WO2013143388A1 - 一种功率控制方法、功率控制系统以及相关设备 - Google Patents

一种功率控制方法、功率控制系统以及相关设备 Download PDF

Info

Publication number
WO2013143388A1
WO2013143388A1 PCT/CN2013/072425 CN2013072425W WO2013143388A1 WO 2013143388 A1 WO2013143388 A1 WO 2013143388A1 CN 2013072425 W CN2013072425 W CN 2013072425W WO 2013143388 A1 WO2013143388 A1 WO 2013143388A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
power
channel
dpdch
dpch
Prior art date
Application number
PCT/CN2013/072425
Other languages
English (en)
French (fr)
Inventor
蔡华
吕淑娟
林建优
曹念伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13769592.0A priority Critical patent/EP2816850B1/en
Publication of WO2013143388A1 publication Critical patent/WO2013143388A1/zh
Priority to US14/499,698 priority patent/US9420545B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/228TPC being performed according to specific parameters taking into account previous information or commands using past power values or information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/143Downlink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/267TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the information rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/287TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission when the channel is in stand-by
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels

Definitions

  • the present invention relates to power control techniques in mobile communication systems, and more particularly to a power control method, a power control system, and related equipment. Background technique
  • each HSDPA user needs to allocate a companion dedicated physical channel (Dedicated).
  • Dedicated The Physical Channel, hereinafter referred to as the DPCH channel, is used for inner loop power control and Signal Radio Bearer (hereinafter referred to as SRB).
  • the DPCH includes a Dedicated Physical Data Channel (hereinafter referred to as DPDCH) and a Dedicated Physical Control Channel (hereinafter referred to as DPCCH), which are multiplexed and delivered.
  • DPDCH Dedicated Physical Data Channel
  • DPCCH Dedicated Physical Control Channel
  • Figure 1 shows the frame format of the DPCH (from the 3GPP 25.211 protocol).
  • the DPCH contains other information fields in addition to the Transmit Power Control (TPC).
  • TPC Transmit Power Control
  • the base station controller When the DPCH channel is initially established, the base station controller sends the establishment signaling to the base station, and establishes the initial transmit power, the maximum downlink transmit power, and the minimum downlink transmit power of the DPDCH in the signaling, and also carries the output power of the DPCCH channel relative to the DPDCH. Offset value.
  • the base station uses the inner loop power control algorithm to adjust the transmit power on the DPDCH and limits its final output power between the maximum downlink transmit power and the minimum downlink transmit power. Although the power control algorithm can reduce the power consumption on the DPCH channel, the power consumption of the DPCH still accounts for a large portion of the total downlink power consumption.
  • the power consumption of each DPCH accounts for about 0.7% of the total downlink transmission power.
  • the number of online users is very large.
  • the power consumption of each user's DPCH is not high, all users integrate, and the DPCH consumes a large portion of downlink power resources. Assuming that there are 50 HSDPA users, it needs to consume about 35% of the downlink power, and the common channel needs to consume about 30% of the downlink power.
  • Adaptive Multi-Rate and Adaptive Multi-Rate Wideband (AMR) voice It also needs to consume about 20% of the downlink power, so the available power to the HSDPA data channel is very small, only about 10%. It can be seen that the power consumption of the DPCH channel of the HSDPA user is much larger than the available power of the HSDPA data channel.
  • aspects of the present invention provide a power control method, a power control system, and related devices, which can reduce DPCH downlink transmission power and improve other user experience.
  • An aspect of the present invention provides a power control method, including: monitoring a dedicated physical data channel (DPDCH) downlink data transmission condition; if the DPDCH channel downlink has no data transmission, determining to reduce a DPCH channel downlink transmission power; or, if The DPDCH channel has data transmission downlink, and determines to increase or maintain the downlink transmission power of the DPCH channel.
  • DPDCH dedicated physical data channel
  • a power control apparatus including: a monitoring unit, configured to monitor a DPDCH downlink data transmission situation; and a determining unit, configured to: when the monitoring unit detects that the DPDCH channel downlink has no data transmission, Determining to reduce the downlink transmit power of the DPCH, and determining to increase or maintain the downlink transmit power of the DPCH channel when the monitoring unit detects that there is data transmission on the downlink of the DPDCH channel.
  • a power control system including: a power control apparatus, configured to monitor a downlink data transmission condition of a DPDCH channel, and determine to reduce a downlink transmission power of a DPCH channel when there is no data transmission in the downlink of the DPDCH channel. And determining, when the data transmission is performed on the downlink of the DPDCH channel, increasing or maintaining a downlink transmit power of the DPCH channel; the base station, configured to adjust power configuration information according to the adjustment direction determined by the power control device, and according to the adjusted power configuration information Tune Downlink transmit power of the entire DPCH channel.
  • a power control system including: a power control apparatus, configured to monitor a downlink data transmission situation of a DPDCH channel, and no data transmission is performed on the downlink of the DPDCH channel, and determining to reduce a downlink transmission power of the DPCH channel,
  • the DPDCH channel has data transmission in the downlink, determines to increase or maintain the downlink transmission power of the DPCH channel, and adjusts the power configuration information.
  • the base station is configured to adjust the downlink transmission power of the DPCH channel according to the adjusted power configuration information in the power control apparatus.
  • the DPCH downlink transmission power can be effectively reduced, and other user feelings are improved.
  • FIG. 1 is a schematic diagram of a frame format of a DPCH in the prior art.
  • FIG. 2 is a flow chart showing an embodiment of a power control method of the present invention.
  • FIG. 3 is a flow chart showing an embodiment of another power control method of the present invention.
  • FIG. 4 is a schematic structural view of an embodiment of a power control device according to the present invention.
  • Fig. 5 is a block diagram showing the structure of another power control device of the present invention.
  • FIG. 6 is a schematic structural view of an embodiment of another power control device of the present invention.
  • FIG. 7 is a schematic structural view of an embodiment of a power control system of the present invention.
  • FIG. 8 is a schematic structural view of an embodiment of another power control system of the present invention. detailed description
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDM Frequency Division Multiple Addressing
  • OFDMA Orthogonal Frequency OFDMA (Orthogonal Frequency-Division Multiple Access) system
  • SC-FDMA single carrier FDMA
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • a base station can refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B), the invention is not limited.
  • the base station controller may be a base station controller (BSC) in GSM or CDMA, or may be a radio network controller (RNC) in WCDMA, which is not limited in the present invention.
  • BSC base station controller
  • RNC radio network controller
  • an embodiment of the power control method of the present invention may be implemented by a NodeB or an RNC.
  • the downlink data of the DPDCH includes any data that is sent by the downlink of the DPDCH.
  • the monitoring of the DPDCH downlink data transmission may be triggered by a timer periodically, an event trigger, or a combination of the two.
  • the triggering of the event may be triggered by the DPDCH downlink sending data, or may be triggered by the encoding timing, which is not limited in this embodiment of the present invention.
  • step 202 When it is detected that there is no data transmission in the downlink of the DPDCH channel, step 202 is performed; when data transmission is detected on the downlink of the DPDCH channel, step 205 is performed.
  • the DPCH channel includes a DPDCH channel and a DPCCH channel. Therefore, adjusting the DPCH downlink transmit power can be implemented by adjusting a DPDCH channel downlink transmit power and/or a DPCCH channel downlink transmit power.
  • the DPDCH channel downlink transmit power is configured and limited by the power configuration parameters sent by the RNC, including the DPDCH initial downlink transmit power value, the DPDCH maximum downlink transmit power value, and the DPDCH minimum downlink transmit power value.
  • the DPDCH maximum downlink transmit power value is the upper limit value of the DPDCH downlink actual transmit power; the DPDCH initial downlink transmit power value is the DPDCH channel downlink transmit power value when the channel is established or reconfigured; and the DPDCH minimum downlink transmit power value is the DPDCH downlink actual transmit value. The lower limit of power.
  • the downlink transmit power of the DPCCH channel is defined by a DPCCH power offset configuration parameter sent by the RNC, where the DPCCH power offset (hereinafter referred to as PO) is DPCCH.
  • the DPCCH power offset hereinafter referred to as PO
  • the RNC carries the DPDCH power configuration parameters (see Table 1) and the DPCCH power offset parameters (see Table 2) to the NodeB by establishing or reconfiguring the signaling.
  • the DPCCH power offset includes a power offset of a Transport Mode Combination Indicator (TFCI) domain, a Transmit Power Control (TPC) domain, and a Pilot domain.
  • TFCI Transport Mode Combination Indicator
  • TPC Transmit Power Control
  • reducing the downlink transmit power of the DPCH channel can be implemented by reducing at least one of the following power configuration information, including: DPDCH maximum downlink transmit power value, DPDCH initial downlink transmit power value, and DPCCH power offset value.
  • the power configuration information needs to be configured to be used by the NodeB to initialize and/or limit the DPCH downlink transmit power. Therefore, the modification of the power configuration information may be triggered by the RNC sending or re-allocating signaling or adding a message to trigger the NodeB modification. , can also be modified by the NodeB.
  • the power configuration information includes at least one of a DPDCH maximum downlink transmit power value, a DPDCH initial downlink transmit power value, and a DPCCH power offset value.
  • the adjusting power configuration information may use at least one of the following three manners.
  • Mode 1 Reduce the maximum downlink transmit power value of DPDCH.
  • the method of reducing the maximum downlink transmit power of the DPDCH may be performed by using two methods of Al and A2.
  • Method A The maximum downlink transmit power of the currently configured DPDCH is down-regulated based on the currently configured maximum downlink transmit power value of the DPDCH, and the adjustment value is the maximum downlink transmit power adjustment range of the DPDCH.
  • Method A2 Based on the downlink transmit power of the DPCH, the downlink transmit power of the DPCH is adjusted downward, and the adjustment value is the maximum downlink transmit power adjustment range of the DPDCH.
  • the downlink transmit power of the DPCH can be obtained by parsing the measurement report reported by the UE.
  • the maximum downlink transmit power adjustment range of the DPDCH may be configured by operating the maintenance station, or may be preset in the RNC or the NodeB.
  • the maximum downlink transmit power adjustment of DPDCH is P MAX .
  • FFSET eg, 30, unit O.ldb
  • P MAXCURRENT eg, -100, unit O.ldb
  • the downlink transmission power of the DPCH is ⁇ when there is data transmission on the downlink of the DPDCH channel. ⁇ (for example, -200 units of O.ldb, relative pilot configuration power), then, when there is no data transmission on the DPDCH channel downlink, the adjusted DPDCH maximum downlink transmit power value P MAX obtained by method A1 is:
  • Mode 2 Decrease the initial downlink transmit power value of the DPDCH.
  • the method of reducing the initial downlink transmit power of the DPDCH may be performed by using two methods, Bl and B2.
  • Method B1 Based on the currently configured DPDCH initial downlink transmit power value, the currently configured DPDCH initial downlink transmit power value is adjusted downward, and the adjustment value is the initial downlink transmit power adjustment range of the DPDCH.
  • Method B2 Based on the downlink transmit power value of the DPCH, the downlink transmit power value of the DPCH is lowered, and the adjustment value is an initial downlink transmit power adjustment range of the DPDCH.
  • the initial downlink transmit power adjustment range of the DPDCH may be configured through an operation and maintenance station, or may be preset in an RNC or a NodeB.
  • the initial downlink transmit power adjustment amplitude of the DPDCH is P INITOFFSET (for example, 30, unit O.ldb); the initial downlink transmit power value of the DPDCH in the current configuration parameter is P INITCURRENT (for example, -100, unit O.ldb).
  • the downlink transmission power of the DPCH is ⁇ when there is data transmission on the downlink of the DPDCH channel. ⁇ (eg, -200, unit O.ldb, relative pilot configuration power), then, when there is no data transmission in the DPDCH channel downlink, the adjusted DPDCH initial downlink transmit power value P INIT obtained by method B1 is:
  • the adjusted initial DPDCH downlink transmit power value P INIT obtained by method B2 is:
  • Mode 3 Reduce the DPCCH power offset.
  • the reducing the DPCCH power offset may be a power offset that reduces any one of the TFCI domain, the TPC domain, or the Pilot domain, or a combination of power offsets of the domains.
  • the reducing the DPCCH power offset refers to down-regulating the currently configured DPCCH power offset based on the currently configured DPCCH power offset, and the adjustment value is a DPCCH power offset adjustment range.
  • the DPCCH power offset adjustment range may be configured through an operation and maintenance station, or may be preset in an RNC or a NodeB.
  • the data transmission of the DPDCH downlink is monitored during the first monitoring period, and the maximum downlink transmit power value of the DPDCH when there is data transmission? , P MAX1 ; No data transmission is detected in the DPDCH downlink during the second monitoring period.
  • the temporary variable P MAX2 is ( P MAX1 -P MAXOFFSET ), and it is judged whether P MAX2 is smaller than the minimum downlink transmit power value of DPDCH, and if so, then? It remains unchanged and remains P MAX1 .
  • the maximum downlink transmit power value P MAX of the DPDCH is adjusted to P MAX2 ; no data transmission is detected in the DPCH downlink during the third monitoring period, and the temporary variable P MAX3 is ( P MAX2 -P MAXOFFSET ), determine if P MAX3 is less than the minimum downlink transmit power value of DPDCH, and if so, then? It remains unchanged and remains P MAX2 . If not, the maximum downlink transmit power value P MAX of the DPDCH is adjusted to P MAX3 .
  • the triggering base station reduces downlink downlink transmit power of the DPCH channel according to the adjusted power configuration information.
  • the RNC transmit power configuration message carries the adjusted power configuration information to the NodeB, so that the NodeB re-initializes and/or limits the downlink transmit power of the DPCH according to the received power configuration information, thereby achieving The purpose of reducing the downlink transmit power of the DPCH channel.
  • the power configuration message may be reconfiguration signaling or establishing signaling or adding a message.
  • the NodeB re-initializes and/or limits the downlink transmit power of the DPCH according to the adjusted power configuration information, thereby achieving the purpose of reducing the downlink transmit power of the DPCH channel.
  • the description of the downlink transmit power of the DPCH channel is the same as that in step 202.
  • the increasing downlink transmit power of the DPCH channel can be implemented by increasing at least one of the following power configuration information, including: DPDCH maximum downlink transmit power value, DPDCH initial downlink transmit Power value and DPCCH power offset value.
  • the power configuration information includes at least one of a DPDCH maximum downlink transmit power value, a DPDCH initial downlink transmit power value, and a DPCCH power offset.
  • the adjusting power configuration information includes increasing or maintaining power configuration information.
  • the adjusted power configuration information is consistent with the power configuration information when the last DPDCH downlink has data transmission.
  • the power configuration information remains unchanged.
  • the increasing power configuration information may be in at least one of the following three manners.
  • Mode 1 Increase the maximum downlink transmit power value of DPDCH.
  • Mode 2 Increase the initial downlink transmit power value of the DPDCH.
  • Method 3 Increase the DPCCH power offset.
  • the first monitoring period DPDCH has data transmission, and the maximum downlink transmission power value of the DPDCH when data is transmitted is PMAX1 (for example, -100, unit 0. ldb), second, third During the two consecutive monitoring periods, no data transmission is detected in the DPDCH downlink.
  • PMAX1 for example, -100, unit 0. ldb
  • the maximum downlink transmit power value of the DPDCH is triggered twice, and the adjusted maximum downlink transmit power value of the DPDCH is PMAX3 (for example, -160, unit 0) Ldb), if there is data transmission in the downlink of the DPDCH in the fourth monitoring period, the adjusted maximum downlink transmit power value PMAX4 of the DPDCH is restored to the power configuration information when the last data transmission is performed, that is, the DPDCH of the first monitoring period is the largest.
  • Transmit power value P MAX1 (eg, -100, unit 0.1db).
  • the maximum downlink transmit power value of the DPDCH in the second, third, and fourth monitoring periods remains unchanged, and all are P MAX1 .
  • the first monitoring period DPDCH has data transmission, and the initial downlink transmission power value of the DPDCH when data is transmitted is P INIT1 (for example, -100, unit O.ldb), second and third.
  • P INIT1 for example, -100, unit O.ldb
  • the initial downlink transmit power value of the DPDCH is triggered twice, and the adjusted initial DPDCH downlink transmit power value is P INIT3 (for example, -160, unit O .ldb)
  • the adjusted initial downlink transmit power value P of the DPDCH is just restored to the last previous one.
  • the power configuration information at the time of data transmission that is, the DPDCH initial transmission power value P INIT1 of the first monitoring period (for example, -100, unit: 0.1 db).
  • the initial downlink transmit power values of the DPDCH in the second, third, and fourth monitoring periods remain unchanged, and all are P INIT1 .
  • the triggering base station increases or maintains a downlink transmit power of the DPCH channel according to the power configuration information.
  • the DPCH channel downlink transmit power needs to be maintained, and the process returns to step 201; if not, the trigger base station increases the DPCH channel downlink transmit power according to the adjusted power configuration information.
  • the current power configuration information refers to power configuration information that is being used by the NodeB, and includes at least one of a DPDCH maximum downlink transmit power value, a DPDCH initial downlink transmit power value, and a DPCCH power offset.
  • the triggering base station increases the DPCH channel downlink transmit power according to the adjusted power configuration information, and the RNC transmit power configuration message carries the adjusted power configuration information to the NodeB, so that the NodeB is configured according to the NodeB.
  • the received adjusted power configuration information reinitializes and/or limits the downlink transmit power of the DPCH, thereby achieving the purpose of increasing the downlink transmit power of the DPCH channel.
  • the power configuration message may be reconfiguration signaling or establishing signaling or adding a message.
  • the triggering base station increases the downlink transmit power of the DPCH channel according to the adjusted power configuration information, that is, the NodeB re-initializes and/or limits the downlink transmit power of the DPCH according to the adjusted power configuration information. Therefore, the purpose of increasing the downlink transmission power of the DPCH channel is achieved.
  • FIG. 3 another embodiment of the power control method of the present invention can be described as follows.
  • the RNC monitors the downlink data transmission of the DPDCH.
  • step 201 The triggering mechanism of the DPDCH downlink data and the monitoring DPDCH downlink data transmission is consistent with the related description in step 201. If the RNC detects that there is no data transmission in the DPDCH channel downlink, step 302 is performed; if the RNC detects that there is data transmission on the DPDCH channel downlink, step 305 is performed.
  • the RNC determines to reduce the downlink transmit power of the DPCH channel.
  • the description of the downlink transmit power of the DPCH channel is the same as that in step 202.
  • the RNC sends a downlink transmit power message of the reduced DPCH channel to the NodeB.
  • the reduced downlink channel transmit power message of the DPCH channel may be a new message or may be carried by an existing message.
  • Adjust power configuration information and trigger the base station to reduce downlink transmit power of the DPCH channel according to the adjusted power configuration information.
  • the NodeB receives the reduced DPCH channel downlink transmit power message and adjusts power configuration information.
  • the specific implementation of the adjusted power configuration information is the same as that described in step 203.
  • the triggering base station reduces the downlink transmit power of the DPCH channel according to the adjusted power configuration information, which is consistent with the related description in step 204.
  • the NodeB re-initializes and/or limits the downlink transmit power of the DPCH according to the adjusted power configuration information, thereby achieving the purpose of reducing the downlink transmit power of the DPCH channel.
  • the RNC determines to increase or maintain the downlink transmit power of the DPCH channel.
  • the description of the downlink transmit power of the DPCH channel is the same as that in step 205.
  • the RNC sends a message to increase or maintain the DPCH channel downlink transmit power to the NodeB.
  • the message that the DPCH channel downlink transmit power is increased or maintained may be a new message or may be carried by an existing message.
  • Adjust power configuration information and trigger the base station to increase or maintain the downlink transmit power of the DPCH channel according to the adjusted power configuration information.
  • the adjustment power configuration information is specifically as follows.
  • the NodeB receives the increase or maintain DPCH channel downlink transmit power message, and adjusts the power configuration information according to the adjustment direction indicated by the increasing or maintaining the DPCH channel downlink transmit power message.
  • the specific implementation of the adjusted power configuration information is the same as the description in step 206.
  • the triggering base station increases or maintains the downlink transmission power of the DPCH channel according to the adjusted power configuration information, as follows.
  • the NodeB determines whether the adjusted power configuration information is consistent with the current power configuration information. If yes, no operation is performed; if not, the triggering base station increases the DPCH channel downlink transmission power according to the adjusted power configuration information.
  • the current power configuration information refers to power configuration information that is being used by the NodeB, and includes at least one of a DPDCH maximum downlink transmit power value, a DPDCH initial downlink transmit power value, and a DPCCH power offset.
  • the triggering base station increases the downlink transmit power of the DPCH channel according to the adjusted power configuration information, where the base station re-initializes and/or limits the downlink transmit power of the DPCH according to the adjusted power configuration information, thereby increasing the DPCH channel downlink.
  • the purpose of transmitting power is not limited to transmitting power.
  • FIG. 4 is a schematic structural diagram of a power control apparatus according to an embodiment of the present invention.
  • the power control apparatus may be a base station or a part thereof, or may be a base station controller or a part thereof, through software or hardware, for example, a circuit. achieve.
  • the power control device includes a monitoring unit 401 and a determining unit 402.
  • the monitoring unit 401 is configured to monitor downlink data transmission of the DPDCH.
  • the determining unit 402 is configured to: when the monitoring unit 401 detects that there is no data transmission in the DPDCH channel downlink, determine to reduce the DPCH downlink transmit power, when the monitoring unit 401 detects that the DPDCH channel has data transmission downlink, It is determined to increase or maintain the downlink transmit power of the DPCH channel.
  • the power control apparatus further includes: a first adjusting unit 403 and a second adjusting unit 404.
  • the first adjusting unit 403 is configured to adjust power configuration information when the determining unit 402 determines to reduce the DPCH downlink transmit power.
  • a second adjusting unit 404 configured to determine, under the determining unit 402, to increase or maintain the DPCH
  • the power configuration information is adjusted when the transmit power is transmitted.
  • the device when the power control device is a base station controller or a part thereof, the device further includes a sending unit 405.
  • the sending unit 405 is configured to send, to the base station, the adjusted power configuration information in the first adjusting unit 403 and the second adjusting unit 404.
  • a power control system in this embodiment includes a power control device 701 and a base station 702.
  • the power control device 701 is configured to monitor downlink data transmission of the DPDCH channel, and determine that the downlink transmission power of the DPCH channel is reduced when there is no data transmission in the downlink of the DPDCH channel, and determine to increase when data is sent in the downlink of the DPDCH channel. Or maintain the downlink transmit power of the DPCH channel.
  • the power control device 701 includes: a monitoring unit 7011 and a determining unit 7012.
  • the monitoring unit 7011 is configured to monitor downlink data transmission of the DPDCH channel.
  • a determining unit 7012 configured to perform no data transmission on the downlink of the DPDCH channel, and determine to decrease
  • the downlink transmission power of the DPCH channel is transmitted in the downlink of the DPDCH channel, and it is determined to increase or maintain the downlink transmission power of the DPCH channel.
  • the base station 702 is configured to adjust power configuration information according to the adjustment direction determined by the power control device, and adjust a downlink transmit power of the DPCH channel according to the adjusted power configuration information.
  • the adjusting direction refers to reducing downlink transmit power of the DPCH channel or increasing or maintaining downlink transmit power of the DPCH channel.
  • the base station 702 includes: a first adjusting unit 7021 and a second adjusting unit 7022.
  • the first adjusting unit 7021 is configured to adjust power configuration information when the determining unit 7012 determines to reduce the DPCH downlink transmission power.
  • the second adjusting unit 7022 is configured to adjust the power configuration information when the determining unit 7012 determines to increase the DPCH downlink transmission power.
  • FIG. 8 Another power control system in this embodiment, as shown in FIG. 8, includes: a power control device 801 And base station 802.
  • the power control device 801 is configured to monitor downlink data transmission of the DPDCH channel, and perform no data transmission on the downlink of the DPDCH channel, determine to reduce downlink transmit power of the DPCH channel, and send data on the downlink of the DPDCH channel to determine to increase or maintain the DPCH.
  • the channel transmits power downstream and adjusts power configuration information.
  • the power control device 801 includes: a monitoring unit 8011, a determining unit 8012, a first adjusting unit 8013, and a second adjusting unit 8014.
  • the monitoring unit 8011 is configured to monitor downlink data transmission of the DPDCH channel.
  • the determining unit 8012 is configured to perform no data transmission on the downlink of the DPDCH channel, determine to reduce downlink transmit power of the DPCH channel, and perform data transmission on the downlink of the DPDCH channel to determine to increase or maintain downlink transmit power of the DPCH channel.
  • the first adjusting unit 8013 is configured to adjust power configuration information when the determining unit determines to reduce the DPCH downlink transmit power.
  • the second adjusting unit 8014 is configured to adjust the power configuration information when the determining unit determines to increase the DPCH downlink transmit power.
  • the base station 802 is configured to adjust a downlink transmit power of the DPCH channel according to the adjusted power configuration information.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combined or can be integrated into Another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software function unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Abstract

本发明公开了一种功率控制方法、功率控制系统以及相关设备。该方法包括:监测专用物理数据信道(DPDCH)下行数据发送情况,如果所述DPDCH信道下行没有数据发送,确定减小DPCH信道下行发射功率;或,如果所述DPDCH信道下行有数据发送,确定增大或维持DPCH信道下行发射功率。本发明能够在保证系统性能的前提下,降低DPCH信道下行发射功率,提升其他用户感受。

Description

一种功率控制方法、 功率控制系统以及相关设备 本申请要求于 2012年 3月 29日提交中国专利局、 申请号为
201210088102.4、 发明名称为 "一种功率控制方法、 功率控制系统以及相关设 备" 的中国专利申请的优先权, 全部内容通过引用结合在本申请中。 技术领域
本发明涉及移动通信系统中的功率控制技术, 尤其涉及一种功率控制方 法、 功率控制系统以及相关设备。 背景技术
当分组交换 ( PS, Packet Switching )域的下行业务承载在高速下行分组 接入 ( high speed downlink packet access, 下文简称 HSDPA )上时, 对于每个 HSDPA用户,都需要分配一个伴随专用物理信道( Dedicated Physical Channel, 下文简称 DPCH信道,用于内环功率控制和信令无线承载( Signal Radio Bearer, 下文简称 SRB )。
DPCH包括专用物理数据信道 (Dedicated Physical Data Channel , 下文简 称 DPDCH)和专用物理控制信道 (Dedicated Physical Control Channel , 下文简 称 DPCCH), 这两个信道是复用在一起下发的。 图 1示出了 DPCH的帧格式(摘 自 3GPP 25.211协议), DPCH除了发射功率控制域( Transmit Power Control, 下文简称 TPC ) 夕卜, 还包含其它信息域。
在 DPCH信道初始建立时, 基站控制器会发送建立信令给基站, 建立信令 中携带 DPDCH的初始发射功率、 最大下行发射功率和最小下行发射功率, 同 时还携带了 DPCCH信道相对 DPDCH的输出功率偏置值。基站釆用内环功率控 制算法调整 DPDCH上的发射功率, 并限制其最终输出功率在最大下行发射功 率和最小下行发射功率之间。 虽然功率控制算法能够降低 DPCH信道上的功率 消耗, 但 DPCH的功率消耗仍占总下行功率消耗中很大一部分。 经过对现网数 据进行分析统计,发现每个 DPCH的消耗功率约占下行发射总功率的 0.7%。在 智能终端场景下,在线用户数量非常多,尽管每个用户的 DPCH消耗功率不高, 但所有用户综合起来, DPCH将消耗很大一部分下行功率资源。 假设存在 50 个 HSDPA用户,就需要消耗大约 35 %的下行功率,公共信道需要消耗大约 30 % 的下行功率, 自适应多速率编码 ( Adaptive Multi-Rate和 Adaptive Multi-Rate Wideband, 下文简称 AMR )语音还需要消耗掉大约 20 %的下行功率, 则给 HSDPA数据信道的可用功率就非常少了, 只有大约 10 %。 可见, HSDPA用户 的 DPCH信道消耗功率远远大于 HSDPA数据信道的可用功率。
因此,如何解决 DPCH信道的功率消耗问题,成为当前主要研发方向之一。 发明内容
本发明的多个方面提供了一种功率控制方法、 功率控制系统以及相关设 备, 能够降低 DPCH下行发射功率, 提高其他用户感受。
本发明的一个方面提供了一种功率控制方法, 包括: 监测专用物理数据 信道( DPDCH )下行数据发送情况;如果所述 DPDCH信道下行没有数据发送, 确定减小 DPCH信道下行发射功率; 或, 如果所述 DPDCH信道下行有数据发 送, 确定增大或维持 DPCH信道下行发射功率。
本发明的另一方面提供了一种功率控制装置, 包括: 监测单元, 用于监 测 DPDCH下行数据发送情况; 确定单元, 用于在所述监测单元监测到所述 DPDCH信道下行没有数据发送时, 确定减小 DPCH下行发射功率, 在所述监 测单元监测到所述 DPDCH信道下行有数据发送时, 确定增大或维持 DPCH信 道下行发射功率。
本发明的另一方面提供了一种功率控制系统, 包括: 功率控制装置, 用 于监测 DPDCH信道下行数据发送情况,并在所述 DPDCH信道下行没有数据发 送时, 确定减小 DPCH信道下行发射功率, 在所述 DPDCH信道下行有数据发 送时, 确定增大或维持 DPCH信道下行发射功率; 基站, 用于根据所述功率控 制装置确定的调整方向调整功率配置信息, 并根据调整后的功率配置信息调 整 DPCH信道下行发射功率。
本发明的另一方面提供了一种功率控制系统, 包括: 功率控制装置, 用 于监测 DPDCH信道下行数据发送情况, 在所述 DPDCH信道下行没有数据发 送, 确定减小 DPCH信道下行发射功率, 在所述 DPDCH信道下行有数据发送, 确定增大或维持 DPCH信道下行发射功率, 并调整功率配置信息; 基站, 用于 根据所述功率控制装置中调整后的功率配置信息调整 DPCH信道下行发射功 率。
基于上述技术方案, 可以有效降低 DPCH下行发射功率, 提高其他用户感
附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作简单地介绍, 显而易见地, 下面所描述的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术之一种 DPCH的帧格式示意图。
图 2是本发明一种功率控制方法的实施例流程示意图。
图 3是本发明另一种功率控制方法的实施例流程示意图。
图 4是本发明一种功率控制装置的实施例结构示意图。
图 5是本发明另一种功率控制装置的实施例结构示意图。
图 6是本发明另一种功率控制装置的实施例结构示意图。
图 7是本发明一种功率控制系统的实施例结构示意图。
图 8是本发明另一种功率控制系统的实施例结构示意图。 具体实施方式
以下描述中, 为了说明而不是为了限定, 提出了诸如特定系统结构、 接 口、 技术之类的具体细节, 以便透切理解本发明。 然而, 本领域的技术人员 应当清楚, 在没有这些具体细节的其它实施例中也可以实现本发明。 在其它 情况中, 省略对众所周知的装置、 电路以及方法的详细说明, 以免不必要的 细节妨碍本发明的描述。
本文中描述的技术可用于各种通信系统, 例如当前 2G, 3G通信系统和下 一代通信系统, 例如全球移动通信系统 (GSM, Global System for Mobile communications ), 码分多址 ( CDMA, Code Division Multiple Access ) 系统, 时分多址 (TDMA, Time Division Multiple Access ) 系统, 宽带码分多址 ( WCDMA, Wideband Code Division Multiple Access Wireless ), 频分多址 ( FDMA , Frequency Division Multiple Addressing ) 系统, 正交频分多址 ( OFDMA , Orthogonal Frequency-Division Multiple Access ) 系统, 单载波 FDMA ( SC-FDMA ) 系统, 通用分组无线业务( GPRS , General Packet Radio Service ) 系统, 长期演进(LTE, Long Term Evolution ) 系统, 以及其他此类 通信系统。
本文中结合基站和 /或基站控制器来描述各种方面。
基站 (例如, 接入点)可以是指接入网中在空中接口上通过一个或多个 扇区与无线终端通信的设备。 基站可用于将收到的空中帧与 IP分组进行相互 转换, 作为无线终端与接入网的其余部分之间的路由器, 其中接入网的其余 部分可包括网际协议(IP )网络。基站还可协调对空中接口的属性管理。例如, 基站可以是 GSM或 CDMA中的基站( BTS, Base Transceiver Station ), 也可 以是 WCDMA中的基站 (NodeB ), 还可以是 LTE中的演进型基站 (NodeB 或 eNB或 e-NodeB , evolutional Node B ) , 本发明并不限定。
基站控制器, 可以是 GSM或 CDMA中的基站控制器(BSC, base station controller ) , 也可以是 WCDMA中的无线网络控制器( RNC , Radio Network Controller ), 本发明并不限定。
另外, 本文中术语"系统,,和"网络"在本文中常被可互换使用。本文中术语 "和 /或", 仅仅是一种描述关联对象的关联关系, 表示可以存在三种关系, 例 如, A和 /或 B, 可以表示: 单独存在 A, 同时存在 A和 B, 单独存在 B这三 种情况。 另外, 本文中字符 "/" , 一般表示前后关联对象是一种 "或" 的关系。
为描述方便, 本文中结合 NodeB和 /或 RNC来描述各种方面。
请参阅图 2, 本发明功率控制方法的一个实施例, 可以由 NodeB或 RNC 实现。
201、 监测 DPDCH下行数据发送情况。
其中, 所述 DPDCH下行数据包括 DPDCH下行发送的任意数据。
在步骤 201中,所述监测 DPDCH下行数据发送情况,可以通过定时器周期 性触发,也可以是事件触发,还可以是两者结合。所述事件触发,可以是 DPDCH 下行发送数据触发, 也可以是编码时机触发, 本发明实施例对此不进行限制。
当监测到 DPDCH信道下行没有数据发送时, 执行步骤 202 ; 当监测到 DPDCH信道下行有数据发送时, 执行步骤 205。
202、 确定减小 DPCH信道下行发射功率。
其中, 所述 DPCH信道包括 DPDCH信道和 DPCCH信道, 因此,调整 DPCH 下行发射功率可以通过调整 DPDCH信道下行发射功率和 /或 DPCCH信道下行 发射功率来实现。
所述 DPDCH信道下行发射功率是由 RNC发送的功率配置参数配置和限 定的, 包括 DPDCH初始下行发射功率值、 DPDCH最大下行发射功率值和 DPDCH最小下行发射功率值。
其中, DPDCH最大下行发射功率值是 DPDCH下行实际发射功率的上限 值; DPDCH初始下行发射功率值是信道建立或重配时 DPDCH信道下行发射功 率值; DPDCH最小下行发射功率值是 DPDCH下行实际发射功率的下限值。
所述 DPCCH信道下行发射功率是由 RNC发送的 DPCCH功率偏置配置参 数限定的, 其中, DPCCH功率偏置 (Power Offset, 下文简称 PO )是 DPCCH
射功率越小, PO值越大, DPCCH下行发射功率越大。 在 DPCH信道初始建立或重配时, RNC通过建立或重配信令携带 DPDCH 功率配置参数 (见表 1)和 DPCCH 功率偏置参数(见表 2 ) 给 NodeB。 其中, DPCCH功率偏置包含传输模式组合指示 ( Transport Format Combination Indicator, 简称 TFCI )域、 功率控制 ( Transmit Power Control, 简称 TPC )域 和导频(Pilot )域的功率偏置。
表 1 DPDCH功率配置参数
Figure imgf000007_0001
综上所述, 减小 DPCH信道下行发射功率可以通过减小如下功率配置信 息中至少一种来实现, 包括: DPDCH最大下行发射功率值, DPDCH初始下 行发射功率值和 DPCCH功率偏置值。
由于所述功率配置信息需要配置给 NodeB, 用来初始化和 /或限制 DPCH 下行发射功率, 因此, 所述功率配置信息的修改除可以通过 RNC发送建立或 重配信令或新增消息触发 NodeB修改外 , 还可以由 NodeB触发修改。
203、 调整功率配置信息。
其中, 所述功率配置信息包括 DPDCH最大下行发射功率值, DPDCH初 始下行发射功率值和 DPCCH功率偏置值中至少一种。
所述调整功率配置信息可以釆用以下三种方式中的至少一种。
方式 1 : 减小 DPDCH最大下行发射功率值。
所述减小 DPDCH最大下行发射功率值, 可以釆用 Al、 A2两种方法。 方法 Al : 在当前配置的 DPDCH最大下行发射功率值的基础上, 下调所 述当前配置的 DPDCH最大下行发射功率,调整值为 DPDCH最大下行发射功 率调整幅度。
方法 A2: 在 DPCH下行发射功率的基础上, 下调 DPCH下行发射功率, 调整值为 DPDCH最大下行发射功率调整幅度。
其中, 所述 DPCH下行发射功率可以通过解析 UE上报的测量报告获得。 在方法 Al、 A2中, 所述 DPDCH最大下行发射功率调整幅度可以通过操作维 护台配置, 也可以预先设置在 RNC或 NodeB中。
对方法 Al、 A2举例说明如下。
DPDCH最大下行发射功率调整幅度为 PMAXFFSET (例如, 30, 单位 O.ldb ); 当前配置参数中的 DPDCH最大下行发射功率值为 PMAXCURRENT (例如, -100, 单 位 O.ldb )。 DPDCH信道下行有数据发送时 DPCH下行发射功率为 Ρ。υτ(例如, -200单位 O.ldb, 相对导频配置功率), 那么, 在 DPDCH信道下行没有数据 发送时, 釆用方法 A1获得的调整后的 DPDCH最大下行发射功率值 PMAX为:
PMAX― PMAXCURRENT― PMAXOFFSET 么式 ( 1 ) 例如, 根据公式 ( 1 )获得的 PMAX=- 100- 30=- 130。
釆用方法 A2获得的调整后的 DPDCH最大下行发射功率值 PMAX为:
PMAX - POUT― ^MAXOFFSET 么式 ( 2 ) 例如, 根据公式 ( 2 )获得的 PMAX=- 200- 30=- 230。
方式 2: 减小 DPDCH初始下行发射功率值。
所述减小 DPDCH初始下行发射功率值, 可以釆用 Bl、 B2两种方法。 方法 B1 : 在当前配置的 DPDCH初始下行发射功率值的基础上, 下调所 述当前配置的 DPDCH初始下行发射功率值,调整值为 DPDCH初始下行发射 功率调整幅度。
方法 B2: 在 DPCH下行发射功率值的基础上, 下调所述 DPCH下行发射 功率值, 调整值为 DPDCH初始下行发射功率调整幅度。 在方法 Bl、 B2中, 所述 DPDCH初始下行发射功率调整幅度可以通过操 作维护台配置, 也可以预先设置在 RNC或 NodeB中。
对方法 Bl、 B2举例说明如下。
DPDCH初始下行发射功率调整幅度为 P INITOFFSET (例如, 30, 单位 O.ldb ); 当前配置参数中的 DPDCH初始下行发射功率值为 P INITCURRENT (例如, -100, 单 位 O.ldb )。 DPDCH信道下行有数据发送时 DPCH下行发射功率为 Ρ。υτ (例如, -200, 单位 O.ldb, 相对导频配置功率), 那么, 在 DPDCH信道下行没有数 据发送时,釆用方法 B1获得的调整后的 DPDCH初始下行发射功率值 PINIT为:
PlNIT - ^INITCURRENT - ^INITOFFSET 么式 ( 3 ) 例如, 根据公式 ( 3 )获得的 PINIT=_100_30=_130。
釆用方法 B2获得的调整后的 DPDCH初始下行发射功率值 PINIT为:
PlNIT— P。 — ^INITOFFSET 么式 ( 4 ) 例如, 根据公式 ( 4 )获得的 PINIT=_200_30=_230。
方式 3: 减小 DPCCH功率偏置。
其中, 所述减小 DPCCH功率偏置可以是减小 TFCI域、 TPC域或 Pilot 域中任意一个的功率偏置, 也可以是这几个域的功率偏置的组合。
在方式 3中,所述减小 DPCCH功率偏置指的是在当前配置的 DPCCH功 率偏置基础上, 下调所述当前配置的 DPCCH功率偏置, 调整值为 DPCCH功 率偏置调整幅度。其中, 所述 DPCCH功率偏置调整幅度可以通过操作维护台 配置, 也可以预先设置在 RNC或 NodeB中。
需要指出, 当步骤 203中釆用了方式 1或 2中至少一种来调整功率配置 信息时,且在步骤 201中监测到连续监测周期内 DPDCH下行都没有数据发送 时, 可以持续减小 DPCH下行发射功率, 即连续监测周期内减小所述方式 1 和 /或 2中的功率配置信息,但必须满足调整后的功率配置信息不小于 DPDCH 最小下行发射功率值。以所述方式 1中的 A1方法举例说明如下,其中, P MAXOFFSET 为 DPDCH最大下行发射功率调整幅度。 例如, 在如下三个连续监测周期内, 4叚设第一监测周期内监测到 DPDCH 下行有数据发送, 在有数据发送时 DPDCH最大下行发射功率值?,为 PMAX1; 在第二监测周期监测到 DPDCH下行没有数据发送, 临时变量 PMAX2为( PMAX1-P MAXOFFSET ), 判断 P MAX2是否小于 DPDCH最小下行发射功率值, 若是, 则? 保 持不变, 仍为 PMAX1 , 若否, 则 DPDCH最大下行发射功率值 P MAX调整为 P MAX2; 在第三监测周期监测到 DPCH下行仍没有数据发送,临时变量 PMAX3为( PMAX2-P MAXOFFSET ), 判断 P MAX3是否小于 DPDCH最小下行发射功率值, 若是, 则? 保 持不变, 仍为 PMAX2, 若否, 则 DPDCH最大下行发射功率值 P MAX调整为 P MAX3
204、 触发基站根据调整后的功率配置信息减小 DPCH信道下行发射功 率。
若所述监测和调整由 RNC实现, 所述 RNC发送功率配置消息携带调整 后的功率配置信息给 NodeB, 以使得 NodeB根据接收的功率配置信息重新初 始化和 /或限制 DPCH的下行发射功率,从而达到减小 DPCH信道下行发射功 率的目的。 其中, 所述功率配置消息可以是重配信令或建立信令或新增消息。
若所述监测和调整由 NodeB实现,所述 NodeB根据调整后的功率配置信 息重新初始化和 /或限制 DPCH的下行发射功率,从而达到减小 DPCH信道下 行发射功率的目的。
205、 确定增大或维持 DPCH信道下行发射功率。
其中, 所述 DPCH信道下行发射功率的相关描述与步骤 202中相同。 根据步骤 202中 DPCH信道下行发射功率的相关描述, 所述增大 DPCH 信道下行发射功率可以通过增大如下功率配置信息中至少一种来实现, 包括: DPDCH最大下行发射功率值, DPDCH初始下行发射功率值和 DPCCH功率 偏置值。
206、 调整功率配置信息。
其中, 所述功率配置信息包括 DPDCH最大下行发射功率值、 DPDCH初 始下行发射功率值和 DPCCH功率偏置中至少一种。 所述调整功率配置信息包括增大或维持功率配置信息。
需要指出的是,调整后的功率配置信息与最近上一次 DPDCH下行有数据 发送时的功率配置信息一致。
若所述最近上一次是相邻上一次, 则功率配置信息维持不变。
所述增大功率配置信息可以釆用以下三种方式中的至少一种。
方式 1 : 增大 DPDCH最大下行发射功率值。
方式 2: 增大 DPDCH初始下行发射功率值。
方式 3: 增大 DPCCH功率偏置。
以方式 1为例, 说明 ¾口下。
在如下四个连续的监测周期内,第一监测周期 DPDCH有数据发送,且有 数据发送时 DPDCH最大下行发射功率值为 P MAX1 (例如, -100, 单位 0. ldb ), 第二、第三连续两个监测周期内都监测到 DPDCH下行没有数据发送,此时触 发了 2次 DPDCH最大下行发射功率值的下调,调整后的 DPDCH最大下行发 射功率值为 P MAX3 (例如, -160, 单位 0. ldb ), 若第四监测周期 DPDCH下行 有数据发送, 那么,调整后的 DPDCH最大下行发射功率值 P MAX4恢复到最近上 一次有数据发送时的功率配置信息,即第一监测周期的 DPDCH最大发射功率 值 P MAX1 , (例如,, -100, 单位 0.1db )。
如上述第二、 第三监测周期都有数据发送, 则第二、 三、 四监测周期的 DPDCH最大下行发射功率值维持不变, 均为 P MAX1
以方式 2为例, 说明 ¾口下。
在如下四个连续的监测周期内,第一监测周期 DPDCH有数据发送,且有 数据发送时 DPDCH初始下行发射功率值为 P INIT1 (例如, -100 , 单位 O.ldb ), 第二、第三连续两个监测周期内都监测到 DPDCH下行没有数据发送,此时触 发了 2次 DPDCH初始下行发射功率值的下调,调整后的 DPDCH初始下行发 射功率值为 P INIT3 (例如, -160, 单位 O.ldb ), 若第四监测周期 DPDCH下行有 数据发送, 那么,调整后的 DPDCH初始下行发射功率值 P剛恢复到最近上一 次有数据发送时的功率配置信息,即第一监测周期的 DPDCH初始发射功率值 P INIT1 , (例如,, -100, 单位 0.1db )。
如上述第二、 第三监测周期都有数据发送, 则第二、 三、 四监测周期的 DPDCH初始下行发射功率值维持不变, 均为 P INIT1
207、触发基站根据所述功率配置信息增大或维持 DPCH信道下行发射功 率。
判断调整后的功率配置信息是否与当前功率配置信息一致, 若是, 则需 要维持 DPCH信道下行发射功率, 返回步骤 201 ; 若否, 触发基站根据调整 后的功率配置信息增大 DPCH信道下行发射功率。
其中, 所述当前功率配置信息指的是 NodeB正在使用的功率配置信息, 包括 DPDCH最大下行发射功率值、 DPDCH初始下行发射功率值和 DPCCH 功率偏置中至少一种。
若所述监测和调整由 RNC实现, 所述触发基站根据调整后的功率配置信 息增大 DPCH信道下行发射功率指的是 RNC发送功率配置消息携带调整后的 功率配置信息给 NodeB, 以使得 NodeB根据接收的调整后的功率配置信息重 新初始化和 /或限制 DPCH的下行发射功率,从而达到增大 DPCH信道下行发 射功率的目的。 其中, 所述功率配置消息可以是重配信令或建立信令或新增 消息。
若所述监测和调整由 NodeB实现, 所述触发基站根据调整后的功率配置 信息增大 DPCH信道下行发射功率指的是 NodeB根据调整后的功率配置信息 重新初始化和 /或限制 DPCH的下行发射功率,从而达到增大 DPCH信道下行 发射功率的目的。
请参阅图 3 , 本发明功率控制方法另一个实施例可以如下叙述。
301、 RNC监测 DPDCH下行数据发送情况。
其中,所述 DPDCH下行数据及监测 DPDCH下行数据发送的触发机制与 步骤 201中相关描述一致。 如果 RNC监测到 DPDCH信道下行没有数据发送, 执行步骤 302; 如果 RNC监测到 DPDCH信道下行有数据发送, 执行步骤 305。
302、 RNC确定减小 DPCH信道下行发射功率。
其中, 所述 DPCH信道下行发射功率的相关描述与步骤 202中相同。
303、 RNC发送减小 DPCH信道下行发射功率消息给 NodeB。
所述减小 DPCH信道下行发射功率消息可以是新增消息也可以通过现有 消息携带下发。
304、调整功率配置信息,触发基站才艮据调整后的功率配置信息减小 DPCH 信道下行发射功率。
NodeB接收所述减小 DPCH信道下行发射功率消息,调整功率配置信息。 其中, 所述调整功率配置信息的具体实现与步骤 203 中有关描述相同, 所述 触发基站根据调整后的功率配置信息减小 DPCH信道下行发射功率与步骤 204中相关描述一致。
NodeB根据调整后的功率配置信息重新初始化和 /或限制 DPCH的下行发 射功率, 从而达到减小 DPCH信道下行发射功率的目的。
305、 RNC确定增大或维持 DPCH信道下行发射功率。
其中, 所述 DPCH信道下行发射功率的相关描述与步骤 205中相同。
306、 RNC发送增大或维持 DPCH信道下行发射功率消息给 NodeB。 所述增大或维持 DPCH信道下行发射功率消息可以是新增消息也可以通 过现有消息携带下发。
307、 调整功率配置信息, 触发基站 4艮据调整后的功率配置信息增大或维 持 DPCH信道下行发射功率。
例如, 所述调整功率配置信息具体如下所述。
NodeB接收所述增大或维持 DPCH信道下行发射功率消息, 并根据所述 增大或维持 DPCH信道下行发射功率消息所指示的调整方向对功率配置信息 进行调整。 其中, 所述调整功率配置信息的具体实现与步骤 206中有关描述相同。 例如, 所述触发基站根据调整后的功率配置信息增大或维持 DPCH信道 下行发射功率具体如下所述。
NodeB判断调整后的功率配置信息是否与当前功率配置信息一致, 若是, 不执行任何操作; 若否, 触发基站根据调整后的功率配置信息增大 DPCH信 道下行发射功率。
其中, 所述当前功率配置信息指的是 NodeB正在使用的功率配置信息, 包括 DPDCH最大下行发射功率值、 DPDCH初始下行发射功率值和 DPCCH 功率偏置中至少一种。
其中, 所述触发基站根据调整后的功率配置信息增大 DPCH信道下行发 射功率, 是指基站根据调整后的功率配置信息重新初始化和 /或限制 DPCH的 下行发射功率, 从而达到增大 DPCH信道下行发射功率的目的。
请参阅图 4, 为本发明一实施例的一种功率控制装置的结构示意图, 所述 功率控制装置可以是基站或其中一部分, 也可以是基站控制器或其中一部分, 通过软件或硬件, 例如电路实现。
在本实例中, 所述功率控制装置包括监测单元 401和确定单元 402。
监测单元 401 , 用于监测 DPDCH下行数据发送情况。
确定单元 402,用于在所述监测单元 401监测到所述 DPDCH信道下行没 有数据发送时, 确定减小 DPCH下行发射功率, 在所述监测单元 401监测到 所述 DPDCH信道下行有数据发送时, 确定增大或维持 DPCH信道下行发射 功率。
可选的是, 如图 5 所示, 所述功率控制装置还包括: 第一调整单元 403 和第二调整单元 404。
第一调整单元 403 , 用于在所述确定单元 402确定减小 DPCH下行发射 功率时调整功率配置信息。
第二调整单元 404, 用于在所述确定单元 402确定增大或维持 DPCH下 行发射功率时调整所述功率配置信息。
可选的是, 如图 6 所示, 当所述功率控制装置为基站控制器或其中一部 分时, 所述装置还包括发送单元 405。
所述发送单元 405 ,用于向基站发送所述第一调整单元 403和所述第二调 整单元 404中调整后的功率配置信息。
本实施例中的一个功率控制系统, 如图 7 所示, 包括功率控制装置 701 和基站 702。
功率控制装置 701 , 用于监测 DPDCH信道下行数据发送情况, 并在所述 DPDCH信道下行没有数据发送时,确定减小 DPCH信道下行发射功率,在所 述 DPDCH信道下行有数据发送时, 确定增大或维持 DPCH信道下行发射功 率。
其中, 所述功率控制装置 701包括: 监测单元 7011和确定单元 7012。 监测单元 7011 , 用于监测 DPDCH信道下行数据发送情况。
确定单元 7012, 用于在所述 DPDCH信道下行没有数据发送, 确定减小
DPCH信道下行发射功率,在所述 DPDCH信道下行有数据发送,确定增大或 维持 DPCH信道下行发射功率。
基站 702, 用于根据所述功率控制装置确定的调整方向调整功率配置信 息, 并根据调整后的功率配置信息调整 DPCH信道下行发射功率。
其中, 所述调整方向指的是减小 DPCH信道下行发射功率或者增大或维 持 DPCH信道下行发射功率。
其中, 所述基站 702包括: 第一调整单元 7021和第二调整单元 7022。 第一调整单元 7021 , 用于在所述确定单元 7012确定减小 DPCH下行发 射功率时调整功率配置信息。
第二调整单元 7022, 用于在所述确定单元 7012确定增大 DPCH下行发 射功率时调整所述功率配置信息。
本实施例中的另一功率控制系统, 如图 8所示, 包括: 功率控制装置 801 和基站 802。
功率控制装置 801 , 用于监测 DPDCH信道下行数据发送情况, 在所述 DPDCH信道下行没有数据发送,确定减小 DPCH信道下行发射功率,在所述 DPDCH信道下行有数据发送,确定增大或维持 DPCH信道下行发射功率, 并 调整功率配置信息。
其中, 所述功率控制装置 801包括: 监测单元 8011、 确定单元 8012、 第 一调整单元 8013和第二调整单元 8014。
监测单元 8011 , 用于监测 DPDCH信道下行数据发送情况。
确定单元 8012, 用于在所述 DPDCH信道下行没有数据发送, 确定减小 DPCH信道下行发射功率,在所述 DPDCH信道下行有数据发送,确定增大或 维持 DPCH信道下行发射功率。
第一调整单元 8013 , 用于在所述确定单元确定减小 DPCH下行发射功率 时调整功率配置信息。
第二调整单元 8014, 用于在所述确定单元确定增大 DPCH下行发射功率 时调整所述功率配置信息。
基站 802, 用于根据调整后的功率配置信息调整 DPCH信道下行发射功 率。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 仅以上 述各功能模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功 能分配由不同的功能模块完成, 即将装置的内部结构划分成不同的功能模块, 以完成以上描述的全部或者部分功能。 上述描述的系统, 装置和单元的具体 工作过程, 可以参考前述方法实施例中的对应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述模块或单元的划分, 仅仅为一种逻辑功能划分, 实际实 现时可以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到 另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相 互之间的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间 接耦合或通信连接, 可以是电性, 机械或其它的形式。 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单 元中。 上述集成的单元既可以釆用硬件的形式实现, 也可以釆用软件功能单 元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售 或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本 发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的 全部或部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个 存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)或处理器(processor )执行本发明各个实施例所述 方法的全部或部分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存 储器(ROM, Read-Only Memory ), 随机存取存储器(RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 以上实施例仅用以说明本发明的技术方案, 而非对其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员应 当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其 中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案 的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求
1、 一种功率控制方法, 其特征在于, 包括:
监测专用物理数据信道(DPDCH ) 下行数据发送情况;
如果所述 DPDCH信道下行没有数据发送, 确定减小 DPCH信道下行发 射功率; 或
如果所述 DPDCH信道下行有数据发送, 确定增大或维持 DPCH信道下 行发射功率。
2、 根据权利要求 1所述的方法, 其特征在于, 当确定减小 DPCH信道下 行发射功率时, 所述方法还包括:
调整功率配置信息, 触发基站才艮据调整后的功率配置信息减小 DPCH信 道下行发射功率。
3、 根据权利要求 2所述的方法, 其特征在于, 所述调整功率配置信息包 括:
减小 DPDCH最大下行发射功率值;
或, 减小 DPDCH初始下行发射功率值;
或, 减小专用物理控制信道(DPCCH ) 功率偏置。
4、 根据权利要求 1所述的方法, 其特征在于, 当确定增大或维持 DPCH 信道发射功率时, 所述方法还包括:
调整功率配置信息, 触发基站根据调整后的功率配置信息增大或维持 DPCH信道下行发射功率。
5、 根据权利要求 4所述的方法, 其特征在于, 所述调整功率配置信息包 括:
增大 DPDCH最大下行发射功率值;
或, 增大 DPDCH初始下行发射功率值;
或, 增大 DPCCH功率偏置。
6、 一种功率控制装置, 其特征在于, 包括: 监测单元, 用于监测 DPDCH下行数据发送情况;
确定单元,用于在所述监测单元监测到所述 DPDCH信道下行没有数据发 送时, 确定减小 DPCH下行发射功率, 在所述监测单元监测到所述 DPDCH 信道下行有数据发送时, 确定增大或维持 DPCH信道下行发射功率。
7、 根据权利要求 6所述的装置, 其特征在于, 还包括:
第一调整单元, 用于在所述确定单元确定减小 DPCH下行发射功率时调 整功率配置信息;
第二调整单元, 用于在所述确定单元确定增大 DPCH下行发射功率时调 整所述功率配置信息。
8、 一种功率控制系统, 其特征在于, 包括:
功率控制装置, 用于监测 DPDCH信道下行数据发送情况, 并在所述 DPDCH信道下行没有数据发送时,确定减小 DPCH信道下行发射功率,在所 述 DPDCH信道下行有数据发送时, 确定增大或维持 DPCH信道下行发射功 率;
基站, 用于根据所述功率控制装置确定的调整方向调整功率配置信息, 并根据调整后的功率配置信息调整 DPCH信道下行发射功率。
9、 根据权利要求 8所述的功率控制系统, 其特征在于, 所述功率控制装 置包括:
监测单元, 用于监测 DPDCH信道下行数据发送情况;
确定单元, 用于在所述 DPDCH信道下行没有数据发送时, 确定减小
DPCH信道下行发射功率,在所述 DPDCH信道下行有数据发送时,确定增大 或维持 DPCH信道下行发射功率。
10、 根据权利要求 8或 9所述的功率控制系统, 其特征在于, 所述基站 包括:
第一调整单元, 用于在所述功率控制装置确定减小 DPCH下行发射功率 时调整功率配置信息; 第二调整单元, 用于在所述功率控制装置确定增大 DPCH下行发射功率 时调整所述功率配置信息。
11、 根据权利要求 8 所述的功率控制系统, 其特征在于, 所述调整方向 指的是减小 DPCH信道下行发射功率或者增大或维持 DPCH信道下行发射功 率。
12、 一种功率控制系统, 其特征在于, 包括:
功率控制装置,用于监测 DPDCH信道下行数据发送情况,在所述 DPDCH 信道下行没有数据发送,确定减小 DPCH信道下行发射功率,在所述 DPDCH 信道下行有数据发送, 确定增大或维持 DPCH信道下行发射功率, 并调整功 率配置信息;
基站, 用于根据所述功率控制装置中调整后的功率配置信息调整 DPCH 信道下行发射功率。
13、 根据权利要求 12所述的功率控制系统, 其特征在于, 所述功率控制 装置包括:
监测单元, 用于监测 DPDCH信道下行数据发送情况;
确定单元,用于在所述 DPDCH信道下行没有数据发送,确定减小 DPCH 信道下行发射功率, 在所述 DPDCH信道下行有数据发送, 确定增大或维持
DPCH信道下行发射功率;
第一调整单元, 用于在所述确定单元确定减小 DPCH下行发射功率时调 整功率配置信息;
第二调整单元, 用于在所述确定单元确定增大 DPCH下行发射功率时调 整所述功率配置信息。
PCT/CN2013/072425 2012-03-29 2013-03-12 一种功率控制方法、功率控制系统以及相关设备 WO2013143388A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13769592.0A EP2816850B1 (en) 2012-03-29 2013-03-12 Power control method and power control system
US14/499,698 US9420545B2 (en) 2012-03-29 2014-09-29 Power control method, power control system and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210088102.4A CN102647778B (zh) 2012-03-29 2012-03-29 一种功率控制方法、功率控制系统以及相关设备
CN201210088102.4 2012-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/499,698 Continuation US9420545B2 (en) 2012-03-29 2014-09-29 Power control method, power control system and related device

Publications (1)

Publication Number Publication Date
WO2013143388A1 true WO2013143388A1 (zh) 2013-10-03

Family

ID=46660309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072425 WO2013143388A1 (zh) 2012-03-29 2013-03-12 一种功率控制方法、功率控制系统以及相关设备

Country Status (4)

Country Link
US (1) US9420545B2 (zh)
EP (1) EP2816850B1 (zh)
CN (1) CN102647778B (zh)
WO (1) WO2013143388A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647778B (zh) 2012-03-29 2014-12-10 华为技术有限公司 一种功率控制方法、功率控制系统以及相关设备
CN105230087B (zh) * 2013-05-10 2018-12-04 瑞典爱立信有限公司 在至少一个网络节点中实施的方法、网络节点装置以及无线通信网络
CN104581912A (zh) * 2013-10-17 2015-04-29 中兴通讯股份有限公司 一种下行功率控制方法及装置
JP6164547B2 (ja) * 2014-08-05 2017-07-19 華為技術有限公司Huawei Technologies Co.,Ltd. 電力制御方法、基地局、およびシステム
EP3001739B1 (en) * 2014-09-25 2019-04-10 Motorola Solutions, Inc. Method and apparatus for adaptation of the base station transmit power in order to reduce power consumption
WO2019027273A1 (ko) * 2017-08-03 2019-02-07 엘지전자 주식회사 무선 통신 시스템에서 전송 전력을 제어하는 방법 및 이를 위한 장치
CN113615280B (zh) * 2019-03-30 2024-04-09 华为技术有限公司 功率控制方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000062456A1 (en) * 1999-04-12 2000-10-19 Samsung Electronics Co., Ltd. Apparatus and method for gated transmission in a cdma communication system
CN101136666A (zh) * 2006-08-28 2008-03-05 华为技术有限公司 实现发射功率控制的方法及装置
CN101243617A (zh) * 2005-08-16 2008-08-13 皇家飞利浦电子股份有限公司 用于不连续数据传输的控制信道的格式调整
CN102647778A (zh) * 2012-03-29 2012-08-22 华为技术有限公司 一种功率控制方法、功率控制系统以及相关设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4423836B2 (ja) * 2002-04-03 2010-03-03 日本電気株式会社 セルラシステム、通信制御方法及び移動局
DE60225906T2 (de) * 2002-08-13 2009-04-09 Alcatel Lucent Verfahren zur Leistungssteuerung des TFCI-Datenfeldes
US7706827B2 (en) 2006-02-15 2010-04-27 Broadcom Corporation Method and apparatus for processing transmit power control (TPC) commands in a wideband CDMA (WCDMA) network based on a sign metric
CN101170718B (zh) * 2006-10-26 2010-09-01 中兴通讯股份有限公司 获取连续分组连接技术支持能力信息的方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000062456A1 (en) * 1999-04-12 2000-10-19 Samsung Electronics Co., Ltd. Apparatus and method for gated transmission in a cdma communication system
CN101243617A (zh) * 2005-08-16 2008-08-13 皇家飞利浦电子股份有限公司 用于不连续数据传输的控制信道的格式调整
CN101136666A (zh) * 2006-08-28 2008-03-05 华为技术有限公司 实现发射功率控制的方法及装置
CN102647778A (zh) * 2012-03-29 2012-08-22 华为技术有限公司 一种功率控制方法、功率控制系统以及相关设备

Also Published As

Publication number Publication date
CN102647778A (zh) 2012-08-22
EP2816850B1 (en) 2018-01-17
US20150018032A1 (en) 2015-01-15
EP2816850A4 (en) 2015-03-18
CN102647778B (zh) 2014-12-10
EP2816850A1 (en) 2014-12-24
US9420545B2 (en) 2016-08-16

Similar Documents

Publication Publication Date Title
JP7289088B2 (ja) マスター基地局、方法および集積回路
WO2013143388A1 (zh) 一种功率控制方法、功率控制系统以及相关设备
JP6172544B2 (ja) パラメータを設定するための方法、基地局、及びユーザ機器
KR101182983B1 (ko) 멀티 캐리어 시스템에서 셀들을 보고 및 관리하기 위한 방법 및 장치
EP3442156B1 (en) Power headroom report method and apparatus for mobile communication system supporting carrier aggregation
US9408069B2 (en) Service control method, terminal, and network device
US20200221381A1 (en) Target wake time (twt) protocol for wi-fi voice calls
EP2603992B1 (en) Method and apparatus for reporting power headroom information in mobile communication system supporting carrier aggregation
EP2790451B1 (en) Method, equipment and system for adjusting feedback cycle of cqi
US9730167B2 (en) Method and apparatus for reporting power headroom information in mobile communication system supporting carrier aggregation
US20120113818A1 (en) Power headroom report method and apparatus for mobile communication system supporting carrier aggregation
JP2007195076A (ja) 無線通信システムとその送信電力制御方法および装置
US9736797B2 (en) Method and apparatus for reporting power headroom information in mobile communication system supporting carrier aggregation
US8861442B2 (en) Power control method and radio network controller
WO2013078589A1 (zh) 功率偏置参数的确定方法以及装置
WO2012146150A1 (zh) 数据传输中速率的调整方法和设备
US10321512B2 (en) Service control method, terminal, and network device
WO2017063483A1 (zh) 一种上行发送功率控制方法和装置
WO2012155421A1 (zh) 一种寻呼指示信道帧的发送方法及发送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769592

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013769592

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE