WO2013145120A1 - Stacked solar cell unit and stacked solar cell unit/flexible film material composite structure - Google Patents

Stacked solar cell unit and stacked solar cell unit/flexible film material composite structure Download PDF

Info

Publication number
WO2013145120A1
WO2013145120A1 PCT/JP2012/057906 JP2012057906W WO2013145120A1 WO 2013145120 A1 WO2013145120 A1 WO 2013145120A1 JP 2012057906 W JP2012057906 W JP 2012057906W WO 2013145120 A1 WO2013145120 A1 WO 2013145120A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
flexible
resin
support layer
stress
Prior art date
Application number
PCT/JP2012/057906
Other languages
French (fr)
Japanese (ja)
Inventor
一英 井野
島戸 典夫
Original Assignee
平岡織染株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平岡織染株式会社 filed Critical 平岡織染株式会社
Priority to PCT/JP2012/057906 priority Critical patent/WO2013145120A1/en
Publication of WO2013145120A1 publication Critical patent/WO2013145120A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell laminate unit and a solar cell laminate unit-flexible film material composite structure. More specifically, the present invention includes a flexible solar cell structure, and is a solar cell laminate excellent in load resistance stability, creep property, adhesiveness, moisture / water resistance, weather resistance, and antifouling property.
  • the present invention relates to a unit and a solar cell laminate unit-flexible film material composite structure.
  • the solar cell laminate unit and the solar cell laminate unit-flexible membrane material composite structure of the present invention require a large tent structure, a tent warehouse, an awning tent, a house shape that needs to be rolled or bent to be transported or stored. It is useful as a component for tents, agricultural houses, truck hoods, blinds and the like.
  • Thin film solar cells using a plastic film or a metal film as a substrate have become capable of mass production by a roll-to-roll manufacturing method, taking advantage of their flexibility.
  • it is a roof-standing type in which monocrystalline silicon or polycrystalline silicon solar cells are placed on the roof surface, and a method is provided in which a support frame is provided on the roof surface and the solar cells are fixedly supported.
  • a method of incorporating directly into the roof is being taken.
  • all use modules composed of glass substrates there are actual problems in terms of workability and workability.
  • flexible solar cells are integrated on the upper surface of polymer sheets such as vulcanized rubber, vinyl chloride, and asphalt non-vulcanized rubber, which are called roof waterproof sheets. It has been proposed to be easy (for example, Patent Document 1).
  • the above-mentioned waterproof sheet with a solar cell integrated type has the merit of reducing human burdens such as workability and workability, but it can be used for flexible sheets such as waterproof sheets or film materials. It is hard to say that the features such as ability and lightness are fully utilized.
  • a flexible solar cell is integrated with a film material such as a sheet-like substrate in addition to a roof waterproof sheet and can be attached to various places (for example, Patent Document 2).
  • Patent Document 2 As the flexible solar cell, an amorphous solar cell module whose surface is protected with a fluororesin film on both sides of the solar cell via an adhesive is marketed.
  • a solar cell module integrated with a film material such as a sheet-like substrate can only be used for static applications such as the roof waterproof solar cell sheet and the solar cell module that can be easily attached to the film material.
  • static applications such as the roof waterproof solar cell sheet and the solar cell module that can be easily attached to the film material.
  • the required properties include adhesion durability, load resistance, creep properties, and shape. Although stability is required, it is currently insufficient for practical use.
  • durability of adhesion Since the tent structure is exposed to the outdoors for a long time, durability such as adhesion at high temperature and high humidity, weather resistance, etc. is necessary.
  • Load resistance, creep resistance The load cell resistance at high temperatures is due to the possibility that the solar cell structure may peel off from the film material due to the tensile stress at the time of expansion and the creep property during exposure. Creep resistance is necessary, and (3) Performance stability of solar cell structure; module performance is stable only when the performances of (1) and (2) above can be maintained sufficiently high. To do.
  • the present invention solves the above-mentioned problems of the conventional flexible membrane solar cell laminate unit, has practically sufficient flexibility, and the flexible solar cell structure has adhesion durability. It is supported on a support that is high and has excellent load stability such as creep resistance, so that the flexible solar cell structure has high shape stability and excellent performance stability. It is an object of the present invention to provide a solar cell laminate unit that is supported, and the solar cell laminate unit-flexible film material composite structure.
  • the solar cell laminate unit of the present invention is a laminate comprising a flexible solar cell structure and a stress-stable support layer formed from a sheet-like material cross-linked and adhered to the back surface thereof, wherein the stress The stable support layer has an area of 110 to 330% of the area of the flexible solar cell structure, and the sheet-like material forming the stress stable support layer is 500 to 5000 N / 3 cm.
  • the tensile load within the range is applied, the elongation in the vertical direction and the elongation in the horizontal direction are both within 3%.
  • the flexible solar cell structure is a flexible solar cell module having a surface protective layer, an anode current collecting electrode and a cathode current collecting electrode, and a current collecting connector.
  • the stress-stable support layer is preferably composed of one or more of a heat-resistant polymer sheet, a polymer sheet containing a fiber fabric as a core material, and a metal sheet.
  • the heat-resistant polymer sheet preferably has a 1471 ⁇ 4903MPa (150 ⁇ 500kgf / mm 2) tensile modulus (JIS K7113- 1995).
  • a polymer sheet containing the fiber fabric as a core material it has a 39226.6 ⁇ 392266MPa (4000 ⁇ 40000kgf / mm 2) tensile modulus (JIS K7113- 1995) Preferably it is.
  • the metal sheet is selected from stainless steel, iron, iron alloy, aluminum, aluminum alloy, copper, copper alloy, nickel, nickel alloy, tungsten, and tungsten alloy. The above is preferable.
  • the side surface portion of the flexible solar cell structure, and the peripheral portion of the upper surface continuous to the upper end of the side surface portion of the flexible solar cell structure In addition, a flexible protective film containing a fluorine-based resin as a main component is crosslinked and bonded to the periphery of the upper surface of the stress stable support layer surrounding the lower end of the side surface of the flexible solar cell structure. It is preferable.
  • the solar cell laminate unit-flexible membrane material composite structure of the present invention one or more of the solar cell laminate units of the present invention are either crosslinked or elastically bonded onto the flexible membrane material. Or it is equipped with both, It is characterized by the above-mentioned.
  • the solar cell laminate unit and the solar cell laminate unit-flexible film material composite structure of the present invention have sufficient flexibility for practical use and are mounted on a tent film structure and used outdoors for a long time. Even in this case, the shape stability of the solar cell structure is excellent, and the durability between the flexible film material and the solar cell laminate unit is excellent, and the end of the flexible solar cell structure Since moisture can be prevented from entering the power generation element without absorbing or absorbing water from the cross-sectional portion, an effect of preventing a decrease in power generation output can be achieved.
  • the solar cell laminate unit of the present invention includes one or more flexible solar cell structures and a stress stable support layer that supports the flexible solar cell structures.
  • the solar cell laminate unit-flexible membrane material composite structure the back surface of one or more stress-stable support layers of the solar cell laminate unit is mounted and fixed on a single flexible membrane material. It is configured.
  • FIG. 1 is a cross-sectional explanatory view of a part including one solar cell laminate unit of one embodiment of the solar cell laminate unit-flexible film material composite structure of the present invention.
  • illustration of an electrode system, a current collection system, and the like that the solar cell stack unit 5 naturally has is omitted.
  • the solar cell laminate unit 5 is bonded and fixed to the upper surface of the flexible film material 4 on the lower surface of the stress stable support layer 10 via a crosslinkable adhesive layer or an elastic adhesive layer 8c. Has been.
  • the solar battery cell 1 of the solar battery stack unit 5 is surrounded and supported by a surface protective layer 11 to form a flexible solar battery structure 2.
  • the lower surface portion 2a of the flexible solar cell structure 2 is bonded to the upper surface of the stress stable support layer 10 via the crosslinkable adhesive layer 8a.
  • the crosslinkable adhesive layer 8a extends from the lower surface portion 2a of the solar cell structure 2 to the periphery on the upper surface of the stress stable support layer 10 and surrounds the lower end of the side surface portion of the solar cell structure 2. 10a is formed.
  • the side surface portion 2b and the upper surface peripheral edge portion 2c of the solar battery cell structure 2 are bonded to the portions 3a and 3b of the protective film 3 via the crosslinkable adhesive layer 8b, respectively, and the portion 3c of the protective film 3 is It adhere
  • the side surface portion and the upper surface peripheral portion of the solar cell structure 2 including the solar cell 1 are covered with the portions 3a and 3b of the flexible protective film, and the solar cell structure
  • the joint between the body 2 and the stress stable support layer 10 is reinforced by the portion 3c of the flexible protective film.
  • the flexible protective film 3 is effective for strengthening and stabilizing the adhesive fixing state between the solar cell structure 2 and the stress stable support layer 10. Further, the bonded flexible protective film layer can remarkably improve the moisture absorption / water absorption prevention durability of the solar cell structure 2.
  • the flexible protective film 3 shown in FIG. 1 and FIG. 2 has a water vapor transmission rate of 5 g when the film thickness is 50 ⁇ m and the measurement conditions are 40 ° C. and 90% RH in JIS Z0208. It is preferable to use a fluorine resin film of / m 2 / day or less.
  • the fluorine resin film having a water vapor transmission rate of 5 g / m 2 / day or less is selected from the group consisting of vinylidene fluoride, trifluoroethylene, trifluorochloroethylene, tetrafluoroethylene, hexafluoropropylene, fluoroalkyl vinyl ether and ethylene.
  • At least one copolymer resin film composed of two or more types of monomers can be used.
  • the thickness of the flexible resin film is preferably 0.025 to 0.10 mm, and particularly preferably 0.04 to 0.075 mm. If the thickness is less than 0.025 mm, the moisture resistance may be insufficient, and if it exceeds 0.10 mm, the flexibility may be insufficient.
  • the crosslinkable adhesive layer 8a for adhering and fixing the flexible solar cell structure 2 to the stress stable support layer 10 and the adhesion fixing are further reinforced.
  • the crosslinkable adhesive layer 8b for bonding the flexible protective film 3 to the flexible solar cell structure 2 and the stress stable support layer 10 is composed of an adhesive flexible resin and a crosslinker.
  • the adhesive flexible resin is crosslinked by a crosslinking agent and has practically sufficient flexibility even after crosslinking.
  • the adhesive flexible resin for the crosslinkable resin layers 8a and 8a is preferably selected from those containing one or more selected from polyester resins, polyurethane resins, silicone resins, and fluorine-based resins containing hydroxyl groups.
  • a crosslinking agent 1 or more types, such as an epoxy resin, an isocyanate compound, and a coupling agent, can be used.
  • the polyester resin used as the flexible resin for the crosslinkable adhesive layers 8a and 8b is generally obtained by polycondensation of a polyvalent carboxylic acid and a polyhydric alcohol.
  • the polyvalent carboxylic acid include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, and paraphenylene dicarboxylic acid; 5-membered or 6-membered ring such as cyclohexanedicarboxylic acid 3 or more functional groups such as aliphatic dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, asperic acid, azelaic acid, dodecanedioic acid, trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid There are polyvalent carboxylic acids.
  • polyvalent carboxylic acids may be used alone or in combination of two or more.
  • the polyhydric alcohol include linear alkanes such as ethylene glycol, 1,2-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and neopentyl glycol.
  • polyhydric alcohols such as diols, alicyclic diols such as 1,4-cyclohexanedimethanol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyester polyols, polycarbonate polyols, polybutadiene diols.
  • a bifunctional or higher functional isocyanate compound can be used for a main component such as polyester polyol, polyether polyol, and carbonate polyol.
  • polyester polyols include aliphatics such as succinic acid, glutaric acid, adipic acid, pimelic acid, speric acid, azelaic acid, sebacic acid and brassic acid, and aromatics such as isophthalic acid, terephthalic acid and naphthalenedicarboxylic acid.
  • One or more of the dibasic acids of the family, and aliphatics such as ethylene glycol, propylene glycol, butanediol, neopentyl glycol, methylpentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, dodecanediol
  • an alicyclic system such as a system, cyclohexanediol and hydrogenated xylene glycol, and an aromatic diol such as xylene glycol can be used.
  • polyether polyol ether-based polyols such as polyethylene glycol and polypropylene glycol can be used.
  • the carbonate polyol can be obtained by reacting a carbonate compound with a diol.
  • the carbonate compound dimethyl carbonate, diphenyl carbonate, ethylene carbonate and the like can be used.
  • Diols include ethylene glycol, propylene glycol, butanediol, neopentyl glycol, methylpentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, dodecanediol, and other aliphatic diols, cyclohexanediol, hydrogenated xylylene Carbonates in which one or more mixtures of alicyclic diols such as reels and aromatic diols such as xylylene glycol are used can be used.
  • isocyanate compound for the polyurethane resin examples include aliphatic diisocyanates such as hexamethylene diisocyanate and lysine diisocyanate; alicyclic diisocyanates such as isophorone diisocyanate and hydrogenated tolylene diisocyanate; aromatic diisocyanates, For example, tolylene diisocyanate, diphenylmethane diisocyanate, and xylene diisocyanate; isocyanurates such as tris (hexamethylene isocyanate) isocyanurate, tris (3-isocyanate methylbenzyl) isocyanurate; Block blocked with blocking agents such as phenols, oximes, alcohols, and lactams Or the like can be used isocyanate.
  • aliphatic diisocyanates such as hexamethylene diisocyanate and lysine diisocyanate
  • alicyclic diisocyanates such as isophorone diisocyan
  • silicone resin used as the flexible resin for the crosslinkable adhesive layers 8a and 8b examples include aminopropyltrimethoxysilane, aminopropyltriethoxysilane, aminopropylmethyldiethoxysilane, mercaptoethyltrimethoxy.
  • Silane compounds such as silane, mercaptoethyltriethomethoxysilane, polymethylsiloxane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, glycidoxypropyltrimethoxysilane, these silane compound derivatives, and silane compounds There are a mixture, a mixture of these silane compound derivatives, a mixture of these silane compounds and these silane compound derivatives, and the like.
  • the hydroxyl group-containing fluororesin used as the flexible resin for the crosslinkable adhesive layers 8a and 8b includes a fluoroolefin-vinyl copolymer resin containing a hydroxyl group, for example, trifluorochloroethylene containing a hydroxyl group.
  • a fluoroolefin-vinyl copolymer resin containing a hydroxyl group for example, trifluorochloroethylene containing a hydroxyl group.
  • the cross-linking agent used in the cross-linking adhesive layers 8a and 8b preferably includes a cured product of one or more cross-linking agents selected from an epoxy resin, an isocyanate compound, and a coupling agent compound.
  • epoxy resins for the crosslinker include bisphenol A, epichlorohydrin type epoxy resin, ethylene glycol glycidyl ether, polyethylene glycol glycidyl ether, glycerin glycidyl ether, glycerin triglycidyl ether, 1,6- Hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, diglycidyl aniline, diglycidyl amine, N, N, N ′, N′-tetraglycidyl-m-xylenediamine, and 1,3-bis (N, N ′ -Diglycidylaminomethyl) cycl
  • An epoxy resin obtained by modifying the above epoxy resin with a chelating agent, urethane resin, synthetic rubber or the like can also be used.
  • the isocyanate compound for the crosslinking agent of the crosslinkable adhesive layers 8a and 8b the above isocyanate compounds can be used.
  • the coupling agent compound for the crosslinking agent is at least one selected from silane coupling agents, titanium coupling agents, zirconium coupling agents, aluminum coupling agents, and zircoaluminum coupling agents. Can be used.
  • Silane coupling agents include aminosilanes such as ⁇ -aminopropyltriethoxysilane and N-phenyl- ⁇ -aminopropyltriethoxysilane; epoxy silanes such as ⁇ -glycidoxypropylmethyldiethoxy Silane, ⁇ -glycidoxypropyltrimethoxysilane, and ⁇ - (3,4 epoxycyclohexyl) ethyltrimethoxysilane; vinyl silanes such as vinyltriethoxysilane and vinyltris ( ⁇ -methoxyethoxy) silane; mercapto Silanes such as ⁇ -mercaptopropyltrimethoxysilane are exemplified.
  • Titanium-based coupling agents include alkoxy compounds such as tetraisopropoxy titanium, tetra-n-butoxy titanium, and tetrakis (2-ethylhexoxy) titanium; acylates such as tri-n-butoxy titanium stearate, and Examples include isopropoxy titanium tristearate.
  • Examples of the zirconium-based coupling agent include tetrabutyl zirconate, tetra (triethanolamine) zirconate, and tetraisopropyl zirconate.
  • the aluminum coupling agent include acetoalkoxyaluminum diisopropylate.
  • zircoaluminum-based coupling agent examples include tetrapropylzircoaluminate.
  • these coupling agents ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, and ⁇ - (3,4 epoxy cyclohexyl) are particularly preferred from the viewpoint of moisture resistance and light resistance. It is preferable to use an epoxy silane such as ethyltrimethoxysilane.
  • the addition amount of the epoxy resin, isocyanate compound and coupling agent compound used as the crosslinking agent for the crosslinkable adhesive layers 8a and 8b is 0.5 to 30% by mass with respect to the total solid mass of each crosslinkable adhesive resin layer. It is preferable that If the amount added is less than 0.5% by mass, the adhesion to the sheet-like substrate may be insufficient, and if it exceeds 30% by mass, the resulting laminate will have insufficient flexibility. There is.
  • the crosslinkable adhesive layer 8 c or the elastic adhesive layer 8 c was attached in order to adhere and fix the solar cell laminate unit to the flexible film material 4.
  • the crosslinkable adhesive layer 8c can use the same type of adhesive as the crosslinkable adhesive layers 8a and 8b.
  • the elastic resin or rubber of the elastic adhesive layer 8c includes chloroprene rubber, nitrile rubber, styrene butadiene rubber, polysulfide, butyl rubber, silicone rubber, acrylic rubber, modified silicone rubber, urethane rubber, silyl Urethane resin and telechelic polyacrylate are used.
  • a modified silicone adhesive is preferable from the viewpoints of durability and weather resistance.
  • FIG. 3 (A), (B) or (C) shows a cross-sectional explanatory diagram of an example of the flexible solar cell structure 2 in the solar cell laminate unit 5 of the present invention.
  • the solar cell 1 includes an anode current collecting electrode 12a, a cathode current collecting electrode 12b, and a current collecting connector (not shown) connected to these electrodes.
  • the current collecting means is provided, and these are covered with the flexible / adhesive resin layer 1a.
  • the surface protective layer 11 is constituted as a whole.
  • the surface protective film layer is preferably formed from an ethylene-tetrafluoroethylene copolymer resin film.
  • the anode current collecting electrode 12a and the cathode current collecting electrode 12b in the solar cell 1 are respectively provided with a moisture-proof conductive portion.
  • the surface protective film layer 9 is adhered only on the upper surface of the flexible / adhesive resin layer 1a.
  • a conductive portion moisture-proof layer 13 is bonded on the upper surface of the flexible / adhesive resin layer 1a, and a surface protective film is formed thereon. Layer 9 is formed.
  • the anode current collecting electrode 12a and the cathode current collecting electrode 12b are indirectly connected by the conductive portion moisture-proof layer 13 disposed on the flexible adhesive resin layer 1a. Moisture-proof protected.
  • the solar battery cell 1 is preferably a film-like amorphous silicon solar battery cell.
  • the conductive part moisture-proof layer that directly or indirectly covers the positive and negative electrode conductive parts may be covered with a moisture-proof film.
  • a moisture-proof film is comprised from a polyester film and a metal vapor deposition layer or a metal oxide vapor deposition layer.
  • the metal deposited on the polyester film is preferably selected from aluminum, tin, titanium, indium, silicon, magnesium, iron, zinc, zirconium, cobalt, chromium, nickel and the like.
  • the thickness of the metal vapor deposition layer is preferably 5 to 500 nm, and more preferably 10 to 200 nm.
  • metal oxides such as silicon, aluminum, magnesium, calcium, potassium, sodium, boron, titanium, zirconium, yttrium, can be used. In particular, silicate oxide, aluminum oxide, and magnesium oxide are preferable.
  • the thickness of the vapor deposition varies depending on the thickness of the metal or metal oxide to be used, but it is desirable that the thickness be arbitrarily selected within the range of 5 to 500 nm, preferably 10 to 200 nm.
  • any of vacuum vapor deposition, sputtering, ion plating, various CDV methods, and the like can be used.
  • vacuum vapor deposition, sputtering, and CVD can be preferably used. .
  • a crosslinkable ethylene-vinyl acetate copolymer composition is used as the flexible / adhesive resin forming the flexible / adhesive resin layer 1a.
  • An ethylene-vinyl acetate polymer resin having a vinyl acetate constituent unit content of 1 to 40 mol%, preferably 10 to 35 mol%, can be used with a good balance in terms of weather resistance, transparency and mechanical properties of the resin.
  • the crosslinkable ethylene-vinyl acetate copolymer resin composition has a cross-linked structure by adding a cross-linking agent.
  • the cross-linking agent generates radicals at 100 ° C or higher.
  • An organic peroxide can be preferably used.
  • organic peroxides examples include benzoyl peroxide, dicumyl peroxide, 2,5-dimethyl-di (t-butylperoxy) hexane, 1,1′-di-t-butylperoxy-3,3, 5-Trimethylenecyclohexane, 1,3-di- (t-butylperoxy) -diisopropylbenzene and the like can be used.
  • the blending amount of these organic peroxides is generally 5 parts by weight or less, preferably 1 to 3 parts by weight with respect to 100 parts by weight of the ethylene-vinyl acetate copolymer resin.
  • the flexible / adhesive resin melts at a temperature of 120 to 170 ° C. under a pressure of 1 Torr or less to fill the space between the solar cell layer and the flexible surface protective film layer, and is crosslinked and cured. can do.
  • the stress stable support layer 10 is a flexible solar cell. Between the back surface of the structure 2 and the upper surface of the flexible membrane material 4, cross-linking adhesion or elastic bonding is performed.
  • the area of the upper surface of the stress stable support layer 10 is 110 to 330%, preferably 130 to 300%, more preferably 150 to 250% of the area of the lower surface of the flexible solar cell structure 2. Is more preferable. When it is less than 110%, when a tensile load is applied to the composite structure, the elongation rate of the flexible solar cell structure 2 in the load direction of the tensile load becomes excessive.
  • the battery cell structure 2 is easily damaged, and thus the power generation output of the solar battery cell is reduced. If it exceeds 330%, the solar cell laminate unit 5 and the composite structure 6 have insufficient flexibility, and the solar cell laminate unit 5 and the composite having a curved surface or three-dimensional flexibility. Construction of the structure 6 becomes impossible.
  • the sheet-like material that forms the stress-stable support layer has an elongation rate of less than 3% for a tensile load of 500 to 5000 N / 3 cm at all times in any environment exposed to a freezing atmosphere in winter or a hot atmosphere in summer.
  • the solar cell laminate unit of the present invention preferably has an elongation of 3% or less with respect to a tensile load of 500 to 5000 N / 3 cm in a temperature atmosphere range of ⁇ 10 to 75 ° C.
  • the solar cell laminate unit-flexible membrane material composite structure are warped when a tensile load in the range of 500 to 5000 N / 3 cm is applied in an atmosphere in the range of room temperature (25 ° C.) to 65 ° C.
  • the elongation in the direction and the elongation in the horizontal direction are both within 3%, and the elongation at this time is preferably 2.5% or less, and preferably 1.5% or less.
  • Preferred in La Preferred in La.
  • the tensile elastic modulus (JIS K7113- 1995) is, it is possible to use a heat resistant polymer sheet 150 ⁇ 500kgf / mm 2.
  • a heat resistant polymer sheet general-purpose plastic, general-purpose engineering plastic (general-purpose engineering plastic), or super engineering plastic (super-engineering plastic) is used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • hard polyvinyl chloride polyvinyl chloride
  • acrylic resin methacrylic resin
  • polyacetal polyamide
  • PA polycarbonate
  • PC polycarbonate
  • m-PPE modified polyphenylene ether
  • PBT polybutylene terephthalate
  • amorphous polyarylate PAR
  • PSF polysulfone
  • PES polyethersulfone
  • PPS polyphenylene sulfide
  • PEEK polyetheretherketone
  • PI polyimide
  • PEI polyether Imide
  • fluororesin and liquid crystal polymer
  • polyethylene terephthalate (PET), polyethylene naphthalate (PEN), hard polyvinyl chloride, and acrylic resin (methacrylic resin) are preferable from the viewpoints of flexibility and adhesiveness.
  • the thickness of the polymer sheet is preferably 10 to 500 ⁇ m. In particular, 25 to 200 ⁇ m is more preferable. If the thickness is less than 10 ⁇ m, the strength may be insufficient and the flexible solar cell structure may be easily damaged, and if it exceeds 500 ⁇ m, the flexibility may be insufficient. .
  • the tensile elastic modulus (JIS K7113- 1995) can be used a polymer sheet of 4000 ⁇ 40000kgf / mm 2.
  • a polymer sheet preferably has a thickness of 0.3 to 1.0 mm and a mass (unit weight) per unit area of 250 to 1000 g / m 2 .
  • the constituent mass ratio of the fiber fabric core material to the polymer component in the polymer sheet for the stress stable support is preferably 20 to 90% by mass: 80 to 10% by mass, particularly 25 to 75% by mass: 75 to 25 mass% is preferable.
  • the fibers forming the fiber fabric are selected from high strength and high elasticity fibers such as glass fibers, carbon fibers, stainless fibers, aramid fibers, aromatic heterocyclic polymer fibers, polyarylate fibers, and aromatic polyether fibers. More than seeds are used.
  • the fiber material forming the fiber fabric may be either monofilament or multifilament yarn.
  • the fiber fabric is preferably a woven fabric or a knitted fabric, and in particular, a plain woven fabric or a stacked fabric formed by arranging a large number of yarns in two or multiple directions is preferable.
  • a glass fiber plain woven fabric is preferably used from the standpoint of the balance between adhesion to a polymer and strong elongation.
  • Some of the yarns woven and knitted from these fiber fabrics include polyamide fibers such as nylon 6 and nylon 66, polyester fibers (saturated polyester) such as polyethylene terephthalate and polyethylene naphthalate, and polylactic acid fibers as necessary.
  • a synthetic fiber yarn such as a polyolefin fiber such as a fatty acid polyester fiber, an acrylic fiber, a vinylon fiber, a polyethylene fiber or a polypropylene fiber, or a polyvinyl chloride fiber can be used in combination.
  • thermoplastic resin includes polyvinyl chloride resin, polyolefin resin, ethylene-vinyl acetate copolymer resin, ethylene- (meth) acrylate copolymer resin, polyurethane resin, polyester resin, acrylic resin, Fluorine-containing resins, polyamide resins, polyvinyl alcohol resins, ethylene-vinyl alcohol copolymer resins, etc.
  • thermoplastic elastomers include polyester copolymer resins, urethane copolymer resins, styrene copolymer resins Examples of the resin include styrene-butadiene-styrene copolymer, styrene-isoprene-styrene copolymer, and hydrogenated products
  • thermoplastic resin an ionomer resin (ethylene- (meta)
  • an isocyanate compound, a coupling agent compound, or a combined product of an isocyanate compound and a coupling agent compound is added to the above thermoplastic resin and thermoplastic elastomer.
  • thermosetting resin include unsaturated polyester resins, epoxy resins, phenol resins, melamine resins, urea resins, and the like.
  • the stress stable support layer may be composed of a metal sheet.
  • the metal sheet at least one selected from stainless steel, iron, iron alloy, aluminum, aluminum alloy, copper, copper alloy, nickel, nickel alloy, tungsten, and tungsten alloy is used.
  • stainless steel iron, iron alloy, aluminum, aluminum alloy, copper, copper alloy, nickel, nickel alloy, tungsten, and tungsten alloy is used.
  • aluminum or stainless steel is preferably used in terms of flexibility and strength.
  • the flexible membrane material 4 used in the solar cell laminate unit-flexible membrane material composite structure of the present invention is made of a flexible and waterproof sheet and has a thickness of 0.1 to 3.0 mm. And a mass per unit area (weight per unit area) of 150 to 2500 g / m 2 is preferable.
  • the flexible / waterproof sheet may contain a fiber fabric (woven fabric, knitted fabric or non-woven fabric) as a base fabric if necessary. In this case, it is preferable that a flexible / waterproof resin layer is formed by applying or impregnating a flexible / waterproof synthetic resin on at least one surface, preferably both surfaces, of the fiber cloth.
  • the fibers forming the fiber fabric for the base fabric include natural fibers such as cotton and hemp, inorganic fibers such as glass fibers, carbon fibers and metal fibers, recycled fibers such as viscose rayon and cupra, and the like.
  • Synthetic fibers such as di- and triacetate fibers, and synthetic fibers such as polyamide fibers such as nylon 6 and nylon 66, aramid fibers such as Kevlar, polyester fibers (saturated polyester) such as polyethylene terephthalate and polyethylene naphthalate, and poly At least one selected from fatty acid polyester fibers such as lactic acid fibers, polyarylate fibers, aromatic polyether fibers, polyimide fibers, acrylic fibers, vinylon fibers, polyethylene fibers, polypropylene fibers such as polypropylene fibers, and polyvinyl chloride fibers Use what consists of It is possible.
  • the fiber material forming the fibrous base fabric may be any shape such as short fiber spun yarn, long fiber yarn, split yarn, tape yarn, or the like.
  • the structure of the fibrous base fabric may be any of a woven fabric, a knitted fabric, a nonwoven fabric, or a composite thereof.
  • Examples of the flexible and waterproof sheet resin for flexible membrane materials include polyvinyl chloride resin, polyolefin resin, chlorinated polyolefin resin, ethylene-vinyl acetate copolymer resin, and ethylene- (meth) acrylic acid ester.
  • Copolymer resins ionomer resins (ethylene- (meth) acrylic acid copolymer salts, etc.), polyurethane resins, polyester resins (including aliphatic polyester resins), acrylic resins, fluorine-containing resins Styrene copolymer resins (styrene-butadiene-styrene copolymers, styrene-isoprene-styrene copolymers, and hydrogenated products thereof), polyamide resins, polyvinyl alcohol resins, ethylene-vinyl alcohol copolymers Combined resin, silicone resin, and other synthetic resins (including thermoplastic elastomer) You can choose from to), and the like. These waterproof synthetic resins may be used alone or as a mixture of two or more.
  • the solar cell laminate unit and solar cell laminate unit-flexible film material composite structure of the present invention will be further described by the following examples.
  • the solar cell laminate unit-flexible membrane material composite structures produced in the following examples and comparative examples were subjected to the following tests.
  • (1) Based on the power output measuring JIS-C8935- 1995, to measure the power output before and after the environmental test of the specimen.
  • (2) Load resistance stability In an atmosphere at room temperature (25 ° C) or 65 ° C, the elongation is 0 at both ends of the test piece of width: 30 cm and length: 100 cm.
  • the damage state of the solar cell module was evaluated in four stages as follows. (Appearance evaluation) 4: No change compared to the state before loading. 3: In a part of the specimen, wrinkles are generated in a part of the film (surface coating layer, flexible solar cell module layer, flexible protective film layer). 2: In a part of the specimen, the film (above) is partially lifted and peeled off. 1: The film (above) floats and peels off on the entire surface of the specimen.
  • Example 1 As a flexible membrane material, a plain woven fabric (weighing: 380 g / m 2 , density: 29 warps / 25.) Using glass fiber yarn (fiber thickness: DE yarn, woven yarn thickness: 150 tex) as warp and weft. 4 mm, 32 wefts / 25.4 mm). A flexible and waterproof resin film was stuck on the glass fiber plain fabric to constitute a flexible membrane layer.
  • This flexible and waterproof resin film was prepared by kneading and rolling a polyvinyl chloride resin composition having the following composition by a calendering method to produce a film having a thickness of 0.16 mm. This film was thermocompression bonded at 165 ° C.
  • Vinyl chloride resin 100 parts by weight
  • Phthalate ester plasticizer 50 parts by weight
  • Phosphate ester plasticizer 15 parts by weight
  • Epoxy compound 3 parts by weight
  • Ba-Ca stabilizer 1 part by weight
  • Aromatic isocyanate compound 5 Part by mass
  • Benzotriazole-based UV absorber 0.1 part by mass Pigment (titanium oxide): 5 parts by mass
  • An adhesive layer was formed on the surface of the flexible membrane material.
  • the following adhesive layer adhesive composition solution was coated to form an adhesive layer having a thickness of about 5 ⁇ m after drying.
  • Methacrylic ester resin copolymer of methyl methacrylate resin and butyl acrylate resin
  • Diluent solvent toluene
  • a resin mixture comprising 70% by mass of a methacrylic ester resin and 30% by mass of a vinylidene fluoride resin, 80 parts by mass of a vinylidene fluoride resin for a top layer, and 20% by mass of a methacrylic ester resin % Of the resin mixture was melt-extruded to form a film having a two-layer structure in which the anchor layer and the top layer were integrated, and this was immediately laminated and bonded onto the surface of the flexible membrane material. Further, the surface of the top layer was subjected to corona discharge treatment to improve the adhesion.
  • PET polyethylene terephthalate
  • a flexible solar cell structure was manufactured as follows. Anode current collector and cathode current collector of flexible amorphous silicon solar cell (trademark: flexible solar panel, intermediate processed product of product number R-7, maximum output 7 W, manufactured by Power Film, USA) having a width of 37 cm and a length of 59 cm. The electrode is covered with a moisture-proof layer in the conductive part, and the obtained solar battery cell is covered with a flexible / adhesive resin layer, and a flexible surface protection is provided on the upper surface of the formed flexible / adhesive resin layer. The film was joined to produce a flexible solar cell structure. The conductive portion moisture-proof layer was formed of a moisture-proof film composed of a polyester film layer and an aluminum vapor deposition layer.
  • the flexible / adhesive resin layer was formed using a resin composition having the following composition.
  • Ethylene-vinyl acetate polymer resin (vinyl acetate content 26% by mass): 100 parts by mass Organic peroxide (1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane): 2 parts by mass
  • Coupling agent compound (methacryloxy-based silane coupling agent): 1 part by mass
  • Cross-linking auxiliary agent triallyl isocyanurate
  • UV absorber benzophenone-based
  • a trifluorochloroethylene resin film water vapor transmission rate; 0.1 g / m 2 / day having a thickness of 50 ⁇ m.
  • the polyethylene terephthalate film for stress stable support layer having an area of 150% of the area, is laminated and bonded via the following adhesive, A battery stack unit was manufactured.
  • an adhesive having the following composition was used.
  • Polyester resin 100 parts by weight Isocyanate compound (hexamethylene diisocyanate): 10 parts by weight
  • Diluting solvent acetic acid Ethyl
  • the two solar cell laminate units are arranged at the center of the flexible membrane material having the anchor layer and the top layer having a width of 1200 mm and a length of 2000 mm with an interval of 80 mm between each other, and the following crosslinkable adhesion It laminated
  • Polyester resin 100 parts by mass Isocyanate compound (hexamethylene diisocyanate; isocyanate content 13%): 7 parts by mass
  • a flexible protective film is laminated on the side portion of the flexible solar cell structure and the peripheral edge of the upper surface, and the peripheral portion of the stress stable support layer surrounding the lower end of the side portion of the solar cell structure. , Joined and integrated.
  • an ethylene-tetrafluoroethylene copolymer resin film having a thickness of 50 ⁇ m was used as this flexible protective film.
  • the back surface of the ethylene-tetrafluoroethylene copolymer resin film was subjected to corona discharge treatment, and then coated with a resin composition for a crosslinkable adhesive layer to form a crosslinkable adhesive layer having a thickness of 20 ⁇ m after drying. .
  • the laminate formed as described above was heated at 120 ° C.
  • Example 2 In the same manner as in Example 1, a solar cell laminate unit-flexible film material composite structure was manufactured and subjected to a test.
  • the flexible solar cell structure is made of a flexible solar cell module having a width of 460 mm and a length of 1733 mm (product name: amorphous solar cell module, model: FPV1045COM1, nominal maximum output: 45 W, manufacturer: Fuji Electric Systems Co., Ltd.
  • the stress-stable support layer was bonded to the back surface of).
  • Tables 1 to 4 The test results are shown in Tables 1 to 4.
  • Example 3 In the same manner as in Example 1, a solar cell laminate unit-flexible film material composite structure was manufactured and subjected to a test. However, as the stress-stable support layer, a plain woven fabric (weight per unit area: 200 g / m 2) , density using glass fiber yarn (fiber thickness: DE yarn, woven yarn thickness; 67.5 tex) as warp and weft : 40 warps / 25.4mm, 30 wefts / 25.4mm), and the glass fiber plain fabric impregnated with an epoxy resin solution (adhesion solid amount: 200 g / m 2 ) and cured. It was. The test results are shown in Tables 1 to 4.
  • Example 4 In the same manner as in Example 1, a solar cell laminate unit-flexible film material composite structure was manufactured and subjected to a test. However, an aluminum foil having a thickness of 10 ⁇ m was used as the stress stable support layer. The test results are shown in Tables 1 to 4.
  • Example 5 In the same manner as in Example 1, a flexible membrane material having a solar cell laminate unit was manufactured and subjected to a test. However, a plain fabric using a polyester fiber yarn (fiber thickness: 84 dtex) as a warp and a weft as a fiber fabric for a flexible membrane material (weight per unit: 160 g / m 2 , density: 40 warps / 25.4 mm, 50 wefts / 25.4 mm) were used. Further, a flexible / waterproof resin film was stuck on the fiber fabric.
  • a polyester fiber yarn fiber thickness: 84 dtex
  • a weft as a fiber fabric for a flexible membrane material
  • this flexible and waterproof resin film As this flexible and waterproof resin film, a 0.15 mm thick film obtained by kneading and rolling the same polyvinyl chloride resin composition as used in Example 1 by a calendering method was used. . This film was thermocompressed on the surface of the fiber fabric at 165 ° C. for 2 minutes to form a flexible membrane material. The basis weight of this sheet-like base material layer was 500 g / m 2 . The test results are shown in Tables 1 to 4.
  • Example 1 In the same manner as in Example 1, a solar cell laminate unit-flexible film material composite structure was manufactured and subjected to a test. However, the stress-stable support layer is omitted, and instead, the flexible solar cell structure is directly laminated on the flexible film material via the resin composition layer for a crosslinkable adhesive described below, and is joined and integrated. did.
  • Polyester resin 100 parts by mass Isocyanate compound (hexamethylene diisocyanate; isocyanate content 13%): 7 parts by mass
  • Epoxy resin urethane-modified epoxy resin
  • Coupling agent compound epoxy silane coupling agent
  • UV absorber benzotriazole type
  • Diluting solvent ethyl acetate
  • Example 2 In the same manner as in Example 1, a solar cell laminate unit-flexible film material composite structure was manufactured and subjected to a test. However, the stress stable support layer was formed using a high-density polyethylene resin film having a thickness of 50 ⁇ m and a thermal deformation temperature of 60 ° C. The test results are shown in Tables 1 to 4.
  • Example 3 In the same manner as in Example 1, a solar cell laminate unit-flexible film material composite structure was manufactured and subjected to a test. However, as the stress-stable support layer, a plain woven fabric (weight per unit area: 200 g / m 2 , density: glass fiber yarn (fiber thickness: DE yarn, woven yarn thickness; 67.5 tex) is used for warp and weft. 40 warps / 25.4 mm, 30 wefts / 25.4 mm) were used, but the impregnation and curing of the polymer component in the glass fiber fabric was omitted. The test results are shown in Tables 1 to 4.
  • the solar cell laminate unit-flexible film material composite structure of Examples 1 to 5 according to the present invention has a practically small elongation with respect to the tensile load. Therefore, it has high load resistance stability, high shape / dimensional stability, and excellent power generation output retention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a stacked solar cell unit having excellent load resistance stability such as creep characteristics, as well as excellent shape stability and performance stability in a flexible solar cell unit structural body. Also provided is a film structure in which the stacked solar cell unit is used. The stacked solar cell unit according to the present invention is a stack in which a stress stabilization support layer formed from a sheet-shaped item is bonded by crosslinking to the reverse surface of a flexible solar cell unit structural body, wherein the area of the stress stabilization support layer is 110% to 330% of the area of the flexible solar cell unit structural body, and the vertical elongation percentage and the horizontal elongation percentage of the sheet-shaped item that forms the stress stabilization support layer are both within 3% under a tensile load that ranges from 500 to 5000 N/3cm.

Description

太陽電池積層体ユニット及び太陽電池積層体ユニット-可撓性膜材複合構造物Solar cell laminate unit and solar cell laminate unit-flexible film material composite structure
 本発明は太陽電池積層体ユニット及び太陽電池積層体ユニット-可撓性膜材複合構造物に関するものである。さらに詳しく述べるならば、本発明は可撓性太陽電池セル構造体を含み、耐荷重安定性、クリープ性、接着性、防湿・防水性、耐候性及び、防汚性に優れた太陽電池積層体ユニット及び太陽電池積層体ユニット-可撓性膜材複合構造物に関するものである。本発明の太陽電池積層体ユニット及び太陽電池積層体ユニット-可撓性膜材複合構造物は、巻き上げ或は屈曲させて、運搬又は収納を要する、大型テント構造物、テント倉庫、日除けテント、屋形テント、農業用ハウス、トラック幌、ブラインドなどの構成部材として有用なものである。 The present invention relates to a solar cell laminate unit and a solar cell laminate unit-flexible film material composite structure. More specifically, the present invention includes a flexible solar cell structure, and is a solar cell laminate excellent in load resistance stability, creep property, adhesiveness, moisture / water resistance, weather resistance, and antifouling property. The present invention relates to a unit and a solar cell laminate unit-flexible film material composite structure. The solar cell laminate unit and the solar cell laminate unit-flexible membrane material composite structure of the present invention require a large tent structure, a tent warehouse, an awning tent, a house shape that needs to be rolled or bent to be transported or stored. It is useful as a component for tents, agricultural houses, truck hoods, blinds and the like.
 プラスチックフィルムまたは金属フィルムなどを基板として用いた薄膜系太陽電池は、そのフレキシビリティを生かし、ロールツーロール方式の製造方法により大量生産が可能となってきている。従来の太陽電池の建造物への利用については、単結晶シリコンや多結晶シリコンの太陽電池を屋根面に置く屋根置き型であり、屋根面に支持架台を設け、それに太陽電池を固定支持する方法であるが、近年では、直接屋根に組み込む方法が採られつつある。しかしながら、いずれもガラス基板で構成されたモジュールを使用しているため作業性、施工性に難点があるのが実情であった。 Thin film solar cells using a plastic film or a metal film as a substrate have become capable of mass production by a roll-to-roll manufacturing method, taking advantage of their flexibility. Regarding the use of conventional solar cells in buildings, it is a roof-standing type in which monocrystalline silicon or polycrystalline silicon solar cells are placed on the roof surface, and a method is provided in which a support frame is provided on the roof surface and the solar cells are fixedly supported. However, in recent years, a method of incorporating directly into the roof is being taken. However, since all use modules composed of glass substrates, there are actual problems in terms of workability and workability.
 一方では、屋根防水シートと言われる加硫ゴム系、塩化ビニル系やアスファルト系非加硫ゴム等の高分子シートの上面にフレキシブルタイプの太陽電池を一体化することにより、作業性、施工性が容易となることが提案されている(例えば、特許文献1)。しかし、上記のような直置きタイプの太陽電池一体型の防水シートでは、作業性、施工性などの人的負担が軽減されると言ったメリットはあるものの、防水シート、或いは膜材などのフレキシビリティや軽量性と言った特徴を十分に生かしているとは言い難い。そこで、屋根防水シートに限らずシート状基体などの膜材料にフレキシブルタイプの太陽電池を一体化させ、様々な場所に取り付けられることが提案されている(例えば、特許文献2)。フレキシブルタイプの太陽電池とは、太陽電池セルの両面に接着剤を介して、フッ素樹脂フィルムで表面保護したアモルファス太陽電池モジュールが上市されている。 On the other hand, flexible solar cells are integrated on the upper surface of polymer sheets such as vulcanized rubber, vinyl chloride, and asphalt non-vulcanized rubber, which are called roof waterproof sheets. It has been proposed to be easy (for example, Patent Document 1). However, the above-mentioned waterproof sheet with a solar cell integrated type has the merit of reducing human burdens such as workability and workability, but it can be used for flexible sheets such as waterproof sheets or film materials. It is hard to say that the features such as ability and lightness are fully utilized. In view of this, it has been proposed that a flexible solar cell is integrated with a film material such as a sheet-like substrate in addition to a roof waterproof sheet and can be attached to various places (for example, Patent Document 2). As the flexible solar cell, an amorphous solar cell module whose surface is protected with a fluororesin film on both sides of the solar cell via an adhesive is marketed.
 上記のごとく、シート状基体などの膜材に一体化させた太陽電池モジュールは、前記屋根防水太陽電池シートや、膜材に簡単に取り付け可能な太陽電池モジュールなどのように、静的な用途しか考慮されていないのが実情であった。
 動的な要素を含む用途を考えた場合、例えば、各種テントを含む膜構造物への太陽電池モジュールの設置が考えられ、その要求特性として、接着耐久性、耐荷重性、クリープ性、及び形状安定性が必要となってくるが、実用上不十分であるのが現状である。動的用途に太陽電池モジュールを用いるためには、
(1)接着耐久性;テント構造物は長期間屋外に曝露されているため、高温高湿時の接着性、耐候性、等の耐久性が必要であり、
(2)耐荷重性、耐クリープ性;展張時の引張応力や、曝露中のクリープ性により、太陽電池セル構造体が膜材から剥離、脱落する可能性があるため、高温時の耐荷重性、耐クリープ性が必要であり、また
(3)太陽電池セル構造体の性能安定性;上記(1),(2)の性能が十分高く維持することが可能になると、はじめてモジュールの性能が安定する。
As described above, a solar cell module integrated with a film material such as a sheet-like substrate can only be used for static applications such as the roof waterproof solar cell sheet and the solar cell module that can be easily attached to the film material. The fact was not taken into consideration.
When considering applications involving dynamic elements, for example, installation of solar cell modules on film structures including various tents is considered, and the required properties include adhesion durability, load resistance, creep properties, and shape. Although stability is required, it is currently insufficient for practical use. In order to use solar cell modules for dynamic applications,
(1) Durability of adhesion: Since the tent structure is exposed to the outdoors for a long time, durability such as adhesion at high temperature and high humidity, weather resistance, etc. is necessary.
(2) Load resistance, creep resistance: The load cell resistance at high temperatures is due to the possibility that the solar cell structure may peel off from the film material due to the tensile stress at the time of expansion and the creep property during exposure. Creep resistance is necessary, and (3) Performance stability of solar cell structure; module performance is stable only when the performances of (1) and (2) above can be maintained sufficiently high. To do.
特開平11-50607JP 11-50607 A 特開平10-144947JP-A-10-144947
 本発明は、従来の可撓性膜状太陽電池積層体ユニットの上記問題点を解決し、実用上十分な可撓性を有し、かつ可撓性太陽電池セル構造体が、接着耐久性が高く、また、耐クリープ特性などの耐荷重安定性に優れた支持体上に支持されており、それによって、可撓性太陽電池セル構造体が高い形状安定性、及び優れた性能安定性をもって、支持されている太陽電池積層体ユニット、及びこの太陽電池積層体ユニット-可撓性膜材複合構造物を提供しようとするものである。 The present invention solves the above-mentioned problems of the conventional flexible membrane solar cell laminate unit, has practically sufficient flexibility, and the flexible solar cell structure has adhesion durability. It is supported on a support that is high and has excellent load stability such as creep resistance, so that the flexible solar cell structure has high shape stability and excellent performance stability. It is an object of the present invention to provide a solar cell laminate unit that is supported, and the solar cell laminate unit-flexible film material composite structure.
 本発明の太陽電池積層体ユニットは、可撓性太陽電池セル構造体と、その裏面に架橋接着されたシート状物から形成された応力安定支持体層とを含む積層体であって、前記応力安定支持体層は、前記可撓性太陽電池セル構造体の面積の110~330%の面積を有し、かつ、前記応力安定支持体層を形成するシート状物が、500~5000N/3cmの範囲内の引張荷重を負荷したときのタテ方向の伸び率、及びヨコ方向の伸び率が、ともに3%以内にあることを特徴とするものである。
 本発明の太陽電池積層体ユニットにおいて、前記可撓性太陽電池セル構造体が、表面保護層、陽極集電電極及び陰極集電電極、及び集電コネクタを有する可撓性太陽電池モジュールであることが好ましい。
 本発明の太陽電池積層体ユニットにおいて、前記応力安定支持体層が、耐熱性高分子シート、繊維布帛を芯材として含む高分子シート、及び金属製シートのいずれか1種以上からなることが好ましい。
 本発明の太陽電池積層体ユニットにおいて、前記耐熱性高分子シートが、1471~4903MPa(150~500kgf/mm2)の引張弾性率(JIS K7113-1995)を有していることが好ましい。
 本発明の太陽電池積層体ユニットにおいて、前記繊維布帛を芯材として含む高分子シートが、39226.6~392266MPa(4000~40000kgf/mm2)の引張弾性率(JIS K7113-1995)を有していることが好ましい。
 本発明の太陽電池積層体ユニットにおいて、前記金属製シートが、ステンレス、鉄、鉄合金、アルミニウム、アルミニウム合金、銅、銅合金、ニッケル、ニッケル合金、タングステン、及びタングステン合金、から選ばれた1種以上であることが好ましい。
 本発明の太陽電池積層体ユニットにおいて、前記可撓性太陽電池セル構造体の側面部、及び、前記可撓性太陽電池セル構造体の、前記側面部の上端に連続する上表面の周縁部、並びに前記可撓性太陽電池セル構造体の、前記側面部の下端を取り囲む前記応力安定支持体層上面の周囲部に、フッ素系樹脂を主成分として含む可撓性保護フィルムが架橋接着されていることが好ましい。
 本発明の太陽電池積層体ユニット-可撓性膜材複合構造物は、前記本発明の太陽電池積層体ユニットの1個以上が、可撓性膜材上に、架橋接着及び弾性接着のいずれか又は両方により装着されていることを特徴とするものである。
The solar cell laminate unit of the present invention is a laminate comprising a flexible solar cell structure and a stress-stable support layer formed from a sheet-like material cross-linked and adhered to the back surface thereof, wherein the stress The stable support layer has an area of 110 to 330% of the area of the flexible solar cell structure, and the sheet-like material forming the stress stable support layer is 500 to 5000 N / 3 cm. When the tensile load within the range is applied, the elongation in the vertical direction and the elongation in the horizontal direction are both within 3%.
In the solar cell laminate unit of the present invention, the flexible solar cell structure is a flexible solar cell module having a surface protective layer, an anode current collecting electrode and a cathode current collecting electrode, and a current collecting connector. Is preferred.
In the solar cell laminate unit of the present invention, the stress-stable support layer is preferably composed of one or more of a heat-resistant polymer sheet, a polymer sheet containing a fiber fabric as a core material, and a metal sheet. .
In the solar cell laminate unit of the present invention, the heat-resistant polymer sheet preferably has a 1471 ~ 4903MPa (150 ~ 500kgf / mm 2) tensile modulus (JIS K7113- 1995).
In the solar cell laminate unit of the present invention, a polymer sheet containing the fiber fabric as a core material, it has a 39226.6 ~ 392266MPa (4000 ~ 40000kgf / mm 2) tensile modulus (JIS K7113- 1995) Preferably it is.
In the solar cell laminate unit of the present invention, the metal sheet is selected from stainless steel, iron, iron alloy, aluminum, aluminum alloy, copper, copper alloy, nickel, nickel alloy, tungsten, and tungsten alloy. The above is preferable.
In the solar cell laminate unit of the present invention, the side surface portion of the flexible solar cell structure, and the peripheral portion of the upper surface continuous to the upper end of the side surface portion of the flexible solar cell structure, In addition, a flexible protective film containing a fluorine-based resin as a main component is crosslinked and bonded to the periphery of the upper surface of the stress stable support layer surrounding the lower end of the side surface of the flexible solar cell structure. It is preferable.
In the solar cell laminate unit-flexible membrane material composite structure of the present invention, one or more of the solar cell laminate units of the present invention are either crosslinked or elastically bonded onto the flexible membrane material. Or it is equipped with both, It is characterized by the above-mentioned.
 本発明の太陽電池積層体ユニット及び太陽電池積層体ユニット-可撓性膜材複合構造物は、実用上十分な可撓性を有し、テント膜構造物に搭載して、長期間屋外で使用した場合においても、太陽電池セル構造体の形状安定性に優れ、及び可撓性膜材と太陽電池積層体ユニット間の接着耐久性に優れ、また、可撓性太陽電池セル構造体の端部断面部分から吸湿、吸水することもなく、発電素子への水分の浸入を防止することができるため、発電出力低下を防止する効果を奏することができる。 The solar cell laminate unit and the solar cell laminate unit-flexible film material composite structure of the present invention have sufficient flexibility for practical use and are mounted on a tent film structure and used outdoors for a long time. Even in this case, the shape stability of the solar cell structure is excellent, and the durability between the flexible film material and the solar cell laminate unit is excellent, and the end of the flexible solar cell structure Since moisture can be prevented from entering the power generation element without absorbing or absorbing water from the cross-sectional portion, an effect of preventing a decrease in power generation output can be achieved.
本発明の太陽電池積層体ユニット-可撓性膜材複合構造物の断面説明図。Cross-sectional explanatory drawing of the solar cell laminate unit-flexible film material composite structure of the present invention. 本発明の太陽電池積層体ユニットの一部分の平面説明図。Plane | planar explanatory drawing of a part of solar cell laminated body unit of this invention. (A)本発明の太陽電池積層体ユニットの太陽電池セル構造体の一態様の一部断面説明図。 (B)本発明の太陽電池積層体ユニットの太陽電池セル構造体の他の態様の一部断面説明図。 (C)本発明の太陽電池積層体ユニットの太陽電池セル構造体の他の態様の一部断面説明図。(A) Partial cross-sectional explanatory drawing of one aspect | mode of the photovoltaic cell structure of the solar cell laminated body unit of this invention. (B) Partial cross-sectional explanatory drawing of the other aspect of the photovoltaic cell structure of the solar cell laminated body unit of this invention. (C) Partial cross-sectional explanatory drawing of the other aspect of the photovoltaic cell structure of the solar cell laminated body unit of this invention.
 本発明の太陽電池積層体ユニットは、1個以上の可撓性太陽電池セル構造体と前記可撓性太陽電池セル構造体を支持する応力安定支持体層とを含むものであり、本発明の太陽電池積層体ユニット-可撓性膜材複合構造物は、前記太陽電池積層体ユニットの1個以上の前記応力安定支持体層の裏面が1枚の可撓性膜材上に装着固定されて構成されたものである。
 図1は、本発明の太陽電池積層体ユニット-可撓性膜材複合構造物の一態様の、1個の太陽電池積層体ユニットを含む一部分の断面説明図である。図1において、太陽電池積層体ユニット5が当然具備している電極系及び集電系等の図示は省略されている。図1において、太陽電池積層体ユニット5は、その応力安定支持体層10の下面において、可撓性膜材4の上面に、架橋性接着剤層又は弾性接着剤層8cを介して、接着固定されている。
The solar cell laminate unit of the present invention includes one or more flexible solar cell structures and a stress stable support layer that supports the flexible solar cell structures. In the solar cell laminate unit-flexible membrane material composite structure, the back surface of one or more stress-stable support layers of the solar cell laminate unit is mounted and fixed on a single flexible membrane material. It is configured.
FIG. 1 is a cross-sectional explanatory view of a part including one solar cell laminate unit of one embodiment of the solar cell laminate unit-flexible film material composite structure of the present invention. In FIG. 1, illustration of an electrode system, a current collection system, and the like that the solar cell stack unit 5 naturally has is omitted. In FIG. 1, the solar cell laminate unit 5 is bonded and fixed to the upper surface of the flexible film material 4 on the lower surface of the stress stable support layer 10 via a crosslinkable adhesive layer or an elastic adhesive layer 8c. Has been.
 図1及び図2において、太陽電池積層体ユニット5の太陽電池セル1は表面保護層11により包囲支持されて可撓性太陽電池セル構造体2が形成されている。この可撓性太陽電池セル構造体2の下面部2aは、架橋性接着剤層8aを介して、応力安定支持体層10の上面に接着されている。架橋性接着剤層8aは、太陽電池セル構造体2の下面部2aから応力安定支持体層10の上面上の、太陽電池セル構造体2の側面部の下端を囲む周囲に延び出て周囲部10aを形成している。また、太陽電池セル構造体2の側面部2b及び上面周縁部2cは、それぞれ保護フィルム3の部分3a及び3bに、架橋性接着剤層8bを介して接着され、保護フィルム3の部分3cは、応力安定支持体層10に、架橋接着剤層8aの周縁部10aを介して接着されている。図1及び2に示されているように、太陽電池セル1を含む太陽電池セル構造体2の側面部及び上面周縁部は可撓性保護フィルムの部分3a,3bにより被覆され、太陽電池セル構造体2と応力安定支持体層10との接合は、可撓性保護フィルムの部分3cにより補強されている。可撓性保護フィルム3は、太陽電池セル構造体2と、応力安定支持体層10との接着固定状態を強化し、安定化するために有効である。また接着された可撓性保護フィルム層は、太陽電池セル構造体2の吸湿・吸水防止耐久性を、著しく向上させることができる。 1 and 2, the solar battery cell 1 of the solar battery stack unit 5 is surrounded and supported by a surface protective layer 11 to form a flexible solar battery structure 2. The lower surface portion 2a of the flexible solar cell structure 2 is bonded to the upper surface of the stress stable support layer 10 via the crosslinkable adhesive layer 8a. The crosslinkable adhesive layer 8a extends from the lower surface portion 2a of the solar cell structure 2 to the periphery on the upper surface of the stress stable support layer 10 and surrounds the lower end of the side surface portion of the solar cell structure 2. 10a is formed. Further, the side surface portion 2b and the upper surface peripheral edge portion 2c of the solar battery cell structure 2 are bonded to the portions 3a and 3b of the protective film 3 via the crosslinkable adhesive layer 8b, respectively, and the portion 3c of the protective film 3 is It adhere | attaches on the stress stable support body layer 10 through the peripheral part 10a of the bridge | crosslinking adhesive bond layer 8a. As shown in FIGS. 1 and 2, the side surface portion and the upper surface peripheral portion of the solar cell structure 2 including the solar cell 1 are covered with the portions 3a and 3b of the flexible protective film, and the solar cell structure The joint between the body 2 and the stress stable support layer 10 is reinforced by the portion 3c of the flexible protective film. The flexible protective film 3 is effective for strengthening and stabilizing the adhesive fixing state between the solar cell structure 2 and the stress stable support layer 10. Further, the bonded flexible protective film layer can remarkably improve the moisture absorption / water absorption prevention durability of the solar cell structure 2.
 図1及び、図2に示された、前記可撓性保護フィルム3としては、JIS Z0208において、フィルム厚さが50μmで、測定条件が、40℃、90%RHのときの水蒸気透過率が5g/m2/day以下のフッ素系樹脂フィルムを用いることが好ましい。水蒸気透過率が5g/m2/day以下のフッ素系樹脂フィルムとして、フッ化ビニリデン、トリフルオロエチレン、トリフルオロクロロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、フロロアルキルビニルエーテル及びエチレンからなる群から選ばれた2種以上のモノマーからなる少なくとも1種の共重合体樹脂フィルムが使用できる。特には、防湿性の点から、トリフルオロクロロエチレンフィルムを用いることが好ましい。可撓性樹脂フィルムの厚さは、0.025~0.10mmであることが好ましく、特には、0.04~0.075mmが好ましい。厚さが0.025mm未満であると防湿性が不十分となることがあり、またそれが0.10mmを越えると柔軟性が不充分となることがある。 The flexible protective film 3 shown in FIG. 1 and FIG. 2 has a water vapor transmission rate of 5 g when the film thickness is 50 μm and the measurement conditions are 40 ° C. and 90% RH in JIS Z0208. It is preferable to use a fluorine resin film of / m 2 / day or less. The fluorine resin film having a water vapor transmission rate of 5 g / m 2 / day or less is selected from the group consisting of vinylidene fluoride, trifluoroethylene, trifluorochloroethylene, tetrafluoroethylene, hexafluoropropylene, fluoroalkyl vinyl ether and ethylene. Furthermore, at least one copolymer resin film composed of two or more types of monomers can be used. In particular, it is preferable to use a trifluorochloroethylene film from the viewpoint of moisture resistance. The thickness of the flexible resin film is preferably 0.025 to 0.10 mm, and particularly preferably 0.04 to 0.075 mm. If the thickness is less than 0.025 mm, the moisture resistance may be insufficient, and if it exceeds 0.10 mm, the flexibility may be insufficient.
 図1に示された太陽電池積層体ユニット5において、可撓性太陽電池セル構造体2を応力安定支持体層10に接着固定するための架橋性接着剤層8a及び、この接着固定を更に補強するための可撓性保護フィルム3を、可撓性太陽電池セル構造体2及び、応力安定支持体層10に接着するための架橋性接着剤層8bは、接着用可撓性樹脂と架橋剤とを含み、接着用可撓性樹脂が、架橋剤により架橋され、架橋後も実用上十分な可撓性を有するものである。架橋性樹脂層8a及び8a用接着用可撓性樹脂は、ポリエステル樹脂、ポリウレタン樹脂、シリコーン樹脂、及びヒドロキシル基を含むフッ素系樹脂から選ばれた1種以上を含むものから選ばれることが好ましい。また、架橋剤としては、エポキシ樹脂、イソシアネート化合物、及びカップリング剤などの1種以上を用いることができる。 In the solar cell laminate unit 5 shown in FIG. 1, the crosslinkable adhesive layer 8a for adhering and fixing the flexible solar cell structure 2 to the stress stable support layer 10 and the adhesion fixing are further reinforced. The crosslinkable adhesive layer 8b for bonding the flexible protective film 3 to the flexible solar cell structure 2 and the stress stable support layer 10 is composed of an adhesive flexible resin and a crosslinker. And the adhesive flexible resin is crosslinked by a crosslinking agent and has practically sufficient flexibility even after crosslinking. The adhesive flexible resin for the crosslinkable resin layers 8a and 8a is preferably selected from those containing one or more selected from polyester resins, polyurethane resins, silicone resins, and fluorine-based resins containing hydroxyl groups. Moreover, as a crosslinking agent, 1 or more types, such as an epoxy resin, an isocyanate compound, and a coupling agent, can be used.
 架橋性接着剤層8a,8b用可撓性樹脂として用いられるポリエステル系樹脂は、一般的に多価カルボン酸と多価アルコールとを重縮合させることにより得られる。上記多価カルボン酸としては、例えば、テレフタル酸、イソフタル酸、オルトフタル酸、2,6-ナフタレンジカルボン酸、パラフェニレンジカルボン酸などの芳香族ジカルボン酸;シクロヘキサンジカルボン酸などの5員環もしくは6員環を含む脂環式ジカルボン酸;コハク酸、グルタル酸、アジピン酸、スペリン酸、アゼライン酸、ドデカンジオン酸などの脂肪族ジカルボン酸、トリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸などの3官能以上の多価カルボン酸などがある。これらの多価カルボン酸は、単独で用いられてもよいし、2種類以上が併用されてもよい。上記多価アルコールとしては、例えば、エチレングリコール、1,2-プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコールなどの直鎖状のアルカン系ジオール、1,4-シクロヘキサンジメタノールなどの脂環式ジオール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエステルポリオール、ポリカーボネートポリオール、ポリブタジエンジオールなどの3官能以上の多価アルコールがある。 The polyester resin used as the flexible resin for the crosslinkable adhesive layers 8a and 8b is generally obtained by polycondensation of a polyvalent carboxylic acid and a polyhydric alcohol. Examples of the polyvalent carboxylic acid include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, and paraphenylene dicarboxylic acid; 5-membered or 6-membered ring such as cyclohexanedicarboxylic acid 3 or more functional groups such as aliphatic dicarboxylic acids such as succinic acid, glutaric acid, adipic acid, asperic acid, azelaic acid, dodecanedioic acid, trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid There are polyvalent carboxylic acids. These polyvalent carboxylic acids may be used alone or in combination of two or more. Examples of the polyhydric alcohol include linear alkanes such as ethylene glycol, 1,2-propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and neopentyl glycol. There are trifunctional or more polyhydric alcohols such as diols, alicyclic diols such as 1,4-cyclohexanedimethanol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyester polyols, polycarbonate polyols, polybutadiene diols.
 架橋性接着剤層8a,8b用可撓性樹脂として用いられるポリウレタン系樹脂を製造するには、ポリエステルポリオール、ポリエーテルポリオール、カーボネートポリオールなどの主剤に対して、2官能以上のイソシアネート化合物が使用できる。ポリエステルポリオールは、具体的には、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、アゼライン酸、セバシン酸、ブラシル酸などの脂肪族系、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸などの芳香族系の二塩基酸の1種以上、及び、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、メチルペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール、デカンジオール、ドデカンジオールなど脂肪族系、シクロヘキサンジオール、水添キシレングリコールなどの脂環式系、キシレングリコールなどの芳香族系ジオールの1種以上を用いることができる。また、ポリエーテルポリオールとしては、ポリエチレングリコール、ポリプロピレングリコールなどのエーテル系のポリオールを用いることができる。カーボネートポリオールとしては、カーボネート化合物とジオールとを反応させて得ることができる。カーボネート化合物としては、ジメチルカーボネート、ジフェニルカーボネート、エチレンカーボネートなどを用いることができる。ジオールとしてはエチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、メチルペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール、デカンジオール、ドデカンジオールなどの脂肪族ジオール、シクロヘキサンジオール、水添キシリレングリールなどの脂環式ジオール、キシリレングリールなど芳香族ジオールなどの1種以上の混合物が用いられたカーボネートを用いることができる。 In order to produce a polyurethane-based resin used as a flexible resin for the crosslinkable adhesive layers 8a and 8b, a bifunctional or higher functional isocyanate compound can be used for a main component such as polyester polyol, polyether polyol, and carbonate polyol. . Specific examples of polyester polyols include aliphatics such as succinic acid, glutaric acid, adipic acid, pimelic acid, speric acid, azelaic acid, sebacic acid and brassic acid, and aromatics such as isophthalic acid, terephthalic acid and naphthalenedicarboxylic acid. One or more of the dibasic acids of the family, and aliphatics such as ethylene glycol, propylene glycol, butanediol, neopentyl glycol, methylpentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, dodecanediol One or more of an alicyclic system such as a system, cyclohexanediol and hydrogenated xylene glycol, and an aromatic diol such as xylene glycol can be used. As the polyether polyol, ether-based polyols such as polyethylene glycol and polypropylene glycol can be used. The carbonate polyol can be obtained by reacting a carbonate compound with a diol. As the carbonate compound, dimethyl carbonate, diphenyl carbonate, ethylene carbonate and the like can be used. Diols include ethylene glycol, propylene glycol, butanediol, neopentyl glycol, methylpentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, dodecanediol, and other aliphatic diols, cyclohexanediol, hydrogenated xylylene Carbonates in which one or more mixtures of alicyclic diols such as reels and aromatic diols such as xylylene glycol are used can be used.
 上記ポリウレタン樹脂用のイソシアネート化合物としては、脂肪族ジイソシアネート類、例えば、ヘキサメチレンジイソシアネート、及びリジンジイソシアネートなど;脂環式ジイソシアネート類、例えば、イソホロンジイソシアネート、及び水添トリレンジイソシアネートなど;芳香族ジイソシアネート類、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、及びキシレンジイソシアネートなど;イソシアヌレート類、例えば、トリス(ヘキサメチレンイソシアネート)イソシアヌレート、及びトリス(3-イソシアネートメチルベンジル)イソシアヌレートなど;並びにこれら化合物のイソシアネート基末端をフェノール類、オキシム類、アルコール類、ラクタム類などのブロック化剤でブロックしたブロックイソシアネートなどを用いることができる。 Examples of the isocyanate compound for the polyurethane resin include aliphatic diisocyanates such as hexamethylene diisocyanate and lysine diisocyanate; alicyclic diisocyanates such as isophorone diisocyanate and hydrogenated tolylene diisocyanate; aromatic diisocyanates, For example, tolylene diisocyanate, diphenylmethane diisocyanate, and xylene diisocyanate; isocyanurates such as tris (hexamethylene isocyanate) isocyanurate, tris (3-isocyanate methylbenzyl) isocyanurate; Block blocked with blocking agents such as phenols, oximes, alcohols, and lactams Or the like can be used isocyanate.
 また、架橋性接着剤層8a,8bに可撓性樹脂として使用されるシリコーン系樹脂としては、例えば、アミノプロピルトリメトキシシラン、アミノプロピルトリエトキシシラン、アミノプロピルメチルジエトキシシラン、メルカプトエチルトリメトキシシラン、メルカプトエチルトリエトメトキシシラン、ポリメチルシロキサン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、グリシドキシプロピルトリメトキシシランなどのシラン化合物、これらのシラン化合物誘導体、これらのシラン化合物の混合物、これらのシラン化合物誘導体の混合物、これらシラン化合物とこれらシラン化合物誘導体の混合物などがある。また、架橋性接着剤層8a,8b用可撓性樹脂として用いられるヒドロキシル基含有フッ素系樹脂としては、ヒドロキシル基を含むフルオロオレフィン-ビニル共重合体樹脂、例えば、ヒドロキシル基を含むトリフルオロクロロエチレン-ビニル共重合体樹脂、ヒドロキシル基を含むテトラフルオロエチレン-ビニル共重合体樹脂などがある。 Examples of the silicone resin used as the flexible resin for the crosslinkable adhesive layers 8a and 8b include aminopropyltrimethoxysilane, aminopropyltriethoxysilane, aminopropylmethyldiethoxysilane, mercaptoethyltrimethoxy. Silane compounds such as silane, mercaptoethyltriethomethoxysilane, polymethylsiloxane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, glycidoxypropyltrimethoxysilane, these silane compound derivatives, and silane compounds There are a mixture, a mixture of these silane compound derivatives, a mixture of these silane compounds and these silane compound derivatives, and the like. The hydroxyl group-containing fluororesin used as the flexible resin for the crosslinkable adhesive layers 8a and 8b includes a fluoroolefin-vinyl copolymer resin containing a hydroxyl group, for example, trifluorochloroethylene containing a hydroxyl group. -Vinyl copolymer resins, tetrafluoroethylene-vinyl copolymer resins containing hydroxyl groups, etc.
 前記架橋接着剤層8a,8bで使用される架橋剤として、エポキシ樹脂、イソシアネート化合物、及びカップリング剤化合物から選ばれた1種以上の架橋剤の硬化物を含むことが好ましい。架橋性接着剤8a,8bにおいて、架橋剤用エポキシ樹脂としては、ビスフェノールA、エピクロルヒドリン型のエポキシ系樹脂、エチレングリコールグリシジルエーテル、ポリエチレングリコールグリシジルエーテル、グリセリングリシジルエーテル、グリセリントリグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、ジグリシジルアミン、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、及び1,3-ビス(N,N’-ジグリシジルアミノメチル)シクロヘキサンが使用できる。また、上記エポキシ樹脂をキレート剤、ウレタン樹脂、合成ゴム等で変性されたエポキシ樹脂も使用できる。架橋性接着剤層8a,8bの架橋剤用イソシアネート化合物としては、上記のイソシアネート化合物を使用することができる。また、架橋剤用カップリング剤化合物としては、シラン系カップリング剤、チタン系カップリング剤、ジルコニウム系カップリング剤、アルミニウム系カップリング剤、及びジルコアルミニウム系カップリング剤から選ばれた少なくとも1種を用いることができる。 The cross-linking agent used in the cross-linking adhesive layers 8a and 8b preferably includes a cured product of one or more cross-linking agents selected from an epoxy resin, an isocyanate compound, and a coupling agent compound. In the crosslinkable adhesives 8a and 8b, epoxy resins for the crosslinker include bisphenol A, epichlorohydrin type epoxy resin, ethylene glycol glycidyl ether, polyethylene glycol glycidyl ether, glycerin glycidyl ether, glycerin triglycidyl ether, 1,6- Hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, diglycidyl aniline, diglycidyl amine, N, N, N ′, N′-tetraglycidyl-m-xylenediamine, and 1,3-bis (N, N ′ -Diglycidylaminomethyl) cyclohexane can be used. An epoxy resin obtained by modifying the above epoxy resin with a chelating agent, urethane resin, synthetic rubber or the like can also be used. As the isocyanate compound for the crosslinking agent of the crosslinkable adhesive layers 8a and 8b, the above isocyanate compounds can be used. The coupling agent compound for the crosslinking agent is at least one selected from silane coupling agents, titanium coupling agents, zirconium coupling agents, aluminum coupling agents, and zircoaluminum coupling agents. Can be used.
 シラン系カップリング剤としては、アミノシラン類、例えば、γ-アミノプロピルトリエトキシシラン、及びN-フェニル-γ-アミノプロピルトリエトキシシランなど;エポキシシラン類、例えば、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、及びβ-(3,4エポキシシクロヘキシル)エチルトリメトキシシランなど;ビニルシラン類、例えば、ビニルトリエトキシシラン、及びビニルトリス(β-メトキシエトキシ)シランなど;メルカプトシラン類、例えば、γ-メルカプトプロピルトリメトキシシランなど、が挙げられる。チタン系カップリング剤としては、アルコキシ類、例えば、テトライソプロポキシチタン、テトラ-n-ブトキシチタン、及びテトラキス(2-エチルヘキソキシ)チタンなど;アシレート類、例えば、トリ-n-ブトキシチタンステアレート、及びイソプロポキシチタントリステアレートなどが挙げられる。ジルコニウム系カップリング剤としては、例えば、テトラブチルジルコネート、テトラ(トリエタノールアミン)ジルコネート、及びテトライソプロピルジルコネートなどが挙げられる。アルミニウム系カップリング剤としては、例えば、アセトアルコキシアルミニウムジイソプロピレートが挙げられる。さらに、ジルコアルミニウム系カップリング剤としては、テトラプロピルジルコアルミネートが挙げられる。これらカップリング剤の中で、耐湿性、耐光性の観点から、特にはγ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、及びβ-(3,4エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシシランを用いることが好ましい。 Silane coupling agents include aminosilanes such as γ-aminopropyltriethoxysilane and N-phenyl-γ-aminopropyltriethoxysilane; epoxy silanes such as γ-glycidoxypropylmethyldiethoxy Silane, γ-glycidoxypropyltrimethoxysilane, and β- (3,4 epoxycyclohexyl) ethyltrimethoxysilane; vinyl silanes such as vinyltriethoxysilane and vinyltris (β-methoxyethoxy) silane; mercapto Silanes such as γ-mercaptopropyltrimethoxysilane are exemplified. Titanium-based coupling agents include alkoxy compounds such as tetraisopropoxy titanium, tetra-n-butoxy titanium, and tetrakis (2-ethylhexoxy) titanium; acylates such as tri-n-butoxy titanium stearate, and Examples include isopropoxy titanium tristearate. Examples of the zirconium-based coupling agent include tetrabutyl zirconate, tetra (triethanolamine) zirconate, and tetraisopropyl zirconate. Examples of the aluminum coupling agent include acetoalkoxyaluminum diisopropylate. Furthermore, examples of the zircoaluminum-based coupling agent include tetrapropylzircoaluminate. Among these coupling agents, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltrimethoxysilane, and β- (3,4 epoxy cyclohexyl) are particularly preferred from the viewpoint of moisture resistance and light resistance. It is preferable to use an epoxy silane such as ethyltrimethoxysilane.
 架橋性接着剤層8a,8bの架橋剤として用いられるエポキシ樹脂、イソシアネート化合物、及びカップリング剤化合物の添加量は、各架橋接着樹脂層の合計固形分質量に対し、0.5~30質量%であることが好ましい。その添加量が0.5質量%未満では、シート状基体との接着性が不十分になることがあり、またそれが30質量%を超えると得られる積層体の柔軟性が不十分になることがある。また、図1に示されるように、太陽電池積層体ユニットを可撓性膜材4に接着固定するために前記架橋性接着剤層8c又は、弾性接着剤層8cを装着した。架橋性接着剤層8cは前記架橋性接着剤層8a及び8bと同種の接着剤を使用できる。弾性接着剤層8cの弾性樹脂又は、ゴムとしては、クロロプレンゴム系、ニトリルゴム系、スチレンブタジエンゴム系、ポリサルファイド系、ブチルゴム系、シリコーンゴム系、アクリルゴム系、変性シリコーンゴム系、ウレタンゴム、シリル化ウレタン樹脂系、テレケリックポリアクリレート系が用いられる。特に、耐久性、耐候性の面から、変性シリコーン系接着剤が好ましい。 The addition amount of the epoxy resin, isocyanate compound and coupling agent compound used as the crosslinking agent for the crosslinkable adhesive layers 8a and 8b is 0.5 to 30% by mass with respect to the total solid mass of each crosslinkable adhesive resin layer. It is preferable that If the amount added is less than 0.5% by mass, the adhesion to the sheet-like substrate may be insufficient, and if it exceeds 30% by mass, the resulting laminate will have insufficient flexibility. There is. In addition, as shown in FIG. 1, the crosslinkable adhesive layer 8 c or the elastic adhesive layer 8 c was attached in order to adhere and fix the solar cell laminate unit to the flexible film material 4. The crosslinkable adhesive layer 8c can use the same type of adhesive as the crosslinkable adhesive layers 8a and 8b. The elastic resin or rubber of the elastic adhesive layer 8c includes chloroprene rubber, nitrile rubber, styrene butadiene rubber, polysulfide, butyl rubber, silicone rubber, acrylic rubber, modified silicone rubber, urethane rubber, silyl Urethane resin and telechelic polyacrylate are used. In particular, a modified silicone adhesive is preferable from the viewpoints of durability and weather resistance.
 本発明の太陽電池積層体ユニット5中の可撓性太陽電池セル構造体2の一例の断面説明図が図3(A),(B)又は(C)に記載されている。図3(A),(B)又は(C)において太陽電池セル1には、陽極集電電極12a、陰極集電電極12b及びこれらの電極に接続された集電コネクタ(図示されていない)を含む集電手段が、具備され、これらは可撓性・接着性樹脂層1aにより被覆されている。図3(A)の可撓性太陽電池セル構造体2において太陽電池セル1を被覆する可撓性・接着性樹脂層1aの上・下両面上には、表面保護フィルム層9が接着され、全体として表面保護層11を構成している。前記表面保護フィルム層は、エチレン-テトラフルオロエチレン共重合体樹脂フィルムから形成されていることが好ましい。図3(B)に示されている可撓性太陽電池セル構造体2の表面保護層11中において、太陽電池セル1中の陽極集電電極12a及び陰極集電電極12bが、それぞれ導電部防湿層13により被覆されており、可撓性・接着性樹脂層1aの上面上のみに表面保護フィルム層9が接着されている。図3(C)の可撓性太陽電池セル構造体2の表面保護層11において、可撓性・接着性樹脂層1aの上面上に導電部防湿層13が接合され、その上に表面保護フィルム層9が形成されている。図3(C)の可撓性太陽電池セル構造体2においては陽極集電電極12a及び陰極集電電極12bは、可撓性接着性樹脂層1a上に配置された導電部防湿層13によって間接的に防湿保護される。 FIG. 3 (A), (B) or (C) shows a cross-sectional explanatory diagram of an example of the flexible solar cell structure 2 in the solar cell laminate unit 5 of the present invention. 3A, 3B, or 3C, the solar cell 1 includes an anode current collecting electrode 12a, a cathode current collecting electrode 12b, and a current collecting connector (not shown) connected to these electrodes. The current collecting means is provided, and these are covered with the flexible / adhesive resin layer 1a. On the upper and lower surfaces of the flexible / adhesive resin layer 1a covering the solar battery cell 1 in the flexible solar battery cell structure 2 of FIG. The surface protective layer 11 is constituted as a whole. The surface protective film layer is preferably formed from an ethylene-tetrafluoroethylene copolymer resin film. In the surface protective layer 11 of the flexible solar cell structure 2 shown in FIG. 3 (B), the anode current collecting electrode 12a and the cathode current collecting electrode 12b in the solar cell 1 are respectively provided with a moisture-proof conductive portion. The surface protective film layer 9 is adhered only on the upper surface of the flexible / adhesive resin layer 1a. In the surface protective layer 11 of the flexible solar cell structure 2 of FIG. 3C, a conductive portion moisture-proof layer 13 is bonded on the upper surface of the flexible / adhesive resin layer 1a, and a surface protective film is formed thereon. Layer 9 is formed. In the flexible solar cell structure 2 of FIG. 3C, the anode current collecting electrode 12a and the cathode current collecting electrode 12b are indirectly connected by the conductive portion moisture-proof layer 13 disposed on the flexible adhesive resin layer 1a. Moisture-proof protected.
 太陽電池セル1は、フィルム状アモルファスシリコン太陽電池セルであることが好ましく、陽・陰両極導電部を直接的又は、間接的に被覆する導電部防湿層としては、防湿性フィルムで被覆することが好ましい。防湿フィルムは、ポリエステルフィルムと金属蒸着層又は、金属酸化物蒸着層とから構成されるものである。上記ポリエステルフィルム上に蒸着する金属としては、アルミニウム、スズ、チタン、インジウム、珪素、マグネシウム、鉄、亜鉛、ジルコニウム、コバルト、クロム、ニッケル等から選ばれたものが好ましい。また、上記蒸着層を形成する手段としては、真空蒸着法、スパッタリング法、イオンプレーティング法、各種CDV法等のいずれもが可能であるが、特に、真空蒸着法、スパッタリング法、CVD法が好ましく使用できる。金属蒸着層の厚さは、5~500nmであることが好ましく、10~200nmであることがより好ましい。また、上記ポリエステルフィルム上に蒸着する金属酸化物としては、珪素、アルミニウム、マグネシウム、カルシウム、カリウム、ナトリウム、ホウ素、チタン、ジルコニウム、イットリウム等の金属の酸化物を使用できる。特には、珪酸酸化物、アルミニウム酸化物、マグネシウム酸化物が好ましい。また、蒸着の厚さとしては、使用する金属、又は金属酸化物の厚さによって異なるが、5~500nm、好ましくは、10~200nmの範囲で任意に選択して形成することが望ましい。上記蒸着層を形成する手段としては、真空蒸着法、スパッタリング法、イオンプレーティング法、各種CDV法等のいずれもが可能であるが、特に、真空蒸着法、スパッタリング法、CVD法が好ましく使用できる。 The solar battery cell 1 is preferably a film-like amorphous silicon solar battery cell. The conductive part moisture-proof layer that directly or indirectly covers the positive and negative electrode conductive parts may be covered with a moisture-proof film. preferable. A moisture-proof film is comprised from a polyester film and a metal vapor deposition layer or a metal oxide vapor deposition layer. The metal deposited on the polyester film is preferably selected from aluminum, tin, titanium, indium, silicon, magnesium, iron, zinc, zirconium, cobalt, chromium, nickel and the like. Moreover, as a means for forming the above-mentioned vapor deposition layer, any of vacuum vapor deposition, sputtering, ion plating, various CDV methods, etc. can be used, but vacuum vapor deposition, sputtering, and CVD are particularly preferred. Can be used. The thickness of the metal vapor deposition layer is preferably 5 to 500 nm, and more preferably 10 to 200 nm. Moreover, as a metal oxide vapor-deposited on the said polyester film, metal oxides, such as silicon, aluminum, magnesium, calcium, potassium, sodium, boron, titanium, zirconium, yttrium, can be used. In particular, silicate oxide, aluminum oxide, and magnesium oxide are preferable. The thickness of the vapor deposition varies depending on the thickness of the metal or metal oxide to be used, but it is desirable that the thickness be arbitrarily selected within the range of 5 to 500 nm, preferably 10 to 200 nm. As the means for forming the vapor deposition layer, any of vacuum vapor deposition, sputtering, ion plating, various CDV methods, and the like can be used. In particular, vacuum vapor deposition, sputtering, and CVD can be preferably used. .
 前記可撓性・接着性樹脂層1aを形成する可撓性・接着性樹脂としては、架橋性エチレン-酢酸ビニル共重合体組成物が使用される。エチレン-酢酸ビニル重合体樹脂は、酢酸ビニルの構成単位の含有量が1~40mol%、好ましくは10~35mol%のものが、樹脂の耐候性、透明性、機械特性の面でバランス良く使用できる。また、架橋性エチレン-酢酸ビニル共重合樹脂組成物には、耐候性向上のために架橋剤を配合して架橋構造を持たせるが、この架橋剤としては、一般に、100℃以上でラジカルを発生する有機過酸化物が好ましく使用できる。このような有機過酸化物としては、例えば、ベンゾイルペルオキシド、ジクミルペルオキシド、2,5-ジメチル-ジ(t-ブチルペルオキシ)ヘキサン、1,1’-ジ-t-ブチルペルオキシ-3,3,5-トリメチレンシクロヘキサン、1,3-ジ-(t-ブチルペルオキシ)-ジイソプロピルベンゼン等を使用することができる。これら有機過酸化物の配合量は、一般に、エチレン-酢酸ビニル共重合体樹脂100重量部に対して、5重量部以下、好ましくは1~3重量部であることが好ましい。上記可撓性・接着性樹脂は、120~170℃の温度、1Torr以下の圧力下において、溶融して、太陽電池層と、可撓性表面保護フィルム層との間隙空間を充填し、架橋硬化することができる。 As the flexible / adhesive resin forming the flexible / adhesive resin layer 1a, a crosslinkable ethylene-vinyl acetate copolymer composition is used. An ethylene-vinyl acetate polymer resin having a vinyl acetate constituent unit content of 1 to 40 mol%, preferably 10 to 35 mol%, can be used with a good balance in terms of weather resistance, transparency and mechanical properties of the resin. . In addition, in order to improve the weather resistance, the crosslinkable ethylene-vinyl acetate copolymer resin composition has a cross-linked structure by adding a cross-linking agent. Generally, the cross-linking agent generates radicals at 100 ° C or higher. An organic peroxide can be preferably used. Examples of such organic peroxides include benzoyl peroxide, dicumyl peroxide, 2,5-dimethyl-di (t-butylperoxy) hexane, 1,1′-di-t-butylperoxy-3,3, 5-Trimethylenecyclohexane, 1,3-di- (t-butylperoxy) -diisopropylbenzene and the like can be used. The blending amount of these organic peroxides is generally 5 parts by weight or less, preferably 1 to 3 parts by weight with respect to 100 parts by weight of the ethylene-vinyl acetate copolymer resin. The flexible / adhesive resin melts at a temperature of 120 to 170 ° C. under a pressure of 1 Torr or less to fill the space between the solar cell layer and the flexible surface protective film layer, and is crosslinked and cured. can do.
 図1に示されている本発明の太陽電池積層体ユニット-可撓性膜材複合構造体6(以下複合構造体6と記す)において、応力安定支持体層10が、可撓性太陽電池セル構造体2の裏面と、可撓性膜材4の上面との間に、架橋接着又は弾性接着されている。応力安定支持体層10の上面の面積は、可撓性太陽電池セル構造体2の下面の面積の110~330%であり、130~300%であることが好ましく、150~250%であることがさらに好ましい。それが110%未満であると、複合構造体に引張荷重が負荷されたとき、可撓性太陽電池セル構造体2の、前記引張荷重の負荷方向における伸び率が過大になり、可撓性太陽電池セル構造体2が破損しやすくなり、そのため太陽電池セルの発電出力が低下する。また、それが330%を超えると、太陽電池積層体ユニット5及び複合構造物6の、可撓性が不十分になり、曲面または三次元的可撓性を有する太陽電池積層体ユニット5及び複合構造物6の構築が不可能になる。応力安定支持体層を形成するシート状物は、冬季の氷点下雰囲気や、夏季の炎天下雰囲気に晒される如何なる環境においても、常時500~5000N/3cmの引張荷重に対しての伸び率が3%以内を保持することが好ましく、具体的には-10~75℃の温度雰囲気範囲において500~5000N/3cmの引張荷重に対する伸び率が3%以内であることが好ましい、本発明の太陽電池積層体ユニット及び太陽電池積層体ユニット-可撓性膜材複合構造物は、常温(25℃)~65℃の範囲内の雰囲気下において、500~5000N/3cmの範囲内の引張荷重を負荷したときのタテ方向の伸び率及びヨコ方向の伸び率がともに3%以内あるものであり、このときの伸び率は、2.5%以下であることが好ましく、1.5%以下であることがさらに好ましい。前記引張負荷下における応力安定支持体層用シート状物の伸び率が、3%を超えると、得られる太陽電池セル構造体2及び複合構造物6の通常の使用条件下における外的引張負荷に対する寸法安定性が不十分になり、その外観を損じ、及びその機能(発電出力)を劣化させることがある。 In the solar cell laminate unit-flexible film material composite structure 6 (hereinafter referred to as composite structure 6) of the present invention shown in FIG. 1, the stress stable support layer 10 is a flexible solar cell. Between the back surface of the structure 2 and the upper surface of the flexible membrane material 4, cross-linking adhesion or elastic bonding is performed. The area of the upper surface of the stress stable support layer 10 is 110 to 330%, preferably 130 to 300%, more preferably 150 to 250% of the area of the lower surface of the flexible solar cell structure 2. Is more preferable. When it is less than 110%, when a tensile load is applied to the composite structure, the elongation rate of the flexible solar cell structure 2 in the load direction of the tensile load becomes excessive. The battery cell structure 2 is easily damaged, and thus the power generation output of the solar battery cell is reduced. If it exceeds 330%, the solar cell laminate unit 5 and the composite structure 6 have insufficient flexibility, and the solar cell laminate unit 5 and the composite having a curved surface or three-dimensional flexibility. Construction of the structure 6 becomes impossible. The sheet-like material that forms the stress-stable support layer has an elongation rate of less than 3% for a tensile load of 500 to 5000 N / 3 cm at all times in any environment exposed to a freezing atmosphere in winter or a hot atmosphere in summer. In particular, the solar cell laminate unit of the present invention preferably has an elongation of 3% or less with respect to a tensile load of 500 to 5000 N / 3 cm in a temperature atmosphere range of −10 to 75 ° C. And the solar cell laminate unit-flexible membrane material composite structure are warped when a tensile load in the range of 500 to 5000 N / 3 cm is applied in an atmosphere in the range of room temperature (25 ° C.) to 65 ° C. The elongation in the direction and the elongation in the horizontal direction are both within 3%, and the elongation at this time is preferably 2.5% or less, and preferably 1.5% or less. Preferred in La. When the elongation percentage of the stress-stable support layer sheet-like material under the tensile load exceeds 3%, the resulting solar cell structure 2 and composite structure 6 with respect to the external tensile load under normal use conditions Insufficient dimensional stability may impair its appearance and degrade its function (power generation output).
 応力安定支持体層として、引張弾性率(JIS K7113-1995)が、150~500kgf/mm2の耐熱性高分子シートを用いることができる。耐熱性高分子シートとしては、汎用プラスチック、汎用エンジニアリングプラスティック(汎用エンプラ)又は、スーパーエンジニアリングプラスティック(スーパーエンプラ)が使用される。特に、耐熱温度(熱変形温度)が80℃以上の高分子シートとして、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、硬質ポリ塩化ビニル、アクリル樹脂(メタクリル樹脂)。また、汎用エンプラとして、ポリアセタール(POM)、ポリアミド(PA)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(m-PPE)、ポリブチレンテレフタレート(PBT)。また、スーパーエンプラとして、非晶ポリアリレート(PAR)、ポリスルフォン(PSF)、ポリエーテルサルフォン(PES)、ポリフェニレンスルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリイミド(PI)、ポリエーテルイミド(PEI)、フッ素樹脂、液晶ポリマー(LCP)が用いられる。特には、柔軟性、及び接着性の面から、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、硬質ポリ塩化ビニル、及びアクリル樹脂(メタクリル樹脂)が好ましい。前記高分子シートの厚さは、10~500μmであることが好ましい。特には、25~200μmがより好ましい。厚さが、10μm未満であると、強度が不足して可撓性太陽電池セル構造体が破損しやすくなることがあり、またそれが、500μmを超えると柔軟性が不十分になることがある。 As a stress stable support layer, the tensile elastic modulus (JIS K7113- 1995) is, it is possible to use a heat resistant polymer sheet 150 ~ 500kgf / mm 2. As the heat-resistant polymer sheet, general-purpose plastic, general-purpose engineering plastic (general-purpose engineering plastic), or super engineering plastic (super-engineering plastic) is used. In particular, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), hard polyvinyl chloride, and acrylic resin (methacrylic resin) as a polymer sheet having a heat resistant temperature (heat distortion temperature) of 80 ° C. or higher. As general-purpose engineering plastics, polyacetal (POM), polyamide (PA), polycarbonate (PC), modified polyphenylene ether (m-PPE), and polybutylene terephthalate (PBT). As super engineering plastics, amorphous polyarylate (PAR), polysulfone (PSF), polyethersulfone (PES), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyimide (PI), polyether Imide (PEI), fluororesin, and liquid crystal polymer (LCP) are used. In particular, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), hard polyvinyl chloride, and acrylic resin (methacrylic resin) are preferable from the viewpoints of flexibility and adhesiveness. The thickness of the polymer sheet is preferably 10 to 500 μm. In particular, 25 to 200 μm is more preferable. If the thickness is less than 10 μm, the strength may be insufficient and the flexible solar cell structure may be easily damaged, and if it exceeds 500 μm, the flexibility may be insufficient. .
 応力安定支持体層として、繊維布帛を芯材に含み、引張弾性率(JIS K7113-1995)が4000~40000kgf/mm2の高分子シートを用いることができる。このような高分子シートは、0.3~1.0mmの厚さ及び、250~1000g/m2の単位面積当り質量(目付け)を有することが好ましい。応力安定支持体用高分子シートにおける繊維布帛芯材と高分子成分との構成質量比は、20~90質量%:80~10質量%であることが好ましく、特に25~75質量%:75~25質量%が好ましい。繊維布帛を形成する繊維としては、ガラス繊維、炭素繊維、ステンレス繊維、アラミド繊維、芳香族ヘテロ環ポリマー繊維、ポリアリレート繊維、芳香族ポリエーテル繊維などの高強度、高弾性繊維から選ばれた1種以上が用いられる。繊維布帛を形成する繊維材料は、モノフィラメント、マルチフィラメントのいずれの糸条であってもよい。また繊維布帛は織物または編物が好ましく、特に平織物、または糸条を2方向または多方向に多数配置してなる積重布が好ましい。特には、高分子との接着性、及び強伸度のバランスの面からガラス繊維平織布帛が好ましく用いられる。これらの繊維布帛を織編構成する糸条の一部には、必要に応じてナイロン6、ナイロン66等のポリアミド繊維、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル繊維(飽和ポリエステル)及びポリ乳酸繊維等の脂肪酸ポリエステル繊維、アクリル繊維、ビニロン繊維、ポリエチレン繊維、ポリプロピレン繊維等のポリオレフィン繊維及びポリ塩化ビニル繊維などの合成繊維糸条を併用することもできる。 As a stress stable support layer comprises a fiber fabric on the core material, the tensile elastic modulus (JIS K7113- 1995) can be used a polymer sheet of 4000 ~ 40000kgf / mm 2. Such a polymer sheet preferably has a thickness of 0.3 to 1.0 mm and a mass (unit weight) per unit area of 250 to 1000 g / m 2 . The constituent mass ratio of the fiber fabric core material to the polymer component in the polymer sheet for the stress stable support is preferably 20 to 90% by mass: 80 to 10% by mass, particularly 25 to 75% by mass: 75 to 25 mass% is preferable. The fibers forming the fiber fabric are selected from high strength and high elasticity fibers such as glass fibers, carbon fibers, stainless fibers, aramid fibers, aromatic heterocyclic polymer fibers, polyarylate fibers, and aromatic polyether fibers. More than seeds are used. The fiber material forming the fiber fabric may be either monofilament or multifilament yarn. The fiber fabric is preferably a woven fabric or a knitted fabric, and in particular, a plain woven fabric or a stacked fabric formed by arranging a large number of yarns in two or multiple directions is preferable. In particular, a glass fiber plain woven fabric is preferably used from the standpoint of the balance between adhesion to a polymer and strong elongation. Some of the yarns woven and knitted from these fiber fabrics include polyamide fibers such as nylon 6 and nylon 66, polyester fibers (saturated polyester) such as polyethylene terephthalate and polyethylene naphthalate, and polylactic acid fibers as necessary. A synthetic fiber yarn such as a polyolefin fiber such as a fatty acid polyester fiber, an acrylic fiber, a vinylon fiber, a polyethylene fiber or a polypropylene fiber, or a polyvinyl chloride fiber can be used in combination.
 繊維布帛を芯材に含む高分子シートにおいて、高分子成分としては、熱可塑性樹脂、熱可塑性エラストマー、架橋性熱可塑性樹脂、熱硬化性樹脂の何れも使用することができる。熱可塑性樹脂としては、ポリ塩化ビニル樹脂、ポリオレフィン樹脂、エチレン-酢酸ビニル系共重合体樹脂、エチレン-(メタ)アクリル酸エステル系共重合体樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、アクリル系樹脂、フッ素含有樹脂、ポリアミド系樹脂、ポリビニルアルコール系樹脂、エチレン-ビニルアルコール共重合体樹脂などが挙げられ、また熱可塑性エラストマーとしてはポリエステル系共重合体樹脂、ウレタン系共重合体樹脂、スチレン系共重合体樹脂(スチレン-ブタジエン-スチレン共重合体、スチレン-イソプレン-スチレン共重合体、及びこれらの水素添加物等)、フッ素系共重合体樹脂、シリコーン系共重合体樹脂などが挙げられ、また架橋性熱可塑性樹脂としてはアイオノマー系樹脂(エチレン-(メタ)アクリル酸系共重合体の金属イオン架橋体等)の他、上記熱可塑性樹脂及び熱可塑性エラストマーに対して、イソシアネート化合物、またはカップリング剤化合物、またはイソシアネート化合物とカップリング剤化合物の併用物を0.5~10質量%含む組成物が挙げられ、また熱硬化性樹脂としては、不飽和ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、尿素樹脂などが挙げられる。 In a polymer sheet containing a fiber fabric as a core material, any of a thermoplastic resin, a thermoplastic elastomer, a crosslinkable thermoplastic resin, and a thermosetting resin can be used as the polymer component. The thermoplastic resin includes polyvinyl chloride resin, polyolefin resin, ethylene-vinyl acetate copolymer resin, ethylene- (meth) acrylate copolymer resin, polyurethane resin, polyester resin, acrylic resin, Fluorine-containing resins, polyamide resins, polyvinyl alcohol resins, ethylene-vinyl alcohol copolymer resins, etc., and thermoplastic elastomers include polyester copolymer resins, urethane copolymer resins, styrene copolymer resins Examples of the resin include styrene-butadiene-styrene copolymer, styrene-isoprene-styrene copolymer, and hydrogenated products thereof, fluorine-based copolymer resin, and silicone-based copolymer resin. As the thermoplastic resin, an ionomer resin (ethylene- (meta In addition to the above-mentioned thermoplastic resins and thermoplastic elastomers, an isocyanate compound, a coupling agent compound, or a combined product of an isocyanate compound and a coupling agent compound is added to the above thermoplastic resin and thermoplastic elastomer. Examples of the thermosetting resin include unsaturated polyester resins, epoxy resins, phenol resins, melamine resins, urea resins, and the like.
 応力安定支持体層は、金属製シートにより構成されてもよい。金属製シートとして、ステンレス、鉄、鉄合金、アルミニウム、アルミニウム合金、銅、銅合金、ニッケル、ニッケル合金、タングステン、及びタングステン合金、から選ばれた1種以上が用いられる。特には、柔軟性と強度の面で、アルミニウムまたはステンレスが好ましく用いられる。 The stress stable support layer may be composed of a metal sheet. As the metal sheet, at least one selected from stainless steel, iron, iron alloy, aluminum, aluminum alloy, copper, copper alloy, nickel, nickel alloy, tungsten, and tungsten alloy is used. In particular, aluminum or stainless steel is preferably used in terms of flexibility and strength.
 本発明の太陽電池積層体ユニット-可撓性膜材複合構造物に用いられる可撓性膜材4は、可撓・防水性シートからなるものであって、0.1~3.0mmの厚さ及び、150~2500g/m2の単位面積当り質量(目付け)を有することが好ましい。可撓・防水性シートは必要により繊維布帛(織布、編布又は不織布)を基布として含んでいてもよい。この場合繊維布帛からなる基布の少なくとも一面、好ましくは両面に、可撓・防水性合成樹脂が、塗布又は含浸されていて、可撓・防水樹脂層が形成されていることが好ましい。基布用繊維布帛を形成する繊維としては、天然繊維、例えば、木綿、麻等、無機繊維、例えば、ガラス繊維、炭素繊維、金属繊維等、再生繊維、例えば、ビスコースレーヨン、キュプラ等、半合成繊維、例えば、ジ-及びトリアセテート繊維等、及び合成繊維、例えば、ナイロン6、ナイロン66等のポリアミド繊維、ケブラー等のアラミド繊維、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル繊維(飽和ポリエステル)及びポリ乳酸繊維等の脂肪酸ポリエステル繊維、ポリアリレート繊維、芳香族ポリエーテル繊維、ポリイミド繊維、アクリル繊維、ビニロン繊維、ポリエチレン繊維、ポリプロピレン繊維等のポリオレフィン繊維及びポリ塩化ビニル繊維、等から選ばれた少なくとも1種からなるものを使用することができる。繊維性基布を形成している繊維材料は、短繊維紡績糸、長繊維糸状、スプリットヤーン、テープヤーン等、いずれの形状でも良い。また、繊維性基布の組織は、織物、編物、不織布又は、これらの複合体のいずれであっても良い。 The flexible membrane material 4 used in the solar cell laminate unit-flexible membrane material composite structure of the present invention is made of a flexible and waterproof sheet and has a thickness of 0.1 to 3.0 mm. And a mass per unit area (weight per unit area) of 150 to 2500 g / m 2 is preferable. The flexible / waterproof sheet may contain a fiber fabric (woven fabric, knitted fabric or non-woven fabric) as a base fabric if necessary. In this case, it is preferable that a flexible / waterproof resin layer is formed by applying or impregnating a flexible / waterproof synthetic resin on at least one surface, preferably both surfaces, of the fiber cloth. The fibers forming the fiber fabric for the base fabric include natural fibers such as cotton and hemp, inorganic fibers such as glass fibers, carbon fibers and metal fibers, recycled fibers such as viscose rayon and cupra, and the like. Synthetic fibers such as di- and triacetate fibers, and synthetic fibers such as polyamide fibers such as nylon 6 and nylon 66, aramid fibers such as Kevlar, polyester fibers (saturated polyester) such as polyethylene terephthalate and polyethylene naphthalate, and poly At least one selected from fatty acid polyester fibers such as lactic acid fibers, polyarylate fibers, aromatic polyether fibers, polyimide fibers, acrylic fibers, vinylon fibers, polyethylene fibers, polypropylene fibers such as polypropylene fibers, and polyvinyl chloride fibers Use what consists of It is possible. The fiber material forming the fibrous base fabric may be any shape such as short fiber spun yarn, long fiber yarn, split yarn, tape yarn, or the like. The structure of the fibrous base fabric may be any of a woven fabric, a knitted fabric, a nonwoven fabric, or a composite thereof.
 前記可撓性膜材用可撓・防水性シート用樹脂としては、ポリ塩化ビニル樹脂、ポリオレフィン樹脂、塩素化ポリオレフィン系樹脂、エチレン-酢酸ビニル系共重合体樹脂、エチレン-(メタ)アクリル酸エステル系共重合体樹脂、アイオノマー系樹脂(エチレン-(メタ)アクリル酸系共重合体の塩等)、ポリウレタン系樹脂、ポリエステル系樹脂(脂肪族ポリエステル系樹脂を含む)、アクリル系樹脂、フッ素含有樹脂、スチレン系共重合体樹脂(スチレン-ブタジエン-スチレン共重合体、スチレン-イソプレン-スチレン共重合体、及びこれらの水素添加物等)、ポリアミド系樹脂、ポリビニルアルコール系樹脂、エチレン-ビニルアルコール共重合体樹脂、シリコーン系樹脂、及び、その他の合成樹脂(熱可塑性エラストマーを包含する)等から選ぶことができる。これらの防水性合成樹脂は、単独、あるいは2種以上の混合物として使用してもよい。 Examples of the flexible and waterproof sheet resin for flexible membrane materials include polyvinyl chloride resin, polyolefin resin, chlorinated polyolefin resin, ethylene-vinyl acetate copolymer resin, and ethylene- (meth) acrylic acid ester. Copolymer resins, ionomer resins (ethylene- (meth) acrylic acid copolymer salts, etc.), polyurethane resins, polyester resins (including aliphatic polyester resins), acrylic resins, fluorine-containing resins Styrene copolymer resins (styrene-butadiene-styrene copolymers, styrene-isoprene-styrene copolymers, and hydrogenated products thereof), polyamide resins, polyvinyl alcohol resins, ethylene-vinyl alcohol copolymers Combined resin, silicone resin, and other synthetic resins (including thermoplastic elastomer) You can choose from to), and the like. These waterproof synthetic resins may be used alone or as a mixture of two or more.
 本発明の太陽電池積層体ユニット及び太陽電池積層体ユニット-可撓性膜材複合構造物を、下記実施例により更に説明する。
 下記実施例及び比較例において製造された太陽電池積層体ユニット-可撓性膜材複合構造物は下記の試験に供された。
(1)発電出力測定
 JIS-C8935-1995に基づき、供試体の環境試験前後の発電出力を測定した。
(2)耐荷重安定性
 常温(25℃)又は65℃の雰囲気中において、幅:30cm、長さ:100cmの供試体のタテ方向試験片及びヨコ方向試験片の両端を、伸び率が、0.5%、1%、2%、及び3%になるように、引張速度200mm/分で、引張荷重をかけて、引張応力と発電出力保持率(%)を計測し、かつ外観(可撓性太陽電池モジュールの破損状態)を下記のように4段階に評価した。
(外観評価)
 4:荷重前の状態に比べて変化なし。
 3:供試体の一部分において、フィルム(表面被覆層、可撓性太陽電池モジュール層、   可撓性保護フィルム層)の一部にシワの発生がある。
 2:供試体の一部分において、フィルム(上記)の浮き、剥がれが一部見られる。
 1:供試体の全面にフィルム(上記)の浮き、剥がれが認められる。
(3)耐湿熱性
 供試体を85℃、85%RHの環境下にて、1000時間放置後の発電出力保持率(%)を計測し、かつ外観(色相、フィルム剥がれ、浮き、その他)を下記のように4段階に評価した。
(外観評価)
 4:測定開始前の状態に比べて変化なし。
 3:着色が僅かに見られる。
 2:黄変が認められ、供試体の一部分にフィルム(表面被覆層、可撓性太陽電池モジュ   ール層、可撓性保護フィルム層)の浮き、剥がれが一部見られる。
 1:黄変が認められ、供試体の全面にフィルム(上記)の浮き、剥がれが認められる。
The solar cell laminate unit and solar cell laminate unit-flexible film material composite structure of the present invention will be further described by the following examples.
The solar cell laminate unit-flexible membrane material composite structures produced in the following examples and comparative examples were subjected to the following tests.
(1) Based on the power output measuring JIS-C8935- 1995, to measure the power output before and after the environmental test of the specimen.
(2) Load resistance stability In an atmosphere at room temperature (25 ° C) or 65 ° C, the elongation is 0 at both ends of the test piece of width: 30 cm and length: 100 cm. .5%, 1%, 2%, and 3%, with a tensile load of 200 mm / min, applying a tensile load, measuring the tensile stress and the power generation output retention rate (%), and the appearance (flexible The damage state of the solar cell module was evaluated in four stages as follows.
(Appearance evaluation)
4: No change compared to the state before loading.
3: In a part of the specimen, wrinkles are generated in a part of the film (surface coating layer, flexible solar cell module layer, flexible protective film layer).
2: In a part of the specimen, the film (above) is partially lifted and peeled off.
1: The film (above) floats and peels off on the entire surface of the specimen.
(3) Moisture and heat resistance The test sample was measured for power generation output retention rate (%) after being left for 1000 hours in an environment of 85 ° C and 85% RH, and the appearance (hue, film peeling, floating, etc.) was as follows. As shown in FIG.
(Appearance evaluation)
4: No change compared to the state before the start of measurement.
3: Coloring is slightly seen.
2: Yellowing was observed, and a part of the specimen (surface covering layer, flexible solar cell module layer, flexible protective film layer) was partially lifted or peeled off.
1: Yellowing is recognized, and the film (above) floats and peels over the entire surface of the specimen.
[実施例1]
 可撓性膜材として、ガラス繊維糸状(繊維太さ:DEヤーン、織糸太さ:150tex)を経糸、緯糸に使用した平織物(目付け:380g/m2、密度:経糸29本/25.4mm、緯糸32本/25.4mm)を使用した。前記ガラス繊維平織物上に可撓・防水性樹脂フィルムを貼着して、可撓性膜材層を構成した。この可撓・防水性樹脂フィルムは、下記組成を有するポリ塩化ビニル樹脂組成物をカレンダー成形法により混練、圧延し、厚さ0.16mmのフィルムを作製したものであった。このフィルムを前記ガラス繊維平織物の表面上に165℃で2分間熱圧着して、可撓性膜材層を作製した。この膜材層の目付けは840g/m2であった。
 塩化ビニル樹脂:100質量部
 フタル酸エステル系可塑剤:50質量部
 リン酸エステル系可塑剤:15質量部
 エポキシ系化合物:3質量部
 Ba-Ca系安定剤:1質量部
 芳香族イソシアネート化合物:5質量部
 ベンゾトリアゾール系紫外線吸収剤:0.1質量部
 顔料(酸化チタン):5質量部
[Example 1]
As a flexible membrane material, a plain woven fabric (weighing: 380 g / m 2 , density: 29 warps / 25.) Using glass fiber yarn (fiber thickness: DE yarn, woven yarn thickness: 150 tex) as warp and weft. 4 mm, 32 wefts / 25.4 mm). A flexible and waterproof resin film was stuck on the glass fiber plain fabric to constitute a flexible membrane layer. This flexible and waterproof resin film was prepared by kneading and rolling a polyvinyl chloride resin composition having the following composition by a calendering method to produce a film having a thickness of 0.16 mm. This film was thermocompression bonded at 165 ° C. for 2 minutes on the surface of the glass fiber plain fabric to prepare a flexible membrane layer. The basis weight of this film material layer was 840 g / m 2 .
Vinyl chloride resin: 100 parts by weight Phthalate ester plasticizer: 50 parts by weight Phosphate ester plasticizer: 15 parts by weight Epoxy compound: 3 parts by weight Ba-Ca stabilizer: 1 part by weight Aromatic isocyanate compound: 5 Part by mass Benzotriazole-based UV absorber: 0.1 part by mass Pigment (titanium oxide): 5 parts by mass
 上記前記可撓性膜材の表面に接着層を形成した。まず下記接着層用接着剤組成物の溶液をコーティングして、乾燥後厚さが約5μmの接着層を形成した。
 メタクリル酸エステル系樹脂(メタクリル酸メチル樹脂とアクリル酸ブチル樹脂の共重合体):60質量部
 希釈溶剤(トルエン):40質量部
An adhesive layer was formed on the surface of the flexible membrane material. First, the following adhesive layer adhesive composition solution was coated to form an adhesive layer having a thickness of about 5 μm after drying.
Methacrylic ester resin (copolymer of methyl methacrylate resin and butyl acrylate resin): 60 parts by weight Diluent solvent (toluene): 40 parts by weight
 次に、アンカー層用、メタクリル酸エステル系樹脂70質量%及びフッ化ビニリデン系樹脂30質量%からなる樹脂混合物と、及びトップ層用フッ化ビニリデン系樹脂80質量部、メタクリル酸エステル系樹脂20質量%からなる樹脂混合物とを溶融押出してアンカー層とトップ層とを一体化させた2層構造を有するフィルムを形成し、これを直ちに前記可撓性膜材の表面上に積層し接合した。
 更に、トップ層の表面にコロナ放電処理を施して、接着性の向上を図った。
Next, for an anchor layer, a resin mixture comprising 70% by mass of a methacrylic ester resin and 30% by mass of a vinylidene fluoride resin, 80 parts by mass of a vinylidene fluoride resin for a top layer, and 20% by mass of a methacrylic ester resin % Of the resin mixture was melt-extruded to form a film having a two-layer structure in which the anchor layer and the top layer were integrated, and this was immediately laminated and bonded onto the surface of the flexible membrane material.
Further, the surface of the top layer was subjected to corona discharge treatment to improve the adhesion.
 応力安定支持体層として、厚さ100μmのポリエチレンテレフタレート(PET)フィルムを用いた。 A polyethylene terephthalate (PET) film having a thickness of 100 μm was used as the stress stable support layer.
 可撓性太陽電池セル構造物を下記のようにして製造した。幅37cm、長さ59cmの可撓性アモルファスシリコン太陽電池セル(商標:フレキシブルソーラーパネル、品番R-7の中間加工品、最大出力7W、米国Power Film社製)の陽極集電電極及び陰極集電電極を導電部防湿層により被覆し、得られた太陽電池セルを、可撓性・接着性樹脂層により被覆し、形成された可撓性・接着性樹脂層の上表面に可撓性表面保護フィルムを接合して可撓性太陽電池セル構造体を製造した。
 前記導電部防湿層は、ポリエステルフィルム層とアルミニウム蒸着層とから構成された防湿フィルムにより形成した。
 前記可撓性・接着性樹脂層は下記組成を有する樹脂組成物を用いて形成した。
 エチレン-酢酸ビニル重合体樹脂(酢酸ビニル含有量26質量%):100質量部
 有機過酸化物(1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン):2質量部
 カップリング剤化合物(メタクリロキシ系シランカップリング剤):1質量部
 架橋助剤(トリアリルイソシアヌレート):3質量部
 紫外線吸収剤(ベンゾフェノン系):0.3質量部
 前記可撓性表面保護フィルムとしては、厚さ50μmのトリフルオロクロロエチレン樹脂フィルム(水蒸気透過率;0.1g/m2/day)を用いた。得られた可撓性太陽電池セル構造体の下面に、その面積の150%の面積を有する、前記応力安定支持体層用ポリエチレンテレフタレートフィルムを、積層し下記接着剤を介して接着して、太陽電池積層体ユニットを製造した。このときの接着剤として下記組成を有するものを用いた。
 ポリエステル系樹脂:100質量部
 イソシアネート化合物(ヘキサメチレンジイソシアネート):10質量部
 エポキシ樹脂(ウレタン変性エポキシ樹脂):15質量部
 カップリング剤化合物(エポキシ系シランカップリング剤):1質量部
 希釈溶剤(酢酸エチル):150質量部
A flexible solar cell structure was manufactured as follows. Anode current collector and cathode current collector of flexible amorphous silicon solar cell (trademark: flexible solar panel, intermediate processed product of product number R-7, maximum output 7 W, manufactured by Power Film, USA) having a width of 37 cm and a length of 59 cm The electrode is covered with a moisture-proof layer in the conductive part, and the obtained solar battery cell is covered with a flexible / adhesive resin layer, and a flexible surface protection is provided on the upper surface of the formed flexible / adhesive resin layer. The film was joined to produce a flexible solar cell structure.
The conductive portion moisture-proof layer was formed of a moisture-proof film composed of a polyester film layer and an aluminum vapor deposition layer.
The flexible / adhesive resin layer was formed using a resin composition having the following composition.
Ethylene-vinyl acetate polymer resin (vinyl acetate content 26% by mass): 100 parts by mass Organic peroxide (1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane): 2 parts by mass Coupling agent compound (methacryloxy-based silane coupling agent): 1 part by mass Cross-linking auxiliary agent (triallyl isocyanurate): 3 parts by mass UV absorber (benzophenone-based): 0.3 part by mass As the flexible surface protective film Used a trifluorochloroethylene resin film (water vapor transmission rate; 0.1 g / m 2 / day) having a thickness of 50 μm. On the lower surface of the obtained flexible solar cell structure, the polyethylene terephthalate film for stress stable support layer, having an area of 150% of the area, is laminated and bonded via the following adhesive, A battery stack unit was manufactured. At this time, an adhesive having the following composition was used.
Polyester resin: 100 parts by weight Isocyanate compound (hexamethylene diisocyanate): 10 parts by weight Epoxy resin (urethane-modified epoxy resin): 15 parts by weight Coupling agent compound (epoxy silane coupling agent): 1 part by weight Diluting solvent (acetic acid Ethyl): 150 parts by mass
 前記太陽電池積層体ユニット2個を、互いに80mmの間隔を開けて、幅1200mm、長さ2000mmの、上記アンカー層及びトップ層を有する可撓性膜材の中央部に配置し、下記架橋性接着剤用樹脂組成物層を介して積層し、接合一体化した。
 ポリエステル系樹脂:100質量部
 イソシアネート化合物(ヘキサメチレンジイソシアネート;イソシアネート含量13%):7質量部
 エポキシ樹脂(ウレタン変性エポキシ樹脂):1質量部
 カップリング剤化合物(エポキシ系シランカップリング剤):2質量部
 紫外線吸収剤(ベンゾトリアゾール系):2.5質量部
 希釈溶剤(酢酸エチル):140質量部
The two solar cell laminate units are arranged at the center of the flexible membrane material having the anchor layer and the top layer having a width of 1200 mm and a length of 2000 mm with an interval of 80 mm between each other, and the following crosslinkable adhesion It laminated | stacked through the resin composition layer for chemical | medical agents, and joined and integrated.
Polyester resin: 100 parts by mass Isocyanate compound (hexamethylene diisocyanate; isocyanate content 13%): 7 parts by mass Epoxy resin (urethane-modified epoxy resin): 1 part by mass Coupling agent compound (epoxy silane coupling agent): 2 parts by mass UV absorber (benzotriazole): 2.5 parts by weight Diluent (ethyl acetate): 140 parts by weight
 次に、可撓性太陽電池セル構造体の側面部及び上面周縁部、並びに前記太陽電池セル構造体の側面部下端を取り囲む前記応力安定支持体層の周囲部に、可撓性保護フィルムを積層、接合一体化した。
 この可撓性保護フィルムとして、厚さ50μmのエチレン-テトラフルオロエチレン共重合体樹脂フィルムを使用した。このエチレン-テトラフルオロエチレン共重合体樹脂フィルムの裏面にコロナ放電処理を施した後に、架橋性接着剤層用樹脂組成物をコーティングして、乾燥後厚みが20μmの架橋性接着剤層を形成した。前記のようにして形成された積層体を120℃の温度、及び1Torrの真空下に2分間真空加熱後、5分間大気圧下で加圧加熱して、すべての層を接着一体化させて、太陽電池積層体ユニット-可撓性膜材複合構造物を製造し、これを前記試験に供した。
 試験結果を表1及び表2に示す。
Next, a flexible protective film is laminated on the side portion of the flexible solar cell structure and the peripheral edge of the upper surface, and the peripheral portion of the stress stable support layer surrounding the lower end of the side portion of the solar cell structure. , Joined and integrated.
As this flexible protective film, an ethylene-tetrafluoroethylene copolymer resin film having a thickness of 50 μm was used. The back surface of the ethylene-tetrafluoroethylene copolymer resin film was subjected to corona discharge treatment, and then coated with a resin composition for a crosslinkable adhesive layer to form a crosslinkable adhesive layer having a thickness of 20 μm after drying. . The laminate formed as described above was heated at 120 ° C. under a vacuum of 1 Torr for 2 minutes, then heated under pressure for 5 minutes under atmospheric pressure, and all layers were bonded and integrated. A solar cell laminate unit-flexible film material composite structure was manufactured and subjected to the above test.
The test results are shown in Tables 1 and 2.
[実施例2]
 実施例1と同様にして、太陽電池積層体ユニット-可撓性膜材複合構造物を製造し、試験に供した。但し、可撓性太陽電池セル構造体を、幅460mm、長さ1733mmの可撓性太陽電池モジュール(品名;アモルファス太陽電池モジュール、形式:FPV1045COM1、公称最大出力:45W、製造元;富士電機システムズ(株))の裏面に前記応力安定支持体層を接合して製造した。
 試験結果を表1~4に示す。
[Example 2]
In the same manner as in Example 1, a solar cell laminate unit-flexible film material composite structure was manufactured and subjected to a test. However, the flexible solar cell structure is made of a flexible solar cell module having a width of 460 mm and a length of 1733 mm (product name: amorphous solar cell module, model: FPV1045COM1, nominal maximum output: 45 W, manufacturer: Fuji Electric Systems Co., Ltd. The stress-stable support layer was bonded to the back surface of)).
The test results are shown in Tables 1 to 4.
[実施例3]
 実施例1と同様にして、太陽電池積層体ユニット-可撓性膜材複合構造物を製造し、試験に供した。但し、前記応力安定支持体層として、ガラス繊維糸条(繊維太さ:DEヤーン、織糸太さ;67.5tex)を経糸、及び緯糸に使用した平織物(目付け:200g/m2、密度:経糸40本/25.4mm、緯糸30本/25.4mm)を使用し、前記ガラス繊維平織物にエポキシ樹脂溶液を含浸(付着固形量:200g/m2)し、硬化させたものを用いた。
 試験結果を表1~4に示す。
[Example 3]
In the same manner as in Example 1, a solar cell laminate unit-flexible film material composite structure was manufactured and subjected to a test. However, as the stress-stable support layer, a plain woven fabric (weight per unit area: 200 g / m 2) , density using glass fiber yarn (fiber thickness: DE yarn, woven yarn thickness; 67.5 tex) as warp and weft : 40 warps / 25.4mm, 30 wefts / 25.4mm), and the glass fiber plain fabric impregnated with an epoxy resin solution (adhesion solid amount: 200 g / m 2 ) and cured. It was.
The test results are shown in Tables 1 to 4.
[実施例4]
 実施例1と同様にして、太陽電池積層体ユニット-可撓性膜材複合構造物を製造し、試験に供した。但し、前記応力安定支持体層として、厚さ10μmのアルミニウム箔を用いた。
 試験結果を表1~4に示す。
[Example 4]
In the same manner as in Example 1, a solar cell laminate unit-flexible film material composite structure was manufactured and subjected to a test. However, an aluminum foil having a thickness of 10 μm was used as the stress stable support layer.
The test results are shown in Tables 1 to 4.
[実施例5]
 実施例1と同様にして、太陽電池積層体ユニットを有する可撓性膜材を製造し、試験に供した。但し、可撓性膜材用繊維布帛として、ポリエステル繊維糸条(繊維太さ:84dtex)を経糸、緯糸に使用した平織物(目付け:160g/m2、密度:経糸40本/25.4mm、緯糸50本/25.4mm)を使用した。また、前記繊維布帛上に、可撓・防水性樹脂フィルムを貼着した。この可撓・防水性樹脂フィルムとして、実施例1において使用したものと同一のポリ塩化ビニル樹脂組成物をカレンダー成形法により混練、圧延して得られた、厚さ0.15mmのフィルムを使用した。このフィルムを前記繊維布帛の表面上に165℃で2分間熱圧着し、可撓性膜材を形成した。このシート状基材層の目付けは500g/m2であった。
 試験結果を表1~4に示す。
[Example 5]
In the same manner as in Example 1, a flexible membrane material having a solar cell laminate unit was manufactured and subjected to a test. However, a plain fabric using a polyester fiber yarn (fiber thickness: 84 dtex) as a warp and a weft as a fiber fabric for a flexible membrane material (weight per unit: 160 g / m 2 , density: 40 warps / 25.4 mm, 50 wefts / 25.4 mm) were used. Further, a flexible / waterproof resin film was stuck on the fiber fabric. As this flexible and waterproof resin film, a 0.15 mm thick film obtained by kneading and rolling the same polyvinyl chloride resin composition as used in Example 1 by a calendering method was used. . This film was thermocompressed on the surface of the fiber fabric at 165 ° C. for 2 minutes to form a flexible membrane material. The basis weight of this sheet-like base material layer was 500 g / m 2 .
The test results are shown in Tables 1 to 4.
[比較例1]
 実施例1と同様にして、太陽電池積層体ユニット-可撓性膜材複合構造物を製造し、試験に供した。但し、前記応力安定支持体層を省略し、その代わりに下記架橋性接着剤用樹脂組成物層を介して可撓性太陽電池セル構造体を直接可撓性膜材に積層し、接合一体化した。
 ポリエステル系樹脂:100質量部
 イソシアネート化合物(ヘキサメチレンジイソシアネート;イソシアネート含量13%):7質量部
 エポキシ樹脂(ウレタン変性エポキシ樹脂):1質量部
 カップリング剤化合物(エポキシ系シランカップリング剤):2質量部
 紫外線吸収剤(ベンゾトリアゾール系):2.5質量部
 希釈溶剤(酢酸エチル):140質量部
 試験結果を表1及び表2に示す。
[Comparative Example 1]
In the same manner as in Example 1, a solar cell laminate unit-flexible film material composite structure was manufactured and subjected to a test. However, the stress-stable support layer is omitted, and instead, the flexible solar cell structure is directly laminated on the flexible film material via the resin composition layer for a crosslinkable adhesive described below, and is joined and integrated. did.
Polyester resin: 100 parts by mass Isocyanate compound (hexamethylene diisocyanate; isocyanate content 13%): 7 parts by mass Epoxy resin (urethane-modified epoxy resin): 1 part by mass Coupling agent compound (epoxy silane coupling agent): 2 parts by mass Part UV absorber (benzotriazole type): 2.5 parts by weight Diluting solvent (ethyl acetate): 140 parts by weight The test results are shown in Tables 1 and 2.
[比較例2]
 実施例1と同様にして、太陽電池積層体ユニット-可撓性膜材複合構造物を製造し、試験に供した。但し、前記応力安定支持体層として、厚さ50μmの、熱変形温度が60℃である高密度ポリエチレン樹脂フィルムを用いて形成した。
 試験結果を表1~4に示す。
[Comparative Example 2]
In the same manner as in Example 1, a solar cell laminate unit-flexible film material composite structure was manufactured and subjected to a test. However, the stress stable support layer was formed using a high-density polyethylene resin film having a thickness of 50 μm and a thermal deformation temperature of 60 ° C.
The test results are shown in Tables 1 to 4.
[比較例3]
 実施例1と同様にして、太陽電池積層体ユニット-可撓性膜材複合構造物を製造し、試験に供した。但し、前記応力安定支持体層として、ガラス繊維糸条(繊維太さ:DEヤーン、織糸太さ;67.5tex)を経糸、緯糸に使用した平織物(目付け:200g/m2、密度:経糸40本/25.4mm、緯糸30本/25.4mm)を使用したが、前記ガラス繊維布帛に高分子成分を含浸、硬化することを省略した。
 試験結果を表1~4に示す。
[Comparative Example 3]
In the same manner as in Example 1, a solar cell laminate unit-flexible film material composite structure was manufactured and subjected to a test. However, as the stress-stable support layer, a plain woven fabric (weight per unit area: 200 g / m 2 , density: glass fiber yarn (fiber thickness: DE yarn, woven yarn thickness; 67.5 tex) is used for warp and weft. 40 warps / 25.4 mm, 30 wefts / 25.4 mm) were used, but the impregnation and curing of the polymer component in the glass fiber fabric was omitted.
The test results are shown in Tables 1 to 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1及び表2に示されているように、本発明に係る実施例1~5の太陽電池積層体ユニット-可撓性膜材複合構造物は、引張り荷重に対して、実用上十分小さな伸び率を示し、従って耐荷重安定性、並びに形状・寸法安定性が高く、かつ発電出力保持性にもすぐれている。 As shown in Tables 1 and 2, the solar cell laminate unit-flexible film material composite structure of Examples 1 to 5 according to the present invention has a practically small elongation with respect to the tensile load. Therefore, it has high load resistance stability, high shape / dimensional stability, and excellent power generation output retention.
 1  太陽電池セル
 1a  可撓性・接着性樹脂層
 2  可撓性太陽電池セル構造体
 3  可撓性保護フィルム
 4  可撓性膜材
 5  太陽電池積層体ユニット
 6  太陽電池積層体ユニット-可撓性膜材複合構造物
 2a  セル構造体2の下面部
 2b  セル構造体2の側面部
 2c  セル構造体2の上面周縁部
 3a  保護フィルム3の、セル構造体2の側面部2bに接合する部分
 3b  保護フィルム3の、セル構造体2の上面周縁部2cに接合する部分
 3c  保護フィルム3の、セル構造体2の応力安定支持体層10に接合する部分
 8a  セル構造体2の下面部2aに接着された架橋性接着剤層
 8b  保護フィルム3の、各部分3a,3b,3cに接着された架橋性接着剤層
 9  表面保護フィルム層
 8c  応力安定支持体層10の下面部に接着された架橋性接着剤層又は弾性接着剤層
 10  応力安定支持体層
 10a  応力安定支持体層10の、セル構造体2の側面部下端を囲む架橋性接着剤層8aの周囲部
 11  表面保護層
 12a  陽極集電電極
 12b  陰極集電電極
 13  導電部防湿層
DESCRIPTION OF SYMBOLS 1 Solar cell 1a Flexible / adhesive resin layer 2 Flexible solar cell structure 3 Flexible protective film 4 Flexible film material 5 Solar cell laminate unit 6 Solar cell laminate unit-flexibility Membrane material composite structure 2a Lower surface portion 2b of cell structure 2 Side surface portion 2c of cell structure 2 Upper peripheral edge portion 3a of cell structure 2 Portion of protective film 3 to side surface portion 2b of cell structure 2 3b Protection Part 3c of the film 3 joined to the upper peripheral edge 2c of the cell structure 2 8c Part of the protective film 3 joined to the stress stable support layer 10 of the cell structure 2 8a Adhered to the lower surface 2a of the cell structure 2 Crosslinkable adhesive layer 8b Crosslinkable adhesive layer bonded to each portion 3a, 3b, 3c of protective film 3 9 Surface protective film layer 8c Crosslinkable contact bonded to the lower surface portion of stress stable support layer 10 Agent layer or elastic adhesive layer 10 Stress stable support layer 10a Peripheral portion of the crosslinkable adhesive layer 8a surrounding the lower end of the side surface portion of the cell structure 2 of the stress stable support layer 10 11 Surface protective layer 12a Anode collector electrode 12b Cathode current collecting electrode 13 Conductive part moisture-proof layer

Claims (8)

  1.  可撓性太陽電池セル構造体と、その裏面に架橋接着されたシート状物から形成された応力安定支持体層とを含む積層体であって、前記応力安定支持体層は、前記可撓性太陽電池セル構造体の面積の110~330%の面積を有し、かつ、前記応力安定支持体層を形成するシート状物が、500~5000N/3cmの範囲内の引張荷重を負荷したときのタテ方向の伸び率、及びヨコ方向の伸び率が、ともに3%以内にあることを特徴とする太陽電池積層体ユニット。 A laminate including a flexible solar cell structure and a stress-stable support layer formed from a sheet-like material cross-linked and bonded to the back surface thereof, wherein the stress-stable support layer is the flexible When the sheet-like material having an area of 110 to 330% of the area of the solar cell structure and forming the stress stable support layer is loaded with a tensile load in the range of 500 to 5000 N / 3 cm. A solar cell laminate unit characterized in that the elongation in the vertical direction and the elongation in the horizontal direction are both within 3%.
  2.  前記可撓性太陽電池セル構造体が、表面保護層、陽極集電電極及び陰極集電電極、及び集電コネクタを有する可撓性太陽電池モジュールである、請求項1に記載の太陽電池積層体ユニット。 The solar cell laminate according to claim 1, wherein the flexible solar cell structure is a flexible solar cell module having a surface protective layer, an anode current collecting electrode and a cathode current collecting electrode, and a current collecting connector. unit.
  3.  前記応力安定支持体層が、耐熱性高分子シート、繊維布帛を芯材として含む高分子シート、及び金属製シートのいずれか1種以上からなる、請求項1または2に記載の太陽電池積層体ユニット。 The solar cell laminate according to claim 1 or 2, wherein the stress-stable support layer is composed of any one or more of a heat-resistant polymer sheet, a polymer sheet including a fiber fabric as a core material, and a metal sheet. unit.
  4.  前記耐熱性高分子シートが、1471~4903MPa(150~500kgf/mm2)の引張弾性率(JIS K7113-1995)を有している、請求項3に記載の太陽電池積層体ユニット。 The heat resistant polymer sheet, 1471 ~ 4903MPa (150 ~ 500kgf / mm 2) tensile modulus has (JIS K7113- 1995), the solar cell laminate unit according to claim 3.
  5.  前記繊維布帛を芯材として含む高分子シートが、39226.6~392266MPa(4000~40000kgf/mm2)の引張弾性率(JIS K7113-1995)を有している、請求項3に記載の太陽電池積層ユニット。 Polymeric sheet comprising the fiber fabric as a core material has a tensile modulus of 39226.6 ~ 392266MPa (4000 ~ 40000kgf / mm 2) (JIS K7113- 1995), solar cell according to claim 3 Laminated unit.
  6.  前記金属製シートが、ステンレス、鉄、鉄合金、アルミニウム、アルミニウム合金、銅、銅合金、ニッケル、ニッケル合金、タングステン、及びタングステン合金、から選ばれた1種以上である、請求項3に記載の太陽電池積層体ユニット。 4. The metal sheet according to claim 3, wherein the metal sheet is at least one selected from stainless steel, iron, iron alloy, aluminum, aluminum alloy, copper, copper alloy, nickel, nickel alloy, tungsten, and tungsten alloy. Solar cell stack unit.
  7.  前記可撓性太陽電池セル構造体の側面部、及び、前記可撓性太陽電池セル構造体の、前記側面部の上端に連続する上表面の周縁部、並びに前記可撓性太陽電池セル構造体の、前記側面部の下端を取り囲む前記応力安定支持体層上面の周囲部に、フッ素系樹脂を主成分として含む可撓性保護フィルムが架橋接着されている、請求項1~6のいずれか1項に記載の太陽電池積層体ユニット。 Side surfaces of the flexible solar cell structure, a peripheral portion of an upper surface of the flexible solar cell structure that is continuous with an upper end of the side surface, and the flexible solar cell structure A flexible protective film containing a fluorine-based resin as a main component is crosslinked and adhered to a peripheral portion of the upper surface of the stress stable support layer surrounding the lower end of the side surface portion. The solar cell laminate unit according to Item.
  8.  請求項1~7のいずれか1項に記載の太陽電池積層体ユニットの1個以上が、可撓性膜材上に、架橋接着及び弾性接着のいずれか又は両方により装着されていることを特徴とする太陽電池積層体ユニット-可撓性膜材複合構造物。 One or more of the solar cell laminate units according to any one of claims 1 to 7 are mounted on the flexible film material by one or both of cross-linking adhesion and elastic adhesion. A solar cell laminate unit-flexible film material composite structure.
PCT/JP2012/057906 2012-03-27 2012-03-27 Stacked solar cell unit and stacked solar cell unit/flexible film material composite structure WO2013145120A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057906 WO2013145120A1 (en) 2012-03-27 2012-03-27 Stacked solar cell unit and stacked solar cell unit/flexible film material composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/057906 WO2013145120A1 (en) 2012-03-27 2012-03-27 Stacked solar cell unit and stacked solar cell unit/flexible film material composite structure

Publications (1)

Publication Number Publication Date
WO2013145120A1 true WO2013145120A1 (en) 2013-10-03

Family

ID=49258489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057906 WO2013145120A1 (en) 2012-03-27 2012-03-27 Stacked solar cell unit and stacked solar cell unit/flexible film material composite structure

Country Status (1)

Country Link
WO (1) WO2013145120A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107924906A (en) * 2015-08-20 2018-04-17 苹果公司 The article based on fabric with electronic unit array

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284745A (en) * 1997-04-10 1998-10-23 Fuji Electric Co Ltd Solar battery module
JP2001332752A (en) * 2000-05-19 2001-11-30 Canon Inc Solar cell module and its transporting and assembling methods and solar photovoltaic generator
JP2009071233A (en) * 2007-09-18 2009-04-02 Nitto Denko Corp Sealing material for solar battery panel, and solar battery module
JP2010067622A (en) * 2008-09-08 2010-03-25 Ntt Facilities Inc Solar cell module, and method for installing the same
WO2010051976A1 (en) * 2008-11-05 2010-05-14 Sefar Ag Substrate for an optoelectronic device
WO2010100948A1 (en) * 2009-03-06 2010-09-10 株式会社アルバック Frameless solar cell panel and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284745A (en) * 1997-04-10 1998-10-23 Fuji Electric Co Ltd Solar battery module
JP2001332752A (en) * 2000-05-19 2001-11-30 Canon Inc Solar cell module and its transporting and assembling methods and solar photovoltaic generator
JP2009071233A (en) * 2007-09-18 2009-04-02 Nitto Denko Corp Sealing material for solar battery panel, and solar battery module
JP2010067622A (en) * 2008-09-08 2010-03-25 Ntt Facilities Inc Solar cell module, and method for installing the same
WO2010051976A1 (en) * 2008-11-05 2010-05-14 Sefar Ag Substrate for an optoelectronic device
WO2010100948A1 (en) * 2009-03-06 2010-09-10 株式会社アルバック Frameless solar cell panel and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107924906A (en) * 2015-08-20 2018-04-17 苹果公司 The article based on fabric with electronic unit array
CN107924906B (en) * 2015-08-20 2021-01-05 苹果公司 Fabric-based article with array of electronic components
US11183459B2 (en) 2015-08-20 2021-11-23 Apple Inc. Fabric-based items with electrical component arrays
US11710703B2 (en) 2015-08-20 2023-07-25 Apple Inc. Fabric-based items with electrical component arrays
US11967561B2 (en) 2015-08-20 2024-04-23 Apple Inc. Fabric-based items with electrical component arrays

Similar Documents

Publication Publication Date Title
JP2009170890A (en) Flexible film type solar cell multilayer body
JP4177590B2 (en) Electrical / electronic insulation sheet
JP5761207B2 (en) Polyurethane adhesive, adhesive for solar cell protective sheet, and back surface protective sheet for solar cell
EP2308939B1 (en) Polyurethane adhesive for outdoor use
KR101271382B1 (en) Backing sheet for photovoltaic modules
JP5262044B2 (en) Solar cell back surface sealing sheet and solar cell module using the same
JP3757498B2 (en) Fixing method of solar cell module
JP5504848B2 (en) Adhesive composition for laminated sheet
WO2011158777A1 (en) Solar cell module
US20110011457A1 (en) Solar cell system with encapsulant
JP5167622B2 (en) Solar cell module
KR101871293B1 (en) Solar cell backside protective sheet and solar cell
JPWO2010061738A1 (en) Film for backside sealing sheet for solar cell
JP5574332B2 (en) Flexible membrane solar cell laminate
JP2012529179A (en) Photovoltaic device having polymer mat and manufacturing method thereof
JP5652936B2 (en) Installation method of solar cell module
WO2013145120A1 (en) Stacked solar cell unit and stacked solar cell unit/flexible film material composite structure
JP2013199066A (en) Gas barrier film, back surface protective sheet for solar cell module and front surface protective sheet for solar cell using the same
JP3928020B2 (en) Durable film material with excellent heat insulation and flexibility
JP2012074555A (en) Solar battery laminate unit and solar battery laminate unit-flexible film material composite structure
JP2014058154A (en) Gas barrier film and protective sheet for solar battery module
JP6007037B2 (en) Laminated moistureproof film, protective material for solar cell, and solar cell
JP5867019B2 (en) Adhesive composition and back surface protection sheet for solar cell
JP2010283316A (en) Protective sheet for solar cell, and solar cell module using the same
JP4622976B2 (en) Fixing method of solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP