WO2013143744A1 - Device and method for controlling the temperature of an exhaust gas sensor - Google Patents

Device and method for controlling the temperature of an exhaust gas sensor Download PDF

Info

Publication number
WO2013143744A1
WO2013143744A1 PCT/EP2013/052631 EP2013052631W WO2013143744A1 WO 2013143744 A1 WO2013143744 A1 WO 2013143744A1 EP 2013052631 W EP2013052631 W EP 2013052631W WO 2013143744 A1 WO2013143744 A1 WO 2013143744A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
internal resistance
lambda probe
broadband lambda
temperature
Prior art date
Application number
PCT/EP2013/052631
Other languages
German (de)
French (fr)
Inventor
Bernhard Ledermann
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2013143744A1 publication Critical patent/WO2013143744A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4067Means for heating or controlling the temperature of the solid electrolyte
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1455Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor resistivity varying with oxygen concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1494Control of sensor heater

Definitions

  • the invention relates to a device for operating a broadband lambda probe in the exhaust passage of an internal combustion engine and for acquiring information about the operating state of the broadband lambda probe, wherein the broadband lambda probe connected via a diffusion barrier to the exhaust passage cavity, a connected thereto Nernstzelle and a Having associated with the cavity pumping cell and an electric heater.
  • the invention further relates to a method for operating a broadband lambda probe with a pumping cell, a Nernst cell and an associated heating device in the exhaust passage of an internal combustion engine and for controlling the temperature of the broadband lambda probe.
  • the composition of the air-fuel mixture is monitored with provided in the exhaust passage of the internal combustion engine exhaust gas sensors, for example in the form of broadband lambda probes, which determine the oxygen partial pressure.
  • Broadband lambda probes include, among others, a Nernst cell that determines the oxygen concentration, a pump cell that adjusts the oxygen concentration, a cavity connected to the two cells, and a diffusion barrier through which exhaust gas from the exhaust passage can diffuse into the cavity.
  • the correct function of the exhaust gas sensors depends strongly on their electronic wiring. The functional blocks of such a circuit are described by way of example in document DE 10 2006 061 565 A1.
  • an improved wiring is described which makes it possible, in addition to the operation of the exhaust gas sensor, to record and store information about the operating state of the wideband lambda probe used there as an exhaust gas sensor, and via a digital interface to pass on a higher-level engine control.
  • This arrangement allows a diagnosis of the cable connections between the wiring and the broadband lambda probe for short-circuiting and interruption as well as compliance with the voltages permitted at the terminals.
  • the operational readiness of the exhaust gas probe can be detected and its electrode polarization and the aging can be continuously monitored.
  • a high measurement accuracy of the broadband lambda probe can only be achieved if its temperature is controlled within a specified range. In the appropriate temperature range, the broadband lambda probe operates with the lowest tolerances.
  • the temperature of the diffusion barrier determines the diffusion rate of the exhaust gas from the exhaust gas channel into the cavity and thus also the required pumping current, which causes oxygen to be transported back from the cavity into the exhaust gas channel.
  • the pumping current is the measured variable for determining the lambda value.
  • the internal resistance of the Nernst cell is used as the measured variable to determine the temperature of the arrangement. It would be advantageous to use the internal resistance of the pumping cell, since it is arranged closer to the diffusion barrier and therefore better represents its temperature.
  • the object of the invention relating to the device is achieved by providing in the device an electronic circuit for determining the internal resistance of the pumping cell and for controlling the heating device as a function of the internal resistance of the pumping cell.
  • the pump cell is arranged particularly close to the diffusion barrier and its temperature, in addition to the pump cell itself, for high accuracy in the determination of the composition of the gas mixture in the exhaust duct must be known and predetermined, a temperature determination by means of the internal resistance of the pump cell is particularly advantageous.
  • the measuring current through the pumping cell can be higher than the measuring current through the Nernst cell, since this must be as low as possible in order to keep a polarization of the Nernst cell small. Because of its higher absolute value, the measuring current through the pump cell is less susceptible to interference.
  • the internal resistance of the pump cell is 90 ohms at operating temperature for a broadband lambda probe type LSU 4.9 from Bosch, whereas the internal resistance of the Nernst cell is 300 ohms.
  • the device according to the invention can be realized as an extension of an ASIC, as described in DE 102008001697 A1. In the described ASIC there are means for providing the electrical current passed through the pumping cell and for sensing the voltage at the pumping cell.
  • an electronic circuit for determining the internal resistance of the Nernst cell and for controlling the heating device as a function of the internal resistance of the Nernst cell is provided in the device.
  • the internal resistance of the Nernst cell can be determined from the voltage at the Nernst cell in a de-energized and energized measuring phase as well as the known current in the energized measuring phase.
  • the internal resistance at operating temperature is adjusted to a value of approx. 300 ohms with the LSU 4.9 broadband lambda probe from Bosch.
  • a particularly suitable embodiment provides that for determining the internal resistance of the pumping cell, a voltage at the pumping cell in a
  • de-energized measuring phase and in an energized measuring phase is determined. From the difference of these voltages and the current in the energized measurement phase, the internal resistance can be determined.
  • the internal resistance of the Nernst cell is used as the control variable for a pilot control of the temperature of the broadband lambda probe, and if the internal resistance of the pump cell is used as a controlled variable for the regulation of the temperature of the broadband lambda probe, on the one hand the lower manufacturing tolerance of the internal resistance the Nernst cell and on the other hand, the lower susceptibility to failure in the determination of the internal resistance of the pump cell to be exploited.
  • the control on the one hand, the target temperature can be approached precisely and, on the other hand, the control can react very quickly at the desired temperature.
  • the combined use of Nernst cell internal resistance and pumping cell improves the accuracy and speed of determining the composition of the gas mixture in the exhaust duct. As a result, exhaust gas regulations with reduced limits can be met.
  • a particularly suitable embodiment provides that in a first method step, an average value of the internal resistance of the pump cell is determined at a predetermined target temperature, wherein the achievement of the target temperature from the internal resistance of the Nernst cell is determined and that in a second process step Temperature of the broadband lambda probe is controlled by means of a controlled variable from the deviation between the mean value of the internal resistance and a current value of the internal resistance of the pump cell.
  • the mean value of the pump cell resistance at setpoint temperature is determined in order to take into account manufacturing tolerances of the pump cell.
  • the actual operation a fast control over the deviation of the internal resistance of the pump cell from the mean value can be realized.
  • Deviation from the taught-in or factory-set ratio of the internal resistances of Nernst and pump cell can be used for a probe and cable diagnosis by a ratio of the values of the internal resistance of the pump cell and the internal resistance of the Nernst cell formed and a diagnosis of the intended function of the broadband lambda probe and the associated supply lines is used. This allows compliance with extended criteria of OBD diagnostic conditions.
  • FIG. 1 shows a first resistance diagram with a time characteristic of a normalized one
  • Figure 2 is a second resistance diagram with the time course of the normalized
  • Figure 3 shows a pumping current diagram as a function of pump cell resistance and. a pumping current diagram as a function of the Nernst cell resistance.
  • FIG. 1 shows a first resistance diagram 10 with a time characteristic of a normalized pump cell resistor 12 and a normalized Nernst cell resistor 13.
  • the normalized pump cell resistor 12 and the normalized Nernst cell resistor 13 are the internal resistances of a pump cell and a Nernst cell of a broadband lambda. Probe in the exhaust passage of an internal combustion engine. Both are removed on a first resistance axis 1 1 along a first time axis 14 and standardized at the time "zero" to the value "1".
  • the temperature of the broadband lambda probe changes, so that the normalized pump cell resistance 12 and the normalized Nernst cell resistance 13 also change.
  • the internal resistance of the Nernst cell can be used as a measure of the temperature of the broadband lambda probe. It can be seen from the first resistance diagram 10 that both values of the internal resistances change in the same direction with the temperature, so that also the pump cell resistor 12 can be used as a measure of the temperature of the broadband lambda probe.
  • the internal resistances can be determined with an electronic circuit, as described in the Scriptures
  • the circuit is designed in the form of an ASIC of the type CJ135.
  • the circuit includes means for providing electrical currents for energizing the pumping cell and Nernst cell and means for determining the voltages of de-energized and energized pump and
  • the circuit includes means for controlling the heating power of the broadband lambda probe.
  • FIG. 2 shows a second resistance diagram 20 with a first resistance curve 23, which represents the time characteristic of the normalized internal resistance of the Nernst cell of the broadband lambda probe, and with a second resistance profile 24, which shows the time characteristic of the standardized internal resistance of the pump cell of the same Broadband lambda probe over a common second time axis 25 reproduces.
  • the first resistance profile 23 is removed along a second resistance axis 21
  • the second resistance profile 24 is removed along a third resistance axis 22, which has the same scale as the second resistance axis 21.
  • the second resistance profile 24, which represents the normalized internal resistance of the pumping cell has substantially lower fluctuations than the first resistance profile 23, which represents the normalized internal resistance of the Nernst cell.
  • the internal resistance of the pump cell appears as a controlled variable for a control suitable.
  • FIG. 3 shows, in a pumping current diagram 30, values of the electrical current through the pump cell of the broadband lambda probe and simultaneously measured values of the internal resistance of the Nernst cell and the pumping cell.
  • First pump current values 32 to which at the same time the internal resistance of the Nernst cell has been determined in each case, are applied along a first pumping current axis 31 and along a fourth resistance axis 34.
  • the fourth resistance axis 34 denotes the respective resistance of the Nernst cell.
  • Second pump current values 36 to which the internal resistance of the pump cell was determined at the same time, are plotted along a second pump current axis 35 and along a fifth resistance axis 38.
  • the regression thus determined thus shows that the pump current correlates better with the internal resistance of the pump cell than with the internal resistance of the Nernst cell. Therefore, it is advantageous to use the internal resistance of the pumping cell for the control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

The invention relates to a device for operating a broadband lambda probe in the exhaust gas duct of an internal combustion engine and for detecting information about the operating state of the broadband lambda probe, wherein said broadband lambda probe has a cavity connected via a diffusion barrier to the exhaust gas duct, a Nernst cell connected to the cavity and a pump cell connected to the cavity, as well as an electrical heating device. In the operating device, the invention provides an electronic circuit for determining the internal resistance of the pump cell and for controlling the heating device on the basis of the internal resistance of the pump cell. The invention further relates to a corresponding method. The method and device enable improved regulation of the temperature of the broadband lambda probe and more precise maintenance of threshold values for the exhaust gas composition. A determination of the temperature by means of the internal resistance of the pump cell is especially advantageous, because the pump cell is arranged particularly closely to the diffusion barrier, and the temperature of the barrier, alongside that of the pump cell itself, must be known and specified for high precision when determining the composition of the gas mixture in the exhaust gas duct. The measuring current through the pump cell can be higher than the measuring current through the Nernst cell because the measuring current of the Nernst cell must be kept as low as possible in order to prevent polarization of the Nernst cell. Due to its higher absolute value, the measuring current through the pump cell is less susceptible to interference influences.

Description

Beschreibung  description
Titel title
Vorrichtung und Verfahren zur Regelung der Temperatur eines Abgassensors Device and method for controlling the temperature of an exhaust gas sensor
Die Erfindung betrifft eine Vorrichtung zum Betrieb einer Breitband-Lambdasonde im Abgaskanal einer Brennkraftmaschine und zur Erfassung von Informationen über den Betriebszustand der Breitband-Lambdasonde, wobei die Breitband-Lambdasonde einen über eine Diffusionsbarriere mit dem Abgaskanal verbundenen Hohlraum, eine mit diesem verbundene Nernstzelle und eine mit dem Hohlraum verbundene Pumpzelle sowie eine elektrische Heizeinrichtung aufweist. The invention relates to a device for operating a broadband lambda probe in the exhaust passage of an internal combustion engine and for acquiring information about the operating state of the broadband lambda probe, wherein the broadband lambda probe connected via a diffusion barrier to the exhaust passage cavity, a connected thereto Nernstzelle and a Having associated with the cavity pumping cell and an electric heater.
Die Erfindung betrifft weiterhin ein Verfahren zum Betrieb einer Breitband-Lambdasonde mit einer Pumpzelle, einer Nernstzelle und einer zugeordneten Heizeinrichtung im Abgaskanal einer Brennkraftmaschine und zur Regelung der Temperatur der Breitband-Lambdasonde. The invention further relates to a method for operating a broadband lambda probe with a pumping cell, a Nernst cell and an associated heating device in the exhaust passage of an internal combustion engine and for controlling the temperature of the broadband lambda probe.
Stand der Technik State of the art
Gesetzliche Regelungen schreiben die Überwachung der Zusammensetzung des Abgases von Brennkraftmaschinen auf Einhaltung von Grenzwerten vor. Dazu werden im Abgas mittels geregelter Dreiwege-Katalysatoren unerwünschte Stoffe wie Stickoxide und Kohlenmonoxid in als unkritisch anzusehende Stoffe wie Wasserdampf, Kohlendi- oxid und Stickstoff umgewandelt. Diese Umwandlung setzt voraus, dass das der Brennkaftmaschine zugeführten Luft-Kraftstoff-Gemisch in einem bestimmten Legal regulations prescribe the monitoring of the composition of the exhaust gas of internal combustion engines for compliance with limit values. For this purpose, unwanted substances such as nitrogen oxides and carbon monoxide are converted in the exhaust gas by means of controlled three-way catalysts into substances which are considered to be uncritical, such as water vapor, carbon dioxide and nitrogen. This conversion requires that the air-fuel mixture supplied to the Brennkaftmaschine in a certain
Zusammensetzungsbereich um eine stöchiometrische Zusammensetzung liegt. Diese Zusammensetzung wird mit dem Parameter Lambda = 1 bezeichnet. Die Zusammensetzung des Luft-Kraftstoff-Gemischs wird mit im Abgaskanal der Brennkraftmaschine vorgesehenen Abgassensoren, beispielhaft in Form von Breitband-Lambdasonden, überwacht, die den Sauerstoff-Partialdruck bestimmen. Breitband-Lambdasonden be- stehen unter anderem aus einer Nernst-Zelle, die die Sauerstoff-Konzentration bestimmt, einer Pumpzelle, die die Sauerstoff-Konzentration einstellt, einem Hohlraum mit dem beiden Zellen verbunden sind und einer Diffusionsbarriere, durch die Abgas aus dem Abgaskanal in den Hohlraum diffundieren kann. Die korrekte Funktion der Abgassensoren hängt stark von deren elektronischer Beschaltung ab. Die Funktionsblöcke einer solchen Beschaltung sind beispielhaft in der Schrift DE 10 2006 061 565 A1 beschrieben. Composition range lies around a stoichiometric composition. This composition is designated by the parameter lambda = 1. The composition of the air-fuel mixture is monitored with provided in the exhaust passage of the internal combustion engine exhaust gas sensors, for example in the form of broadband lambda probes, which determine the oxygen partial pressure. Broadband lambda probes include, among others, a Nernst cell that determines the oxygen concentration, a pump cell that adjusts the oxygen concentration, a cavity connected to the two cells, and a diffusion barrier through which exhaust gas from the exhaust passage can diffuse into the cavity. The correct function of the exhaust gas sensors depends strongly on their electronic wiring. The functional blocks of such a circuit are described by way of example in document DE 10 2006 061 565 A1.
In der Schrift DE 10 2008 001697 A1 der Anmelderin wird eine verbesserte Beschal- tung beschrieben, die es erlaubt, zusätzlich zu dem Betrieb des Abgassensors Informationen über den Betriebszustand der dort als Abgassensor verwendeten Breitband- Lambdasonde zu erfassen, zu speichern und über eine Digitalschnittstelle an eine übergeordnete Motorsteuerung weiterzugeben. Diese Anordnung ermöglicht eine Diagnose der Kabelverbindungen zwischen der Beschaltung und der Breitband-Lambda- sonde auf Kurzschluß und Unterbrechung sowie auf Einhaltung der an den Anschlüssen zulässigen Spannungen. Die Betriebsbereitschaft der Abgassonde kann detektiert werden und deren Elektrodenpolarisation sowie die Alterung können kontinuierlich überwacht werden. Eine hohe Messgenauigkeit der Breitband-Lambdasonde ist nur erreichbar, wenn deren Temperatur in einem vorgegebenen Bereich geregelt wird. In dem geeigneten Temperaturbereich arbeitet die Breitband-Lambdasonde mit den geringsten Toleranzen. Weiterhin bestimmt die Temperatur der Diffusionsbarriere die Diffusionsgeschwindigkeit des Abgases aus dem Abgaskanal in den Hohlraum und damit auch den erfor- derlichen Pumpstrom, der bewirkt, dass aus dem Hohlraum Sauerstoff zurück in den Abgaskanal transportiert wird. Der Pumpstrom ist die Messgröße zur Bestimmung des Lambdawerts. Nach dem Stand der Technik wird zur Bestimmung der Temperatur der Anordnung als Messgröße der Innenwiderstand der Nernstzelle verwendet. Vorteilhaft wäre es, den Innenwiderstand der Pumpzelle zu benutzen, da diese näher an der Dif- fusionsbarriere angeordnet ist und daher deren Temperatur besser repräsentiert. In the applicant's document DE 10 2008 001697 A1, an improved wiring is described which makes it possible, in addition to the operation of the exhaust gas sensor, to record and store information about the operating state of the wideband lambda probe used there as an exhaust gas sensor, and via a digital interface to pass on a higher-level engine control. This arrangement allows a diagnosis of the cable connections between the wiring and the broadband lambda probe for short-circuiting and interruption as well as compliance with the voltages permitted at the terminals. The operational readiness of the exhaust gas probe can be detected and its electrode polarization and the aging can be continuously monitored. A high measurement accuracy of the broadband lambda probe can only be achieved if its temperature is controlled within a specified range. In the appropriate temperature range, the broadband lambda probe operates with the lowest tolerances. Furthermore, the temperature of the diffusion barrier determines the diffusion rate of the exhaust gas from the exhaust gas channel into the cavity and thus also the required pumping current, which causes oxygen to be transported back from the cavity into the exhaust gas channel. The pumping current is the measured variable for determining the lambda value. According to the prior art, the internal resistance of the Nernst cell is used as the measured variable to determine the temperature of the arrangement. It would be advantageous to use the internal resistance of the pumping cell, since it is arranged closer to the diffusion barrier and therefore better represents its temperature.
Es ist Aufgabe der vorliegenden Erfindung, eine Vorrichtung und ein Verfahren bereitzustellen, mit denen eine verbesserte Bestimmung und Regelung der Temperatur einer Breitband-Lambdasonde erreicht werden kann. Offenbarung der Erfindung It is an object of the present invention to provide an apparatus and a method with which an improved determination and regulation of the temperature of a broadband lambda probe can be achieved. Disclosure of the invention
Die die Vorrichtung betreffende Aufgabe der Erfindung wird dadurch gelöst, dass in der Vorrichtung ein elektronischer Schaltkreis zur Bestimmung des Innenwiderstands der Pumpzelle und zur Steuerung der Heizeinrichtung in Abhängigkeit von dem Innenwiderstand der Pumpzelle vorgesehen ist. Da die Pumpzelle besonders nahe an der Diffusionsbarriere angeordnet ist und deren Temperatur, neben der der Pumpzelle selber, für eine hohe Genauigkeit bei der Bestimmung der Zusammensetzung des Gasgemischs im Abgaskanal bekannt und vorgegeben sein muß, ist eine Temperaturbestim- mung mittels des Innenwiderstands der Pumpzelle besonders vorteilhaft. Der Messstrom durch Pumpzelle kann höher sein als der Messstrom durch die Nernstzelle, da dieser möglichst niedrig sein muß um eine Polarisation der Nernstzelle klein zu halten. Wegen seines höheren Absolutwerts ist der Messstrom durch die Pumpzelle weniger anfällig für Störeinflüsse. Der Innenwiderstand der Pumpzelle liegt bei Betriebstempe- ratur bei einer Breitband-Lambdasonde vom Typ LSU 4.9 des Herstellers Bosch bei 90 Ohm wogegen der Innenwiderstand der Nernstzelle bei 300 Ohm liegt. Die erfindungsgemäße Vorrichtung kann als Erweiterung eines ASIC, wie es in DE 102008001697 A1 beschrieben wird, verwirklicht werden. In dem beschriebenen ASIC sind Mittel zur Bereitstellung des elektrischen Stroms, der durch die Pumpzelle geleitet wird, und zur Be- Stimmung der Spannung an der Pumpzelle vorhanden. The object of the invention relating to the device is achieved by providing in the device an electronic circuit for determining the internal resistance of the pumping cell and for controlling the heating device as a function of the internal resistance of the pumping cell. Since the pump cell is arranged particularly close to the diffusion barrier and its temperature, in addition to the pump cell itself, for high accuracy in the determination of the composition of the gas mixture in the exhaust duct must be known and predetermined, a temperature determination by means of the internal resistance of the pump cell is particularly advantageous. The measuring current through the pumping cell can be higher than the measuring current through the Nernst cell, since this must be as low as possible in order to keep a polarization of the Nernst cell small. Because of its higher absolute value, the measuring current through the pump cell is less susceptible to interference. The internal resistance of the pump cell is 90 ohms at operating temperature for a broadband lambda probe type LSU 4.9 from Bosch, whereas the internal resistance of the Nernst cell is 300 ohms. The device according to the invention can be realized as an extension of an ASIC, as described in DE 102008001697 A1. In the described ASIC there are means for providing the electrical current passed through the pumping cell and for sensing the voltage at the pumping cell.
In einer bevorzugten Ausführungsform ist in der Vorrichtung ein elektronischer Schaltkreis zur Bestimmung des Innenwiderstands der Nernstzelle und zur Steuerung der Heizeinrichtung in Abhängigkeit vom Innenwiderstand der Nernstzelle vorgesehen. Der Innenwiderstand der Nernstzelle kann aus der Spannung an der Nernstzelle in einer unbestromten und in einer bestromten Messphase sowie dem bekannten Strom in der bestromten Messphase bestimmt werden. Der Innenwiderstand bei Betriebstemperatur wird bei der Breitband-Lambdasonde vom Typ LSU 4.9 des Herstellers Bosch auf einen Wert von ca. 300 Ohm eingeregelt. Durch eine Kombination der Bestimmung der Temperatur der Breitband-Lambdasonde über die Innenwiderstände von Pumpzelle und Nernstzelle kann die Regelung der Temperatur verbessert werden. In a preferred embodiment, an electronic circuit for determining the internal resistance of the Nernst cell and for controlling the heating device as a function of the internal resistance of the Nernst cell is provided in the device. The internal resistance of the Nernst cell can be determined from the voltage at the Nernst cell in a de-energized and energized measuring phase as well as the known current in the energized measuring phase. The internal resistance at operating temperature is adjusted to a value of approx. 300 ohms with the LSU 4.9 broadband lambda probe from Bosch. By combining the determination of the temperature of the broadband lambda probe via the internal resistances of pump cell and Nernst cell, the regulation of the temperature can be improved.
Die das Verfahren betreffende Aufgabe der Erfindung wird gelöst, indem der Innenwiderstand der Pumpzelle bestimmt wird und indem der Innenwiderstand als Regelgröße für die Regelung der Temperatur der Breitband-Lambdasonde verwendet wird. Der Innenwiderstand der Pumpzelle weist geringere Störungen und Schwankungen auf als der Innenwiderstand der Nernstzelle der Breitband-Lambdasonde. Da beide Innenwiderstände gleichermaßen von der Temperatur der Breitband-Lambdasonde abhängen, ist der Innenwiderstand der Pumpzelle somit die bessere Ausgangsgröße für eine Regelung. The object of the invention relating to the method is solved by determining the internal resistance of the pumping cell and by using the internal resistance as a controlled variable for regulating the temperature of the broadband lambda probe. The internal resistance of the pump cell has lower disturbances and fluctuations than the internal resistance of the Nernst cell of the broadband lambda probe. Since both internal resistances depend equally on the temperature of the broadband lambda probe, the internal resistance of the pump cell is thus the better output variable for a control.
Eine besonders geeignete Ausführungsform sieht vor, dass zur Bestimmung des Innenwiderstands der Pumpzelle eine Spannung an der Pumpzelle in einer A particularly suitable embodiment provides that for determining the internal resistance of the pumping cell, a voltage at the pumping cell in a
unbestromten Messphase und in einer bestromten Messphase bestimmt wird. Aus der Differenz dieser Spannungen und dem Strom in der bestromten Messphase kann der Innenwiderstand bestimmt werden. de-energized measuring phase and in an energized measuring phase is determined. From the difference of these voltages and the current in the energized measurement phase, the internal resistance can be determined.
Wird der Innenwiderstand der Nernstzelle bestimmt, wird der Innenwiderstand der Nernstzelle als Steuergröße für eine Vorsteuerung der Temperatur der Breitband- Lambdasonde verwendet und wird der Innenwiderstand der Pumpzelle als Regelgröße für die Regelung der Temperatur der Breitband-Lambdasonde verwendet, kann einerseits die geringere Fertigungstoleranz des Innenwiderstands der Nernstzelle und andererseits die geringere Störanfälligkeit bei der Bestimmung des Innenwiderstands der Pumpzelle ausgenutzt werden. Hierdurch kann durch die Regelung einerseits die Soll- Temperatur präzise angefahren werden und andererseits die Regelung an der Soll- Temperatur sehr schnell reagieren. Durch die kombinierte Verwendung der Innenwiderstände von Nernstzelle und Pumpzelle verbessern sich Genauigkeit und Geschwindigkeit bei der Bestimmung der Zusammensetzung des Gasgemischs im Abgaskanal. Hierdurch können Abgasvorschriften mit verminderten Grenzwerten eingehalten werden. If the internal resistance of the Nernst cell is determined, the internal resistance of the Nernst cell is used as the control variable for a pilot control of the temperature of the broadband lambda probe, and if the internal resistance of the pump cell is used as a controlled variable for the regulation of the temperature of the broadband lambda probe, on the one hand the lower manufacturing tolerance of the internal resistance the Nernst cell and on the other hand, the lower susceptibility to failure in the determination of the internal resistance of the pump cell to be exploited. As a result, by means of the control, on the one hand, the target temperature can be approached precisely and, on the other hand, the control can react very quickly at the desired temperature. The combined use of Nernst cell internal resistance and pumping cell improves the accuracy and speed of determining the composition of the gas mixture in the exhaust duct. As a result, exhaust gas regulations with reduced limits can be met.
Eine besonders geeignete Ausführungsform sieht vor, dass in einem ersten Verfahrensschritt ein Mittelwert des Innenwiderstands der Pumpzelle bei einer vorgegebenen Soll-Temperatur bestimmt wird, wobei das Erreichen der Soll-Temperatur aus dem Innenwiderstand der Nernstzelle bestimmt wird und dass in einem zweiten Verfahrens- schritt die Temperatur der Breitband-Lambdasonde mittels einer Regelgröße aus der Abweichung zwischen dem Mittelwert des Innenwiderstands und einem aktuellen Wert des Innenwiderstands der Pumpzelle geregelt wird. In erster Messphase wird der Mittelwert des Pumpzellenwiderstands bei Solltemperatur bestimmt um Fertigungstoleranzen der Pumpzelle zu berücksichtigen. In der zweiten Messphase, dem eigentlichen Betrieb, kann eine schnelle Regelung über die Abweichung des Innenwiderstands der Pumpzelle vom Mittelwert verwirklicht werden. Eine erweiterte Ausführung des Verfahrens sieht vor, dass der Wert des Innenwiderstands der Pumpzelle zu einer Diagnose der bestimmungsgemäßen Funktion der Breitband-Lambdasonde und der zugehörigen Zuleitungen verwendet wird. Abwei- chung vom werksseitig festgelegten Innenwiderstand der Pumpzelle bei der vorgesehenen Betriebstemperatur können zu einer Diagnose der Funktion der Breitband- Lambdasonde und der zu ihrem Anschluß verwendeten Zuleitungen verwendet werden. Das Verfahren ermöglicht die Umsetzung erweiterter Kriterien der On-Board- Diagnose-Bedingungen (OBD). A particularly suitable embodiment provides that in a first method step, an average value of the internal resistance of the pump cell is determined at a predetermined target temperature, wherein the achievement of the target temperature from the internal resistance of the Nernst cell is determined and that in a second process step Temperature of the broadband lambda probe is controlled by means of a controlled variable from the deviation between the mean value of the internal resistance and a current value of the internal resistance of the pump cell. In the first measurement phase, the mean value of the pump cell resistance at setpoint temperature is determined in order to take into account manufacturing tolerances of the pump cell. In the second measurement phase, the actual operation, a fast control over the deviation of the internal resistance of the pump cell from the mean value can be realized. An expanded embodiment of the method provides that the value of the internal resistance of the pump cell is used to diagnose the intended function of the broadband lambda probe and the associated supply lines. Deviation from the factory-set internal resistance of the pump cell at the intended operating temperature can be used to diagnose the function of the broadband lambda probe and the feed lines used for its connection. The method enables the implementation of advanced on-board diagnostic criteria (OBD) criteria.
Abweichung vom eingelernten oder werksseitig vorgegebenen Verhältnis der Innenwiderstände von Nernst- und Pumpzelle können zu einer Sonden- und Kabeldiagnose verwendet werden, indem ein Verhältnis der Werte des Innenwiderstands der Pumpzelle und des Innenwiderstands der Nernstzelle gebildet und zu einer Diagnose der bestimmungsgemäßen Funktion der Breitband-Lambdasonde und der zugehörigen Zuleitungen verwendet wird. Dies ermöglicht die Einhaltung erweiterter Kriterien der OBD- Diagnose-Bedingungen. Deviation from the taught-in or factory-set ratio of the internal resistances of Nernst and pump cell can be used for a probe and cable diagnosis by a ratio of the values of the internal resistance of the pump cell and the internal resistance of the Nernst cell formed and a diagnosis of the intended function of the broadband lambda probe and the associated supply lines is used. This allows compliance with extended criteria of OBD diagnostic conditions.
Kurze Beschreibung der Zeichnungen Brief description of the drawings
Die Erfindung wird im Folgenden anhand eines in den Figuren dargestellten Ausführungsbeispiels näher erläutert. Es zeigen: Figur 1 ein erstes Widerstandsdiagramm mit einem Zeitverlauf eines normierten The invention will be explained in more detail below with reference to an embodiment shown in FIGS. FIG. 1 shows a first resistance diagram with a time characteristic of a normalized one
Pumpzellenwiderstands und eines normierten Nernstzellenwiderstands, Figur 2 ein zweites Widerstandsdiagramm mit dem Zeitverlauf des normierten  Pump cell resistance and a normalized Nernst cell resistance, Figure 2 is a second resistance diagram with the time course of the normalized
Pumpzellenwiderstands und des normierten Nernstzellenwiderstands, Figur 3 ein Pumpstromdiagramm in Abhängigkeit vom Pumpzellenwiderstand und . ein Pumpstromdiagramm in Abhängigkeit vom Nernstzellenwiderstand.  Pump cell resistance and the normalized Nernst cell resistance, Figure 3 shows a pumping current diagram as a function of pump cell resistance and. a pumping current diagram as a function of the Nernst cell resistance.
Figur 1 zeigt ein erstes Widerstandsdiagramm 10 mit einem Zeitverlauf eines normierten Pumpzellenwiderstands 12 und eines normierten Nernstzellenwiderstands 13. Der normierte Pumpzellenwiderstand 12 und der normierte Nernstzellenwiderstand 13 sind die Innenwiderstände einer Pumpzelle und einer Nernstzelle einer Breitband-Lambda- sonde im Abgaskanal einer Brennkraftmaschine. Beide sind auf einer ersten Widerstandsachse 1 1 entlang einer ersten Zeitachse 14 abgetragen und zum Zeitpunkt„Null" auf den Wert„1 " normiert. Während des dargestellten Zeitverlaufs ändert sich die Temperatur der Breitband-Lambdasonde, so dass sich auch der normierte Pumpzel- lenwiderstand 12 und der normierte Nernstzellenwiderstand 13 ändern. Es ist bekannt, dass der Innenwiderstand der Nernstzelle als Maß für die Temperatur der Breitband- Lambdasonde verwenden lässt. Dem ersten Widerstandsdiagramm 10 ist zu entnehmen, dass sich beide Werte der Innenwiderstände mit der Temperatur gleichsinnig ändern, so dass auch der Pumpzellenwiderstand 12 als Maß für die Temperatur der Breitband-Lambdasonde verwendet werden kann. Die Innenwiderstände können mit einer elektronischen Schaltung bestimmt werden, wie sie in der Schrift FIG. 1 shows a first resistance diagram 10 with a time characteristic of a normalized pump cell resistor 12 and a normalized Nernst cell resistor 13. The normalized pump cell resistor 12 and the normalized Nernst cell resistor 13 are the internal resistances of a pump cell and a Nernst cell of a broadband lambda. Probe in the exhaust passage of an internal combustion engine. Both are removed on a first resistance axis 1 1 along a first time axis 14 and standardized at the time "zero" to the value "1". During the illustrated time profile, the temperature of the broadband lambda probe changes, so that the normalized pump cell resistance 12 and the normalized Nernst cell resistance 13 also change. It is known that the internal resistance of the Nernst cell can be used as a measure of the temperature of the broadband lambda probe. It can be seen from the first resistance diagram 10 that both values of the internal resistances change in the same direction with the temperature, so that also the pump cell resistor 12 can be used as a measure of the temperature of the broadband lambda probe. The internal resistances can be determined with an electronic circuit, as described in the Scriptures
DE1020081697A1 der Anmelderin beschrieben ist. Dabei ist die Schaltung in Form eines ASIC des Typs CJ135 ausgeführt. Die Schaltung enthält Mittel zur Bereitstellung von elektrischen Strömen zur Bestromung von Pumpzelle und Nernstzelle sowie Mittel zur Bestimmung der Spannungen an unbestromten und an bestromten Pump- undDE1020081697A1 the applicant is described. The circuit is designed in the form of an ASIC of the type CJ135. The circuit includes means for providing electrical currents for energizing the pumping cell and Nernst cell and means for determining the voltages of de-energized and energized pump and
Nernstzellen. Weiterhin enthält die Schaltung Mittel zur Regelung der Heizleistung der Breitband-Lambdasonde. Nernst. Furthermore, the circuit includes means for controlling the heating power of the broadband lambda probe.
Figur 2 zeigt ein zweites Widerstandsdiagramm 20 mit einem ersten Wid erstand sver- lauf 23, der den zeitlichen Verlauf des normierten Innenwiderstands der Nernstzelle der Breitband-Lambdasonde wiedergibt, und mit einem zweiten Widerstandsverlauf 24, der den zeitlichen Verlauf des normierten Innenwiderstands der Pumpzelle der selben Breitband-Lambdasonde über einer gemeinsamen zweiten Zeitachse 25 wiedergibt. Der erste Widerstandsverlauf 23 ist entlang einer zweiten Widerstandsachse 21 abge- tragen, der zweite Widerstandsverlauf 24 ist entlang einer dritten Widerstandsachse 22 abgetragen, die die gleiche Skalierung wie die zweite Widerstandsachse 21 aufweist. Dem zweiten Widerstandsdiagramm 20 ist entnehmbar, dass der zweite Widerstandsverlauf 24, der den normierten Innenwiderstand der Pumpzelle repräsentiert, wesentlich geringere Schwankungen aufweist als der erste Widerstandsverlauf 23, der den normierten Innenwiderstand der Nernstzelle repräsentiert. Somit erscheint der Innenwiderstand der Pumpzelle als Regelgröße für eine Regelung geeigneter. FIG. 2 shows a second resistance diagram 20 with a first resistance curve 23, which represents the time characteristic of the normalized internal resistance of the Nernst cell of the broadband lambda probe, and with a second resistance profile 24, which shows the time characteristic of the standardized internal resistance of the pump cell of the same Broadband lambda probe over a common second time axis 25 reproduces. The first resistance profile 23 is removed along a second resistance axis 21, the second resistance profile 24 is removed along a third resistance axis 22, which has the same scale as the second resistance axis 21. It can be seen from the second resistance diagram 20 that the second resistance profile 24, which represents the normalized internal resistance of the pumping cell, has substantially lower fluctuations than the first resistance profile 23, which represents the normalized internal resistance of the Nernst cell. Thus, the internal resistance of the pump cell appears as a controlled variable for a control suitable.
Figur 3 zeigt in einem Pumpstromdiagramm 30 Werte des elektrischen Stroms durch die Pumpzelle der Breitband-Lambdasonde und gleichzeitig gemessene Werte des In- nenwiderstands von Nernstzelle und Pumpzelle. Erste Pumpstromwerte 32, zu denen gleichzeitig jeweils der Innenwiderstand der Nernstzelle bestimmt wurde, sind entlang einer ersten Pumpstromachse 31 und entlang einer vierten Widerstandsachse 34 aufgetragen. Die vierte Widerstandsachse 34 bezeichnet den jeweiligen Widerstand der Nernstzelle. Zweite Pumpstromwerte 36, zu denen gleichzeitig jeweils der Innenwiderstand der Pumpzelle bestimmt wurde, sind entlang einer zweiten Pumpstromachse 35 und entlang einer fünften Widerstandsachse 38 aufgetragen. Zum Zusammenhang der ersten Pumpstromwerte 32 mit den zugehörigen Widerstandswerten wurde eine erste Regressionsgerade 33 mit y = -2 * 10"6 * x + 0,0041 bestimmt und in das Diagramm eingetragen. Die erste Regressionsgerade 33 weist einen Regressionskoeffizienten R2 = 0,2232 auf. Zum Zusammenhang der zweiten Pumpstromwerte 36 mit den zugehörigen Widerstandswerten wurde eine zweite Regressionsgerade 37 mit y = -5 * 10"6 * x + 0,0041 bestimmt, die einen Regressionskoeffizienten R2 = 0,2984 aufweist. Die so bestimmte Regression zeigt somit, dass der Pumpstrom besser mit dem Innenwiderstand der Pumpzelle als mit dem Innenwiderstand der Nernstzelle korreliert. Daher ist es vorteilhaft, den Innenwiderstand der Pumpzelle für die Regelung zu verwenden. FIG. 3 shows, in a pumping current diagram 30, values of the electrical current through the pump cell of the broadband lambda probe and simultaneously measured values of the internal resistance of the Nernst cell and the pumping cell. First pump current values 32, to which at the same time the internal resistance of the Nernst cell has been determined in each case, are applied along a first pumping current axis 31 and along a fourth resistance axis 34. The fourth resistance axis 34 denotes the respective resistance of the Nernst cell. Second pump current values 36, to which the internal resistance of the pump cell was determined at the same time, are plotted along a second pump current axis 35 and along a fifth resistance axis 38. For the relationship of the first pump current values 32 with the associated resistance values, a first regression line 33 with y = -2 * 10 -6 * x + 0.0041 was determined and plotted in the diagram The first regression line 33 has a regression coefficient R 2 = 0.2232 For the relationship of the second pump current values 36 with the associated resistance values, a second regression line 37 with y = -5 * 10 -6 * x + 0.0041 was determined, which has a regression coefficient R 2 = 0.2984. The regression thus determined thus shows that the pump current correlates better with the internal resistance of the pump cell than with the internal resistance of the Nernst cell. Therefore, it is advantageous to use the internal resistance of the pumping cell for the control.

Claims

Ansprüche claims
1 . Vorrichtung zum Betrieb einer Breitband-Lambdasonde im Abgaskanal einer Brennkraftmaschine und zur Erfassung von Informationen über den Betriebszustand der Breitband-Lambdasonde, wobei die Breitband-Lambdasonde einen über eine Dif- fusionsbarriere mit dem Abgaskanal verbundenen Hohlraum, eine mit diesem verbundene Nernstzelle und eine mit dem Hohlraum verbundene Pumpzelle sowie eine elektrische Heizeinrichtung aufweist, dadurch gekennzeichnet, dass in der Vorrichtung ein elektronischer Schaltkreis zur Bestimmung des Innenwiderstands der Pumpzelle und zur Steuerung der Heizeinrichtung in Abhängigkeit von dem Innenwiderstand der Pumpzelle vorgesehen ist. 1 . Device for operating a broadband lambda probe in the exhaust passage of an internal combustion engine and for acquiring information about the operating state of the broadband lambda probe, wherein the broadband lambda probe via a diffusion barrier connected to the exhaust duct cavity, connected to this Nernstzelle and one with the Has cavity-connected pumping cell and an electric heater, characterized in that in the apparatus an electronic circuit for determining the internal resistance of the pumping cell and for controlling the heating device in dependence on the internal resistance of the pumping cell is provided.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass in der Vorrichtung ein elektronischer Schaltkreis zur Bestimmung des Innenwiderstands der Nernstzelle und zur Steuerung der Heizeinrichtung in Abhängigkeit vom Innenwiderstand der Nernstzelle vorgesehen ist. 2. Apparatus according to claim 1, characterized in that in the device, an electronic circuit for determining the internal resistance of the Nernst cell and for controlling the heating device in dependence on the internal resistance of the Nernst cell is provided.
3. Verfahren zum Betrieb einer Breitband-Lambdasonde mit einer Pumpzelle, einer Nernstzelle und einer zugeordneten Heizeinrichtung im Abgaskanal einer Brennkraftmaschine und zur Regelung der Temperatur der Breitband-Lambdasonde, dadurch ge- kennzeichnet, dass der Innenwiderstand der Pumpzelle bestimmt wird und dass der Innenwiderstand als Regelgröße für die Regelung der Temperatur der Breitband- Lambdasonde verwendet wird. 3. A method for operating a broadband lambda probe with a pumping cell, a Nernst cell and an associated heating device in the exhaust passage of an internal combustion engine and for controlling the temperature of the broadband lambda probe, characterized in that the internal resistance of the pumping cell is determined and that the internal resistance as Control variable is used for controlling the temperature of the broadband lambda probe.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass zur Bestimmung des Innenwiderstands der Pumpzelle eine Spannung an der Pumpzelle in einer 4. The method according to claim 3, characterized in that for determining the internal resistance of the pumping cell, a voltage at the pumping cell in a
unbestromten Messphase und in einer bestromten Messphase bestimmt wird. de-energized measuring phase and in an energized measuring phase is determined.
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Innenwiderstand der Nernstzelle bestimmt wird, dass der Innenwiderstand der Nernstzelle als Steuergröße für eine Vorsteuerung der Temperatur der Breitband-Lambdasonde und dass der Innenwiderstand der Pumpzelle als Regelgröße für die Regelung der Temperatur der Breitband-Lambdasonde verwendet wird. 5. The method according to claim 3 or 4, characterized in that the internal resistance of the Nernst cell is determined that the internal resistance of the Nernst cell as a control variable for a pilot control of the temperature of the broadband lambda probe and the internal resistance of the pump cell is used as a controlled variable for regulating the temperature of the broadband lambda probe.
6. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass in einem ersten Verfahrensschritt ein Mittelwert des Innenwiderstands der Pumpzelle bei einer vorgegebenen Soll-Temperatur bestimmt wird, wobei das Erreichen der Soll- Temperatur aus dem Innenwiderstand der Nernstzelle bestimmt wird und dass in einem zweiten Verfahrensschritt die Temperatur der Breitband-Lambdasonde mittels einer Regelgröße aus der Abweichung zwischen dem Mittelwert des Innenwiderstands und einem aktuellen Wert des Innenwiderstands der Pumpzelle geregelt wird. 6. The method according to any one of claims 3 to 5, characterized in that in a first method step, an average value of the internal resistance of the pump cell is determined at a predetermined target temperature, wherein the achievement of the target temperature from the internal resistance of the Nernst cell is determined and that in a second method step, the temperature of the broadband lambda probe is controlled by means of a control variable from the deviation between the mean value of the internal resistance and a current value of the internal resistance of the pump cell.
7. Verfahren nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass der Wert des Innenwiderstands der Pumpzelle zu einer Diagnose der bestimmungsgemäßen Funktion der Breitband-Lambdasonde und der zugehörigen Zuleitungen verwendet wird. 7. The method according to any one of claims 3 to 6, characterized in that the value of the internal resistance of the pumping cell is used to diagnose the intended function of the broadband lambda probe and the associated supply lines.
8. Verfahren nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass ein Verhältnis der Werte des Innenwiderstands der Pumpzelle und des Innenwiderstands der Nernstzelle gebildet und zu einer Diagnose der bestimmungsgemäßen Funktion der Breitband-Lambdasonde und der zugehörigen Zuleitungen verwendet wird. 8. The method according to any one of claims 3 to 7, characterized in that a ratio of the values of the internal resistance of the pumping cell and the internal resistance of the Nernst cell is formed and used to diagnose the intended function of the broadband lambda probe and the associated supply lines.
PCT/EP2013/052631 2012-03-26 2013-02-11 Device and method for controlling the temperature of an exhaust gas sensor WO2013143744A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012204808.1 2012-03-26
DE201210204808 DE102012204808A1 (en) 2012-03-26 2012-03-26 Device and method for controlling the temperature of an exhaust gas sensor

Publications (1)

Publication Number Publication Date
WO2013143744A1 true WO2013143744A1 (en) 2013-10-03

Family

ID=47681914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/052631 WO2013143744A1 (en) 2012-03-26 2013-02-11 Device and method for controlling the temperature of an exhaust gas sensor

Country Status (2)

Country Link
DE (1) DE102012204808A1 (en)
WO (1) WO2013143744A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006061565A1 (en) 2006-12-27 2008-07-03 Robert Bosch Gmbh Circuit arrangement for controlling air-fuel mixture of internal combustion engine, has measuring resistor detecting limiting current, and pump voltage adjusting unit adjusting pump voltage depending on supply voltage
DE102008001335A1 (en) * 2008-04-23 2009-10-29 Robert Bosch Gmbh Sensor element for determining physical characteristic of gas in measuring gas chamber, has two electrodes and solid electrolyte connecting electrodes, where electrodes have electrode feed lines
DE102008001697A1 (en) 2008-05-09 2009-11-12 Robert Bosch Gmbh Evaluation and control unit for a broadband lambda probe
DE102009029100A1 (en) * 2009-09-02 2011-03-03 Robert Bosch Gmbh Method for managing heated exhaust gas probe installed in exhaust gas zone of internal combustion engine of commercial vehicle, involves cutting pumping signals from time to time while operating internal combustion engine
DE102010040146A1 (en) * 2010-09-02 2012-03-08 Robert Bosch Gmbh Method and device for detecting at least one property of a gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006061565A1 (en) 2006-12-27 2008-07-03 Robert Bosch Gmbh Circuit arrangement for controlling air-fuel mixture of internal combustion engine, has measuring resistor detecting limiting current, and pump voltage adjusting unit adjusting pump voltage depending on supply voltage
DE102008001335A1 (en) * 2008-04-23 2009-10-29 Robert Bosch Gmbh Sensor element for determining physical characteristic of gas in measuring gas chamber, has two electrodes and solid electrolyte connecting electrodes, where electrodes have electrode feed lines
DE102008001697A1 (en) 2008-05-09 2009-11-12 Robert Bosch Gmbh Evaluation and control unit for a broadband lambda probe
DE102009029100A1 (en) * 2009-09-02 2011-03-03 Robert Bosch Gmbh Method for managing heated exhaust gas probe installed in exhaust gas zone of internal combustion engine of commercial vehicle, involves cutting pumping signals from time to time while operating internal combustion engine
DE102010040146A1 (en) * 2010-09-02 2012-03-08 Robert Bosch Gmbh Method and device for detecting at least one property of a gas

Also Published As

Publication number Publication date
DE102012204808A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
EP2449237A1 (en) Method and diagnostic device for diagnosing a heatable exhaust gas probe of an internal combustion engine
WO2009135862A1 (en) Evaluation and control unit for a broadband lambda probe
WO2011048002A1 (en) Device and method for diagnosing an exhaust gas sensor
EP2580584B1 (en) Method for identifying the type of a lambda probe
EP2208060B1 (en) Device for checking the operability of a sensor element
EP3596453B1 (en) Method for operating a sensor for detecting at least one property of a measured gas in a measurement gas chamber
DE102009050224B4 (en) Device and method for controlling an exhaust gas sensor
EP1105719A1 (en) Circuit for controlling a pump current of an exhaust probe in a motor vehicle
DE102018201266A1 (en) Method for determining an adjusted compensation factor of an amperometric sensor and amperometric sensor
EP1075657A1 (en) METHOD FOR DETERMINING NO x? CONCENTRATION
DE10138806C1 (en) Temperature determination method for automobile exhaust gas sensor uses measurement of internal resistance of electrochemical cell
DE102009001242A1 (en) Sensor element e.g. four-wire-sensor element, for solid electrolyte gas sensor i.e. broadband-lambda sensor, has electrodes that are not contacted from outer side, and controller or regulator for executing dynamic measuring principle
DE102019209456B3 (en) Method for signal-optimized operation of a NOx / NH3 exhaust gas sensor for an internal combustion engine
DE102013202260A1 (en) Method for monitoring steady lambda signal of multi-cellular exhaust-gas sensor, involves determining pump voltage and nernst voltage with respect to lambda value of exhaust gas from constant lambda signal
DE102011077353B4 (en) Compensation of a current-voltage characteristic of a single-cell lambda probe based on a measured DC resistance
DE102014226922A1 (en) Method for the diagnosis of connecting lines and evaluation device for carrying out the method
DE102010039188A1 (en) Method for detecting component e.g. oxygen in exhaust gas of combustion engine, involves applying voltage nearer to Nernst voltage to pump cell, to determine storage capacity value that affects value of current flowing via pump cell
DE102004018871B4 (en) Method and apparatus for operating an exhaust gas analysis sensor cell
DE102017209300A1 (en) Method for determining a state of at least one component of a sensor for detecting at least one property of a measurement gas in a measurement gas space
WO2013143744A1 (en) Device and method for controlling the temperature of an exhaust gas sensor
DE102020210925A1 (en) Procedure for line allocation of a short circuit of a broadband lambda sensor
EP2081020A2 (en) Method for operating a sensor element for determining the concentration of gas components
DE102008001223A1 (en) Heated jump probe with simplified electrical contact
WO1999057556A2 (en) Method for determining nox concentration
DE102009027133A1 (en) Method for operating probe for determining gas components in gas mixture, particularly exhaust gas component of exhaust gas in internal combustion engine, involves arranging two electrodes on sensor element in form of solid electrolyte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13703414

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13703414

Country of ref document: EP

Kind code of ref document: A1