereby, an advantage is obtained for more stable operation of the electronic device 120.
 制御部162は、電源管理装置125、及び他の電源モジュール128と通信を行う機能を備えている。それにより、電源管理装置125、或いは他の電源モジュール126からの要求に対応するための処理を行う。 The control unit 162 has a function of communicating with the power management device 125 and other power supply modules 128. Thereby, processing for responding to a request from the power management device 125 or another power supply module 126 is performed.
 図18は、電源管理装置からの要求に対応するための要求対応処理のフローチャートである。制御部162は、電源管理装置125からの要求に対し、図18に表すような要求対応処理を実行することで対応する。 FIG. 18 is a flowchart of a request response process for responding to a request from the power management apparatus. The control unit 162 responds to the request from the power management apparatus 125 by executing a request response process as shown in FIG.
 先ず、制御部162は、電源管理装置125からの要求をチェックし、その要求内容を確認する(S81)。電源管理装置125からの要求が、寿命ストレス値Stの送信であった場合、その旨がS81で判定されS82に移行する。 First, the control unit 162 checks the request from the power management apparatus 125 and confirms the request content (S81). When the request from the power management device 125 is transmission of the life stress value St, this is determined in S81 and the process proceeds to S82.
 S82では、制御部162は、メモリ163から寿命ストレス値Stを読み出す。次に制御部162は、読み出した寿命ストレス値Stを電源管理装置125に送信する。寿命ストレス値Stの送信後、要求対応処理が終了する。 In S82, the control unit 162 reads the life stress value St from the memory 163. Next, the control unit 162 transmits the read life stress value St to the power management apparatus 125. After the transmission of the life stress value St, the request handling process ends.
 電源管理装置125からの要求が起動であった場合、その旨がS81で判定されS84に移行する。S84では、制御部162は、例えば制御信号を送出して、DC電源部161を起動させる。DC電源部161を起動させた後、要求対応処理が終了する。 If the request from the power management apparatus 125 is a start, that fact is determined in S81 and the process proceeds to S84. In S84, the control unit 162 sends out a control signal, for example, and activates the DC power supply unit 161. After the DC power supply unit 161 is activated, the request handling process ends.
 電源管理装置125からの要求が停止であった場合、その旨がS81で判定されS85に移行する。S85では、制御部162は、例えば上記制御信号の送出を終了させることにより、DC電源部161を停止させる。DC電源部161を停止させた後、要求対応処理が終了する。 When the request from the power management apparatus 125 is a stop, that is determined in S81 and the process proceeds to S85. In S85, the control unit 162 stops the DC power supply unit 161, for example, by terminating the transmission of the control signal. After the DC power supply unit 161 is stopped, the request handling process ends.
 特性の異なる複種類の電源モジュール128を多重化した電力供給では、出力バランスが電源モジュール128によって変化する可能性がある。出力バランスは、動作させている各電源モジュール128で一致するか、或いはほぼ一致させることが望ましい。このことから、各電源モジュール128の制御部162は、図19に表すような出力バランス調整処理を随時、実行する。 In power supply in which multiple types of power supply modules 128 having different characteristics are multiplexed, the output balance may vary depending on the power supply module 128. It is desirable that the output balance is equal or almost the same for each power supply module 128 that is operated. From this, the control part 162 of each power supply module 128 performs the output balance adjustment process as shown in FIG.
 先ず、制御部162は、自DC電源部161の電力供給状況を表す情報として、自DC電源部161の定格容量と、現在の出力容量とを得る。定格容量は、例えばプログラムROM164に格納され、出力容量は、DC電源部161から得られる。 First, the control unit 162 obtains the rated capacity of the own DC power supply unit 161 and the current output capacity as information indicating the power supply status of the own DC power supply unit 161. The rated capacity is stored in, for example, the program ROM 164, and the output capacity is obtained from the DC power supply unit 161.
 次に、制御部162は、出力容量を定格容量で割ることで出力率C(=出力容量/定格容量)を求める(S92)。出力率Cを計算した後、制御部162は、動作中の他の電源モジュール162から情報として、他の電源モジュール162毎に、定格容量と、現在の出力容量を取得する(S93)。以降、制御部162は、各電源モジュール128からそれぞれ取得した定格容量の合計M、及び出力容量の合計Sを求め(S94、S95)、合計Sを合計Mで割った平均出力率CC(=S/M)を求める(S96)。平均出力率CCを計算した後にS97に移行する。 Next, the control unit 162 determines the output rate C (= output capacity / rated capacity) by dividing the output capacity by the rated capacity (S92). After calculating the output rate C, the control unit 162 acquires the rated capacity and the current output capacity for each of the other power supply modules 162 as information from the other power supply modules 162 in operation (S93). Thereafter, the control unit 162 obtains the total M of the rated capacities acquired from the respective power supply modules 128 and the total S of the output capacities (S94, S95), and average output rate CC (= S / M) is obtained (S96). After calculating the average output rate CC, the process proceeds to S97.
 S97では、制御部162は、出力率Cと平均出力率CCを比較し、出力率Cと平均出力率CCの関係を判定する。それにより、出力率Cが平均出力率CC未満であった場合、S97でその旨が判定される。結果、制御部162は、電力、つまり出力容量を上げるための制御を行う(S98)。出力容量を上げるための制御は、例えば出力電圧をより高くすることで行う。出力容量を上げるための制御を行った後、出力バランス調整処理が終了する。 In S97, the control unit 162 compares the output rate C and the average output rate CC, and determines the relationship between the output rate C and the average output rate CC. Accordingly, if the output rate C is less than the average output rate CC, this is determined in S97. As a result, the control unit 162 performs control to increase power, that is, output capacity (S98). The control for increasing the output capacity is performed by increasing the output voltage, for example. After the control for increasing the output capacity is performed, the output balance adjustment process ends.
 出力率Cが平均出力率CCと許容範囲内で一致していた場合、S97でその旨が判定される。結果、何らかの制御を行う必要がないとして、ここで出力バランス調整処理が終了する。 If the output rate C matches the average output rate CC within an allowable range, this is determined in S97. As a result, assuming that there is no need to perform any control, the output balance adjustment process ends here.
 出力率Cが平均出力率CCを越えていた場合、S97でその旨が判定される。出力率Cが平均出力率CCを越えていた場合、制御部162は、電力、つまり出力容量を下げるための制御を行う(S98)。出力容量を下げるための制御は、例えば出力電圧をより低くことで行う。出力容量を下げるための制御を行った後、出力バランス調整処理が終了する。 If the output rate C exceeds the average output rate CC, this is determined in S97. When the output rate C exceeds the average output rate CC, the control unit 162 performs control for reducing the power, that is, the output capacity (S98). The control for reducing the output capacity is performed by, for example, lowering the output voltage. After the control for reducing the output capacity is performed, the output balance adjustment process ends.
 動作中の電源モジュール128の制御部162は、上記のような出力バランス調整処理を随時、実行する。それにより、動作中の電源モジュール128の出力バランスは、比較的に狭い範囲内に維持されることとなる。このことから、結果として、複種類の電源モジュール128を多重化した電力供給もより安定的に行えることとなる。 The controller 162 of the operating power supply module 128 executes the output balance adjustment process as described above as needed. Thereby, the output balance of the operating power supply module 128 is maintained within a relatively narrow range. As a result, power supply in which multiple types of power supply modules 128 are multiplexed can be performed more stably.
 なお、上記のような出力バランスの調整は、各電源モジュール128から供給される電力を別の装置に監視させ、その装置の制御下で各電源モジュール128に行わせても良い。 It should be noted that the adjustment of the output balance as described above may be performed by causing each power supply module 128 to monitor the power supplied from each power supply module 128 by another device and control the device.

Claims (9)

  1.  複数の電源装置の各々から直流電力を供給可能な情報処理装置であって、
     前記 複数の電源装置の各々に対して要求される直流電力量と、前記複数の電源装置の各々の交流電源入力から直流電源出力に変換される効率を示す変換効率との関係を条件として設定する設定部と、
     前記複数の電源装置の中から、前記情報処理装置に直流電力を供給する電源装置群を、前記条件を満たすように特定する特定部と、
     を有することを特徴とする情報処理装置。
    An information processing apparatus capable of supplying DC power from each of a plurality of power supply devices,
    Setting that sets as a condition the relationship between the amount of DC power required for each of the plurality of power supply devices and the conversion efficiency indicating the efficiency of conversion from the AC power supply input to the DC power supply output of each of the plurality of power supply devices And
    Among the plurality of power supply devices, a power supply device group that supplies DC power to the information processing device, a specifying unit that specifies the condition to satisfy the condition,
    An information processing apparatus comprising:
  2.  前記特定部は、前記電源装置群を特定すると共に、前記情報処理装置に供給すべき直流電力量に応じて、前記電源装置群のなかで動作させるべき電源装置の関係を特定する、
     ことを特徴とする請求項1記載の情報処理装置。
    The specifying unit specifies the power supply device group and specifies the relationship of the power supply devices to be operated in the power supply device group according to the amount of DC power to be supplied to the information processing device.
    The information processing apparatus according to claim 1.
  3.  前記設定部は、前記条件として、前記情報処理装置に供給される直流電力量の範囲、及び前記範囲で要求される変換効率の下限値を設定できる、
     ことを特徴とする請求項1、または2記載の情報処理装置。
    The setting unit can set, as the condition, a range of direct-current power supplied to the information processing apparatus, and a lower limit value of conversion efficiency required in the range.
    The information processing apparatus according to claim 1 or 2.
  4.  前記設定部によって特定された、前記情報処理装置に供給すべき直流電力量に応じて、前記電源装置群のなかで動作させるべき電源装置の関係を表す動作情報を出力する出力部、
     を更に具備することを特徴とする請求項2記載の情報処理装置。
    An output unit that outputs operation information indicating a relationship of power supply devices to be operated in the power supply device group according to a DC power amount to be supplied to the information processing device specified by the setting unit;
    The information processing apparatus according to claim 2, further comprising:
  5.  複数の電源装置の各々から直流電力が供給される情報処理装置において、
     前記情報処理装置に供給すべき直流電力量に応じて、前記複数の電源装置のなかで動作させるべき電源装置の関係を表す動作情報を記憶した記憶部と、
     前記情報処理装置に供給すべき直流電力量を特定する電力量特定部と、
     前記記憶部に記憶された前記動作情報を参照し、前記電力量特定部によって特定された直流電力量の供給に用いるべき電源装置の組み合わせを特定する電源特定部と、
     前記電源特定部によって特定された組み合わせの電源装置を動作させる制御部と、
     を具備することを特徴とする情報処理装置。
    In an information processing apparatus to which DC power is supplied from each of a plurality of power supply devices,
    A storage unit that stores operation information representing a relationship of power supply devices to be operated among the plurality of power supply devices according to the amount of DC power to be supplied to the information processing device;
    An electric energy specifying unit for specifying the DC electric energy to be supplied to the information processing apparatus;
    A power supply specifying unit that refers to the operation information stored in the storage unit, and specifies a combination of power supply devices to be used for supplying the DC power amount specified by the power amount specifying unit;
    A control unit for operating a combination of power supply devices specified by the power supply specifying unit;
    An information processing apparatus comprising:
  6.  前記複数の電源装置から、前記電源装置で予想される寿命に係わる値をそれぞれ取得する取得部、を更に具備し、
     前記電源特定部は、前記取得部が前記複数の電源装置からそれぞれ取得した値を更に参照し、前記電源装置の組み合わせを特定する、
     ことを特徴とする請求項5記載の情報処理装置。
    An acquisition unit for acquiring values related to the expected lifetime of the power supply device from the plurality of power supply devices,
    The power supply specifying unit further refers to values acquired by the acquisition unit from the plurality of power supply devices, respectively, and specifies a combination of the power supply devices;
    The information processing apparatus according to claim 5.
  7.  電源装置において、
     温度を測定する測定部と、
     前記測定部により測定された温度を用いて、前記電源装置で予想される寿命に係わる値を算出する算出部と、
     前記算出部が算出した値を格納する記憶部と、
     前記電源装置に外部から電力が供給されない場合に、電力を供給し、前記算出部による値の算出、及び前記記憶部に格納された値の更新を可能にする電力供給部と、
     を具備することを特徴とする情報処理装置。
    In power supply,
    A measuring section for measuring the temperature;
    Using the temperature measured by the measurement unit, a calculation unit that calculates a value related to the expected lifetime of the power supply device;
    A storage unit for storing the value calculated by the calculation unit;
    An electric power supply unit that supplies electric power when the electric power is not supplied from the outside to the power supply device, enables calculation of a value by the calculation unit, and update of a value stored in the storage unit;
    An information processing apparatus comprising:
  8.  動作中の他の電源装置における電力の供給状況を表す情報を取得する情報取得部と、
     前記情報取得部が取得した情報を用いて、前記電源装置から供給する電力量を調整する調整手段と、
     を更に具備することを特徴とする情報処理装置。
    An information acquisition unit for acquiring information representing the supply status of power in other power supply devices in operation;
    Using the information acquired by the information acquisition unit, adjusting means for adjusting the amount of power supplied from the power supply device;
    An information processing apparatus further comprising:
  9.  コンピュータに、
     複数の電源装置の各々に対して要求される直流電力量と、前記複数の電源装置の各々の交流電源入力から直流電源出力に変換される効率を示す変換効率との関係を条件として設定し、
     前記複数の電源装置の中から、前記コンピュータに直流電力を供給する電源装置群を、前記条件を満たすように特定する、
     処理を実行させるプログラム。
    On the computer,
    Setting as a condition the relationship between the amount of DC power required for each of the plurality of power supply devices and the conversion efficiency indicating the efficiency of conversion from the AC power supply input to the DC power supply output of each of the plurality of power supply devices,
    From among the plurality of power supply devices, a power supply device group that supplies DC power to the computer is specified so as to satisfy the condition.
    A program that executes processing.
PCT/JP2012/058639 2012-03-30 2012-03-30 Information processing device and program WO2013145272A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/058639 WO2013145272A1 (en) 2012-03-30 2012-03-30 Information processing device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/058639 WO2013145272A1 (en) 2012-03-30 2012-03-30 Information processing device and program

Publications (1)

Publication Number Publication Date
WO2013145272A1 true WO2013145272A1 (en) 2013-10-03

Family

ID=49258635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058639 WO2013145272A1 (en) 2012-03-30 2012-03-30 Information processing device and program

Country Status (1)

Country Link
WO (1) WO2013145272A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149045A (en) * 2015-02-13 2016-08-18 富士通株式会社 Power supply control apparatus and power supply control program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09204240A (en) * 1996-01-24 1997-08-05 Fujitsu Ltd Power supplying device
JP2009201244A (en) * 2008-02-21 2009-09-03 Nec Corp Power supply control device
JP2009254082A (en) * 2008-04-03 2009-10-29 Nec Corp Power supply system and method of controlling the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09204240A (en) * 1996-01-24 1997-08-05 Fujitsu Ltd Power supplying device
JP2009201244A (en) * 2008-02-21 2009-09-03 Nec Corp Power supply control device
JP2009254082A (en) * 2008-04-03 2009-10-29 Nec Corp Power supply system and method of controlling the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149045A (en) * 2015-02-13 2016-08-18 富士通株式会社 Power supply control apparatus and power supply control program

Similar Documents

Publication Publication Date Title
JP5282349B2 (en) Multi-processing system
JP5160033B2 (en) Methods, systems, and adjustment techniques for power measurement and power saving for multiple time frames
EP2985857B1 (en) Storage battery management system and storage battery management method
US20150100806A1 (en) Power Supply Engagement and Method Therefor Data
JPWO2015136920A1 (en) Storage battery sharing system, information processing apparatus, storage battery sharing method, and storage battery sharing program
JP6648614B2 (en) Power storage device
US9667101B2 (en) Power supply system, control method thereof, and recording medium
JP2010124680A (en) Method of controlling electrical current supplied to electronic device, and power supply
US20220123553A1 (en) System operator side computer, power generation operator side computer, power system, control method, and program
JPWO2014007368A1 (en) Power network system, power network system control method, and control program
US10942555B2 (en) Power supplying method for computer system
JP5833851B2 (en) Grid frequency rate limiting system
JP6265281B2 (en) Solar power plant control system
CN110233591A (en) A kind of control method and device of motor
JP2017118722A (en) Power supply system, control apparatus for power supply system, and program
JP6778665B2 (en) Power system load frequency control device and method
JP2016126458A (en) Job allocation program, method, and apparatus
WO2013145272A1 (en) Information processing device and program
KR20080030322A (en) Computer system and control method thereof
JP2015173570A (en) Automatic frequency controller and automatic frequency control method
JP2014059755A (en) Electric power control device, electric power control system, electric power control method and program
US11287873B2 (en) Sensing device and control method
JP6049550B2 (en) Power limit tight warning system
JP2019075990A (en) Power storage control system, instruction control device, power storage control device, power storage control method and program
JP6210864B2 (en) Charge / discharge control device, charge / discharge control method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP