WO2013141570A1 - Carbon nanotube/metal nanocomposite material, and method for manufacturing same - Google Patents

Carbon nanotube/metal nanocomposite material, and method for manufacturing same Download PDF

Info

Publication number
WO2013141570A1
WO2013141570A1 PCT/KR2013/002241 KR2013002241W WO2013141570A1 WO 2013141570 A1 WO2013141570 A1 WO 2013141570A1 KR 2013002241 W KR2013002241 W KR 2013002241W WO 2013141570 A1 WO2013141570 A1 WO 2013141570A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
carbon nanotube
silica
carbon nanotubes
nanocomposite material
Prior art date
Application number
PCT/KR2013/002241
Other languages
French (fr)
Korean (ko)
Inventor
홍순형
이동주
남동훈
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2013141570A1 publication Critical patent/WO2013141570A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/28Solid content in solvents

Definitions

  • the present application relates to a carbon nanotube / metal nanocomposite material and a method for producing the carbon nanotube / metal nanocomposite material by a casting process.
  • Carbon nanotubes are nanomaterials in the form of tubes having a diameter of several tens of nanometers of carbon. Carbon nanotubes have excellent mechanical properties such as high strength and high modulus of elasticity, and further excellent properties such as low density and high field contrast have been found. Therefore, carbon nanotubes are used as polymer and metal matrix composite materials. Research is underway to apply it to structural materials such as reinforcing materials.
  • a powder metallurgy process is mainly used in which carbon nanotubes and metal powders are mixed to produce carbon nanotubes / metal composite powders and sintered.
  • carbon nanotubes / metal nanocomposites using a casting process, carbon nanotubes are oxidized, and carbon nanotubes react with liquid metal to generate carbides (CF Deng et al., MSE A, 444, pp. 138, 2007), and since the density of carbon nanotubes (about 2 g / cm 3 ) is less than that of most metals, it is difficult to uniformly disperse the carbon nanotubes in the metal matrix. exist.
  • Carbon nanotubes have a problem that they are oxidized and disappear in the air of 400 °C or more, and carbon nanotubes react with the liquid metal to become carbides, or carbon nanotubes are not uniformly dispersed, excellent carbon nanotubes had There is a problem that the mechanical properties of the carbon nanotube / metal nanocomposite material is reduced due to the disappearance.
  • the present application prepares the carbon nanotube / metal nanocomposite material by a carbon nanotube / metal nanocomposite material and a casting process, including a metal matrix and silica-coated carbon nanotubes dispersed on the metal. Provide a way to.
  • a first aspect of the present disclosure may provide a carbon nanotube / metal nanocomposite comprising a metal matrix and silica-coated carbon nanotubes dispersed on the metal.
  • the metal is Al, Cu, Fe, Li, Be, Sc, V, Mn, Ga, Ge, Y, Ru, Rh, Cd, In, Sn, Sb, Pb, Co, Ni , Sn, Cr, Mg, Zn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ag, Pt, Au, Pd, and may be selected from the group consisting of a combination thereof, It is not limited to this.
  • the silica-coated carbon nanotube may include about 10 vol% to about 90 vol% of the silica, but is not limited thereto.
  • the carbon nanotube / metal nanocomposite may include about 0.1 wt% to about 50 wt% of the metal, but is not limited thereto.
  • a second aspect of the present invention the step of coating the carbon nanotubes with silica to form a carbon nanotube / silica composite structure; And preparing a carbon nanotube / metal nanocomposite material by mixing the carbon nanotube / silica composite structure with a metal solution, thereby providing a method for producing a carbon nanotube / metal nanocomposite material.
  • the carbon nanotube / silica composite structure may be formed by sol-gel method by dispersing the carbon nanotubes in a solvent and adding a silica salt to the solvent, but is not limited thereto. .
  • the carbon nanotube / silica composite structure may include about 10 vol% to about 90 vol% of silica, but is not limited thereto.
  • the metal solution is Al, Cu, Fe, Li, Be, Sc, V, Mn, Ga, Ge, Y, Ru, Rh, Cd, In, Sn, Sb, Pb, Co, Ni, Sn, Cr, Mg, Zn, Si, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ag, Pt, Au, Pd, and combinations thereof May be, but is not limited thereto.
  • the carbon nanotube / metal nanocomposite may include about 0.1 wt% to about 50 wt% of the metal, but is not limited thereto.
  • the carbon nanotube composite structure may be uniformly dispersed in the metal solution when the carbon nanotube / silica composite structure is mixed with the metal solution, but is not limited thereto.
  • the present invention by using a carbon nanotube / silica composite structure in the production of carbon nanotube / metal nanocomposite material, the problem of oxidation of carbon nanotubes that occur when manufacturing a carbon nanotube / metal nanocomposite material by a conventional casting process, It can solve the carbon nanotube and liquid metal reaction problem, carbon nanotube dispersion problem caused by the density difference between the carbon nanotube and the metal matrix, and the carbon nanotube without any damage to the carbon nanotube and maintaining excellent characteristics Metal nanocomposites can be provided.
  • the carbon nanotubes are silica coated, the carbon nanotubes may be uniformly dispersed on the metal, and the stability to heat may be achieved, and the stability of the carbon nanotubes may be excellent, even at high temperatures. Properties such as high strength and high modulus of elasticity can be maintained.
  • FIG. 1 is a flow chart showing a method of manufacturing a carbon nanotube / metal nanocomposite material according to an embodiment of the present application.
  • Figure 2 is a transmission electron micrograph of the carbon nanotube / silica composite structure according to an embodiment of the present application.
  • Figure 3 is a transmission electron micrograph of the carbon nanotubes in the carbon nanotubes / aluminum nanocomposite material according to an embodiment of the present application.
  • the term "combination of these" included in the expression of the makushi form means one or more mixtures or combinations selected from the group consisting of constituents described in the expression of the makushi form, wherein the constituents It means to include one or more selected from the group consisting of.
  • carbon nanotube / metal nanocomposite material refers to a nanocomposite material in which the metal is a matrix metal and the carbon nanotubes are dispersed and distributed in the base metal.
  • base metal is used as a concept to collectively refer to various kinds of metals that function as bases of nanocomposites.
  • carbon nanotube / metal nanocomposite material refers to a composite material having a nano-size in which the metal is a base metal and the carbon nanotubes are dispersed and distributed in the base metal.
  • carbon nanotube / aluminum nanocomposite material means a composite material having a nano size in which aluminum is used as a base metal and carbon nanotubes are dispersed and distributed in the base metal.
  • the nano size means a diameter, length, height or width of about 10 ⁇ m or less.
  • carbon nanotube / silica composite structure refers to a carbon nanotube structure in which the silica is coated on the surface.
  • carbon nanotube / silica composite structure refers to a composite structure in which silica is coated on the surface of the carbon nanotubes.
  • a first aspect of the present disclosure may provide a carbon nanotube / metal nanocomposite comprising a metal matrix and silica-coated carbon nanotubes dispersed on the metal.
  • a second aspect of the present invention the step of coating the carbon nanotubes with silica to form a carbon nanotube / silica composite structure; And preparing a carbon nanotube / metal nanocomposite material by mixing the carbon nanotube / silica composite structure with a metal solution, thereby providing a method for producing a carbon nanotube / metal nanocomposite material.
  • FIG. 1 is a flow chart of a method of manufacturing a carbon nanotube / metal nanocomposite material according to an embodiment of the present application.
  • carbon nanotubes are coated with silica to form a carbon nanotube / silica composite structure (S100).
  • the carbon nanotube / silica composite structure may be formed by dispersing the carbon nanotube in a solvent and adding a silica salt to the solvent, but is not limited thereto.
  • the solvent may be used without limitation so long as it is a solvent capable of uniformly dispersing carbon nanotubes, for example, alcohol solvents such as ethanol and methanol, N, N-dimethylformamide (DMF), N-methylpyrrolidone (NMP), and the like. Amide-based solvent of may be used, but is not limited thereto.
  • the carbon nanotubes may be injected into a solvent and an ultrasonic treatment may be performed, but the present invention is not limited thereto.
  • the carbon nanotubes and the silica salt react to form the carbon nanotubes coated with the silica to form a carbon nanotube / silica composite structure.
  • a process of filtering, washing, drying, and calcining the solution may be further performed, but is not limited thereto.
  • the further process may use methods that are generally known in the art, and are not limited.
  • the carbon nanotube / silica composite structure may include, for example, about 10 vol% to about 90 vol%, about 20 vol% to about 80 vol%, about 30 vol% to about 70 vol%, and about 40 vol % To about 60 vol%, about 45 vol% to about 55 vol%, about 20 vol% to about 90 vol%, or about 10 vol% to about 80 vol%, but is not limited thereto.
  • the carbon nanotube / silica composite structure is mixed with a metal solution to prepare a carbon nanotube / metal nanocomposite material (S200).
  • the metal solution is produced by melting a metal, and means a molten metal.
  • the metal of the metal solution is, for example, Al, Cu, Fe, Li, Be, Sc, V, Mn, Ga, Ge, Y, Ru, Rh, Cd, In, Sn, Sb, Pb, Co, Ni, Sn, Cr, Mg, Zn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ag, Pt, Au, Pd, and may include one selected from the group consisting of However, the present invention is not limited thereto.
  • the carbon nanotubes are not uniformly dispersed on the metal solution due to the difference in density between the carbon nanotubes and the metal solution.
  • the carbon nanotube / silica composite structure when the carbon nanotube / silica composite structure is injected into the metal solution, the carbon nanotube / silica composite structure may be uniformly dispersed in the metal solution.
  • the carbon nanotube / metal nanocomposite material comprises, for example, about 0.1 wt% to about 50 wt%, about 0.5 wt% to about 45 wt%, about 1 wt% to about 40 wt%, about 5 wt% to about 35 wt%, about 10 wt% to about 30 wt%, or about 15 wt% to about 25 wt%, but is not limited thereto.
  • the carbon nanotubes / metal nanocomposites produced by the production method of the present application may include a metal matrix and silica-coated carbon nanotubes dispersed on the metal.
  • the silica-coated carbon nanotubes include, for example, about 10 vol% to about 90 vol%, about 20 vol% to about 80 vol%, about 30 vol% to about 70 vol%, about 40 vol % To about 60 vol%, about 45 vol% to about 55 vol%, about 20 vol% to about 90 vol%, or about 10 vol% to about 80 vol%, but is not limited thereto.
  • the metal is Al, Cu, Fe, Li, Be, Sc, V, Mn, Ga, Ge, Y, Ru, Rh, Cd, In, Sn, Sb, Pb, Co, Ni, Sn, Cr, Mg, Zn , Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ag, Pt, Au, Pd, and combinations thereof may be included, but is not limited thereto.
  • the carbon nanotube / metal nanocomposite material comprises, for example, about 0.1 wt% to about 50 wt%, about 0.5 wt% to about 45 wt%, about 1 wt% to about 40 wt%, about 5 wt% to about 35 wt%, about 10 wt% to about 30 wt%, or about 15 wt% to about 25 wt%, but is not limited thereto.
  • the carbon nanotubes are silica coated, a density difference between the carbon nanotubes and the metal may be overcome, and thus the carbon nanotubes may be uniformly dispersed on the metal.
  • the carbon nanotubes can secure stability to heat, and as the thermal stability is excellent, excellent characteristics of carbon nanotubes at high temperature, for example, high strength and high Mechanical properties such as elastic modulus can be maintained.
  • a multi-walled carbon nanotube having a diameter of 20 nm and a length of 10 ⁇ m to 20 ⁇ m and aluminum having a purity of 99.9% were prepared.
  • 500 mg of the carbon nanotubes were dispersed in 1000 mL of ethanol using ultrasonic waves, and then 50 mL of silica salt (tetraethyl orthosilcate) was added.
  • silica salt tetraethyl orthosilcate
  • a small amount of water and ammonia water were added to the carbon nanotube and the silica salt solution, and heated to 70 ° C. and reacted for 6 hours.
  • a composite structure coated with silica was prepared by heating in air at about 300 ° C. for about 1 hour.
  • Multi-walled carbon nanotubes having a diameter of 20 nm and a length of 10 ⁇ m to 20 ⁇ m and aluminum having a purity of 99.9% were prepared.
  • Silica-coated carbon nanotubes were put in an aluminum solution, stirred, and solidified to prepare a carbon nanotube / aluminum nanocomposite material.
  • Most of the carbon nanotubes floated on the aluminum solution and did not mix with aluminum (see FIG. 4), but were oxidized and damaged in air. No carbon nanotubes were observed in the transmission electron microscope of the prepared nanocomposite material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

Provided are: a carbon nanotube/metal nanocomposite material including a metal matrix as a base and silica-coated carbon nanotubes dispersed on the metal; and a method for manufacturing the carbon nanotube/metal nanocomposite material by means of a casting process.

Description

탄소나노튜브/금속 나노복합소재 및 이의 제조방법Carbon Nanotube / Metal Nanocomposite Materials and Manufacturing Method Thereof
본원은, 탄소나노튜브/금속 나노복합소재 및 주조 공정에 의한 상기 탄소나노튜브/금속 나노복합소재의 제조 방법에 관한 것이다.The present application relates to a carbon nanotube / metal nanocomposite material and a method for producing the carbon nanotube / metal nanocomposite material by a casting process.
탄소나노튜브는 탄소로 이루어진 수에서 수십 nm 의 직경을 가지는 튜브 형태의 나노소재이다. 탄소나노튜브는 높은 강도, 및 높은 탄성계수 등 우수한 기계적 특성을 가지며, 또한 낮은 밀도, 및 높은 장대비 등의 우수한 특성이 추가로 밝혀짐에 따라, 탄소나노튜브를 고분자 및 금속 기지(matrix) 복합소재의 강화재와 같은 구조용 소재분야에 활용하려는 연구가 진행되고 있다.Carbon nanotubes are nanomaterials in the form of tubes having a diameter of several tens of nanometers of carbon. Carbon nanotubes have excellent mechanical properties such as high strength and high modulus of elasticity, and further excellent properties such as low density and high field contrast have been found. Therefore, carbon nanotubes are used as polymer and metal matrix composite materials. Research is underway to apply it to structural materials such as reinforcing materials.
탄소나노튜브/금속 나노복합소재의 제조에 있어, 주로 탄소나노튜브와 금속 분말을 혼합하여 탄소나노튜브/금속 복합분말을 제조하고, 이를 소결하는 분말야금 공정이 주로 이용되었다. 다만, 주조 공정을 이용하여 탄소나노튜브/금속 나노복합소재를 제조하는 경우, 탄소나노튜브가 산화되는 문제, 탄소나노튜브가 액상의 금속과 반응하여 탄화물을 생성하는 문제(C.F. Deng et al., MSE A, 444, pp.138, 2007), 및 탄소나노튜브의 밀도(약 2 g/cm3)가 대부분의 금속의 밀도보다 작기 때문에 탄소나노튜브를 금속 기지 내에 균일하게 분산시키기 어려운 문제 등이 존재한다. In the production of carbon nanotubes / metal nanocomposites, a powder metallurgy process is mainly used in which carbon nanotubes and metal powders are mixed to produce carbon nanotubes / metal composite powders and sintered. However, when manufacturing carbon nanotubes / metal nanocomposites using a casting process, carbon nanotubes are oxidized, and carbon nanotubes react with liquid metal to generate carbides (CF Deng et al., MSE A, 444, pp. 138, 2007), and since the density of carbon nanotubes (about 2 g / cm 3 ) is less than that of most metals, it is difficult to uniformly disperse the carbon nanotubes in the metal matrix. exist.
탄소나노튜브는 400℃ 이상의 공기 중에서 산화되어 없어지는 문제점이 있으며, 탄소나노튜브가 액상의 금속과 반응하여 탄화물이 되거나, 또는 탄소나노튜브가 균일하게 분산되지 못하면 기존의 탄소나노튜브가 가지고 있던 우수한 특성이 사라져 탄소나노튜브/금속 나노복합소재의 기계적 특성이 감소하는 문제점이 있다. Carbon nanotubes have a problem that they are oxidized and disappear in the air of 400 ℃ or more, and carbon nanotubes react with the liquid metal to become carbides, or carbon nanotubes are not uniformly dispersed, excellent carbon nanotubes had There is a problem that the mechanical properties of the carbon nanotube / metal nanocomposite material is reduced due to the disappearance.
본원은 금속 기지(matrix), 및 상기 금속 상에 분산된 실리카-코팅된 탄소나노튜브를 포함하는, 탄소나노튜브/금속 나노복합소재 및 주조 공정에 의해 상기 탄소나노튜브/금속 나노복합소재를 제조하는 방법을 제공한다.The present application prepares the carbon nanotube / metal nanocomposite material by a carbon nanotube / metal nanocomposite material and a casting process, including a metal matrix and silica-coated carbon nanotubes dispersed on the metal. Provide a way to.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present application is not limited to the above-mentioned problem, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
본원의 제 1 측면은, 금속 기지(matrix), 및 상기 금속 상에 분산된 실리카-코팅된 탄소나노튜브를 포함하는, 탄소나노튜브/금속 나노복합소재를 제공할 수 있다.A first aspect of the present disclosure may provide a carbon nanotube / metal nanocomposite comprising a metal matrix and silica-coated carbon nanotubes dispersed on the metal.
본원의 일 구현예에 따르면, 상기 금속은 Al, Cu, Fe, Li, Be, Sc, V, Mn, Ga, Ge, Y, Ru, Rh, Cd, In, Sn, Sb, Pb, Co, Ni, Sn, Cr, Mg, Zn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ag, Pt, Au, Pd, 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to an embodiment of the present disclosure, the metal is Al, Cu, Fe, Li, Be, Sc, V, Mn, Ga, Ge, Y, Ru, Rh, Cd, In, Sn, Sb, Pb, Co, Ni , Sn, Cr, Mg, Zn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ag, Pt, Au, Pd, and may be selected from the group consisting of a combination thereof, It is not limited to this.
본원의 일 구현예에 따르면, 상기 실리카-코팅된 탄소나노튜브는 상기 실리카를 약 10 vol% 내지 약 90 vol% 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present application, the silica-coated carbon nanotube may include about 10 vol% to about 90 vol% of the silica, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 탄소나노튜브/금속 나노복합소재는 상기 금속을 약 0.1 wt% 내지 약 50 wt% 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present application, the carbon nanotube / metal nanocomposite may include about 0.1 wt% to about 50 wt% of the metal, but is not limited thereto.
본원의 제 2 측면은, 탄소나노튜브를 실리카로 코팅하여 탄소나노튜브/실리카 복합 구조체를 형성하는 단계; 및 상기 탄소나노튜브/실리카 복합 구조체를 금속 용액과 혼합하여 탄소나노튜브/금속 나노복합소재를 제조하는 단계를 포함하는, 탄소나노튜브/금속 나노복합소재의 제조 방법을 제공할 수 있다.A second aspect of the present invention, the step of coating the carbon nanotubes with silica to form a carbon nanotube / silica composite structure; And preparing a carbon nanotube / metal nanocomposite material by mixing the carbon nanotube / silica composite structure with a metal solution, thereby providing a method for producing a carbon nanotube / metal nanocomposite material.
본원의 일 구현예에 따르면, 상기 탄소나노튜브/실리카 복합 구조체는 상기 탄소나노튜브를 용매에 분산시키고, 상기 용매에 실리카 염을 첨가하여 졸겔 방법에 의해 형성되는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the carbon nanotube / silica composite structure may be formed by sol-gel method by dispersing the carbon nanotubes in a solvent and adding a silica salt to the solvent, but is not limited thereto. .
본원의 일 구현예에 따르면, 상기 탄소나노튜브/실리카 복합 구조체는 상기 실리카를 약 10 vol% 내지 약 90 vol% 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the carbon nanotube / silica composite structure may include about 10 vol% to about 90 vol% of silica, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 금속 용액은 Al, Cu, Fe, Li, Be, Sc, V, Mn, Ga, Ge, Y, Ru, Rh, Cd, In, Sn, Sb, Pb, Co, Ni, Sn, Cr, Mg, Zn, Si, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ag, Pt, Au, Pd, 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present application, the metal solution is Al, Cu, Fe, Li, Be, Sc, V, Mn, Ga, Ge, Y, Ru, Rh, Cd, In, Sn, Sb, Pb, Co, Ni, Sn, Cr, Mg, Zn, Si, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ag, Pt, Au, Pd, and combinations thereof May be, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 탄소나노튜브/금속 나노복합소재는 상기 금속을 약 0.1 wt% 내지 약 50 wt% 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present application, the carbon nanotube / metal nanocomposite may include about 0.1 wt% to about 50 wt% of the metal, but is not limited thereto.
본원의 일 구현예에 따르면, 상기 탄소나노튜브/실리카 복합 구조체를 상기 금속 용액과 혼합 시 상기 탄소나노튜브 복합 구조체가 상기 금속 용액 내에 균일하게 분산되는 것일 수 있으나, 이에 제한되는 것은 아니다.According to the exemplary embodiment of the present disclosure, the carbon nanotube composite structure may be uniformly dispersed in the metal solution when the carbon nanotube / silica composite structure is mixed with the metal solution, but is not limited thereto.
본원에 의하면, 탄소나노튜브/금속 나노복합소재 제조 시 탄소나노튜브/실리카 복합 구조체를 이용함으로써 종래 주조 공정에 의해 탄소나노튜브/금속 나노복합소재를 제조하는 경우 발생하는 탄소나노튜브의 산화 문제, 탄소나노튜브와 액상 금속의 반응 문제, 탄소나노튜브와 금속 기지 사이의 밀도 차이에서 기인하는 탄소나노튜브의 분산 문제 등을 해결할 수 있으며, 탄소나노튜브의 손상이 없고 우수한 특성이 유지되는 탄소나노튜브/금속 나노복합소재를 제공할 수 있다. 또한, 상기 탄소나노튜브가 실리카 코팅됨으로써 상기 탄소나노튜브가 상기 금속 상에 균일하게 분산될 수 있고, 열에 대한 안정성을 달성할 수 있으며, 열에 대한 안정성이 우수해짐에 따라 고온에서도 탄소나노튜브의 우수한 특성, 예를 들어, 높은 강도, 및 높은 탄성계수 등의 기계적 특성이 유지될 수 있다.According to the present invention, by using a carbon nanotube / silica composite structure in the production of carbon nanotube / metal nanocomposite material, the problem of oxidation of carbon nanotubes that occur when manufacturing a carbon nanotube / metal nanocomposite material by a conventional casting process, It can solve the carbon nanotube and liquid metal reaction problem, carbon nanotube dispersion problem caused by the density difference between the carbon nanotube and the metal matrix, and the carbon nanotube without any damage to the carbon nanotube and maintaining excellent characteristics Metal nanocomposites can be provided. In addition, since the carbon nanotubes are silica coated, the carbon nanotubes may be uniformly dispersed on the metal, and the stability to heat may be achieved, and the stability of the carbon nanotubes may be excellent, even at high temperatures. Properties such as high strength and high modulus of elasticity can be maintained.
도 1 은 본원의 일 구현예에 따른 탄소나노튜브/금속 나노복합소재의 제조 방법을 나타낸 순서도이다.1 is a flow chart showing a method of manufacturing a carbon nanotube / metal nanocomposite material according to an embodiment of the present application.
도 2 는 본원의 일 실시예에 따른 탄소나노튜브/실리카 복합 구조체의 투과전자현미경 사진이다.Figure 2 is a transmission electron micrograph of the carbon nanotube / silica composite structure according to an embodiment of the present application.
도 3 은 본원의 일 실시예에 따른 탄소나노튜브/알루미늄 나노복합소재 내 탄소나노튜브의 투과전자현미경 사진이다.Figure 3 is a transmission electron micrograph of the carbon nanotubes in the carbon nanotubes / aluminum nanocomposite material according to an embodiment of the present application.
도 4 는 본원의 일 비교예에 따른 탄소나노튜브의 사진이다. 4 is a photograph of carbon nanotubes according to a comparative example of the present application.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail the embodiments and embodiments of the present application to be easily carried out by those of ordinary skill in the art.
그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결" 되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결" 되어 있는 경우도 포함한다.Throughout this specification, when a part is "connected" to another part, this includes not only "directly connected" but also "electrically connected" with another element in between. do.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout this specification, when a member is located "on" another member, this includes not only when one member is in contact with another member but also when another member exists between the two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless specifically stated otherwise.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 또한, 본원 명세서 전체에서, "~ 하는 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.As used herein, the terms "about", "substantially", and the like, are used at, or in close proximity to, numerical values when manufacturing and material tolerances inherent in the meanings indicated are provided to aid the understanding herein. In order to prevent the unfair use of unscrupulous infringers. In addition, throughout this specification, "step to" or "step of" does not mean "step for."
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout this specification, the term "combination of these" included in the expression of the makushi form means one or more mixtures or combinations selected from the group consisting of constituents described in the expression of the makushi form, wherein the constituents It means to include one or more selected from the group consisting of.
본원 명세서 전체에서, "A 및/또는 B" 의 기재는, "A, 또는 B, 또는, A 및 B" 를 의미한다. Throughout this specification, description of "A and / or B" means "A, or B, or A and B."
본원 명세서 전체에서 사용되는 용어 "탄소나노튜브/금속" 나노복합소재는 상기 금속을 기지(matrix) 금속으로 하고, 탄소나노튜브가 상기 기지 금속 내에 분산되어 분포하는 나노복합소재를 의미한다. 상기 "기지 금속"이란 용어는 나노복합소재의 기지로서 기능하는 다양한 종류의 금속을 통칭하는 개념으로 사용된다. 본원 명세서 전체에서 사용되는 정도의 "탄소나노튜브/금속 나노복합소재" 는 상기 금속을 기지 금속으로 하고, 상기 탄소나노튜브가 상기 기지 금속 내에 분산되어 분포하는 나노 크기를 갖는 복합소재를 의미한다. 일 예로서, "탄소나노튜브/알루미늄 나노복합소재" 란, 알루미늄을 기지 금속으로 하고, 탄소나노튜브가 상기 기지 금속 내에 분산되어 분포하는 나노 크기를 갖는 복합소재를 의미한다. 상기 나노 크기란 약 10 ㎛ 이하의 직경, 길이, 높이 또는 폭을 의미한다.As used throughout the present specification, the term "carbon nanotube / metal" nanocomposite material refers to a nanocomposite material in which the metal is a matrix metal and the carbon nanotubes are dispersed and distributed in the base metal. The term " base metal " is used as a concept to collectively refer to various kinds of metals that function as bases of nanocomposites. As used throughout the present specification, "carbon nanotube / metal nanocomposite material" refers to a composite material having a nano-size in which the metal is a base metal and the carbon nanotubes are dispersed and distributed in the base metal. As an example, the term "carbon nanotube / aluminum nanocomposite material" means a composite material having a nano size in which aluminum is used as a base metal and carbon nanotubes are dispersed and distributed in the base metal. The nano size means a diameter, length, height or width of about 10 μm or less.
본원 명세서 전체에서 사용되는 용어 "탄소나노튜브/실리카 복합 구조체" 는 상기 실리카가 표면에 코팅되어 있는 탄소나노튜브 구조체를 의미한다. 일 예로서, "탄소나노튜브/실리카 복합 구조체" 란, 탄소나노튜브의 표면에 실리카가 코팅되어 있는 복합 구조체를 의미한다.As used throughout this specification, the term "carbon nanotube / silica composite structure" refers to a carbon nanotube structure in which the silica is coated on the surface. As an example, the "carbon nanotube / silica composite structure" refers to a composite structure in which silica is coated on the surface of the carbon nanotubes.
이하, 본원의 탄소나노튜브/금속 나노복합소재 및 이의 제조 방법에 대하여 구현예 및 실시예와 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본원이 이러한 구현예 및 실시예와 도면에 제한되는 것은 아니다. Hereinafter, the carbon nanotube / metal nanocomposite material of the present application and a method for manufacturing the same will be described in detail with reference to embodiments, examples, and drawings. However, the present application is not limited to these embodiments, examples and drawings.
본원의 제 1 측면은, 금속 기지(matrix), 및 상기 금속 상에 분산된 실리카-코팅된 탄소나노튜브를 포함하는, 탄소나노튜브/금속 나노복합소재를 제공할 수 있다.A first aspect of the present disclosure may provide a carbon nanotube / metal nanocomposite comprising a metal matrix and silica-coated carbon nanotubes dispersed on the metal.
본원의 제 2 측면은, 탄소나노튜브를 실리카로 코팅하여 탄소나노튜브/실리카 복합 구조체를 형성하는 단계; 및 상기 탄소나노튜브/실리카 복합 구조체를 금속 용액과 혼합하여 탄소나노튜브/금속 나노복합소재를 제조하는 단계를 포함하는, 탄소나노튜브/금속 나노복합소재의 제조 방법을 제공할 수 있다.A second aspect of the present invention, the step of coating the carbon nanotubes with silica to form a carbon nanotube / silica composite structure; And preparing a carbon nanotube / metal nanocomposite material by mixing the carbon nanotube / silica composite structure with a metal solution, thereby providing a method for producing a carbon nanotube / metal nanocomposite material.
도 1 은, 본원의 일 구현예에 따른 탄소나노튜브/금속 나노복합소재의 제조 방법의 순서도이다. 1 is a flow chart of a method of manufacturing a carbon nanotube / metal nanocomposite material according to an embodiment of the present application.
먼저, 탄소나노튜브를 실리카로 코팅하여 탄소나노튜브/실리카 복합 구조체를 형성한다 (S100). First, carbon nanotubes are coated with silica to form a carbon nanotube / silica composite structure (S100).
상기 탄소나노튜브/실리카 복합 구조체는 상기 탄소나노튜브를 용매에 분산시키고, 상기 용매에 실리카 염을 첨가하여 형성되는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 용매는 탄소나노튜브를 균일하게 분산시킬 수 있는 용매라면 제한없이 사용할 수 있으며, 예를 들어, 에탄올, 메탄올 등의 알코올 계열 용매, N,N-dimethylformamide (DMF), N-methylpyrrolidone(NMP) 등의 아미드 계열 용매를 사용할 수 있으나, 이에 제한되는 것은 아니다. 상기 탄소나노튜브의 균일한 분산을 위해, 예를 들어, 상기 탄소나노튜브를 용매에 주입하고 초음파 처리 공정을 수행할 수 있으나, 이에 제한되는 것은 아니다.The carbon nanotube / silica composite structure may be formed by dispersing the carbon nanotube in a solvent and adding a silica salt to the solvent, but is not limited thereto. The solvent may be used without limitation so long as it is a solvent capable of uniformly dispersing carbon nanotubes, for example, alcohol solvents such as ethanol and methanol, N, N-dimethylformamide (DMF), N-methylpyrrolidone (NMP), and the like. Amide-based solvent of may be used, but is not limited thereto. For uniform dispersion of the carbon nanotubes, for example, the carbon nanotubes may be injected into a solvent and an ultrasonic treatment may be performed, but the present invention is not limited thereto.
상기 탄소나노튜브, 상기 실리카 염, 및 상기 용매를 포함하는 용액 내에서, 상기 탄소나노튜브와 상기 실리카 염이 반응하여 상기 탄소나노튜브가 상기 실리카에 의해 코팅되어 탄소나노튜브/실리카 복합 구조체가 형성될 수 있다. 상기 탄소나노튜브/실리카 복합 구조체를 수득하기 위하여, 상기 용액을 필터링, 세척, 건조, 및 하소하는 공정을 추가 수행할 수 있으나, 이에 제한되는 것은 아니다. 상기 추가 공정은 업계에 일반적으로 공지되어 있는 방법을 사용할 수 있으며, 제한되지 않는다.In the solution containing the carbon nanotubes, the silica salt, and the solvent, the carbon nanotubes and the silica salt react to form the carbon nanotubes coated with the silica to form a carbon nanotube / silica composite structure. Can be. In order to obtain the carbon nanotube / silica composite structure, a process of filtering, washing, drying, and calcining the solution may be further performed, but is not limited thereto. The further process may use methods that are generally known in the art, and are not limited.
상기 탄소나노튜브/실리카 복합 구조체는 상기 실리카를, 예를 들어, 약 10 vol% 내지 약 90 vol%, 약 20 vol% 내지 약 80 vol%, 약 30 vol% 내지 약 70 vol%, 약 40 vol% 내지 약 60 vol%, 약 45 vol% 내지 약 55 vol%, 약 20 vol% 내지 약 90 vol%, 또는 약 10 vol% 내지 약 80 vol% 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.The carbon nanotube / silica composite structure may include, for example, about 10 vol% to about 90 vol%, about 20 vol% to about 80 vol%, about 30 vol% to about 70 vol%, and about 40 vol % To about 60 vol%, about 45 vol% to about 55 vol%, about 20 vol% to about 90 vol%, or about 10 vol% to about 80 vol%, but is not limited thereto.
이어서, 상기 탄소나노튜브/실리카 복합 구조체를 금속 용액과 혼합하여 탄소나노튜브/금속 나노복합소재를 제조한다 (S200).Subsequently, the carbon nanotube / silica composite structure is mixed with a metal solution to prepare a carbon nanotube / metal nanocomposite material (S200).
상기 금속 용액이란, 금속을 용융하여 제조한 것으로서, 금속 용탕(molten metal)을 의미한다. 상기 금속 용액의 상기 금속은, 예를 들어, Al, Cu, Fe, Li, Be, Sc, V, Mn, Ga, Ge, Y, Ru, Rh, Cd, In, Sn, Sb, Pb, Co, Ni, Sn, Cr, Mg, Zn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ag, Pt, Au, Pd, 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.The metal solution is produced by melting a metal, and means a molten metal. The metal of the metal solution is, for example, Al, Cu, Fe, Li, Be, Sc, V, Mn, Ga, Ge, Y, Ru, Rh, Cd, In, Sn, Sb, Pb, Co, Ni, Sn, Cr, Mg, Zn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ag, Pt, Au, Pd, and may include one selected from the group consisting of However, the present invention is not limited thereto.
일반적으로, 순수한 탄소나노튜브를 상기 금속 용액 상에 주입하는 경우, 상기 탄소나노튜브와 상기 금속 용액의 밀도 차이로 인해 상기 탄소나노튜브가 상기 금속 용액 상에 균일하게 분산되지 않는다. 그러나, 본원에서와 같이, 탄소나노튜브/실리카 복합 구조체를 상기 금속 용액에 주입하는 경우, 상기 탄소나노튜브/실리카 복합 구조체가 상기 금속 용액 중에서 균일하게 분산될 수 있다.In general, when pure carbon nanotubes are injected onto the metal solution, the carbon nanotubes are not uniformly dispersed on the metal solution due to the difference in density between the carbon nanotubes and the metal solution. However, as in the present application, when the carbon nanotube / silica composite structure is injected into the metal solution, the carbon nanotube / silica composite structure may be uniformly dispersed in the metal solution.
상기 탄소나노튜브/금속 나노복합소재는 상기 금속을, 예를 들어, 약 0.1 wt% 내지 약 50 wt%, 약 0.5 wt% 내지 약 45 wt%, 약 1 wt% 내지 약 40 wt%, 약 5 wt% 내지 약 35 wt%, 약 10 wt% 내지 약 30 wt%, 또는 약 15 wt% 내지 약 25 wt% 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.The carbon nanotube / metal nanocomposite material comprises, for example, about 0.1 wt% to about 50 wt%, about 0.5 wt% to about 45 wt%, about 1 wt% to about 40 wt%, about 5 wt% to about 35 wt%, about 10 wt% to about 30 wt%, or about 15 wt% to about 25 wt%, but is not limited thereto.
상기 본원의 제조 방법에 의해 제조된 탄소나노튜브/금속 나노복합소재는 금속 기지, 및 상기 금속 상에 분산된 실리카-코팅된 탄소나노튜브를 포함할 수 있다. The carbon nanotubes / metal nanocomposites produced by the production method of the present application may include a metal matrix and silica-coated carbon nanotubes dispersed on the metal.
상기 실리카-코팅된 탄소나노튜브는 상기 실리카를, 예를 들어, 약 10 vol% 내지 약 90 vol%, 약 20 vol% 내지 약 80 vol%, 약 30 vol% 내지 약 70 vol%, 약 40 vol% 내지 약 60 vol%, 약 45 vol% 내지 약 55 vol%, 약 20 vol% 내지 약 90 vol%, 또는 약 10 vol% 내지 약 80 vol% 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.The silica-coated carbon nanotubes include, for example, about 10 vol% to about 90 vol%, about 20 vol% to about 80 vol%, about 30 vol% to about 70 vol%, about 40 vol % To about 60 vol%, about 45 vol% to about 55 vol%, about 20 vol% to about 90 vol%, or about 10 vol% to about 80 vol%, but is not limited thereto.
상기 금속은 Al, Cu, Fe, Li, Be, Sc, V, Mn, Ga, Ge, Y, Ru, Rh, Cd, In, Sn, Sb, Pb, Co, Ni, Sn, Cr, Mg, Zn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ag, Pt, Au, Pd, 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.The metal is Al, Cu, Fe, Li, Be, Sc, V, Mn, Ga, Ge, Y, Ru, Rh, Cd, In, Sn, Sb, Pb, Co, Ni, Sn, Cr, Mg, Zn , Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ag, Pt, Au, Pd, and combinations thereof may be included, but is not limited thereto.
상기 탄소나노튜브/금속 나노복합소재는 상기 금속을, 예를 들어, 약 0.1 wt% 내지 약 50 wt%, 약 0.5 wt% 내지 약 45 wt%, 약 1 wt% 내지 약 40 wt%, 약 5 wt% 내지 약 35 wt%, 약 10 wt% 내지 약 30 wt%, 또는 약 15 wt% 내지 약 25 wt% 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.The carbon nanotube / metal nanocomposite material comprises, for example, about 0.1 wt% to about 50 wt%, about 0.5 wt% to about 45 wt%, about 1 wt% to about 40 wt%, about 5 wt% to about 35 wt%, about 10 wt% to about 30 wt%, or about 15 wt% to about 25 wt%, but is not limited thereto.
상기 탄소나노튜브가 실리카 코팅됨에 따라 상기 탄소나노튜브와 상기 금속 사이의 밀도차이를 극복할 수 있고, 이에 따라 상기 탄소나노튜브가 상기 금속 상에 균일하게 분산되어 있을 수 있다. 또한, 상기 탄소나노튜브가 실리카 코팅됨에 따라 상기 탄소나노튜브는 열에 대한 안정성을 확보할 수 있고, 열에 대한 안정성이 우수해짐에 따라 고온에서도 탄소나노튜브의 우수한 특성, 예를 들어 높은 강도, 및 높은 탄성계수 등의 기계적 특성이 유지될 수 있다.As the carbon nanotubes are silica coated, a density difference between the carbon nanotubes and the metal may be overcome, and thus the carbon nanotubes may be uniformly dispersed on the metal. In addition, as the carbon nanotubes are silica coated, the carbon nanotubes can secure stability to heat, and as the thermal stability is excellent, excellent characteristics of carbon nanotubes at high temperature, for example, high strength and high Mechanical properties such as elastic modulus can be maintained.
이하 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 하나, 하기의 실시예는 단지 설명의 목적을 위한 것이며 본원의 범위를 한정하고자 하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the following examples are for illustrative purposes only and are not intended to limit the scope of the present application.
[실시예]EXAMPLE
탄소나노튜브/금속 나노복합소재를 제조하기 위하여, 직경 20 nm, 길이 10 ㎛ 내지 20 ㎛ 의 다중벽 탄소나노튜브와 순도 99.9% 의 알루미늄을 준비하였다. 상기 탄소나노튜브 500 mg 을 1000 mL 의 에탄올에 초음파를 이용하여 분산시킨 후 50 mL 의 실리카 염 (tetraethyl orthosilcate)을 첨가하였다. 상기 탄소나노튜브와 상기 실리카염 용액에 소량의 물과 암모니아수를 첨가하고 70℃ 로 가열하고 6 시간 동안 반응시켰다. 상기 용액을 필터링하고 건조시킨 후, 약 300℃ 에서 약 1 시간 동안 공기 중에서 가열하여 실리카가 코팅된 복합 구조체를 제조하였다. In order to prepare a carbon nanotube / metal nanocomposite material, a multi-walled carbon nanotube having a diameter of 20 nm and a length of 10 μm to 20 μm and aluminum having a purity of 99.9% were prepared. 500 mg of the carbon nanotubes were dispersed in 1000 mL of ethanol using ultrasonic waves, and then 50 mL of silica salt (tetraethyl orthosilcate) was added. A small amount of water and ammonia water were added to the carbon nanotube and the silica salt solution, and heated to 70 ° C. and reacted for 6 hours. After filtering and drying the solution, a composite structure coated with silica was prepared by heating in air at about 300 ° C. for about 1 hour.
상기의 제조된 탄소나노튜브/실리카 복합 구조체의 투과전자현미경 사진을 통해 실리카가 탄소나노튜브에 균일하게 코팅되어 있음을 확인하였다 (도 2 참조).Through transmission electron micrographs of the prepared carbon nanotube / silica composite structure, it was confirmed that silica was uniformly coated on the carbon nanotubes (see FIG. 2).
제조된 탄소나노튜브/실리카 복합 구조체 1 g 을 50 g 의 알루미늄 용액에 넣고, 이를 교반한 후 응고시켜 탄소나노튜브/알루미늄 나노복합소재를 제조하였다. 제조된 나노복합소재 내의 탄소나노튜브를 투과전자현미경을 통해 관찰한 결과, 탄소나노튜브가 알루미늄과 반응하지 않고 실리카가 코팅된 형태로 온전히 남아있음을 확인하였다 (도 3 참조).1 g of the prepared carbon nanotube / silica composite structure was placed in a 50 g aluminum solution, stirred, and coagulated to prepare a carbon nanotube / aluminum nanocomposite material. As a result of observing the carbon nanotubes in the prepared nanocomposite material through a transmission electron microscope, it was confirmed that the carbon nanotubes did not react with aluminum and remained completely in a silica coated form (see FIG. 3).
[비교예][Comparative Example]
직경 20 nm, 길이 10 ㎛ 내지 20 ㎛ 의 다중벽 탄소나노튜브와 순도 99.9%의 알루미늄을 준비하였다. 실리카가 코팅되지 않은 탄소나노튜브를 알루미늄 용액에 넣고 교반한 후, 응고시켜 탄소나노튜브/알루미늄 나노복합소재를 제조하였다. 대부분의 탄소나노튜브가 알루미늄 용액 위로 떠올라 알루미늄과 혼합되지 않았고(도 4 참조), 공기 중에서 산화되어 손상되었다. 제조된 나노복합소재의 투과전자현미경에서 탄소나노튜브가 관찰되지 않았다.Multi-walled carbon nanotubes having a diameter of 20 nm and a length of 10 μm to 20 μm and aluminum having a purity of 99.9% were prepared. Silica-coated carbon nanotubes were put in an aluminum solution, stirred, and solidified to prepare a carbon nanotube / aluminum nanocomposite material. Most of the carbon nanotubes floated on the aluminum solution and did not mix with aluminum (see FIG. 4), but were oxidized and damaged in air. No carbon nanotubes were observed in the transmission electron microscope of the prepared nanocomposite material.
이상, 구현예 및 실시예를 들어 본원을 상세하게 설명하였으나, 본원은 상기 구현예 및 실시예들에 한정되지 않으며, 여러 가지 다양한 형태로 변형될 수 있으며, 본원의 기술적 사상 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 많은 변형이 가능함이 명백하다.Hereinbefore, the present invention has been described in detail with reference to the embodiments and examples, but the present invention is not limited to the above embodiments and embodiments, and may be modified in various forms, and is commonly used in the art within the technical spirit of the present application. It is evident that many variations are possible by those of skill in the art.

Claims (10)

  1. 금속 기지(matrix), 및 상기 금속 상에 분산된 실리카-코팅된 탄소나노튜브를 포함하는, 탄소나노튜브/금속 나노복합소재.A carbon nanotube / metal nanocomposite comprising a metal matrix and silica-coated carbon nanotubes dispersed on the metal.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 금속은 Al, Cu, Fe, Li, Be, Sc, V, Mn, Ga, Ge, Y, Ru, Rh, Cd, In, Sn, Sb, Pb, Co, Ni, Sn, Cr, Mg, Zn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ag, Pt, Au, Pd, 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것인, 탄소나노튜브/금속 나노복합소재.The metal is Al, Cu, Fe, Li, Be, Sc, V, Mn, Ga, Ge, Y, Ru, Rh, Cd, In, Sn, Sb, Pb, Co, Ni, Sn, Cr, Mg, Zn , Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ag, Pt, Au, Pd, and carbon nanotubes / metal nanocomposites, including those selected from the group consisting of combinations thereof.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 실리카-코팅된 탄소나노튜브는 상기 실리카를 약 10 vol% 내지 약 90 vol% 포함하는 것인, 탄소나노튜브/금속 나노복합소재.Wherein said silica-coated carbon nanotubes comprise from about 10 vol% to about 90 vol% silica, carbon nanotubes / metal nanocomposites.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 탄소나노튜브/금속 나노복합소재는 상기 금속을 약 0.1 wt% 내지 약 50 wt% 포함하는 것인, 탄소나노튜브/금속 나노복합소재.The carbon nanotube / metal nanocomposite material comprises about 0.1 wt% to about 50 wt% of the metal, carbon nanotube / metal nanocomposite material.
  5. 탄소나노튜브를 실리카로 코팅하여 탄소나노튜브/실리카 복합 구조체를 형성하는 단계; 및Coating carbon nanotubes with silica to form a carbon nanotube / silica composite structure; And
    상기 탄소나노튜브/실리카 복합 구조체를 금속 용액과 혼합하여 탄소나노튜브/금속 나노복합소재를 제조하는 단계Preparing a carbon nanotube / metal nanocomposite material by mixing the carbon nanotube / silica composite structure with a metal solution
    를 포함하는, 탄소나노튜브/금속 나노복합소재의 제조 방법.A method of producing a carbon nanotube / metal nanocomposite material comprising a.
  6. 제 5 항에 있어서, The method of claim 5,
    상기 탄소나노튜브/실리카 복합 구조체는 상기 탄소나노튜브를 용매에 분산시키고, 상기 용매에 실리카 염을 첨가하여 형성되는 것인, 탄소나노튜브/금속 나노복합소재의 제조 방법.The carbon nanotube / silica composite structure is formed by dispersing the carbon nanotubes in a solvent and adding a silica salt to the solvent, the method of producing a carbon nanotube / metal nanocomposite material.
  7. 제 5 항에 있어서,The method of claim 5,
    상기 탄소나노튜브/세라믹 복합 구조체는 상기 세라믹을 약 10 vol% 내지 약 90 vol% 포함하는 것인, 탄소나노튜브/금속 나노복합소재의 제조 방법.The carbon nanotube / ceramic composite structure comprises about 10 vol% to about 90 vol% of the ceramic, carbon nanotube / metal nanocomposite manufacturing method.
  8. 제 5 항에 있어서,The method of claim 5,
    상기 금속 용액의 상기 금속은 Al, Cu, Fe, Li, Be, Sc, V, Mn, Ga, Ge, Y, Ru, Rh, Cd, In, Sn, Sb, Pb, Co, Ni, Sn, Cr, Mg, Zn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ag, Pt, Au, Pd, 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하는 것인, 탄소나노튜브/금속 나노복합소재의 제조 방법.The metal of the metal solution is Al, Cu, Fe, Li, Be, Sc, V, Mn, Ga, Ge, Y, Ru, Rh, Cd, In, Sn, Sb, Pb, Co, Ni, Sn, Cr , Carbon nanotubes / metals, including those selected from the group consisting of Mg, Zn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ag, Pt, Au, Pd, and combinations thereof Method for producing nanocomposite material.
  9. 제 5 항에 있어서,The method of claim 5,
    상기 탄소나노튜브/금속 나노복합소재는 상기 금속을 약 0.1 wt% 내지 약 50 wt% 포함하는 것인, 탄소나노튜브/금속 나노복합소재의 제조 방법.The carbon nanotube / metal nanocomposite material comprises about 0.1 wt% to about 50 wt% of the metal, method of manufacturing a carbon nanotube / metal nanocomposite material.
  10. 제 5 항에 있어서,The method of claim 5,
    상기 탄소나노튜브/실리카 복합 구조체를 상기 금속 용액과 혼합 시 상기 탄소나노튜브 복합 구조체가 상기 금속 용액 내에 균일하게 분산되는 것인, 탄소나노튜브/금속 나노복합소재의 제조 방법.The carbon nanotube composite structure is uniformly dispersed in the metal solution when the carbon nanotube / silica composite structure is mixed with the metal solution, the carbon nanotube / metal nanocomposite manufacturing method.
PCT/KR2013/002241 2012-03-20 2013-03-19 Carbon nanotube/metal nanocomposite material, and method for manufacturing same WO2013141570A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120028262A KR101340356B1 (en) 2012-03-20 2012-03-20 Carbon nanotube/metal nanocomposites and preparing method thereof
KR10-2012-0028262 2012-03-20

Publications (1)

Publication Number Publication Date
WO2013141570A1 true WO2013141570A1 (en) 2013-09-26

Family

ID=49222958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002241 WO2013141570A1 (en) 2012-03-20 2013-03-19 Carbon nanotube/metal nanocomposite material, and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101340356B1 (en)
WO (1) WO2013141570A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101583916B1 (en) * 2014-04-14 2016-01-11 현대자동차주식회사 Nano-carbon reinforced aluminium composite materials and method for manufacturing the same
CN114974911B (en) * 2022-06-13 2024-05-28 中国科学院苏州纳米技术与纳米仿生研究所 In-situ nitrogen-doped vanadium dioxide nanosheet core-shell structure fiber electrode and preparation method thereof
WO2023248242A1 (en) * 2022-06-23 2023-12-28 Anna University, Chennai A method for synthesis of carbon-silica-metal composite and combination thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040076466A (en) * 2003-02-25 2004-09-01 한국과학기술원 Fabrication Method of Nano-Composite Powders Reinforced with Carbon Nanotubes
US20050089684A1 (en) * 2001-11-20 2005-04-28 William Marsh Rice University Coated fullerenes, composites and dielectrics made therefrom
US6969536B1 (en) * 1999-07-05 2005-11-29 Printable Field Emitters Limited Method of creating a field electron emission material
US20080233040A1 (en) * 2006-06-12 2008-09-25 Barron Andrew R Chemical derivatization of silica coated fullerenes and use of derivatized silica coated fullerenes
KR20100024230A (en) * 2008-08-25 2010-03-05 한국과학기술원 Carbon nanotube reinforced metal alloy nanocomposite and fabrication process thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6969536B1 (en) * 1999-07-05 2005-11-29 Printable Field Emitters Limited Method of creating a field electron emission material
US20050089684A1 (en) * 2001-11-20 2005-04-28 William Marsh Rice University Coated fullerenes, composites and dielectrics made therefrom
KR20040076466A (en) * 2003-02-25 2004-09-01 한국과학기술원 Fabrication Method of Nano-Composite Powders Reinforced with Carbon Nanotubes
US20080233040A1 (en) * 2006-06-12 2008-09-25 Barron Andrew R Chemical derivatization of silica coated fullerenes and use of derivatized silica coated fullerenes
KR20100024230A (en) * 2008-08-25 2010-03-05 한국과학기술원 Carbon nanotube reinforced metal alloy nanocomposite and fabrication process thereof

Also Published As

Publication number Publication date
KR101340356B1 (en) 2013-12-10
KR20130106601A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
WO2017026722A1 (en) Production method for silver powder for high-temperature sintering type of electrically-conductive paste
JP4345308B2 (en) Polymer composite and method for producing the same
JP7350378B2 (en) Small molecule self-supporting films and hybrid materials
WO2016039504A1 (en) Nanocomposite having core-shell structure and comprising carbon nanoparticle and metal-organic framework, method for producing same, and composition for gas absorption comprising same
WO2010090480A2 (en) Method for preparing carbon particles / copper composite materials
CN102329976B (en) Preparation method of graphene reinforced metal-matrix composite
KR101583916B1 (en) Nano-carbon reinforced aluminium composite materials and method for manufacturing the same
CN101818280B (en) Preparation method of metal matrix composite for carbon nano tube
CN105895870A (en) High-concentration and high-purity graphene slurry and preparation method and application thereof
WO2016028065A1 (en) Carrier-nanoparticle complex and preparation method thereof
WO2010079882A1 (en) Silica nanotube containing silver nanoparticles with high dispersibility, and method for manufacturing same
JP2008201626A (en) Carbon nanotube assembly and its manufacturing method
WO2013141570A1 (en) Carbon nanotube/metal nanocomposite material, and method for manufacturing same
KR101627016B1 (en) Highly dispersible carbon nano structures and method for preparation thereof, and polymer composite comprising the carbon nano structures
KR20140080710A (en) Method for producing silver nanowires using copolymer capping agents
Ghadim et al. Synthesis of PPy–silver nanocomposites via in situ oxidative polymerization
US20100065786A1 (en) Metal complexes for enhanced dispersion of nanomaterials, compositions and methods therefor
KR20130111313A (en) Method for dispersing carbon nanotubes using carbon nanotubes dispersion
Lin et al. Optically active hollow nanoparticles constructed by chirally helical substituted polyacetylene
Yang et al. Preparation and characterization of non-solvent halloysite nanotubes nanofluids
Fu et al. One-dimensional magnetic nanocomposites with attapulgites as templates: growth, formation mechanism and magnetic alignment
WO2018190645A1 (en) Nanocellulose composite, and method for manufacturing same
KR101436016B1 (en) Polymeric nanocomposites with excellent mechanical properties and electrical conductivities comprising modified carbon nano-tube and preparation method thereof
CN101469139B (en) Preparation of silicon oxide supported monodisperse nanoparticle nano complex
US20100197832A1 (en) Isolated nanotubes and polymer nanocomposites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764915

Country of ref document: EP

Kind code of ref document: A1