WO2013141046A1 - Resist upper layer film-forming composition for lithography - Google Patents

Resist upper layer film-forming composition for lithography Download PDF

Info

Publication number
WO2013141046A1
WO2013141046A1 PCT/JP2013/056471 JP2013056471W WO2013141046A1 WO 2013141046 A1 WO2013141046 A1 WO 2013141046A1 JP 2013056471 W JP2013056471 W JP 2013056471W WO 2013141046 A1 WO2013141046 A1 WO 2013141046A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
upper layer
layer film
resist
Prior art date
Application number
PCT/JP2013/056471
Other languages
French (fr)
Japanese (ja)
Inventor
竜慈 大西
友輝 臼井
坂本 力丸
邦慶 何
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Publication of WO2013141046A1 publication Critical patent/WO2013141046A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers

Definitions

  • the present invention is used in a manufacturing process of a semiconductor device using photolithography, reduces an adverse effect exerted by exposure light, and is effective for obtaining a good resist pattern.
  • the present invention relates to a resist pattern forming method using a resist upper layer film forming composition and a method for manufacturing a semiconductor device using the forming method.
  • a thin film of a photoresist composition is formed on a substrate to be processed such as a silicon wafer, and then actinic rays such as ultraviolet rays are irradiated and developed through a mask pattern on which a semiconductor device pattern is drawn.
  • actinic rays such as ultraviolet rays
  • the substrate to be processed such as a silicon wafer is etched using the obtained photoresist pattern as a protective film (mask).
  • the actinic rays used have also been shortened in wavelength from KrF excimer laser (248 nm) to ArF excimer laser (193 nm).
  • an antireflection film (Bottom Anti-Reflective Coating, The method of providing BARC) has been widely adopted.
  • an inorganic antireflection film such as titanium, titanium dioxide, titanium nitride, chromium oxide, carbon, ⁇ -silicon and the like, and an organic antireflection film made of a light-absorbing substance and a polymer compound are known.
  • the former requires equipment such as a vacuum deposition apparatus, a CVD apparatus, and a sputtering apparatus for film formation, whereas the latter is advantageous in that no special equipment is required, and many studies have been made.
  • an ArF immersion lithography technique in which exposure is performed through water has been actively studied as a next-generation photolithography technique to be followed by a photolithography technique using an ArF excimer laser (193 nm).
  • photolithography technology using light is reaching its limit, and EUV lithography technology using EUV (wavelength: 13.5 nm) is attracting attention as a new lithography technology after ArF immersion lithography technology.
  • EUV lithography technology using EUV wavelength: 13.5 nm
  • an upper layer of the EUV resist is coated with beryllium, boron, carbon, silicon, zirconium,
  • a method is disclosed that includes a polymer that includes a group that includes one or more of niobium and molybdenum (Patent Document 1, Patent Document 2).
  • Non-patent Document 1 a top coat formed of a polyhydroxystyrene (PHS) compound or an acrylic compound is applied to the upper layer of the EUV resist to reduce OOB (Non-patent Document 1),
  • PHS polyhydroxystyrene
  • Non-Patent Document 2 a EUV resolution enhancement layer film is applied to the upper layer of the EUV resist and the EUV resist resolution is improved by absorbing OOB (Non-Patent Document 2), but what composition is optimal is disclosed. Absent.
  • the present invention has been made to provide an optimal resist upper layer film forming composition with respect to the above-mentioned problems. That is, the present invention intermixes with a resist as a resist upper layer film, particularly as an upper layer film of an EUV resist.
  • a resist upper layer film forming composition for use in a lithography process which is capable of selectively transmitting only EUV by blocking exposure light, such as UV and DUV, which is not preferable in EUV exposure, and capable of being developed with a developer after exposure. provide.
  • the resin according to the first aspect is a resin including one or more unit structures selected from the following formulas (1-1), (1-2), and (1-3).
  • Resist upper layer film-forming composition described in the first aspect (In the formulas (1-1) to (1-3), at least one of A 1 and B 1 is an organic group containing an aromatic ring, and at least one is an organic group having a hydroxyl group, a carboxyl group, or a combination thereof.
  • the weight average molecular weight of the resin is 500 to 100,000).
  • the resist upper layer film-forming composition according to the first aspect or the second aspect wherein the resin terminal structure according to the first aspect or the second aspect is represented by the formula (1-4) (In the formula (1-4), R 1 represents an aromatic ring or an organic group containing an alkyl group having 1 to 5 carbon atoms, B 1 has the same definition as described in the second aspect, Represents a part of the resin described in the second viewpoint).
  • the resist upper layer according to the first aspect or the second aspect wherein the resin terminal structure according to the first aspect or the second aspect is represented by the formula (1-5) or the formula (1-6) Film-forming composition (In Formula (1-5) or Formula (1-6), R 2 represents an aromatic ring or an organic group containing an alkyl group having 1 to 5 carbon atoms, and A 1 and B 1 are those described in the second aspect. The wavy line part represents the part of the resin described in the second aspect).
  • the alcohol solvent is a straight chain having 1 to 20 carbon atoms, a branched or cyclic saturated alkyl alcohol having 3 to 20 carbon atoms, or an aromatic alcohol having 6 to 20 carbon atoms.
  • the alcohol solvent is 1-heptanol, 2-methyl-2-butanol, 4-methyl-2-pentanol, or cyclopentanol.
  • the compound (a) is represented by the following formulas (1-7) to (1-10), (In the formulas (1-7) to (1-10), X 1 to X 5 are each independently a halogen atom, a straight or branched alkyl group having 1 to 10 carbon atoms, a straight chain having 1 to 10 carbon atoms, or Branched halogenated alkyl group, alkoxy group having 1 to 30 carbon atoms, hydroxy group, carboxyl group, cyano group, nitro group, phenoxy group or benzoyl group (the hydrogen atom of the phenoxy group and benzoyl group is 1 to 5 halogen atoms) M1 represents an integer of 0 to 8.
  • n1 represents an atom, which may be substituted with 1 to 5 straight-chain or branched alkyl groups having 1 to 5 carbon atoms or 1 to 5 hydroxy groups.
  • m3 and m4 represent an integer of 0 to 3.
  • n2 and n3 represent an integer of 0 to 2.
  • m2 and m5 represent an integer of 0 to 4.
  • W 1 represents any of a single bond, an oxygen atom, a linear or branched alkylene group having 1 to 10 carbon atoms, a linear or branched halogenated alkylene group having 1 to 10 carbon atoms, a sulfonyl group, or a carbonyl group.
  • Compound (b) is represented by the following formulas (1-11) to (1-13), (In the formulas (1-11) to (1-13), Z 1 is a halogen atom, X 6 to X 9 are each independently a halogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, and 1 carbon atom.
  • a linear or branched alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a hydroxy group, a carboxyl group, a cyano group, a nitro group, a phenoxy group, or a benzoyl group (the hydrogen atoms of the phenoxy group and benzoyl group are M6 and m7 may be substituted with 1 to 5 halogen atoms, 1 to 5 linear or branched alkyl groups having 1 to 5 carbon atoms, or 1 to 5 hydroxy groups. It represents an integer of 10.
  • n4 and n5 represent an integer of 0 to 3.
  • m8 and m9 represent an integer of 0 to 4.
  • W 2 represents any of a single bond, an oxygen atom, a linear or branched alkylene group having 1 to 10 carbon atoms, a linear or branched halogenated alkylene group having 1 to 10 carbon atoms, a sulfonyl group, or a carbonyl group.
  • Compound (c) is represented by the following formula (1-14) or formula (1-15),
  • Z 1 is a halogen atom
  • X 10 to X 12 are each independently a halogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, and a carbon number of 1
  • the hydrogen atoms of the phenoxy group and benzoyl group are M10 represents 0 to 9 and may be substituted with 1 to 5 halogen atoms, 1 to 5 straight-chain or branched alkyl groups having 1 to 5 carbon atoms, or 1 to 5 hydroxy groups.
  • N6 and m11 represent an integer of 0 to 3.
  • m12 represents an integer of 0 to 4.
  • W 3 represents any of a single bond, an oxygen atom, a linear or branched alkylene group having 1 to 10 carbon atoms, a linear or branched halogenated alkylene group having 1 to 10 carbon atoms, a sulfonyl group, or a carbonyl group.
  • Compound (d) is represented by the following formula (1-16) or formula (1-17), (In the formulas (1-16) and (1-17), X 13 to X 15 are each independently a halogen atom, a straight or branched alkyl group having 1 to 10 carbon atoms, a straight chain having 1 to 10 carbon atoms, or Branched halogenated alkyl group, alkoxy group having 1 to 30 carbon atoms, hydroxy group, carboxyl group, cyano group, nitro group, phenoxy group or benzoyl group (the hydrogen atom of the phenoxy group and benzoyl group is 1 to 5 halogen atoms) M13 to m15 each represents an integer of 0 to 4, and may be substituted with 1 to 5 linear or branched alkyl groups having 1 to 5 carbon atoms or 1 to 5 hydroxy groups.
  • n7 represents an integer of 0 to 3.
  • W 4 represents a single bond, an oxygen atom, a linear or branched alkylene group having 1 to 10 carbon atoms, a linear or branched halogenated alkylene group having 1 to 10 carbon atoms, a sulfonyl group, or a carbonyl group.
  • end-capping agents for forming the partial structure of the formula (1-4) are represented by the following formulas (1-18) to (1-21), (In the formulas (1-18) to (1-21), Z 1 is a halogen atom, X 16 to X 21 are each independently a halogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, 10 represents a linear or branched halogenated alkyl group, an alkoxy group having 1 to 30 carbon atoms, a hydroxy group, a carboxyl group, a phenoxy group, a cyano group, or a nitro group, and m16 represents an integer of 0 to 10.
  • n8, n9 And m17 represents an integer of 0 to 3.
  • m18 and m21 represent an integer of 0 to 5.
  • m19 represents an integer of 0 to 11.
  • m20 represents an integer of 0 to 4.
  • W 5 and W 6 each represent a single bond, an oxygen atom, a linear or branched alkylene group having 1 to 10 carbon atoms, a linear or branched halogenated alkylene group having 1 to 10 carbon atoms, a sulfonyl group, or a carbonyl group.
  • a composition for forming a resist upper layer film according to the third aspect which is a compound represented by:
  • an end-capping agent for forming a partial structure of formula (1-5) or formula (1-6) is represented by the following formula (1-22) or formula (1-23),
  • X 22 to X 24 are each independently a halogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, a linear or branched alkyl group having 1 to 10 carbon atoms, or A branched halogenated alkyl group, an alkoxy group having 1 to 30 carbon atoms, a hydroxy group, a carboxyl group, a phenoxy group, a cyano group or a nitro group, m22 represents an integer of 0 to 11, and n10 represents an integer of 0 to 3 M23 represents an integer of 0 to 4, and m24 represents an integer of 0 to 5.
  • W 7 represents any of a single bond, an oxygen atom, a linear or branched alkylene group having 1 to 10 carbon atoms, a linear or branched halogenated alkylene group having 1 to 10 carbon atoms, a sulfonyl group, or a carbonyl group.
  • a composition for forming a resist upper layer film according to the fourth aspect which is a compound represented by: As a tenth aspect, the resist upper layer film-forming composition according to any one of the first to ninth aspects, further comprising an acid compound, As an eleventh aspect, the resist upper layer film-forming composition according to the tenth aspect, in which the acid compound is a sulfonic acid compound or a sulfonic acid ester compound, As a twelfth aspect, the resist upper layer film-forming composition according to the tenth aspect, in which the acid compound is an iodonium salt acid generator or a sulfonium salt acid generator, As a thirteenth aspect, the resist upper layer film-forming composition according to any one of the first to twelfth aspects, further including a basic compound, As a fourteenth aspect, the resist upper layer film forming composition according to any one of the first to thirteenth aspects, wherein the resist used together with the composition is a resist for EUV (wavelength 13.5 nm), As a
  • the present invention provides a resist upper layer film-forming composition, particularly an EUV resist upper layer film-forming composition, without intermixing with an EUV resist, and blocking only EUV by blocking exposure light, such as UV and DUV, which is not desirable for EUV exposure.
  • the present invention relates to a resist upper layer film-forming composition that is selectively transmitted and can be developed with a developer after exposure. Normally, when EUV light is used for exposure of an EUV resist, UV light and DUV light are emitted together with the EUV light. That is, this EUV light contains about 5% of light having a wavelength of 300 nm or less in addition to the EUV light.
  • light in a wavelength region of about 190 to 300 nm, particularly 220 to 260 nm has the highest intensity. It leads to a decrease in sensitivity and pattern shape.
  • the line width is 22 nm or less, the influence of the UV light or DUV light (OUTofBAND / out-of-band radiation) starts to appear, and the resolution of the EUV resist is adversely affected.
  • the solvent used for the EUV resist is not used for the resist upper layer film, and an alcohol solvent is used. It is better to use it.
  • the resin used in the resist upper layer film-forming composition of the present invention has a hydrophilic group comprising a hydroxyl group, a carboxyl group, or an organic group containing these groups in order to increase the solubility in an alcohol solvent. It has high solubility in alcohol solvents.
  • the resin used in the resist upper layer film-forming composition of the present invention has a hydrophilic group composed of a hydroxyl group, a carboxyl group, and an organic group containing these groups, so that a developer is developed together with an EUV resist during development after exposure. It can be dissolved and removed with (for example, an alkaline developer).
  • the present invention includes one or more compounds selected from (a) a tetracarboxylic dianhydride compound, (b) an acid dihalide compound, and (c) a compound having both a dicarboxylic anhydride group and an acid halide group, (D) A resist upper layer film-forming composition comprising a resin containing at least one of an amide bond and an imide bond and an alcohol solvent, which is produced by reacting with one or more diamine compounds.
  • the present invention is suitable as a general resist upper layer film forming composition, but is particularly suitable as a resist upper layer film forming composition used in an EUV lithography process using EUV as an exposure wavelength.
  • the resist upper layer film-forming composition contains the resin and an alcohol solvent, and may further contain an acid compound, a basic compound, a crosslinking agent, a crosslinking catalyst, a surfactant, a rheology modifier, an adhesion aid, and the like. .
  • the solid content of the resist upper layer film-forming composition of the present invention is 0.1 to 50% by mass, preferably 0.1 to 30% by mass.
  • the solid content is obtained by removing the solvent component from the resist upper layer film-forming composition.
  • the content of the resin in the solid content in the resist upper layer film-forming composition is 20% by mass or more, for example, 20 to 100% by mass, or 30 to 100% by mass, or 50 to 90% by mass, or 60 to 80% by mass. It is.
  • a 1 (d) diamine, which is a structural unit of (a) a tetracarboxylic dianhydride compound, (b) an acid dihalide compound, and (c) a compound having both a dicarboxylic anhydride group and an acid halide group in the resin.
  • B 1 which is a structural unit of the compound is an organic group in which at least one includes an aromatic ring, and at least one is an organic group having a hydroxyl group, a carboxyl group, or a combination thereof.
  • a hydroxyl group and a carboxyl group are hydrophilic groups, and are essential for expressing solubility in alcohol solvents and developer-soluble functions.
  • the resin of the present invention comprises at least one compound selected from (a) a tetracarboxylic dianhydride compound, (b) an acid dihalide compound, and (c) a compound having both a dicarboxylic acid anhydride group and an acid halide group. And (d) a resin containing at least one of an amide bond and an imide bond produced by reacting one or more diamine compounds.
  • the resin contains one or more unit structures selected from the following formulas (1-1), (1-2), and (1-3).
  • a 1 and B 1 in the formulas (1-1) to (1-3) are as described above. Specifically, (i) A 1 is an organic group containing an aromatic ring and having a hydroxyl group, a carboxyl group or a combination thereof, and B 1 contains an aromatic ring and has a hydroxyl group, a carboxyl group or a combination thereof If it is an organic group, (ii) A 1 is an organic group containing an aromatic ring and having a hydroxyl group, a carboxyl group or a combination thereof, and B 1 is an organic group containing an aromatic ring and having no hydroxyl group, a carboxyl group or a combination thereof.
  • a 1 is an organic group containing an aromatic ring and having a hydroxyl group, a carboxyl group or a combination thereof
  • B 1 is an organic group not containing an aromatic ring and having a hydroxyl group, a carboxyl group or a combination thereof
  • a 1 is an organic group containing an aromatic ring and having a hydroxyl group, a carboxyl group or a combination thereof
  • B 1 is an organic group containing no aromatic ring and having no hydroxyl group, a carboxyl group or a combination thereof If it is a group
  • a 1 is an organic group containing an aromatic ring and not having a hydroxyl group, a carboxyl group or a combination thereof
  • B 1 is an organic group containing an aromatic ring and having a hydroxyl group, a carboxyl group or a combination thereof If it is, (vi) An organic group in which A 1 contains an aromatic ring and does not have a hydroxyl group,
  • the resin terminal of this invention 1 or more types chosen from (a) tetracarboxylic dianhydride compound, (b) acid dihalide compound, and (c) the compound which has both dicarboxylic anhydride group and acid halide group
  • the reaction amount (preparation amount) of (d) one or more diamine compounds it may be an amino group terminal or a dicarboxylic acid anhydride group or an acid halide group terminal.
  • an amino group terminal it may be end-capped by reacting an end-capping agent having a reactive group that reacts with the amino group and an aromatic ring or an organic group containing an alkyl group having 1 to 5 carbon atoms. Good.
  • a dicarboxylic acid anhydride group or acid halide group terminal it has a reactive group that reacts with the dicarboxylic acid anhydride group or acid halide group and has an organic group containing an aromatic ring or an alkyl group having 1 to 5 carbon atoms.
  • the end capping agent may be reacted to end cleave.
  • Examples of A 1 in formulas (1-1) to (1-3) include formulas (2-1) to (2-8).
  • X 25 to X 34 each independently represent a halogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, a linear or branched halogenated alkyl group having 1 to 10 carbon atoms, or an alkoxy having 1 to 30 carbon atoms.
  • n 1 to 5 halogen atoms, 1 to 5 carbon atoms having 1 to 5 carbon atoms, A linear or branched alkyl group or optionally substituted with 1 to 5 hydroxy groups).
  • m25 to m34 represent an integer of 0 to 4. The present invention is not limited to these.
  • Examples of B 1 include formulas (3-1) to (3-14).
  • X 35 to X 50 each independently represent a halogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, a linear or branched halogenated alkyl group having 1 to 10 carbon atoms, or an alkoxy having 1 to 30 carbon atoms.
  • m35 to m50 represent an integer of 0 to 4). The present invention is not limited to these.
  • a halogen atom represents a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • examples of the linear or branched alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, a cyclopropyl group, an n-butyl group, i -Butyl, s-butyl, t-butyl, cyclobutyl, 1-methyl-cyclopropyl, 2-methyl-cyclopropyl, n-pentyl, 1-methyl-n-butyl, 2-methyl -N-butyl group, 3-methyl-n-butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1- Ethyl-n-propyl
  • linear or branched alkyl group having 1 to 5 carbon atoms is, for example, one having 1 to 5 carbon atoms among those listed above, and preferred examples include a methyl group, an ethyl group, and an isopropyl group.
  • linear or branched alkyl halide group having 1 to 10 carbon atoms include groups substituted with one or more halogen atoms among those listed above.
  • examples of the alkoxy group having 1 to 30 carbon atoms include methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, i-butoxy group, s-butoxy group, t-butoxy group, pentyloxy group, hexyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, hexadecyloxy group, octadecyloxy group, nonadecyloxy group, heicosyloxy group, pentacosyl Oxy group, hexacosyloxy group, nonacosyloxy group, 1-methyl-n-butoxy group, 2-methyl-n-butoxy group, 3-methyl-n-butoxy group, 1,1-dimethyl-n-propoxy group, 1,2-dimethyl-n-propoxy group, 2,2-dimethyl-n-propoxy group, 1-ethoxy group,
  • the (a) tetracarboxylic dianhydride compound used in the production of the resin used in the present invention is not particularly limited, and these may be used alone or in combination of two or more. Specific examples include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3, Aromatic tetracarboxylic acids such as 3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, 1,2,3,4- Cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutane Te
  • the (b) acid dihalide compound used in the production of the resin used in the present invention is not particularly limited, and these may be used alone or in combination of two or more. Specific examples include 4-bromoisophthaloyl chloride, 5-tert-butylisophthaloyl chloride, 5-hydroxyisophthaloyl chloride, isophthaloyl chloride, 5-methoxyisophthaloyl chloride, 5-nitroisophthaloyl.
  • Chloride 5-methylisophthaloyl chloride, tetrafluoroisophthaloyl chloride, bromoterephthaloyl chloride, 2,5-dichloroterephthaloyl chloride, 2,5-dimethylterephthaloyl chloride, nitroterephthaloyl chloride, tetra Fluoroterephthaloyl chloride, tetrachloroterephthaloyl chloride, tetrabromoterephthaloyl chloride, 4-bromoisophthaloyl fluoride, 5-tert-butylisophthaloyl fluoride, 5-hydroxyisophthaloyl fluoride, isophthaloyl fluoride, 5-methoxyisophthaloyl fluoride, 5-nitroisophthaloyl Fluoride, 5-methylisophthaloyl fluoride, tetrafluoroisophthaloyl fluoride, bromoterephthaloyl fluoride, 2,5-dichloroter
  • the compound having both a dicarboxylic anhydride group and an acid halide group used in the production of the resin used in the present invention is not particularly limited, and these may be used alone or in combination of two or more. Can be used. Specific examples thereof include compounds represented by the following formulas (4-1) to (4-5). (In formulas (4-1) to (4-5), Z 1 represents a halogen atom.)
  • diamine compound used for manufacture of resin used by this invention may be used 1 type and can use 2 or more types simultaneously.
  • Specific examples include 2,4-diaminophenol, 3,5-diaminophenol, 2,5-diaminophenol, 4,6-diaminoresorcinol, 2,5-diaminohydroquinone, bis (3-amino-4-hydroxyphenyl) ) Ether, bis (4-amino-3-hydroxyphenyl) ether, bis (4-amino-3,5-dihydroxyphenyl) ether, bis (3-amino-4-hydroxyphenyl) methane, bis (4-amino-) 3-hydroxyphenyl) methane, bis (4-amino-3,5-dihydroxyphenyl) methane, bis (3-amino-4-hydroxyphenyl) sulfone, bis (4-amino-3-hydroxyphenyl) sulfone, bis ( 4-amino-3,
  • a compound (terminal blocking agent) that seals the terminal reaction with the resin terminal by reacting a compound (terminal blocking agent) that seals the terminal reaction with the resin terminal, and adjusting the amount of the reactive group of the amino group, dicarboxylic anhydride group or acid halide group at the resin terminal, It is possible to adjust the molecular weight of the resin, control the physical properties (hydrophobicity etc.) of the resin, and improve the storage stability.
  • (d) one or more diamine compounds in the resin of the present invention are converted into (a) a tetracarboxylic dianhydride compound, (b) an acid dihalide compound, and (c) a dicarboxylic acid anhydride.
  • One or more compounds selected from compounds having both a group and a halide group, in addition to making the resin terminal an amino group in excess, having a reactive group bonded thereto and an aromatic ring or having 1 to It can be formed by reacting an organic group containing 5 alkyl groups. More preferably, it can be formed by reacting an end of the resin with a dicarboxylic anhydride compound or acid halide compound having an aromatic ring or an alkyl group having 1 to 5 carbon atoms.
  • Examples of the dicarboxylic acid anhydride include the following formulas (5-1) to (5-30), and examples of the acid halide compound include compounds represented by the formulas (5-31) to (5-60).
  • examples of the acid halide compound include compounds represented by the formulas (5-31) to (5-60).
  • Z 1 represents a halogen atom
  • n11 to n42 represent an integer of 0 or more, which is not more than the maximum number that can be bonded to the compound.
  • a tetracarboxylic dianhydride compound As another method, it is selected from (a) a tetracarboxylic dianhydride compound, (b) an acid dihalide compound, and (c) a compound having both a dicarboxylic anhydride group and a halide group in the resin of the present invention.
  • D One or more diamine compounds are added in excess to make the resin end of the resin a dicarboxylic anhydride group or acid halide group, and then have a reactive group that binds to it. And an organic group containing an aromatic ring or an alkyl group having 1 to 5 carbon atoms can be reacted.
  • it can be formed by reacting an aromatic ring or an amino group-containing compound having an alkyl group having 1 to 5 carbon atoms with a resin terminal.
  • Specific examples include compounds represented by the following formulas (6-1) to (6-30). The present invention is not limited to these. (In the above formula, Z 1 represents a halogen atom, and n43 to n60 represent an integer of 0 or more, which is not more than the maximum number that can be bonded to the compound.)
  • Examples of the structure of the polyamic acid or polyamide contained in the resist upper layer film-forming composition of the present invention are shown below, but the present invention is not limited to the following examples.
  • Examples of the polyamic acid contained in the resist upper layer film-forming composition of the present invention include the following polyamic acids (7-1) to (7-13) (wherein p 1 , p 2 , p 3 and p 4 represent the proportion of each structure in the polyamic acid).
  • (7-1) to (7-8) are polyamic acids produced from one kind of tetracarboxylic dianhydride compound and two kinds of diamine compounds
  • (7-9) and (7-10) Is a polyamic acid produced from two tetracarboxylic dianhydride compounds and one diamine compound
  • (7-11) is produced from two tetracarboxylic dianhydride compounds and two diamine compounds
  • (7-12) and (7-13) are polyamic acids produced from a kind of tetracarboxylic dianhydride compound and a kind of diamine compound.
  • the polyamic acid can be converted to polyimide by a method such as thermal imidization or chemical imidization described separately.
  • Examples of the polyamide contained in the resist upper layer film forming composition of the present invention include the following polyamides (8-1) to (8-11).
  • (8-1) to (8-7) are polyamides produced from one kind of acid dihalide compound and two kinds of diamine compounds
  • (8-8) and (8-9) are two kinds of acids.
  • (8-10) is a polyamide produced from two kinds of acid dihalide compounds and two kinds of diamine compounds
  • (8-11) is one kind It is a polyamide produced from an acid dihalide compound and a kind of diamine compound.
  • the structural formula of the resin in which the end-capping agent is introduced at the end of the polyamic acid is, for example, an acid halide compound or an acid anhydride compound at the amino group end as in the formulas (9-1) to (9-13).
  • Examples of the reaction include examples in which an amino group-containing compound is reacted with the terminal of the dicarboxylic acid anhydride, such as formula (10-1) to formula (10-13).
  • the polyamic acid can be converted to polyimide by a method such as thermal imidization or chemical imidization described separately.
  • the structural formula of a resin in which an end-capping agent is introduced at the end of polyamide is, for example, a reaction of an acid halide compound or acid anhydride with an amino group end such as formula (11-1) to formula (11-11). And examples in which an amino group-containing compound is reacted with the terminal of the acid halide group, such as formula (12-1) to formula (12-10).
  • the resin used in the present invention is one or more selected from (a) a tetracarboxylic dianhydride compound, (b) an acid dihalide compound and (c) a compound having both a dicarboxylic anhydride group and a halide group.
  • the ratio to the total number of moles is preferably 0.8 to 1.2. As in the normal polycondensation reaction, the closer the molar ratio is to 1, the higher the degree of polymerization of the resin produced and the higher the molecular weight.
  • an end-capping agent for example, when synthesizing an amino group-terminated resin, (d) one or more diamine compounds are converted into (a) tetracarboxylic dianhydride, (b) acid dihalide. Compound (c) and an excess of 1 to 1.6 total moles relative to 1 total mole of one or more compounds selected from compounds having both dicarboxylic anhydride groups and halide groups.
  • end-capping agent is selected from (a) tetracarboxylic dianhydride compound, (b) acid dihalide compound, and (c) compound having both dicarboxylic anhydride group and halide group.
  • the synthesis is performed by adding a total number of moles of 0.1 to 2.0 with respect to a total number of moles of one or more selected compounds.
  • a resin having a dicarboxylic acid anhydride group or an acid halide group terminal (a) a tetracarboxylic dianhydride compound, (b) an acid dihalide compound, and (c) both a dicarboxylic acid anhydride group and a halide group.
  • One or more compounds selected from among the compounds having (d) one or more diamine compounds are added in excess in the range of a total number of moles of 1.1 to 1.6 with respect to a total number of moles of one or more diamine compounds.
  • the end capping agent is synthesized by adding a total number of moles of 0.1 to 2.0 with respect to a total number of moles of the diamine compound.
  • the reaction temperature of the reaction between the compound and (d) one or more diamine compounds can be selected from -20 ° C to 150 ° C, preferably -5 ° C to 100 ° C.
  • a high molecular weight resin can be obtained at a reaction temperature of 5 to 40 ° C. and a reaction time of 1 to 48 hours. In order to obtain a resin having a low molecular weight and high storage stability, a reaction time of 10 hours or longer at 40 to 80 ° C. is more preferable.
  • those having an imide bond can be obtained by dehydrating and ring-closing (thermal imidization) of the polyamic acid in the resin.
  • dehydrating and ring-closing thermal imidization
  • the method of chemically ring-closing using a well-known dehydration ring-closing catalyst is also employable.
  • the heating method can be performed at an arbitrary temperature of 100 to 350 ° C., preferably 120 to 300 ° C.
  • the chemical ring closure can be carried out, for example, in the presence of pyridine, triethylamine or the like and acetic anhydride, and the temperature at this time can be selected from -20 to 200 ° C. .
  • the solution containing the polyimide-containing resin thus obtained can be used as it is, and a poor solvent such as methanol, ethanol and water is added to precipitate the resin, which is isolated as a resin solid, Alternatively, the resin solid can be used after re-dissolving in a suitable solvent.
  • a poor solvent such as methanol, ethanol and water
  • the weight average molecular weight of the resin of the present invention measured by GPC (Gel Permeation Chromatography) method is, for example, 500 to 100,000, or 1000 to 50,000, preferably 2000 to 50,000 in terms of polystyrene.
  • the weight average molecular weight is 500 or less, the resist upper layer film using the resin may be diffused into the photoresist to deteriorate the lithography performance.
  • the weight average molecular weight is 100,000 or more, the formed resist upper layer film has insufficient solubility in a photoresist developer, and a residue may be present after development.
  • the reaction with the above diamine compound can be carried out in a solvent.
  • Solvents that can be used in this case include N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, N-vinylpyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, Hexamethyl sulfoxide, m-cresol, ⁇ -butyrolactone, ethyl acetate, butyl acetate, ethyl lactate, methyl 3-methoxypropionate, methyl 2-methoxypropionate, ethyl 3-methoxypropionate, ethyl 2-methoxypropionate, 3 -Ethyl ethoxypropionate, ethyl 2-ethoxypropionate, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ester Ter, prop
  • the solution containing the resin thus obtained can be used as it is for the preparation of the resist upper layer film-forming composition.
  • the resin can be precipitated and isolated in a poor solvent such as methanol, ethanol, ethyl acetate, hexane, toluene, acetonitrile, water, and recovered for use.
  • the drying conditions after isolating the resin are desirably 8 to 48 hours at 50 to 100 ° C. in an oven or the like.
  • the resin can be redissolved in any solvent, preferably the alcohol solvent described below, and used as a resist upper layer film composition.
  • an alcohol solvent such as the following, which is a straight chain having 1 to 20 carbon atoms, a branched or cyclic saturated alkyl alcohol having 3 to 20 carbon atoms or an aromatic alcohol having 6 to 20 carbon atoms is preferably used.
  • saturated alkyl alcohol 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 1-heptanol, 2-heptanol, tert-amyl alcohol
  • Neopentyl alcohol 2-methyl-1-propanol, 2-methyl-1-butanol, 2-methyl-2-butanol, 3-methyl-1-butanol, 3-methyl-3-pentanol, cyclopentanol, 1-hexanol, 2-hexanol, 3-hexanol, 2,3-dimethyl-2-butanol, 3,3-dimethyl-1-butanol, 3,3-dimethyl-2-butanol, 2-diethyl-1-butanol, 2-methyl-1-pentanol, 2-methyl-2-pentano 2-methyl-3-pentanol, 3-methyl-1-pentanol, 3-methyl-2
  • aromatic alcohol examples include 1-phenylpropanol, 2-phenylpropanol, 3-phenylpropanol, 2-phenoxyethanol, phenethyl alcohol, and styryl alcohol. These alcohol solvents can be used alone or as a mixture.
  • the following solvents may be mixed together with the alcohol solvent.
  • the solvent is ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol propyl ether Acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, methyl 2-hydroxy-3-methylbutanoate, 3-methoxypropionic acid Methyl, 3-meth
  • the resist upper layer film forming composition of the present invention may further contain an acid compound in order to match the acidity with the resist present in the lower layer in the lithography process.
  • an acid compound a sulfonic acid compound or a sulfonic acid ester compound can be used.
  • acidic compounds such as p-toluenesulfonic acid, trifluoromethanesulfonic acid, pyridinium p-toluenesulfonic acid, salicylic acid, sulfosalicylic acid, citric acid, benzoic acid, hydroxybenzoic acid, and / or 2,4,4,6- Thermal acid generators such as tetrabromocyclohexadienone, benzoin tosylate, and 2-nitrobenzyl tosylate can be blended.
  • the blending amount is 0.02 to 10% by mass, preferably 0.04 to 5% by mass, per 100% by mass of the total solid content.
  • the resist upper layer film-forming composition of the present invention generates an acid that generates acid by exposure light (for example, EUV irradiation, electron beam irradiation) in order to match the acidity with the resist present in the lower layer in the lithography process.
  • An agent can be added as an acid compound.
  • Preferred acid generators include, for example, onium salt acid generators such as bis (4-tert-butylphenyl) iodonium trifluoromethanesulfonate, triphenylsulfonium trifluoromethanesulfonate, and phenyl-bis (trichloromethyl) -s-triazine.
  • halogen-containing compound acid generators such as benzoin tosylate and sulfonic acid acid generators such as N-hydroxysuccinimide trifluoromethanesulfonate.
  • the amount of the acid generator added is 0.02 to 10% by mass, preferably 0.04 to 5% by mass, per 100% by mass of the total solid content.
  • the resist upper layer film forming composition of the present invention may further contain a basic compound.
  • a basic compound such as amine reacts with an acid generated from a photoacid generator during exposure to reduce the sensitivity of the resist underlayer film, thereby controlling the upper shape of the resist after exposure and development (after exposure and development).
  • the resist shape is preferably rectangular.
  • Examples of the basic compound include amines.
  • amines For example, there is an aminobenzene compound represented by the formula (13-1).
  • r 1 to r 5 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an amino group.
  • alkyl group examples include methyl, ethyl, n-propyl, i-propyl, cyclopropyl, n-butyl, i-butyl, s-butyl, t-butyl, cyclobutyl, -Methyl-cyclopropyl group, 2-methyl-cyclopropyl group, n-pentyl group, 1-methyl-n-butyl group, 2-methyl-n-butyl group, 3-methyl-n-butyl group, 1,1 -Dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl-n-propyl group, cyclopentyl group, 1-methyl-cyclobutyl group, 2 -Methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-dimethyl-cyclopropyl group, 2,3-dimethyl-cyclo
  • a linear alkyl group having 1 to 5 carbon atoms and a branched alkyl group are preferable, and examples thereof include a methyl group, an ethyl group, and an isopropyl group.
  • examples of the compound include the following formulas (13-2) to (13-47).
  • tertiary amines such as zabicyclooctane and aromatic amines such as pyridine and 4-dimethylaminopyridine.
  • primary amines such as benzylamine and normal butylamine, and secondary amines such as diethylamine and dinormalbutylamine are also included. These compounds can be used alone or in combination of two or more.
  • resist upper layer film forming composition of the present invention in addition to the above, further rheology adjusting agents, adhesion assistants, surfactants and the like can be added as necessary.
  • the rheology modifier is added mainly for the purpose of improving the fluidity of the resist upper layer film-forming composition.
  • Specific examples include phthalic acid derivatives such as dimethyl phthalate, diethyl phthalate, diisobutyl phthalate, dihexyl phthalate, and butyl isodecyl phthalate, adipic acid derivatives such as dinormal butyl adipate, diisobutyl adipate, diisooctyl adipate, octyl decyl adipate, Mention may be made of maleic acid derivatives such as normal butyl maleate, diethyl maleate and dinonyl maleate, oleic acid derivatives such as methyl oleate, butyl oleate and tetrahydrofurfuryl oleate, or stearic acid derivatives such as normal butyl stearate and glyceryl stearate. it can.
  • a surfactant can be blended in order to further improve the applicability to surface unevenness.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, polyoxyethylene nonyl Polyoxyethylene alkyl allyl ethers such as phenol ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate Sorbitan fatty acid esters such as rate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sol
  • Nonionic surfactants such as polyoxyethylene sorbionic surfactants such as polyoxyethylene sorbionic surfactants such as polyoxyethylene sorbioethylene
  • the compounding amount of these surfactants is usually 0.2% by mass or less, preferably 0.1% by mass or less, per 100% by mass of the total composition of the resist upper layer film-forming composition of the present invention.
  • These surfactants may be added alone or in combination of two or more.
  • an EUV resist can be used.
  • the EUV resist applied to the lower layer of the resist upper layer film in the present invention either a negative type or a positive type can be used.
  • These resists include chemically amplified resists composed of a binder having a group that decomposes with an acid generator and an acid to change the alkali dissolution rate, and an alkali dissolution rate of the resist that decomposes with an alkali-soluble binder, an acid generator, and an acid.
  • a chemically amplified resist composed of a low molecular weight compound that changes the acid, a binder having a group that decomposes with an acid generator and an acid to change the alkali dissolution rate, and a low molecular weight compound that decomposes with an acid to change the alkali dissolution rate of the resist A chemically amplified resist comprising: a non-chemically amplified resist comprising a binder having a group that is decomposed by EUV to change the alkali dissolution rate; and a non-chemically amplified resist comprising a binder having a portion that is cut by EUV to change the alkali dissolution rate. and so on. .
  • the material system of EUV resist includes methacrylic and polyhydroxystyrene (PHS).
  • PHS polyhydroxystyrene
  • a KrF resist or an ArF resist can be used.
  • a negative photoresist or a positive photoresist can be used.
  • These resists include a positive photoresist composed of novolak resin and 1,2-naphthoquinonediazide sulfonic acid ester, a chemical amplification composed of a binder having a group that decomposes with acid to increase the alkali dissolution rate and a photoacid generator.
  • -Type photoresist chemically amplified photoresist composed of low molecular weight compound, alkali-soluble binder and photoacid generator that decomposes with acid to increase alkali dissolution rate of photoresist, and acid decomposes to increase alkali dissolution rate
  • a chemically amplified photoresist composed of a low molecular weight compound that decomposes with a binder having an acid group and an acid to increase the alkali dissolution rate of the photoresist and a photoacid generator.
  • the Dow Chemical Company (formerly Rohm and Haas Electronic Materials Co., Ltd.) trade name APEX-E, Sumitomo Chemical Co., Ltd.
  • an electron beam resist can be used.
  • a negative photoresist or a positive photoresist can be used.
  • These resists include chemically amplified resists composed of a binder having a group that decomposes with an acid generator and an acid to change the alkali dissolution rate, and an alkali dissolution rate of the resist that decomposes with an alkali-soluble binder, an acid generator, and an acid.
  • a chemically amplified resist composed of a low molecular weight compound that changes the acid, a binder having a group that decomposes with an acid generator and an acid to change the alkali dissolution rate, and a low molecular weight compound that decomposes with an acid to change the alkali dissolution rate of the resist A chemically amplified resist, a non-chemically amplified resist composed of a binder having a group that is decomposed by an electron beam to change the alkali dissolution rate, and a non-chemically amplified composed of a binder having a site that is cut by the electron beam to change the alkali dissolution rate
  • sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia Inorganic amines such as ethylamine, primary amines such as n-propylamine, secondary amines such as diethylamine and di-n-butylamine, tertiary amines such as triethylamine and methyldiethylamine, dimethylethanolamine, triethanolamine Alcohol amines such as alcohol amines, tetramethylammonium hydroxide, tetraethylammonium hydroxide, quaternary ammonium salts such as choline, cyclic amines such as pyrrole and piperidine, and alkaline aqueous solutions can be used.
  • aqueous ammonia Inorganic amines such as ethylamine, primary amines such as n-propylamine, secondary amines such as diethylamine and di-n-butyl
  • an appropriate amount of an alcohol such as isopropyl alcohol or a nonionic surfactant may be added to the alkaline aqueous solution.
  • preferred developers are quaternary ammonium salts, more preferably tetramethylammonium hydroxide and choline.
  • a step of forming an EUV resist film with or without an EUV resist underlayer film on a substrate having a film to be processed for forming a transfer pattern, an EUV resist upper layer film forming composition on the resist film A step of applying and baking an object to form an EUV resist upper layer film, a step of exposing a semiconductor substrate coated with the resist upper layer film and the resist film, a step of developing after exposure to remove the resist upper layer film and the resist film, A semiconductor device can be manufactured. Exposure is performed by EUV (wavelength 13.5 nm).
  • the resist upper layer film is generally formed by a spin coating method in the same manner as the resist film formation. For example, it is set on a substrate to be processed (for example, a silicon / silicon dioxide coated substrate, a glass substrate, an ITO substrate, etc.) on a spin coater manufactured by Tokyo Electron, and a resist film is formed on the substrate to be processed.
  • An object (varnish) is applied to the substrate to be processed at a spin speed of 700 rpm to 3000 rpm and then baked on a hot plate at 50 ° C. to 150 ° C. for 30 to 300 seconds to form the resist upper layer film.
  • the film thickness of the resist upper layer film is 3 to 100 nm, 5 to 100 nm, or 5 to 50 nm.
  • the dissolution rate of the resist upper layer film to be formed in the photoresist developer is 1 nm or more per second, preferably 3 nm or more per second, and more preferably 10 nm or more per second.
  • the dissolution rate is smaller than this, the time required for removing the resist upper layer film becomes longer, resulting in a decrease in productivity.
  • development is performed using a resist developer, thereby removing the resist and unnecessary portions of the resist upper layer film to form a resist pattern.
  • the semiconductor device to which the composition for forming an EUV resist upper layer film of the present invention is applied has a structure in which a film to be processed for transferring a pattern, a resist film, and a resist upper layer film are sequentially formed on a substrate.
  • This resist upper layer film can form a resist pattern having a good straight shape by reducing adverse effects exerted by the base substrate and EUV, and can provide a sufficient margin for the EUV irradiation amount.
  • this resist upper layer film has a wet etching rate equal to or higher than that of the resist film formed in the lower layer, and can be easily removed with an alkali developer together with unnecessary portions of the resist film after exposure. .
  • the substrate to be processed of the semiconductor device can be processed by either dry etching or wet etching.
  • a resist pattern that is well formed can be used as a mask, and dry etching or wet etching can be used. It is possible to transfer a good shape to the substrate to be processed.
  • a step of forming a KrF resist film on a substrate having a film to be processed for forming a transfer pattern, with or without a KrF resist lower layer film, and a composition for forming a KrF resist upper layer film on the resist film A step of applying and baking an object to form a KrF resist upper layer film, a step of exposing a semiconductor substrate coated with the resist upper layer film and the resist film, a step of developing after exposure to remove the resist upper layer film and the resist film, A semiconductor device can be manufactured. Exposure is performed with KrF.
  • the resist upper layer film is formed in the same manner as in the EUV exposure.
  • a step of forming an ArF resist film on a substrate having a film to be processed for forming a transfer pattern, with or without using an ArF resist lower layer film, an ArF resist upper layer film forming composition on the resist film A step of forming an ArF resist upper layer film by applying and baking an object, a step of exposing a semiconductor substrate coated with the resist upper layer film and the resist film, a step of developing after exposure to remove the resist upper layer film and the resist film, A semiconductor device can be manufactured. Exposure is performed with ArF.
  • the resist upper layer film is formed in the same manner as in the EUV exposure.
  • a step of forming an electron beam resist film with or without an electron beam resist lower layer film on a substrate having a film to be processed for forming a transfer pattern, an electron beam resist upper layer on the resist film A step of applying a film-forming composition and baking to form an electron beam resist upper layer film; a step of exposing a semiconductor substrate coated with the resist upper layer film and the resist film; and developing after exposure to form the resist upper layer film and the resist film.
  • a semiconductor device can be manufactured. Exposure is performed with an electron beam.
  • the resist upper layer film is formed in the same manner as in the EUV exposure.
  • the weight average molecular weights (Mw) of the resins (polymers) shown in the following Synthesis Examples 1 to 11 of the present specification are measurement results by GPC (Gel Permeation Chromatography) method.
  • GPC Gel Permeation Chromatography
  • the measurement conditions are as follows.
  • the dispersity shown in the following synthesis examples of the present specification is calculated from the measured weight average molecular weight and number average molecular weight.
  • Measuring device HLC-8320GPC [trade name] (manufactured by Tosoh Corporation)
  • GPC column TSKgel SuperMultipore HZ-N (P0009) [trade name] (manufactured by Tosoh Corporation)
  • TSKgel SuperMultipore HZ-N (P0010) [trade name] (manufactured by Tosoh Corporation)
  • Solvent tetrahydrofuran (THF)
  • Flow rate 0.35 ml / min
  • Standard sample Polystyrene (manufactured by Tosoh Corporation)
  • Example 1 To 1.0 g of a solution containing 0.32 g of the resin obtained in Synthesis Example 1, 20.4 g of 4-methyl-2-pentanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography.
  • Example 2 20.4 g of 4-methyl-2-pentanol was dissolved in 1.0 g of a solution containing 0.32 g of the resin obtained in Synthesis Example 2 above. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography.
  • Example 3 To 1.0 g of a solution containing 0.32 g of the resin obtained in Synthesis Example 3, 20.4 g of 4-methyl-2-pentanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography.
  • Example 4 20.4 g of 4-methyl-2-pentanol was added to 0.32 g of the resin obtained in Synthesis Example 4 and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography.
  • Example 5 To 0.32 g of the resin obtained in Synthesis Example 5, 20.4 g of 4-methyl-2-pentanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography.
  • Example 6 To 2.5 g of a solution containing 0.42 g of the resin obtained in Synthesis Example 6, 24.4 g of 4-methyl-2-pentanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography.
  • Example 7 To 2.5 g of a solution containing 0.42 g of the resin obtained in Synthesis Example 7, 24.4 g of 4-methyl-2-pentanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography.
  • Example 8 To 2.5 g of a solution containing 0.42 g of the resin obtained in Synthesis Example 8, 24.4 g of 4-methyl-2-pentanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography.
  • Example 9 22.5 g of cyclopentanol was added to 2.5 g of a solution containing 0.42 g of the resin obtained in Synthesis Example 6 and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography.
  • Example 10 To 2.5 g of the solution containing 0.42 g of the resin obtained in Synthesis Example 6 above, 24.4 g of 1-heptanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography.
  • Example 11 To 2.5 g of a solution containing 0.42 g of the resin obtained in Synthesis Example 6 above, 24.4 g of 2-methyl-2-butanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography.
  • Example 12 To 2.5 g of a solution containing 0.42 g of the resin obtained in Synthesis Example 9, 24.4 g of 4-methyl-2-pentanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography.
  • Example 13 To 2.5 g of a solution containing 0.42 g of the resin obtained in Synthesis Example 10, 24.4 g of 4-methyl-2-pentanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography.
  • Example 14 To 1.0 g of a solution containing 0.32 g of the resin obtained in Synthesis Example 11, 20.4 g of 4-methyl-2-pentanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 ⁇ m to obtain a resist upper layer film forming composition for lithography.
  • a 2.38 wt% tetramethylammonium hydroxide aqueous solution (trade name: NMD-3 (manufactured by Tokyo Ohka Kogyo Co., Ltd.)), which is a commercially available general-purpose alkaline developer, is deposited on the resist upper layer film and left for 60 seconds. Then, rinsing was performed with pure water for 30 seconds while rotating at 3000 rpm. After rinsing, the film was baked at 100 ° C. for 60 seconds to measure the film thickness (film thickness C). When the film thickness A is equal to the film thickness C, it can be said that there is no intermixing with the resist.
  • the maximum value of the absorptance was 40% or more as good and less than 40% as bad.
  • the transmittance of EUV light (13.5 nm)
  • a transmittance of 80% or more was regarded as good, and less than 80% was regarded as defective.
  • the resist upper layer film obtained from the resist upper layer film forming composition of each example had a better light shielding property of DUV light than the resist upper layer film obtained from the resist upper layer film forming composition of Comparative Example 1. It was. [Table 2]
  • EUV resist used in an EUV lithography process that can selectively pass through EUV exposure light, such as UV or DUV, without being intermixed with the resist, and can be developed with a developer after exposure. It is a composition for forming an upper layer film and a resist upper layer film for a lithography process at other exposure wavelengths.

Abstract

[Problem] To provide a resist upper layer film-forming composition which is used in a lithography process during the production procedure of a semiconductor device, and which selectively transmits EUV only, while blocking exposure light such as UV or DUV that is undesirable especially for EUV exposure, and is able to be developed with a developer liquid after the exposure without being intermixed with the resist. [Solution] Provided is a resist upper layer film-forming composition which contains an alcohol-based solvent and a resin that contains an amide bond and/or an imide bond and is produced by reacting (d) at least one kind of diamine compound with at least one kind of compound selected from among (a) tetracarboxylic acid dianhydride compounds, (b) acid dihalide compounds and (c) compounds having both a dicarboxylic acid anhydride group and an acid halide group. A terminal of the resin may be blocked with an organic group that has an aromatic ring or an alkyl group having 1-5 carbon atoms.

Description

リソグラフィー用レジスト上層膜形成組成物Composition for forming resist upper layer film for lithography
 本発明は、フォトリソグラフィーを利用した半導体装置の製造工程に用いられ、露光光によって及ぼされる悪影響を低減し、良好なレジストパターンを得るのに有効なリソグラフィー用レジスト上層膜形成組成物、並びに該リソグラフィー用レジスト上層膜形成組成物を用いるレジストパターン形成法、及び当該形成方法を用いた半導体装置の製造方法に関するものである。 The present invention is used in a manufacturing process of a semiconductor device using photolithography, reduces an adverse effect exerted by exposure light, and is effective for obtaining a good resist pattern. The present invention relates to a resist pattern forming method using a resist upper layer film forming composition and a method for manufacturing a semiconductor device using the forming method.
 従来から半導体装置の製造において、フォトリソグラフィー技術を用いた微細加工が行われている。前記微細加工はシリコンウェハー等の被加工基板上にフォトレジスト組成物の薄膜を形成し、その上に半導体装置のパターンが描かれたマスクパターンを介して紫外線などの活性光線を照射し、現像し、得られたフォトレジストパターンを保護膜(マスク)としてシリコンウェハー等の被加工基板をエッチング処理する加工法である。近年、半導体装置の高集積度化が進み、使用される活性光線もKrFエキシマレーザー(248nm)からArFエキシマレーザー(193nm)へと短波長化されていった。これに伴い活性光線の基板からの乱反射や定在波の影響が大きな問題となり、フォトレジストと被加工基板の間に反射を防止する役目を担うレジスト下層膜として、反射防止膜(BottomAnti-ReflectiveCoating、BARC)を設ける方法が広く採用されるようになってきた。
反射防止膜としては、チタン、二酸化チタン、窒化チタン、酸化クロム、カーボン、α-シリコン等の無機反射防止膜と、吸光性物質と高分子化合物とからなる有機反射防止膜が知られている。前者は膜形成に真空蒸着装置、CVD装置、スパッタリング装置等の設備を必要とするのに対し、後者は特別の設備を必要としない点で有利とされ数多くの検討が行われている。
近年では、ArFエキシマレーザ(193nm)を用いたフォトリソグラフィー技術の後を担う次世代のフォトリソグラフィー技術として、水を介して露光するArF液浸リソグラフィー技術が盛んに検討されている。しかし、光を用いるフォトリソグラフィー技術は限界を迎えつつあり、ArF液浸リソグラフィー技術以降の新しいリソグラフィー技術として、EUV(波長13.5nm)を用いるEUVリソグラフィー技術が注目されている。
EUVリソグラフィーを用いた半導体装置製造工程では、EUVレジストを被覆した基板にEUVを照射して露光し、現像し、レジストパターンを形成する。
Conventionally, microfabrication using a photolithography technique has been performed in the manufacture of semiconductor devices. In the fine processing, a thin film of a photoresist composition is formed on a substrate to be processed such as a silicon wafer, and then actinic rays such as ultraviolet rays are irradiated and developed through a mask pattern on which a semiconductor device pattern is drawn. In this processing method, the substrate to be processed such as a silicon wafer is etched using the obtained photoresist pattern as a protective film (mask). In recent years, the degree of integration of semiconductor devices has increased, and the actinic rays used have also been shortened in wavelength from KrF excimer laser (248 nm) to ArF excimer laser (193 nm). Along with this, the influence of diffuse reflection and standing wave of actinic rays from the substrate becomes a big problem, and as a resist underlayer film that plays a role of preventing reflection between the photoresist and the substrate to be processed, an antireflection film (Bottom Anti-Reflective Coating, The method of providing BARC) has been widely adopted.
As the antireflection film, an inorganic antireflection film such as titanium, titanium dioxide, titanium nitride, chromium oxide, carbon, α-silicon and the like, and an organic antireflection film made of a light-absorbing substance and a polymer compound are known. The former requires equipment such as a vacuum deposition apparatus, a CVD apparatus, and a sputtering apparatus for film formation, whereas the latter is advantageous in that no special equipment is required, and many studies have been made.
In recent years, an ArF immersion lithography technique in which exposure is performed through water has been actively studied as a next-generation photolithography technique to be followed by a photolithography technique using an ArF excimer laser (193 nm). However, photolithography technology using light is reaching its limit, and EUV lithography technology using EUV (wavelength: 13.5 nm) is attracting attention as a new lithography technology after ArF immersion lithography technology.
In a semiconductor device manufacturing process using EUV lithography, a substrate coated with an EUV resist is irradiated with EUV, exposed, developed, and a resist pattern is formed.
 EUVレジストを汚染物質からの保護や、好ましくない放射線、例えばUVやDUV(OUT of BAND/帯域外放射、OOB)を遮断するためにEUVレジストの上層に、ベリリウム、硼素、炭素、珪素、ジルコニウム、ニオブおよびモリブデンの一つ以上を包含するグループを含むポリマーを含む方法が開示されている(特許文献1、特許文献2)。 In order to protect the EUV resist from contaminants and to block unwanted radiation such as UV and DUV (OUT of BAND / Out-of-band radiation, OOB), an upper layer of the EUV resist is coated with beryllium, boron, carbon, silicon, zirconium, A method is disclosed that includes a polymer that includes a group that includes one or more of niobium and molybdenum (Patent Document 1, Patent Document 2).
 またOOBを遮断するために、EUVレジストの上層にポリヒドロキシスチレン(PHS)系化合物や、アクリル系化合物などで形成されるトップコートを塗布してOOBを低減させることや(非特許文献1)、EUVレジストの上層にEUV resolution enhancement layerなる膜を塗布し、OOBを吸収してEUVレジスト解像度を向上させた例があるが(非特許文献2)、どのような組成物が最適かは開示されていない。 In order to block OOB, a top coat formed of a polyhydroxystyrene (PHS) compound or an acrylic compound is applied to the upper layer of the EUV resist to reduce OOB (Non-patent Document 1), There is an example in which a EUV resolution enhancement layer film is applied to the upper layer of the EUV resist and the EUV resist resolution is improved by absorbing OOB (Non-Patent Document 2), but what composition is optimal is disclosed. Absent.
特開2004-348133JP 2004-348133 A 特開2008-198788JP2008-198788
 本発明は上記の問題について、最適なレジスト上層膜形成組成物を提供するためになされたものであって、すなわち本発明はレジスト上層膜として、特にEUVレジストの上層膜として、レジストとインターミキシングすることなく、特にEUV露光に際して好ましくない露光光、例えばUVやDUVを遮断してEUVのみを選択的に透過し、また露光後に現像液で現像可能な、リソグラフィープロセスに用いるレジスト上層膜形成組成物を提供する。 The present invention has been made to provide an optimal resist upper layer film forming composition with respect to the above-mentioned problems. That is, the present invention intermixes with a resist as a resist upper layer film, particularly as an upper layer film of an EUV resist. In particular, a resist upper layer film forming composition for use in a lithography process, which is capable of selectively transmitting only EUV by blocking exposure light, such as UV and DUV, which is not preferable in EUV exposure, and capable of being developed with a developer after exposure. provide.
本発明は第1観点として、(a)テトラカルボン酸二無水物化合物、(b)酸ジハライド化合物及び(c)ジカルボン酸無水物基と酸ハライド基両方を有する化合物の中から選ばれる1種以上の化合物と、(d)1種以上のジアミン化合物とを反応させて製造される、アミド結合及びイミド結合のうち少なくとも一方を含む樹脂と、アルコール系溶剤を含むレジスト上層膜形成組成物、
第2観点として、第1観点の樹脂が下記の式(1-1)、式(1-2)及び式(1-3)の中から選ばれる1種以上の単位構造を含む樹脂である、第1観点に記載のレジスト上層膜形成組成物
Figure JPOXMLDOC01-appb-C000010

(式(1-1)乃至式(1-3)中、AとBは少なくとも一方が芳香環を含む有機基であり、且つ少なくとも一方がヒドロキシル基、カルボキシル基又はそれらの組み合わせを有する有機基である。当該樹脂の重量平均分子量は500乃至100000である。)、
第3観点として、第1観点又は第2観点に記載の樹脂末端構造が式(1-4)にて表される、第1観点又は第2観点に記載のレジスト上層膜形成組成物
Figure JPOXMLDOC01-appb-C000011
(式(1-4)中、R1は芳香環又は炭素数1乃至5個のアルキル基を含む有機基を表し、Bは第2観点に記載された定義と同じであり、波線部分は第2観点に記載の樹脂の一部を表す。)、
第4観点として、第1観点又は第2観点に記載の樹脂末端構造が式(1-5)又は式(1-6)にて表される、第1観点又は第2観点に記載のレジスト上層膜形成組成物
Figure JPOXMLDOC01-appb-C000012

(式(1-5)又は式(1-6)中、Rは芳香環又は炭素数1乃至5個のアルキル基を含む有機基を表し、A及びBは第2観点に記載の定義と同じであり、波線部分は第2観点に記載の樹脂の一部を表す。)、
第5観点として、上記アルコール系溶剤が、炭素数1乃至20個の直鎖、炭素数3乃至20個の分岐若しくは環状飽和アルキルアルコール又は、炭素数6乃至20個の芳香族アルコールである第1観点乃至第4観点のいずれか1観点に記載のレジスト上層膜形成組成物、
第6観点として、上記アルコール系溶剤が、1-ヘプタノール、2-メチル-2-ブタノール、4-メチル-2-ペンタノール又はシクロペンタノールである第1観点乃至第5観点のいずれか1観点に記載のレジスト上層膜形成組成物、
第7観点として、化合物(a)が、下記の式(1-7)乃至式(1-10)、
Figure JPOXMLDOC01-appb-C000013

(式(1-7)乃至式(1-10)中、X1乃至Xはそれぞれ独立にハロゲン原子、炭素数1乃至10の直鎖又は分岐アルキル基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキル基、炭素数1乃至30のアルコキシ基、ヒドロキシ基、カルボキシル基、シアノ基、ニトロ基、フェノキシ基又はベンゾイル基(前記フェノキシ基及びベンゾイル基の水素原子は、1乃至5個のハロゲン原子、1乃至5個の炭素数1乃至5の直鎖又は分岐アルキル基又は1乃至5個のヒドロキシ基で置換されていてもよい)を表す。m1は0乃至8の整数を表す。n1、m3及びm4は0乃至3の整数を表す。n2及びn3は0乃至2の整数を表す。m2及びm5は0乃至4の整数を表す。
Wは単結合、酸素原子、炭素数1乃至10の直鎖又は分岐アルキレン基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキレン基、スルホニル基又はカルボニル基のいずれかを表す。)、
化合物(b)が下記の式(1-11)乃至式(1-13)、
Figure JPOXMLDOC01-appb-C000014

(式(1-11)乃至式(1-13)中、Zはハロゲン原子、X乃至Xはそれぞれ独立にハロゲン原子、炭素数1乃至10の直鎖又は分岐アルキル基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキル基、炭素数1乃至30のアルコキシ基、ヒドロキシ基、カルボキシル基、シアノ基、ニトロ基、フェノキシ基又はベンゾイル基(前記フェノキシ基及びベンゾイル基の水素原子は、1乃至5個のハロゲン原子、1乃至5個の炭素数1乃至5の直鎖又は分岐アルキル基又は1乃至5個のヒドロキシ基で置換されていてもよい)を表す。m6及びm7は0乃至10の整数を表す。n4及びn5は0乃至3の整数を表す。m8及びm9は0乃至4の整数を表す。
Wは単結合、酸素原子、炭素数1乃至10の直鎖又は分岐アルキレン基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキレン基、スルホニル基又はカルボニル基のいずれかを表す。)、
化合物(c)が下記の式(1-14)又は式(1-15)、
Figure JPOXMLDOC01-appb-C000015

(式(1-14)乃至式(1-15)中、Zはハロゲン原子、X10乃至X12はそれぞれ独立にハロゲン原子、炭素数1乃至10の直鎖又は分岐アルキル基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキル基、炭素数1乃至30のアルコキシ基、ヒドロキシ基、カルボキシル基、シアノ基、ニトロ基、フェノキシ基又はベンゾイル基(前記フェノキシ基及びベンゾイル基の水素原子は、1乃至5個のハロゲン原子、1乃至5個の炭素数1乃至5の直鎖又は分岐アルキル基又は1乃至5個のヒドロキシ基で置換されていてもよい)を表す。m10は0乃至9の整数を表す。n6及びm11は0乃至3の整数を表す。m12は0乃至4の整数を表す。
Wは単結合、酸素原子、炭素数1乃至10の直鎖又は分岐アルキレン基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキレン基、スルホニル基又はカルボニル基のいずれかを表す。)、
化合物(d)が、下記の式(1-16)又は式(1-17)、
Figure JPOXMLDOC01-appb-C000016

(式(1-16)及び式(1-17)中、X13乃至X15はそれぞれ独立にハロゲン原子、炭素数1乃至10の直鎖又は分岐アルキル基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキル基、炭素数1乃至30のアルコキシ基、ヒドロキシ基、カルボキシル基、シアノ基、ニトロ基、フェノキシ基又はベンゾイル基(前記フェノキシ基及びベンゾイル基の水素原子は、1乃至5個のハロゲン原子、1乃至5個の炭素数1乃至5の直鎖又は分岐アルキル基又は1乃至5個のヒドロキシ基で置換されていてもよい)を表す。m13乃至m15は0乃至4の整数を表す。n7は0乃至3の整数を表す。
Wは単結合、酸素原子、炭素数1乃至10の直鎖又は分岐アルキレン基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキレン基、スルホニル基又はカルボニル基のいずれかを表す。)で表され、当該樹脂の単位構造中に少なくとも1つのヒドロキシル基、カルボキシル基又はそれらの組み合わせを有する第1観点に記載のレジスト上層膜形成組成物、
第8観点として、式(1-4)の部分構造を形成するための末端封止剤が、下記の式(1-18)乃至(1-21)、
Figure JPOXMLDOC01-appb-C000017

(式(1-18)乃至(1-21)中、Zはハロゲン原子、X16乃至X21はそれぞれ独立にハロゲン原子、炭素数1乃至10の直鎖又は分岐アルキル基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキル基、炭素数1乃至30のアルコキシ基、ヒドロキシ基、カルボキシル基、フェノキシ基、シアノ基またはニトロ基を表す。m16は0乃至10の整数を表す。n8、n9及びm17は0乃至3の整数を表す。m18及びm21は0乃至5の整数を表す。m19は0乃至11の整数を表す。m20は0乃至4の整数を表す。
W及びWは単結合、酸素原子、炭素数1乃至10の直鎖又は分岐アルキレン基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキレン基、スルホニル基又はカルボニル基のいずれかを表す。)で表される化合物である、第3観点に記載のレジスト上層膜形成組成物、
第9観点として、式(1-5)又は式(1-6)の部分構造を形成するための末端封止剤が、下記の式(1-22)又は式(1-23)、
Figure JPOXMLDOC01-appb-C000018

(式(1-22)及び式(1-23)中、X22乃至X24はそれぞれ独立にハロゲン原子、炭素数1乃至10の直鎖又は分岐アルキル基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキル基、炭素数1乃至30のアルコキシ基、ヒドロキシ基、カルボキシル基、フェノキシ基、シアノ基またはニトロ基を表す。m22は0乃至11の整数を表し、n10は0乃至3の整数を表し、m23は0乃至4の整数を表し、m24は0乃至5の整数を表す。
Wは単結合、酸素原子、炭素数1乃至10の直鎖又は分岐アルキレン基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキレン基、スルホニル基又はカルボニル基のいずれかを表す。)で表される化合物である、第4観点に記載のレジスト上層膜形成組成物、
第10観点として、更に酸化合物を含む第1観点乃至第9観点のいずれか1項に記載のレジスト上層膜形成組成物、
第11観点として、上記酸化合物がスルホン酸化合物又はスルホン酸エステル化合物である第10観点に記載のレジスト上層膜形成組成物、
第12観点として、上記酸化合物がヨードニウム塩系酸発生剤又はスルホニウム塩系酸発生剤である第10観点に記載のレジスト上層膜形成組成物、
第13観点として、更に塩基性化合物を含む第1観点乃至第12観点のいずれか1項に記載のレジスト上層膜形成組成物、
第14観点として、上記組成物とともに使用されるレジストがEUV(波長13.5nm)用レジストである、第1観点乃至第13観点いずれか1項に記載のレジスト上層膜形成組成物、
第15観点として、基板上にレジスト膜を形成する工程、該レジスト膜上に第1観点乃至第14観点のいずれか1項に記載のレジスト上層膜形成組成物を塗布し焼成してレジスト上層膜を形成する工程、該レジスト上層膜とレジスト膜で被覆された半導体基板を露光する工程、露光後に現像し該レジスト上層膜とレジスト膜を除去する工程、を含む半導体装置の製造方法、
及び第16観点として、上記露光がEUV(波長13.5nm)により行われる第15観点に記載の半導体装置の製造方法である。
As a first aspect of the present invention, one or more selected from (a) a tetracarboxylic dianhydride compound, (b) an acid dihalide compound, and (c) a compound having both a dicarboxylic anhydride group and an acid halide group (D) a resist upper layer film-forming composition comprising a resin containing at least one of an amide bond and an imide bond, and an alcohol solvent, produced by reacting the compound of (d) with one or more diamine compounds,
As a second aspect, the resin according to the first aspect is a resin including one or more unit structures selected from the following formulas (1-1), (1-2), and (1-3). Resist upper layer film-forming composition described in the first aspect
Figure JPOXMLDOC01-appb-C000010

(In the formulas (1-1) to (1-3), at least one of A 1 and B 1 is an organic group containing an aromatic ring, and at least one is an organic group having a hydroxyl group, a carboxyl group, or a combination thereof. The weight average molecular weight of the resin is 500 to 100,000).
As a third aspect, the resist upper layer film-forming composition according to the first aspect or the second aspect, wherein the resin terminal structure according to the first aspect or the second aspect is represented by the formula (1-4)
Figure JPOXMLDOC01-appb-C000011
(In the formula (1-4), R 1 represents an aromatic ring or an organic group containing an alkyl group having 1 to 5 carbon atoms, B 1 has the same definition as described in the second aspect, Represents a part of the resin described in the second viewpoint).
As a fourth aspect, the resist upper layer according to the first aspect or the second aspect, wherein the resin terminal structure according to the first aspect or the second aspect is represented by the formula (1-5) or the formula (1-6) Film-forming composition
Figure JPOXMLDOC01-appb-C000012

(In Formula (1-5) or Formula (1-6), R 2 represents an aromatic ring or an organic group containing an alkyl group having 1 to 5 carbon atoms, and A 1 and B 1 are those described in the second aspect. The wavy line part represents the part of the resin described in the second aspect).
As a fifth aspect, the alcohol solvent is a straight chain having 1 to 20 carbon atoms, a branched or cyclic saturated alkyl alcohol having 3 to 20 carbon atoms, or an aromatic alcohol having 6 to 20 carbon atoms. The resist upper layer film-forming composition according to any one of the viewpoints to the fourth aspect,
As a sixth aspect, in any one of the first to fifth aspects, the alcohol solvent is 1-heptanol, 2-methyl-2-butanol, 4-methyl-2-pentanol, or cyclopentanol. The composition for forming a resist upper layer film according to the description,
As a seventh aspect, the compound (a) is represented by the following formulas (1-7) to (1-10),
Figure JPOXMLDOC01-appb-C000013

(In the formulas (1-7) to (1-10), X 1 to X 5 are each independently a halogen atom, a straight or branched alkyl group having 1 to 10 carbon atoms, a straight chain having 1 to 10 carbon atoms, or Branched halogenated alkyl group, alkoxy group having 1 to 30 carbon atoms, hydroxy group, carboxyl group, cyano group, nitro group, phenoxy group or benzoyl group (the hydrogen atom of the phenoxy group and benzoyl group is 1 to 5 halogen atoms) M1 represents an integer of 0 to 8. n1 represents an atom, which may be substituted with 1 to 5 straight-chain or branched alkyl groups having 1 to 5 carbon atoms or 1 to 5 hydroxy groups. m3 and m4 represent an integer of 0 to 3. n2 and n3 represent an integer of 0 to 2. m2 and m5 represent an integer of 0 to 4.
W 1 represents any of a single bond, an oxygen atom, a linear or branched alkylene group having 1 to 10 carbon atoms, a linear or branched halogenated alkylene group having 1 to 10 carbon atoms, a sulfonyl group, or a carbonyl group. ),
Compound (b) is represented by the following formulas (1-11) to (1-13),
Figure JPOXMLDOC01-appb-C000014

(In the formulas (1-11) to (1-13), Z 1 is a halogen atom, X 6 to X 9 are each independently a halogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, and 1 carbon atom. A linear or branched alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a hydroxy group, a carboxyl group, a cyano group, a nitro group, a phenoxy group, or a benzoyl group (the hydrogen atoms of the phenoxy group and benzoyl group are M6 and m7 may be substituted with 1 to 5 halogen atoms, 1 to 5 linear or branched alkyl groups having 1 to 5 carbon atoms, or 1 to 5 hydroxy groups. It represents an integer of 10. n4 and n5 represent an integer of 0 to 3. m8 and m9 represent an integer of 0 to 4.
W 2 represents any of a single bond, an oxygen atom, a linear or branched alkylene group having 1 to 10 carbon atoms, a linear or branched halogenated alkylene group having 1 to 10 carbon atoms, a sulfonyl group, or a carbonyl group. ),
Compound (c) is represented by the following formula (1-14) or formula (1-15),
Figure JPOXMLDOC01-appb-C000015

(In the formulas (1-14) to (1-15), Z 1 is a halogen atom, X 10 to X 12 are each independently a halogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, and a carbon number of 1 A linear or branched alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a hydroxy group, a carboxyl group, a cyano group, a nitro group, a phenoxy group, or a benzoyl group (the hydrogen atoms of the phenoxy group and benzoyl group are M10 represents 0 to 9 and may be substituted with 1 to 5 halogen atoms, 1 to 5 straight-chain or branched alkyl groups having 1 to 5 carbon atoms, or 1 to 5 hydroxy groups. N6 and m11 represent an integer of 0 to 3. m12 represents an integer of 0 to 4.
W 3 represents any of a single bond, an oxygen atom, a linear or branched alkylene group having 1 to 10 carbon atoms, a linear or branched halogenated alkylene group having 1 to 10 carbon atoms, a sulfonyl group, or a carbonyl group. ),
Compound (d) is represented by the following formula (1-16) or formula (1-17),
Figure JPOXMLDOC01-appb-C000016

(In the formulas (1-16) and (1-17), X 13 to X 15 are each independently a halogen atom, a straight or branched alkyl group having 1 to 10 carbon atoms, a straight chain having 1 to 10 carbon atoms, or Branched halogenated alkyl group, alkoxy group having 1 to 30 carbon atoms, hydroxy group, carboxyl group, cyano group, nitro group, phenoxy group or benzoyl group (the hydrogen atom of the phenoxy group and benzoyl group is 1 to 5 halogen atoms) M13 to m15 each represents an integer of 0 to 4, and may be substituted with 1 to 5 linear or branched alkyl groups having 1 to 5 carbon atoms or 1 to 5 hydroxy groups. n7 represents an integer of 0 to 3.
W 4 represents a single bond, an oxygen atom, a linear or branched alkylene group having 1 to 10 carbon atoms, a linear or branched halogenated alkylene group having 1 to 10 carbon atoms, a sulfonyl group, or a carbonyl group. And the resist upper layer film-forming composition according to the first aspect, having at least one hydroxyl group, carboxyl group, or a combination thereof in the unit structure of the resin,
As an eighth aspect, end-capping agents for forming the partial structure of the formula (1-4) are represented by the following formulas (1-18) to (1-21),
Figure JPOXMLDOC01-appb-C000017

(In the formulas (1-18) to (1-21), Z 1 is a halogen atom, X 16 to X 21 are each independently a halogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, 10 represents a linear or branched halogenated alkyl group, an alkoxy group having 1 to 30 carbon atoms, a hydroxy group, a carboxyl group, a phenoxy group, a cyano group, or a nitro group, and m16 represents an integer of 0 to 10. n8, n9 And m17 represents an integer of 0 to 3. m18 and m21 represent an integer of 0 to 5. m19 represents an integer of 0 to 11. m20 represents an integer of 0 to 4.
W 5 and W 6 each represent a single bond, an oxygen atom, a linear or branched alkylene group having 1 to 10 carbon atoms, a linear or branched halogenated alkylene group having 1 to 10 carbon atoms, a sulfonyl group, or a carbonyl group. . A composition for forming a resist upper layer film according to the third aspect, which is a compound represented by:
As a ninth aspect, an end-capping agent for forming a partial structure of formula (1-5) or formula (1-6) is represented by the following formula (1-22) or formula (1-23),
Figure JPOXMLDOC01-appb-C000018

(In the formulas (1-22) and (1-23), X 22 to X 24 are each independently a halogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, a linear or branched alkyl group having 1 to 10 carbon atoms, or A branched halogenated alkyl group, an alkoxy group having 1 to 30 carbon atoms, a hydroxy group, a carboxyl group, a phenoxy group, a cyano group or a nitro group, m22 represents an integer of 0 to 11, and n10 represents an integer of 0 to 3 M23 represents an integer of 0 to 4, and m24 represents an integer of 0 to 5.
W 7 represents any of a single bond, an oxygen atom, a linear or branched alkylene group having 1 to 10 carbon atoms, a linear or branched halogenated alkylene group having 1 to 10 carbon atoms, a sulfonyl group, or a carbonyl group. A composition for forming a resist upper layer film according to the fourth aspect, which is a compound represented by:
As a tenth aspect, the resist upper layer film-forming composition according to any one of the first to ninth aspects, further comprising an acid compound,
As an eleventh aspect, the resist upper layer film-forming composition according to the tenth aspect, in which the acid compound is a sulfonic acid compound or a sulfonic acid ester compound,
As a twelfth aspect, the resist upper layer film-forming composition according to the tenth aspect, in which the acid compound is an iodonium salt acid generator or a sulfonium salt acid generator,
As a thirteenth aspect, the resist upper layer film-forming composition according to any one of the first to twelfth aspects, further including a basic compound,
As a fourteenth aspect, the resist upper layer film forming composition according to any one of the first to thirteenth aspects, wherein the resist used together with the composition is a resist for EUV (wavelength 13.5 nm),
As a fifteenth aspect, a step of forming a resist film on a substrate, the resist upper layer film forming composition according to any one of the first aspect to the fourteenth aspect is applied on the resist film and baked to form a resist upper layer film A method of manufacturing a semiconductor device, comprising: a step of exposing a semiconductor substrate coated with the resist upper layer film and the resist film; a step of developing after exposure to remove the resist upper layer film and the resist film;
As a sixteenth aspect, there is provided the method for manufacturing a semiconductor device according to the fifteenth aspect, wherein the exposure is performed by EUV (wavelength: 13.5 nm).
 本発明はレジスト上層膜形成組成物として、特にEUVレジストの上層膜形成組成物として、EUVレジストとインターミキシングすることなく、EUV露光に際して好ましくない露光光、例えばUVやDUVを遮断してEUVのみを選択的に透過し、また露光後に現像液で現像可能なレジスト上層膜形成組成物に関するものである。
 通常EUVレジストの露光に際し、EUV光を使用すると、EUV光と共にUV光やDUV光が放射される。すなわち、このEUV光はEUV光以外に300nm以下の波長の光を5%程度含むが、例えば190乃至300nm、特に220乃至260nm付近の波長領域の光が最も強度が高く、このことによりEUVレジストの感度低下やパターン形状の劣化につながる。線幅が22nm以下になると、このUV光やDUV光(OUTofBAND/帯域外放射)の影響が出始めEUVレジストの解像性に悪影響を与える。
220乃至260nm付近の波長光を除去するためにリソグラフィーシステムにフィルターを設置する方法もあるが、工程上複雑になる。これに対し、本発明ではEUV露光光に含まれるDUV光(OUTofBAND/帯域外放射)のなかでも220乃至260nmの望まれないDUV光をレジスト上層膜で吸収し、EUVレジストの解像性の向上を行うことができる。
The present invention provides a resist upper layer film-forming composition, particularly an EUV resist upper layer film-forming composition, without intermixing with an EUV resist, and blocking only EUV by blocking exposure light, such as UV and DUV, which is not desirable for EUV exposure. The present invention relates to a resist upper layer film-forming composition that is selectively transmitted and can be developed with a developer after exposure.
Normally, when EUV light is used for exposure of an EUV resist, UV light and DUV light are emitted together with the EUV light. That is, this EUV light contains about 5% of light having a wavelength of 300 nm or less in addition to the EUV light. For example, light in a wavelength region of about 190 to 300 nm, particularly 220 to 260 nm, has the highest intensity. It leads to a decrease in sensitivity and pattern shape. When the line width is 22 nm or less, the influence of the UV light or DUV light (OUTofBAND / out-of-band radiation) starts to appear, and the resolution of the EUV resist is adversely affected.
There is a method of installing a filter in the lithography system in order to remove light having a wavelength in the vicinity of 220 to 260 nm, but this is complicated in the process. On the other hand, in the present invention, among the DUV light (OUTofBAND / out-of-band radiation) included in the EUV exposure light, unwanted DUV light of 220 to 260 nm is absorbed by the resist upper layer film, and the resolution of the EUV resist is improved. It can be performed.
 また、EUVレジストの上層に被覆する際に、EUVレジストとのインターミキシング(層の混合)を防止するために、レジスト上層膜には、EUVレジストに用いられる溶剤は使用せず、アルコール系溶剤を用いた方がよい。この様な場合に、本発明のレジスト上層膜形成組成物に用いられる樹脂は、アルコール系溶剤への溶解性を高めるためヒドロキシル基やカルボキシル基やこれらの基を含む有機基からなる親水性基を有することでアルコール系溶剤に高い溶解性を有する。
すなわち、本発明のレジスト上層膜形成組成物に用いられる樹脂は、ヒドロキシル基やカルボキシル基やこれらの基を含む有機基からなる親水性基を有することで、露光後の現像時にEUVレジストと共に現像液(例えば、アルカリ性現像液)による溶解除去が可能である。  
Also, in order to prevent intermixing (mixing of layers) with the EUV resist when coating the upper layer of the EUV resist, the solvent used for the EUV resist is not used for the resist upper layer film, and an alcohol solvent is used. It is better to use it. In such a case, the resin used in the resist upper layer film-forming composition of the present invention has a hydrophilic group comprising a hydroxyl group, a carboxyl group, or an organic group containing these groups in order to increase the solubility in an alcohol solvent. It has high solubility in alcohol solvents.
That is, the resin used in the resist upper layer film-forming composition of the present invention has a hydrophilic group composed of a hydroxyl group, a carboxyl group, and an organic group containing these groups, so that a developer is developed together with an EUV resist during development after exposure. It can be dissolved and removed with (for example, an alkaline developer).
 本発明は、(a)テトラカルボン酸二無水物化合物、(b)酸ジハライド化合物及び(c)ジカルボン酸無水物基と酸ハライド基両方を有する化合物の中から選ばれる1種以上の化合物と、(d)1種以上のジアミン化合物とを反応させて製造される、アミド結合及びイミド結合のうち少なくとも一方を含む樹脂と、アルコール系溶剤を含むレジスト上層膜形成組成物である。本発明は一般的なレジスト上層膜形成組成物として好適であるが、特に露光波長としてEUVを用いる、EUVリソグラフィー工程に用いるレジスト上層膜形成組成物として好適である。 The present invention includes one or more compounds selected from (a) a tetracarboxylic dianhydride compound, (b) an acid dihalide compound, and (c) a compound having both a dicarboxylic anhydride group and an acid halide group, (D) A resist upper layer film-forming composition comprising a resin containing at least one of an amide bond and an imide bond and an alcohol solvent, which is produced by reacting with one or more diamine compounds. The present invention is suitable as a general resist upper layer film forming composition, but is particularly suitable as a resist upper layer film forming composition used in an EUV lithography process using EUV as an exposure wavelength.
 上記レジスト上層膜形成組成物は、上記樹脂及びアルコール系溶剤を含有し、更に酸化合物、塩基性化合物、架橋剤、架橋触媒、界面活性剤、レオロジー調整剤、接着補助剤などを含むことが出来る。 The resist upper layer film-forming composition contains the resin and an alcohol solvent, and may further contain an acid compound, a basic compound, a crosslinking agent, a crosslinking catalyst, a surfactant, a rheology modifier, an adhesion aid, and the like. .
 本発明のレジスト上層膜形成組成物の固形分は、0.1乃至50質量%であり、好ましくは0.1乃至30質量%である。ここで固形分とは、レジスト上層膜形成組成物から溶剤成分を取り除いたものである。 The solid content of the resist upper layer film-forming composition of the present invention is 0.1 to 50% by mass, preferably 0.1 to 30% by mass. Here, the solid content is obtained by removing the solvent component from the resist upper layer film-forming composition.
 上記樹脂のレジスト上層膜形成組成物における固形分中の含有量は、20質量%以上、例えば20乃至100質量%、又は30乃至100質量%、または50乃至90質量%、又は60乃至80質量%である。上記樹脂中、(a)テトラカルボン酸二無水物化合物、(b)酸ジハライド化合物及び(c)ジカルボン酸無水物基と酸ハライド基両方を有する化合物の構成単位であるA、(d)ジアミン化合物の構成単位であるBは、少なくとも一方が芳香環を含む有機基であり、さらに少なくとも一方がヒドロキシル基、カルボキシル基又はそれらの組み合わせを有する有機基である。ヒドロキシル基、カルボキシル基は親水性基であり、アルコール系溶媒への溶解性及び現像液可溶性の機能を発現するために必須である。 The content of the resin in the solid content in the resist upper layer film-forming composition is 20% by mass or more, for example, 20 to 100% by mass, or 30 to 100% by mass, or 50 to 90% by mass, or 60 to 80% by mass. It is. A 1 , (d) diamine, which is a structural unit of (a) a tetracarboxylic dianhydride compound, (b) an acid dihalide compound, and (c) a compound having both a dicarboxylic anhydride group and an acid halide group in the resin. B 1 which is a structural unit of the compound is an organic group in which at least one includes an aromatic ring, and at least one is an organic group having a hydroxyl group, a carboxyl group, or a combination thereof. A hydroxyl group and a carboxyl group are hydrophilic groups, and are essential for expressing solubility in alcohol solvents and developer-soluble functions.
 以下本発明のレジスト上層膜形成組成物の詳細について説明する。 Details of the resist upper layer film forming composition of the present invention will be described below.
 本発明の樹脂は、(a)テトラカルボン酸二無水物化合物、(b)酸ジハライド化合物及び(c)ジカルボン酸無水物基と酸ハライド基両方を有する化合物の中から選ばれる1種以上の化合物と、(d)1種以上のジアミン化合物とを反応させて製造される、アミド結合及びイミド結合のうち少なくとも一方を含む樹脂である。その樹脂は下記の式(1-1)、式(1-2)及び式(1-3)の中から選ばれる1種以上の単位構造を含む。
Figure JPOXMLDOC01-appb-C000019
The resin of the present invention comprises at least one compound selected from (a) a tetracarboxylic dianhydride compound, (b) an acid dihalide compound, and (c) a compound having both a dicarboxylic acid anhydride group and an acid halide group. And (d) a resin containing at least one of an amide bond and an imide bond produced by reacting one or more diamine compounds. The resin contains one or more unit structures selected from the following formulas (1-1), (1-2), and (1-3).
Figure JPOXMLDOC01-appb-C000019
 式(1-1)乃至式(1-3)中のA及びBの定義は上述のとおりである。具体的には
(i) Aが芳香環を含み且つヒドロキシル基、カルボキシル基又はそれらの組み合わせを有する有機基であり、Bが芳香環を含み且つヒドロキシル基、カルボキシル基又はそれらの組み合わせを有する有機基である場合、
(ii)  Aが芳香環を含み且つヒドロキシル基、カルボキシル基又はそれらの組み合わせを有する有機基であり、Bが芳香環を含み且つヒドロキシル基、カルボキシル基又はそれらの組み合わせを有さない有機基である場合、
(iii)  Aが芳香環を含み且つヒドロキシル基、カルボキシル基又はそれらの組み合わせを有する有機基であり、Bが芳香環を含まず且つヒドロキシル基、カルボキシル基又はそれらの組み合わせを有する有機基である場合、
(iv)  Aが芳香環を含み且つヒドロキシル基、カルボキシル基又はそれらの組み合わせを有する有機基であり、Bが芳香環を含まず且つヒドロキシル基、カルボキシル基又はそれらの組み合わせを有さない有機基である場合、
(v) Aが芳香環を含み且つヒドロキシル基、カルボキシル基又はそれらの組み合わせを有さない有機基であり、Bが芳香環を含み且つヒドロキシル基、カルボキシル基又はそれらの組み合わせを有する有機基である場合、
(vi) Aが芳香環を含み且つヒドロキシル基、カルボキシル基又はそれらの組み合わせを有さない有機基であり、Bが芳香環を含まず且つヒドロキシル基、カルボキシル基又はそれらの組み合わせを有する有機基である場合、
(vii) Aが芳香環を含まず且つヒドロキシル基、カルボキシル基又はそれらの組み合わせを有する有機基であり、Bが芳香環を含み且つヒドロキシル基、カルボキシル基又はそれらの組み合わせを有する有機基である場合、
(viii)  Aが芳香環を含まず且つヒドロキシル基、カルボキシル基又はそれらの組み合わせを有する有機基であり、Bが芳香環を含み且つヒドロキシル基、カルボキシル基又はそれらの組み合わせを有さない有機基である場合、
(ix)  Aが芳香環を含まず且つヒドロキシル基、カルボキシル基又はそれらの組み合わせを有さない有機基であり、Bが芳香環を含み且つヒドロキシル基、カルボキシル基又はそれらの組み合わせを有する有機基である場合、
である。
The definitions of A 1 and B 1 in the formulas (1-1) to (1-3) are as described above. Specifically, (i) A 1 is an organic group containing an aromatic ring and having a hydroxyl group, a carboxyl group or a combination thereof, and B 1 contains an aromatic ring and has a hydroxyl group, a carboxyl group or a combination thereof If it is an organic group,
(ii) A 1 is an organic group containing an aromatic ring and having a hydroxyl group, a carboxyl group or a combination thereof, and B 1 is an organic group containing an aromatic ring and having no hydroxyl group, a carboxyl group or a combination thereof. If it is,
(iii) A 1 is an organic group containing an aromatic ring and having a hydroxyl group, a carboxyl group or a combination thereof, and B 1 is an organic group not containing an aromatic ring and having a hydroxyl group, a carboxyl group or a combination thereof If there is
(iv) A 1 is an organic group containing an aromatic ring and having a hydroxyl group, a carboxyl group or a combination thereof, and B 1 is an organic group containing no aromatic ring and having no hydroxyl group, a carboxyl group or a combination thereof If it is a group,
(v) A 1 is an organic group containing an aromatic ring and not having a hydroxyl group, a carboxyl group or a combination thereof, and B 1 is an organic group containing an aromatic ring and having a hydroxyl group, a carboxyl group or a combination thereof If it is,
(vi) An organic group in which A 1 contains an aromatic ring and does not have a hydroxyl group, a carboxyl group or a combination thereof, and B 1 does not contain an aromatic ring and has a hydroxyl group, a carboxyl group or a combination thereof If it is a group,
(Vii) A 1 is an organic group not containing an aromatic ring and having a hydroxyl group, a carboxyl group or a combination thereof, and B 1 is an organic group containing an aromatic ring and having a hydroxyl group, a carboxyl group or a combination thereof If there is
(viii) A 1 is an organic group having no aromatic ring and having a hydroxyl group, a carboxyl group or a combination thereof, and B 1 is an organic group having an aromatic ring and having no hydroxyl group, a carboxyl group or a combination thereof. If it is a group,
(ix) An organic group in which A 1 does not contain an aromatic ring and does not have a hydroxyl group, a carboxyl group or a combination thereof, and B 1 contains an aromatic ring and has a hydroxyl group, a carboxyl group or a combination thereof If it is a group,
It is.
 本発明の樹脂末端については、(a)テトラカルボン酸二無水物化合物、(b)酸ジハライド化合物及び(c)ジカルボン酸無水物基と酸ハライド基両方を有する化合物の中から選ばれる1種以上の化合物と、(d)1種以上のジアミン化合物との反応量(仕込み量)を調整することで、アミノ基末端になる場合と、ジカルボン酸無水物基又は酸ハライド基末端となる場合がある。アミノ基末端の場合は、アミノ基と反応する反応基を有し且つ芳香環又は炭素数1乃至5個のアルキル基を含む有機基を有する末端封止剤を反応させて末端封止してもよい。ジカルボン酸無水物基又は酸ハライド基末端の場合は、ジカルボン酸無水物基又は酸ハライド基と反応する反応基を有し且つ芳香環又は炭素数1乃至5個のアルキル基を含む有機基を有する末端封止剤を反応させて末端封止してもよい。樹脂末端のアミノ基、ジカルボン酸無水物基又は酸ハライド基の反応性基の量を調整することで、樹脂の分子量調整、樹脂の物性(親疎水性等)制御、保存安定性の向上が可能となる。 About the resin terminal of this invention, 1 or more types chosen from (a) tetracarboxylic dianhydride compound, (b) acid dihalide compound, and (c) the compound which has both dicarboxylic anhydride group and acid halide group By adjusting the reaction amount (preparation amount) of (d) one or more diamine compounds, it may be an amino group terminal or a dicarboxylic acid anhydride group or an acid halide group terminal. . In the case of an amino group terminal, it may be end-capped by reacting an end-capping agent having a reactive group that reacts with the amino group and an aromatic ring or an organic group containing an alkyl group having 1 to 5 carbon atoms. Good. In the case of a dicarboxylic acid anhydride group or acid halide group terminal, it has a reactive group that reacts with the dicarboxylic acid anhydride group or acid halide group and has an organic group containing an aromatic ring or an alkyl group having 1 to 5 carbon atoms. The end capping agent may be reacted to end cleave. By adjusting the amount of the reactive group of the amino group, dicarboxylic acid anhydride group or acid halide group at the end of the resin, it is possible to adjust the molecular weight of the resin, control the physical properties (hydrophobicity etc.) of the resin, and improve the storage stability. Become.
 式(1-1)乃至式(1-3)中のAとしては、例えば式(2-1)乃至(2-8)が挙げられる。式中X25乃至X34は、それぞれ独立にハロゲン原子、炭素数1乃至10の直鎖又は分岐アルキル基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキル基、炭素数1乃至30のアルコキシ基、ヒドロキシ基、カルボキシル基、シアノ基、ニトロ基、フェノキシ基又はベンゾイル基(前記フェノキシ基及びベンゾイル基の水素原子は、1乃至5個のハロゲン原子、1乃至5個の炭素数1乃至5の直鎖又は分岐アルキル基又は1乃至5個のヒドロキシ基で置換されていてもよい)を表す。m25乃至m34は0乃至4の整数を表す。本発明はこれらのみに限定されるものではない。
Figure JPOXMLDOC01-appb-C000020
Examples of A 1 in formulas (1-1) to (1-3) include formulas (2-1) to (2-8). In the formula, X 25 to X 34 each independently represent a halogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, a linear or branched halogenated alkyl group having 1 to 10 carbon atoms, or an alkoxy having 1 to 30 carbon atoms. Group, hydroxy group, carboxyl group, cyano group, nitro group, phenoxy group or benzoyl group (the phenoxy group and the benzoyl group have 1 to 5 halogen atoms, 1 to 5 carbon atoms having 1 to 5 carbon atoms, A linear or branched alkyl group or optionally substituted with 1 to 5 hydroxy groups). m25 to m34 represent an integer of 0 to 4. The present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000020
としては、例えば式(3-1)乃至(3-14)が挙げられる。式中X35乃至X50は、それぞれ独立にハロゲン原子、炭素数1乃至10の直鎖又は分岐アルキル基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキル基、炭素数1乃至30のアルコキシ基、ヒドロキシ基、カルボキシル基、シアノ基、ニトロ基、フェノキシ基又はベンゾイル基(前記フェノキシ基及びベンゾイル基の水素原子は、1乃至5個のハロゲン原子、1乃至5個の炭素数1乃至5の直鎖又は分岐アルキル基又は1乃至5個のヒドロキシ基で置換されていてもよい)を表す。m35乃至m50は0乃至4の整数を表す)。本発明はこれらのみに限定されるものではない。
Figure JPOXMLDOC01-appb-C000021
Examples of B 1 include formulas (3-1) to (3-14). In the formula, X 35 to X 50 each independently represent a halogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, a linear or branched halogenated alkyl group having 1 to 10 carbon atoms, or an alkoxy having 1 to 30 carbon atoms. Group, hydroxy group, carboxyl group, cyano group, nitro group, phenoxy group or benzoyl group (the phenoxy group and benzoyl group have 1 to 5 halogen atoms, 1 to 5 carbon atoms having 1 to 5 carbon atoms, A linear or branched alkyl group or optionally substituted with 1 to 5 hydroxy groups). m35 to m50 represent an integer of 0 to 4). The present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000021
 なお、本明細書中、ハロゲン原子はフッ素原子、塩素原子、臭素原子またはヨウ素原子を表す。
 また、本明細書中、炭素数1乃至10の直鎖又は分岐アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、シクロプロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、シクロペンチル基、1-メチル-シクロブチル基、2-メチル-シクロブチル基、3-メチル-シクロブチル基、1,2-ジメチル-シクロプロピル基、2,3-ジメチル-シクロプロピル基、1-エチル-シクロプロピル基、2-エチル-シクロプロピル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基、1-エチル-2-メチル-n-プロピル基、シクロヘキシル基、1-メチル-シクロペンチル基、2-メチル-シクロペンチル基、3-メチル-シクロペンチル基、1-エチル-シクロブチル基、2-エチル-シクロブチル基、3-エチル-シクロブチル基、1,2-ジメチル-シクロブチル基、1,3-ジメチル-シクロブチル基、2,2-ジメチル-シクロブチル基、2,3-ジメチル-シクロブチル基、2,4-ジメチル-シクロブチル基、3,3-ジメチル-シクロブチル基、1-n-プロピル-シクロプロピル基、2-n-プロピル-シクロプロピル基、1-i-プロピル-シクロプロピル基、2-i-プロピル-シクロプロピル基、1,2,2-トリメチル-シクロプロピル基、1,2,3-トリメチル-シクロプロピル基、2,2,3-トリメチル-シクロプロピル基、1-エチル-2-メチル-シクロプロピル基、2-エチル-1-メチル-シクロプロピル基、2-エチル-2-メチル-シクロプロピル基及び2-エチル-3-メチル-シクロプロピル基等が挙げられる。
 また、炭素数1乃至5の直鎖又は分岐アルキル基は、例えば上記に挙げたもののうち炭素数1乃至5の炭素数のものであり、例えばメチル基、エチル基、イソプロピル基等が好ましく挙げられる。
 さらに、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキル基の例は上記に挙げたもののうち1個以上のハロゲン原子で置換された基が挙げられる。
 また、本明細書中、炭素数1乃至30のアルコキシ基としては、例えばメトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、s-ブトキシ基、t-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、ヘキサデシルオキシ基、オクタデシルオキシ基、ノナデシルオキシ基、ヘンイコシルオキシ基、ペンタコシルオキシ基、ヘキサコシルオキシ基、ノナコシルオキシ基、1-メチル-n-ブトキシ基、2-メチル-n-ブトキシ基、3-メチル-n-ブトキシ基、1,1-ジメチル-n-プロポキシ基、1,2-ジメチル-n-プロポキシ基、2,2-ジメチル-n-プロポキシ基、1-エチル-n-プロポキシ基、n-ヘキシルオキシ基、1-メチル-n-ペンチルオキシ基、2-メチル-n-ペンチルオキシ基、3-メチル-n-ペンチルオキシ基、4-メチル-n-ペンチルオキシ基、1,1-ジメチル-n-ブトキシ基、1,2-ジメチル-n-ブトキシ基、1,3-ジメチル-n-ブトキシ基、2,2-ジメチル-n-ブトキシ基、2,3-ジメチル-n-ブトキシ基、3,3-ジメチル-n-ブトキシ基、1-エチル-n-ブトキシ基、2-エチル-n-ブトキシ基、1,1,2-トリメチル-n-プロポキシ基、1,2,2-トリメチル-n-プロポキシ基、1-エチル-1-メチル-n-プロポキシ基、及び1-エチル-2-メチル-n-プロポキシ基等が挙げられる。
In the present specification, a halogen atom represents a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
In this specification, examples of the linear or branched alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, a cyclopropyl group, an n-butyl group, i -Butyl, s-butyl, t-butyl, cyclobutyl, 1-methyl-cyclopropyl, 2-methyl-cyclopropyl, n-pentyl, 1-methyl-n-butyl, 2-methyl -N-butyl group, 3-methyl-n-butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1- Ethyl-n-propyl group, cyclopentyl group, 1-methyl-cyclobutyl group, 2-methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-dimethyl-cyclopropyl group, 2,3-dimethyl-cyclopropyl group , 1-ethyl-cyclopropyl group, 2-ethyl-cyclopropyl group, n-hexyl group, 1-methyl-n-pentyl group, 2-methyl-n-pentyl group, 3-methyl-n-pentyl group, 4- Methyl-n-pentyl group, 1,1-dimethyl-n-butyl group, 1,2-dimethyl-n-butyl group, 1,3-dimethyl-n-butyl group, 2,2-dimethyl-n-butyl group 2,3-dimethyl-n-butyl group, 3,3-dimethyl-n-butyl group, 1-ethyl-n-butyl group, 2-ethyl-n-butyl group, 1,1,2-trimethyl-n -Propyl group, 1,2,2-trimethyl-n-propyl group, 1-ethyl-1-methyl-n-propyl group, 1-ethyl-2-methyl-n-propyl group, cyclohexyl group, 1-methyl- Cyclopentyl group, 2-methyl-cyclopentyl group, 3-methyl -Cyclopentyl group, 1-ethyl-cyclobutyl group, 2-ethyl-cyclobutyl group, 3-ethyl-cyclobutyl group, 1,2-dimethyl-cyclobutyl group, 1,3-dimethyl-cyclobutyl group, 2,2-dimethyl-cyclobutyl group Group, 2,3-dimethyl-cyclobutyl group, 2,4-dimethyl-cyclobutyl group, 3,3-dimethyl-cyclobutyl group, 1-n-propyl-cyclopropyl group, 2-n-propyl-cyclopropyl group, 1 -I-propyl-cyclopropyl group, 2-i-propyl-cyclopropyl group, 1,2,2-trimethyl-cyclopropyl group, 1,2,3-trimethyl-cyclopropyl group, 2,2,3-trimethyl -Cyclopropyl group, 1-ethyl-2-methyl-cyclopropyl group, 2-ethyl-1-methyl-cyclopropyl group, 2-ethyl-2-methyl -Cyclopropyl group and 2-ethyl-3-methyl-cyclopropyl group.
Further, the linear or branched alkyl group having 1 to 5 carbon atoms is, for example, one having 1 to 5 carbon atoms among those listed above, and preferred examples include a methyl group, an ethyl group, and an isopropyl group. .
Further, examples of the linear or branched alkyl halide group having 1 to 10 carbon atoms include groups substituted with one or more halogen atoms among those listed above.
In the present specification, examples of the alkoxy group having 1 to 30 carbon atoms include methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, i-butoxy group, s-butoxy group, t-butoxy group, pentyloxy group, hexyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, hexadecyloxy group, octadecyloxy group, nonadecyloxy group, heicosyloxy group, pentacosyl Oxy group, hexacosyloxy group, nonacosyloxy group, 1-methyl-n-butoxy group, 2-methyl-n-butoxy group, 3-methyl-n-butoxy group, 1,1-dimethyl-n-propoxy group, 1,2-dimethyl-n-propoxy group, 2,2-dimethyl-n-propoxy group, 1-ethyl-n-propoxy group Group, n-hexyloxy group, 1-methyl-n-pentyloxy group, 2-methyl-n-pentyloxy group, 3-methyl-n-pentyloxy group, 4-methyl-n-pentyloxy group, 1, 1-dimethyl-n-butoxy group, 1,2-dimethyl-n-butoxy group, 1,3-dimethyl-n-butoxy group, 2,2-dimethyl-n-butoxy group, 2,3-dimethyl-n- Butoxy group, 3,3-dimethyl-n-butoxy group, 1-ethyl-n-butoxy group, 2-ethyl-n-butoxy group, 1,1,2-trimethyl-n-propoxy group, 1,2,2 -Trimethyl-n-propoxy group, 1-ethyl-1-methyl-n-propoxy group, 1-ethyl-2-methyl-n-propoxy group and the like.
 本発明で用いられる樹脂の製造に使用される(a)テトラカルボン酸二無水物化合物は特に限定はなく、またこれらは一種の使用でもよく、また二種以上を同時に使用することができる。具体例としては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物などの芳香族テトラカルボン酸、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,3,4-シクロヘキサンテトラカルボン酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物のような脂環式テトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物のような脂肪族テトラカルボン酸二無水物が挙げられる。 The (a) tetracarboxylic dianhydride compound used in the production of the resin used in the present invention is not particularly limited, and these may be used alone or in combination of two or more. Specific examples include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3, Aromatic tetracarboxylic acids such as 3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, 1,2,3,4- Cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutane Tetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,3,4-cyclohexanetetracarboxylic dianhydride, 3,4-dicarboxy-1,2 , 3 Alicyclic tetracarboxylic dianhydrides such as 4-tetrahydro-1-naphthalene succinic dianhydride, aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride Things.
 本発明で用いられる樹脂の製造に使用される(b)酸ジハライド化合物は特に限定はなく、また、これらは一種の使用でもよく、また、二種以上を同時に使用することができる。具体例としては、4-ブロモイソフタロイルクロリド、5-tert-ブチルイソフタロイルクロリド、5-ヒドロキシイソフタロイルクロリド、イソフタロイルクロリド、5-メトキシイソフタロイルクロリド、5-ニトロイソフタロイルクロリド、5-メチルイソフタロイルクロリド、テトラフルオロイソフタロイルクロリド、ブロモテレフタロイルクロリド、2,5-ジクロロテレフタロイルクロリド、2,5-ジメチルテレフタロイルクロリド、ニトロテレフタロイルクロリド、テトラフルオロテレフタロイルクロリド、テトラクロロテレフタロイルクロリド、テトラブロモテレフタロイルクロリド、
4-ブロモイソフタロイルフルオリド、5-tert-ブチルイソフタロイルフルオリド、5-ヒドロキシイソフタロイルフルオリド、イソフタロイルフルオリド、5-メトキシイソフタロイルフルオリド、5-ニトロイソフタロイルフルオリド、5-メチルイソフタロイルフルオリド、テトラフルオロイソフタロイルフルオリド、ブロモテレフタロイルフルオリド、2,5-ジクロロテレフタロイルフルオリド、2,5-ジメチルテレフタロイルフルオリド、ニトロテレフタロイルフルオリド、テトラフルオロテレフタロイルフルオリド、テトラクロロテレフタロイルフルオリド、テトラブロモテレフタロイルフルオリド、
4-ブロモイソフタロイルブロミド、5-tert-ブチルイソフタロイルブロミド、5-ヒドロキシイソフタロイルブロミド、イソフタロイルブロミド、5-メトキシイソフタロイルブロミド、5-ニトロイソフタロイルブロミド、5-メチルイソフタロイルブロミド、テトラフルオロイソフタロイルブロミド、ブロモテレフタロイルブロミド、2,5-ジクロロテレフタロイルブロミド、2,5-ジメチルテレフタロイルブロミド、ニトロテレフタロイルブロミド、テトラフルオロテレフタロイルブロミド、テトラクロロテレフタロイルブロミド、テトラブロモテレフタロイルブロミド、
4-ブロモイソフタロイルヨーダイド、5-tert-ブチルイソフタロイルヨーダイド、5-ヒドロキシイソフタロイルヨーダイド、イソフタロイルヨーダイド、5-メトキシイソフタロイルヨーダイド、5-ニトロイソフタロイルヨーダイド、5-メチルイソフタロイルヨーダイド、テトラフルオロイソフタロイルヨーダイド、ブロモテレフタロイルヨーダイド、2,5-ジクロロテレフタロイルヨーダイド、2,5-ジメチルテレフタロイルヨーダイド、ニトロテレフタロイルヨーダイド、テトラフルオロテレフタロイルヨーダイド、テトラクロロテレフタロイルヨーダイド、テトラブロモテレフタロイルヨーダイドが挙げられる。
The (b) acid dihalide compound used in the production of the resin used in the present invention is not particularly limited, and these may be used alone or in combination of two or more. Specific examples include 4-bromoisophthaloyl chloride, 5-tert-butylisophthaloyl chloride, 5-hydroxyisophthaloyl chloride, isophthaloyl chloride, 5-methoxyisophthaloyl chloride, 5-nitroisophthaloyl. Chloride, 5-methylisophthaloyl chloride, tetrafluoroisophthaloyl chloride, bromoterephthaloyl chloride, 2,5-dichloroterephthaloyl chloride, 2,5-dimethylterephthaloyl chloride, nitroterephthaloyl chloride, tetra Fluoroterephthaloyl chloride, tetrachloroterephthaloyl chloride, tetrabromoterephthaloyl chloride,
4-bromoisophthaloyl fluoride, 5-tert-butylisophthaloyl fluoride, 5-hydroxyisophthaloyl fluoride, isophthaloyl fluoride, 5-methoxyisophthaloyl fluoride, 5-nitroisophthaloyl Fluoride, 5-methylisophthaloyl fluoride, tetrafluoroisophthaloyl fluoride, bromoterephthaloyl fluoride, 2,5-dichloroterephthaloyl fluoride, 2,5-dimethylterephthaloyl fluoride, nitro Terephthaloyl fluoride, tetrafluoroterephthaloyl fluoride, tetrachloroterephthaloyl fluoride, tetrabromoterephthaloyl fluoride,
4-bromoisophthaloyl bromide, 5-tert-butylisophthaloyl bromide, 5-hydroxyisophthaloyl bromide, isophthaloyl bromide, 5-methoxyisophthaloyl bromide, 5-nitroisophthaloyl bromide, 5-methyl Isophthaloyl bromide, tetrafluoroisophthaloyl bromide, bromoterephthaloyl bromide, 2,5-dichloroterephthaloyl bromide, 2,5-dimethyl terephthaloyl bromide, nitroterephthaloyl bromide, tetrafluoroterephthaloyl bromide Tetrachloroterephthaloyl bromide, tetrabromoterephthaloyl bromide,
4-bromoisophthaloyl iodide, 5-tert-butylisophthaloyl iodide, 5-hydroxyisophthaloyl iodide, isophthaloyl iodide, 5-methoxyisophthaloyl iodide, 5-nitroisophthaloyl Iodide, 5-methylisophthaloyl iodide, tetrafluoroisophthaloyl iodide, bromoterephthaloyl iodide, 2,5-dichloroterephthaloyl iodide, 2,5-dimethylterephthaloyl iodide, nitro Examples include terephthaloyl iodide, tetrafluoroterephthaloyl iodide, tetrachloroterephthaloyl iodide, and tetrabromoterephthaloyl iodide.
本発明で用いられる樹脂の製造に使用される(c)ジカルボン酸無水物基と酸ハライド基両方を有する化合物は特に限定はなく、また、これらは一種の使用でもよく、また二種以上を同時に使用することができる。具体例としては下記式(4-1)乃至式(4-5)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000022

(式(4-1)乃至式(4-5)中、Z1はハロゲン原子を表す。)
(C) The compound having both a dicarboxylic anhydride group and an acid halide group used in the production of the resin used in the present invention is not particularly limited, and these may be used alone or in combination of two or more. Can be used. Specific examples thereof include compounds represented by the following formulas (4-1) to (4-5).
Figure JPOXMLDOC01-appb-C000022

(In formulas (4-1) to (4-5), Z 1 represents a halogen atom.)
又、本発明で用いられる樹脂の製造に使用される(d)ジアミン化合物としては特に限定はなく、また、これらは一種の使用でもよく、また、二種以上を同時に使用することができる。具体例としては、2,4-ジアミノフェノール、3,5-ジアミノフェノール、2,5-ジアミノフェノール、4,6-ジアミノレゾルシノール、2,5-ジアミノハイドロキノン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(4-アミノ-3-ヒドロキシフェニル)エーテル、ビス(4-アミノ-3,5-ジヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシフェニル)メタン、ビス(4-アミノ-3-ヒドロキシフェニル)メタン、ビス(4-アミノ-3,5-ジヒドロキシフェニル)メタン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(4-アミノ-3-ヒドロキシフェニル)スルホン、ビス(4-アミノ-3,5-ジヒドロキシフェニル)スルホン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノ-3-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノ-3,5-ジヒドロキシフェニル)ヘキサフルオロプロパン、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、4,4’-ジアミノ-3,3'-ジヒドロキシ-5,5’-ジメチルビフェニル、4,4’-ジアミノ-3,3'-ジヒドロキシ-5,5’-ジメトキシビフェニル、1,4-ビス(3-アミノ-4-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(3-アミノ-4-ヒドロキシフェノキシ)ベンゼン、1,4-ビス(4-アミノ-3-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-アミノ-3-ヒドロキシフェノキシ)ベンゼン、ビス[4-(3-アミノ-4-ヒドロキシフェノキシ)フェニル]スルホン、ビス[4-(3-アミノ-4-ヒドロキシフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノ-4-ヒドロキシフェノキシ)フェニル]ヘキサフルオロプロパン等フェノール性水酸基を有するジアミン化合物、
1,3-ジアミノ-4-メルカプトベンゼン、1,3-ジアミノ-5-メルカプトベンゼン、1,4-ジアミノ-2-メルカプトベンゼン、ビス(4-アミノ-3-メルカプトフェニル)エーテル、2,2-ビス(3-アミノ-4-メルカプトフェニル)ヘキサフルオロプロパン等チオフェノール基を有するジアミン化合物、
1,3-ジアミノベンゼン-4-スルホン酸、1,3-ジアミノベンゼン-5-スルホン酸、1,4-ジアミノベンゼン-2-スルホン酸、ビス(4-アミノベンゼン-3-スルホン酸)エーテル、4,4’-ジアミノビフェニル-3,3’-ジスルホン酸、4,4’-ジアミノ-3,3’-ジメチルビフェニル-6,6’-ジスルホン酸等スルホン酸基を有するジアミン化合物、
2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸、4,6-ジアミノ-1,3-ベンゼンジカルボン酸、2,5-ジアミノ-1,4-ベンゼンジカルボン酸、ビス(4-アミノ-3-カルボキシフェニル)エーテル、ビス(4-アミノ-3,5-ジカルボキシフェニル)エーテル、ビス(4-アミノ-3-カルボキシフェニル)スルホン、ビス(4-アミノ-3,5-ジカルボキシフェニル)スルホン、4,4’-ジアミノ-3,3’-ジカルボキシビフェニル、4,4’-ジアミノ-3,3’-ジカルボキシ-5,5’-ジメチルビフェニル、4,4’-ジアミノ-3,3’-ジカルボキシ-5,5’-ジメトキシビフェニル、1,4-ビス(4-アミノ-3-カルボキシフェノキシ)ベンゼン、1,3-ビス(4-アミノ-3-カルボキシフェノキシ)ベンゼン、ビス[4-(4-アミノ-3-カルボキシフェノキシ)フェニル]スルホン、ビス[4-(4-アミノ-3-カルボキシフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノ-3-カルボキシフェノキシ)フェニル]ヘキサフルオロプロパン等の少なくとも1つのカルボキシル基を有するジアミン化合物が挙げられる。
また、p-フェニレンジアミン、m-フェニレンジアミン、4,4’-メチレン-ビス(2,6-エチルアニリン)、4,4’-メチレン-ビス(2-イソプロピル-6-メチルアニリン)4,4’-メチレン-ビス(2,6-ジイソプロピルアニリン)、2,4,6-トリメチル-1,3-フェニレンジアミン、2,3,5,6-テトラメチル-1,4-フェニレンジアミン、o-トリジン、m-トリジン、3,3’,5,5’-テトラメチルベンジジン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’-ジアミノ-3,3’-ジメチルジシクロヘキシルメタン、4,4’-ジアミノジフェニルエーテル、3,4-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アニリノ)ヘキサフルオロプロパン、2,2-ビス(3-アニリノ)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-トルイル)ヘキサフルオロプロパン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、1,2-ナフタレンジアミン、1,4-ナフタレンジアミン、2,4-ナフタレンジアミン、1,5-ジアミノナフタレン等のジアミン化合物を挙げることが出来る。
Moreover, there is no limitation in particular as (d) diamine compound used for manufacture of resin used by this invention, These may be used 1 type and can use 2 or more types simultaneously. Specific examples include 2,4-diaminophenol, 3,5-diaminophenol, 2,5-diaminophenol, 4,6-diaminoresorcinol, 2,5-diaminohydroquinone, bis (3-amino-4-hydroxyphenyl) ) Ether, bis (4-amino-3-hydroxyphenyl) ether, bis (4-amino-3,5-dihydroxyphenyl) ether, bis (3-amino-4-hydroxyphenyl) methane, bis (4-amino-) 3-hydroxyphenyl) methane, bis (4-amino-3,5-dihydroxyphenyl) methane, bis (3-amino-4-hydroxyphenyl) sulfone, bis (4-amino-3-hydroxyphenyl) sulfone, bis ( 4-amino-3,5-dihydroxyphenyl) sulfone, 2,2-bis (3-amino -4-hydroxyphenyl) hexafluoropropane, 2,2-bis (4-amino-3-hydroxyphenyl) hexafluoropropane, 2,2-bis (4-amino-3,5-dihydroxyphenyl) hexafluoropropane, 4,4'-diamino-3,3'-dihydroxybiphenyl, 4,4'-diamino-3,3'-dihydroxy-5,5'-dimethylbiphenyl, 4,4'-diamino-3,3'-dihydroxy -5,5'-dimethoxybiphenyl, 1,4-bis (3-amino-4-hydroxyphenoxy) benzene, 1,3-bis (3-amino-4-hydroxyphenoxy) benzene, 1,4-bis (4 -Amino-3-hydroxyphenoxy) benzene, 1,3-bis (4-amino-3-hydroxyphenoxy) benzene, bis [4- (3-amino No-4-hydroxyphenoxy) phenyl] sulfone, bis [4- (3-amino-4-hydroxyphenoxy) phenyl] propane, 2,2-bis [4- (3-amino-4-hydroxyphenoxy) phenyl] hexa A diamine compound having a phenolic hydroxyl group such as fluoropropane,
1,3-diamino-4-mercaptobenzene, 1,3-diamino-5-mercaptobenzene, 1,4-diamino-2-mercaptobenzene, bis (4-amino-3-mercaptophenyl) ether, 2,2- A diamine compound having a thiophenol group, such as bis (3-amino-4-mercaptophenyl) hexafluoropropane,
1,3-diaminobenzene-4-sulfonic acid, 1,3-diaminobenzene-5-sulfonic acid, 1,4-diaminobenzene-2-sulfonic acid, bis (4-aminobenzene-3-sulfonic acid) ether, Diamine compounds having a sulfonic acid group such as 4,4′-diaminobiphenyl-3,3′-disulfonic acid, 4,4′-diamino-3,3′-dimethylbiphenyl-6,6′-disulfonic acid,
2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid, 4,6-diamino-1,3-benzenedicarboxylic acid, 2,5-diamino-1,4-benzenedicarboxylic acid Acid, bis (4-amino-3-carboxyphenyl) ether, bis (4-amino-3,5-dicarboxyphenyl) ether, bis (4-amino-3-carboxyphenyl) sulfone, bis (4-amino- 3,5-dicarboxyphenyl) sulfone, 4,4′-diamino-3,3′-dicarboxybiphenyl, 4,4′-diamino-3,3′-dicarboxy-5,5′-dimethylbiphenyl, 4, , 4′-diamino-3,3′-dicarboxy-5,5′-dimethoxybiphenyl, 1,4-bis (4-amino-3-carboxyphenoxy) benzene, 1,3-bis (4 Amino-3-carboxyphenoxy) benzene, bis [4- (4-amino-3-carboxyphenoxy) phenyl] sulfone, bis [4- (4-amino-3-carboxyphenoxy) phenyl] propane, 2,2-bis Examples thereof include diamine compounds having at least one carboxyl group such as [4- (4-amino-3-carboxyphenoxy) phenyl] hexafluoropropane.
Further, p-phenylenediamine, m-phenylenediamine, 4,4′-methylene-bis (2,6-ethylaniline), 4,4′-methylene-bis (2-isopropyl-6-methylaniline) 4,4 '-Methylene-bis (2,6-diisopropylaniline), 2,4,6-trimethyl-1,3-phenylenediamine, 2,3,5,6-tetramethyl-1,4-phenylenediamine, o-tolidine , M-tolidine, 3,3 ′, 5,5′-tetramethylbenzidine, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (3-aminophenoxy) phenyl] propane 2,2-bis [4- (3-aminophenoxy) phenyl] hexafluoropropane, 4,4′-diamino-3,3′-dimethyldicyclohexylmethane, 4,4′- Aminodiphenyl ether, 3,4-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 2,2-bis (4-anilino) hexafluoropropane, 2,2-bis (3-anilino) hexafluoropropane, 2,2- Bis (3-amino-4-toluyl) hexafluoropropane, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, bis [4- (4-aminophenoxy) Phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 1,2-naphthalenediamine, 1 , 4-naphthalenediamine, 2,4-naphthalenediamine, 1,5-diaminonaphthalene, etc. It can be mentioned Min compound.
 さらに上記樹脂末端に末端の反応を封止する化合物(末端封止剤)を反応させ、樹脂末端のアミノ基、ジカルボン酸無水物基又は酸ハライド基の反応性基の量を調整することで、樹脂の分子量調整、樹脂の物性(親疎水性等)制御、保存安定性の向上が可能となる。末端封止の方法としては、本発明の樹脂中の(d)1種以上のジアミン化合物を、(a)テトラカルボン酸二無水物化合物、(b)酸ジハライド化合物及び(c)ジカルボン酸無水物基とハライド基両方を有する化合物の中から選ばれる1種以上の化合物に対し、過剰に加え樹脂末端をアミノ基にした上で、それと結合する反応基を有し且つ芳香環又は炭素数1乃至5個のアルキル基を含む有機基を反応させて形成することができる。より好ましくは、芳香環又は炭素数1乃至5個のアルキル基を有するジカルボン酸無水物化合物又は酸ハライド化合物を該樹脂末端に反応させて形成することができる。 Furthermore, by reacting a compound (terminal blocking agent) that seals the terminal reaction with the resin terminal, and adjusting the amount of the reactive group of the amino group, dicarboxylic anhydride group or acid halide group at the resin terminal, It is possible to adjust the molecular weight of the resin, control the physical properties (hydrophobicity etc.) of the resin, and improve the storage stability. As a method for end-capping, (d) one or more diamine compounds in the resin of the present invention are converted into (a) a tetracarboxylic dianhydride compound, (b) an acid dihalide compound, and (c) a dicarboxylic acid anhydride. One or more compounds selected from compounds having both a group and a halide group, in addition to making the resin terminal an amino group in excess, having a reactive group bonded thereto and an aromatic ring or having 1 to It can be formed by reacting an organic group containing 5 alkyl groups. More preferably, it can be formed by reacting an end of the resin with a dicarboxylic anhydride compound or acid halide compound having an aromatic ring or an alkyl group having 1 to 5 carbon atoms.
 ジカルボン酸無水物としては例えば以下の式(5-1)乃至式(5-30)、酸ハライド化合物としては式(5-31)乃至式(5-60)に示す化合物が挙げられる。特にジカルボン酸無水物を使用した場合には、末端にカルボキシル基が生成するため、このカルボキシル基により樹脂全体の親疎水性を制御することができる。本発明はこれらの化合物のみに限定されるものではない。
Figure JPOXMLDOC01-appb-C000023

Figure JPOXMLDOC01-appb-C000024

Figure JPOXMLDOC01-appb-C000025

Figure JPOXMLDOC01-appb-C000026

(上記式中、Z1はハロゲン原子、n11乃至n42はその化合物に結合できる最大数以下の0以上の整数を表す。)
Examples of the dicarboxylic acid anhydride include the following formulas (5-1) to (5-30), and examples of the acid halide compound include compounds represented by the formulas (5-31) to (5-60). In particular, when a dicarboxylic acid anhydride is used, a carboxyl group is generated at the terminal, and thus the hydrophilicity / hydrophobicity of the entire resin can be controlled by this carboxyl group. The present invention is not limited only to these compounds.
Figure JPOXMLDOC01-appb-C000023

Figure JPOXMLDOC01-appb-C000024

Figure JPOXMLDOC01-appb-C000025

Figure JPOXMLDOC01-appb-C000026

(In the above formula, Z 1 represents a halogen atom, and n11 to n42 represent an integer of 0 or more, which is not more than the maximum number that can be bonded to the compound.)
 またもう一方の方法として、本発明の樹脂中の(a)テトラカルボン酸二無水物化合物、(b)酸ジハライド化合物及び(c)ジカルボン酸無水物基とハライド基両方を有する化合物の中から選ばれる1種以上の化合物を、(d)1種以上のジアミン化合物に対し、過剰に加え当該樹脂の樹脂末端をジカルボン酸無水物基又は酸ハライド基にした上で、それと結合する反応基を有し且つ芳香環又は炭素数1乃至5個のアルキル基を含む有機基を反応させて形成することができる。より好ましくは、芳香環又は炭素数1乃至5個のアルキル基を有するアミノ基含有化合物を樹脂末端に反応させて形成することができる。具体的には以下の式(6-1)乃至式(6-30)に示す化合物が挙げられる。本発明はこれらのみに限定されるものではない。
Figure JPOXMLDOC01-appb-C000027

Figure JPOXMLDOC01-appb-C000028

(上記式中、Z1はハロゲン原子、n43乃至n60はその化合物に結合できる最大数以下の0以上の整数を表す。)
As another method, it is selected from (a) a tetracarboxylic dianhydride compound, (b) an acid dihalide compound, and (c) a compound having both a dicarboxylic anhydride group and a halide group in the resin of the present invention. (D) One or more diamine compounds are added in excess to make the resin end of the resin a dicarboxylic anhydride group or acid halide group, and then have a reactive group that binds to it. And an organic group containing an aromatic ring or an alkyl group having 1 to 5 carbon atoms can be reacted. More preferably, it can be formed by reacting an aromatic ring or an amino group-containing compound having an alkyl group having 1 to 5 carbon atoms with a resin terminal. Specific examples include compounds represented by the following formulas (6-1) to (6-30). The present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000027

Figure JPOXMLDOC01-appb-C000028

(In the above formula, Z 1 represents a halogen atom, and n43 to n60 represent an integer of 0 or more, which is not more than the maximum number that can be bonded to the compound.)
 以下に本発明のレジスト上層膜形成組成物に含有されるポリアミド酸又はポリアミドの構造の具体例を示すが、本発明は何ら下記の例示に制限されるものでは無い。
本発明のレジスト上層膜形成組成物に含有されるポリアミド酸としては、例えば、下記のポリアミド酸(7-1)乃至(7-13)を挙げることができる(式中p、p、p及びpはポリアミド酸における各構造の割合を表す)。ここで、(7-1)乃至(7-8)は一種のテトラカルボン酸二無水物化合物と二種のジアミン化合物から製造されるポリアミド酸であり、(7-9)及び(7-10)は二種のテトラカルボン酸二無水物化合物と一種のジアミン化合物から製造されるポリアミド酸であり、(7-11)は二種のテトラカルボン酸二無水物化合物と二種のジアミン化合物から製造されるポリアミド酸であり、そして、(7-12)及び(7-13)は一種のテトラカルボン酸二無水物化合物と一種のジアミン化合物から製造されるポリアミド酸である。
該ポリアミド酸は、別途記載される熱イミド化、化学イミド化等の方法でポリイミドとすることも出来る。
Figure JPOXMLDOC01-appb-C000029

Figure JPOXMLDOC01-appb-C000030

Figure JPOXMLDOC01-appb-C000031

Figure JPOXMLDOC01-appb-C000032

Figure JPOXMLDOC01-appb-C000033

Figure JPOXMLDOC01-appb-C000034

Figure JPOXMLDOC01-appb-C000035

Figure JPOXMLDOC01-appb-C000036

Figure JPOXMLDOC01-appb-C000037

Figure JPOXMLDOC01-appb-C000038

Figure JPOXMLDOC01-appb-C000039

Figure JPOXMLDOC01-appb-C000040

Figure JPOXMLDOC01-appb-C000041
Specific examples of the structure of the polyamic acid or polyamide contained in the resist upper layer film-forming composition of the present invention are shown below, but the present invention is not limited to the following examples.
Examples of the polyamic acid contained in the resist upper layer film-forming composition of the present invention include the following polyamic acids (7-1) to (7-13) (wherein p 1 , p 2 , p 3 and p 4 represent the proportion of each structure in the polyamic acid). Here, (7-1) to (7-8) are polyamic acids produced from one kind of tetracarboxylic dianhydride compound and two kinds of diamine compounds, and (7-9) and (7-10) Is a polyamic acid produced from two tetracarboxylic dianhydride compounds and one diamine compound, and (7-11) is produced from two tetracarboxylic dianhydride compounds and two diamine compounds. (7-12) and (7-13) are polyamic acids produced from a kind of tetracarboxylic dianhydride compound and a kind of diamine compound.
The polyamic acid can be converted to polyimide by a method such as thermal imidization or chemical imidization described separately.
Figure JPOXMLDOC01-appb-C000029

Figure JPOXMLDOC01-appb-C000030

Figure JPOXMLDOC01-appb-C000031

Figure JPOXMLDOC01-appb-C000032

Figure JPOXMLDOC01-appb-C000033

Figure JPOXMLDOC01-appb-C000034

Figure JPOXMLDOC01-appb-C000035

Figure JPOXMLDOC01-appb-C000036

Figure JPOXMLDOC01-appb-C000037

Figure JPOXMLDOC01-appb-C000038

Figure JPOXMLDOC01-appb-C000039

Figure JPOXMLDOC01-appb-C000040

Figure JPOXMLDOC01-appb-C000041
本発明のレジスト上層膜形成組成物に含有されるポリアミドとしては、例えば、下記のポリアミド(8-1)乃至(8-11)を挙げることができる。ここで、(8-1)乃至(8-7)は一種の酸ジハライド化合物と二種のジアミン化合物から製造されるポリアミドであり、(8-8)及び(8-9)は二種の酸ジハライド化合物と一種のジアミン化合物から製造されるポリアミドであり、(8-10)は二種の酸ジハライド化合物と二種のジアミン化合物から製造されるポリアミドであり、そして、(8-11)は一種の酸ジハライド化合物と一種のジアミン化合物から製造されるポリアミドである。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Examples of the polyamide contained in the resist upper layer film forming composition of the present invention include the following polyamides (8-1) to (8-11). Here, (8-1) to (8-7) are polyamides produced from one kind of acid dihalide compound and two kinds of diamine compounds, and (8-8) and (8-9) are two kinds of acids. A polyamide produced from a dihalide compound and one kind of diamine compound, (8-10) is a polyamide produced from two kinds of acid dihalide compounds and two kinds of diamine compounds, and (8-11) is one kind It is a polyamide produced from an acid dihalide compound and a kind of diamine compound.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
また、ポリアミド酸の末端に末端封止剤を導入した樹脂の構造式は例えば、式(9-1)乃至式(9-13)のようなアミノ基末端に酸ハライド化合物もしくは酸無水物化合物を反応させた例や、式(10-1)乃至式(10-13)のような、ジカルボン酸無水物末端にアミノ基含有化合物を反応させた例を挙げることができる。
該ポリアミド酸は、別途記載される熱イミド化、化学イミド化等の方法でポリイミドとすることも出来る。
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062

Figure JPOXMLDOC01-appb-C000063

Figure JPOXMLDOC01-appb-C000064

Figure JPOXMLDOC01-appb-C000065

Figure JPOXMLDOC01-appb-C000066

Figure JPOXMLDOC01-appb-C000067

Figure JPOXMLDOC01-appb-C000068


Figure JPOXMLDOC01-appb-C000069

Figure JPOXMLDOC01-appb-C000070

Figure JPOXMLDOC01-appb-C000071

Figure JPOXMLDOC01-appb-C000072

Figure JPOXMLDOC01-appb-C000073

Figure JPOXMLDOC01-appb-C000074

Figure JPOXMLDOC01-appb-C000075

Figure JPOXMLDOC01-appb-C000076

Figure JPOXMLDOC01-appb-C000077

Figure JPOXMLDOC01-appb-C000078
The structural formula of the resin in which the end-capping agent is introduced at the end of the polyamic acid is, for example, an acid halide compound or an acid anhydride compound at the amino group end as in the formulas (9-1) to (9-13). Examples of the reaction include examples in which an amino group-containing compound is reacted with the terminal of the dicarboxylic acid anhydride, such as formula (10-1) to formula (10-13).
The polyamic acid can be converted to polyimide by a method such as thermal imidization or chemical imidization described separately.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062

Figure JPOXMLDOC01-appb-C000063

Figure JPOXMLDOC01-appb-C000064

Figure JPOXMLDOC01-appb-C000065

Figure JPOXMLDOC01-appb-C000066

Figure JPOXMLDOC01-appb-C000067

Figure JPOXMLDOC01-appb-C000068


Figure JPOXMLDOC01-appb-C000069

Figure JPOXMLDOC01-appb-C000070

Figure JPOXMLDOC01-appb-C000071

Figure JPOXMLDOC01-appb-C000072

Figure JPOXMLDOC01-appb-C000073

Figure JPOXMLDOC01-appb-C000074

Figure JPOXMLDOC01-appb-C000075

Figure JPOXMLDOC01-appb-C000076

Figure JPOXMLDOC01-appb-C000077

Figure JPOXMLDOC01-appb-C000078
また、ポリアミドの末端に末端封止剤を導入した樹脂の構造式は例えば、式(11-1)乃至式(11-11)のようなアミノ基末端に酸ハライド化合物もしくは酸無水物を反応させた例や、式(12-1)乃至式(12-10)のような、酸ハライド基末端にアミノ基含有化合物を反応させた例を挙げることができる。
Figure JPOXMLDOC01-appb-C000079

Figure JPOXMLDOC01-appb-C000080

Figure JPOXMLDOC01-appb-C000081

Figure JPOXMLDOC01-appb-C000082

Figure JPOXMLDOC01-appb-C000083

Figure JPOXMLDOC01-appb-C000084

Figure JPOXMLDOC01-appb-C000085

Figure JPOXMLDOC01-appb-C000086

Figure JPOXMLDOC01-appb-C000087

Figure JPOXMLDOC01-appb-C000088

Figure JPOXMLDOC01-appb-C000089


Figure JPOXMLDOC01-appb-C000091

Figure JPOXMLDOC01-appb-C000092

Figure JPOXMLDOC01-appb-C000093

Figure JPOXMLDOC01-appb-C000094

Figure JPOXMLDOC01-appb-C000095

Figure JPOXMLDOC01-appb-C000096

Figure JPOXMLDOC01-appb-C000097

Figure JPOXMLDOC01-appb-C000098

Figure JPOXMLDOC01-appb-C000099
In addition, the structural formula of a resin in which an end-capping agent is introduced at the end of polyamide is, for example, a reaction of an acid halide compound or acid anhydride with an amino group end such as formula (11-1) to formula (11-11). And examples in which an amino group-containing compound is reacted with the terminal of the acid halide group, such as formula (12-1) to formula (12-10).
Figure JPOXMLDOC01-appb-C000079

Figure JPOXMLDOC01-appb-C000080

Figure JPOXMLDOC01-appb-C000081

Figure JPOXMLDOC01-appb-C000082

Figure JPOXMLDOC01-appb-C000083

Figure JPOXMLDOC01-appb-C000084

Figure JPOXMLDOC01-appb-C000085

Figure JPOXMLDOC01-appb-C000086

Figure JPOXMLDOC01-appb-C000087

Figure JPOXMLDOC01-appb-C000088

Figure JPOXMLDOC01-appb-C000089


Figure JPOXMLDOC01-appb-C000091

Figure JPOXMLDOC01-appb-C000092

Figure JPOXMLDOC01-appb-C000093

Figure JPOXMLDOC01-appb-C000094

Figure JPOXMLDOC01-appb-C000095

Figure JPOXMLDOC01-appb-C000096

Figure JPOXMLDOC01-appb-C000097

Figure JPOXMLDOC01-appb-C000098

Figure JPOXMLDOC01-appb-C000099
 本発明で用いられる樹脂が、(a)テトラカルボン酸二無水物化合物、(b)酸ジハライド化合物及び(c)ジカルボン酸無水物基とハライド基両方を有する化合物の中から選ばれる1種以上の化合物と、(d)1種以上のジアミン化合物とから製造される場合、ジアミン化合物の総モル数に対する、テトラカルボン酸二無水物、酸ジハライド化合物及びジカルボン酸無水物基とハライド基両方を有する化合物の総モル数との比は0.8乃至1.2であることが望ましい。通常の重縮合反応同様、このモル比が1に近いほど生成する樹脂の重合度は大きくなり分子量が増加する。 The resin used in the present invention is one or more selected from (a) a tetracarboxylic dianhydride compound, (b) an acid dihalide compound and (c) a compound having both a dicarboxylic anhydride group and a halide group. Compound and (d) when produced from one or more diamine compounds, tetracarboxylic dianhydride, acid dihalide compound and compound having both dicarboxylic anhydride group and halide group, based on the total number of moles of diamine compound The ratio to the total number of moles is preferably 0.8 to 1.2. As in the normal polycondensation reaction, the closer the molar ratio is to 1, the higher the degree of polymerization of the resin produced and the higher the molecular weight.
 さらに末端封止剤を添加する場合は、例えばアミノ基末端の樹脂を合成する場合には、(d)1種以上のジアミン化合物を、(a)テトラカルボン酸二無水物、(b)酸ジハライド化合物及び(c)ジカルボン酸無水物基とハライド基両方を有する化合物の中から選ばれる1種以上の化合物の総モル数1に対し総モル数1.1乃至1.6の範囲にて過剰に加えて反応させた上で、末端封止剤を、(a)テトラカルボン酸二無水物化合物、(b)酸ジハライド化合物及び(c)ジカルボン酸無水物基とハライド基両方を有する化合物の中から選ばれる1種以上の化合物の総モル数1に対し、総モル数0.1乃至2.0にて添加して合成する。 Further, when adding an end-capping agent, for example, when synthesizing an amino group-terminated resin, (d) one or more diamine compounds are converted into (a) tetracarboxylic dianhydride, (b) acid dihalide. Compound (c) and an excess of 1 to 1.6 total moles relative to 1 total mole of one or more compounds selected from compounds having both dicarboxylic anhydride groups and halide groups In addition, after the reaction, end-capping agent is selected from (a) tetracarboxylic dianhydride compound, (b) acid dihalide compound, and (c) compound having both dicarboxylic anhydride group and halide group. The synthesis is performed by adding a total number of moles of 0.1 to 2.0 with respect to a total number of moles of one or more selected compounds.
 逆にジカルボン酸無水物基又は酸ハライド基末端の樹脂を合成する場合、(a)テトラカルボン酸二無水物化合物、(b)酸ジハライド化合物及び(c)ジカルボン酸無水物基とハライド基両方を有する化合物の中から選ばれる1種以上の化合物を、(d)1種以上のジアミン化合物の総モル数1に対し総モル数1.1乃至1.6の範囲にて過剰に加えて反応させた上で、末端封止剤を、ジアミン化合物の総モル数1に対し総モル数0.1乃至2.0添加して合成する。 Conversely, when synthesizing a resin having a dicarboxylic acid anhydride group or an acid halide group terminal, (a) a tetracarboxylic dianhydride compound, (b) an acid dihalide compound, and (c) both a dicarboxylic acid anhydride group and a halide group. One or more compounds selected from among the compounds having (d) one or more diamine compounds are added in excess in the range of a total number of moles of 1.1 to 1.6 with respect to a total number of moles of one or more diamine compounds. In addition, the end capping agent is synthesized by adding a total number of moles of 0.1 to 2.0 with respect to a total number of moles of the diamine compound.
 本発明の樹脂の製造において、(a)テトラカルボン酸二無水物化合物、(b)酸ジハライド化合物及び(c)ジカルボン酸無水物基とハライド基両方を有する化合物の中から選ばれる1種以上の化合物と、(d)1種以上のジアミン化合物との反応の反応温度は-20℃乃至150℃、好ましくは-5℃乃至100℃の任意の温度を選択することができる。反応温度は5℃乃至40℃、反応時間1乃至48時間で高分子量の樹脂を得ることが出来る。低分子量で保存安定性の高い樹脂を得るには40℃乃至80℃で反応時間10時間以上がより好ましい。 In the production of the resin of the present invention, at least one selected from (a) a tetracarboxylic dianhydride compound, (b) an acid dihalide compound, and (c) a compound having both a dicarboxylic anhydride group and a halide group. The reaction temperature of the reaction between the compound and (d) one or more diamine compounds can be selected from -20 ° C to 150 ° C, preferably -5 ° C to 100 ° C. A high molecular weight resin can be obtained at a reaction temperature of 5 to 40 ° C. and a reaction time of 1 to 48 hours. In order to obtain a resin having a low molecular weight and high storage stability, a reaction time of 10 hours or longer at 40 to 80 ° C. is more preferable.
 本発明の樹脂のうちイミド結合を有するものは、樹脂中のポリアミド酸を加熱により脱水閉環(熱イミド化)して得ることができる。この際、ポリアミド酸を溶媒中でイミドに転化させ溶剤可溶性のポリイミド含有樹脂として用いることも可能である。
また、公知の脱水閉環触媒を使用して化学的に閉環する方法も採用することができる。
加熱による方法は、100~350℃、好ましくは120~300℃の任意の温度で行うことができる。
化学的に閉環する方法は、例えば、ピリジンやトリエチルアミン等と、無水酢酸等との存在下で行うことができ、この際の温度は、-20~200℃の任意の温度を選択することができる。
Of the resins of the present invention, those having an imide bond can be obtained by dehydrating and ring-closing (thermal imidization) of the polyamic acid in the resin. At this time, it is also possible to convert the polyamic acid into an imide in a solvent and use it as a solvent-soluble polyimide-containing resin.
Moreover, the method of chemically ring-closing using a well-known dehydration ring-closing catalyst is also employable.
The heating method can be performed at an arbitrary temperature of 100 to 350 ° C., preferably 120 to 300 ° C.
The chemical ring closure can be carried out, for example, in the presence of pyridine, triethylamine or the like and acetic anhydride, and the temperature at this time can be selected from -20 to 200 ° C. .
 このようにして得られたポリイミド含有樹脂を含む溶液はそのまま使用することもでき、また、メタノール、エタノール及び水等の貧溶媒を加えて当該樹脂を沈殿させ、これを単離して樹脂固体として、あるいはその樹脂固体を適当な溶媒に再溶解させて使用することができる。 The solution containing the polyimide-containing resin thus obtained can be used as it is, and a poor solvent such as methanol, ethanol and water is added to precipitate the resin, which is isolated as a resin solid, Alternatively, the resin solid can be used after re-dissolving in a suitable solvent.
 本発明の樹脂のGPC(Gel Permeation Chromatography)法で測定した重量平均分子量は、ポリスチレン換算で例えば500乃至100000であり、または1000乃至50000であり、好ましくは2000乃至50000である。重量平均分子量が500以下の場合には、当該樹脂を使用したレジスト上層膜がフォトレジスト中に拡散しリソグラフィー性能を悪化させる場合が生じる。重量平均分子量が100000以上の場合には、形成されるレジスト上層膜のフォトレジスト用現像液に対する溶解性が不十分となり、現像後に残渣が存在する場合が生じる。
(a)テトラカルボン酸二無水物化合物、(b)酸ジハライド化合物及び(c)ジカルボン酸無水物基とハライド基両方を有する化合物の中から選ばれる1種以上の化合物と、(d)1種以上のジアミン化合物との反応は溶剤中で行なうことができる。その際に使用できる溶剤としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、N-ビニルピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、m-クレゾール、γ-ブチロラクトン、酢酸エチル、酢酸ブチル、乳酸エチル、3-メトキシプロピオン酸メチル、2-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、2-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、2-エトキシプロピオン酸エチル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、プロピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート、エチルセロソルブアセテート、シクロヘキサノン、メチルエチルケトン、メチルイソブチルケトン、2-ヘプタノン等を挙げることができる。これらは単独でも、混合して使用しても良い。さらに、樹脂を溶解しない溶剤であっても、重合反応により生成した樹脂が析出しない範囲で、上記溶剤に混合して使用してもよい。
The weight average molecular weight of the resin of the present invention measured by GPC (Gel Permeation Chromatography) method is, for example, 500 to 100,000, or 1000 to 50,000, preferably 2000 to 50,000 in terms of polystyrene. When the weight average molecular weight is 500 or less, the resist upper layer film using the resin may be diffused into the photoresist to deteriorate the lithography performance. When the weight average molecular weight is 100,000 or more, the formed resist upper layer film has insufficient solubility in a photoresist developer, and a residue may be present after development.
One or more compounds selected from (a) a tetracarboxylic dianhydride compound, (b) an acid dihalide compound, and (c) a compound having both a dicarboxylic anhydride group and a halide group, and (d) one type The reaction with the above diamine compound can be carried out in a solvent. Solvents that can be used in this case include N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, N-vinylpyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, Hexamethyl sulfoxide, m-cresol, γ-butyrolactone, ethyl acetate, butyl acetate, ethyl lactate, methyl 3-methoxypropionate, methyl 2-methoxypropionate, ethyl 3-methoxypropionate, ethyl 2-methoxypropionate, 3 -Ethyl ethoxypropionate, ethyl 2-ethoxypropionate, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ester Ter, propylene glycol dimethyl ether, dipropylene glycol dimethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol monomethyl ether, dipropylene Examples include glycol monoethyl ether, propylene glycol monomethyl ether acetate, carbitol acetate, ethyl cellosolve acetate, cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone, and 2-heptanone. These may be used alone or in combination. Furthermore, even if it is a solvent which does not melt | dissolve resin, you may mix and use it for the said solvent in the range in which the resin produced | generated by the polymerization reaction does not precipitate.
 このようにして得られた樹脂を含む溶液は、レジスト上層膜形成組成物の調製にそのまま用いることができる。また、樹脂をメタノール、エタノール、酢酸エチル、ヘキサン、トルエン、アセトニトリル、水等の貧溶剤に沈殿単離させて回収して用いることもできる。樹脂を単離した後の乾燥条件は、オーブンなどで50~100℃にて8~48時間が望ましい。該樹脂を回収後、任意の溶媒、好ましくは下記に記載のアルコール系溶剤に再溶解してレジスト上層膜組成物として使用することが出来る。 The solution containing the resin thus obtained can be used as it is for the preparation of the resist upper layer film-forming composition. In addition, the resin can be precipitated and isolated in a poor solvent such as methanol, ethanol, ethyl acetate, hexane, toluene, acetonitrile, water, and recovered for use. The drying conditions after isolating the resin are desirably 8 to 48 hours at 50 to 100 ° C. in an oven or the like. After the resin is recovered, it can be redissolved in any solvent, preferably the alcohol solvent described below, and used as a resist upper layer film composition.
 本発明のレジスト上層膜形成組成物は、上記樹脂に、通常レジストに使用される溶媒に代えて、レジスト上に当該組成物を塗布、膜形成した際のインターミキシング(層混合)を防ぐため、炭素数1乃至20個の直鎖、炭素数3乃至20個の分岐若しくは環状飽和アルキルアルコール又は、炭素数6乃至20個の芳香族アルコールである、下記のようなアルコール系溶剤を好ましく用いる。
例えば飽和アルキルアルコールとしては、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、1-ヘプタノール、2-ヘプタノール、tert-アミルアルコール、ネオペンチルアルコール、2-メチル-1-プロパノール、2-メチル-1-ブタノール、2-メチル-2-ブタノール、3-メチル-1-ブタノール、3-メチル-3-ペンタノール、シクロペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、2,3-ジメチル-2-ブタノール、3,3-ジメチル-1-ブタノール、3,3-ジメチル-2-ブタノール、2-ジエチル-1-ブタノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-メチル-3-ペンタノール、3-メチル-1-ペンタノール、3-メチル-2-ペンタノール、3-メチル-3-ペンタノール、4-メチル-1-ペンタノール、4-メチル-2-ペンタノール、4-メチル-3-ペンタノール、1-ブトキシ-2-プロパノール及びシクロヘキサノールが挙げられる。
芳香族アルコールとしては、1-フェニルプロパノール、2-フェニルプロパノール、3-フェニルプロパノール、2-フェノキシエタノール、フェネチルアルコール、スチラリルアルコールが挙げられる。
これらアルコール系溶剤を単独で、又は混合物として用いることができる。
In order to prevent intermixing (layer mixing) when the resist upper layer film-forming composition of the present invention is applied to the above resin, instead of the solvent usually used for resist, and the film is formed on the resist. An alcohol solvent such as the following, which is a straight chain having 1 to 20 carbon atoms, a branched or cyclic saturated alkyl alcohol having 3 to 20 carbon atoms or an aromatic alcohol having 6 to 20 carbon atoms is preferably used.
For example, as saturated alkyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 1-heptanol, 2-heptanol, tert-amyl alcohol Neopentyl alcohol, 2-methyl-1-propanol, 2-methyl-1-butanol, 2-methyl-2-butanol, 3-methyl-1-butanol, 3-methyl-3-pentanol, cyclopentanol, 1-hexanol, 2-hexanol, 3-hexanol, 2,3-dimethyl-2-butanol, 3,3-dimethyl-1-butanol, 3,3-dimethyl-2-butanol, 2-diethyl-1-butanol, 2-methyl-1-pentanol, 2-methyl-2-pentano 2-methyl-3-pentanol, 3-methyl-1-pentanol, 3-methyl-2-pentanol, 3-methyl-3-pentanol, 4-methyl-1-pentanol, 4-methyl Examples include -2-pentanol, 4-methyl-3-pentanol, 1-butoxy-2-propanol and cyclohexanol.
Examples of the aromatic alcohol include 1-phenylpropanol, 2-phenylpropanol, 3-phenylpropanol, 2-phenoxyethanol, phenethyl alcohol, and styryl alcohol.
These alcohol solvents can be used alone or as a mixture.
 また、例えば本発明の樹脂の合成の都合上、上記アルコール系溶剤と共に以下の溶剤が混合していてもよい。その溶剤は、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2ーヒドロキシプロピオン酸エチル、2ーヒドロキシー2ーメチルプロピオン酸エチル、エトシキ酢酸エチル、ヒドロキシ酢酸エチル、2ーヒドロキシー3ーメチルブタン酸メチル、3ーメトキシプロピオン酸メチル、3ーメトキシプロピオン酸エチル、3ーエトキシプロピオン酸エチル、3ーエトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル等を用いることができる。これらの有機溶剤は単独で、または2種以上の組合せで使用される。アルコール系溶剤に対して0.01乃至30.00質量%の割合で上記その他の溶剤を含有することができる。 Also, for example, for the convenience of the synthesis of the resin of the present invention, the following solvents may be mixed together with the alcohol solvent. The solvent is ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol propyl ether Acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, methyl 2-hydroxy-3-methylbutanoate, 3-methoxypropionic acid Methyl, 3-methoxy Ethyl propionate, 3 over ethyl ethoxypropionate, 3 over ethoxypropionate, methyl pyruvate, ethyl pyruvate, ethyl acetate, butyl acetate, ethyl lactate, can be used butyl lactate and the like. These organic solvents are used alone or in combination of two or more. The above-mentioned other solvents can be contained at a ratio of 0.01 to 30.00 mass% with respect to the alcohol solvent.
 本発明のレジスト上層膜形成組成物は、リソグラフィー工程で下層に存在するレジストとの酸性度を一致させる為に、更に酸化合物を含むことができる。酸化合物はスルホン酸化合物又はスルホン酸エステル化合物を用いることができる。例えば、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、ピリジニウムp-トルエンスルホン酸、サリチル酸、スルホサリチル酸、クエン酸、安息香酸、ヒドロキシ安息香酸などの酸性化合物、及び/又は2,4,4,6-テトラブロモシクロヘキサジエノン、ベンゾイントシラート、2-ニトロベンジルトシラート等の熱酸発生剤を配合する事が出来る。配合量は全固形分100質量%当たり、0.02乃至10質量%、好ましくは0.04乃至5質量%である。 The resist upper layer film forming composition of the present invention may further contain an acid compound in order to match the acidity with the resist present in the lower layer in the lithography process. As the acid compound, a sulfonic acid compound or a sulfonic acid ester compound can be used. For example, acidic compounds such as p-toluenesulfonic acid, trifluoromethanesulfonic acid, pyridinium p-toluenesulfonic acid, salicylic acid, sulfosalicylic acid, citric acid, benzoic acid, hydroxybenzoic acid, and / or 2,4,4,6- Thermal acid generators such as tetrabromocyclohexadienone, benzoin tosylate, and 2-nitrobenzyl tosylate can be blended. The blending amount is 0.02 to 10% by mass, preferably 0.04 to 5% by mass, per 100% by mass of the total solid content.
 また、本発明のレジスト上層膜形成組成物は、リソグラフィー工程で下層に存在するレジストとの酸性度を一致させる為に、露光光(例えば、EUV照射、電子線照射)により酸を発生する酸発生剤を酸化合物として添加する事が出来る。好ましい酸発生剤としては、例えば、ビス(4-tert-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムトリフルオロメタンスルホネート等のオニウム塩系酸発生剤類、フェニル-ビス(トリクロロメチル)-s-トリアジン等のハロゲン含有化合物系酸発生剤類、ベンゾイントシレート、N-ヒドロキシスクシンイミドトリフルオロメタンスルホネート等のスルホン酸系酸発生剤類等が挙げられる。上記酸発生剤の添加量は全固形分100質量%当たり0.02乃至10質量%、好ましくは0.04乃至5質量%である。 In addition, the resist upper layer film-forming composition of the present invention generates an acid that generates acid by exposure light (for example, EUV irradiation, electron beam irradiation) in order to match the acidity with the resist present in the lower layer in the lithography process. An agent can be added as an acid compound. Preferred acid generators include, for example, onium salt acid generators such as bis (4-tert-butylphenyl) iodonium trifluoromethanesulfonate, triphenylsulfonium trifluoromethanesulfonate, and phenyl-bis (trichloromethyl) -s-triazine. And halogen-containing compound acid generators such as benzoin tosylate and sulfonic acid acid generators such as N-hydroxysuccinimide trifluoromethanesulfonate. The amount of the acid generator added is 0.02 to 10% by mass, preferably 0.04 to 5% by mass, per 100% by mass of the total solid content.
 本発明のレジスト上層膜形成組成物は、さらに塩基性化合物を含むことができる。塩基性化合物を添加することにより、レジストの露光時の感度調節を行うことができる。即ち、アミン等の塩基性化合物が露光時に光酸発生剤より発生された酸と反応し、レジスト下層膜の感度を低下させることで露光現像後のレジストの上部形状の制御(露光、現像後のレジスト形状は矩形が好ましい)が可能になる。 The resist upper layer film forming composition of the present invention may further contain a basic compound. By adding a basic compound, the sensitivity can be adjusted during exposure of the resist. That is, a basic compound such as amine reacts with an acid generated from a photoacid generator during exposure to reduce the sensitivity of the resist underlayer film, thereby controlling the upper shape of the resist after exposure and development (after exposure and development). The resist shape is preferably rectangular.
 塩基性化合物としては、アミンを例示することができる。例えば式(13-1)で示すアミノベンゼン化合物がある。
Figure JPOXMLDOC01-appb-C000100

式(13-1)中、r乃至rはそれぞれ独立に水素原子、炭素数1乃至10のアルキル基、又はアミノ基である。
Examples of the basic compound include amines. For example, there is an aminobenzene compound represented by the formula (13-1).
Figure JPOXMLDOC01-appb-C000100

In formula (13-1), r 1 to r 5 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an amino group.
上記アルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、シクロプロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、シクロペンチル基、1-メチル-シクロブチル基、2-メチル-シクロブチル基、3-メチル-シクロブチル基、1,2-ジメチル-シクロプロピル基、2,3-ジメチル-シクロプロピル基、1-エチル-シクロプロピル基、2-エチル-シクロプロピル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基、1-エチル-2-メチル-n-プロピル基、シクロヘキシル基、1-メチル-シクロペンチル基、2-メチル-シクロペンチル基、3-メチル-シクロペンチル基、1-エチル-シクロブチル基、2-エチル-シクロブチル基、3-エチル-シクロブチル基、1,2-ジメチル-シクロブチル基、1,3-ジメチル-シクロブチル基、2,2-ジメチル-シクロブチル基、2,3-ジメチル-シクロブチル基、2,4-ジメチル-シクロブチル基、3,3-ジメチル-シクロブチル基、1-n-プロピル-シクロプロピル基、2-n-プロピル-シクロプロピル基、1-i-プロピル-シクロプロピル基、2-i-プロピル-シクロプロピル基、1,2,2-トリメチル-シクロプロピル基、1,2,3-トリメチル-シクロプロピル基、2,2,3-トリメチル-シクロプロピル基、1-エチル-2-メチル-シクロプロピル基、2-エチル-1-メチル-シクロプロピル基、2-エチル-2-メチル-シクロプロピル基及び2-エチル-3-メチル-シクロプロピル基等が挙げられる。
中でも炭素数1乃至5の直鎖アルキル基、分岐状アルキル基が好ましく、例えばメチル基、エチル基、イソプロピル基等が好ましく挙げられる。
上記化合物としては例えば以下の式(13-2)乃至式(13-47)に例示される。
Examples of the alkyl group include methyl, ethyl, n-propyl, i-propyl, cyclopropyl, n-butyl, i-butyl, s-butyl, t-butyl, cyclobutyl, -Methyl-cyclopropyl group, 2-methyl-cyclopropyl group, n-pentyl group, 1-methyl-n-butyl group, 2-methyl-n-butyl group, 3-methyl-n-butyl group, 1,1 -Dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl-n-propyl group, cyclopentyl group, 1-methyl-cyclobutyl group, 2 -Methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-dimethyl-cyclopropyl group, 2,3-dimethyl-cyclopropyl group, 1-ethyl-cyclopropyl group, 2-ethyl-cyclopropyl group Pyr group, n-hexyl group, 1-methyl-n-pentyl group, 2-methyl-n-pentyl group, 3-methyl-n-pentyl group, 4-methyl-n-pentyl group, 1,1-dimethyl- n-butyl group, 1,2-dimethyl-n-butyl group, 1,3-dimethyl-n-butyl group, 2,2-dimethyl-n-butyl group, 2,3-dimethyl-n-butyl group, 3 , 3-dimethyl-n-butyl group, 1-ethyl-n-butyl group, 2-ethyl-n-butyl group, 1,1,2-trimethyl-n-propyl group, 1,2,2-trimethyl-n -Propyl group, 1-ethyl-1-methyl-n-propyl group, 1-ethyl-2-methyl-n-propyl group, cyclohexyl group, 1-methyl-cyclopentyl group, 2-methyl-cyclopentyl group, 3-methyl -Cyclopentyl group, 1-ethyl-cyclobutyl group, 2- Ethyl-cyclobutyl group, 3-ethyl-cyclobutyl group, 1,2-dimethyl-cyclobutyl group, 1,3-dimethyl-cyclobutyl group, 2,2-dimethyl-cyclobutyl group, 2,3-dimethyl-cyclobutyl group, 2, 4-dimethyl-cyclobutyl group, 3,3-dimethyl-cyclobutyl group, 1-n-propyl-cyclopropyl group, 2-n-propyl-cyclopropyl group, 1-i-propyl-cyclopropyl group, 2-i- Propyl-cyclopropyl group, 1,2,2-trimethyl-cyclopropyl group, 1,2,3-trimethyl-cyclopropyl group, 2,2,3-trimethyl-cyclopropyl group, 1-ethyl-2-methyl- Cyclopropyl, 2-ethyl-1-methyl-cyclopropyl, 2-ethyl-2-methyl-cyclopropyl and 2-ethyl-3-methyl-cyclo A propyl group etc. are mentioned.
Of these, a linear alkyl group having 1 to 5 carbon atoms and a branched alkyl group are preferable, and examples thereof include a methyl group, an ethyl group, and an isopropyl group.
Examples of the compound include the following formulas (13-2) to (13-47).
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000102
 また、トリエタノールアミン、トリブタノールアミン、トリメチルアミン、トリエチルアミン、トリノルマルプロピルアミン、トリイソプロピルアミン、トリノルマルブチルアミン、トリ-tert-ブチルアミン、トリノルマルオクチルアミン、トリイソプロパノールアミン、フェニルジエタノールアミン、ステアリルジエタノールアミン、及びジアザビシクロオクタン等の3級アミンや、ピリジン及び4-ジメチルアミノピリジン等の芳香族アミンを挙げることができる。更に、ベンジルアミン及びノルマルブチルアミン等の1級アミンや、ジエチルアミン及びジノルマルブチルアミン等の2級アミンも挙げられる。これらの化合物は単独または二種以上の組み合わせで使用することが出来る。 Also, triethanolamine, tributanolamine, trimethylamine, triethylamine, trinormalpropylamine, triisopropylamine, trinormalbutylamine, tri-tert-butylamine, trinormaloctylamine, triisopropanolamine, phenyldiethanolamine, stearyldiethanolamine, and dia There may be mentioned tertiary amines such as zabicyclooctane and aromatic amines such as pyridine and 4-dimethylaminopyridine. Further, primary amines such as benzylamine and normal butylamine, and secondary amines such as diethylamine and dinormalbutylamine are also included. These compounds can be used alone or in combination of two or more.
 本発明のレジスト上層膜形成組成物には、上記以外に必要に応じて更なるレオロジー調整剤、接着補助剤、界面活性剤などを添加することができる。 In the resist upper layer film forming composition of the present invention, in addition to the above, further rheology adjusting agents, adhesion assistants, surfactants and the like can be added as necessary.
 レオロジー調整剤は、主にレジスト上層膜形成組成物の流動性を向上させるための目的で添加される。具体例としては、ジメチルフタレート、ジエチルフタレート、ジイソブチルフタレート、ジヘキシルフタレート、ブチルイソデシルフタレート等のフタル酸誘導体、ジノルマルブチルアジペート、ジイソブチルアジペート、ジイソオクチルアジペート、オクチルデシルアジペート等のアジピン酸誘導体、ジノルマルブチルマレート、ジエチルマレート、ジノニルマレート等のマレイン酸誘導体、メチルオレート、ブチルオレート、テトラヒドロフルフリルオレート等のオレイン酸誘導体、またはノルマルブチルステアレート、グリセリルステアレート等のステアリン酸誘導体を挙げることができる。これらのレオロジー調整剤は、レジスト上層膜形成組成物の全組成物100質量%に対して通常30質量%未満の割合で配合される。 The rheology modifier is added mainly for the purpose of improving the fluidity of the resist upper layer film-forming composition. Specific examples include phthalic acid derivatives such as dimethyl phthalate, diethyl phthalate, diisobutyl phthalate, dihexyl phthalate, and butyl isodecyl phthalate, adipic acid derivatives such as dinormal butyl adipate, diisobutyl adipate, diisooctyl adipate, octyl decyl adipate, Mention may be made of maleic acid derivatives such as normal butyl maleate, diethyl maleate and dinonyl maleate, oleic acid derivatives such as methyl oleate, butyl oleate and tetrahydrofurfuryl oleate, or stearic acid derivatives such as normal butyl stearate and glyceryl stearate. it can. These rheology modifiers are usually blended at a ratio of less than 30% by mass with respect to 100% by mass of the total composition of the resist upper layer film-forming composition.
 本発明のレジスト上層膜形成組成物には、ピンホールやストリエーション等の発生がなく、表面むらに対する塗布性をさらに向上させるために、界面活性剤を配合することができる。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフエノールエーテル、ポリオキシエチレンノニルフエノールエーテル等のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロツクコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、エフトツプEF301、EF303、EF352((株)トーケムプロダクツ製)、メガフアツクF171、F173(大日本インキ(株)製)、フロラードFC430、FC431(住友スリーエム(株)製)、アサヒガードAG710、サーフロンSー382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子(株)製)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP341(信越化学工業(株)製)等を挙げることができる。これらの界面活性剤の配合量は、本発明のレジスト上層膜形成組成物の全組成物100質量%当たり通常0.2質量%以下、好ましくは0.1質量%以下である。これらの界面活性剤は単独で添加してもよいし、また2種以上の組合せで添加することもできる。 In the resist upper layer film forming composition of the present invention, there is no occurrence of pinholes or striations, and a surfactant can be blended in order to further improve the applicability to surface unevenness. Examples of the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, polyoxyethylene nonyl Polyoxyethylene alkyl allyl ethers such as phenol ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate Sorbitan fatty acid esters such as rate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sol Nonionic surfactants such as polyoxyethylene sorbitan fatty acid esters such as tan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, EFTTOP EF301, EF303, EF352 (Manufactured by Tochem Products Co., Ltd.), Megafuk F171, F173 (manufactured by Dainippon Ink Co., Ltd.), Florard FC430, FC431 (manufactured by Sumitomo 3M), Asahi Guard AG710, Surflon S-382, SC101, SC102, Fluorosurfactants such as SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.), organosiloxane polymer KP341 (Shin-Etsu Chemical Co., Ltd.) and the like can be mentioned. The compounding amount of these surfactants is usually 0.2% by mass or less, preferably 0.1% by mass or less, per 100% by mass of the total composition of the resist upper layer film-forming composition of the present invention. These surfactants may be added alone or in combination of two or more.
 本発明ではEUVレジストを用いることができる。本発明におけるレジスト上層膜の下層に塗布されるEUVレジストとしてはネガ型、ポジ型いずれも使用できる。これらのレジストとしては、酸発生剤と酸により分解してアルカリ溶解速度を変化させる基を有するバインダーからなる化学増幅型レジスト、アルカリ可溶性バインダーと酸発生剤と酸により分解してレジストのアルカリ溶解速度を変化させる低分子化合物からなる化学増幅型レジスト、酸発生剤と酸により分解してアルカリ溶解速度を変化させる基を有するバインダーと酸により分解してレジストのアルカリ溶解速度を変化させる低分子化合物からなる化学増幅型レジスト、EUVによって分解してアルカリ溶解速度を変化させる基を有するバインダーからなる非化学増幅型レジスト、EUVによって切断されアルカリ溶解速度を変化させる部位を有するバインダーからなる非化学増幅型レジストなどがある。       In the present invention, an EUV resist can be used. As the EUV resist applied to the lower layer of the resist upper layer film in the present invention, either a negative type or a positive type can be used. These resists include chemically amplified resists composed of a binder having a group that decomposes with an acid generator and an acid to change the alkali dissolution rate, and an alkali dissolution rate of the resist that decomposes with an alkali-soluble binder, an acid generator, and an acid. A chemically amplified resist composed of a low molecular weight compound that changes the acid, a binder having a group that decomposes with an acid generator and an acid to change the alkali dissolution rate, and a low molecular weight compound that decomposes with an acid to change the alkali dissolution rate of the resist A chemically amplified resist comprising: a non-chemically amplified resist comprising a binder having a group that is decomposed by EUV to change the alkali dissolution rate; and a non-chemically amplified resist comprising a binder having a portion that is cut by EUV to change the alkali dissolution rate. and so on. .
 例えばEUVレジストの材料系としては、メタクリル系、ポリヒドロキシスチレン(PHS)系などがある。これらのEUVレジストを用いた場合も照射源を電子線としてレジストを用いた場合と同様にレジストパターンを形成することができる。 For example, the material system of EUV resist includes methacrylic and polyhydroxystyrene (PHS). When these EUV resists are used, a resist pattern can be formed in the same manner as when a resist is used with the irradiation source as an electron beam.
 本発明ではKrFレジストまたはArFレジストを用いることが出来る。本発明におけるレジスト上層膜の下層に塗布されるKrFレジストまたはArFレジストとしてはネガ型フォトレジスト及びポジ型フォトレジストのいずれも使用できる。これらのレジストとしては、ノボラック樹脂と1,2-ナフトキノンジアジドスルホン酸エステルとからなるポジ型フォトレジスト、酸により分解してアルカリ溶解速度を上昇させる基を有するバインダーと光酸発生剤からなる化学増幅型フォトレジスト、酸により分解してフォトレジストのアルカリ溶解速度を上昇させる低分子化合物とアルカリ可溶性バインダーと光酸発生剤とからなる化学増幅型フォトレジスト、及び酸により分解してアルカリ溶解速度を上昇させる基を有するバインダーと酸により分解してフォトレジストのアルカリ溶解速度を上昇させる低分子化合物と光酸発生剤からなる化学増幅型フォトレジストなどがある。例えば、ザ・ダウ・ケミカルカンパニー(旧ローム・アンド・ハース電子材料(株))製商品名APEX-E、住友化学工業(株)製商品名PAR710、及び信越化学工業(株)製商品名SEPR430等が挙げられる。また、例えば、Proc.SPIE,Vol.3999,330-334(2000)、Proc.SPIE,Vol.3999,357-364(2000)、やProc.SPIE,Vol.3999,365-374(2000)に記載されているような、含フッ素原子ポリマー系フォトレジストを挙げることができる。 In the present invention, a KrF resist or an ArF resist can be used. As the KrF resist or ArF resist applied to the lower layer of the resist upper layer film in the present invention, either a negative photoresist or a positive photoresist can be used. These resists include a positive photoresist composed of novolak resin and 1,2-naphthoquinonediazide sulfonic acid ester, a chemical amplification composed of a binder having a group that decomposes with acid to increase the alkali dissolution rate and a photoacid generator. -Type photoresist, chemically amplified photoresist composed of low molecular weight compound, alkali-soluble binder and photoacid generator that decomposes with acid to increase alkali dissolution rate of photoresist, and acid decomposes to increase alkali dissolution rate There is a chemically amplified photoresist composed of a low molecular weight compound that decomposes with a binder having an acid group and an acid to increase the alkali dissolution rate of the photoresist and a photoacid generator. For example, the Dow Chemical Company (formerly Rohm and Haas Electronic Materials Co., Ltd.) trade name APEX-E, Sumitomo Chemical Co., Ltd. trade name PAR710, and Shin-Etsu Chemical Co., Ltd. trade name SEPR430 Etc. Also, for example, Proc. SPIE, Vol. 3999, 330-334 (2000), Proc. SPIE, Vol. 3999, 357-364 (2000), Proc. SPIE, Vol. 3999, 365-374 (2000), and fluorine-containing polymer-based photoresists.
 本発明では電子線レジストを用いることが出来る。本発明におけるレジスト上層膜の下層に塗布される電子線レジストとしてはネガ型フォトレジスト及びポジ型フォトレジストのいずれも使用できる。これらのレジストとしては、酸発生剤と酸により分解してアルカリ溶解速度を変化させる基を有するバインダーからなる化学増幅型レジスト、アルカリ可溶性バインダーと酸発生剤と酸により分解してレジストのアルカリ溶解速度を変化させる低分子化合物からなる化学増幅型レジスト、酸発生剤と酸により分解してアルカリ溶解速度を変化させる基を有するバインダーと酸により分解してレジストのアルカリ溶解速度を変化させる低分子化合物からなる化学増幅型レジスト、電子線によって分解してアルカリ溶解速度を変化させる基を有するバインダーからなる非化学増幅型レジスト、電子線によって切断されアルカリ溶解速度を変化させる部位を有するバインダーからなる非化学増幅型レジストなどがある。これらの電子線レジストを用いた場合も照射源をKrF、ArF光としてフォトレジストを用いた場合と同様にレジストパターンを形成することができる。 In the present invention, an electron beam resist can be used. As the electron beam resist applied to the lower layer of the resist upper layer film in the present invention, either a negative photoresist or a positive photoresist can be used. These resists include chemically amplified resists composed of a binder having a group that decomposes with an acid generator and an acid to change the alkali dissolution rate, and an alkali dissolution rate of the resist that decomposes with an alkali-soluble binder, an acid generator, and an acid. A chemically amplified resist composed of a low molecular weight compound that changes the acid, a binder having a group that decomposes with an acid generator and an acid to change the alkali dissolution rate, and a low molecular weight compound that decomposes with an acid to change the alkali dissolution rate of the resist A chemically amplified resist, a non-chemically amplified resist composed of a binder having a group that is decomposed by an electron beam to change the alkali dissolution rate, and a non-chemically amplified composed of a binder having a site that is cut by the electron beam to change the alkali dissolution rate There are mold resists. Even when these electron beam resists are used, a resist pattern can be formed in the same manner as when a photoresist is used as the irradiation source with KrF and ArF light.
 本発明のレジスト上層膜形成組成物を使用して形成したレジスト上層膜を有するポジ型レジストの現像液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n-プロピルアミン等の第一アミン類、ジエチルアミン、ジーn-ブチルアミン等の第二アミン類、トリエチルアミン、メチルジエチルアミン等の第三アミン類、ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、コリン等の第4級アンモニウム塩、ピロール、ピペリジン等の環状アミン類、等のアルカリ類の水溶液を使用することができる。さらに、上記アルカリ類の水溶液にイソプロピルアルコール等のアルコール類、ノニオン系等の界面活性剤を適当量添加して使用することもできる。これらの中で好ましい現像液は第四級アンモニウム塩、さらに好ましくはテトラメチルアンモニウムヒドロキシド及びコリンである。 As a developer for a positive resist having a resist upper layer film formed using the resist upper layer film-forming composition of the present invention, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia Inorganic amines such as ethylamine, primary amines such as n-propylamine, secondary amines such as diethylamine and di-n-butylamine, tertiary amines such as triethylamine and methyldiethylamine, dimethylethanolamine, triethanolamine Alcohol amines such as alcohol amines, tetramethylammonium hydroxide, tetraethylammonium hydroxide, quaternary ammonium salts such as choline, cyclic amines such as pyrrole and piperidine, and alkaline aqueous solutions can be used. Furthermore, an appropriate amount of an alcohol such as isopropyl alcohol or a nonionic surfactant may be added to the alkaline aqueous solution. Of these, preferred developers are quaternary ammonium salts, more preferably tetramethylammonium hydroxide and choline.
 本発明では例えば、転写パターンを形成する加工対象膜を有する基板上に、EUVレジスト下層膜を用いるか又は用いずに、EUVレジスト膜を形成する工程、該レジスト膜上にEUVレジスト上層膜形成組成物を塗布し焼成してEUVレジスト上層膜を形成する工程、該レジスト上層膜とレジスト膜で被覆された半導体基板を露光する工程、露光後に現像し該レジスト上層膜とレジスト膜を除去する工程、を含み半導体装置を製造することができる。露光はEUV(波長13.5nm)により行われる。 In the present invention, for example, a step of forming an EUV resist film with or without an EUV resist underlayer film on a substrate having a film to be processed for forming a transfer pattern, an EUV resist upper layer film forming composition on the resist film A step of applying and baking an object to form an EUV resist upper layer film, a step of exposing a semiconductor substrate coated with the resist upper layer film and the resist film, a step of developing after exposure to remove the resist upper layer film and the resist film, A semiconductor device can be manufactured. Exposure is performed by EUV (wavelength 13.5 nm).
 該レジスト上層膜の形成は、レジスト膜形成などと同様にスピン塗布法にて行われるのが一般的である。例えば東京エレクトロン社製スピンコーターに、加工対象基板(例えばシリコン/二酸化シリコン被覆基板、ガラス基板、ITO基板等)にセットして、レジスト膜を該加工対象基板に形成し、該レジスト上層膜形成組成物(ワニス)を加工対象基板にスピン回転数700rpm乃至3000rpmにて塗布後、ホットプレートにて50℃乃至150℃で30乃至300秒間焼成し、該レジスト上層膜が形成される。該レジスト上層膜の形成膜厚は3乃至100nm、又は5乃至100nm又は5乃至50nmである。 The resist upper layer film is generally formed by a spin coating method in the same manner as the resist film formation. For example, it is set on a substrate to be processed (for example, a silicon / silicon dioxide coated substrate, a glass substrate, an ITO substrate, etc.) on a spin coater manufactured by Tokyo Electron, and a resist film is formed on the substrate to be processed. An object (varnish) is applied to the substrate to be processed at a spin speed of 700 rpm to 3000 rpm and then baked on a hot plate at 50 ° C. to 150 ° C. for 30 to 300 seconds to form the resist upper layer film. The film thickness of the resist upper layer film is 3 to 100 nm, 5 to 100 nm, or 5 to 50 nm.
 形成されるレジスト上層膜のフォトレジスト用現像液に対する溶解速度としては、毎秒1nm以上であり、好ましくは毎秒3nm以上であり、より好ましくは毎秒10nm以上である。溶解速度がこれより小さい場合は、レジスト上層膜の除去に必要な時間が長くなり、生産性の低下をもたらすことになる。その後適切な露光光にてパターン形成後、レジスト現像液を用いて現像することで、レジストおよび該レジスト上層膜の不要部分を除去し、レジストパターンが形成される。 The dissolution rate of the resist upper layer film to be formed in the photoresist developer is 1 nm or more per second, preferably 3 nm or more per second, and more preferably 10 nm or more per second. When the dissolution rate is smaller than this, the time required for removing the resist upper layer film becomes longer, resulting in a decrease in productivity. Thereafter, after pattern formation with appropriate exposure light, development is performed using a resist developer, thereby removing the resist and unnecessary portions of the resist upper layer film to form a resist pattern.
 本発明のEUVレジスト上層膜形成組成物を適用する半導体装置は、基板上に、パターンを転写する加工対象膜と、レジスト膜と、レジスト上層膜が順に形成された構成を有する。このレジスト上層膜は、下地基板やEUVによって及ぼされる悪影響を低減することにより、ストレート形状の良好なレジストパターンを形成し、充分なEUV照射量に対するマージンを得ることができる。また本レジスト上層膜は、下層に形成されるレジスト膜と同等もしくはそれ以上の大きなウエットエッチング速度を有し、露光後のレジスト膜の不要な部分とともに、アルカリ現像液などで容易に除去可能である。 The semiconductor device to which the composition for forming an EUV resist upper layer film of the present invention is applied has a structure in which a film to be processed for transferring a pattern, a resist film, and a resist upper layer film are sequentially formed on a substrate. This resist upper layer film can form a resist pattern having a good straight shape by reducing adverse effects exerted by the base substrate and EUV, and can provide a sufficient margin for the EUV irradiation amount. In addition, this resist upper layer film has a wet etching rate equal to or higher than that of the resist film formed in the lower layer, and can be easily removed with an alkali developer together with unnecessary portions of the resist film after exposure. .
 また半導体装置の加工対象基板は、ドライエッチング、ウエットエッチングいずれの工程によっても加工可能であり、該レジスト上層膜を用いることで良好に形成されるレジストパターンをマスクとし、ドライエッチングやウエットエッチングにて加工対象基板に良好な形状を転写することが可能である。 In addition, the substrate to be processed of the semiconductor device can be processed by either dry etching or wet etching. Using the resist upper layer film as a mask, a resist pattern that is well formed can be used as a mask, and dry etching or wet etching can be used. It is possible to transfer a good shape to the substrate to be processed.
 本発明では例えば、転写パターンを形成する加工対象膜を有する基板上に、KrFレジスト下層膜を用いるか又は用いずに、KrFレジスト膜を形成する工程、該レジスト膜上にKrFレジスト上層膜形成組成物を塗布し焼成してKrFレジスト上層膜を形成する工程、該レジスト上層膜とレジスト膜で被覆された半導体基板を露光する工程、露光後に現像し該レジスト上層膜とレジスト膜を除去する工程、を含み半導体装置を製造することができる。露光はKrFにより行われる。該レジスト上層膜の形成は、上記EUV露光の場合と同様に行われる。 In the present invention, for example, a step of forming a KrF resist film on a substrate having a film to be processed for forming a transfer pattern, with or without a KrF resist lower layer film, and a composition for forming a KrF resist upper layer film on the resist film A step of applying and baking an object to form a KrF resist upper layer film, a step of exposing a semiconductor substrate coated with the resist upper layer film and the resist film, a step of developing after exposure to remove the resist upper layer film and the resist film, A semiconductor device can be manufactured. Exposure is performed with KrF. The resist upper layer film is formed in the same manner as in the EUV exposure.
 本発明では例えば、転写パターンを形成する加工対象膜を有する基板上に、ArFレジスト下層膜を用いるか又は用いずに、ArFレジスト膜を形成する工程、該レジスト膜上にArFレジスト上層膜形成組成物を塗布し焼成してArFレジスト上層膜を形成する工程、該レジスト上層膜とレジスト膜で被覆された半導体基板を露光する工程、露光後に現像し該レジスト上層膜とレジスト膜を除去する工程、を含み半導体装置を製造することができる。露光はArFにより行われる。該レジスト上層膜の形成は、上記EUV露光の場合と同様に行われる。 In the present invention, for example, a step of forming an ArF resist film on a substrate having a film to be processed for forming a transfer pattern, with or without using an ArF resist lower layer film, an ArF resist upper layer film forming composition on the resist film A step of forming an ArF resist upper layer film by applying and baking an object, a step of exposing a semiconductor substrate coated with the resist upper layer film and the resist film, a step of developing after exposure to remove the resist upper layer film and the resist film, A semiconductor device can be manufactured. Exposure is performed with ArF. The resist upper layer film is formed in the same manner as in the EUV exposure.
 本発明では例えば、転写パターンを形成する加工対象膜を有する基板上に、電子線レジスト下層膜を用いるか又は用いずに、電子線レジスト膜を形成する工程、該レジスト膜上に電子線レジスト上層膜形成組成物を塗布し焼成して電子線レジスト上層膜を形成する工程、該レジスト上層膜とレジスト膜で被覆された半導体基板を露光する工程、露光後に現像し該レジスト上層膜とレジスト膜を除去する工程、を含み半導体装置を製造することができる。露光は電子線により行われる。該レジスト上層膜の形成は、上記EUV露光の場合と同様に行われる。 In the present invention, for example, a step of forming an electron beam resist film with or without an electron beam resist lower layer film on a substrate having a film to be processed for forming a transfer pattern, an electron beam resist upper layer on the resist film A step of applying a film-forming composition and baking to form an electron beam resist upper layer film; a step of exposing a semiconductor substrate coated with the resist upper layer film and the resist film; and developing after exposure to form the resist upper layer film and the resist film. A semiconductor device can be manufactured. Exposure is performed with an electron beam. The resist upper layer film is formed in the same manner as in the EUV exposure.
 以下、本発明について合成例及び実施例を挙げて詳述するが、本発明は下記記載に何ら限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to synthesis examples and examples, but the present invention is not limited to the following description.
 本明細書の下記合成例1乃至合成例11に示す樹脂(ポリマー)の重量平均分子量(Mw)は、GPC(Gel Permeation Chromatography)法による測定結果である。測定には東ソー株式会社製GPC装置を用い、測定条件は下記のとおりである。また、本明細書の下記合成例に示す分散度は、測定された重量平均分子量、及び数平均分子量から算出される。
測定装置:HLC-8320GPC〔商品名〕(東ソー株式会社製)
GPCカラム:TSKgel SuperMultipore HZ-N(P0009)〔商品名〕(東ソー株式会社製)
TSKgel SuperMultipore HZ-N(P0010)〔商品名〕(東ソー株式会社製)
カラム温度:40℃
溶媒:テトラヒドロフラン(THF)
流量:0.35ml/分
標準試料:ポリスチレン(東ソー株式会社製)
The weight average molecular weights (Mw) of the resins (polymers) shown in the following Synthesis Examples 1 to 11 of the present specification are measurement results by GPC (Gel Permeation Chromatography) method. For measurement, a GPC apparatus manufactured by Tosoh Corporation is used, and the measurement conditions are as follows. Further, the dispersity shown in the following synthesis examples of the present specification is calculated from the measured weight average molecular weight and number average molecular weight.
Measuring device: HLC-8320GPC [trade name] (manufactured by Tosoh Corporation)
GPC column: TSKgel SuperMultipore HZ-N (P0009) [trade name] (manufactured by Tosoh Corporation)
TSKgel SuperMultipore HZ-N (P0010) [trade name] (manufactured by Tosoh Corporation)
Column temperature: 40 ° C
Solvent: tetrahydrofuran (THF)
Flow rate: 0.35 ml / min Standard sample: Polystyrene (manufactured by Tosoh Corporation)
<合成例1>
 4,4’-(ヘキサフルオロイソプロピリデン)ビスフタル酸二無水物10.0g、3,5-ジアミノ安息香酸1.9g、ビス(4-アミノフェニル)スルホン3.11gをプロピレングリコールモノメチルエーテル85.1g中、40℃で24時間反応させた。次にテトラフルオロフタル酸無水物1.7gおよびプロピレングリコールモノメチルエーテル9.4gを加え、室温で20時間反応させることによって、ポリアミド酸を含む溶液を得た。GPC法によって得られた重量平均分子量(Mw)は7509であった。得られたポリアミド酸は、式(14-1)表される構造を有する。
Figure JPOXMLDOC01-appb-C000103
<Synthesis Example 1>
10.0 g of 4,4 ′-(hexafluoroisopropylidene) bisphthalic dianhydride, 1.9 g of 3,5-diaminobenzoic acid and 3.11 g of bis (4-aminophenyl) sulfone were added to 85.1 g of propylene glycol monomethyl ether. The mixture was reacted at 40 ° C. for 24 hours. Next, 1.7 g of tetrafluorophthalic anhydride and 9.4 g of propylene glycol monomethyl ether were added and reacted at room temperature for 20 hours to obtain a solution containing polyamic acid. The weight average molecular weight (Mw) obtained by GPC method was 7509. The obtained polyamic acid has a structure represented by the formula (14-1).
Figure JPOXMLDOC01-appb-C000103
<合成例2>
 4,4’-(ヘキサフルオロイソプロピリデン)ビスフタル酸二無水物10.0g、3,5-ジアミノ安息香酸1.0g、ビス(4-アミノフェニル)スルホン3.11g、4-オクタデシルオキシ-1,3-ジアミノベンゼン2.4gをプロピレングリコールモノメチルエーテル93.1g中、40℃で24時間反応させた。次にフタル酸無水物1.1gおよびプロピレングリコールモノメチルエーテル6.3gを加え、室温で20時間反応させることによって、ポリアミド酸を含む溶液を得た。GPC法によって得られた重量平均分子量(Mw)は6728であった。得られたポリアミド酸は、式(14-2)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000104
<Synthesis Example 2>
10.0 g of 4,4 ′-(hexafluoroisopropylidene) bisphthalic dianhydride, 1.0 g of 3,5-diaminobenzoic acid, 3.11 g of bis (4-aminophenyl) sulfone, 4-octadecyloxy-1, 2.4 g of 3-diaminobenzene was reacted in 93.1 g of propylene glycol monomethyl ether at 40 ° C. for 24 hours. Next, 1.1 g of phthalic anhydride and 6.3 g of propylene glycol monomethyl ether were added and reacted at room temperature for 20 hours to obtain a solution containing polyamic acid. The weight average molecular weight (Mw) obtained by GPC method was 6728. The obtained polyamic acid has a structure represented by the formula (14-2).
Figure JPOXMLDOC01-appb-C000104
<合成例3>
 4,4’-(ヘキサフルオロイソプロピリデン)ビスフタル酸二無水物10.0g、3,5-ジアミノ安息香酸1.9g、4-オクタデシルオキシ-1,3-ジアミノベンゼン4.7gをプロピレングリコールモノメチルエーテル94.1g中、40℃で24時間反応させた。次にテトラフルオロフタル酸無水物4.7gおよびプロピレングリコールモノメチルエーテル9.4gを加え、室温で22時間反応させることによって、ポリアミド酸を含む溶液を得た。GPC法によって得られた重量平均分子量(Mw)は8925であった。得られたポリアミド酸は、式(14-3)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000105
<Synthesis Example 3>
Propylene glycol monomethyl ether containing 10.0 g of 4,4 ′-(hexafluoroisopropylidene) bisphthalic dianhydride, 1.9 g of 3,5-diaminobenzoic acid, and 4.7 g of 4-octadecyloxy-1,3-diaminobenzene The reaction was carried out in 94.1 g at 40 ° C. for 24 hours. Next, 4.7 g of tetrafluorophthalic anhydride and 9.4 g of propylene glycol monomethyl ether were added and reacted at room temperature for 22 hours to obtain a solution containing polyamic acid. The weight average molecular weight (Mw) obtained by GPC method was 8925. The obtained polyamic acid has a structure represented by the formula (14-3).
Figure JPOXMLDOC01-appb-C000105
<合成例4>
 ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン2.2g、イソフタル酸ジクロリド1.4g、ビス(4-アミノフェニル)スルホン0.2gをN-メチルピロリドン15.5g中、室温で17時間反応することによって、ポリアミドを含む溶液を得た。得られた溶液をメタノール中に加え再沈殿後、50℃12時間乾燥を行い、下記式(14-4)で表される構造単位を有するポリアミドの固体を得た。GPC法によって得られた重量平均分子量(Mw)は4502であった。
Figure JPOXMLDOC01-appb-C000106
<Synthesis Example 4>
Bis (3-amino-4-hydroxyphenyl) hexafluoropropane (2.2 g), isophthalic acid dichloride (1.4 g) and bis (4-aminophenyl) sulfone (0.2 g) in N-methylpyrrolidone (15.5 g) at room temperature for 17 hours By reacting, a solution containing polyamide was obtained. The obtained solution was added to methanol and reprecipitated, followed by drying at 50 ° C. for 12 hours to obtain a polyamide solid having a structural unit represented by the following formula (14-4). The weight average molecular weight (Mw) obtained by GPC method was 4502.
Figure JPOXMLDOC01-appb-C000106
<合成例5>
 ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン2.0g、イソフタル酸ジクロリド1.1gをN-メチルピロリドン12.4g中、50℃で30分間反応した。その後、室温で18時間反応することによって、ポリアミドを含む溶液を得た。得られた溶液をメタノール:水=9:1の溶液中に加え再沈殿後、50℃12時間乾燥を行い、下記式(14-5)で表される構造単位を有するポリアミドの固体を得た。GPC法によって得られた重量平均分子量(Mw)は4362であった。
Figure JPOXMLDOC01-appb-C000107
<Synthesis Example 5>
Bis (3-amino-4-hydroxyphenyl) hexafluoropropane (2.0 g) and isophthalic acid dichloride (1.1 g) were reacted in 1-2.4 g of N-methylpyrrolidone at 50 ° C. for 30 minutes. Then, the solution containing polyamide was obtained by reacting at room temperature for 18 hours. The obtained solution was added to a methanol: water = 9: 1 solution and reprecipitated, followed by drying at 50 ° C. for 12 hours to obtain a polyamide solid having a structural unit represented by the following formula (14-5). . The weight average molecular weight (Mw) obtained by GPC method was 4362.
Figure JPOXMLDOC01-appb-C000107
<合成例6>
 ピロメリット酸二無水物5.0g、3,5-ジアミノ安息香酸1.52g、及びビス(3-アミノ-4-ヒドロキシフェニル)スルホン0.7gをプロピレングリコールモノメチルエーテル40.93g中、40℃で24時間反応させた。次にテトラフルオロフタル酸無水物0.82gおよびプロピレングリコールモノメチルエーテル4.68gを加え、室温で20時間反応させることによって、ポリアミド酸を含む溶液を得た。GPC法によって得られた重量平均分子量(Mw)は1249であった。得られたポリアミド酸は、式(14-6)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000108
<Synthesis Example 6>
Pyromellitic dianhydride 5.0 g, 3,5-diaminobenzoic acid 1.52 g, and bis (3-amino-4-hydroxyphenyl) sulfone 0.7 g in propylene glycol monomethyl ether 40.93 g at 40 ° C. The reaction was performed for 24 hours. Next, 0.82 g of tetrafluorophthalic anhydride and 4.68 g of propylene glycol monomethyl ether were added and reacted at room temperature for 20 hours to obtain a solution containing polyamic acid. The weight average molecular weight (Mw) obtained by GPC method was 1249. The obtained polyamic acid has a structure represented by the formula (14-6).
Figure JPOXMLDOC01-appb-C000108
<合成例7>
 ピロメリット酸二無水物5.0g、3,5-ジアミノ安息香酸1.52g、及びビス(4-アミノフェニル)スルホン0.62gをプロピレングリコールモノメチルエーテル40.48g中、40℃で24時間反応させた。次にテトラフルオロフタル酸無水物0.82gおよびプロピレングリコールモノメチルエーテル4.68gを加え、室温で20時間反応させることによって、ポリアミド酸を含む溶液を得た。GPC法によって得られた重量平均分子量(Mw)は1552であった。得られたポリアミド酸は、式(14-7)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000109
<Synthesis Example 7>
Pyromellitic dianhydride 5.0 g, 3,5-diaminobenzoic acid 1.52 g, and bis (4-aminophenyl) sulfone 0.62 g were reacted in propylene glycol monomethyl ether 40.48 g at 40 ° C. for 24 hours. It was. Next, 0.82 g of tetrafluorophthalic anhydride and 4.68 g of propylene glycol monomethyl ether were added and reacted at room temperature for 20 hours to obtain a solution containing polyamic acid. The weight average molecular weight (Mw) obtained by GPC method was 1552. The obtained polyamic acid has a structure represented by the formula (14-7).
Figure JPOXMLDOC01-appb-C000109
<合成例8>
 ピロメリット酸二無水物5.0g、3,5-ジアミノ安息香酸1.52g、及び2,2‘-ビス(トリフルオロメチル)ベンジジン0.80gをプロピレングリコールモノメチルエーテル41.49g中、40℃で24時間反応させた。次にテトラフルオロフタル酸無水物0.82gおよびプロピレングリコールモノメチルエーテル4.68gを加え、室温で20時間反応させることによって、ポリアミド酸を含む溶液を得た。GPC法によって得られた重量平均分子量(Mw)は1894であった。得られたポリアミド酸は、式(14-8)で表される構造を有する。
<Synthesis Example 8>
Pyromellitic dianhydride 5.0 g, 3,5-diaminobenzoic acid 1.52 g, and 2,2′-bis (trifluoromethyl) benzidine 0.80 g in propylene glycol monomethyl ether 41.49 g at 40 ° C. The reaction was performed for 24 hours. Next, 0.82 g of tetrafluorophthalic anhydride and 4.68 g of propylene glycol monomethyl ether were added and reacted at room temperature for 20 hours to obtain a solution containing polyamic acid. The weight average molecular weight (Mw) obtained by GPC method was 1894. The obtained polyamic acid has a structure represented by the formula (14-8).
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000110
<合成例9>
 1,2,3,4-シクロブタンテトラカルボン酸二無水物4.0g、3,5-ジアミノ安息香酸2.79gをプロピレングリコールモノメチルエーテル38.49g中、40℃で24時間反応させた。次に4-アミノ安息香酸0.83gおよびプロピレングリコールモノメチルエーテル4.75gを加え、室温で20時間反応させることによって、ポリアミド酸を含む溶液を得た。GPC法によって得られた重量平均分子量(Mw)は5647であった。得られたポリアミド酸は、式(14-9)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000111
<Synthesis Example 9>
4.0 g of 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 2.79 g of 3,5-diaminobenzoic acid were reacted in 38.49 g of propylene glycol monomethyl ether at 40 ° C. for 24 hours. Next, 0.83 g of 4-aminobenzoic acid and 4.75 g of propylene glycol monomethyl ether were added and reacted at room temperature for 20 hours to obtain a solution containing polyamic acid. The weight average molecular weight (Mw) obtained by GPC method was 5647. The obtained polyamic acid has a structure represented by the formula (14-9).
Figure JPOXMLDOC01-appb-C000111
<合成例10>
 4,4'-オキシジフタル酸無水物4.0g、3,5-ジアミノ安息香酸1.76gをプロピレングリコールモノメチルエーテル32.67g中、40℃で24時間反応させた。次に4-アミノ安息香酸0.53gおよびプロピレングリコールモノメチルエーテル3.06gを加え、室温で20時間反応させることによって、ポリアミド酸を含む溶液を得た。GPC法によって得られた重量平均分子量(Mw)は2826であった。得られたポリアミド酸は、式(14-10)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000112
<Synthesis Example 10>
4.0 g of 4,4′-oxydiphthalic anhydride and 1.76 g of 3,5-diaminobenzoic acid were reacted in 32.67 g of propylene glycol monomethyl ether at 40 ° C. for 24 hours. Next, 0.53 g of 4-aminobenzoic acid and 3.06 g of propylene glycol monomethyl ether were added and reacted at room temperature for 20 hours to obtain a solution containing polyamic acid. The weight average molecular weight (Mw) obtained by GPC method was 2826. The obtained polyamic acid has a structure represented by the formula (14-10).
Figure JPOXMLDOC01-appb-C000112
<合成例11>
ピロメリット酸二無水物3.5g、無水トリメリット酸クロリド0.47g、3,5-ジアミノ安息香酸1.49g、及びビス(3-アミノ-4-ヒドロキシフェニル)スルホン0.55gをプロピレングリコールモノメチルエーテル31.17g中、40℃で24時間反応させた。次にテトラフルオロフタル酸無水物0.74gおよびプロピレングリコールモノメチルエーテル4.21gを加え、室温で20時間反応させることによって、ポリアミド酸を含む溶液を得た。GPC法によって得られた重量平均分子量(Mw)は4556であった。得られたポリアミド酸は、式(14-11)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000113
<Synthesis Example 11>
Propylene glycol monomethyl containing 3.5 g of pyromellitic dianhydride, 0.47 g of trimellitic anhydride chloride, 1.49 g of 3,5-diaminobenzoic acid, and 0.55 g of bis (3-amino-4-hydroxyphenyl) sulfone The reaction was carried out in 31.17 g of ether at 40 ° C. for 24 hours. Next, 0.74 g of tetrafluorophthalic anhydride and 4.21 g of propylene glycol monomethyl ether were added and reacted at room temperature for 20 hours to obtain a solution containing polyamic acid. The weight average molecular weight (Mw) obtained by GPC method was 4556. The obtained polyamic acid has a structure represented by the formula (14-11).
Figure JPOXMLDOC01-appb-C000113
(実施例1)
上記合成例1で得られた樹脂0.32gを含む溶液1.0gに4-メチル-2-ペンタノール20.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(Example 1)
To 1.0 g of a solution containing 0.32 g of the resin obtained in Synthesis Example 1, 20.4 g of 4-methyl-2-pentanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(実施例2)
上記合成例2で得られた樹脂0.32gを含む溶液1.0gに4-メチル-2-ペンタノール20.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(Example 2)
20.4 g of 4-methyl-2-pentanol was dissolved in 1.0 g of a solution containing 0.32 g of the resin obtained in Synthesis Example 2 above. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(実施例3)
上記合成例3で得られた樹脂0.32gを含む溶液1.0gに4-メチル-2-ペンタノール20.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(Example 3)
To 1.0 g of a solution containing 0.32 g of the resin obtained in Synthesis Example 3, 20.4 g of 4-methyl-2-pentanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(実施例4)
上記合成例4で得られた樹脂0.32gに4-メチル-2-ペンタノール20.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(Example 4)
20.4 g of 4-methyl-2-pentanol was added to 0.32 g of the resin obtained in Synthesis Example 4 and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(実施例5)
上記合成例5で得られた樹脂0.32gに4-メチル-2-ペンタノール20.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(Example 5)
To 0.32 g of the resin obtained in Synthesis Example 5, 20.4 g of 4-methyl-2-pentanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(実施例6)
上記合成例6で得られた樹脂0.42gを含む溶液2.5gに4-メチル-2-ペンタノール24.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(Example 6)
To 2.5 g of a solution containing 0.42 g of the resin obtained in Synthesis Example 6, 24.4 g of 4-methyl-2-pentanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(実施例7)
上記合成例7で得られた樹脂0.42gを含む溶液2.5gに4-メチル-2-ペンタノール24.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(Example 7)
To 2.5 g of a solution containing 0.42 g of the resin obtained in Synthesis Example 7, 24.4 g of 4-methyl-2-pentanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(実施例8)
上記合成例8で得られた樹脂0.42gを含む溶液2.5gに4-メチル-2-ペンタノール24.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(Example 8)
To 2.5 g of a solution containing 0.42 g of the resin obtained in Synthesis Example 8, 24.4 g of 4-methyl-2-pentanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(実施例9)
上記合成例6で得られた樹脂0.42gを含む溶液2.5gにシクロペンタノール24.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
Example 9
22.5 g of cyclopentanol was added to 2.5 g of a solution containing 0.42 g of the resin obtained in Synthesis Example 6 and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(実施例10)
上記合成例6で得られた樹脂0.42gを含む溶液2.5gに1-ヘプタノール24.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(Example 10)
To 2.5 g of the solution containing 0.42 g of the resin obtained in Synthesis Example 6 above, 24.4 g of 1-heptanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(実施例11)
上記合成例6で得られた樹脂0.42gを含む溶液2.5gに2-メチル-2-ブタノール24.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(Example 11)
To 2.5 g of a solution containing 0.42 g of the resin obtained in Synthesis Example 6 above, 24.4 g of 2-methyl-2-butanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(実施例12)
上記合成例9で得られた樹脂0.42gを含む溶液2.5gに4-メチル-2-ペンタノール24.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
Example 12
To 2.5 g of a solution containing 0.42 g of the resin obtained in Synthesis Example 9, 24.4 g of 4-methyl-2-pentanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(実施例13)
上記合成例10で得られた樹脂0.42gを含む溶液2.5gに4-メチル-2-ペンタノール24.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(実施例14)
上記合成例11で得られた樹脂0.32gを含む溶液1.0gに4-メチル-2-ペンタノール20.4gを加え溶解した。その後孔径0.05μmのポリエチレン製ミクロフィルターを用いてろ過して、リソグラフィー用レジスト上層膜形成組成物とした。
(Example 13)
To 2.5 g of a solution containing 0.42 g of the resin obtained in Synthesis Example 10, 24.4 g of 4-methyl-2-pentanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(Example 14)
To 1.0 g of a solution containing 0.32 g of the resin obtained in Synthesis Example 11, 20.4 g of 4-methyl-2-pentanol was added and dissolved. Thereafter, the mixture was filtered using a polyethylene microfilter having a pore size of 0.05 μm to obtain a resist upper layer film forming composition for lithography.
(比較例1)
ポリヒドロキシスチレン樹脂(市販品。重量平均分子量は8000)1gを4-メチル-2-ペンタノール99gに溶解させ、EUVレジスト上層膜形成組成物溶液を得た。
(比較例2)
プロピレングリコールモノメチルエーテルアセテートを用いた。
(比較例3)
酢酸エチルを用いた。
(比較例4)
シクロヘキサノンを用いた。
(比較例5)
ガンマブチルラクトンを用いた。
(Comparative Example 1)
1 g of polyhydroxystyrene resin (commercial product, weight average molecular weight 8000) was dissolved in 99 g of 4-methyl-2-pentanol to obtain an EUV resist upper layer film forming composition solution.
(Comparative Example 2)
Propylene glycol monomethyl ether acetate was used.
(Comparative Example 3)
Ethyl acetate was used.
(Comparative Example 4)
Cyclohexanone was used.
(Comparative Example 5)
Gamma butyl lactone was used.
(レジストとのインターミキシング試験)
EUVレジスト溶液(メタクリル系レジスト)を、スピナーを用いて塗布した。ホットプレート上で、100℃で1分間加熱することによりレジスト膜を形成し、膜厚測定を行なった(膜厚A:レジスト膜厚)。
本発明の実施例1乃至実施例14又は比較例1で調製されたレジスト上層膜形成組成物溶液、又は比較例2乃至比較例5では溶媒のみを、スピナーを用いてレジスト膜上に塗布し、ホットプレート上で100℃1分間加熱し、膜厚測定を行なった(膜厚B:レジストとレジスト上層膜の膜厚の和)。
そのレジスト上層膜上に市販されている汎用アルカリ性現像液である2.38重量%テトラメチルアンモニウムヒドロキシド水溶液(商品名:NMD-3(東京応化工業社製))を液盛りして60秒放置し、3000rpmで回転させながら、30秒間純水でリンスを行った。リンス後、100℃で60秒間ベークし、膜厚測定を行なった(膜厚C)。
膜厚Aが膜厚Cに等しい場合、レジストとインターミキシングが無いと言える。実施例1乃至実施例14では、膜厚Aが膜厚Cに等しくレジストとインターミキシングが無いことが確認された。一方比較例2乃至比較例5では、膜厚Bが0となったためこれらの溶媒を使用したレジスト上層膜組成物はインターミキシングを起こすことが示唆される。
〔表1〕
Figure JPOXMLDOC01-appb-I000114
(Intermixing test with resist)
An EUV resist solution (methacrylic resist) was applied using a spinner. A resist film was formed by heating at 100 ° C. for 1 minute on a hot plate, and the film thickness was measured (film thickness A: resist film thickness).
In the resist upper layer film forming composition solution prepared in Example 1 to Example 14 or Comparative Example 1 of the present invention, or in Comparative Examples 2 to 5, only the solvent was applied onto the resist film using a spinner, The film thickness was measured by heating on a hot plate at 100 ° C. for 1 minute (film thickness B: sum of film thickness of resist and resist upper layer film).
A 2.38 wt% tetramethylammonium hydroxide aqueous solution (trade name: NMD-3 (manufactured by Tokyo Ohka Kogyo Co., Ltd.)), which is a commercially available general-purpose alkaline developer, is deposited on the resist upper layer film and left for 60 seconds. Then, rinsing was performed with pure water for 30 seconds while rotating at 3000 rpm. After rinsing, the film was baked at 100 ° C. for 60 seconds to measure the film thickness (film thickness C).
When the film thickness A is equal to the film thickness C, it can be said that there is no intermixing with the resist. In Examples 1 to 14, it was confirmed that the film thickness A was equal to the film thickness C and there was no resist and intermixing. On the other hand, in Comparative Examples 2 to 5, since the film thickness B was 0, it is suggested that the resist upper layer film composition using these solvents causes intermixing.
[Table 1]
Figure JPOXMLDOC01-appb-I000114
〔光学パラメーター試験〕
本発明の実施例1乃至実施例11、実施例14で調製されたレジスト上層膜形成組成物溶液、及び比較例1で示したレジスト上層膜形成組成物溶液を、それぞれスピナーを用いて石英基板上に塗布した。ホットプレート上で、100℃で1分間加熱し、レジスト上層膜(膜厚30nm)を形成した。そしてこれらのレジスト上層膜を、分光光度計を用い、波長190nm乃至240nmでの吸収率を測定した。
 13.5nmでの透過率は元素組成比と膜密度の関係からシミュレーションにより計算した。
 DUV光の遮光性に関しては、220から260nmの波長域において、吸収率の最大値が40%以上を良好、40%未満を不良とした。また、EUV光(13.5nm)の透過性は80%以上の透過率を良好として、80%未満を不良とした。
[Optical parameter test]
The resist upper layer film-forming composition solution prepared in Examples 1 to 11 and Example 14 of the present invention and the resist upper layer film-forming composition solution shown in Comparative Example 1 were each formed on a quartz substrate using a spinner. It was applied to. On the hot plate, it heated at 100 degreeC for 1 minute, and formed the resist upper layer film | membrane (film thickness of 30 nm). And the absorptivity in wavelength 190nm thru | or 240nm was measured for these resist upper layer films | membranes using the spectrophotometer.
The transmittance at 13.5 nm was calculated by simulation from the relationship between the elemental composition ratio and the film density.
Regarding the light shielding property of DUV light, in the wavelength range of 220 to 260 nm, the maximum value of the absorptance was 40% or more as good and less than 40% as bad. In addition, regarding the transmittance of EUV light (13.5 nm), a transmittance of 80% or more was regarded as good, and less than 80% was regarded as defective.
 各実施例のレジスト上層膜形成組成物から得られたレジスト上層膜は、比較例1のレジスト上層膜形成組成物から得られたレジスト上層膜よりも、DUV光の遮光性が優れた結果となった。
〔表2〕
Figure JPOXMLDOC01-appb-I000115
The resist upper layer film obtained from the resist upper layer film forming composition of each example had a better light shielding property of DUV light than the resist upper layer film obtained from the resist upper layer film forming composition of Comparative Example 1. It was.
[Table 2]
Figure JPOXMLDOC01-appb-I000115
 レジストとインターミキシングすることなく、例えばEUV露光に際して好ましくない露光光、例えばUVやDUVを遮断してEUVのみを選択的に透過し、また露光後に現像液で現像可能なEUVリソグラフィープロセスに用いるEUVレジスト上層膜や、その他の露光波長におけるリソグラフィープロセスのためのレジスト上層膜を形成するための組成物である。 EUV resist used in an EUV lithography process that can selectively pass through EUV exposure light, such as UV or DUV, without being intermixed with the resist, and can be developed with a developer after exposure. It is a composition for forming an upper layer film and a resist upper layer film for a lithography process at other exposure wavelengths.

Claims (16)

  1. (a)テトラカルボン酸二無水物化合物、(b)酸ジハライド化合物及び(c)ジカルボン酸無水物基と酸ハライド基両方を有する化合物の中から選ばれる1種以上の化合物と、(d)1種以上のジアミン化合物とを反応させて製造される、アミド結合及びイミド結合のうち少なくとも一方を含む樹脂と、アルコール系溶剤を含むレジスト上層膜形成組成物。 One or more compounds selected from (a) a tetracarboxylic dianhydride compound, (b) an acid dihalide compound, and (c) a compound having both a dicarboxylic anhydride group and an acid halide group, and (d) 1 A resist upper layer film-forming composition comprising a resin containing at least one of an amide bond and an imide bond, which is produced by reacting at least one kind of diamine compound, and an alcohol solvent.
  2. 請求項1の樹脂が下記の式(1-1)、式(1-2)及び式(1-3)の中から選ばれる1種以上の単位構造を含む樹脂である、請求項1に記載のレジスト上層膜形成組成物。
    Figure JPOXMLDOC01-appb-C000001

    (式(1-1)乃至式(1-3)中、AとBは少なくとも一方が芳香環を含む有機基であり、且つ少なくとも一方がヒドロキシル基、カルボキシル基又はそれらの組み合わせを有する有機基である。当該樹脂の重量平均分子量は500乃至100000である。)
    The resin according to claim 1, wherein the resin comprises one or more unit structures selected from the following formulas (1-1), (1-2), and (1-3): Resist upper layer film forming composition.
    Figure JPOXMLDOC01-appb-C000001

    (In formulas (1-1) to (1-3), at least one of A 1 and B 1 is an organic group containing an aromatic ring, and at least one of them is an organic group having a hydroxyl group, a carboxyl group, or a combination thereof. (The weight average molecular weight of the resin is 500 to 100,000.)
  3. 請求項1又は請求項2に記載の樹脂末端構造が式(1-4)にて表される、請求項1又は請求項2に記載のレジスト上層膜形成組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(1-4)中、R1は芳香環又は炭素数1乃至5個のアルキル基を含む有機基を表し、Bは請求項2に記載された定義と同じであり、波線部分は請求項2に記載の樹脂の一部を表す。)
    The resist upper layer film-forming composition according to claim 1 or 2, wherein the resin terminal structure according to claim 1 or 2 is represented by formula (1-4).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (1-4), R 1 represents an aromatic ring or an organic group containing an alkyl group having 1 to 5 carbon atoms, B 1 has the same definition as described in claim 2, This represents a part of the resin according to claim 2.)
  4. 請求項1又は請求項2に記載の樹脂末端構造が式(1-5)又は式(1-6)にて表される、請求項1又は請求項2に記載のレジスト上層膜形成組成物。
    Figure JPOXMLDOC01-appb-C000003

    (式(1-5)又は式(1-6)中、Rは芳香環又は炭素数1乃至5個のアルキル基を含む有機基を表し、A及びBは請求項2に記載の定義と同じであり、波線部分は請求項2に記載の樹脂の一部を表す。)
    The resist upper layer film-forming composition according to claim 1 or 2, wherein the resin terminal structure according to claim 1 or 2 is represented by formula (1-5) or formula (1-6).
    Figure JPOXMLDOC01-appb-C000003

    (In Formula (1-5) or Formula (1-6), R 2 represents an aromatic ring or an organic group containing an alkyl group having 1 to 5 carbon atoms, and A 1 and B 1 are defined in claim 2. The definition is the same, and the wavy line represents a part of the resin according to claim 2.)
  5. 上記アルコール系溶剤が、炭素数1乃至20個の直鎖、炭素数3乃至20個の分岐若しくは環状飽和アルキルアルコール又は、炭素数6乃至20個の芳香族アルコールである請求項1乃至請求項4のいずれか1項に記載のレジスト上層膜形成組成物。 5. The alcohol solvent is a straight chain having 1 to 20 carbon atoms, a branched or cyclic saturated alkyl alcohol having 3 to 20 carbon atoms, or an aromatic alcohol having 6 to 20 carbon atoms. The resist upper layer film forming composition of any one of these.
  6. 上記アルコール系溶剤が、1-ヘプタノール、2-メチル-2-ブタノール、4-メチル-2-ペンタノール又はシクロペンタノールである請求項1乃至請求項5のいずれか1項に記載のレジスト上層膜形成組成物。 6. The resist upper layer film according to claim 1, wherein the alcohol solvent is 1-heptanol, 2-methyl-2-butanol, 4-methyl-2-pentanol, or cyclopentanol. Forming composition.
  7. 化合物(a)が、下記の式(1-7)乃至式(1-10)、
    Figure JPOXMLDOC01-appb-C000004

    (式(1-7)乃至式(1-10)中、X1乃至Xはそれぞれ独立にハロゲン原子、炭素数1乃至10の直鎖又は分岐アルキル基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキル基、炭素数1乃至30のアルコキシ基、ヒドロキシ基、カルボキシル基、シアノ基、ニトロ基、フェノキシ基又はベンゾイル基(前記フェノキシ基及びベンゾイル基の水素原子は、1乃至5個のハロゲン原子、1乃至5個の炭素数1乃至5の直鎖又は分岐アルキル基又は1乃至5個のヒドロキシ基で置換されていてもよい)を表す。m1は0乃至8の整数を表す。n1、m3及びm4は0乃至3の整数を表す。n2及びn3は0乃至2の整数を表す。m2及びm5は0乃至4の整数を表す。
    Wは単結合、酸素原子、炭素数1乃至10の直鎖又は分岐アルキレン基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキレン基、スルホニル基又はカルボニル基のいずれかを表す。)、
    化合物(b)が下記の式(1-11)乃至式(1-13)、
    Figure JPOXMLDOC01-appb-C000005

    (式(1-11)乃至式(1-13)中、Zはハロゲン原子、X乃至Xはそれぞれ独立にハロゲン原子、炭素数1乃至10の直鎖又は分岐アルキル基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキル基、炭素数1乃至30のアルコキシ基、ヒドロキシ基、カルボキシル基、シアノ基、ニトロ基、フェノキシ基又はベンゾイル基(前記フェノキシ基及びベンゾイル基の水素原子は、1乃至5個のハロゲン原子、1乃至5個の炭素数1乃至5の直鎖又は分岐アルキル基又は1乃至5個のヒドロキシ基で置換されていてもよい)を表す。m6及びm7は0乃至10の整数を表す。n4及びn5は0乃至3の整数を表す。m8及びm9は0乃至4の整数を表す。
    Wは単結合、酸素原子、炭素数1乃至10の直鎖又は分岐アルキレン基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキレン基、スルホニル基又はカルボニル基のいずれかを表す。)、
    化合物(c)が下記の式(1-14)又は式(1-15)、
    Figure JPOXMLDOC01-appb-C000006

    (式(1-14)乃至式(1-15)中、Zはハロゲン原子、X10乃至X12はそれぞれ独立にハロゲン原子、炭素数1乃至10の直鎖又は分岐アルキル基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキル基、炭素数1乃至30のアルコキシ基、ヒドロキシ基、カルボキシル基、シアノ基、ニトロ基、フェノキシ基又はベンゾイル基(前記フェノキシ基及びベンゾイル基の水素原子は、1乃至5個のハロゲン原子、1乃至5個の炭素数1乃至5の直鎖又は分岐アルキル基又は1乃至5個のヒドロキシ基で置換されていてもよい)を表す。m10は0乃至9の整数を表す。n6及びm11は0乃至3の整数を表す。m12は0乃至4の整数を表す。
    Wは単結合、酸素原子、炭素数1乃至10の直鎖又は分岐アルキレン基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキレン基、スルホニル基又はカルボニル基のいずれかを表す。)、
    化合物(d)が、下記の式(1-16)又は式(1-17)、
    Figure JPOXMLDOC01-appb-C000007
    (式(1-16)及び式(1-17)中、X13乃至X15はそれぞれ独立にハロゲン原子、炭素数1乃至10の直鎖又は分岐アルキル基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキル基、炭素数1乃至30のアルコキシ基、ヒドロキシ基、カルボキシル基、シアノ基、ニトロ基、フェノキシ基又はベンゾイル基(前記フェノキシ基及びベンゾイル基の水素原子は、1乃至5個のハロゲン原子、1乃至5個の炭素数1乃至5の直鎖又は分岐アルキル基又は1乃至5個のヒドロキシ基で置換されていてもよい)を表す。m13乃至m15は0乃至4の整数を表す。n7は0乃至3の整数を表す。
    Wは単結合、酸素原子、炭素数1乃至10の直鎖又は分岐アルキレン基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキレン基、スルホニル基又はカルボニル基のいずれかを表す。)で表され、当該樹脂の単位構造中に少なくとも1つのヒドロキシル基、カルボキシル基又はそれらの組み合わせを有する請求項1に記載のレジスト上層膜形成組成物。
    Compound (a) is represented by the following formulas (1-7) to (1-10),
    Figure JPOXMLDOC01-appb-C000004

    (In the formulas (1-7) to (1-10), X 1 to X 5 are each independently a halogen atom, a straight or branched alkyl group having 1 to 10 carbon atoms, a straight chain having 1 to 10 carbon atoms, or Branched halogenated alkyl group, alkoxy group having 1 to 30 carbon atoms, hydroxy group, carboxyl group, cyano group, nitro group, phenoxy group or benzoyl group (the hydrogen atom of the phenoxy group and benzoyl group is 1 to 5 halogen atoms) M1 represents an integer of 0 to 8. n1 represents an atom, which may be substituted with 1 to 5 straight-chain or branched alkyl groups having 1 to 5 carbon atoms or 1 to 5 hydroxy groups. m3 and m4 represent an integer of 0 to 3. n2 and n3 represent an integer of 0 to 2. m2 and m5 represent an integer of 0 to 4.
    W 1 represents any of a single bond, an oxygen atom, a linear or branched alkylene group having 1 to 10 carbon atoms, a linear or branched halogenated alkylene group having 1 to 10 carbon atoms, a sulfonyl group, or a carbonyl group. ),
    Compound (b) is represented by the following formulas (1-11) to (1-13),
    Figure JPOXMLDOC01-appb-C000005

    (In the formulas (1-11) to (1-13), Z 1 is a halogen atom, X 6 to X 9 are each independently a halogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, and 1 carbon atom. A linear or branched alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a hydroxy group, a carboxyl group, a cyano group, a nitro group, a phenoxy group, or a benzoyl group (the hydrogen atoms of the phenoxy group and benzoyl group are M6 and m7 may be substituted with 1 to 5 halogen atoms, 1 to 5 linear or branched alkyl groups having 1 to 5 carbon atoms, or 1 to 5 hydroxy groups. It represents an integer of 10. n4 and n5 represent an integer of 0 to 3. m8 and m9 represent an integer of 0 to 4.
    W 2 represents any of a single bond, an oxygen atom, a linear or branched alkylene group having 1 to 10 carbon atoms, a linear or branched halogenated alkylene group having 1 to 10 carbon atoms, a sulfonyl group, or a carbonyl group. ),
    Compound (c) is represented by the following formula (1-14) or formula (1-15),
    Figure JPOXMLDOC01-appb-C000006

    (In the formulas (1-14) to (1-15), Z 1 is a halogen atom, X 10 to X 12 are each independently a halogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, and a carbon number of 1 A linear or branched alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a hydroxy group, a carboxyl group, a cyano group, a nitro group, a phenoxy group, or a benzoyl group (the hydrogen atoms of the phenoxy group and benzoyl group are M10 represents 0 to 9 and may be substituted with 1 to 5 halogen atoms, 1 to 5 straight-chain or branched alkyl groups having 1 to 5 carbon atoms, or 1 to 5 hydroxy groups. N6 and m11 represent an integer of 0 to 3. m12 represents an integer of 0 to 4.
    W 3 represents any of a single bond, an oxygen atom, a linear or branched alkylene group having 1 to 10 carbon atoms, a linear or branched halogenated alkylene group having 1 to 10 carbon atoms, a sulfonyl group, or a carbonyl group. ),
    Compound (d) is represented by the following formula (1-16) or formula (1-17),
    Figure JPOXMLDOC01-appb-C000007
    (In the formulas (1-16) and (1-17), X 13 to X 15 are each independently a halogen atom, a straight or branched alkyl group having 1 to 10 carbon atoms, a straight chain having 1 to 10 carbon atoms, or Branched halogenated alkyl group, alkoxy group having 1 to 30 carbon atoms, hydroxy group, carboxyl group, cyano group, nitro group, phenoxy group or benzoyl group (the hydrogen atom of the phenoxy group and benzoyl group is 1 to 5 halogen atoms) M13 to m15 each represents an integer of 0 to 4, and may be substituted with 1 to 5 linear or branched alkyl groups having 1 to 5 carbon atoms or 1 to 5 hydroxy groups. n7 represents an integer of 0 to 3.
    W 4 represents a single bond, an oxygen atom, a linear or branched alkylene group having 1 to 10 carbon atoms, a linear or branched halogenated alkylene group having 1 to 10 carbon atoms, a sulfonyl group, or a carbonyl group. The composition for forming a resist upper layer film according to claim 1, wherein the unit structure of the resin has at least one hydroxyl group, carboxyl group, or a combination thereof.
  8. 式(1-4)の部分構造を形成するための末端封止剤が、下記の式(1-18)乃至(1-21)、

    (式(1-18)乃至(1-21)中、Zはハロゲン原子、X16乃至X21はそれぞれ独立にハロゲン原子、炭素数1乃至10の直鎖又は分岐アルキル基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキル基、炭素数1乃至30のアルコキシ基、ヒドロキシ基、カルボキシル基、フェノキシ基、シアノ基またはニトロ基を表す。m16は0乃至10の整数を表す。n8、n9及びm17は0乃至3の整数を表す。m18及びm21は0乃至5の整数を表す。m19は0乃至11の整数を表す。m20は0乃至4の整数を表す。
    W及びWは単結合、酸素原子、炭素数1乃至10の直鎖又は分岐アルキレン基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキレン基、スルホニル基又はカルボニル基のいずれかを表す。)で表される化合物である、請求項3に記載のレジスト上層膜形成組成物。
    End capping agents for forming the partial structure of the formula (1-4) are represented by the following formulas (1-18) to (1-21),

    (In the formulas (1-18) to (1-21), Z 1 is a halogen atom, X 16 to X 21 are each independently a halogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, 10 represents a linear or branched halogenated alkyl group, an alkoxy group having 1 to 30 carbon atoms, a hydroxy group, a carboxyl group, a phenoxy group, a cyano group, or a nitro group, and m16 represents an integer of 0 to 10. n8, n9 And m17 represents an integer of 0 to 3. m18 and m21 represent an integer of 0 to 5. m19 represents an integer of 0 to 11. m20 represents an integer of 0 to 4.
    W 5 and W 6 each represent a single bond, an oxygen atom, a linear or branched alkylene group having 1 to 10 carbon atoms, a linear or branched halogenated alkylene group having 1 to 10 carbon atoms, a sulfonyl group, or a carbonyl group. . The resist upper layer film forming composition of Claim 3 which is a compound represented by this.
  9. 式(1-5)又は式(1-6)の部分構造を形成するための末端封止剤が、下記の式(1-22)又は式(1-23)、
    Figure JPOXMLDOC01-appb-C000009

    (式(1-22)及び式(1-23)中、X22乃至X24はそれぞれ独立にハロゲン原子、炭素数1乃至10の直鎖又は分岐アルキル基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキル基、炭素数1乃至30のアルコキシ基、ヒドロキシ基、カルボキシル基、フェノキシ基、シアノ基またはニトロ基を表す。m22は0乃至11の整数を表し、n10は0乃至3の整数を表し、m23は0乃至4の整数を表し、m24は0乃至5の整数を表す。
    Wは単結合、酸素原子、炭素数1乃至10の直鎖又は分岐アルキレン基、炭素数1乃至10の直鎖又は分岐ハロゲン化アルキレン基、スルホニル基又はカルボニル基のいずれかを表す。)で表される化合物である、請求項4に記載のレジスト上層膜形成組成物。
    The end-capping agent for forming the partial structure of formula (1-5) or formula (1-6) is represented by the following formula (1-22) or formula (1-23),
    Figure JPOXMLDOC01-appb-C000009

    (In the formulas (1-22) and (1-23), X 22 to X 24 are each independently a halogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, a linear or branched alkyl group having 1 to 10 carbon atoms, or A branched halogenated alkyl group, an alkoxy group having 1 to 30 carbon atoms, a hydroxy group, a carboxyl group, a phenoxy group, a cyano group or a nitro group, m22 represents an integer of 0 to 11, and n10 represents an integer of 0 to 3 M23 represents an integer of 0 to 4, and m24 represents an integer of 0 to 5.
    W 7 represents any of a single bond, an oxygen atom, a linear or branched alkylene group having 1 to 10 carbon atoms, a linear or branched halogenated alkylene group having 1 to 10 carbon atoms, a sulfonyl group, or a carbonyl group. The resist upper layer film forming composition of Claim 4 which is a compound represented by this.
  10. 更に酸化合物を含む請求項1乃至請求項9のいずれか1項に記載のレジスト上層膜形成組成物。 The composition for forming a resist upper layer film according to any one of claims 1 to 9, further comprising an acid compound.
  11. 上記酸化合物がスルホン酸化合物又はスルホン酸エステル化合物である請求項10に記載のレジスト上層膜形成組成物。 The resist upper layer film-forming composition according to claim 10, wherein the acid compound is a sulfonic acid compound or a sulfonic acid ester compound.
  12. 上記酸化合物がヨードニウム塩系酸発生剤又はスルホニウム塩系酸発生剤である請求項10に記載のレジスト上層膜形成組成物。 The resist upper layer film-forming composition according to claim 10, wherein the acid compound is an iodonium salt acid generator or a sulfonium salt acid generator.
  13. 更に塩基性化合物を含む請求項1乃至請求項12のいずれか1項に記載のレジスト上層膜形成組成物。 The composition for forming a resist upper layer film according to any one of claims 1 to 12, further comprising a basic compound.
  14. 上記組成物とともに使用されるレジストがEUV(波長13.5nm)用レジストである、請求項1乃至請求項13いずれか1項に記載のレジスト上層膜形成組成物。 The resist upper layer film formation composition of any one of Claims 1 thru | or 13 whose resist used with the said composition is a resist for EUV (wavelength 13.5nm).
  15. 基板上にレジスト膜を形成する工程、該レジスト膜上に請求項1乃至請求項14のいずれか1項に記載のレジスト上層膜形成組成物を塗布し焼成してレジスト上層膜を形成する工程、該レジスト上層膜とレジスト膜で被覆された半導体基板を露光する工程、露光後に現像し該レジスト上層膜とレジスト膜を除去する工程、を含む半導体装置の製造方法。 A step of forming a resist film on the substrate, a step of applying and baking the resist upper layer film-forming composition according to any one of claims 1 to 14 on the resist film to form a resist upper layer film; A method for manufacturing a semiconductor device, comprising: exposing the resist upper layer film and a semiconductor substrate coated with the resist film; and developing the resist upper layer film and the resist film after exposure.
  16. 上記露光がEUV(波長13.5nm)により行われる請求項15に記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 15, wherein the exposure is performed by EUV (wavelength: 13.5 nm).
PCT/JP2013/056471 2012-03-22 2013-03-08 Resist upper layer film-forming composition for lithography WO2013141046A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012065865A JP2015108644A (en) 2012-03-22 2012-03-22 Composition for forming resist overlay film for lithography
JP2012-065865 2012-03-22

Publications (1)

Publication Number Publication Date
WO2013141046A1 true WO2013141046A1 (en) 2013-09-26

Family

ID=49222506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056471 WO2013141046A1 (en) 2012-03-22 2013-03-08 Resist upper layer film-forming composition for lithography

Country Status (3)

Country Link
JP (1) JP2015108644A (en)
TW (1) TW201405251A (en)
WO (1) WO2013141046A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10316145B2 (en) * 2016-05-20 2019-06-11 Sk Innovation Co., Ltd. Polyamic acid composition, polyamideimide film thereof and method for preparing polyamideimide film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059452A1 (en) * 2004-12-03 2006-06-08 Nissan Chemical Industries, Ltd. Method for forming photoresist pattern using double layer antireflection film
JP2007140075A (en) * 2005-11-17 2007-06-07 Matsushita Electric Ind Co Ltd Barrier film forming material, and pattern forming method using it
JP2009063873A (en) * 2007-09-07 2009-03-26 Toray Ind Inc Photosensitive printing plate precursor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059452A1 (en) * 2004-12-03 2006-06-08 Nissan Chemical Industries, Ltd. Method for forming photoresist pattern using double layer antireflection film
JP2007140075A (en) * 2005-11-17 2007-06-07 Matsushita Electric Ind Co Ltd Barrier film forming material, and pattern forming method using it
JP2009063873A (en) * 2007-09-07 2009-03-26 Toray Ind Inc Photosensitive printing plate precursor

Also Published As

Publication number Publication date
TW201405251A (en) 2014-02-01
JP2015108644A (en) 2015-06-11

Similar Documents

Publication Publication Date Title
TWI765872B (en) Indolocarbazole novolac resin-containing resist underlayer film forming composition
KR102454445B1 (en) Resist underlayer film-forming composition including polymer provided with arylene groups
KR102460271B1 (en) Step substrate coating composition having photocrosslinking group
JP7396049B2 (en) Resist underlayer film forming composition having disulfide structure
JP2013137334A (en) Resist underlayer film-forming composition for lithography comprising resin containing polyimide structure
JP7332982B2 (en) Composition for forming stepped substrate coating film containing plasma-curable compound with unsaturated bond between carbon atoms
CN105431780A (en) Resist underlayer film forming composition containing polymer which contains nitrogen-containing ring compound
TWI583724B (en) Resist underlayer film forming composition containing silicon having sulfone structure and amine structure
TW201805723A (en) Stepped substrate-covering composition containing compound having group photolinkable by unsaturated bond between carbons
EP2674815B1 (en) Photosensitive resin and process for producing microlens
KR20190131543A (en) Stepped substrate coating composition comprising polyether resin having optical crosslinker
JP2023103263A (en) Protective film forming composition having diol structure
TWI389935B (en) Composition for forming sublayer anti-reflective coating containing polyamic acid
US20230393479A1 (en) Resist underlayer film-forming composition having benzylidenecyanoacetate group
JP7208591B2 (en) Photocurable stepped substrate coating composition containing crosslinkable compound
JP2023157924A (en) Protective film forming composition having acetal structure
WO2013051442A1 (en) Composition for forming resist upperlayer film for lithography
KR20220007588A (en) Composition for forming a resist underlayer film comprising an alicyclic compound-terminated polymer
TW202340308A (en) Resist underlayer film formation composition including hydroxycinnamic acid derivative
WO2013141046A1 (en) Resist upper layer film-forming composition for lithography
JP2015172606A (en) Resist upper-layer film forming composition for lithography and semiconductor-device manufacturing process using the same
WO2023063237A1 (en) Underlayer film-forming composition
TW202344543A (en) Composition for forming resist underlayer film having saccharin skeleton

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13765070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13765070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP