WO2013142075A1 - Turbocharger cartridge and engine cylinder head assembly - Google Patents
Turbocharger cartridge and engine cylinder head assembly Download PDFInfo
- Publication number
- WO2013142075A1 WO2013142075A1 PCT/US2013/029537 US2013029537W WO2013142075A1 WO 2013142075 A1 WO2013142075 A1 WO 2013142075A1 US 2013029537 W US2013029537 W US 2013029537W WO 2013142075 A1 WO2013142075 A1 WO 2013142075A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cylinder head
- engine cylinder
- cartridge
- housing
- wastegate
- Prior art date
Links
- 238000003780 insertion Methods 0.000 claims description 2
- 230000037431 insertion Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 15
- 238000005266 casting Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/16—Arrangement of bearings; Supporting or mounting bearings in casings
- F01D25/166—Sliding contact bearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
- F01D17/10—Final actuators
- F01D17/105—Final actuators by passing part of the fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/04—Antivibration arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/24—Casings; Casing parts, e.g. diaphragms, casing fastenings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/18—Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
- F02B37/183—Arrangements of bypass valves or actuators therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/18—Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
- F02B37/183—Arrangements of bypass valves or actuators therefor
- F02B37/186—Arrangements of actuators or linkage for bypass valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B39/00—Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F1/00—Cylinders; Cylinder heads
- F02F1/24—Cylinder heads
- F02F1/243—Cylinder heads and inlet or exhaust manifolds integrally cast together
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
- F02C6/04—Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
- F02C6/10—Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
- F02C6/12—Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/40—Application in turbochargers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present disclosure relates to exhaust gas-driven turbochargers, and particularly relates to turbocharger and engine cylinder head assemblies.
- a turbocharger cartridge includes: (1) a center housing rotating assembly, which comprises a center housing, bearings housed in the center housing, a shaft rotatably supported in the bearings, and compressor and turbine wheels affixed to opposite ends of the shaft; (2) a housing member that defines a turbine nozzle and a turbine contour (i.e., a wall that lies closely adjacent the radially outer tips of the blades of the turbine wheel in the vicinity and downstream of a throat of the blade passages); and (3) a wastegate unit operable for allowing exhaust gas to bypass the turbine wheel when the wastegate unit is open.
- a center housing rotating assembly which comprises a center housing, bearings housed in the center housing, a shaft rotatably supported in the bearings, and compressor and turbine wheels affixed to opposite ends of the shaft
- a housing member that defines a turbine nozzle and a turbine contour (i.e., a wall that lies closely adjacent the radially outer tips of the blades of the turbine wheel in the vicinity and downstream of a throat of
- the turbocharger cartridge is configured to fit into a receptacle defined in an engine cylinder head.
- the engine cylinder head is configured to define components that would ordinarily be parts of the turbocharger in a conventional turbocharger design.
- the engine cylinder head defines a compressor inlet and compressor contour (i.e., a wall that lies closely adjacent the radially outer tips of the compressor blades), a diffuser for receiving and diffusing pressurized air from the compressor wheel, a compressor volute that receives the air from the diffuser, and a turbine volute for receiving exhaust gas from the engine.
- the turbocharger cartridge and the receptacle in the engine cylinder head are configured so that the cartridge slides, compressor wheel first, into the receptacle in an axial direction.
- the cartridge is then affixed to the engine cylinder head, and seals between the cartridge and the engine cylinder head are compressed to seal the interfaces therebetween.
- the wastegate unit comprises a wastegate housing, and in one embodiment the wastegate housing and the housing member defining the turbine nozzle and turbine contour can be a one-piece integral part, such as a part formed by casting.
- the present disclosure also describes a turbocharger cartridge for insertion into a receptacle defined in an engine cylinder head.
- the turbocharger cartridge comprises a center housing defining a bore therethrough, bearings housed in the bore, a shaft rotatably supported in the bearings, a compressor wheel affixed to one end of the shaft, and a turbine wheel affixed to an opposite end of the shaft.
- the cartridge further comprises a wastegate unit mounted to the center housing and operable for allowing exhaust gas to bypass the turbine wheel when the wastegate unit is open.
- FIG. 1 is a perspective view of a turbocharger cartridge and engine cylinder head assembly in accordance with one embodiment of the present invention
- FIG. 1A is a perspective view of the engine cylinder head, partly in section;
- FIG. 2 is a further perspective view of the turbocharger cartridge and engine cylinder head assembly of FIG. 1;
- FIG. 3 is a still further perspective view of the turbocharger cartridge and engine cylinder head assembly of FIG. 1;
- FIG. 4 is a front view of the turbocharger cartridge and engine cylinder head assembly of FIG. 1, partly in section;
- FIG. 5 is a cross-sectional view through the turbocharger cartridge and engine cylinder head assembly
- FIG. 6 is a perspective view of the turbocharger cartridge and engine cylinder head assembly, partly in section;
- FIG. 7 is a perspective view of the turbocharger cartridge
- FIG. 8 is a further perspective view of the turbocharger cartridge.
- FIG. 9 is a cross-sectional view of the turbocharger cartridge.
- FIGS. 1-6 A turbocharger cartridge and engine cylinder head assembly 10 in accordance with one embodiment of the invention is depicted in FIGS. 1-6, and a turbocharger cartridge 32 of the assembly is depicted in FIGS. 7-9.
- the assembly 10 comprises an engine cylinder head 20
- the engine cylinder head 20 comprises a casting that is configured to sit atop the engine block, above the engine cylinders.
- the head 20 typically houses components of the intake and exhaust valves for the cylinders and defines intake and exhaust passages through which intake air is delivered to the cylinders and exhaust gases are routed away from the cylinders, respectively.
- the head 20 is illustrated as being configured for a 3-cylinder engine, although the invention is applicable to engines of any number of cylinders.
- the head defines at least one intake passage 22 and at least one exhaust passage 24.
- the head is configured to route the exhaust gases produced in the engine cylinders through the exhaust passages 24 into an exhaust manifold (not shown) that feeds exhaust gases to the turbine of the turbocharger.
- the cylinder head 20 defines a housing member 40 as an integral part thereof.
- the head proper and the housing member collectively can be, for example, a one-piece casting.
- the housing member 40 is configured to define a number of features that would conventionally be defined by separate housing members of the turbocharger 30.
- the turbocharger 30 includes a "cartridge” 32, also referred to herein as a center housing rotating assembly (CHRA).
- the CHRA 32 comprises a compressor wheel 50 affixed to one end of a shaft 52 and a turbine wheel 60 affixed to the opposite end of the shaft 52, bearings 54 that rotatably support the shaft 52, and a center housing 70 that houses the bearings 54 and defines oil passages for supplying oil to and scavenging oil from the bearings, and (optionally) water passages for circulating coolant through the center housing.
- the housing member 40 of the cylinder head 20 defines a receptacle 42 that receives the CHRA 32.
- the receptacle 42 is a stepped, generally cylindrical bore extending axially through the housing member 40.
- the receptacle is configured to allow the CHRA 32 to be slid axially into the receptacle, compressor wheel first (i.e., to the left in FIGS. 4 and 5).
- the receptacle 42 for example can have various portions of differing inside diameters, with steps transitioning between adjacent portions of different diameters.
- the steps are turbine-side-facing, i.e., each step faces axially toward the turbine side of the CHRA (to the right in FIGS.
- the center housing 70 of the CHRA 32 is correspondingly stepped to substantially match the stepped configuration of the receptacle 42.
- seals e.g., O-rings
- the CHRA 32 further includes a wastegate or turbine bypass unit 90.
- the wastegate unit is operable to allow some or substantially all of the exhaust gases to bypass the turbine wheel 60 under certain operating conditions.
- the wastegate unit 90 is a rotary turbine bypass (RTB) unit generally as described in Applicant's co-pending U.S. Application Serial No. 12/611,816 filed on November 3, 2009, Application Serial No.
- the RTB unit 90 includes a valve housing assembly comprising a main housing 92 (also referred to herein as a wastegate housing) and a housing insert 94.
- the main housing 92 defines a passage extending axially through the main housing.
- the housing insert 94 comprises a generally tubular member that is disposed in the passage of the main housing such that the interior of the housing insert 94 defines a central flow passage 96, and an annular space between the outer surface of the housing insert 94 and an inner surface of the main housing 92 defines an annular flow passage (also referred to herein as a wastegate passage) 98 that surrounds the central flow passage 96.
- the main housing 92 further defines one or more flanges 93 configured to be affixed to the housing member 40 of the engine cylinder head, such as by threaded fasteners (not shown) passing through apertures in the flange(s) 93 and into corresponding apertures (FIG. 5) in the housing member 40, in order to secure the RTB unit 90 to the housing member 40.
- the RTB unit 90 further comprises a stationary valve seat 102 and a rotary valve member 104 in abutting engagement with the valve seat.
- the valve seat 102 and valve member 104 are arranged in the annular space between the main housing 92 and the housing insert 94.
- the valve member 104 is prevented from moving axially upstream by a shoulder defined by the main housing 92, although during operation pressure of the exhaust gas urges the valve member 104 in the downstream direction.
- the valve member 104 is not constrained by the main housing but is free to rotate about its axis and to move axially against the valve seat 102.
- the valve seat 102 is prevented from moving axially, radially, or rotationally.
- the valve seat 102 is a generally flat ring-shaped or annular member having a plurality of orifices 103 (FIG. 4) circumferentially spaced apart about a circumference of the valve seat, the orifices 103 extending generally axially between the upstream and downstream faces of the valve seat.
- the orifices 103 can be uniformly or non-uniformly spaced about the circumference of the valve seat.
- the rotary valve member 104 is a generally flat ring-shaped or annular member having a plurality of orifices 105 (FIG. 4) circumferentially spaced apart about a circumference of the valve member, the orifices 105 extending generally axially between the upstream and downstream faces of the valve member.
- the orifices 105 can be uniformly or non-uniformly spaced about the circumference of the valve member.
- the number and spacing of the orifices 105 in the valve member can be the same as the number and spacing of the orifices 103 in the valve seat.
- non-uniform spacing of the orifices 105 is also possible and can be advantageous in some circumstances; furthermore, the spacings of the orifices 103 and 105 do not have to be the same, and in some cases it can be advantageous for the spacings to be different.
- the main housing 92 and the housing insert 94 both define substantially circular bearing surfaces for the outer and inner edges of the rotary valve member 104 and there are clearances therebetween, so that the valve member 104 can be rotated in one direction or the opposite direction about its central longitudinal axis in order to vary a degree of alignment between the valve member orifices 105 and the valve seat orifices 103.
- the valve member 104 is engaged by the distal end of an L-shaped drive arm 110 (FIG. 9) a portion of which passes through a bushing installed in a bore defined in the main housing 92, the bore connecting with the annular flow passage 98.
- the proximal (radially outer) end of the drive arm is located outside the main housing 92 and is rigidly affixed to a link 130.
- An actuator 140 is provided for rotating the drive arm 110.
- the link 130 has a connecting member 132 that is offset from the rotation axis of the drive arm 110 and that is coupled to an actuator rod 142 of the actuator 140 such that extension of the actuator rod causes the link 130 to rotate the drive arm in one direction and retraction of the actuator rod causes the link to rotate the drive arm in the opposite direction.
- the drive arm causes the valve member 104 to be rotated in one direction or the opposite direction about its axis.
- the housing member 40 of the engine cylinder head 20 defines a diffuser 44 for receiving and diffusing pressurized air from the compressor wheel 50, a compressor volute 46 that receives the air from the diffuser, and a turbine volute 62 for receiving exhaust gas from an engine.
- the assembly also includes a compressor contour plug 80 that defines a compressor inlet 82 and a compressor contour 84.
- the plug 80 is formed separately from the housing member 40 and is attached to the housing member by threaded fasteners (not shown). Alternatively, however, the plug 80 could be formed integrally as part of the housing member 40.
- the housing member 92 of the wastegate unit 90 includes a portion 92a that is received into the receptacle 42 of the engine cylinder housing member 40 and that defines a turbine nozzle 64 and a turbine contour 66, as best seen in FIGS. 4 and 5.
- the turbine nozzle comprises an aperture extending substantially 360 degrees about the housing member 92 and extending from a radially outer surface to a radially inner surface of the housing member.
- An array of circumferentially spaced vanes 65 extend across the turbine nozzle 64. The vanes 65 provide a flow-guiding function for guiding the exhaust gas into the turbine wheel 60 in an advantageous direction.
- the wastegate housing 92 also includes a portion 92b that defines a bore into which an end of the center housing 70 is received.
- a separate heat shield 63 is captured between the end of the center housing and the portion 92b of the wastegate housing 92.
- wastegate in the form of a rotary valve 90 is described and illustrated, the wastegate alternatively can be a non-rotary valve such as a poppet valve.
- the housing member of the poppet valve can include the above-noted features defining the turbine nozzle 64, vanes 65, and turbine contour 66.
- the housing member 40 of the engine cylinder head 20 defines an integral wastegate passage 48 arranged to be in communication with the annular wastegate passage 98 (FIG. 4) of the wastegate unit 90.
- the wastegate unit 90 When the wastegate unit 90 is closed, exhaust gas is substantially prevented from flowing through the wastegate passage 48 and the wastegate passage 98, such that exhaust gas from the exhaust gas manifold is directed into the turbine wheel 60.
- the wastegate unit 90 When the wastegate unit 90 is partially or fully open, some or most of the exhaust gas bypasses the turbine wheel.
- a significant advantage of the turbocharger cartridge and engine cylinder head assembly 10 described herein is that the CHRA 32 having the wastegate unit 90 constitutes a single component that can simply be inserted into the receptacle 42 defined by the housing member 40 of the cylinder head 20.
- the assembly is completed by affixing the wastegate housing 92 and the compressor contour plug 80 to the housing member 40 of the cylinder head, such as with threaded fasteners (not shown). Integration of certain features into the engine cylinder head as described above thereby allows a substantial simplification of the turbocharger components to be supplied to the engine manufacturer or assembler.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Supercharger (AREA)
Abstract
An turbocharger cartridge and engine cylinder head assembly includes a turbocharger cartridge that includes some but not all of the components of a turbocharger, while the engine cylinder head provides the components of the turbocharger that are not included in the cartridge. The cartridge includes a center housing rotating assembly having a shaft that joins a turbine wheel to a compressor wheel, the shaft passing through bearings housed in the center housing. The engine cylinder head defines a receptacle that receives the cartridge. The head also defines a diffuser and volute for the compressor, and a turbine volute. The cartridge defines a turbine nozzle and turbine contour, and further includes a wastegate unit as a part of the cartridge.
Description
TURBOCHARGER CARTRIDGE AND ENGINE CYLINDER HEAD ASSEMBLY
BACKGROUND OF THE INVENTION
[0001] The present disclosure relates to exhaust gas-driven turbochargers, and particularly relates to turbocharger and engine cylinder head assemblies.
[0002] Increasingly, gasoline engines are being produced in the form of turbocharged engines. It would be desirable to provide a turbocharger that can be produced at lower cost without sacrificing performance. Production cost for a turbocharger for a gasoline engine is largely driven by the cost of the turbine housing.
BRIEF SUMMARY OF THE DISCLOSURE
[0003] The present disclosure addresses issues such as the one noted above.
[0004] In accordance with one embodiment described herein, a turbocharger cartridge is provided that includes: (1) a center housing rotating assembly, which comprises a center housing, bearings housed in the center housing, a shaft rotatably supported in the bearings, and compressor and turbine wheels affixed to opposite ends of the shaft; (2) a housing member that defines a turbine nozzle and a turbine contour (i.e., a wall that lies closely adjacent the radially outer tips of the blades of the turbine wheel in the vicinity and downstream of a throat of the blade passages); and (3) a wastegate unit operable for allowing exhaust gas to bypass the turbine wheel when the wastegate unit is open.
[0005] The turbocharger cartridge is configured to fit into a receptacle defined in an engine cylinder head. The engine cylinder head is configured to define components that would ordinarily be parts of the turbocharger in a conventional turbocharger design. Specifically, the engine cylinder head defines a compressor inlet and compressor contour (i.e., a wall that lies closely adjacent the radially outer tips of the compressor blades), a diffuser for receiving and diffusing pressurized air from the compressor wheel, a compressor volute that receives the air from the diffuser, and a turbine volute for receiving exhaust gas from the engine.
[0006] The turbocharger cartridge and the receptacle in the engine cylinder head are configured so that the cartridge slides, compressor wheel first, into the receptacle in an axial direction. The cartridge is then affixed to the engine cylinder head, and seals between the cartridge and the engine cylinder head are compressed to seal the interfaces therebetween.
[0007] The wastegate unit comprises a wastegate housing, and in one embodiment the wastegate housing and the housing member defining the turbine nozzle and turbine contour can be a one-piece integral part, such as a part formed by casting.
[0008] The present disclosure also describes a turbocharger cartridge for insertion into a receptacle defined in an engine cylinder head. The turbocharger cartridge comprises a center housing defining a bore therethrough, bearings housed in the bore, a shaft rotatably supported in the bearings, a compressor wheel affixed to one end of the shaft, and a turbine wheel affixed to an opposite end of the shaft. The cartridge further comprises a wastegate unit mounted to the center housing and operable for allowing exhaust gas to bypass the turbine wheel when the wastegate unit is open.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)
[0009] Having thus described the disclosure in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
[0010] FIG. 1 is a perspective view of a turbocharger cartridge and engine cylinder head assembly in accordance with one embodiment of the present invention;
[0011] FIG. 1A is a perspective view of the engine cylinder head, partly in section;
[0012] FIG. 2 is a further perspective view of the turbocharger cartridge and engine cylinder head assembly of FIG. 1;
[0013] FIG. 3 is a still further perspective view of the turbocharger cartridge and engine cylinder head assembly of FIG. 1;
[0014] FIG. 4 is a front view of the turbocharger cartridge and engine cylinder head assembly of FIG. 1, partly in section;
[0015] FIG. 5 is a cross-sectional view through the turbocharger cartridge and engine cylinder head assembly;
[0016] FIG. 6 is a perspective view of the turbocharger cartridge and engine cylinder head assembly, partly in section;
[0017] FIG. 7 is a perspective view of the turbocharger cartridge;
[0018] FIG. 8 is a further perspective view of the turbocharger cartridge; and
[0019] FIG. 9 is a cross-sectional view of the turbocharger cartridge.
DETAILED DESCRIPTION OF THE DRAWINGS
[0020] The present disclosure now will be described more fully hereinafter with reference to the accompanying drawings in which some but not all embodiments of the inventions are shown. Indeed, these inventions may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
[0021] A turbocharger cartridge and engine cylinder head assembly 10 in accordance with one embodiment of the invention is depicted in FIGS. 1-6, and a turbocharger cartridge 32 of the assembly is depicted in FIGS. 7-9. The assembly 10 comprises an engine cylinder head 20
(illustrated only schematically) on which a turbocharger 30 is mounted. The engine cylinder head 20 comprises a casting that is configured to sit atop the engine block, above the engine cylinders. The head 20 typically houses components of the intake and exhaust valves for the cylinders and defines intake and exhaust passages through which intake air is delivered to the cylinders and exhaust gases are routed away from the cylinders, respectively. With reference to FIG. 3, for example, the head 20 is illustrated as being configured for a 3-cylinder engine, although the invention is applicable to engines of any number of cylinders. For each cylinder,
the head defines at least one intake passage 22 and at least one exhaust passage 24. The head is configured to route the exhaust gases produced in the engine cylinders through the exhaust passages 24 into an exhaust manifold (not shown) that feeds exhaust gases to the turbine of the turbocharger.
[0022] The cylinder head 20 defines a housing member 40 as an integral part thereof. The head proper and the housing member collectively can be, for example, a one-piece casting. As further described below, the housing member 40 is configured to define a number of features that would conventionally be defined by separate housing members of the turbocharger 30.
[0023] With reference to FIGS. 5 through 9, the turbocharger 30 includes a "cartridge" 32, also referred to herein as a center housing rotating assembly (CHRA). The CHRA 32 comprises a compressor wheel 50 affixed to one end of a shaft 52 and a turbine wheel 60 affixed to the opposite end of the shaft 52, bearings 54 that rotatably support the shaft 52, and a center housing 70 that houses the bearings 54 and defines oil passages for supplying oil to and scavenging oil from the bearings, and (optionally) water passages for circulating coolant through the center housing.
[0024] In accordance with the invention, the housing member 40 of the cylinder head 20 defines a receptacle 42 that receives the CHRA 32. The receptacle 42 is a stepped, generally cylindrical bore extending axially through the housing member 40. The receptacle is configured to allow the CHRA 32 to be slid axially into the receptacle, compressor wheel first (i.e., to the left in FIGS. 4 and 5). Thus, the receptacle 42 for example can have various portions of differing inside diameters, with steps transitioning between adjacent portions of different diameters. The steps are turbine-side-facing, i.e., each step faces axially toward the turbine side of the CHRA (to the right in FIGS. 4 and 5), and thus the receptacle becomes progressively smaller in diameter in the direction from the turbine toward the compressor. The center housing 70 of the CHRA 32 is correspondingly stepped to substantially match the stepped configuration of the receptacle 42. There are seals (e.g., O-rings) 34 between the center housing 70 and the receptacle 42 for sealing the interface therebetween and to separate or isolate the oil passages and the water passages (if present) in the center housing.
[0025] The CHRA 32 further includes a wastegate or turbine bypass unit 90. The wastegate unit is operable to allow some or substantially all of the exhaust gases to bypass the turbine wheel 60 under certain operating conditions. In the illustrated embodiment, the wastegate unit 90 is a rotary turbine bypass (RTB) unit generally as described in Applicant's co-pending U.S. Application Serial No. 12/611,816 filed on November 3, 2009, Application Serial No.
12/711,434 filed on April 30, 2010, Application Serial No. 12/966,343 filed December 13, 2010, and Application Serial No. 61/422,485 filed December 13, 2010, the entire disclosures of said applications being hereby incorporated herein by reference.
[0026] With reference to FIGS. 4 and 5, the RTB unit 90 includes a valve housing assembly comprising a main housing 92 (also referred to herein as a wastegate housing) and a housing insert 94. The main housing 92 defines a passage extending axially through the main housing. The housing insert 94 comprises a generally tubular member that is disposed in the passage of the main housing such that the interior of the housing insert 94 defines a central flow passage 96, and an annular space between the outer surface of the housing insert 94 and an inner surface of the main housing 92 defines an annular flow passage (also referred to herein as a wastegate passage) 98 that surrounds the central flow passage 96. The main housing 92 further defines one or more flanges 93 configured to be affixed to the housing member 40 of the engine cylinder head, such as by threaded fasteners (not shown) passing through apertures in the flange(s) 93 and into corresponding apertures (FIG. 5) in the housing member 40, in order to secure the RTB unit 90 to the housing member 40.
[0027] The RTB unit 90 further comprises a stationary valve seat 102 and a rotary valve member 104 in abutting engagement with the valve seat. The valve seat 102 and valve member 104 are arranged in the annular space between the main housing 92 and the housing insert 94. The valve member 104 is prevented from moving axially upstream by a shoulder defined by the main housing 92, although during operation pressure of the exhaust gas urges the valve member 104 in the downstream direction. The valve member 104 is not constrained by the main housing but is free to rotate about its axis and to move axially against the valve seat 102. The valve seat 102 is prevented from moving axially, radially, or rotationally. The valve seat 102 is a generally flat ring-shaped or annular member having a plurality of orifices 103 (FIG. 4) circumferentially spaced apart about a circumference of the valve seat, the orifices 103 extending generally axially
between the upstream and downstream faces of the valve seat. The orifices 103 can be uniformly or non-uniformly spaced about the circumference of the valve seat.
[0028] The rotary valve member 104 is a generally flat ring-shaped or annular member having a plurality of orifices 105 (FIG. 4) circumferentially spaced apart about a circumference of the valve member, the orifices 105 extending generally axially between the upstream and downstream faces of the valve member. The orifices 105 can be uniformly or non-uniformly spaced about the circumference of the valve member. The number and spacing of the orifices 105 in the valve member can be the same as the number and spacing of the orifices 103 in the valve seat. However, non-uniform spacing of the orifices 105 is also possible and can be advantageous in some circumstances; furthermore, the spacings of the orifices 103 and 105 do not have to be the same, and in some cases it can be advantageous for the spacings to be different. The main housing 92 and the housing insert 94 both define substantially circular bearing surfaces for the outer and inner edges of the rotary valve member 104 and there are clearances therebetween, so that the valve member 104 can be rotated in one direction or the opposite direction about its central longitudinal axis in order to vary a degree of alignment between the valve member orifices 105 and the valve seat orifices 103.
[0029] The valve member 104 is engaged by the distal end of an L-shaped drive arm 110 (FIG. 9) a portion of which passes through a bushing installed in a bore defined in the main housing 92, the bore connecting with the annular flow passage 98. The proximal (radially outer) end of the drive arm is located outside the main housing 92 and is rigidly affixed to a link 130. An actuator 140 is provided for rotating the drive arm 110. The link 130 has a connecting member 132 that is offset from the rotation axis of the drive arm 110 and that is coupled to an actuator rod 142 of the actuator 140 such that extension of the actuator rod causes the link 130 to rotate the drive arm in one direction and retraction of the actuator rod causes the link to rotate the drive arm in the opposite direction. As a result, the drive arm causes the valve member 104 to be rotated in one direction or the opposite direction about its axis.
[0030] With reference to FIGS. 4 and 5, the housing member 40 of the engine cylinder head 20 defines a diffuser 44 for receiving and diffusing pressurized air from the compressor wheel 50, a compressor volute 46 that receives the air from the diffuser, and a turbine volute 62 for
receiving exhaust gas from an engine. These features conventionally would be defined by compressor and turbine housings of the turbocharger. The assembly also includes a compressor contour plug 80 that defines a compressor inlet 82 and a compressor contour 84. In the illustrated embodiment, the plug 80 is formed separately from the housing member 40 and is attached to the housing member by threaded fasteners (not shown). Alternatively, however, the plug 80 could be formed integrally as part of the housing member 40.
[0031] The housing member 92 of the wastegate unit 90 includes a portion 92a that is received into the receptacle 42 of the engine cylinder housing member 40 and that defines a turbine nozzle 64 and a turbine contour 66, as best seen in FIGS. 4 and 5. The turbine nozzle comprises an aperture extending substantially 360 degrees about the housing member 92 and extending from a radially outer surface to a radially inner surface of the housing member. An array of circumferentially spaced vanes 65 extend across the turbine nozzle 64. The vanes 65 provide a flow-guiding function for guiding the exhaust gas into the turbine wheel 60 in an advantageous direction. In the illustrated embodiment, the wastegate housing 92 also includes a portion 92b that defines a bore into which an end of the center housing 70 is received. A separate heat shield 63 is captured between the end of the center housing and the portion 92b of the wastegate housing 92.
[0032] While a wastegate in the form of a rotary valve 90 is described and illustrated, the wastegate alternatively can be a non-rotary valve such as a poppet valve. The housing member of the poppet valve can include the above-noted features defining the turbine nozzle 64, vanes 65, and turbine contour 66.
[0033] With reference to FIG. 1 A, the housing member 40 of the engine cylinder head 20 defines an integral wastegate passage 48 arranged to be in communication with the annular wastegate passage 98 (FIG. 4) of the wastegate unit 90. When the wastegate unit 90 is closed, exhaust gas is substantially prevented from flowing through the wastegate passage 48 and the wastegate passage 98, such that exhaust gas from the exhaust gas manifold is directed into the turbine wheel 60. When the wastegate unit 90 is partially or fully open, some or most of the exhaust gas bypasses the turbine wheel.
[0034] Thus, a significant advantage of the turbocharger cartridge and engine cylinder head assembly 10 described herein is that the CHRA 32 having the wastegate unit 90 constitutes a single component that can simply be inserted into the receptacle 42 defined by the housing member 40 of the cylinder head 20. The assembly is completed by affixing the wastegate housing 92 and the compressor contour plug 80 to the housing member 40 of the cylinder head, such as with threaded fasteners (not shown). Integration of certain features into the engine cylinder head as described above thereby allows a substantial simplification of the turbocharger components to be supplied to the engine manufacturer or assembler.
[0035] Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Claims
1. A turbocharger cartridge and engine cylinder head assembly, comprising:
a turbocharger cartridge forming a unit that comprises:
a center housing rotating assembly comprising a center housing defining a bore therethrough, bearings housed in the bore, a shaft rotatably supported in the bearings, a compressor wheel affixed to one end of the shaft, and a turbine wheel affixed to an opposite end of the shaft;
a housing member that defines a turbine nozzle and a turbine contour; and a wastegate unit operable for allowing exhaust gas to bypass the turbine wheel when the wastegate unit is open; and
an engine cylinder head defining a receptacle for receiving the turbocharger cartridge, the engine cylinder head defining a diffuser for receiving and diffusing pressurized air from the compressor wheel, a compressor volute that receives the air from the diffuser, and a turbine volute for receiving exhaust gas from an engine;
wherein the turbocharger cartridge and the receptacle in the engine cylinder head are configured so that the cartridge slides, compressor wheel first, into the receptacle in an axial direction until the compressor wheel is aligned with the diffuser and the turbine wheel is aligned with the turbine nozzle.
2. The turbocharger cartridge and engine cylinder head assembly of claim 1, further comprising seals between the cartridge and the engine cylinder head, the seals being compressed to seal interfaces between the turbocharger cartridge and the engine cylinder head.
3. The turbocharger cartridge and engine cylinder head assembly of claim 1, wherein the wastegate unit comprises a rotating bypass valve.
4. The turbocharger cartridge and engine cylinder head assembly of claim 1, wherein the wastegate unit comprises a wastegate housing, and wherein the wastegate housing and the housing member that defines the turbine nozzle and turbine contour are portions of a one-piece integral structure.
5. The turbocharger cartridge and engine cylinder head assembly of claim 4, wherein said one-piece integral structure defines an array of vanes extending across the turbine nozzle.
6. The turbocharger cartridge and engine cylinder head assembly of claim 4, wherein said one-piece integral structure includes a portion defining a bore that receives an end of the center housing.
7. The turbocharger cartridge and engine cylinder head assembly of claim 6, further comprising a separate heat shield captured between the end of the center housing and said portion defining said bore.
8. The turbocharger cartridge and engine cylinder head assembly of claim 1, further comprising a compressor contour plug defining a compressor inlet and compressor contour.
9. The turbocharger cartridge and engine cylinder head assembly of claim 8, wherein the compressor contour plug is a separately formed part from the engine cylinder head.
10. A turbocharger cartridge for insertion into a receptacle defined in an engine cylinder head, comprising:
a center housing defining a bore therethrough, bearings housed in the bore, a shaft rotatably supported in the bearings, a compressor wheel affixed to one end of the shaft, and a turbine wheel affixed to an opposite end of the shaft; and
a wastegate unit mounted to the center housing and operable for allowing exhaust gas to bypass the turbine wheel when the wastegate unit is open.
11. The turbocharger cartridge of claim 10, wherein the wastegate unit includes a wastegate housing, a portion of the wastegate housing defining a bore into which an end of the center housing is received.
12. The turbocharger cartridge of claim 11, further comprising a separate heat shield captured between the center housing and the wastegate housing.
13. The turbocharger cartridge of claim 11, wherein said portion of the wastegate housing further defines a turbine nozzle.
14. The turbocharger cartridge of claim 13, wherein said portion of the wastegate housing further defines vanes for the turbine nozzle.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380015421.5A CN104204449B (en) | 2012-03-21 | 2013-03-07 | Turbocharger core print seat and cylinder cap assemblies |
EP13764567.7A EP2828499B1 (en) | 2012-03-21 | 2013-03-07 | Turbocharger cartridge and engine cylinder head assembly |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/425,891 | 2012-03-21 | ||
US13/425,891 US8966894B2 (en) | 2012-03-21 | 2012-03-21 | Turbocharger cartridge and engine cylinder head assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013142075A1 true WO2013142075A1 (en) | 2013-09-26 |
Family
ID=49210503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/029537 WO2013142075A1 (en) | 2012-03-21 | 2013-03-07 | Turbocharger cartridge and engine cylinder head assembly |
Country Status (4)
Country | Link |
---|---|
US (1) | US8966894B2 (en) |
EP (1) | EP2828499B1 (en) |
CN (1) | CN104204449B (en) |
WO (1) | WO2013142075A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015212325A1 (en) | 2015-07-01 | 2017-01-05 | Bosch Mahle Turbo Systems Gmbh & Co. Kg | Method for producing a housing part for a turbine of an exhaust gas turbocharger |
EP2703623A3 (en) * | 2012-08-28 | 2018-03-28 | Honeywell International Inc. | Turbocharger and engine cylinder head assembly |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3032485A1 (en) * | 2015-02-09 | 2016-08-12 | Peugeot Citroen Automobiles Sa | TURBOCOMPRESSED ENGINE ASSEMBLY WITH TWO EXHAUST DUCTS WITH RECIRCULATION LINE |
EP3256705A1 (en) * | 2015-02-09 | 2017-12-20 | Psa Automobiles S.A. | Turbocharged engine assembly having two exhaust ducts comprising a recirculation line |
US12078078B2 (en) | 2015-11-09 | 2024-09-03 | Fca Us Llc | Cylinder head with integrated turbocharger |
GB2569542B (en) | 2017-12-19 | 2022-06-15 | Cummins Ltd | Wastegate for turbine |
CN113906209A (en) * | 2019-05-02 | 2022-01-07 | Fca美国有限责任公司 | Cylinder head with integrated turbocharger |
US20210010412A1 (en) * | 2019-07-11 | 2021-01-14 | Michael P Schmidt | Oil supply system for integrated turbocharger |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4721441A (en) * | 1984-09-03 | 1988-01-26 | Ishikawajima-Harima Jukogyo Kabushiki Kaisha | Bearing device for turbocharger |
US20090031722A1 (en) * | 2006-08-10 | 2009-02-05 | Byeongil An | Multistage Exhaust Turbocharger |
US20090077966A1 (en) * | 2005-11-16 | 2009-03-26 | Lombard Alain R | Sliding piston cartridge and turbocharger incorporating same |
JP2010038091A (en) * | 2008-08-07 | 2010-02-18 | Toyota Motor Corp | Internal combustion engine with supercharger |
US20100180592A1 (en) * | 2009-01-20 | 2010-07-22 | Williams International Co., L.L.C. | Turbocharger |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3270951A (en) * | 1963-04-04 | 1966-09-06 | Int Harvester Co | Turbocharger controls |
US4075849A (en) * | 1976-09-01 | 1978-02-28 | The Garrett Corporation | Turbocharger regulator |
JPS5752624A (en) | 1980-09-16 | 1982-03-29 | Honda Motor Co Ltd | Supercharger unit in motor cycle |
FR2491130A1 (en) * | 1980-09-29 | 1982-04-02 | Kronogard Sven Olof | INTEGRATED TURBOCHARGER CYLINDER HEAD |
SE446114B (en) * | 1980-09-29 | 1986-08-11 | Volvo Ab | DEVICE OF A COMBUSTION ENGINE |
US4463564A (en) * | 1981-10-23 | 1984-08-07 | The Garrett Corporation | Turbocharger turbine housing assembly |
US4613288A (en) * | 1983-05-26 | 1986-09-23 | The Garrett Corporation | Turbocharger |
US4655043A (en) * | 1983-05-26 | 1987-04-07 | The Garrett Corporation | Turbocharger |
GB8406860D0 (en) * | 1984-03-16 | 1984-04-18 | Holset Engineering Co | Wastegate valve |
GB2156043B (en) * | 1984-03-16 | 1987-09-23 | Holset Engineering Co | Wastegate valve for internal combustion engine turbocharger |
US4656834A (en) * | 1985-12-24 | 1987-04-14 | The Garrett Corporation | Electronic turbocharger control |
US4704075A (en) | 1986-01-24 | 1987-11-03 | Johnston Andrew E | Turbocharger water-cooled bearing housing |
JP3624521B2 (en) * | 1996-02-29 | 2005-03-02 | アイシン精機株式会社 | Turbocharger |
US6193463B1 (en) | 1999-06-30 | 2001-02-27 | Alliedsignal, Inc. | Die cast compressor housing for centrifugal compressors with a true volute shape |
JP2002303145A (en) | 2001-04-05 | 2002-10-18 | Toyota Motor Corp | Internal combustion engine with turbo-charger |
EP1394366B1 (en) | 2002-09-02 | 2007-03-07 | BorgWarner Inc. | Turbomachine housing |
DE10258022A1 (en) | 2002-12-12 | 2004-06-24 | Daimlerchrysler Ag | Internal combustion engine with supercharger, e.g. for vehicle, has valve device in form of rotary slide valve |
WO2005045201A1 (en) | 2003-11-04 | 2005-05-19 | Mann + Hummel Gmbh | Non-positive-displacement machine comprising a spiral channel provided in the housing middle part |
EP1536141B1 (en) | 2003-11-28 | 2006-06-14 | BorgWarner Inc. | Turocharger casing |
DE102004055571A1 (en) | 2004-11-18 | 2006-06-08 | Daimlerchrysler Ag | Exhaust gas turbocharger for an internal combustion engine |
JP2006194227A (en) | 2005-01-17 | 2006-07-27 | Toyota Motor Corp | Turbo supercharger for internal combustion engine |
JP2006249945A (en) * | 2005-03-08 | 2006-09-21 | Toyota Motor Corp | Internal combustion engine with turbocharger |
JP2006266244A (en) | 2005-03-25 | 2006-10-05 | Toyota Motor Corp | Turbo charger bearing device |
US20090136368A1 (en) | 2007-11-28 | 2009-05-28 | Steven Don Arnold | Center Housing and Bearing and Shaft Wheel Assembly for Turbochargers |
GB0801846D0 (en) | 2008-02-01 | 2008-03-05 | Cummins Turbo Tech Ltd | A variable geometry turbine with wastegate |
US8092162B2 (en) | 2008-03-06 | 2012-01-10 | Honeywell International Inc. | Turbocharger assembly having heat shield-centering arrangements |
EP2143922A1 (en) * | 2008-07-11 | 2010-01-13 | Ford Global Technologies, LLC | Cylinder head with exhaust manifold and turbo charger |
DE102008047448B4 (en) | 2008-09-16 | 2020-09-24 | Bayerische Motoren Werke Aktiengesellschaft | Exhaust gas turbocharger |
JP5017250B2 (en) | 2008-12-26 | 2012-09-05 | 三菱重工コンプレッサ株式会社 | Bearing device and rotating machine |
US20100322106A1 (en) | 2009-06-19 | 2010-12-23 | Telefonaktiebolaget L M Ericsson (Publ) | Methods and nodes for setting up multiple packet data connections of a user equipment toward an access point |
US8353664B2 (en) | 2009-11-03 | 2013-01-15 | Honeywell International Inc. | Turbocharger with annular rotary bypass valve for the turbine |
EP2499378B1 (en) * | 2009-11-13 | 2016-03-30 | Continental Automotive GmbH | Turbocharger housing |
US8790066B2 (en) | 2010-02-18 | 2014-07-29 | Honeywell International Inc. | Multi-lobe semi-floating journal bearing |
GB2478008B (en) * | 2010-02-23 | 2014-10-08 | Gm Global Tech Operations Inc | Cylinder head with an integral turbine housing |
US8573929B2 (en) | 2010-04-30 | 2013-11-05 | Honeywell International Inc. | Turbocharger with turbine nozzle vanes and an annular rotary bypass valve |
IT1400446B1 (en) | 2010-06-11 | 2013-05-31 | C R F Società Consortile Per Azioni | MOTOR WITH INTERNAL COMBUSTION OVERHEADED |
US20110173972A1 (en) | 2010-06-14 | 2011-07-21 | Robert Andrew Wade | Internal Combustion Engine Cylinder Head With Integral Exhaust Ducting And Turbocharger Housing |
US9021802B2 (en) * | 2010-08-26 | 2015-05-05 | Honeywell International Inc. | Turbine housing assembly with wastegate |
US9133730B2 (en) * | 2010-10-11 | 2015-09-15 | Borgwarner Inc. | Exhaust turbocharger |
WO2012058135A2 (en) * | 2010-10-28 | 2012-05-03 | Borgwarner Inc. | Exhaust-gas turbocharger |
DE102010062749A1 (en) * | 2010-12-09 | 2012-06-14 | Continental Automotive Gmbh | Turbocharger integrated in the cylinder head of an engine. |
US8534994B2 (en) | 2010-12-13 | 2013-09-17 | Honeywell International Inc. | Turbocharger with divided turbine housing and annular rotary bypass valve for the turbine |
WO2012087907A2 (en) * | 2010-12-22 | 2012-06-28 | Honeywell International, Inc. | Turbocharger and engine cylinder head assembly |
GB2487747B (en) * | 2011-02-02 | 2016-05-18 | Ford Global Tech Llc | An engine system |
GB2494145A (en) * | 2011-08-30 | 2013-03-06 | Gm Global Tech Operations Inc | A one piece cylinder head, exhaust manifold and turbocharger housing |
US8911202B2 (en) | 2011-09-20 | 2014-12-16 | Honeywell International Inc. | Turbocharger rotating assembly |
US9011086B2 (en) * | 2011-12-07 | 2015-04-21 | Honeywell International Inc. | Treated valve seat |
US9091200B2 (en) * | 2012-03-21 | 2015-07-28 | Honeywell International Inc. | Turbocharger and engine cylinder head assembly |
DE202013103704U1 (en) * | 2013-08-14 | 2013-08-27 | Ford Global Technologies, Llc | Cylinder head with an axial turbine |
-
2012
- 2012-03-21 US US13/425,891 patent/US8966894B2/en active Active
-
2013
- 2013-03-07 EP EP13764567.7A patent/EP2828499B1/en active Active
- 2013-03-07 WO PCT/US2013/029537 patent/WO2013142075A1/en active Application Filing
- 2013-03-07 CN CN201380015421.5A patent/CN104204449B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4721441A (en) * | 1984-09-03 | 1988-01-26 | Ishikawajima-Harima Jukogyo Kabushiki Kaisha | Bearing device for turbocharger |
US20090077966A1 (en) * | 2005-11-16 | 2009-03-26 | Lombard Alain R | Sliding piston cartridge and turbocharger incorporating same |
US20090031722A1 (en) * | 2006-08-10 | 2009-02-05 | Byeongil An | Multistage Exhaust Turbocharger |
JP2010038091A (en) * | 2008-08-07 | 2010-02-18 | Toyota Motor Corp | Internal combustion engine with supercharger |
US20100180592A1 (en) * | 2009-01-20 | 2010-07-22 | Williams International Co., L.L.C. | Turbocharger |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2703623A3 (en) * | 2012-08-28 | 2018-03-28 | Honeywell International Inc. | Turbocharger and engine cylinder head assembly |
DE102015212325A1 (en) | 2015-07-01 | 2017-01-05 | Bosch Mahle Turbo Systems Gmbh & Co. Kg | Method for producing a housing part for a turbine of an exhaust gas turbocharger |
Also Published As
Publication number | Publication date |
---|---|
CN104204449B (en) | 2018-10-16 |
US20130247560A1 (en) | 2013-09-26 |
EP2828499A1 (en) | 2015-01-28 |
CN104204449A (en) | 2014-12-10 |
EP2828499A4 (en) | 2015-11-18 |
US8966894B2 (en) | 2015-03-03 |
EP2828499B1 (en) | 2018-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8966894B2 (en) | Turbocharger cartridge and engine cylinder head assembly | |
US8966895B2 (en) | Turbocharger cartridge, bypass, and engine cylinder head assembly | |
EP2828500B1 (en) | Turbocharger cartridge and engine cylinder head assembly | |
US9194282B2 (en) | Turbocharger and engine cylinder head assembly | |
US9091200B2 (en) | Turbocharger and engine cylinder head assembly | |
EP1952029B1 (en) | Inlet duct for rearward-facing compressor wheel, and turbocharger incorporating same | |
US8967955B2 (en) | Turbocharger with variable nozzle having labyrinth seal for vanes | |
EP2034225B1 (en) | Multiple-turbocharger system, and exhaust gas flow control valve therefor | |
US10883418B2 (en) | Turbocharger for an internal combustion engine | |
US9938894B2 (en) | Turbocharger with variable-vane turbine nozzle having a bypass mechanism integrated with the vanes | |
KR101244956B1 (en) | Carrier ring of a conducting device with sealing air channel | |
EP2703623A2 (en) | Turbocharger and engine cylinder head assembly | |
US11319964B2 (en) | Turbocharger and bearing housing therefor | |
GB2575979A (en) | Valve assembly | |
CN110520598A (en) | Turbocharger and turbine shroud for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13764567 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013764567 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |