WO2013140893A1 - Aqueous resin composition and cured article - Google Patents

Aqueous resin composition and cured article Download PDF

Info

Publication number
WO2013140893A1
WO2013140893A1 PCT/JP2013/053244 JP2013053244W WO2013140893A1 WO 2013140893 A1 WO2013140893 A1 WO 2013140893A1 JP 2013053244 W JP2013053244 W JP 2013053244W WO 2013140893 A1 WO2013140893 A1 WO 2013140893A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
resin composition
parts
aqueous
acid
Prior art date
Application number
PCT/JP2013/053244
Other languages
French (fr)
Japanese (ja)
Inventor
朋和 髭白
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2013528415A priority Critical patent/JP5360337B1/en
Publication of WO2013140893A1 publication Critical patent/WO2013140893A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • C08G59/1455Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
    • C08G59/1461Unsaturated monoacids
    • C08G59/1466Acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/006Anti-reflective coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/022Emulsions, e.g. oil in water

Definitions

  • the present invention relates to an aqueous resin composition that can be used in various applications including coating agents and adhesives.
  • the coating agent is generally required to be able to form a coating film with excellent durability capable of preventing the deterioration of the substrate surface.
  • coating agents that can form a coating film with excellent solvent resistance at a level that can prevent deterioration of the substrate due to adhesion of, for example, cleaning agents and magic pens, as well as water resistance, have been received from the industry. It has been demanded.
  • the coating agent having the above-mentioned characteristics is often used as a coating agent for protecting the surface of a metal substrate that easily generates rust or corrosion due to contact with water or the like.
  • the coating material for surface protection of the metal substrate is required to form a coating film having a level of water resistance capable of preventing corrosion of the metal substrate and a high level of solvent resistance.
  • solvent resistance in the steel industry where the surface of the coating formed on the surface of a metal substrate is frequently cleaned using an alkaline cleaning agent, the coating is peeled off or dissolved by the influence of the cleaning agent. This is an important characteristic for preventing deterioration of the metal substrate.
  • Examples of the coating agent capable of forming a coating film excellent in water resistance and solvent resistance include 99 parts by weight of a polyester resin having a weight average molecular weight of 6,000 or more and an acid value of 8 mgKOH / g to 80 mgKOH / g. Resin aqueous solution containing 60 parts by mass and 1 part by mass to 40 parts by mass of an epoxy resin having a solubility in water of 5% by mass or less at 25 ° C. A coating agent made of a dispersion is known (for example, see Patent Document 1).
  • the coating agent it is possible to form a coating film having a certain degree of good water resistance and solvent resistance.
  • the coating film obtained by using the coating agent does not reach the water resistance and solvent resistance required in the steel industry, so when water or a cleaning agent comes into contact with the coating film, In some cases, peeling or dissolution of the film was caused, and deterioration of the metal base material was caused.
  • the substrate is a substrate that is likely to cause deformation or discoloration due to the influence of heat, it cannot be heated at the above temperature to form a crosslinked structure in the coating film, resulting in water resistance or solvent resistance. In some cases, it was not possible to form a coating film excellent in properties.
  • the problem to be solved by the present invention is to provide an aqueous resin composition capable of forming a coating film excellent in water resistance and solvent resistance.
  • the problem to be solved by the present invention is to provide an aqueous resin composition capable of forming a coating film excellent in water resistance and solvent resistance even when heated at a relatively low temperature of about 100 ° C. That is.
  • an aqueous vinyl ester resin derived from a specific epoxy resin is dispersed in an aqueous medium (B) with a polymer having a hydrophilic group such as an anionic group. It has been found that the above-mentioned problems can be solved by using a resin composition.
  • the present invention relates to at least one epoxy resin (a1-1) selected from the group consisting of a novolac type epoxy resin and a bisphenol type epoxy resin, a monomer having an acid group and polymerizable unsaturation (a1-2). And a vinyl ester resin (a1) obtained by reacting with a polymer (a2) is dispersed in an aqueous medium (B) by a polymer (a2) having a hydrophilic group. .
  • the present invention also relates to a cured product obtained by Michael addition reaction of the vinyl ester resin (a1) and the polyamine contained in the aqueous resin composition.
  • the aqueous resin composition of the present invention can form a coating film having excellent water resistance and solvent resistance even when heated at a relatively low temperature, it can be used in various applications including, for example, coating agents and adhesives. Can be used.
  • the aqueous resin composition is used for various film anchor coating agents, can inner or outer surface coating agents, steel plate coatings, rust preventive coatings, pre-coated metal coatings, steel plate adhesives, resin sheets or films. It can be used in various applications including adhesives, film coating agents, ink binders, carbon fiber and glass fiber fiber treatment agents, and paper coating agents.
  • the aqueous resin composition of the present invention comprises at least one epoxy resin (a1-1) selected from the group consisting of novolak type epoxy resins and bisphenol type epoxy resins, and a monomer having an acid group and a polymerizable unsaturated group
  • the vinyl ester resin (a1) obtained by reacting with (a1-2) is dispersed in the aqueous medium (B) by the polymer (a2) having a hydrophilic group.
  • the vinyl ester resin (a1) and the polymer (a2) used in the present invention do not exist in a state where they form resin particles independently and are dispersed in the aqueous medium (B).
  • the ester resin (a1) is present in a state dispersed in the aqueous medium (B) by the polymer (a2). Specifically, a part or all of the vinyl ester resin (a1) is present in the polymer (a2) particles to form composite resin particles (A).
  • the composite resin particles (A) are preferably core-shell type composite resin particles in which the vinyl ester resin (a1) forms a core portion and the polymer (a2) forms a shell portion.
  • the composite resin particle (A) it is preferable to use the composite resin particle (A) that does not substantially form a crosslinked structure in the state dispersed in the aqueous medium (B).
  • substantially does not form a crosslinked structure means that the inside of the composite resin particle (A), specifically, between the polymers (a2) constituting the shell portion and the core portion is constituted. No cross-linked structure is formed between the vinyl ester resin (a1) or between the polymer (a2) and the vinyl ester resin (a1), or the water dispersion stability of the aqueous resin composition of the present invention, etc. The state which formed the fine crosslinked structure of the grade which does not inhibit this is pointed out.
  • the cross-linking density inside the composite resin particle (A) achieves both excellent water dispersion stability (storage stability) and excellent film-forming property of the aqueous resin composition of the present invention, and excellent water resistance and resistance. In forming a coating film having solvent properties, it is preferably as low as possible, and more preferably a crosslinked structure is not formed.
  • the vinyl ester resin (a1) and the polymer (a2) include a mass ratio [vinyl ester resin (a1) / polymer (a2)] in the range of 70/30 to 20/80. It is preferable for forming a coating film excellent in water resistance and solvent resistance while giving good water dispersion stability, more preferably in the range of 70/30 to 30/70, and more preferably 70/30 to More preferably, it is contained in the range of 50/50.
  • the mass ratio [vinyl ester resin (a1) / polymer (a2)] to (a2) is also preferably in the range of 70/30 to 20/80, and in the range of 70/30 to 30/70. More preferably, the range is from 70/30 to 50/50.
  • vinyl ester resin (a1) examples include one or more epoxy resins (a1-1) selected from the group consisting of novolak type epoxy resins and bisphenol type epoxy resins, and a single monomer having an acid group and a polymerizable unsaturated group. What is obtained by reacting the body (a1-2) is used.
  • the vinyl ester resin (a1) has a polymerizable unsaturated group derived from the monomer (a1-2).
  • the polymerizable unsaturated group may be present in a cured product such as a formed coating film, but a part thereof is cross-linked by using a thermal polymerization initiator or a photopolymerization initiator in combination. Also good.
  • the said polymerizable unsaturated group may react with crosslinking agents (C), such as polyamine mentioned later, and may form a crosslinked structure.
  • the polymerizable unsaturated group is preferably present in the vinyl ester resin (a1) in the range of 200 g / eq to 2,000 g / eq in order to form a cured product having excellent water resistance and solvent resistance.
  • One or more epoxy resins (a1-1) selected from the group consisting of the novolak-type epoxy resin and bisphenol-type epoxy resin that can be used in producing the vinyl ester resin (a1) include, for example, a cresol novolak-type epoxy Resin, novolac type epoxy resin such as phenol novolac type epoxy resin; bisphenol type epoxy resin such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, tetrabromobisphenol A type epoxy resin Resin can be used.
  • the epoxy resin (a1-1) has an epoxy equivalent of 100 g / eq to 2,000 g / eq for further improving the cured density of the cured product and further improving the water resistance and solvent resistance of the cured product.
  • the upper limit is more preferably 1,000 g / eq or less, and further preferably 500 g / eq or less.
  • epoxy groups of the epoxy resin (a1-1) 80 mol% to 100 mol% of the epoxy groups are consumed by reacting with the acid groups of the monomer (a1-2). It is preferable to further improve the cured density of the cured product and further improve the water resistance and solvent resistance of the cured product, and all of the epoxy groups of the monomer (a1-2) More preferably it is consumed by reacting with acid groups.
  • the monomer (a1-2) used in the production of the vinyl ester resin (a1) reacts with the epoxy group of the epoxy resin (a1-1) to convert the polymerizable unsaturated group into the vinyl ester resin ( It can be given to a1).
  • the monomer (a1-2) one having an acid group capable of reacting with the epoxy group and a polymerizable unsaturated group can be used.
  • Examples of the monomer (a1-2) include acrylic acid, methacrylic acid, itaconic acid, 2-acryloyloxyethyl succinate, 2-methacryloyloxyethyl succinate, 2,2,2, -trisacryloyloxymethyl.
  • Ethylphthalic acid or the like can be used.
  • acrylic acid it is preferable to use acrylic acid because it can easily undergo a crosslinking reaction even at a relatively low temperature, and acrylic acid is used in an amount of 50% by mass or more based on the total amount of the monomer (a1-2). More preferably.
  • the reaction between the epoxy resin (a1-1) and the monomer (a1-2) is preferably performed at 60 ° C. to 150 ° C., more preferably 80 ° C. to 120 ° C.
  • a polymerization inhibitor when reacting the epoxy resin (a1-1) and the monomer (a1-2).
  • the addition amount of the polymerization inhibitor is preferably in the range of 500 ppm to 5000 ppm with respect to the total mass of the epoxy resin (a1-1) and the monomer (a1-2).
  • polymerization inhibitor examples include 2,6-bis (tert-butyl) -4-methylphenol, hydroquinone, methylhydroquinone, hydroquinone monomethyl ether (methoquinone), p-tert-butylcatechol, nitrobenzene, nitrobenzoic acid, o -Dinitrobenzene, m-dinitrobenzene, p-dinitrobenzene, 2,4-dinitrophenol, trinitrobenzene and the like can be used alone or in combination of two or more.
  • reaction catalyst When reacting the epoxy resin (a1-1) and the monomer (a1-2), a reaction catalyst can be used.
  • the amount of the reaction catalyst used is preferably 0.1% by mass to 5% by mass with respect to the solid content of the epoxy resin (a1-1).
  • an amine catalyst for example, an amine catalyst, an imidazole catalyst, a phosphorus catalyst, a boron catalyst, a phosphorus-boron catalyst, or the like can be used.
  • alkyl-substituted guanidines such as ethylguanidine, trimethylguanidine, phenylguanidine, diphenylguanidine; 3- (3,4-dichlorophenyl) -1,1-dimethylurea, 3-phenyl-1,1-dimethylurea 3-substituted 4-phenyl-1,1-dimethylureas such as 3- (4-chlorophenyl) -1,1-dimethylurea; 2-methylimidazoline, 2-phenylimidazoline, 2-undecylimidazoline, 2-heptadecylimidazoline Imidazolines such as 2-aminopyridine; amine imides such as N, N-dimethyl-N- (2-hydroxy-3-ally
  • the vinyl ester resin (a1) obtained by the above method has a range of 500 to 5,000 in order to further increase the cured density of the resulting cured product and to give further excellent water resistance and solvent resistance. It is preferable to use those having a weight average molecular weight of
  • the vinyl ester resin (a1) is preferably more hydrophobic than the polymer (a2) in forming the composite resin particle (A) in the polymer (a2) particles described later.
  • the hydrophobic property refers to a property that is difficult to dissolve in water.
  • the polymer (a2) has a hydrophilic group, and is used for stably dispersing the vinyl ester resin (a1) in the aqueous medium (B).
  • hydrophilic group an anionic group, a cationic group, or a nonionic group can be used.
  • anionic group for example, a carboxyl group, a carboxylate group, a sulfonic acid group, a sulfonate group, or the like can be used.
  • a carboxylate group or sulfonate group part or all of which is neutralized with a basic compound, enables the vinyl ester resin (a1) to be stably dispersed in the aqueous medium (B). preferable.
  • Examples of basic compounds that can be used for neutralizing the carboxyl group and sulfonic acid group include organic amines such as ammonia, triethylamine, pyridine, and morpholine, alkanolamines such as monoethanolamine, sodium, potassium, lithium, and calcium.
  • organic amines such as ammonia, triethylamine, pyridine, and morpholine
  • alkanolamines such as monoethanolamine, sodium, potassium, lithium, and calcium.
  • the contained metal base compound can be used.
  • the vinyl ester resin may be present in the range of 0.1 mol / kg to 1.5 mol / kg with respect to the whole polymer (a2). It is preferable for stably dispersing (a1) in the aqueous medium (B).
  • a tertiary amino group for example, a tertiary amino group, an acid neutralizing group of a tertiary amino group, or a quaternized group can be used.
  • Examples of the acid that can be used for neutralizing part or all of the tertiary amino group include organic acids such as acetic acid, propionic acid, lactic acid, and maleic acid; organic acids such as sulfonic acid and methanesulfonic acid. Sulfonic acid; inorganic acids such as hydrochloric acid, sulfuric acid, orthophosphoric acid and orthophosphorous acid can be used.
  • Examples of the quaternizing agent that can be used for quaternizing a part or all of the tertiary amino group include dialkyl sulfates such as dimethyl sulfate and diethyl sulfate; methyl chloride, ethyl chloride, benzyl Alkyl halides such as chloride; alkyl such as methyl methanesulfonate and methyl paratoluenesulfonate; ethylene oxide; epoxy compounds such as propylene oxide and epichlorohydrin can be used.
  • nonionic group for example, a polyoxyethylene group, a poly (oxyethylene-oxypropylene) group, a polyoxyethylene-polyoxypropylene group, or the like can be used.
  • the polymer (a2) having a hydrophilic group specifically, a resin capable of introducing a hydrophilic group, such as a polyurethane resin, a polyester resin, or an acrylic resin, can be used. Among them, it is easy to introduce a hydrophilic group and to use one or more selected from the group consisting of urethane resin, polyester resin and acrylic resin, and it has excellent compatibility with the vinyl ester resin (a1).
  • the resin (A) is preferable because it is easy to form.
  • urethane resin for example, a resin produced by reacting a polyol, a polyisocyanate, and, if necessary, a chain extender can be used.
  • polyester polyol for example, polyester polyol, polycarbonate polyol, polyether polyol, polyolefin polyol and the like can be used alone or in combination of two or more.
  • polyester polyol and polycarbonate polyol can improve the substrate adhesion of the aqueous resin composition of the present invention and improve the compatibility with the vinyl ester resin (a-1). It is preferable because good coating film properties such as solvent properties can be maintained.
  • polyester polyol examples include those obtained by esterifying low molecular weight polyols and polycarboxylic acids, polyesters obtained by ring-opening polymerization reaction of cyclic ester compounds such as ⁇ -caprolactone, and copolyesters thereof. Etc. can be used.
  • Examples of the low molecular weight polyol include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, neopentyl glycol, and 1,3-butanediol having a molecular weight of about 50 to 300.
  • An aliphatic polyol such as cyclohexane dimethanol, a polyol having an aliphatic cyclic structure, a bisphenol compound such as bisphenol A, and a polyol having an aromatic structure such as an alkylene oxide adduct thereof can be used.
  • polycarboxylic acid examples include aliphatic polycarboxylic acids such as succinic acid, adipic acid, sebacic acid, and dodecanedicarboxylic acid; terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, and the like Aromatic polycarboxylic acids of the above; their anhydrides or esterifications can be used.
  • polyester polyol those having a number average molecular weight in the range of 500 to 4,000 are preferably used.
  • polycarbonate polyol usable for the polyol for example, it is obtained by reacting a carbonate and a polyol. And those obtained by reacting phosgene and bisphenol A can be used.
  • carbonate ester methyl carbonate, dimethyl carbonate, ethyl carbonate, diethyl carbonate, cyclocarbonate, diphenyl carbonate and the like can be used.
  • polyol that can react with the carbonate ester examples include ethylene glycol, diethylene glycol, 1,2-propylene glycol, dipropylene glycol, 1,4-butanediol, 1,5-pentanediol, and 3-methyl-1,5.
  • the polycarbonate polyol preferably has a number average molecular weight in the range of 500 to 4,000.
  • polyether polyol examples include those obtained by addition polymerization of alkylene oxide using one or more compounds having two or more active hydrogen atoms as an initiator.
  • the initiator examples include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, bisphenol A, glycerin, and triglyceride. Methylolethane, trimethylolpropane and the like can be used.
  • alkylene oxide for example, ethylene oxide, propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, tetrahydrofuran and the like can be used.
  • polystyrene polyol examples include polyethylene polyol, polypropylene polyol, polyisobutene polyol, hydrogenated (hydrogenated) polybutadiene polyol, and hydrogenated (hydrogenated) polyisoprene polyol.
  • a polyol having a hydrophilic group can be used in combination.
  • polyol having a hydrophilic group for example, a polyol having an anionic group other than the aforementioned polyol, a polyol having a cationic group, and a polyol having a nonionic group can be used.
  • a polyol having an anionic group or a polyol having a cationic group it is preferable to use a polyol having an anionic group.
  • polyol having an anionic group for example, a polyol having a carboxyl group or a polyol having a sulfonic acid group can be used.
  • polyol having a carboxyl group for example, 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, 2,2-dimethylolvaleric acid and the like can be used. Preference is given to using methylolpropionic acid.
  • polyester polyol which has a carboxyl group obtained by making the polyol which has the said carboxyl group, and various polycarboxylic acids react can also be used.
  • polyol having a sulfonic acid group examples include dicarboxylic acids such as 5-sulfoisophthalic acid, sulfoterephthalic acid, 4-sulfophthalic acid, and 5 [4-sulfophenoxy] isophthalic acid, and salts thereof, and the aromatic structure.
  • dicarboxylic acids such as 5-sulfoisophthalic acid, sulfoterephthalic acid, 4-sulfophthalic acid, and 5 [4-sulfophenoxy] isophthalic acid, and salts thereof, and the aromatic structure.
  • the polyester polyol obtained by making it react with the low molecular weight polyol illustrated as what can be used for manufacture of a polyester polyol can be used.
  • polyol having a cationic group for example, a polyol having a tertiary amino group can be used. Specifically, N-methyl-diethanolamine, a compound having two epoxies per molecule, a secondary amine, Polyols obtained by reacting can be used.
  • polyalkylene glycol having a structural unit derived from ethylene oxide can be used as the polyol having a nonionic group.
  • the polyol having a hydrophilic group is preferably used in the range of 0.3% by mass to 10% by mass with respect to the total amount of polyol used for the production of the urethane resin.
  • polyol in addition to the above-described polyol, other polyols can be used as necessary.
  • Examples of the other polyol include ethylene glycol, diethylene glycol, 1,2-propylene glycol, dipropylene glycol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, Polyol having a relatively low molecular weight such as 1,4-cyclohexanediol, 1,6-hexanediol, cyclohexanedimethanol, etc. can be used.
  • aromatics such as 4,4′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate, crude diphenylmethane diisocyanate, phenylene diisocyanate, tolylene diisocyanate, and naphthalene diisocyanate.
  • Polyisocyanate aliphatic polyisocyanate such as hexamethylene diisocyanate, lysine diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate; polyisocyanate having an aliphatic cyclic structure such as cyclohexane diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate, etc. Can Kill.
  • aliphatic polyisocyanate such as hexamethylene diisocyanate, lysine diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate
  • polyisocyanate having an aliphatic cyclic structure such as cyclohexane diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate, etc. Can Kill.
  • the urethane resin is produced by reacting the polyol and the polyisocyanate, for example, in the absence of a solvent or in the presence of an organic solvent, and then when there is a hydrophilic group in the urethane resin, A product obtained by neutralizing a part or all of the hydrophilic group as necessary can be produced by mixing with an aqueous medium (B) to make it aqueous and reacting with a chain extender as necessary. it can.
  • the reaction between the polyol and the polyisocyanate is preferably performed, for example, when the equivalent ratio of the isocyanate group of the polyisocyanate to the hydroxyl group of the polyol is in the range of 0.8 to 2.5, preferably 0.9 to It is more preferable to carry out in the range of 1.5.
  • an acrylic resin having the hydrophilic group can be used as the acrylic resin that can be used for the polymer (a2).
  • acrylic resin those having a weight average molecular weight in the range of 5,000 to 1,000,000 are preferably used. In order to improve production efficiency, the weight in the range of 5,000 to 500,000 is used. It is more preferable to use one having an average molecular weight.
  • acrylic resin conventionally known (meth) acrylic monomers and those obtained by polymerizing a mixture thereof can be used.
  • Examples of the (meth) acrylic monomer that can be used for producing an acrylic resin that can be used for the polymer (a2) include (meth) acrylic monomers such as (meth) acrylic acid alkyl ester and (meth) acrylic acid. Etc. can be used. Of these, the use of (meth) acrylic acid alkyl ester is preferable because the compatibility with the vinyl ester resin (a1) is improved and good coating properties such as solvent resistance can be imparted.
  • Examples of the (meth) acrylic acid alkyl ester include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, and tert (meth) acrylic acid.
  • the (meth) acrylic acid alkyl ester is preferably used in a range of 25% by mass to 80% by mass with respect to the total mass of monomers used for the production of the vinyl polymer (B), and 30% by mass. It is more preferable that the content be in the range of from 80% by mass to 80% by mass because compatibility with the vinyl ester resin (a1) is improved and good coating properties such as solvent resistance can be maintained.
  • the (meth) acrylic acid alkyl ester specifically, a (meth) acrylic acid alkyl ester capable of forming a homopolymer in the range of ⁇ 50 ° C. to 0 ° C. and a range of 50 ° C. to 120 ° C.
  • a (meth) acrylic acid alkyl ester capable of forming a homopolymer can be used in combination.
  • [(meth) acrylic acid alkyl ester capable of forming a homopolymer in the range of ⁇ 50 ° C. to 0 ° C./(meth)acrylic acid alkyl ester capable of forming a homopolymer in the range of 50 ° C. to 120 ° C. ) Is preferably used in the range of 100/0 to 25/75 in order to further improve the film forming property of the aqueous resin composition.
  • (meth) acrylic acid alkyl ester capable of forming a homopolymer in the range of ⁇ 50 ° C. to 0 ° C. for example, n-butyl (meth) acrylate can be used, and the range of 50 ° C. to 120 ° C.
  • (meth) acrylic acid alkyl ester capable of forming a homopolymer of, for example, methyl (meth) acrylate can be used.
  • a monomer which can be used at the time of manufacturing the acrylic resin from the viewpoint of imparting an anionic group as a hydrophilic group to the acrylic resin, for example, a single monomer having a carboxyl group such as acrylic acid or methacrylic acid
  • the acrylic acid, methacrylic acid and the like are preferably used in the range of 0.5% by mass to 30% by mass with respect to the total amount of monomers used for producing the acrylic resin.
  • Examples of the monomer include dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate from the viewpoint of imparting a cationic group as a hydrophilic group to the acrylic resin.
  • Monomers having a tertiary amino group such as acrylamide can be used.
  • the monomer having a tertiary amino group is preferably used in the range of 0.5% by mass to 30% by mass with respect to the total amount of monomers used in producing the acrylic resin.
  • the monomer from the viewpoint of imparting a nonionic group as a hydrophilic group to the acrylic resin, for example, a monomer having a polyoxyethylene structure in a side chain such as methoxypolyethylene glycol (meth) acrylate Can be used.
  • the monomer containing the polyoxyethylene structure is preferably used in the range of 5% by mass to 70% by mass with respect to the total amount of monomers used for producing the acrylic resin.
  • monomers that can be used for producing the acrylic resin include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, glycerol mono (meth) Acrylate, dicyclopentanyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2, (meth) acrylic acid 3,3-pentafluoropropyl, perfluorocyclohexyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, ⁇ - (perfluorooctyl) ethyl (meth) acrylate, ( (Meth) acrylamide, N-methylol (meth) acrylamide, N-isopropoxymethyl (meth) acryl Amides, N-butoxymethyl (meth)
  • vinyl monomer having a carboxyl group Aronix M-5300 (manufactured by Toagosei Co., Ltd., ⁇ -carboxy-polycaprolactone monoacrylate) or the like can be used.
  • the polyester resin usable for the polymer (a2) the polyester resin having the hydrophilic group can be used.
  • polyester resin it is preferable to use a polyester resin having a sulfonate group as the anionic group, and using an aromatic polyester resin having the sulfonate group is excellent in water resistance and solvent resistance. It is more preferable when forming a coating film.
  • polyester resin those having a weight average molecular weight of 5,000 to 30,000 are preferably used, and more preferably in the range of 5,000 to 15,000. If the weight average molecular weight is within the above-mentioned range, it is possible to impart good coating workability and film-forming property with an appropriate viscosity without impairing excellent water resistance, solvent resistance and storage stability. Become.
  • the polyester resin preferably has a glass transition temperature of 30 ° C. to 100 ° C. If the polyester resin (a1) has the glass transition temperature, it imparts good coating workability and film-forming property with an appropriate viscosity without impairing excellent water resistance, solvent resistance and storage stability. Is possible.
  • polyester resin those obtained by reacting polyol and polycarboxylic acid can be used.
  • a compound having a sulfonate group such as a polyol having a sulfonate group or a polycarboxylic acid having a sulfonate group is used as part of the polyol or polycarboxylic acid. By this, it can be introduced into the polyester resin.
  • the compound having a sulfonate group that can be used in producing the polyester resin is 3% by mass to 30% by mass with respect to the total mass of the polyol and the polycarboxylic acid used in producing the polyester resin.
  • polyester resin examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, and 2-methyl-1,3-propanediol.
  • 1,5-pentanediol neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,9-nonanediol, 2-ethyl-2-butylpropanediol, diethylene glycol, triethylene glycol
  • Aliphatic polyols such as ethylene glycol and dipropylene glycol; polyols having an aliphatic cyclic structure such as 1,4-cyclohexanedimethanol can be used.
  • the polyol which has 3 or more of hydroxyl groups such as glycerol, a trimethylol ethane, a trimethylol propane, a pentaerythritol, can also be used, for example.
  • a polyol having a sulfonate group as a compound having a sulfonate group in a part or all of the polyol can be used.
  • 2-butene-1,4- A polyol having a sulfonate group obtained by sulfonating a polyol having an unsaturated group such as a diol can be used.
  • polycarboxylic acid capable of reacting with a polyol that can be used in producing the polyester resin examples include aromatic polycarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, and biphenyldicarboxylic acid; oxalic acid , Succinic acid, succinic anhydride, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, hydrogenated dimer acid, fumaric acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, citraconic acid, citraconic acid, Aliphatic polycarboxylic acids such as dimer acids; 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 2,5-norbornenedicarboxylic acid and its anhydride, o
  • That polycarboxylic acid can be used.
  • an aromatic polycarboxylic acid from the viewpoint of imparting further excellent water resistance and solvent resistance, it is preferable to use an aromatic polycarboxylic acid, and it is more preferable to use terephthalic acid or isophthalic acid.
  • trimellitic acid trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid, trimellitic anhydride, pyromellitic anhydride, anhydrous base
  • carboxyls such as nzophenone tetracarboxylic acid, trimesic acid, ethylene glycol bis (anhydro trimellitate), glycerol tris (anhydro trimellitate), 1,2,3,4-butanetetracarboxylic acid Those having a group can be used.
  • a polycarboxylic acid having a sulfonate group in part or all thereof can be used.
  • examples include 4-sulfoisophthalic acid, 5-sulfoisophthalic acid, sulfoterephthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, 5-sodium sulfoisophthalic acid, 5-sodium sulfoisophthalic acid dimethyl, and the like It is preferable to use the esterified product.
  • 5-sodium sulfoisophthalic acid and its esterified products are more preferably used from the viewpoint of imparting excellent water resistance and solvent resistance without impairing storage stability over a long period of time. More preferably, dimethyl acid is used.
  • the composite resin particles (A) formed by the vinyl ester resin (a1) and the polymer (a2) for example, produce a polymer (a2) such as the urethane resin, acrylic resin, or polyester resin, It can be produced by mixing the polymer (a2), the vinyl ester resin (a1) and the aqueous medium (B).
  • the urethane resin reacts the polyol, the polyisocyanate, and, if necessary, the chain extender at 40 ° C. to 120 ° C. in the absence of solvent or in the solvent. Can be manufactured.
  • the acrylic resin is used as the polymer (a2)
  • the acrylic resin is a vinyl monomer containing the (meth) acrylic monomer
  • a polymerization initiator is added, and the conditions are 30 ° C. to 120 ° C. It can be produced by radical polymerization with
  • the polyester resin is used as the polymer (a2)
  • the polyester resin is produced by subjecting the polyol and the polycarboxylic acid to an esterification reaction in a conventionally known method under no solvent or in an organic solvent. can do.
  • the polyol and the polycarboxylic acid are preferably heated to 180 ° C. to 300 ° C. in an inert gas atmosphere in the presence or absence of a catalyst to perform esterification or It can be carried out by a method of transesterification followed by polycondensation under reduced pressure.
  • the polymer (a2) is prepared by previously dissolving or dispersing the composite resin particles in the aqueous medium (B) or an organic solvent in order to form the composite resin particles (A) with the vinyl ester resin (a1). It is preferable.
  • the organic solvent may be removed by a distillation method or the like from the viewpoint of reducing the environmental load.
  • the aqueous resin composition in which the composite resin particles (A) are dispersed in the aqueous medium (B) can be obtained.
  • the aqueous resin composition preferably has a non-volatile content in the range of 10% by mass to 90% by mass, and preferably 30% by mass to 70% by mass from the viewpoint of maintaining coating workability and long-term storage stability. More preferably, it is the range.
  • the vinyl ester resin (a1) and the polymer (a2) are preferably used in the range of 5% by mass to 85% by mass with respect to the total amount of the aqueous resin composition, and 20% by mass to 65%. It is more preferable to use in the range of mass%.
  • examples of the aqueous medium (B) used in the present invention include water, organic solvents miscible with water, and mixtures thereof.
  • organic solvents miscible with water include alcohols such as methanol, ethanol, n-propanol and isopropanol; ketones such as acetone and methyl ethyl ketone; polyalkylene glycols such as ethylene glycol, diethylene glycol and propylene glycol; alkyl ethers of polyalkylene glycols And lactams such as N-methyl-2-pyrrolidone.
  • only water may be used, a mixture of water and an organic solvent miscible with water may be used, or only an organic solvent miscible with water may be used. From the viewpoint of safety and load on the environment, water alone or a mixture of water and an organic solvent miscible with water is preferable, and only water is particularly preferable.
  • the aqueous medium (B) is preferably contained in an amount of 10% by mass to 90% by mass, and more preferably in the range of 30% by mass to 70% by mass with respect to the total amount of the aqueous resin composition.
  • a film-forming aid In the aqueous resin composition of the present invention, if necessary, a film-forming aid, a curing agent, a polymerization initiator, a curing catalyst, a plasticizer, an antistatic agent, a wax, a light stabilizer, a flow regulator, a dye, and a leveling
  • the additive When the additive is water-insoluble, it can be used when the polymer (a2) is dissolved or dispersed in the aqueous medium (B) or the organic solvent, thereby stably dispersing the additive in the solvent. It becomes possible to do.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, butyl cellosolve, polypropylene glycol monomethyl ether, butyl cellosolve and the like can be used as the film forming aid.
  • N-methyl-2-pyrrolidone and N-ethyl-2-pyrrolidone is preferable for producing films and coating films that are required to have higher transparency.
  • a water-soluble or water-dispersible one examples include aliphatic amines, amines having a cyclic structure, aliphatic aromatic amines, polyoxyalkylene polyamines and other polyamines, and polythiol compounds.
  • Aliphatic amines include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 2,2,4- or 2,4,4-trimethylhexamethylenediamine, bis- (3-aminopropyl) Methylamine, N, N-bis- (3-aminopropyl) ethylenediamine, hexamethylenediamine, 2-methyl-1,5-pentanediamine, 1,3-diaminopentane, terminal aminated polypropylene glycol, etc. may be used. it can.
  • Examples of amines having a cyclic structure include piperazine, N-aminoethylpiperazine, piperazine such as 1,4-bis- (3-aminopropyl) piperazine, 1,3 -Bisaminomethylcyclohexane, isophoronediamine, 1-cyclohexylamino-3-aminopropane, 1,4-diaminocyclohexane, 2,4-diamino-cyclohexane, N, N'-diethyl-1,4-diaminocyclohexane, 3,
  • An alicyclic polyamine such as 3′-dimethyl-4,4′-diaminocyclohexylmethane, and an araliphatic amine such as metaxylylenediamine and paraxylylenediamine can be used.
  • polythiol compound examples include methanedithiol, 1,2-dimercaptoethane, 2,2-dimercaptopropane, 1,3-dimercaptopropane, 1,2,3-trimercaptopropane, 1,4-dimercaptobutane. 1,6-dimercaptohexane, bis (2-mercaptoethyl) sulfide, and the like can be used.
  • the curing agent is an equivalent ratio of the polymerizable unsaturated group of the vinyl ester resin (a1) to the active hydrogen atom of the amino group of the curing agent [polymerizable unsaturated group / amino group of the curing agent.
  • the active hydrogen atom] is preferably used in the range of 100/80 to 100/300 in order to form a cured product such as a coating film having excellent water resistance and solvent resistance by the Michael addition reaction.
  • the polymerization initiator those capable of generating radicals by light or heat and initiating the reaction of the polymerizable unsaturated group can be used.
  • the photopolymerization initiator include 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, and 1- [4- (2-hydroxyethoxy) -phenyl.
  • thermal polymerization initiator examples include peroxides and azo compounds, such as benzoyl peroxide, tert-butyl-peroxybenzoate, and azobisisobutyronitrile.
  • an emulsifier or the like may be used from the viewpoint of improving the dispersion stability of the composite resin particles (A).
  • the emulsifier or the like generally reduces the water resistance of a cured product such as a coating film. Tend to cause.
  • the aqueous resin composition of the present invention has sufficient storage stability without using the emulsifier and the like, and can form a cured product such as a coating film excellent in water resistance, etc.
  • the amount of the emulsifier used is preferably 5% by mass or less, and more preferably 0% by mass with respect to the total amount of the aqueous resin composition.
  • the aqueous resin composition of the present invention as described above can form a cured product such as a coating film excellent in water resistance and solvent resistance, for example, a coating agent such as a top coat agent or a primer coat agent, an adhesive, or a film In particular, it can be used as a coating agent.
  • a coating agent such as a top coat agent or a primer coat agent, an adhesive, or a film
  • it can be used as a coating agent.
  • Examples of the substrate on which the coating agent and the adhesive can be applied include a metal substrate, a plastic substrate, a glass substrate, paper, a wood substrate, and a fibrous substrate.
  • a plated steel plate such as a galvanized steel plate or an aluminum-zinc alloy steel plate; an aluminum plate, an aluminum alloy plate, an electromagnetic steel plate, a copper plate, a stainless steel plate, a substrate having a metal vapor deposition surface on the surface, or the like is used. be able to.
  • plastic base material polycarbonate base materials, polyester base materials, acrylonitrile-butadiene-styrene base materials, poly base materials, which are generally used in plastic molded products such as mobile phones, home appliances, automobile interior and exterior materials, OA equipment, etc.
  • An acrylic base material, polystyrene base material, polyurethane base material, epoxy resin base material, polyvinyl chloride base material, polyamide base material and the like can be used.
  • the various base materials described above may be coated in advance, but since the coating agent of the present invention has excellent adhesion to a plastic substrate or the like, surface treatment such as coating is performed in advance. Excellent adhesion to non-base materials.
  • the coating agent of the present invention can be suitably used as a primer for the plastic substrate.
  • the base materials may be plate-shaped, spherical, film-shaped, and sheet-shaped, respectively.
  • the coating agent of the present invention can form a coating film on its surface by, for example, applying it directly to the surface of the substrate, and then drying and curing.
  • Examples of the method for applying the coating agent on the substrate include a spray method, a curtain coater method, a flow coater method, a roll coater method, a brush coating method, and a dipping method.
  • the drying and curing may be carried out by curing at room temperature for about 1 day to 10 days. From the viewpoint of rapidly curing, the method is performed at a temperature of 100 ° C. to 150 ° C. for 1 to A method of heating for about 600 seconds is preferable. Further, when using a plastic substrate that is easily deformed or discolored at a relatively high temperature, it is preferable to perform the curing at a relatively low temperature of about 70 ° C. to 100 ° C.
  • the film thickness of the coating film formed using the coating agent or adhesive of the present invention can be appropriately adjusted according to the use of the substrate, etc., but is usually preferably about 0.01 ⁇ m to 20 ⁇ m. .
  • the coated material in which the coating film is formed by the coating agent can achieve both excellent water resistance and solvent resistance, for example, heat exchangers such as air conditioners and refrigerators, antifouling properties and antifogging properties are required.
  • heat exchangers such as air conditioners and refrigerators, antifouling properties and antifogging properties are required.
  • a primer coating agent used for the purpose of modifying the surface of a plastic film such as polyester resin, polypropylene resin, polyamide resin, etc. and providing an easy adhesion layer, for example, aluminum vapor deposited plastic film for food packaging
  • optical members such as liquid crystal displays and flat displays can be used for highly functional films such as prism lens films and antiglare films.
  • Synthesis Example 1 Synthesis of polyester polyol (X) While introducing nitrogen gas into a reaction vessel equipped with a thermometer, a nitrogen gas introduction tube, and a stirrer, 830 parts by mass (5 mol) of isophthalic acid, 730 parts by mass (5 mol) of adipic acid, 1026 of 1,4-butanediol 1026 The polyester polyol (X) (hydroxyl equivalent: 1000 g / wt) was charged by adding 15 parts by mass (11.4 mol) and 0.5 parts by mass of dibutyltin oxide and performing a polycondensation reaction at 230 ° C. for 15 hours until the acid value became 1 or less. eq) was obtained.
  • Synthesis Example 2 Synthesis of polyol (Y) having tertiary amino group
  • a thermometer thermometer
  • a stirrer a stirrer
  • a reflux condenser a dropping device
  • the atmosphere in the flask was replaced with nitrogen.
  • Production Example 4 (Synthesis of vinyl ester resin composition (I-4)) Except for using 221.6 parts by weight of acrylic acid and 176.5 parts by weight of methacrylic acid instead of 369.3 parts by weight of acrylic acid, and using 481.8 parts by weight of methyl ethyl ketone instead of 472.2 parts by weight of methyl ethyl ketone.
  • a vinyl ester resin composition (I-4) having a nonvolatile content of 75% by mass was prepared in the same manner as in Production Example 1.
  • Production Example 6 (Synthesis of vinyl ester resin composition (I-6)) 1889 parts by mass of vinyl ester resin composition (I-1) obtained by the same method as in Production Example 1 and 544.9 parts by mass of LATEMUL E-118B (manufactured by Kao Corporation, sodium polyoxyethylene alkyl ether sulfate, And 26% by mass of non-volatile content) were uniformly mixed. Next, 2288.6 parts by mass of ion-exchanged water is added over 1 hour, and methyl ethyl ketone is removed at 30 to 50 ° C. under reduced pressure, whereby the non-volatile content of 50% by mass in which the vinyl ester resin is dispersed in the ion-exchanged water. A vinyl ester resin composition (I-6) was obtained.
  • EPICLON N-673 (manufactured by DIC Corporation, cresol novolac type epoxy resin, solid content epoxy equivalent 209 g / eq, nonvolatile content 100% by mass)
  • EPICLON N-740 (manufactured by DIC Corporation, phenol novolac type epoxy resin, solid content epoxy equivalent 180 g / eq, nonvolatile content 100% by mass)
  • EPICLON 850S (manufactured by DIC Corporation, bisphenol A type epoxy resin, solid content epoxy equivalent 188 g / eq, nonvolatile content 100% by mass) ⁇ DENACOL EX-614B (manufactured by Nagase Chemtech Co., Ltd., sorbitol polyglycidyl ether, solid content epoxy equivalent 171 g / eq, nonvolatile content 100% by mass)
  • LATEMUL E-118B (manufactured by Kao Corporation, sodium polyoxyethylene alkyl ether sulfate, non
  • Production Example 8 (Preparation of urethane resin composition (II-2) having an anionic group) Manufactured except that polycarbonate polyol (hydroxyl equivalent: 1000 g / eq) obtained by reacting 1,6-hexanediol, 1,4-butanediol and dimethyl carbonate was used instead of the polyester polyol (X).
  • a urethane resin composition (II-2) having an anionic group was obtained in the same manner as in Example 7.
  • Production Example 9 (Preparation of urethane resin composition (II-3) having a cationic group)
  • 531.6 parts by mass of the polyester polyol (X) was supplied to the reaction vessel and dehydrated by heating under reduced pressure.
  • Production Example 10 (Preparation of acrylic resin composition (II-4) having a polyoxyethylene structure) M-90G (manufactured by Shin-Nakamura Chemical Co., Ltd., methoxypolyethylene glycol methacrylate, 9 moles of added ethylene oxide) 250 parts by mass, methyl methacrylate 200 parts by mass, cyclohexyl methacrylate 50 parts by mass, methyl ethyl ketone 300 parts by mass, N A mixture containing 200 parts by weight of methyl-2-pyrrolidone and 25 parts by weight of azoisobutyronitrile was prepared.
  • Production Example 11 (Preparation of polyester resin composition having an anionic group (II-5))
  • a reaction vessel prepared at 180 ° C., 558 parts by mass of ethylene glycol (8.99 mol), 478 parts by mass of diethylene glycol (4.50 mol), 896 parts by mass of terephthalic acid (5.39 mol), 478 parts by mass of isophthalic acid ( 2.88 mol), 0.5 part by mass of butylhydroxytin oxide was charged, the temperature was raised to 240 ° C. over 4 hours, and then reacted at 240 ° C. to trap about 260 parts by mass of distillate.
  • Polyol (X) in Table 2 represents the polyester polyol obtained in Synthesis Example 1.
  • Polycarbonate polyol represents a polycarbonate polyol (hydroxyl equivalent: 1000 g / eq) obtained by reacting 1,6-hexanediol, 1,4-butanediol and dimethyl carbonate.
  • Polyol (Y) represents the polyol obtained in Synthesis Example 2.
  • M-90G in Table 3 represents methoxypolyethylene glycol methacrylate (additional mole number of ethylene oxide: 9 mol) manufactured by Shin-Nakamura Chemical Co., Ltd.
  • Example 1 After supplying 1397.8 parts by mass of the urethane resin composition (II-1) having an anionic group obtained in Production Example 7 to the reaction vessel, the vinyl ester resin composition (I-1) obtained in Production Example 1 was used. 1115.7 parts by mass and 37.7 parts by mass of triethylamine were supplied, and 1915 parts by mass of ion-exchanged water were slowly supplied to mix them.
  • an aqueous resin composition (III-1) having a nonvolatile content of 45% by mass was prepared by heating under reduced pressure at a temperature of 30 ° C. to 50 ° C. to remove methyl ethyl ketone in the reaction vessel.
  • Example 2 After supplying 1397.8 parts by mass of the urethane resin composition (II-1) having an anionic group to a reaction vessel, 2603.6 parts by mass of the vinyl ester resin composition (I-1), and 37. 7 parts by mass, and 3933.7 parts by mass of ion-exchanged water were slowly supplied to mix them.
  • Example 3 After supplying 1397.8 parts by mass of the urethane resin composition (II-1) having an anionic group to a reaction vessel, 3347.5 parts by mass of the vinyl ester resin composition (I-1), and 37. 7 parts by mass and 4026 parts by mass of ion-exchanged water were slowly supplied to mix them.
  • Example 4 After supplying 1397.8 parts by mass of the urethane resin composition (II-1) having an anionic group to a reaction vessel, 600.8 parts by mass of the vinyl ester resin composition (I-1), and 37. 7 parts by mass, and 4258.6 parts by mass of ion-exchanged water were slowly supplied to mix them.
  • an aqueous resin composition (III-4) having a nonvolatile content of 30% by mass was prepared by heating under reduced pressure at a temperature of 30 ° C. to 50 ° C. to remove methyl ethyl ketone in the reaction vessel.
  • Example 5 After supplying 1397.8 parts by mass of the urethane resin composition (II-1) having an anionic group to a reaction vessel, 371.9 parts by mass of the vinyl ester resin composition (I-1) and 37. 7 parts by mass, and 4758.9 parts by mass of ion-exchanged water were slowly supplied to mix them.
  • an aqueous resin composition (III-5) having a nonvolatile content of 25% by mass was prepared by heating under reduced pressure at a temperature of 30 ° C. to 50 ° C. to remove methyl ethyl ketone in the reaction vessel.
  • Example 6 A non-volatile content of 50 mass by the same method as in Example 2 except that instead of the vinyl ester resin composition (I-1), the vinyl ester resin composition (I-2) obtained in Production Example 2 was used. % Aqueous resin composition (III-6) was prepared.
  • Example 7 A non-volatile content of 50 mass by the same method as in Example 2 except that instead of the vinyl ester resin composition (I-1), the vinyl ester resin composition (I-3) obtained in Production Example 3 was used. % Aqueous resin composition (III-7) was prepared.
  • Example 8 A non-volatile content of 50 mass by the same method as in Example 2 except that instead of the vinyl ester resin composition (I-1), the vinyl ester resin composition (I-4) obtained in Production Example 4 was used. % Aqueous resin composition (III-8) was prepared.
  • Example 9 After supplying 1397.8 parts by mass of the urethane resin composition (II-2) having an anionic group obtained in Production Example 8 to the reaction vessel, 2603.6 parts by mass of the vinyl ester resin composition (I-1) Then, 37.7 parts by mass of triethylamine was supplied, and 3933.7 parts by mass of ion-exchanged water was slowly supplied to mix them.
  • an aqueous resin composition (III-9) having a nonvolatile content of 50% by mass was prepared by heating under reduced pressure at a temperature of 30 ° C. to 50 ° C. to remove methyl ethyl ketone in the reaction vessel.
  • Example 10 After supplying 1296.6 parts by mass of the polyurethane resin composition (II-3) having a cationic group obtained in Production Example 9 to the reaction vessel, 2420.3 parts by mass of the vinyl ester resin composition (I-1) And 8.1 parts by mass of 89% by mass orthophosphoric acid, and 5523 parts by mass of ion-exchanged water were slowly supplied to mix them.
  • Example 11 After supplying 1000 parts by mass of the acrylic resin composition (II-4) having a polyoxyethylene structure obtained in Production Example 10 to a reaction vessel, 1555.5 parts by mass of the vinyl ester resin composition (I-1) Then, 2595 parts by mass of ion-exchanged water were supplied and mixed.
  • an aqueous resin composition (III-11) having a nonvolatile content of 50% by mass was prepared by heating at a temperature of 30 ° C. to 50 ° C. under reduced pressure to remove methyl ethyl ketone in the reaction vessel.
  • Example 12 After supplying 400 parts by mass of the polyester resin composition (II-5) obtained in Production Example 11 to the reaction vessel, supply 266.7 parts by mass of the vinyl ester resin composition (I-1) until uniform. Stir.
  • Comparative Example 1 A non-volatile content of 50% by mass was obtained in the same manner as in Example 2 except that the vinyl ester resin composition (I-5) obtained in Production Example 5 was used instead of the vinyl ester resin composition (I-1). Aqueous resin composition (III′-1) was prepared.
  • an aqueous resin composition (III′-2) having a nonvolatile content of 50% by mass was prepared by heating under reduced pressure at a temperature of 30 ° C. to 50 ° C. to remove methyl ethyl ketone in the reaction vessel.
  • Comparative Example 3 After mixing 1397.8 parts by mass of the urethane resin composition having an anionic group (II-1) and 37.7 parts by mass of triethylamine, 4184 parts by mass of ion-exchanged water was slowly supplied, An aqueous resin composition (III′-3) having a nonvolatile content of 20% by mass was prepared by heating at 30 ° C. to 50 ° C. to remove methyl ethyl ketone in the reaction vessel.
  • Example 13 An aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III-1) and 11.9 parts by mass of a 20% by mass ethylenediamine aqueous solution.
  • the aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 ⁇ m, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
  • Example 14 An aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III-1) and 34.0 parts by mass of a 10% by mass piperazine aqueous solution.
  • the aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 ⁇ m, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
  • Example 15 An aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III-2) and 18.5 parts by mass of a 20% by mass aqueous ethylenediamine solution. The aqueous resin composition containing this curing agent was applied onto a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 ⁇ m, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
  • Example 16 An aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III-3) and 19.8 parts by mass of a 20% by mass ethylenediamine aqueous solution.
  • the aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 ⁇ m, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
  • Example 17 By mixing 100 parts by mass of the aqueous resin composition (III-4) and 5.5 parts by mass of a 20% by mass ethylenediamine aqueous solution, an aqueous resin composition containing a curing agent was obtained.
  • the aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 ⁇ m, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
  • Example 18 An aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III-5) with 3.3 parts by mass of a 20% by mass ethylenediamine aqueous solution.
  • the aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 ⁇ m, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
  • Example 19 An aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III-6) with 20.6 parts by mass of a 20% by mass ethylenediamine aqueous solution.
  • the aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 ⁇ m, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
  • Example 20 An aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III-7) and 20.0 parts by mass of a 20% by mass ethylenediamine aqueous solution.
  • the aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 ⁇ m, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
  • Example 21 An aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III-8) and 18.1 parts by mass of a 20% by mass aqueous ethylenediamine solution.
  • the aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 ⁇ m, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
  • Example 22 By mixing 100 parts by mass of the aqueous resin composition (III-9) and 18.5 parts by mass of a 20% by mass ethylenediamine aqueous solution, an aqueous resin composition containing a curing agent was obtained.
  • the aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 ⁇ m, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
  • Example 23 An aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III-10) and 14.8 parts by mass of a 20% by mass aqueous ethylenediamine solution.
  • the aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 ⁇ m, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
  • Example 24 An aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III-11) and 18.5 parts by mass of a 20% by mass aqueous ethylenediamine solution.
  • the aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 ⁇ m, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
  • Example 25 An aqueous resin composition containing a curing agent was obtained by mixing 11.9 parts by mass of a 20% by mass aqueous ethylenediamine solution with respect to 100 parts by mass of the aqueous resin composition (III-12).
  • the aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 ⁇ m, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
  • Example 26 In addition to 1397.8 parts by mass of the urethane resin composition (II-1) obtained in Production Example 7, 1115.7 parts by mass of the vinyl ester resin composition (I-1) obtained in Production Example 1 and 37.7 parts by mass of triethylamine. And 25.1 parts by mass of Irganox 184 (BASF photopolymerization initiator) were added, and 1915 parts by mass of ion-exchanged water were slowly added. Subsequently, methyl ethyl ketone was removed at 30 ° C. to 50 ° C. under reduced pressure to prepare an aqueous resin composition (III-13) having a nonvolatile content of 45% by mass.
  • Irganox 184 BASF photopolymerization initiator
  • the aqueous resin composition (III-13) was applied onto a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 ⁇ m, and dried at 100 ° C. for 5 minutes.
  • the coated surface was irradiated with ultraviolet rays at an irradiation intensity of 500 mJ / cm 2 using a high-pressure mercury lamp as a light source to obtain a cured coating film.
  • aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III′-1) and 21.3 parts by mass of a 20% by mass ethylenediamine aqueous solution.
  • the aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 ⁇ m, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
  • aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III′-2) and 16.8 parts by mass of a 20% by mass aqueous ethylenediamine solution.
  • the aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 ⁇ m, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
  • the aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 ⁇ m, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
  • An aqueous resin composition containing a curing agent was obtained by mixing 6 parts by mass.
  • the aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 ⁇ m, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
  • the aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 ⁇ m, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
  • the aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 ⁇ m, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
  • the surface of the coating film left for 18 hours in a room temperature environment is wiped with a clean gauze dipped in a mixed solvent containing petroleum benzine and ethanol at a mass ratio of 1: 1, and the coating surface
  • the ink of the marking pen adhered to the surface was wiped off.
  • the surface of the coating film was lightly wiped with a clean dry gauze and allowed to stand for 1 hour at room temperature.
  • the surface of the cured coating film after standing was visually observed under diffuse daylight, and the color and gloss of the cured coating film and the presence or absence of swelling were visually evaluated as compared with the cured coating film before the test.
  • aqueous resin compositions obtained in Examples 17 and 18 in which the mass ratio of the vinyl ester resin (a1) and the polymer (a2) was changed are also coating films having good solvent resistance and water resistance. could be formed.
  • the aqueous resin composition described in Example 19 obtained using a phenol novolac resin as an epoxy resin could form a coating film having excellent solvent resistance and water resistance.
  • the aqueous resin composition described in Example 20 obtained using a bisphenol A type epoxy resin as an epoxy resin can form a coating film having good solvent resistance and excellent water resistance. It was.
  • aqueous resin composition described in Example 21 containing a vinyl ester resin obtained by using a combination of acrylic acid and methacrylic acid forms a coating film with a certain degree of good solvent resistance and water resistance. I was able to.
  • Example 26 With the aqueous resin composition described in Example 26 using a photopolymerization initiator, a coating film having good solvent resistance and excellent water resistance could be formed.
  • the epoxy resin (a1-1) and the polymer (a2) are independent from each other in the aqueous medium (B).
  • LATEMUL E-118B manufactured by Kao Corporation, sodium polyoxyethylene alkyl ether sulfate
  • the epoxy resin (a1-1) and the polymer (a2) are independent from each other in the aqueous medium (B).
  • LATEMUL E-118B manufactured by Kao Corporation, sodium polyoxyethylene alkyl ether sulfate
  • aqueous resin compositions described in Comparative Examples 6 to 9 obtained without using the epoxy resin (a1-1) cannot form a coating film having good solvent resistance and water resistance. It was.

Abstract

The present invention solves the problem of providing an aqueous resin composition making it possible to form a coating film having excellent water resistance and solvent resistance. The present invention pertains to an aqueous resin composition characterized in that a vinyl ester resin (a1) obtained by reacting together at least one species of epoxy resin (a1-1) selected from the group consisting of novolac-type epoxy resins and bisphenol-type epoxy resins, and a polymerizable unsaturated monomer (a1-2) having an acid group is dispersed in an aqueous vehicle (B) by a polymer (a2) having a hydrophilic group.

Description

水性樹脂組成物及び硬化物Aqueous resin composition and cured product
 本発明は、コーティング剤や接着剤をはじめとする様々な用途に使用可能な水性樹脂組成物に関する。 The present invention relates to an aqueous resin composition that can be used in various applications including coating agents and adhesives.
 コーティング剤には、一般に、基材表面の劣化を防止可能な耐久性に優れた塗膜を形成できることが求められている。特に近年は、耐水性だけでなく、例えば洗浄剤やマジックペンの付着による基材の劣化を防止可能なレベルの優れた耐溶剤性を備えた塗膜を形成可能なコーティング剤が、産業界から求められている。 The coating agent is generally required to be able to form a coating film with excellent durability capable of preventing the deterioration of the substrate surface. In particular, in recent years, coating agents that can form a coating film with excellent solvent resistance at a level that can prevent deterioration of the substrate due to adhesion of, for example, cleaning agents and magic pens, as well as water resistance, have been received from the industry. It has been demanded.
 前記特性を備えたコーティング剤は、例えば水等の接触によって錆や腐食を発生させやすい金属基材の表面保護用コーティング剤に使用されることが多い。前記金属基材の表面保護用コーティング剤には、前記金属基材の腐食を防止可能なレベルの耐水性と、高いレベルの耐溶剤性とを備えた塗膜を形成できることが求められる。特に耐溶剤性は、金属基材の表面に形成された塗膜表面を、アルカリ性洗浄剤等を用いて洗浄することが頻繁に行われる鉄鋼業界において、洗浄剤の影響による塗膜の剥離や溶解、金属基材の劣化等を防止するうえで重要な特性である。 The coating agent having the above-mentioned characteristics is often used as a coating agent for protecting the surface of a metal substrate that easily generates rust or corrosion due to contact with water or the like. The coating material for surface protection of the metal substrate is required to form a coating film having a level of water resistance capable of preventing corrosion of the metal substrate and a high level of solvent resistance. Especially for solvent resistance, in the steel industry where the surface of the coating formed on the surface of a metal substrate is frequently cleaned using an alkaline cleaning agent, the coating is peeled off or dissolved by the influence of the cleaning agent. This is an important characteristic for preventing deterioration of the metal substrate.
 前記耐水性及び耐溶剤性に優れた塗膜を形成可能なコーティング剤としては、例えば重量平均分子量が6,000以上であり、酸価が8mgKOH/g~80mgKOH/gであるポリエステル樹脂99質量部~60質量部と、25℃における水への溶解度が5質量%以下であるエポキシ樹脂1質量部~40質量部とを含有し、樹脂成分の最大分散粒径が1.0μm以下である樹脂水性分散体からなるコーティング剤が知られている(例えば、特許文献1参照。)。 Examples of the coating agent capable of forming a coating film excellent in water resistance and solvent resistance include 99 parts by weight of a polyester resin having a weight average molecular weight of 6,000 or more and an acid value of 8 mgKOH / g to 80 mgKOH / g. Resin aqueous solution containing 60 parts by mass and 1 part by mass to 40 parts by mass of an epoxy resin having a solubility in water of 5% by mass or less at 25 ° C. A coating agent made of a dispersion is known (for example, see Patent Document 1).
 前記コーティング剤であれば、ある程度良好な耐水性及び耐溶剤性を備えた塗膜を形成可能である。しかし、前記コーティング剤を用いて得られた塗膜は、前記鉄鋼業界で求められる耐水性及び耐溶剤性にあと一歩及ぶものではないため、水や洗浄剤が塗膜に接触した場合に、塗膜の剥離や溶解を引き起こし、金属基材の劣化等を引き起こす場合があった。 With the coating agent, it is possible to form a coating film having a certain degree of good water resistance and solvent resistance. However, the coating film obtained by using the coating agent does not reach the water resistance and solvent resistance required in the steel industry, so when water or a cleaning agent comes into contact with the coating film, In some cases, peeling or dissolution of the film was caused, and deterioration of the metal base material was caused.
 ところで、コーティング剤を用いて耐水性や耐溶剤性に優れた塗膜を形成する方法としては、コーティング剤を基材の表面に塗布した後、150℃程度の温度で加熱することによって塗膜中に架橋構造を形成させる方法が知られている。 By the way, as a method of forming a coating film excellent in water resistance and solvent resistance using a coating agent, after coating the coating agent on the surface of the base material, by heating at a temperature of about 150 ° C. A method of forming a cross-linked structure on the surface is known.
 しかし、基材が熱の影響によって変形や変色を引き起こしやすい基材である場合には、前記温度で加熱し塗膜中に架橋構造を形成することができず、その結果、耐水性や耐溶剤性に優れた塗膜を形成することができない場合があった。 However, when the substrate is a substrate that is likely to cause deformation or discoloration due to the influence of heat, it cannot be heated at the above temperature to form a crosslinked structure in the coating film, resulting in water resistance or solvent resistance. In some cases, it was not possible to form a coating film excellent in properties.
特開2004-107568号公報JP 2004-107568 A
 本発明が解決しようとする課題は、耐水性及び耐溶剤性に優れた塗膜を形成可能な水性樹脂組成物を提供することである。 The problem to be solved by the present invention is to provide an aqueous resin composition capable of forming a coating film excellent in water resistance and solvent resistance.
 また、本発明が解決しようとする課題は、100℃程度の比較的低温で加熱した場合であっても、耐水性及び耐溶剤性に優れた塗膜を形成可能な水性樹脂組成物を提供することである。 Further, the problem to be solved by the present invention is to provide an aqueous resin composition capable of forming a coating film excellent in water resistance and solvent resistance even when heated at a relatively low temperature of about 100 ° C. That is.
 本発明者等は、上記課題を解決すべく検討した結果、特定のエポキシ樹脂由来のビニルエステル樹脂が、アニオン性基等の親水性基を有する重合体によって水性媒体(B)に分散された水性樹脂組成物であれば、前記課題を解決できることを見出した。 As a result of studies to solve the above problems, the present inventors have found that an aqueous vinyl ester resin derived from a specific epoxy resin is dispersed in an aqueous medium (B) with a polymer having a hydrophilic group such as an anionic group. It has been found that the above-mentioned problems can be solved by using a resin composition.
 すなわち、本発明は、ノボラック型エポキシ樹脂及びビスフェノール型エポキシ樹脂からなる群より選ばれる1種以上のエポキシ樹脂(a1-1)と、酸基及び重合性不飽和を有する単量体(a1-2)とを反応させて得られるビニルエステル樹脂(a1)が、親水性基を有する重合体(a2)によって水性媒体(B)中に分散されたことを特徴とする水性樹脂組成物に関するものである。 That is, the present invention relates to at least one epoxy resin (a1-1) selected from the group consisting of a novolac type epoxy resin and a bisphenol type epoxy resin, a monomer having an acid group and polymerizable unsaturation (a1-2). And a vinyl ester resin (a1) obtained by reacting with a polymer (a2) is dispersed in an aqueous medium (B) by a polymer (a2) having a hydrophilic group. .
 また、本発明は、前記水性樹脂組成物に含まれる、前記ビニルエステル樹脂(a1)と、前記ポリアミンとをマイケル付加反応して得られる硬化物に関するものである。 The present invention also relates to a cured product obtained by Michael addition reaction of the vinyl ester resin (a1) and the polyamine contained in the aqueous resin composition.
 本発明の水性樹脂組成物は、比較的低温で加熱した場合であっても耐水性及び耐溶剤性に優れた塗膜を形成できることから、例えばコーティング剤及び接着剤をはじめとする様々な用途で使用することができる。 Since the aqueous resin composition of the present invention can form a coating film having excellent water resistance and solvent resistance even when heated at a relatively low temperature, it can be used in various applications including, for example, coating agents and adhesives. Can be used.
 具体的には、前記水性樹脂組成物は、各種フィルムのアンカーコート剤、缶の内面または外面コーティング剤、鋼板用塗料、防錆塗料、プレコートメタル塗料、鋼鈑用接着剤、樹脂シートまたはフィルム用接着剤、フィルムコート剤、インクのバインダー、炭素繊維やガラス繊維の繊維処理剤、紙塗工剤をはじめとする様々な用途で使用することが可能である。 Specifically, the aqueous resin composition is used for various film anchor coating agents, can inner or outer surface coating agents, steel plate coatings, rust preventive coatings, pre-coated metal coatings, steel plate adhesives, resin sheets or films. It can be used in various applications including adhesives, film coating agents, ink binders, carbon fiber and glass fiber fiber treatment agents, and paper coating agents.
 本発明の水性樹脂組成物は、ノボラック型エポキシ樹脂及びビスフェノール型エポキシ樹脂からなる群より選ばれる1種以上のエポキシ樹脂(a1-1)と、酸基及び重合性不飽和基を有する単量体(a1-2)とを反応させて得られるビニルエステル樹脂(a1)が、親水性基を有する重合体(a2)によって水性媒体(B)中に分散されたことを特徴とするものである。 The aqueous resin composition of the present invention comprises at least one epoxy resin (a1-1) selected from the group consisting of novolak type epoxy resins and bisphenol type epoxy resins, and a monomer having an acid group and a polymerizable unsaturated group The vinyl ester resin (a1) obtained by reacting with (a1-2) is dispersed in the aqueous medium (B) by the polymer (a2) having a hydrophilic group.
 本発明で使用する前記ビニルエステル樹脂(a1)と前記重合体(a2)とは、それぞれ独立して樹脂粒子を形成し水性媒体(B)中に分散した状態で存在するものではなく、前記ビニルエステル樹脂(a1)が前記重合体(a2)によって水性媒体(B)中に分散された状態で存在する。具体的には、前記重合体(a2)粒子中に、前記ビニルエステル樹脂(a1)の一部または全部が内在し複合樹脂粒子(A)を形成した状態で存在する。 The vinyl ester resin (a1) and the polymer (a2) used in the present invention do not exist in a state where they form resin particles independently and are dispersed in the aqueous medium (B). The ester resin (a1) is present in a state dispersed in the aqueous medium (B) by the polymer (a2). Specifically, a part or all of the vinyl ester resin (a1) is present in the polymer (a2) particles to form composite resin particles (A).
 前記複合樹脂粒子(A)としては、前記ビニルエステル樹脂(a1)がコア部を形成し、前記重合体(a2)がシェル部を形成したコア・シェルタイプの複合樹脂粒子であることが好ましい。 The composite resin particles (A) are preferably core-shell type composite resin particles in which the vinyl ester resin (a1) forms a core portion and the polymer (a2) forms a shell portion.
 前記複合樹脂粒子(A)としては、水性媒体(B)中に分散した状態において、その複合樹脂粒子(A)内部で、実質的に架橋構造を形成していないものを使用することが好ましい。 As the composite resin particle (A), it is preferable to use the composite resin particle (A) that does not substantially form a crosslinked structure in the state dispersed in the aqueous medium (B).
 ここで、前記「実質的に架橋構造を形成していない」とは、複合樹脂粒子(A)の内部、具体的にはシェル部を構成する重合体(a2)間、コア部を構成する前記ビニルエステル樹脂(a1)間、もしくは前記重合体(a2)と前記ビニルエステル樹脂(a1)との間で架橋構造を形成していない、または、本発明の水性樹脂組成物の水分散安定性等を阻害しない程度の微少の架橋構造を形成した状態を指す。かかる複合樹脂粒子(A)内部の架橋密度は、本発明の水性樹脂組成物の優れた水分散安定性(保存安定性)と優れた造膜性とを両立し、かつ優れた耐水性及び耐溶剤性を備えた塗膜を形成するうえで、できるだけ低いことが好ましく、架橋構造を形成していないことがより好ましい。 Here, “substantially does not form a crosslinked structure” means that the inside of the composite resin particle (A), specifically, between the polymers (a2) constituting the shell portion and the core portion is constituted. No cross-linked structure is formed between the vinyl ester resin (a1) or between the polymer (a2) and the vinyl ester resin (a1), or the water dispersion stability of the aqueous resin composition of the present invention, etc. The state which formed the fine crosslinked structure of the grade which does not inhibit this is pointed out. The cross-linking density inside the composite resin particle (A) achieves both excellent water dispersion stability (storage stability) and excellent film-forming property of the aqueous resin composition of the present invention, and excellent water resistance and resistance. In forming a coating film having solvent properties, it is preferably as low as possible, and more preferably a crosslinked structure is not formed.
 前記ビニルエステル樹脂(a1)と前記重合体(a2)とは、その質量割合[ビニルエステル樹脂(a1)/重合体(a2)]が70/30~20/80の範囲で含まれることが、良好な水分散安定性を付与するとともに、耐水性及び耐溶剤性に優れた塗膜を形成するうえで好ましく、70/30~30/70の範囲で含まれることがより好ましく、70/30~50/50の範囲で含まれることがさらに好ましい。 The vinyl ester resin (a1) and the polymer (a2) include a mass ratio [vinyl ester resin (a1) / polymer (a2)] in the range of 70/30 to 20/80. It is preferable for forming a coating film excellent in water resistance and solvent resistance while giving good water dispersion stability, more preferably in the range of 70/30 to 30/70, and more preferably 70/30 to More preferably, it is contained in the range of 50/50.
 前記ビニルエステル樹脂(a1)と前記重合体(a2)とが前記複合樹脂粒子(A)を形成する場合も、前記複合樹脂粒子(A)を構成する前記ビニルエステル樹脂(a1)と前記重合体(a2)との質量割合[ビニルエステル樹脂(a1)/重合体(a2)]もまた、70/30~20/80の範囲であることが好ましく、70/30~30/70の範囲であることがより好ましく、70/30~50/50の範囲であることがより好ましい。 Even when the vinyl ester resin (a1) and the polymer (a2) form the composite resin particle (A), the vinyl ester resin (a1) and the polymer constituting the composite resin particle (A) are also included. The mass ratio [vinyl ester resin (a1) / polymer (a2)] to (a2) is also preferably in the range of 70/30 to 20/80, and in the range of 70/30 to 30/70. More preferably, the range is from 70/30 to 50/50.
 はじめに、本発明の水性樹脂組成物に含まれるビニルエステル樹脂(a1)について、詳細に説明する。 First, the vinyl ester resin (a1) contained in the aqueous resin composition of the present invention will be described in detail.
 前記ビニルエステル樹脂(a1)としては、ノボラック型エポキシ樹脂及びビスフェノール型エポキシ樹脂からなる群より選ばれる1種以上のエポキシ樹脂(a1-1)と、酸基及び重合性不飽和基を有する単量体(a1-2)とを反応させて得られるものを使用する。 Examples of the vinyl ester resin (a1) include one or more epoxy resins (a1-1) selected from the group consisting of novolak type epoxy resins and bisphenol type epoxy resins, and a single monomer having an acid group and a polymerizable unsaturated group. What is obtained by reacting the body (a1-2) is used.
 前記ビニルエステル樹脂(a1)は、前記単量体(a1-2)由来の重合性不飽和基を有する。前記重合性不飽和基は、形成された塗膜等の硬化物中に存在していてもよいが、その一部が、熱重合開始剤や光重合開始剤を併用することによって架橋していてもよい。また、前記重合性不飽和基は、後述するポリアミン等の架橋剤(C)と反応し架橋構造を形成してもよい。 The vinyl ester resin (a1) has a polymerizable unsaturated group derived from the monomer (a1-2). The polymerizable unsaturated group may be present in a cured product such as a formed coating film, but a part thereof is cross-linked by using a thermal polymerization initiator or a photopolymerization initiator in combination. Also good. Moreover, the said polymerizable unsaturated group may react with crosslinking agents (C), such as polyamine mentioned later, and may form a crosslinked structure.
 前記重合性不飽和基は、200g/eq~2,000g/eqの範囲でビニルエステル樹脂(a1)に存在することが、耐水性及び耐溶剤性に優れた硬化物を形成するうえで好ましい。 The polymerizable unsaturated group is preferably present in the vinyl ester resin (a1) in the range of 200 g / eq to 2,000 g / eq in order to form a cured product having excellent water resistance and solvent resistance.
 前記ビニルエステル樹脂(a1)を製造する際に使用可能な前記ノボラック型エポキシ樹脂及びビスフェノール型エポキシ樹脂からなる群より選ばれる1種以上のエポキシ樹脂(a1-1)としては、例えばクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂等のビスフェノール型エポキシ樹脂を使用することができる。 One or more epoxy resins (a1-1) selected from the group consisting of the novolak-type epoxy resin and bisphenol-type epoxy resin that can be used in producing the vinyl ester resin (a1) include, for example, a cresol novolak-type epoxy Resin, novolac type epoxy resin such as phenol novolac type epoxy resin; bisphenol type epoxy resin such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, tetrabromobisphenol A type epoxy resin Resin can be used.
 なかでも、前記単量体(a1-2)が有する酸基と反応しうるエポキシ基を多数有するノボラック型エポキシ樹脂を使用することが好ましく、クレゾールノボラック型エポキシ樹脂またはフェノールノボラック型エポキシ樹脂を使用することが、より一層優れた耐水性及び耐溶剤性を備えた硬化物を形成するうえでより好ましい。 Among these, it is preferable to use a novolac type epoxy resin having a large number of epoxy groups that can react with the acid group of the monomer (a1-2), and a cresol novolak type epoxy resin or a phenol novolak type epoxy resin is used. It is more preferable to form a cured product having even more excellent water resistance and solvent resistance.
 前記エポキシ樹脂(a1-1)としては、硬化物の硬化密度をより一層向上させ、硬化物の耐水性及び耐溶剤性をより一層向上させるうえで100g/eq~2,000g/eqのエポキシ当量を有するものを使用することが好ましく、その上限は1,000g/eq以下であることがより好ましく、500g/eq以下であることがさらに好ましい。 The epoxy resin (a1-1) has an epoxy equivalent of 100 g / eq to 2,000 g / eq for further improving the cured density of the cured product and further improving the water resistance and solvent resistance of the cured product. The upper limit is more preferably 1,000 g / eq or less, and further preferably 500 g / eq or less.
 前記エポキシ樹脂(a1-1)が有するエポキシ基のうち、そのエポキシ基全量に対して80モル%~100モル%のものが前記単量体(a1-2)の酸基と反応することによって消費されることが、硬化物の硬化密度をより一層向上させ、硬化物の耐水性及び耐溶剤性をより一層向上させるうえで好ましく、前記エポキシ基のすべてが前記単量体(a1-2)の酸基と反応することによって消費されることがより好ましい。 Of the epoxy groups of the epoxy resin (a1-1), 80 mol% to 100 mol% of the epoxy groups are consumed by reacting with the acid groups of the monomer (a1-2). It is preferable to further improve the cured density of the cured product and further improve the water resistance and solvent resistance of the cured product, and all of the epoxy groups of the monomer (a1-2) More preferably it is consumed by reacting with acid groups.
 また、前記ビニルエステル樹脂(a1)の製造に使用する単量体(a1-2)は、前記エポキシ樹脂(a1-1)のエポキシ基と反応し、重合性不飽和基を前記ビニルエステル樹脂(a1)に付与しうるものである。 In addition, the monomer (a1-2) used in the production of the vinyl ester resin (a1) reacts with the epoxy group of the epoxy resin (a1-1) to convert the polymerizable unsaturated group into the vinyl ester resin ( It can be given to a1).
 前記単量体(a1-2)としては、前記エポキシ基と反応しうる酸基と、重合性不飽和基とを有するものを使用することができる。 As the monomer (a1-2), one having an acid group capable of reacting with the epoxy group and a polymerizable unsaturated group can be used.
 前記単量体(a1-2)としては、例えばアクリル酸、メタクリル酸、イタコン酸、2-アクリロイルオキシエチルサクシネート、2-メタクリロイルオキシエチルサクシネート、2,2,2,-トリスアクリロイロキシメチルエチルフタル酸等を使用することができる。なかでも、アクリル酸を使用することが、より前記比較的低温下であっても架橋反応しやすいため好ましく、前記単量体(a1-2)の全量に対してアクリル酸を50質量%以上使用することがより好ましい。 Examples of the monomer (a1-2) include acrylic acid, methacrylic acid, itaconic acid, 2-acryloyloxyethyl succinate, 2-methacryloyloxyethyl succinate, 2,2,2, -trisacryloyloxymethyl. Ethylphthalic acid or the like can be used. Among them, it is preferable to use acrylic acid because it can easily undergo a crosslinking reaction even at a relatively low temperature, and acrylic acid is used in an amount of 50% by mass or more based on the total amount of the monomer (a1-2). More preferably.
 前記エポキシ樹脂(a1-1)と前記単量体(a1-2)との反応は、60℃~150℃の条件で行うことが好ましく、80℃~120℃で行うことがより好ましい。 The reaction between the epoxy resin (a1-1) and the monomer (a1-2) is preferably performed at 60 ° C. to 150 ° C., more preferably 80 ° C. to 120 ° C.
 前記エポキシ樹脂(a1-1)と前記単量体(a1-2)とを反応させる際には、重合禁止剤を用いることが好ましい。重合禁止剤の添加量は、前記エポキシ樹脂(a1-1)及び前記単量体(a1-2)の合計質量に対して、500ppm~5000ppmの範囲であることが好ましい。 It is preferable to use a polymerization inhibitor when reacting the epoxy resin (a1-1) and the monomer (a1-2). The addition amount of the polymerization inhibitor is preferably in the range of 500 ppm to 5000 ppm with respect to the total mass of the epoxy resin (a1-1) and the monomer (a1-2).
 前記重合禁止剤としては、例えば2,6-ビス(tert-ブチル)-4-メチルフェノール、ハイドロキノン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル(メトキノン)、p-tert-ブチルカテコール、ニトロベンゼン、ニトロ安息香酸、o-ジニトロベンゼン、m-ジニトロベンゼン、p-ジニトロベンゼン、2,4-ジニトロフェノール、トリニトロベンゼン等を、単独または2種類以上組み合わせて使用することができる。 Examples of the polymerization inhibitor include 2,6-bis (tert-butyl) -4-methylphenol, hydroquinone, methylhydroquinone, hydroquinone monomethyl ether (methoquinone), p-tert-butylcatechol, nitrobenzene, nitrobenzoic acid, o -Dinitrobenzene, m-dinitrobenzene, p-dinitrobenzene, 2,4-dinitrophenol, trinitrobenzene and the like can be used alone or in combination of two or more.
 前記エポキシ樹脂(a1-1)と前記単量体(a1-2)とを反応させる際には、反応触媒を使用することができる。前記反応触媒の使用量は、前記エポキシ樹脂(a1-1)の固形分に対して、0.1質量%~5質量%であることが好ましい。 When reacting the epoxy resin (a1-1) and the monomer (a1-2), a reaction catalyst can be used. The amount of the reaction catalyst used is preferably 0.1% by mass to 5% by mass with respect to the solid content of the epoxy resin (a1-1).
 前記反応触媒としては、例えばアミン触媒、イミダゾール触媒、リン触媒、ホウ素触媒、リン-ホウ素触媒等を使用することができる。具体的には、エチルグアニジン、トリメチルグアニジン、フェニルグアジニン、ジフェニルグアニジン等のアルキル置換グアニジン;3-(3,4-ジクロロフェニル)-1,1-ジメチル尿素、3-フェニル-1,1-ジメチル尿素、3-(4-クロロフェニル)-1,1-ジメチル尿素等の3-置換フェニル-1,1-ジメチル尿素;2-メチルイミダゾリン、2-フェニルイミダゾリン、2-ウンデシルイミダゾリン、2-ヘプタデシルイミダゾリン等のイミダゾリン;2-アミノピリジン等のモノアミノピリジン;N,N-ジメチル-N-(2-ヒドロキシ-3-アリロキシプロピル)アミン-N’-ラクトイミド等のアミンイミド;エチルホスフィン、プロピルホスフィン、ブチルホスフィン、フェニルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン-トリフェニルボラン錯体、テトラフェニルホスホニウムテトラフェニルボレート等の有機リン触媒、1,8-ジアザビシクロ〔5,4,0〕ウンデセン-7、1,4-ジアザビシクロ〔2,2,2〕オクタン等のジアザビシクロウンデセン触媒等を、単独または2種類以上組み合わせて使用することができる。 As the reaction catalyst, for example, an amine catalyst, an imidazole catalyst, a phosphorus catalyst, a boron catalyst, a phosphorus-boron catalyst, or the like can be used. Specifically, alkyl-substituted guanidines such as ethylguanidine, trimethylguanidine, phenylguanidine, diphenylguanidine; 3- (3,4-dichlorophenyl) -1,1-dimethylurea, 3-phenyl-1,1-dimethylurea 3-substituted 4-phenyl-1,1-dimethylureas such as 3- (4-chlorophenyl) -1,1-dimethylurea; 2-methylimidazoline, 2-phenylimidazoline, 2-undecylimidazoline, 2-heptadecylimidazoline Imidazolines such as 2-aminopyridine; amine imides such as N, N-dimethyl-N- (2-hydroxy-3-allyloxypropyl) amine-N′-lactoimide; ethylphosphine, propylphosphine, butyl Phosphine, phenylphosphine, trimethylphos Organophosphorus catalysts such as fin, triethylphosphine, tributylphosphine, trioctylphosphine, triphenylphosphine, tricyclohexylphosphine, triphenylphosphine-triphenylborane complex, tetraphenylphosphonium tetraphenylborate, 1,8-diazabicyclo [5,4 , 0] undecene-7,1,4-diazabicyclo [2,2,2] octane and the like can be used alone or in combination of two or more.
 前記方法で得られたビニルエステル樹脂(a1)としては、得られる硬化物の硬化密度をより一層高め、より一層優れた耐水性及び耐溶剤性を付与するうえで、500~5,000の範囲の重量平均分子量を有するものを使用することが好ましい。 The vinyl ester resin (a1) obtained by the above method has a range of 500 to 5,000 in order to further increase the cured density of the resulting cured product and to give further excellent water resistance and solvent resistance. It is preferable to use those having a weight average molecular weight of
 また、前記ビニルエステル樹脂(a1)は、後述する重合体(a2)粒子に内在し複合樹脂粒子(A)を形成するうえで、前記重合体(a2)よりも疎水性であることが好ましい。なお、前記疎水性とは、水に対して溶解しにくい性質を指す。 Further, the vinyl ester resin (a1) is preferably more hydrophobic than the polymer (a2) in forming the composite resin particle (A) in the polymer (a2) particles described later. The hydrophobic property refers to a property that is difficult to dissolve in water.
 次に、本発明で使用する重合体(a2)について説明する。 Next, the polymer (a2) used in the present invention will be described.
 前記重合体(a2)は、親水性基を有するものであって、前記ビニルエステル樹脂(a1)を水性媒体(B)中に安定して分散させるうえで使用する。 The polymer (a2) has a hydrophilic group, and is used for stably dispersing the vinyl ester resin (a1) in the aqueous medium (B).
 前記親水性基としては、アニオン性基、カチオン性基、ノニオン性基を使用することができる。 As the hydrophilic group, an anionic group, a cationic group, or a nonionic group can be used.
 前記アニオン性基としては、例えばカルボキシル基、カルボキシレート基、スルホン酸基、スルホネート基等を使用することができる。なかでも、その一部または全部が塩基性化合物によって中和されたカルボキシレート基、スルホネート基を使用することが、前記ビニルエステル樹脂(a1)を水性媒体(B)中に安定して分散できるため好ましい。 As the anionic group, for example, a carboxyl group, a carboxylate group, a sulfonic acid group, a sulfonate group, or the like can be used. Among these, the use of a carboxylate group or sulfonate group, part or all of which is neutralized with a basic compound, enables the vinyl ester resin (a1) to be stably dispersed in the aqueous medium (B). preferable.
 前記カルボキシル基及びスルホン酸基の中和に使用可能な塩基性化合物としては、例えばアンモニア、トリエチルアミン、ピリジン、モルホリン等の有機アミン、モノエタノールアミン等のアルカノールアミン、ナトリウム、カリウム、リチウム、カルシウム等を含有する金属塩基化合物等を使用することができる。 Examples of basic compounds that can be used for neutralizing the carboxyl group and sulfonic acid group include organic amines such as ammonia, triethylamine, pyridine, and morpholine, alkanolamines such as monoethanolamine, sodium, potassium, lithium, and calcium. The contained metal base compound can be used.
 前記アニオン性基としてカルボキシレート基またはスルホネート基を使用する場合、それらは重合体(a2)全体に対して0.1mol/kg~1.5mol/kgの範囲で存在することが、前記ビニルエステル樹脂(a1)を水性媒体(B)中に安定して分散するうえで好ましい。 When a carboxylate group or a sulfonate group is used as the anionic group, the vinyl ester resin may be present in the range of 0.1 mol / kg to 1.5 mol / kg with respect to the whole polymer (a2). It is preferable for stably dispersing (a1) in the aqueous medium (B).
 また、前記カチオン性基としては、例えば3級アミノ基、3級アミノ基の酸中和基または4級化基を使用することができる。 As the cationic group, for example, a tertiary amino group, an acid neutralizing group of a tertiary amino group, or a quaternized group can be used.
 前記3級アミノ基の一部または全てを中和する際に使用することができる酸としては、例えば、酢酸、プロピオン酸、乳酸、マレイン酸等の有機酸;スルホン酸、メタンスルホン酸等の有機スルホン酸;塩酸、硫酸、オルトリン酸、オルト亜リン酸等の無機酸等を使用することができる。 Examples of the acid that can be used for neutralizing part or all of the tertiary amino group include organic acids such as acetic acid, propionic acid, lactic acid, and maleic acid; organic acids such as sulfonic acid and methanesulfonic acid. Sulfonic acid; inorganic acids such as hydrochloric acid, sulfuric acid, orthophosphoric acid and orthophosphorous acid can be used.
 また、前記3級アミノ基の一部または全てを4級化する際に使用することができる4級化剤としては、例えば、ジメチル硫酸、ジエチル硫酸等のジアルキル硫酸;メチルクロライド、エチルクロライド、ベンジルクロライド等のハロゲン化アルキル;メタンスルホン酸メチル、パラトルエンスルホン酸メチル等のアルキル又はエチレンオキサイド;プロピレンオキサイド、エピクロルヒドリン等のエポキシ化合物等を使用することができる。 Examples of the quaternizing agent that can be used for quaternizing a part or all of the tertiary amino group include dialkyl sulfates such as dimethyl sulfate and diethyl sulfate; methyl chloride, ethyl chloride, benzyl Alkyl halides such as chloride; alkyl such as methyl methanesulfonate and methyl paratoluenesulfonate; ethylene oxide; epoxy compounds such as propylene oxide and epichlorohydrin can be used.
 また、前記ノニオン性基としては、例えばポリオキシエチレン基、ポリ(オキシエチレン-オキシプロピレン)基、ポリオキシエチレン-ポリオキシプロピレン基等を使用することができる。 In addition, as the nonionic group, for example, a polyoxyethylene group, a poly (oxyethylene-oxypropylene) group, a polyoxyethylene-polyoxypropylene group, or the like can be used.
 前記親水性基を有する重合体(a2)としては、具体的には、ポリウレタン樹脂、ポリエステル樹脂、アクリル樹脂等の、親水基を導入可能な樹脂を使用することができる。なかでも、ウレタン樹脂、ポリエステル樹脂及びアクリル樹脂からなる群より選ばれる1種以上を使用することが、親水性基を導入しやすく、かつ、前記ビニルエステル樹脂(a1)との相溶性に優れ複合樹脂(A)を形成しやすいため好ましい。 As the polymer (a2) having a hydrophilic group, specifically, a resin capable of introducing a hydrophilic group, such as a polyurethane resin, a polyester resin, or an acrylic resin, can be used. Among them, it is easy to introduce a hydrophilic group and to use one or more selected from the group consisting of urethane resin, polyester resin and acrylic resin, and it has excellent compatibility with the vinyl ester resin (a1). The resin (A) is preferable because it is easy to form.
 前記ウレタン樹脂としては、例えばポリオールとポリイソシアネートと、必要に応じて鎖伸長剤とを反応させることによって製造したものを使用することができる。 As the urethane resin, for example, a resin produced by reacting a polyol, a polyisocyanate, and, if necessary, a chain extender can be used.
 前記ポリオールとしては、例えばポリエステルポリオール、ポリカーボネートポリオール、ポリエーテルポリオール、ポリオレフィンポリオール等を単独または2以上を併用して使用することができる。なかでも、ポリエステルポリオール、ポリカーボネートポリオールを使用することが、本発明の水性樹脂組成物の基材密着性を向上させ、かつ、前記ビニルエステル樹脂(a-1)との相溶性を向上でき、耐溶剤性等の良好な塗膜物性を維持できるため好ましい。 As the polyol, for example, polyester polyol, polycarbonate polyol, polyether polyol, polyolefin polyol and the like can be used alone or in combination of two or more. Among these, the use of polyester polyol and polycarbonate polyol can improve the substrate adhesion of the aqueous resin composition of the present invention and improve the compatibility with the vinyl ester resin (a-1). It is preferable because good coating film properties such as solvent properties can be maintained.
 前記ポリエステルポリオールとしては、例えば低分子量のポリオールとポリカルボン酸とをエステル化反応して得られるもの、ε-カプロラクトン等の環状エステル化合物を開環重合反応して得られるポリエステル、これらの共重合ポリエステル等を使用することができる。 Examples of the polyester polyol include those obtained by esterifying low molecular weight polyols and polycarboxylic acids, polyesters obtained by ring-opening polymerization reaction of cyclic ester compounds such as ε-caprolactone, and copolyesters thereof. Etc. can be used.
 前記低分子量のポリオールとしては、例えば分子量が50~300程度である、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、ネオペンチルグリコール、1,3-ブタンジオール等の脂肪族ポリオール;シクロヘキサンジメタノール等の脂肪族環式構造を有するポリオール;ビスフェノールA等のビスフェノール化合物及びそのアルキレンオキサイド付加物等の芳香族構造を有するポリオール等を使用することができる。 Examples of the low molecular weight polyol include ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, neopentyl glycol, and 1,3-butanediol having a molecular weight of about 50 to 300. An aliphatic polyol such as cyclohexane dimethanol, a polyol having an aliphatic cyclic structure, a bisphenol compound such as bisphenol A, and a polyol having an aromatic structure such as an alkylene oxide adduct thereof can be used.
 前記ポリエステルポリオールの製造に使用可能な前記ポリカルボン酸としては、例えばコハク酸、アジピン酸、セバシン酸、ドデカンジカルボン酸等の脂肪族ポリカルボン酸;テレフタル酸、イソフタル酸、フタル酸、ナフタレンジカルボン酸等の芳香族ポリカルボン酸;それらの無水物またはエステル化物を使用することができる。 Examples of the polycarboxylic acid that can be used in the production of the polyester polyol include aliphatic polycarboxylic acids such as succinic acid, adipic acid, sebacic acid, and dodecanedicarboxylic acid; terephthalic acid, isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, and the like Aromatic polycarboxylic acids of the above; their anhydrides or esterifications can be used.
 前記ポリエステルポリオールとしては、500~4,000の範囲の数平均分子量を有するものを使用することが好ましい
 また、前記ポリオールに使用可能なポリカーボネートポリオールとしては、例えば炭酸エステルとポリオールとを反応させて得られるもの、ホスゲンとビスフェノールAとを反応させて得られるもの等を使用することができる。
As the polyester polyol, those having a number average molecular weight in the range of 500 to 4,000 are preferably used. Also, as the polycarbonate polyol usable for the polyol, for example, it is obtained by reacting a carbonate and a polyol. And those obtained by reacting phosgene and bisphenol A can be used.
 前記炭酸エステルとしては、メチルカーボネート、ジメチルカーボネート、エチルカーボネート、ジエチルカーボネート、シクロカーボネート、ジフェニルカーボネート等を使用することできる。 As the carbonate ester, methyl carbonate, dimethyl carbonate, ethyl carbonate, diethyl carbonate, cyclocarbonate, diphenyl carbonate and the like can be used.
 前記炭酸エステルと反応しうるポリオールとしては、例えば、エチレングリコール、ジエチレングリコール、1,2-プロピレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,4-シクロヘキサンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノール等の分子量50~2,000である比較的低分子量のジオール;ポリエチレングリコール、ポリプロピレングリコール、ポリヘキサメチレンアジペート等のポリエステルポリオール等を使用することができる。 Examples of the polyol that can react with the carbonate ester include ethylene glycol, diethylene glycol, 1,2-propylene glycol, dipropylene glycol, 1,4-butanediol, 1,5-pentanediol, and 3-methyl-1,5. A relatively low molecular weight diol having a molecular weight of 50 to 2,000, such as pentanediol, 1,4-cyclohexanediol, 1,6-hexanediol, cyclohexanedimethanol; polyethylene glycol, polypropylene glycol, polyhexamethylene adipate, etc. Polyester polyol or the like can be used.
 前記ポリカーボネートポリオールとしては、500~4,000の範囲の数平均分子量を有するものを使用することが好ましい。 The polycarbonate polyol preferably has a number average molecular weight in the range of 500 to 4,000.
 前記ポリオールに使用可能な前記ポリエーテルポリオールとしては、例えば活性水素原子を2個以上有する化合物の1種または2種以上を開始剤として、アルキレンオキサイドを付加重合させたものを使用することができる。 Examples of the polyether polyol that can be used for the polyol include those obtained by addition polymerization of alkylene oxide using one or more compounds having two or more active hydrogen atoms as an initiator.
 前記開始剤としては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、トリメチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ビスフェノールA、グリセリン、トリメチロールエタン、トリメチロールプロパン等を使用することができる。 Examples of the initiator include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, trimethylene glycol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, bisphenol A, glycerin, and triglyceride. Methylolethane, trimethylolpropane and the like can be used.
 前記アルキレンオキサイドとしては、例えばエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド、スチレンオキサイド、エピクロルヒドリン、テトラヒドロフラン等を使用することができる。 As the alkylene oxide, for example, ethylene oxide, propylene oxide, butylene oxide, styrene oxide, epichlorohydrin, tetrahydrofuran and the like can be used.
 前記ポリオールに使用可能な前記ポリオレフィンポリオールとしては、例えばポリエチレンポリオール、ポリプロピレンポリオール、ポリイソブテンポリオール、水素添加(水添)ポリブタジエンポリオール、水素添加(水添)ポリイソプレンポリオール等を使用することができる。 Examples of the polyolefin polyol that can be used for the polyol include polyethylene polyol, polypropylene polyol, polyisobutene polyol, hydrogenated (hydrogenated) polybutadiene polyol, and hydrogenated (hydrogenated) polyisoprene polyol.
 前記ポリオールとしては、前記ウレタン樹脂に良好な水分散安定性を付与する観点から、前記したものの他に、親水性基を有するポリオールを組み合わせ使用することができる。 As the polyol, from the viewpoint of imparting good water dispersion stability to the urethane resin, in addition to those described above, a polyol having a hydrophilic group can be used in combination.
 前記親水性基を有するポリオールとしては、例えば前記したポリオール以外のアニオン性基を有するポリオール、カチオン性基を有するポリオール、及びノニオン性基を有するポリオールを使用することができる。なかでも、アニオン性基を有するポリオールまたはカチオン性基を有するポリオールを使用することが好ましく、アニオン性基を有するポリオールを使用することがより好ましい。 As the polyol having a hydrophilic group, for example, a polyol having an anionic group other than the aforementioned polyol, a polyol having a cationic group, and a polyol having a nonionic group can be used. Among these, it is preferable to use a polyol having an anionic group or a polyol having a cationic group, and it is more preferable to use a polyol having an anionic group.
 前記アニオン性基を有するポリオールとしては、例えばカルボキシル基を有するポリオールや、スルホン酸基を有するポリオールを使用することができる。 As the polyol having an anionic group, for example, a polyol having a carboxyl group or a polyol having a sulfonic acid group can be used.
 前記カルボキシル基を有するポリオールとしては、例えば2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、2,2-ジメチロール吉草酸等を使用することができ、なかでも2,2-ジメチロールプロピオン酸を使用することが好ましい。また、前記カルボキシル基を有するポリオールと各種ポリカルボン酸とを反応させて得られるカルボキシル基を有するポリエステルポリオールを使用することもできる。 As the polyol having a carboxyl group, for example, 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, 2,2-dimethylolvaleric acid and the like can be used. Preference is given to using methylolpropionic acid. Moreover, the polyester polyol which has a carboxyl group obtained by making the polyol which has the said carboxyl group, and various polycarboxylic acids react can also be used.
 前記スルホン酸基を有するポリオールとしては、例えば5-スルホイソフタル酸、スルホテレフタル酸、4-スルホフタル酸、5[4-スルホフェノキシ]イソフタル酸等のジカルボン酸またそれらの塩、前記芳香族構造を有するポリエステルポリオールの製造に使用可能なものとして例示した低分子量ポリオールとを反応させて得られるポリエステルポリオールを使用することができる。 Examples of the polyol having a sulfonic acid group include dicarboxylic acids such as 5-sulfoisophthalic acid, sulfoterephthalic acid, 4-sulfophthalic acid, and 5 [4-sulfophenoxy] isophthalic acid, and salts thereof, and the aromatic structure. The polyester polyol obtained by making it react with the low molecular weight polyol illustrated as what can be used for manufacture of a polyester polyol can be used.
 前記カチオン性基を有するポリオールとしては、例えば3級アミノ基を有するポリオールを使用することができ、具体的にはN-メチル-ジエタノールアミン、1分子中にエポキシを2個有する化合物と2級アミンとを反応させて得られるポリオールなどを使用することができる。 As the polyol having a cationic group, for example, a polyol having a tertiary amino group can be used. Specifically, N-methyl-diethanolamine, a compound having two epoxies per molecule, a secondary amine, Polyols obtained by reacting can be used.
 前記ノニオン性基を有するポリオールとしては、エチレンオキサイド由来の構造単位を有するポリアルキレングリコール等を使用することができる。 As the polyol having a nonionic group, polyalkylene glycol having a structural unit derived from ethylene oxide can be used.
 前記親水性基を有するポリオールは、前記ウレタン樹脂の製造に使用するポリオールの全量に対して、0.3質量%~10質量%の範囲で使用することが好ましい。 The polyol having a hydrophilic group is preferably used in the range of 0.3% by mass to 10% by mass with respect to the total amount of polyol used for the production of the urethane resin.
 また、前記ポリオールとしては、前記したポリオールの他に、必要に応じてその他のポリオールを使用することができる。 Further, as the polyol, in addition to the above-described polyol, other polyols can be used as necessary.
 前記その他のポリオールとしては、例えばエチレングリコール、ジエチレングリコール、1,2-プロピレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,4-シクロヘキサンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノール等の比較的低分子量のポリオールを使用することができる。 Examples of the other polyol include ethylene glycol, diethylene glycol, 1,2-propylene glycol, dipropylene glycol, 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, Polyol having a relatively low molecular weight such as 1,4-cyclohexanediol, 1,6-hexanediol, cyclohexanedimethanol, etc. can be used.
 前記ポリオールと反応しうるポリイソシアネートとしては、例えば4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、カルボジイミド変性ジフェニルメタンジイソシアネート、クルードジフェニルメタンジイソシアネート、フェニレンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート等の芳香族ポリイソシアネート;ヘキサメチレンジイソシアネート、リジンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート等の脂肪族ポリイソシアネート;シクロヘキサンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート等の脂肪族環式構造を有するポリイソシアネート等を使用することができる。 Examples of the polyisocyanate that can react with the polyol include aromatics such as 4,4′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate, crude diphenylmethane diisocyanate, phenylene diisocyanate, tolylene diisocyanate, and naphthalene diisocyanate. Polyisocyanate; aliphatic polyisocyanate such as hexamethylene diisocyanate, lysine diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate; polyisocyanate having an aliphatic cyclic structure such as cyclohexane diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate, etc. Can Kill.
 前記ウレタン樹脂は、例えば無溶剤下または有機溶剤の存在下、前記ポリオールと前記ポリイソシアネートとを反応させることによってウレタン樹脂を製造し、次いで、前記ウレタン樹脂中に親水性基がある場合には、該親水性基の一部または全部を必要に応じて中和したものを、水性媒体(B)と混合し水性化する際に、必要に応じて鎖伸長剤と反応させることによって製造することができる。 The urethane resin is produced by reacting the polyol and the polyisocyanate, for example, in the absence of a solvent or in the presence of an organic solvent, and then when there is a hydrophilic group in the urethane resin, A product obtained by neutralizing a part or all of the hydrophilic group as necessary can be produced by mixing with an aqueous medium (B) to make it aqueous and reacting with a chain extender as necessary. it can.
 前記ポリオールとポリイソシアネートとの反応は、例えば、前記ポリオールが有する水酸基に対する、前記ポリイソシアネートが有するイソシアネート基の当量割合が、0.8~2.5の範囲で行うことが好ましく、0.9~1.5の範囲で行うことがより好ましい。 The reaction between the polyol and the polyisocyanate is preferably performed, for example, when the equivalent ratio of the isocyanate group of the polyisocyanate to the hydroxyl group of the polyol is in the range of 0.8 to 2.5, preferably 0.9 to It is more preferable to carry out in the range of 1.5.
 また、前記重合体(a2)に使用可能なアクリル樹脂としては、前記親水性基を有するアクリル樹脂を使用することができる。 Moreover, as the acrylic resin that can be used for the polymer (a2), an acrylic resin having the hydrophilic group can be used.
 前記アクリル樹脂としては、5,000~1,000,000の範囲の重量平均分子量を有するものを使用することが好ましく、生産効率を向上するうえで、5,000~500,000の範囲の重量平均分子量を有するものを使用することがより好ましい。 As the acrylic resin, those having a weight average molecular weight in the range of 5,000 to 1,000,000 are preferably used. In order to improve production efficiency, the weight in the range of 5,000 to 500,000 is used. It is more preferable to use one having an average molecular weight.
 前記アクリル樹脂としては、従来知られる(メタ)アクリル単量体、その混合物を重合して得られるものを使用することができる。 As the acrylic resin, conventionally known (meth) acrylic monomers and those obtained by polymerizing a mixture thereof can be used.
 前記重合体(a2)に使用可能なアクリル樹脂の製造に使用できる(メタ)アクリル単量体としては、例えば(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸等の(メタ)アクリル単量体等を使用することができる。なかでも(メタ)アクリル酸アルキルエステルを使用することが、前記ビニルエステル樹脂(a1)との相溶性が向上し、耐溶剤性等の良好な塗膜物性を付与できるため好ましい。 Examples of the (meth) acrylic monomer that can be used for producing an acrylic resin that can be used for the polymer (a2) include (meth) acrylic monomers such as (meth) acrylic acid alkyl ester and (meth) acrylic acid. Etc. can be used. Of these, the use of (meth) acrylic acid alkyl ester is preferable because the compatibility with the vinyl ester resin (a1) is improved and good coating properties such as solvent resistance can be imparted.
 前記(メタ)アクリル酸アルキルエステルとしては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等を使用することができる。なかでも、炭素原子数1個~6個のアルキル基を有する(メタ)アクリル酸アルキルエステルを使用することが好ましい。なお、上記「(メタ)アクリル酸」は、アクリル酸及びメタクリル酸の一方または両方を指す。 Examples of the (meth) acrylic acid alkyl ester include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, and tert (meth) acrylic acid. -Butyl, 2-ethylhexyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, dodecyl (meth) acrylate, (meth) Stearyl acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, and the like can be used. Among them, it is preferable to use (meth) acrylic acid alkyl ester having an alkyl group having 1 to 6 carbon atoms. The “(meth) acrylic acid” refers to one or both of acrylic acid and methacrylic acid.
 前記(メタ)アクリル酸アルキルエステルは、前記ビニル重合体(B)の製造に使用する単量体の合計質量に対して、25質量%~80質量%の範囲で使用することが好ましく、30質量%~80質量%の範囲であることが、前記ビニルエステル樹脂(a1)との相溶性が向上し、耐溶剤性等の良好な塗膜物性を維持できるためより好ましい。 The (meth) acrylic acid alkyl ester is preferably used in a range of 25% by mass to 80% by mass with respect to the total mass of monomers used for the production of the vinyl polymer (B), and 30% by mass. It is more preferable that the content be in the range of from 80% by mass to 80% by mass because compatibility with the vinyl ester resin (a1) is improved and good coating properties such as solvent resistance can be maintained.
 また、前記(メタ)アクリル酸アルキルエステルとしては、具体的には、-50℃~0℃の範囲のホモポリマーを形成しうる(メタ)アクリル酸アルキルエステルと、50℃~120℃の範囲のホモポリマーを形成しうる(メタ)アクリル酸アルキルエステルとを組み合わせ使用することができる。かかる場合には、[-50℃~0℃の範囲のホモポリマーを形成しうる(メタ)アクリル酸アルキルエステル/50℃~120℃の範囲のホモポリマーを形成しうる(メタ)アクリル酸アルキルエステル)の質量割合が、100/0~25/75の範囲で使用することが、水性樹脂組成物の造膜性をより一層向上するうえで好ましい。 Further, as the (meth) acrylic acid alkyl ester, specifically, a (meth) acrylic acid alkyl ester capable of forming a homopolymer in the range of −50 ° C. to 0 ° C. and a range of 50 ° C. to 120 ° C. A (meth) acrylic acid alkyl ester capable of forming a homopolymer can be used in combination. In such a case, [(meth) acrylic acid alkyl ester capable of forming a homopolymer in the range of −50 ° C. to 0 ° C./(meth)acrylic acid alkyl ester capable of forming a homopolymer in the range of 50 ° C. to 120 ° C. ) Is preferably used in the range of 100/0 to 25/75 in order to further improve the film forming property of the aqueous resin composition.
 前記-50℃~0℃の範囲のホモポリマーを形成しうる(メタ)アクリル酸アルキルエステルとしては、例えば(メタ)アクリル酸n-ブチル等を使用することができ、50℃~120℃の範囲のホモポリマーを形成しうる(メタ)アクリル酸アルキルエステルとして、例えば(メタ)アクリル酸メチル等を使用することができる。 As the (meth) acrylic acid alkyl ester capable of forming a homopolymer in the range of −50 ° C. to 0 ° C., for example, n-butyl (meth) acrylate can be used, and the range of 50 ° C. to 120 ° C. As the (meth) acrylic acid alkyl ester capable of forming a homopolymer of, for example, methyl (meth) acrylate can be used.
 また、前記アクリル樹脂を製造する際に使用可能な単量体としては、前記アクリル樹脂に親水性基としてアニオン性基を付与する観点から、例えばアクリル酸、メタクリル酸等のカルボキシル基を有する単量体を使用することができる。前記アクリル酸、メタクリル酸等は、前記アクリル樹脂を製造する際に使用する単量体の全量に対して0.5質量%~30質量%の範囲で使用することが好ましい。 Moreover, as a monomer which can be used at the time of manufacturing the acrylic resin, from the viewpoint of imparting an anionic group as a hydrophilic group to the acrylic resin, for example, a single monomer having a carboxyl group such as acrylic acid or methacrylic acid The body can be used. The acrylic acid, methacrylic acid and the like are preferably used in the range of 0.5% by mass to 30% by mass with respect to the total amount of monomers used for producing the acrylic resin.
 また、前記単量体としては、前記アクリル樹脂に親水性基としてカチオン性基を付与する観点から、例えば、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル、ジメチルアミノプロピル(メタ)アクリルアミド等の第3級アミノ基を有する単量体を使用することができる。前記3級アミノ基を有する単量体は、前記アクリル樹脂を製造する際に使用する単量体の全量に対して0.5質量%~30質量%の範囲で使用することが好ましい。 Examples of the monomer include dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate from the viewpoint of imparting a cationic group as a hydrophilic group to the acrylic resin. ) Monomers having a tertiary amino group such as acrylamide can be used. The monomer having a tertiary amino group is preferably used in the range of 0.5% by mass to 30% by mass with respect to the total amount of monomers used in producing the acrylic resin.
 また、前記単量体としては、前記アクリル樹脂に親水性基としてノニオン性基を付与する観点から、例えば、メトキシポリエチレングリコール(メタ)アクリレート等の側鎖にポリオキシエチレン構造を有する単量体を使用することができる。前記ポリオキシエチレン構造を含有する単量体は、前記アクリル樹脂を製造する際に使用する単量体の全量に対して5質量%~70質量%の範囲で使用することが好ましい。 In addition, as the monomer, from the viewpoint of imparting a nonionic group as a hydrophilic group to the acrylic resin, for example, a monomer having a polyoxyethylene structure in a side chain such as methoxypolyethylene glycol (meth) acrylate Can be used. The monomer containing the polyoxyethylene structure is preferably used in the range of 5% by mass to 70% by mass with respect to the total amount of monomers used for producing the acrylic resin.
 また、前記アクリル樹脂を製造する際に使用可能な単量体としては、前記したものの他に、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、グリセロールモノ(メタ)アクリレート、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2,2,2-トリフルオロエチル、(メタ)アクリル酸2,2,3,3-ペンタフルオロプロピル、(メタ)アクリル酸パーフルオロシクロヘキシル、(メタ)アクリル酸2,2,3,3,-テトラフルオロプロピル、(メタ)アクリル酸β-(パーフルオロオクチル)エチル、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-イソプロポキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N-イソブトキシメチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、N-モノアルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド、スチレンやα-メチルスチレン、酢酸ビニル、プロピオン酸ビニル、ビニルブチラート、バーサチック酸ビニル、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル、アミルビニルエーテル、ヘキシルビニルエーテル、(メタ)アクリロニトリル、ビニルトルエン、ビニルアニソール、α-ハロスチレン、ビニルナフタリン、ジビニルスチレン、イソプレン、クロロプレン、ブタジエン、エチレン、テトラフルオロエチレン、フッ化ビニリデン、N-ビニルピロリドン、(メタ)アクリル酸や、β-カルボキシエチル(メタ)アクリレート、2-(メタ)アクリロイルプロピオン酸、クロトン酸、イタコン酸ハーフエステル、マレイン酸ハーフエステル、β-(メタ)アクリロイルオキシエチルハイドロゲンサクシネート、イソプレン、ブタジエン等を使用することができる。また、前記カルボキシル基を有するビニル単量体としては、アロニックス M-5300(東亞合成(株)製、ω-カルボキシ-ポリカプロラクトンモノアクリレート)等を使用することもできる。 In addition to the monomers described above, monomers that can be used for producing the acrylic resin include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, glycerol mono (meth) Acrylate, dicyclopentanyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2, (meth) acrylic acid 3,3-pentafluoropropyl, perfluorocyclohexyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, β- (perfluorooctyl) ethyl (meth) acrylate, ( (Meth) acrylamide, N-methylol (meth) acrylamide, N-isopropoxymethyl (meth) acryl Amides, N-butoxymethyl (meth) acrylamide, N-isobutoxymethyl (meth) acrylamide, diacetone (meth) acrylamide, N-monoalkyl (meth) acrylamide, N, N-dialkyl (meth) acrylamide, styrene and α- Methyl styrene, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl versatate, methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, amyl vinyl ether, hexyl vinyl ether, (meth) acrylonitrile, vinyl toluene, vinyl anisole, α-halostyrene , Vinyl naphthalene, divinyl styrene, isoprene, chloroprene, butadiene, ethylene, tetrafluoroethylene, vinylidene fluoride, N-vinyl chloride Lidon, (meth) acrylic acid, β-carboxyethyl (meth) acrylate, 2- (meth) acryloylpropionic acid, crotonic acid, itaconic acid half ester, maleic acid half ester, β- (meth) acryloyloxyethyl hydrogen succin Nate, isoprene, butadiene and the like can be used. Further, as the vinyl monomer having a carboxyl group, Aronix M-5300 (manufactured by Toagosei Co., Ltd., ω-carboxy-polycaprolactone monoacrylate) or the like can be used.
 また、前記重合体(a2)に使用可能なポリエステル樹脂としては、前記親水性基を有するポリエステル樹脂を使用することができる。 Further, as the polyester resin usable for the polymer (a2), the polyester resin having the hydrophilic group can be used.
 前記ポリエステル樹脂としては、前記アニオン性基としてスルホン酸塩基を有するポリエステル樹脂を使用することが好ましく、前記スルホン酸塩基を有する芳香族ポリエステル樹脂を使用することが、耐水性及び耐溶剤性に優れた塗膜を形成するうえでより好ましい。 As the polyester resin, it is preferable to use a polyester resin having a sulfonate group as the anionic group, and using an aromatic polyester resin having the sulfonate group is excellent in water resistance and solvent resistance. It is more preferable when forming a coating film.
 前記ポリエステル樹脂としては、5,000~30,000の重量平均分子量を有するものを使用することが好ましく、5,000~15,000の範囲であることがより好ましい。重量平均分子量が前記した範囲内であれば、優れた耐水性や耐溶剤性や保存安定性を損なうことなく、適度な粘度で良好な塗工作業性や造膜性を付与することが可能となる。 As the polyester resin, those having a weight average molecular weight of 5,000 to 30,000 are preferably used, and more preferably in the range of 5,000 to 15,000. If the weight average molecular weight is within the above-mentioned range, it is possible to impart good coating workability and film-forming property with an appropriate viscosity without impairing excellent water resistance, solvent resistance and storage stability. Become.
 前記ポリエステル樹脂としては、30℃~100℃のガラス転移温度を有するものを使用することが好ましい。前記ガラス転移温度を有するポリエステル樹脂(a1)であれば、優れた耐水性や耐溶剤性や保存安定性を損なうことなく、適度な粘度で良好な塗工作業性や造膜性を付与することが可能となる。 The polyester resin preferably has a glass transition temperature of 30 ° C. to 100 ° C. If the polyester resin (a1) has the glass transition temperature, it imparts good coating workability and film-forming property with an appropriate viscosity without impairing excellent water resistance, solvent resistance and storage stability. Is possible.
 前記ポリエステル樹脂としては、ポリオールとポリカルボン酸とを反応させて得られるものを使用することができる。 As the polyester resin, those obtained by reacting polyol and polycarboxylic acid can be used.
 また、前記ポリエステル樹脂の有するスルホン酸塩基は、前記ポリオールやポリカルボン酸の一部に、例えばスルホン酸塩基を有するポリオール、スルホン酸塩基を有するポリカルボン酸等のスルホン酸塩基を有する化合物を使用することによって、ポリエステル樹脂中に導入することができる。 In addition, as the sulfonate group possessed by the polyester resin, a compound having a sulfonate group such as a polyol having a sulfonate group or a polycarboxylic acid having a sulfonate group is used as part of the polyol or polycarboxylic acid. By this, it can be introduced into the polyester resin.
 また、前記ポリエステル樹脂を製造する際に使用可能なスルホン酸塩基を有する化合物は、前記ポリエステル樹脂を製造する際に使用する前記ポリオール及び前記ポリカルボン酸の合計質量に対して3質量%~30質量%の範囲で使用することが、良好な水分散性を付与するうえで好ましい。 In addition, the compound having a sulfonate group that can be used in producing the polyester resin is 3% by mass to 30% by mass with respect to the total mass of the polyol and the polycarboxylic acid used in producing the polyester resin. % Is preferably used in order to impart good water dispersibility.
 前記ポリエステル樹脂を製造する際に使用可能なポリオールとしては、例えばエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,9-ノナンジオール、2-エチル-2-ブチルプロパンジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール等の脂肪族ポリオール;1,4-シクロヘキサンジメタノール等の脂肪族環式構造を有するポリオール等を使用することができる。また、前記ポリオールとしては、例えばグリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール等の水酸基を3個以上有するポリオールを使用することもできる。 Examples of polyols that can be used in producing the polyester resin include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, and 2-methyl-1,3-propanediol. 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,9-nonanediol, 2-ethyl-2-butylpropanediol, diethylene glycol, triethylene glycol Aliphatic polyols such as ethylene glycol and dipropylene glycol; polyols having an aliphatic cyclic structure such as 1,4-cyclohexanedimethanol can be used. Moreover, as said polyol, the polyol which has 3 or more of hydroxyl groups, such as glycerol, a trimethylol ethane, a trimethylol propane, a pentaerythritol, can also be used, for example.
 前記ポリエステル樹脂を製造する際に使用可能なポリオールとしては、その一部または全部にスルホン酸塩基を有する化合物としてスルホン酸塩基を有するポリオールを使用することもでき、例えば2-ブテン-1,4-ジオール等の不飽和基を有するポリオールをスルホン化することによって得られるスルホン酸塩基を有するポリオールを使用することができる。 As the polyol that can be used in the production of the polyester resin, a polyol having a sulfonate group as a compound having a sulfonate group in a part or all of the polyol can be used. For example, 2-butene-1,4- A polyol having a sulfonate group obtained by sulfonating a polyol having an unsaturated group such as a diol can be used.
 前記ポリエステル樹脂を製造する際に使用可能なポリオールと反応しうる前記ポリカルボン酸としては、例えばテレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸等の芳香族ポリカルボン酸;シュウ酸、コハク酸、無水コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸、水添ダイマー酸、フマル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、ダイマー酸等の脂肪族ポリカルボン酸;1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、2,5-ノルボルネンジカルボン酸及びその無水物、テトラヒドロフタル酸及びその無水物等の脂肪族環式構造を有するポリカルボン酸等を使用することができる。なかでも、より一層優れた耐水性及び耐溶剤性を付与する観点から、芳香族ポリカルボン酸を使用することが好ましく、テレフタル酸またはイソフタル酸を使用することがより好ましい。 Examples of the polycarboxylic acid capable of reacting with a polyol that can be used in producing the polyester resin include aromatic polycarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, and biphenyldicarboxylic acid; oxalic acid , Succinic acid, succinic anhydride, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, hydrogenated dimer acid, fumaric acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, citraconic acid, citraconic acid, Aliphatic polycarboxylic acids such as dimer acids; 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 2,5-norbornenedicarboxylic acid and its anhydride, tetrahydrophthalic acid and It has an aliphatic cyclic structure such as its anhydride. That polycarboxylic acid can be used. Among these, from the viewpoint of imparting further excellent water resistance and solvent resistance, it is preferable to use an aromatic polycarboxylic acid, and it is more preferable to use terephthalic acid or isophthalic acid.
 また、前記ポリエステル樹脂を製造する際に使用可能なポリカルボン酸としては、前記したものの他に、トリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸、無水トリメリット酸、無水ピロメリット酸、無水べンゾフェノンテトラカルボン酸、トリメシン酸、エチレングリコールビス(アンヒドロトリメリテート)、グリセロールトリス(アンヒドロトリメリテート)、1,2,3,4-ブタンテトラカルボン酸等の3個以上のカルボキシル基を有するものを使用することができる。 In addition to the above-mentioned polycarboxylic acids that can be used for producing the polyester resin, trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid, trimellitic anhydride, pyromellitic anhydride, anhydrous base Three or more carboxyls such as nzophenone tetracarboxylic acid, trimesic acid, ethylene glycol bis (anhydro trimellitate), glycerol tris (anhydro trimellitate), 1,2,3,4-butanetetracarboxylic acid Those having a group can be used.
 前記ポリエステル樹脂を製造する際に使用可能なポリカルボン酸としては、その一部または全部にスルホン酸塩基を有するポリカルボン酸を使用することができる。例えば4-スルホイソフタル酸、5-スルホイソフタル酸、スルホテレフタル酸、4-スルホナフタレン-2,7-ジカルボン酸等が挙げられ、5-ナトリウムスルホイソフタル酸、5-ナトリウムスルホイソフタル酸ジメチル、及びそれらのエステル化物を使用することが好ましい。 As the polycarboxylic acid that can be used when the polyester resin is produced, a polycarboxylic acid having a sulfonate group in part or all thereof can be used. Examples include 4-sulfoisophthalic acid, 5-sulfoisophthalic acid, sulfoterephthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid, 5-sodium sulfoisophthalic acid, 5-sodium sulfoisophthalic acid dimethyl, and the like It is preferable to use the esterified product.
 なかでも、長期にわたる保存安定性を損なうことなく、優れた耐水性や耐溶剤性を付与する観点から、5-ナトリウムスルホイソフタル酸やそのエステル化物を使用することがより好ましく、5-ナトリウムスルホイソフタル酸ジメチルを使用することがさらに好ましい。 Among these, 5-sodium sulfoisophthalic acid and its esterified products are more preferably used from the viewpoint of imparting excellent water resistance and solvent resistance without impairing storage stability over a long period of time. More preferably, dimethyl acid is used.
 前記ビニルエステル樹脂(a1)と前記重合体(a2)とによって形成される複合樹脂粒子(A)は、例えば前記ウレタン樹脂やアクリル樹脂やポリエステル樹脂等の重合体(a2)を製造し、次いで、前記重合体(a2)と前記ビニルエステル樹脂(a1)と水性媒体(B)とを混合することによって製造することができる。 The composite resin particles (A) formed by the vinyl ester resin (a1) and the polymer (a2), for example, produce a polymer (a2) such as the urethane resin, acrylic resin, or polyester resin, It can be produced by mixing the polymer (a2), the vinyl ester resin (a1) and the aqueous medium (B).
 前記重合体(a2)として前記ウレタン樹脂を使用する場合、前記ウレタン樹脂は前記ポリオールとポリイソシアネートと必要に応じて鎖伸長剤とを、無溶剤下または溶剤下で40℃~120℃で反応させることによって製造することができる。 When the urethane resin is used as the polymer (a2), the urethane resin reacts the polyol, the polyisocyanate, and, if necessary, the chain extender at 40 ° C. to 120 ° C. in the absence of solvent or in the solvent. Can be manufactured.
 前記重合体(a2)として前記アクリル樹脂を使用する場合、前記アクリル樹脂は前記(メタ)アクリル単量体を含むビニル単量体を、重合開始剤を添加し、30℃~120℃の条件下でラジカル重合することによって製造することができる。 When the acrylic resin is used as the polymer (a2), the acrylic resin is a vinyl monomer containing the (meth) acrylic monomer, a polymerization initiator is added, and the conditions are 30 ° C. to 120 ° C. It can be produced by radical polymerization with
 前記重合体(a2)として前記ポリエステル樹脂を使用する場合、前記ポリエステル樹脂は、無溶剤下または有機溶剤下で前記ポリオールと前記ポリカルボン酸とを、従来知られる方法でエステル化反応することによって製造することができる。 When the polyester resin is used as the polymer (a2), the polyester resin is produced by subjecting the polyol and the polycarboxylic acid to an esterification reaction in a conventionally known method under no solvent or in an organic solvent. can do.
 前記エステル化反応は、具体的には、不活性ガス雰囲気中で触媒の存在下または不存在下に、前記ポリオールと前記ポリカルボン酸とを好ましくは180℃~300℃に加熱してエステル化あるいはエステル交換反応させ、次いで減圧下に重縮合させる方法で行うことができる。 Specifically, in the esterification reaction, the polyol and the polycarboxylic acid are preferably heated to 180 ° C. to 300 ° C. in an inert gas atmosphere in the presence or absence of a catalyst to perform esterification or It can be carried out by a method of transesterification followed by polycondensation under reduced pressure.
 前記重合体(a2)は、前記ビニルエステル樹脂(a1)と容易に複合樹脂粒子を(A)を形成するうえで、予め水性媒体(B)や有機溶剤中に溶解または分散等したものであることが好ましい。 The polymer (a2) is prepared by previously dissolving or dispersing the composite resin particles in the aqueous medium (B) or an organic solvent in order to form the composite resin particles (A) with the vinyl ester resin (a1). It is preferable.
 次に、前記方法で得られた、前記水性媒体(B)や有機溶剤中に溶解または分散した重合体(a2)組成物と、前記ビニルエステル樹脂(a1)とを、混合し攪拌する。これにより、前記重合体(a2)粒子中に、前記ビニルエステル樹脂(a1)の一部または全部が内在した複合樹脂粒子(A)と、水性媒体(B)とを含有する水性樹脂組成物を得ることができる。 Next, the polymer (a2) composition dissolved or dispersed in the aqueous medium (B) or the organic solvent obtained by the above method and the vinyl ester resin (a1) are mixed and stirred. Thus, an aqueous resin composition containing the composite resin particles (A) in which a part or all of the vinyl ester resin (a1) is contained in the polymer (a2) particles and the aqueous medium (B). Obtainable.
 前記方法で得られた水性樹脂組成物中に有機溶剤が含まれる場合、環境負荷低減等の観点から、蒸留法などによって前記有機溶剤を除去してもよい。これにより、水性媒体(B)中に前記複合樹脂粒子(A)が分散等した水性樹脂組成物を得ることができる。 When the organic resin is contained in the aqueous resin composition obtained by the above method, the organic solvent may be removed by a distillation method or the like from the viewpoint of reducing the environmental load. Thereby, the aqueous resin composition in which the composite resin particles (A) are dispersed in the aqueous medium (B) can be obtained.
 前記水性樹脂組成物は、塗工作業性や長期にわたる保存安定性を維持する観点から、その不揮発分が概ね10質量%~90質量%の範囲であることが好ましく、30質量%~70質量%の範囲であることがより好ましい。 The aqueous resin composition preferably has a non-volatile content in the range of 10% by mass to 90% by mass, and preferably 30% by mass to 70% by mass from the viewpoint of maintaining coating workability and long-term storage stability. More preferably, it is the range.
 そのうち、前記ビニルエステル樹脂(a1)及び前記重合体(a2)は、前記水性樹脂組成物の全量に対して、5質量%~85質量%の範囲で使用することが好ましく、20質量%~65質量%の範囲で使用することがより好ましい。 Among them, the vinyl ester resin (a1) and the polymer (a2) are preferably used in the range of 5% by mass to 85% by mass with respect to the total amount of the aqueous resin composition, and 20% by mass to 65%. It is more preferable to use in the range of mass%.
 また、本発明で使用する水性媒体(B)としては、水、水と混和する有機溶剤、及び、これらの混合物が挙げられる。水と混和する有機溶剤としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール等のアルコール;アセトン、メチルエチルケトン等のケトン;エチレングリコール、ジエチレングリコール、プロピレングリコール等のポリアルキレングリコール;ポリアルキレングリコールのアルキルエーテル;N-メチル-2-ピロリドン等のラクタム等が挙げられる。本発明では、水のみを用いても良く、また水及び水と混和する有機溶剤との混合物を用いても良く、水と混和する有機溶剤のみを用いても良い。安全性や環境に対する負荷の点から、水のみ、又は、水及び水と混和する有機溶剤との混合物が好ましく、水のみが特に好ましい。 Also, examples of the aqueous medium (B) used in the present invention include water, organic solvents miscible with water, and mixtures thereof. Examples of organic solvents miscible with water include alcohols such as methanol, ethanol, n-propanol and isopropanol; ketones such as acetone and methyl ethyl ketone; polyalkylene glycols such as ethylene glycol, diethylene glycol and propylene glycol; alkyl ethers of polyalkylene glycols And lactams such as N-methyl-2-pyrrolidone. In the present invention, only water may be used, a mixture of water and an organic solvent miscible with water may be used, or only an organic solvent miscible with water may be used. From the viewpoint of safety and load on the environment, water alone or a mixture of water and an organic solvent miscible with water is preferable, and only water is particularly preferable.
 前記水性媒体(B)は、前記水性樹脂組成物の全量に対して、10質量%~90質量%含まれることが好ましく、30質量%~70質量%の範囲であることがより好ましい。 The aqueous medium (B) is preferably contained in an amount of 10% by mass to 90% by mass, and more preferably in the range of 30% by mass to 70% by mass with respect to the total amount of the aqueous resin composition.
 本発明の水性樹脂組成物には、必要に応じて、造膜助剤、硬化剤、重合開始剤、硬化触媒、可塑剤、帯電防止剤、ワックス、光安定剤、流動調整剤、染料、レベリング剤、レオロジーコントロール剤、紫外線吸収剤、酸化防止剤、光触媒性化合物、無機顔料、有機顔料、体質顔料等の添加剤、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂等のその他の樹脂等を使用することができる。前記添加剤が非水溶性の場合、前記水性媒体(B)や有機溶剤中に重合体(a2)を溶解または分散する際に使用することによって、前記添加剤を溶媒中に安定して分散等することが可能となる。 In the aqueous resin composition of the present invention, if necessary, a film-forming aid, a curing agent, a polymerization initiator, a curing catalyst, a plasticizer, an antistatic agent, a wax, a light stabilizer, a flow regulator, a dye, and a leveling Additives, rheology control agents, ultraviolet absorbers, antioxidants, photocatalytic compounds, additives such as inorganic pigments, organic pigments, extender pigments, other resins such as polyester resins, urethane resins, acrylic resins, etc. it can. When the additive is water-insoluble, it can be used when the polymer (a2) is dissolved or dispersed in the aqueous medium (B) or the organic solvent, thereby stably dispersing the additive in the solvent. It becomes possible to do.
 前記造膜助剤としては、例えばN-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ブチルセロソルブ、ポリプロピレングリコールモノメチルエーテル、ブチルセロソルブ等を使用することができる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンを使用することが、より一層高透明性の求められるフィルムや塗膜等を製造するうえで好ましい。 As the film forming aid, for example, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, butyl cellosolve, polypropylene glycol monomethyl ether, butyl cellosolve and the like can be used. Of these, the use of N-methyl-2-pyrrolidone and N-ethyl-2-pyrrolidone is preferable for producing films and coating films that are required to have higher transparency.
 前記硬化剤としては、水溶性または水に分散可能なものを使用することが好ましい。具体的には脂肪族アミン、環状構造を有するアミン、脂肪芳香族アミン、ポリオキシアルキレンポリアミン等のポリアミン、ポリチオ-ル化合物等が挙げられる。 As the curing agent, it is preferable to use a water-soluble or water-dispersible one. Specific examples include aliphatic amines, amines having a cyclic structure, aliphatic aromatic amines, polyoxyalkylene polyamines and other polyamines, and polythiol compounds.
 脂肪族アミンとしては、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサアミン、2,2,4-または2,4,4-トリメチルヘキサメチレンジアミン、ビス-(3-アミノプロピル)メチルアミン、N,N-ビス-(3-アミノプロピル)エチレンジアミン、ヘキサメチレンジアミン、2-メチル-1,5-ペンタンジアミン、1,3-ジアミノペンタン、末端アミノ化ポリプロピレングリコール等を使用することができる。 Aliphatic amines include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, 2,2,4- or 2,4,4-trimethylhexamethylenediamine, bis- (3-aminopropyl) Methylamine, N, N-bis- (3-aminopropyl) ethylenediamine, hexamethylenediamine, 2-methyl-1,5-pentanediamine, 1,3-diaminopentane, terminal aminated polypropylene glycol, etc. may be used. it can.
 環状構造(例えば、シクロアルキル環、ベンゼン環、複素環等)を有するアミンとしては、ピペラジン、N-アミノエチルピペラジン、1,4-ビス-(3-アミノプロピル)ピペラジン等のピペラジン、1,3-ビスアミノメチルシクロヘキサン、イソホロンジアミン、1-シクロヘキシルアミノ-3-アミノプロパン、1,4-ジアミノシクロヘキサン、2,4-ジアミノ-シクロヘキサン、N,N’-ジエチル-1,4-ジアミノシクロヘキサン、3,3’-ジメチル-4,4’-ジアミノシクロヘキシルメタン等の脂環族ポリアミン、メタキシリレンジアミン、パラキシリレンジアミン等の芳香脂肪族アミンを使用することができる。 Examples of amines having a cyclic structure (eg, cycloalkyl ring, benzene ring, heterocyclic ring) include piperazine, N-aminoethylpiperazine, piperazine such as 1,4-bis- (3-aminopropyl) piperazine, 1,3 -Bisaminomethylcyclohexane, isophoronediamine, 1-cyclohexylamino-3-aminopropane, 1,4-diaminocyclohexane, 2,4-diamino-cyclohexane, N, N'-diethyl-1,4-diaminocyclohexane, 3, An alicyclic polyamine such as 3′-dimethyl-4,4′-diaminocyclohexylmethane, and an araliphatic amine such as metaxylylenediamine and paraxylylenediamine can be used.
 前記ポリチオール化合物としては、メタンジチオール、1,2-ジメルカプトエタン、2,2-ジメルカプトプロパン、1,3-ジメルカプトプロパン、1,2,3-トリメルカプトプロパン、1,4-ジメルカプトブタン、1,6-ジメルカプトヘキサン、ビス(2-メルカプトエチル)スルフィド等を使用することができる。 Examples of the polythiol compound include methanedithiol, 1,2-dimercaptoethane, 2,2-dimercaptopropane, 1,3-dimercaptopropane, 1,2,3-trimercaptopropane, 1,4-dimercaptobutane. 1,6-dimercaptohexane, bis (2-mercaptoethyl) sulfide, and the like can be used.
 前記硬化剤は、前記硬化剤が有するアミノ基の活性水素原子に対する、前記ビニルエステル樹脂(a1)が有する重合性不飽和基の当量割合[重合性不飽和基/前記硬化剤が有するアミノ基の活性水素原子]が、100/80~100/300の範囲で使用することが、マイケル付加反応によって耐水性や耐溶剤性に優れた塗膜等の硬化物を形成するうえで好ましい。 The curing agent is an equivalent ratio of the polymerizable unsaturated group of the vinyl ester resin (a1) to the active hydrogen atom of the amino group of the curing agent [polymerizable unsaturated group / amino group of the curing agent. The active hydrogen atom] is preferably used in the range of 100/80 to 100/300 in order to form a cured product such as a coating film having excellent water resistance and solvent resistance by the Michael addition reaction.
 また、前記重合開始剤としては、光や熱によってラジカルを発生し、前記重合性不飽和基の反応を開始できるものを使用することができる。光重合開始剤としては、例えば、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-メチル-1-プロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1-ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド-ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等を使用することができる。 Further, as the polymerization initiator, those capable of generating radicals by light or heat and initiating the reaction of the polymerizable unsaturated group can be used. Examples of the photopolymerization initiator include 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, and 1- [4- (2-hydroxyethoxy) -phenyl. ] -2-Hydroxy-methyl-1-propan-1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino- 1- (4-morpholinophenyl) -butanone-1-bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide-bis (2,4,6-trimethylbenzoyl) -phenyl Phosphine oxide or the like can be used.
 熱重合開始剤としては、過酸化物、アゾ化合物を挙げることができ、例えばベンゾイルパーオキサイド、tert-ブチル-パーオキシベンゾエート、アゾビスイソブチロニトリル等を挙げることができる。 Examples of the thermal polymerization initiator include peroxides and azo compounds, such as benzoyl peroxide, tert-butyl-peroxybenzoate, and azobisisobutyronitrile.
 また、本発明では、前記複合樹脂粒子(A)の分散安定性を向上する観点から乳化剤等を使用しても良いが、前記乳化剤等は一般に、塗膜等の硬化物の耐水性の低下を引き起こす傾向にある。 In the present invention, an emulsifier or the like may be used from the viewpoint of improving the dispersion stability of the composite resin particles (A). However, the emulsifier or the like generally reduces the water resistance of a cured product such as a coating film. Tend to cause.
 一方、本発明の水性樹脂組成物は、前記乳化剤等を使用せずとも十分な保存安定性を有するものであり、かつ、耐水性等に優れた塗膜等の硬化物を形成できることから、前記乳化剤の使用量は水性樹脂組成物の全量に対して5質量%以下であることが好ましく0質量%であることがより好ましい。 On the other hand, the aqueous resin composition of the present invention has sufficient storage stability without using the emulsifier and the like, and can form a cured product such as a coating film excellent in water resistance, etc. The amount of the emulsifier used is preferably 5% by mass or less, and more preferably 0% by mass with respect to the total amount of the aqueous resin composition.
 以上のような本発明の水性樹脂組成物は、耐水性や耐溶剤性に優れた塗膜等の硬化物を形成できることから、例えばトップコート剤やプライマーコート剤等のコーティング剤、接着剤、フィルム等の成形品の製造に使用することができ、なかでもコーティング剤として好適に使用することができる。 Since the aqueous resin composition of the present invention as described above can form a cured product such as a coating film excellent in water resistance and solvent resistance, for example, a coating agent such as a top coat agent or a primer coat agent, an adhesive, or a film In particular, it can be used as a coating agent.
 前記コーティング剤及び接着剤を塗布可能な基材としては、例えば金属基材、プラスチック基材、ガラス基材、紙、木材基材、繊維質基材等が挙げられる。 Examples of the substrate on which the coating agent and the adhesive can be applied include a metal substrate, a plastic substrate, a glass substrate, paper, a wood substrate, and a fibrous substrate.
 前記金属基材としては、例えば亜鉛めっき鋼板、アルミニウム-亜鉛合金鋼板等のめっき鋼板;アルミ板、アルミ合金板、電磁鋼板、銅板、ステンレス鋼板、表面に金属蒸着面を有する基材等を使用することができる。 As the metal substrate, for example, a plated steel plate such as a galvanized steel plate or an aluminum-zinc alloy steel plate; an aluminum plate, an aluminum alloy plate, an electromagnetic steel plate, a copper plate, a stainless steel plate, a substrate having a metal vapor deposition surface on the surface, or the like is used. be able to.
 前記プラスチック基材としては、一般に、携帯電話、家電製品、自動車内外装材、OA機器等のプラスチック成型品に採用されている、ポリカーボネート基材、ポリエステル基材、アクリロニトリル-ブタジエン-スチレン基材、ポリアクリル基材、ポリスチレン基材、ポリウレタン基材、エポキシ樹脂基材、ポリ塩化ビニル系基材、ポリアミド系基材等を使用することができる。 As the plastic base material, polycarbonate base materials, polyester base materials, acrylonitrile-butadiene-styrene base materials, poly base materials, which are generally used in plastic molded products such as mobile phones, home appliances, automobile interior and exterior materials, OA equipment, etc. An acrylic base material, polystyrene base material, polyurethane base material, epoxy resin base material, polyvinyl chloride base material, polyamide base material and the like can be used.
 前記した各種基材は、予め被覆が施されていても良いが、本発明のコーティング剤はプラスチック基材等に対して優れた密着性を有することから、予め被覆等の表面処理の施されていない基材に対して優れた密着性を発現する。 The various base materials described above may be coated in advance, but since the coating agent of the present invention has excellent adhesion to a plastic substrate or the like, surface treatment such as coating is performed in advance. Excellent adhesion to non-base materials.
 本発明のコーティング剤は、前記プラスチック基材に対するプライマーに好適に使用することができる。また、前記基材は、それぞれ、板状、球状、フィルム状、シート状であってもよい。 The coating agent of the present invention can be suitably used as a primer for the plastic substrate. The base materials may be plate-shaped, spherical, film-shaped, and sheet-shaped, respectively.
 本発明のコーティング剤は、例えばそれを前記基材表面に直接、塗布し、次いで乾燥、硬化させることによって、その表面に塗膜を形成することができる。 The coating agent of the present invention can form a coating film on its surface by, for example, applying it directly to the surface of the substrate, and then drying and curing.
 前記コーティング剤を前記基材上に塗布する方法としては、例えばスプレー法、カーテンコーター法、フローコーター法、ロールコーター法、刷毛塗り法、浸漬法等が挙げられる。 Examples of the method for applying the coating agent on the substrate include a spray method, a curtain coater method, a flow coater method, a roll coater method, a brush coating method, and a dipping method.
 前記乾燥し硬化を進行させる方法としては、常温下で1日~10日程度養生する方法であってもよいが、硬化を迅速に進行させる観点から、100℃~150℃の温度で、1~600秒程度加熱する方法が好ましい。また、比較的高温で変形や変色をしやすいプラスチック基材を用いる場合には、70℃~100℃程度の比較的低温下で養生を行うことが好ましい。 The drying and curing may be carried out by curing at room temperature for about 1 day to 10 days. From the viewpoint of rapidly curing, the method is performed at a temperature of 100 ° C. to 150 ° C. for 1 to A method of heating for about 600 seconds is preferable. Further, when using a plastic substrate that is easily deformed or discolored at a relatively high temperature, it is preferable to perform the curing at a relatively low temperature of about 70 ° C. to 100 ° C.
 本発明のコーティング剤や接着剤を用いて形成する塗膜の膜厚は、基材の使用される用途等に応じて適宜調整可能であるが、通常0.01μm~20μm程度であることが好ましい。 The film thickness of the coating film formed using the coating agent or adhesive of the present invention can be appropriately adjusted according to the use of the substrate, etc., but is usually preferably about 0.01 μm to 20 μm. .
 前記コーティング剤によって塗膜が形成された塗装物は、優れた耐水性と耐溶剤性とを両立できることから、例えば例えば空調機器や冷蔵庫等の熱交換器、防汚性及び防曇性が求められる反射防止膜、光学フィルター、光学レンズ、眼鏡レンズ、鏡等の光学部材が使用される家電製品やディスプレイ、自動車内装材や外装材、壁材や屋根材等の建築部材等に使用することが可能である。 Since the coated material in which the coating film is formed by the coating agent can achieve both excellent water resistance and solvent resistance, for example, heat exchangers such as air conditioners and refrigerators, antifouling properties and antifogging properties are required. Can be used for home appliances and displays that use optical members such as antireflection films, optical filters, optical lenses, spectacle lenses, mirrors, automotive interior materials and exterior materials, building materials such as wall materials and roofing materials, etc. It is.
 さらに、ポリエステル樹脂、ポリプロピレン樹脂、ポリアミド樹脂等のプラスチックフィルムの表面を改質し、易接着層を付与する目的で使用されるプライマーコート剤としては、例えば、食品包装ついてはアルミ蒸着プラスチックフィルム、光学用フィルム用途については、液晶ディスプレイやフラットディスプレイ等の光学部材は、プリズムレンズフィルムや防眩フィルム等の高機能フィルム等に使用することができる。 Furthermore, as a primer coating agent used for the purpose of modifying the surface of a plastic film such as polyester resin, polypropylene resin, polyamide resin, etc. and providing an easy adhesion layer, for example, aluminum vapor deposited plastic film for food packaging, optical use For film applications, optical members such as liquid crystal displays and flat displays can be used for highly functional films such as prism lens films and antiglare films.
 合成例1(ポリエステルポリオール(X)の合成)
 温度計、窒素ガス導入管、攪拌機を備えた反応容器中で窒素ガスを導入しながら、イソフタル酸830質量部(5モル)、アジピン酸730質量部(5モル)、1,4-ブタンジオール1026質量部(11.4モル)及びジブチル錫オキサイド0.5質量部を仕込み、酸価が1以下になるまで230℃で15時間重縮合反応することによって、ポリエステルポリオール(X)(水酸基当量1000g/eq)を得た。
Synthesis Example 1 (Synthesis of polyester polyol (X))
While introducing nitrogen gas into a reaction vessel equipped with a thermometer, a nitrogen gas introduction tube, and a stirrer, 830 parts by mass (5 mol) of isophthalic acid, 730 parts by mass (5 mol) of adipic acid, 1026 of 1,4-butanediol 1026 The polyester polyol (X) (hydroxyl equivalent: 1000 g / wt) was charged by adding 15 parts by mass (11.4 mol) and 0.5 parts by mass of dibutyltin oxide and performing a polycondensation reaction at 230 ° C. for 15 hours until the acid value became 1 or less. eq) was obtained.
 合成例2(3級アミノ基を有するポリオール(Y)の合成)
 温度計、攪拌装置、還流冷却管及び滴下装置を備えた4ツ口フラスコに、DENACOL EX-211(ナガセケムテック株式会社製、ネオペンチルグリコールジグリシジルエーテル、エポキシ当量=138g/eq)590質量部を仕込んだ後、フラスコ内を窒素置換した。
Synthesis Example 2 (Synthesis of polyol (Y) having tertiary amino group)
In a four-necked flask equipped with a thermometer, a stirrer, a reflux condenser, and a dropping device, 590 parts by mass of DENACOL EX-211 (manufactured by Nagase Chemtech, neopentyl glycol diglycidyl ether, epoxy equivalent = 138 g / eq) Was added, and the atmosphere in the flask was replaced with nitrogen.
 次に、前記フラスコ内の温度が35℃になるまでオイルバスを用いて加熱した後、滴下装置を使用してジエチルアミン312.7質量部を30分間で滴下し、滴下終了後、45℃で24時間反応させた。 Next, after heating using an oil bath until the temperature in the flask reached 35 ° C., 312.7 parts by mass of diethylamine was added dropwise over 30 minutes using a dropping device. Reacted for hours.
 反応終了後、赤外分光光度計(FT/IR-460Plus、日本分光株式会社製)を用いて、反応生成物のエポキシ基に起因する842cm-1付近の吸収ピークが消失していることを確認し、3級アミノ基を有するポリオール(Y)(アミン当量211g/eq、水酸基当量211g/eq)を得た。 After completion of the reaction, using an infrared spectrophotometer (FT / IR-460Plus, manufactured by JASCO Corporation), it was confirmed that the absorption peak near 842 cm-1 due to the epoxy group of the reaction product had disappeared. Thus, a polyol (Y) having a tertiary amino group (amine equivalent 211 g / eq, hydroxyl equivalent 211 g / eq) was obtained.
 製造例1(ビニルエステル樹脂組成物(I-1)の合成)
 反応容器にEPICLON N-673(DIC株式会社製、クレゾールノボラック型エポキシ樹脂、固形分エポキシ当量209g/eq、不揮発分100質量%)1040質量部、アクリル酸369.3質量部、メトキノン2.2質量部、トリフェニルホスフィン5.2質量部を加え、反応温度115℃下で酸価が1.5以下になるまで反応させた。
Production Example 1 (Synthesis of vinyl ester resin composition (I-1))
In a reaction vessel, EPICLON N-673 (manufactured by DIC Corporation, cresol novolac type epoxy resin, solid content epoxy equivalent 209 g / eq, nonvolatile content 100% by mass) 1040 parts by mass, acrylic acid 369.3 parts by mass, methoquinone 2.2 parts by mass And 5.2 parts by mass of triphenylphosphine were added and reacted at a reaction temperature of 115 ° C. until the acid value was 1.5 or less.
 次いで、前記反応物を80℃以下に冷却した後、メチルエチルケトン472.2質量部を仕込み、均一に混合することで、不揮発分75質量%のビニルエステル樹脂組成物(I-1)を調製した。 Next, after the reaction product was cooled to 80 ° C. or less, 472.2 parts by mass of methyl ethyl ketone was charged and mixed uniformly to prepare a vinyl ester resin composition (I-1) having a nonvolatile content of 75% by mass.
 製造例2(ビニルエステル樹脂組成物(I-2)の合成)
 EPICLON N-673(DIC株式会社製、クレゾールノボラック型エポキシ樹脂、固形分エポキシ当量209g/eq、不揮発分100質量%)の代わりにEPICLON N-740(DIC株式会社製、フェノールノボラック型エポキシ樹脂、固形分エポキシ当量180g/eq、不揮発分100質量%)1040質量部、アクリル酸369.3質量部の代わりにアクリル酸428.8質量部、メチルエチルケトン472.2質量部の代わりにメチルエチルケトン492.1質量部を使用したこと以外は製造例1と同様の方法で、不揮発分75質量%のビニルエステル樹脂組成物(I-2)を調製した。
Production Example 2 (Synthesis of vinyl ester resin composition (I-2))
EPICLON N-673 (manufactured by DIC Corporation, cresol novolac type epoxy resin, solid content epoxy equivalent 209 g / eq, nonvolatile content 100% by mass) EPICLON N-740 (manufactured by DIC Corporation, phenol novolak type epoxy resin, solid (Epoxy equivalent 180 g / eq, nonvolatile content 100% by mass) 1040 parts by mass, acrylic acid 369.2 parts by mass instead of acrylic acid 428.8 parts by mass, methyl ethyl ketone 472.2 parts by mass methyl ethyl ketone 492.1 parts by mass A vinyl ester resin composition (I-2) having a nonvolatile content of 75% by mass was prepared in the same manner as in Production Example 1 except that was used.
 製造例3(ビニルエステル樹脂組成物(I-3)の合成)
 EPICLON N-673(DIC株式会社製、クレゾールノボラック型エポキシ樹脂、固形分エポキシ当量209g/eq、不揮発分100質量%)の代わりにEPICLON 850S(DIC株式会社製、ビスフェノールA型エポキシ樹脂、固形分エポキシ当量188g/eq、不揮発分100質量%)1040質量部、アクリル酸369.3質量部の代わりにアクリル酸410.6質量部、メチルエチルケトン472.2質量部の代わりにメチルエチルケトン486質量部を使用したこと以外は製造例1と同様の方法で、不揮発分75質量%のビニルエステル樹脂組成物(I-3)を調製した。
Production Example 3 (Synthesis of vinyl ester resin composition (I-3))
EPICLON 850S (made by DIC Corporation, bisphenol A type epoxy resin, solid content epoxy) instead of EPICLON N-673 (made by DIC Corporation, cresol novolac type epoxy resin, solid content epoxy equivalent 209 g / eq, nonvolatile content 100 mass%) Equivalent 188 g / eq, non-volatile content 100% by mass) 1040 parts by mass, 410.6 parts by mass of acrylic acid instead of 369.3 parts by mass of acrylic acid, and 486 parts by mass of methyl ethyl ketone instead of 472.2 parts by mass of methyl ethyl ketone A vinyl ester resin composition (I-3) having a nonvolatile content of 75% by mass was prepared in the same manner as in Production Example 1 except for the above.
 製造例4(ビニルエステル樹脂組成物(I-4)の合成)
 アクリル酸369.3質量部の代わりにアクリル酸221.6質量部及びメタクリル酸176.5質量部を使用し、メチルエチルケトン472.2質量部の代わりにメチルエチルケトン481.8質量部を使用したこと以外は製造例1と同様の方法で、不揮発分75質量%のビニルエステル樹脂組成物(I-4)を調製した。
Production Example 4 (Synthesis of vinyl ester resin composition (I-4))
Except for using 221.6 parts by weight of acrylic acid and 176.5 parts by weight of methacrylic acid instead of 369.3 parts by weight of acrylic acid, and using 481.8 parts by weight of methyl ethyl ketone instead of 472.2 parts by weight of methyl ethyl ketone. A vinyl ester resin composition (I-4) having a nonvolatile content of 75% by mass was prepared in the same manner as in Production Example 1.
 製造例5(ビニルエステ樹脂組成物(I-5)の合成)
 EPICLON N-673(DIC株式会社製、クレゾールノボラック型エポキシ樹脂、固形分エポキシ当量=209g/eq、不揮発分=100質量%)の代わりにDENACOL EX-614B(ナガセケムテック株式会社製、ソルビトールポリグリシジルエーテル、固形分エポキシ当量=171g/eq、不揮発分100質量%)1040質量部、アクリル酸369.3質量部の代わりにアクリル酸451.4質量部、メチルエチルケトン472.2質量部の代わりにメチルエチルケトン499.6質量部を使用したこと以外は製造例1と同様の方法で、不揮発分75質量%のビニルエステル樹脂組成物(I-5)を調製した。
Production Example 5 (Synthesis of vinyl ester resin composition (I-5))
Instead of EPICLON N-673 (manufactured by DIC Corporation, cresol novolac type epoxy resin, solid content epoxy equivalent = 209 g / eq, nonvolatile content = 100% by mass), DENACOL EX-614B (manufactured by Nagase Chemtech Co., Ltd., sorbitol polyglycidyl) Ether, solid content epoxy equivalent = 171 g / eq, non-volatile content 100% by mass) 1040 parts by mass, acrylic acid 451.4 parts by mass instead of acrylic acid 369.3 parts by mass, methyl ethyl ketone 4799 parts by mass instead of methyl ethyl ketone 499 A vinyl ester resin composition (I-5) having a nonvolatile content of 75% by mass was prepared in the same manner as in Production Example 1, except that .6 parts by mass was used.
 製造例6(ビニルエステル樹脂組成物(I-6)の合成)
 製造例1と同様の方法で得られたビニルエステル樹脂組成物(I-1)1889質量部と、544.9質量部のLATEMUL E-118B(花王株式会社製、ポリオキシエチレンアルキルエーテル硫酸ナトリウム、不揮発分26質量%)とを均一に混合した。次に、イオン交換水2288.6質量部を1時間かけて投入し、減圧下、30~50℃にてメチルエチルケトンを除去することによって、イオン交換水中にビニルエステル樹脂が分散した不揮発分50質量%のビニルエステル樹脂組成物(I-6)を得た。
Production Example 6 (Synthesis of vinyl ester resin composition (I-6))
1889 parts by mass of vinyl ester resin composition (I-1) obtained by the same method as in Production Example 1 and 544.9 parts by mass of LATEMUL E-118B (manufactured by Kao Corporation, sodium polyoxyethylene alkyl ether sulfate, And 26% by mass of non-volatile content) were uniformly mixed. Next, 2288.6 parts by mass of ion-exchanged water is added over 1 hour, and methyl ethyl ketone is removed at 30 to 50 ° C. under reduced pressure, whereby the non-volatile content of 50% by mass in which the vinyl ester resin is dispersed in the ion-exchanged water. A vinyl ester resin composition (I-6) was obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ・EPICLON N-673(DIC株式会社製、クレゾールノボラック型エポキシ樹脂、固形分エポキシ当量209g/eq、不揮発分100質量%)
 ・EPICLON N-740(DIC株式会社製、フェノールノボラック型エポキシ樹脂、固形分エポキシ当量180g/eq、不揮発分100質量%)
 ・EPICLON 850S(DIC株式会社製、ビスフェノールA型エポキシ樹脂、固形分エポキシ当量188g/eq、不揮発分100質量%)
 ・DENACOL EX-614B(ナガセケムテック株式会社製、ソルビトールポリグリシジルエーテル、固形分エポキシ当量171g/eq、不揮発分100質量%)
 ・LATEMUL E-118B(花王株式会社製、ポリオキシエチレンアルキルエーテル硫酸ナトリウム、不揮発分26質量%)
 製造例7(アニオン性基を有するウレタン樹脂組成物(II-1)の調製)
 合成例1で得たポリエステルポリオール(X)633.6質量部を反応容器に供給し、減圧下、100℃で加熱することによって脱水した。
EPICLON N-673 (manufactured by DIC Corporation, cresol novolac type epoxy resin, solid content epoxy equivalent 209 g / eq, nonvolatile content 100% by mass)
EPICLON N-740 (manufactured by DIC Corporation, phenol novolac type epoxy resin, solid content epoxy equivalent 180 g / eq, nonvolatile content 100% by mass)
EPICLON 850S (manufactured by DIC Corporation, bisphenol A type epoxy resin, solid content epoxy equivalent 188 g / eq, nonvolatile content 100% by mass)
・ DENACOL EX-614B (manufactured by Nagase Chemtech Co., Ltd., sorbitol polyglycidyl ether, solid content epoxy equivalent 171 g / eq, nonvolatile content 100% by mass)
・ LATEMUL E-118B (manufactured by Kao Corporation, sodium polyoxyethylene alkyl ether sulfate, nonvolatile content: 26% by mass)
Production Example 7 (Preparation of Urethane Resin Composition (II-1) Having Anionic Group)
633.6 parts by mass of the polyester polyol (X) obtained in Synthesis Example 1 was supplied to a reaction vessel and dehydrated by heating at 100 ° C. under reduced pressure.
 次に、反応容器内の温度を80℃に調整した後、メチルエチルケトン139.1質量部、N-メチル-2-ピロリドン418.4質量部を供給し均一になるよう撹拌した。 Next, after adjusting the temperature in the reaction vessel to 80 ° C., 139.1 parts by mass of methyl ethyl ketone and 418.4 parts by mass of N-methyl-2-pyrrolidone were supplied and stirred uniformly.
 次に、前記反応容器に2,2-ジメチロールプロピオン酸50質量部を加え、イソホロンジイソシアネート153.3質量部、オクチル酸第一錫0.4質量部を加えて、80℃で12時間反応させた。 Next, 50 parts by mass of 2,2-dimethylolpropionic acid is added to the reaction vessel, and 153.3 parts by mass of isophorone diisocyanate and 0.4 parts by mass of stannous octylate are added and reacted at 80 ° C. for 12 hours. It was.
 ウレタン樹脂の製造に使用した原料の合計質量に対するイソシアネート基の質量割合(イソシアネート値)が0.1質量%以下になったのを確認した後、n-ブタノール3質量部を加え、さらに2時間反応させた後、50℃まで冷却することによって、アニオン性基を有するウレタン樹脂組成物(II-1)を得た。 After confirming that the mass ratio of the isocyanate group (isocyanate value) to the total mass of the raw materials used for the production of the urethane resin was 0.1 mass% or less, 3 parts by mass of n-butanol was added, and the reaction was continued for 2 hours. Then, the resultant was cooled to 50 ° C. to obtain a urethane resin composition (II-1) having an anionic group.
 製造例8(アニオン性基を有するウレタン樹脂組成物(II-2)の調製)
 前記ポリエステルポリオール(X)の代わりに、1,6-ヘキサンジオールと1,4-ブタンジオールとジメチルカーボネートとを反応させて得られるポリカーボネートポリオール(水酸基当量1000g/eq)を使用したこと以外は、製造例7と同様の方法でアニオン性基を有するウレタン樹脂組成物(II-2)を得た。
Production Example 8 (Preparation of urethane resin composition (II-2) having an anionic group)
Manufactured except that polycarbonate polyol (hydroxyl equivalent: 1000 g / eq) obtained by reacting 1,6-hexanediol, 1,4-butanediol and dimethyl carbonate was used instead of the polyester polyol (X). A urethane resin composition (II-2) having an anionic group was obtained in the same manner as in Example 7.
 製造例9(カチオン性基を有するウレタン樹脂組成物(II-3)の調製)
 反応容器で前記ポリエステルポリオール(X)531.6質量部を反応容器に供給し、減圧下、で加熱することによって脱水した。
Production Example 9 (Preparation of urethane resin composition (II-3) having a cationic group)
In a reaction vessel, 531.6 parts by mass of the polyester polyol (X) was supplied to the reaction vessel and dehydrated by heating under reduced pressure.
 次に、反応容器内の温度を80℃に調整した後、1,4-ブタンジオール30.6質量部、メチルエチルケトン204.1質量部、N-メチル-2-ピロリドン311.2質量部を供給し均一になるよう撹拌した。 Next, after adjusting the temperature in the reaction vessel to 80 ° C., 30.6 parts by mass of 1,4-butanediol, 204.1 parts by mass of methyl ethyl ketone, and 311.2 parts by mass of N-methyl-2-pyrrolidone were supplied. Stir to be uniform.
 次に、合成例2で得た3級アミノ基を有するポリオール(Y)15.6質量部を加え、イソホロンジイソシアネート145.7質量部、オクチル酸第一錫0.4質量部を加えて、80℃で12時間反応させた。 Next, 15.6 parts by mass of the polyol (Y) having a tertiary amino group obtained in Synthesis Example 2 was added, 145.7 parts by mass of isophorone diisocyanate, and 0.4 parts by mass of stannous octylate were added. The reaction was carried out at 20 ° C. for 12 hours.
 次に、ポリエチレングリコールモノメチルエーテル(水酸基価28.05)54.5質量部を加えて反応を4時間継続させた。前記ウレタン樹脂の製造に使用した原料の合計質量に対するイソシアネート基の質量割合(イソシアネート値)が0.1質量%以下になったのを確認した後、n-ブタノール3質量部を加え、さらに2時間反応させた後、50℃まで冷却することによって、カチオン性基を有するポリウレタン樹脂組成物(II-3)を得た。 Next, 54.5 parts by mass of polyethylene glycol monomethyl ether (hydroxyl value 28.05) was added, and the reaction was continued for 4 hours. After confirming that the mass ratio of isocyanate groups (isocyanate value) to the total mass of the raw materials used for the production of the urethane resin was 0.1 mass% or less, 3 parts by mass of n-butanol was added, and further 2 hours After the reaction, the polyurethane resin composition (II-3) having a cationic group was obtained by cooling to 50 ° C.
 製造例10(ポリオキシエチレン構造を有するアクリル樹脂組成物(II-4)の調製)
 M-90G(新中村化学工業株式会社製、メトキシポリエチレングリコールメタクリレート、エチレンオキサイドの付加モル数9モル)250質量部、メタクリル酸メチル200質量部、メタクリル酸シクロヘキシル50質量部にメチルエチルケトン300質量部、N-メチル-2-ピロリドン200質量部及びアゾイソブチロニトリル25質量部を含む混合物を調製した。
Production Example 10 (Preparation of acrylic resin composition (II-4) having a polyoxyethylene structure)
M-90G (manufactured by Shin-Nakamura Chemical Co., Ltd., methoxypolyethylene glycol methacrylate, 9 moles of added ethylene oxide) 250 parts by mass, methyl methacrylate 200 parts by mass, cyclohexyl methacrylate 50 parts by mass, methyl ethyl ketone 300 parts by mass, N A mixture containing 200 parts by weight of methyl-2-pyrrolidone and 25 parts by weight of azoisobutyronitrile was prepared.
 前記混合物の25質量%を反応容器に仕込み、80℃に昇温した。 -25% by mass of the mixture was charged in a reaction vessel and heated to 80 ° C.
 次に、窒素雰囲気下、攪拌しながら混合物の残りの75質量%を3時間かけて、滴下した。この際、反応容器内の温度は80℃に保った。 Next, the remaining 75 mass% of the mixture was added dropwise over 3 hours with stirring in a nitrogen atmosphere. At this time, the temperature in the reaction vessel was kept at 80 ° C.
 滴下終了後、アゾイソブチロニトリル5質量部添加し、さらに80℃で5時間反応することによって、不揮発分50質量%のポリオキシエチレン構造を有するアクリル樹脂組成物(II-4)を得た。 After completion of the dropwise addition, 5 parts by mass of azoisobutyronitrile was added, and the mixture was further reacted at 80 ° C. for 5 hours to obtain an acrylic resin composition (II-4) having a polyoxyethylene structure having a nonvolatile content of 50% by mass. .
 製造例11(アニオン性基を有するポリエステル樹脂組成物(II-5)の調製)
 180℃に調製した反応容器に、エチレングリコール558質量部(8.99モル)、ジエチレングリコール478質量部(4.50モル)、テレフタル酸896質量部(5.39モル)、イソフタル酸478質量部(2.88モル)、ブチルヒドロキシ錫オキシド0.5質量部を仕込み4時間かけて240℃まで昇温し、その後、240℃で反応させることによって、約260質量部の溜出液をトラップした。
Production Example 11 (Preparation of polyester resin composition having an anionic group (II-5))
In a reaction vessel prepared at 180 ° C., 558 parts by mass of ethylene glycol (8.99 mol), 478 parts by mass of diethylene glycol (4.50 mol), 896 parts by mass of terephthalic acid (5.39 mol), 478 parts by mass of isophthalic acid ( 2.88 mol), 0.5 part by mass of butylhydroxytin oxide was charged, the temperature was raised to 240 ° C. over 4 hours, and then reacted at 240 ° C. to trap about 260 parts by mass of distillate.
 反応容器内を180℃に調整した後、5-ナトリウムスルホイソフタル酸ジメチル213質量部(0.72モル)、テトライソプロピルチタネート0.5質量部を仕込み、更に、260℃まで昇温し水銀柱2.0mmの減圧下で1時間重縮合反応し、さらに、N-メチル-2-ピロリドン200質量部とを混合し、ゆっくりと攪拌することによって不揮発分100質量%であるアニオン性基を有するポリエステル樹脂組成物(II-5)を得た。 After adjusting the inside of the reaction vessel to 180 ° C., 213 parts by mass (0.72 mol) of dimethyl 5-sodium sulfoisophthalate and 0.5 parts by mass of tetraisopropyl titanate were added, and the temperature was raised to 260 ° C. Polyester resin composition having an anionic group having a non-volatile content of 100 mass% by polycondensation reaction for 1 hour under reduced pressure of 0 mm, further mixing with 200 mass parts of N-methyl-2-pyrrolidone and slowly stirring The product (II-5) was obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2中の「ポリエステルポリオール(X)」は、合成例1で得たポリエステルポリオールを表す。「ポリカーボネートポリオール」は、1,6-ヘキサンジオールと1,4-ブタンジオールとジメチルカーボネートとを反応させて得られるポリカーボネートポリオール(水酸基当量1000g/eq)を表す。「ポリオール(Y)」は、合成例2で得たポリオールを表す。 “Polyester polyol (X)” in Table 2 represents the polyester polyol obtained in Synthesis Example 1. “Polycarbonate polyol” represents a polycarbonate polyol (hydroxyl equivalent: 1000 g / eq) obtained by reacting 1,6-hexanediol, 1,4-butanediol and dimethyl carbonate. “Polyol (Y)” represents the polyol obtained in Synthesis Example 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3中の「M-90G」は、新中村化学工業株式会社製のメトキシポリエチレングリコールメタクリレート(エチレンオキサイドの付加モル数9モル)を表す。 “M-90G” in Table 3 represents methoxypolyethylene glycol methacrylate (additional mole number of ethylene oxide: 9 mol) manufactured by Shin-Nakamura Chemical Co., Ltd.
 実施例1
 反応容器に、製造例7で得たアニオン性基を有するウレタン樹脂組成物(II-1)1397.8質量部を供給した後、製造例1で得たビニルエステル樹脂組成物(I-1)1115.7質量部と、トリエチルアミン37.7質量部とを供給し、さらにイオン交換水1915質量部をゆっくりと供給しそれらを混合した。
Example 1
After supplying 1397.8 parts by mass of the urethane resin composition (II-1) having an anionic group obtained in Production Example 7 to the reaction vessel, the vinyl ester resin composition (I-1) obtained in Production Example 1 was used. 1115.7 parts by mass and 37.7 parts by mass of triethylamine were supplied, and 1915 parts by mass of ion-exchanged water were slowly supplied to mix them.
 次に、減圧下、30℃~50℃の温度で加熱し、反応容器中のメチルエチルケトンを除去することによって、不揮発分45質量%の水性樹脂組成物(III-1)を調製した。 Next, an aqueous resin composition (III-1) having a nonvolatile content of 45% by mass was prepared by heating under reduced pressure at a temperature of 30 ° C. to 50 ° C. to remove methyl ethyl ketone in the reaction vessel.
 実施例2
 反応容器に、前記アニオン性基を有するウレタン樹脂組成物(II-1)1397.8質量部を供給した後、前記ビニルエステル樹脂組成物(I-1)2603.6質量部と、トリエチルアミン37.7質量部とを供給し、さらにイオン交換水3933.7質量部をゆっくりと供給しそれらを混合した。
Example 2
After supplying 1397.8 parts by mass of the urethane resin composition (II-1) having an anionic group to a reaction vessel, 2603.6 parts by mass of the vinyl ester resin composition (I-1), and 37. 7 parts by mass, and 3933.7 parts by mass of ion-exchanged water were slowly supplied to mix them.
 次に、減圧下、30℃~50℃の温度で加熱し、反応容器中のメチルエチルケトンを除去することによって、不揮発分50質量%の水性樹脂組成物(III-2)を調製した。 Next, heating was performed at a temperature of 30 ° C. to 50 ° C. under reduced pressure to remove methyl ethyl ketone in the reaction vessel, thereby preparing an aqueous resin composition (III-2) having a nonvolatile content of 50% by mass.
 実施例3
 反応容器に、前記アニオン性基を有するウレタン樹脂組成物(II-1)1397.8質量部を供給した後、前記ビニルエステル樹脂組成物(I-1)3347.5質量部と、トリエチルアミン37.7質量部とを供給し、さらにイオン交換水4026質量部をゆっくりと供給しそれらを混合した。
Example 3
After supplying 1397.8 parts by mass of the urethane resin composition (II-1) having an anionic group to a reaction vessel, 3347.5 parts by mass of the vinyl ester resin composition (I-1), and 37. 7 parts by mass and 4026 parts by mass of ion-exchanged water were slowly supplied to mix them.
 次に、減圧下、30℃~50℃の温度で加熱し、反応容器中のメチルエチルケトンを除去することによって、不揮発分50質量%の水性樹脂組成物(III-3)を調製した。 Next, heating was performed at a temperature of 30 ° C. to 50 ° C. under reduced pressure to remove methyl ethyl ketone in the reaction vessel, thereby preparing an aqueous resin composition (III-3) having a nonvolatile content of 50% by mass.
 実施例4
 反応容器に、前記アニオン性基を有するウレタン樹脂組成物(II-1)1397.8質量部を供給した後、前記ビニルエステル樹脂組成物(I-1)600.8質量部と、トリエチルアミン37.7質量部とを供給し、さらにイオン交換水4258.6質量部をゆっくりと供給しそれらを混合した。
Example 4
After supplying 1397.8 parts by mass of the urethane resin composition (II-1) having an anionic group to a reaction vessel, 600.8 parts by mass of the vinyl ester resin composition (I-1), and 37. 7 parts by mass, and 4258.6 parts by mass of ion-exchanged water were slowly supplied to mix them.
 次に、減圧下、30℃~50℃の温度で加熱し、反応容器中のメチルエチルケトンを除去することによって、不揮発分30質量%の水性樹脂組成物(III-4)を調製した。 Next, an aqueous resin composition (III-4) having a nonvolatile content of 30% by mass was prepared by heating under reduced pressure at a temperature of 30 ° C. to 50 ° C. to remove methyl ethyl ketone in the reaction vessel.
 実施例5
 反応容器に、前記アニオン性基を有するウレタン樹脂組成物(II-1)1397.8質量部を供給した後、前記ビニルエステル樹脂組成物(I-1)371.9質量部と、トリエチルアミン37.7質量部とを供給し、さらにイオン交換水4758.9質量部をゆっくりと供給しそれらを混合した。
Example 5
After supplying 1397.8 parts by mass of the urethane resin composition (II-1) having an anionic group to a reaction vessel, 371.9 parts by mass of the vinyl ester resin composition (I-1) and 37. 7 parts by mass, and 4758.9 parts by mass of ion-exchanged water were slowly supplied to mix them.
 次に、減圧下、30℃~50℃の温度で加熱し、反応容器中のメチルエチルケトンを除去することによって、不揮発分25質量%の水性樹脂組成物(III-5)を調製した。 Next, an aqueous resin composition (III-5) having a nonvolatile content of 25% by mass was prepared by heating under reduced pressure at a temperature of 30 ° C. to 50 ° C. to remove methyl ethyl ketone in the reaction vessel.
 実施例6
 ビニルエステル樹脂組成物(I-1)の代わりに、製造例2で得たビニルエステル樹脂組成物(I-2)を使用したこと以外は、実施例2と同様の方法で、不揮発分50質量%の水性樹脂組成物(III-6)を調製した。
Example 6
A non-volatile content of 50 mass by the same method as in Example 2 except that instead of the vinyl ester resin composition (I-1), the vinyl ester resin composition (I-2) obtained in Production Example 2 was used. % Aqueous resin composition (III-6) was prepared.
 実施例7
 ビニルエステル樹脂組成物(I-1)の代わりに、製造例3で得たビニルエステル樹脂組成物(I-3)を使用したこと以外は、実施例2と同様の方法で、不揮発分50質量%の水性樹脂組成物(III-7)を調製した。
Example 7
A non-volatile content of 50 mass by the same method as in Example 2 except that instead of the vinyl ester resin composition (I-1), the vinyl ester resin composition (I-3) obtained in Production Example 3 was used. % Aqueous resin composition (III-7) was prepared.
 実施例8
 ビニルエステル樹脂組成物(I-1)の代わりに、製造例4で得たビニルエステル樹脂組成物(I-4)を使用したこと以外は、実施例2と同様の方法で、不揮発分50質量%の水性樹脂組成物(III-8)を調製した。
Example 8
A non-volatile content of 50 mass by the same method as in Example 2 except that instead of the vinyl ester resin composition (I-1), the vinyl ester resin composition (I-4) obtained in Production Example 4 was used. % Aqueous resin composition (III-8) was prepared.
 実施例9
 反応容器に、製造例8で得たアニオン性基を有するウレタン樹脂組成物(II-2)1397.8質量部を供給した後、前記ビニルエステル樹脂組成物(I-1)2603.6質量部と、トリエチルアミン37.7質量部とを供給し、さらにイオン交換水3933.7質量部をゆっくりと供給しそれらを混合した。
Example 9
After supplying 1397.8 parts by mass of the urethane resin composition (II-2) having an anionic group obtained in Production Example 8 to the reaction vessel, 2603.6 parts by mass of the vinyl ester resin composition (I-1) Then, 37.7 parts by mass of triethylamine was supplied, and 3933.7 parts by mass of ion-exchanged water was slowly supplied to mix them.
 次に、減圧下、30℃~50℃の温度で加熱し、反応容器中のメチルエチルケトンを除去することによって、不揮発分50質量%の水性樹脂組成物(III-9)を調製した。 Next, an aqueous resin composition (III-9) having a nonvolatile content of 50% by mass was prepared by heating under reduced pressure at a temperature of 30 ° C. to 50 ° C. to remove methyl ethyl ketone in the reaction vessel.
 実施例10
 反応容器に、製造例9で得たカチオン性基を有するポリウレタン樹脂組成物(II-3)1296.6質量部を供給した後、前記ビニルエステル樹脂組成物(I-1)2420.3質量部と、89質量%オルトリン酸8.1質量部とを供給し、さらにイオン交換水5523質量部をゆっくりと供給しそれらを混合した。
Example 10
After supplying 1296.6 parts by mass of the polyurethane resin composition (II-3) having a cationic group obtained in Production Example 9 to the reaction vessel, 2420.3 parts by mass of the vinyl ester resin composition (I-1) And 8.1 parts by mass of 89% by mass orthophosphoric acid, and 5523 parts by mass of ion-exchanged water were slowly supplied to mix them.
 次に、減圧下、30℃~50℃の温度で加熱し、反応容器中のメチルエチルケトンを除去することによって、不揮発分40質量%の水性樹脂組成物(III-10)を調製した。 Next, heating was performed at a temperature of 30 ° C. to 50 ° C. under reduced pressure to remove methyl ethyl ketone in the reaction vessel, thereby preparing an aqueous resin composition (III-10) having a nonvolatile content of 40% by mass.
 実施例11
 反応容器に、製造例10で得たポリオキシエチレン構造を有するアクリル樹脂組成物(II-4)1000質量部を供給した後、前記ビニルエステル樹脂組成物(I-1)1555.5質量部と、イオン交換水2595質量部とを供給しそれらを混合した。
Example 11
After supplying 1000 parts by mass of the acrylic resin composition (II-4) having a polyoxyethylene structure obtained in Production Example 10 to a reaction vessel, 1555.5 parts by mass of the vinyl ester resin composition (I-1) Then, 2595 parts by mass of ion-exchanged water were supplied and mixed.
 次に、減圧下、30℃~50℃の温度で加熱し、反応容器中のメチルエチルケトンを除去することによって、不揮発分50質量%の水性樹脂組成物(III-11)を調製した。 Next, an aqueous resin composition (III-11) having a nonvolatile content of 50% by mass was prepared by heating at a temperature of 30 ° C. to 50 ° C. under reduced pressure to remove methyl ethyl ketone in the reaction vessel.
 実施例12
 反応容器に、製造例11で得たポリエステル樹脂組成物(II-5)400質量部を供給した後、前記ビニルエステル樹脂組成物(I-1)266.7質量部を供給し均一になるまで攪拌した。
Example 12
After supplying 400 parts by mass of the polyester resin composition (II-5) obtained in Production Example 11 to the reaction vessel, supply 266.7 parts by mass of the vinyl ester resin composition (I-1) until uniform. Stir.
 次に、イオン交換水1000質量部を1時間かけて供給し、30℃~50℃の温度で加熱し、反応容器中のメチルエチルケトンを除去することによって、不揮発分45質量%の水性樹脂組成物(III-12)を得た。 Next, 1000 parts by mass of ion-exchanged water is supplied over 1 hour, heated at a temperature of 30 ° C. to 50 ° C., and methyl ethyl ketone in the reaction vessel is removed, whereby an aqueous resin composition having a nonvolatile content of 45% by mass ( III-12) was obtained.
 比較例1
 ビニルエステル樹脂組成物(I-1)の代わりに製造例5で得たビニルエステル樹脂組成物(I-5)を使用したこと以外は、実施例2と同様の方法で、不揮発分50質量%の水性樹脂組成物(III’-1)を調製した。
Comparative Example 1
A non-volatile content of 50% by mass was obtained in the same manner as in Example 2 except that the vinyl ester resin composition (I-5) obtained in Production Example 5 was used instead of the vinyl ester resin composition (I-1). Aqueous resin composition (III′-1) was prepared.
 比較例2
 前記アニオン性基を有するウレタン樹脂組成物(II-1)697.3質量部と、トリエチルアミン18.8質量部とを混合し、次いでイオン交換水2092質量部をゆっくりと供給した後、製造例6で得たビニルエステル樹脂組成物(I-6)1948.2質量部を供給し撹拌した。
Comparative Example 2
After mixing 697.3 parts by mass of the urethane resin composition (II-1) having an anionic group and 18.8 parts by mass of triethylamine, 2092 parts by mass of ion-exchanged water was slowly supplied, and then Production Example 6 1948.2 parts by mass of the vinyl ester resin composition (I-6) obtained in 1 above was supplied and stirred.
 次に、減圧下で、30℃~50℃の温度で加熱し、反応容器中のメチルエチルケトンを除去することによって、不揮発分50質量%の水性樹脂組成物(III’-2)を調製した。 Next, an aqueous resin composition (III′-2) having a nonvolatile content of 50% by mass was prepared by heating under reduced pressure at a temperature of 30 ° C. to 50 ° C. to remove methyl ethyl ketone in the reaction vessel.
 比較例3
 前記アニオン性基を有するウレタン樹脂組成物(II-1)1397.8質量部と、トリエチルアミン37.7質量部とを混合し、次いでイオン交換水4184質量部をゆっくりと供給した後、減圧下、30℃~50℃で加熱し、反応容器中のメチルエチルケトンを除去することによって、不揮発分20質量%の水性樹脂組成物(III’-3)を調製した。
Comparative Example 3
After mixing 1397.8 parts by mass of the urethane resin composition having an anionic group (II-1) and 37.7 parts by mass of triethylamine, 4184 parts by mass of ion-exchanged water was slowly supplied, An aqueous resin composition (III′-3) having a nonvolatile content of 20% by mass was prepared by heating at 30 ° C. to 50 ° C. to remove methyl ethyl ketone in the reaction vessel.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例13
 前記水性樹脂組成物(III-1)100質量部と、20質量%エチレンジアミン水溶液を11.9質量部とを混合することによって、硬化剤を含有する水性樹脂組成物を得た。
Example 13
An aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III-1) and 11.9 parts by mass of a 20% by mass ethylenediamine aqueous solution.
 この硬化剤を含有する水性樹脂組成物を、ポリエチレンテレフタレートからなるフィルム上に、硬化塗膜の膜厚が5μmとなるよう塗布し、100℃で5分間乾燥することよって硬化塗膜を得た。 The aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 μm, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
 実施例14
 前記水性樹脂組成物(III-1)100質量部と、10質量%ピペラジン水溶液を34.0質量部とを混合することによって、硬化剤を含有する水性樹脂組成物を得た。
Example 14
An aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III-1) and 34.0 parts by mass of a 10% by mass piperazine aqueous solution.
 この硬化剤を含有する水性樹脂組成物を、ポリエチレンテレフタレートからなるフィルム上に、硬化塗膜の膜厚が5μmとなるよう塗布し、100℃で5分間乾燥することよって硬化塗膜を得た。 The aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 μm, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
 実施例15
 前記水性樹脂組成物(III-2)100質量部と、20質量%エチレンジアミン水溶液18.5質量部とを混合することによって、硬化剤を含有する水性樹脂組成物を得た。
この硬化剤を含有する水性樹脂組成物を、ポリエチレンテレフタレートからなるフィルム上に、硬化塗膜の膜厚が5μmとなるよう塗布し、100℃で5分間乾燥することよって硬化塗膜を得た。
Example 15
An aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III-2) and 18.5 parts by mass of a 20% by mass aqueous ethylenediamine solution.
The aqueous resin composition containing this curing agent was applied onto a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 μm, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
 実施例16
 前記水性樹脂組成物(III-3)100質量部と、20質量%エチレンジアミン水溶液19.8質量部とを混合することによって、硬化剤を含有する水性樹脂組成物を得た。
Example 16
An aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III-3) and 19.8 parts by mass of a 20% by mass ethylenediamine aqueous solution.
 この硬化剤を含有する水性樹脂組成物を、ポリエチレンテレフタレートからなるフィルム上に、硬化塗膜の膜厚が5μmとなるよう塗布し、100℃で5分間乾燥することよって硬化塗膜を得た。 The aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 μm, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
 実施例17
 前記水性樹脂組成物(III-4)100質量部と、20質量%エチレンジアミン水溶液5.5質量部とを混合することによって、硬化剤を含有する水性樹脂組成物を得た。
Example 17
By mixing 100 parts by mass of the aqueous resin composition (III-4) and 5.5 parts by mass of a 20% by mass ethylenediamine aqueous solution, an aqueous resin composition containing a curing agent was obtained.
 この硬化剤を含有する水性樹脂組成物を、ポリエチレンテレフタレートからなるフィルム上に、硬化塗膜の膜厚が5μmとなるよう塗布し、100℃で5分間乾燥することよって硬化塗膜を得た。 The aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 μm, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
 実施例18
 前記水性樹脂組成物(III-5)100質量部と、20質量%エチレンジアミン水溶液3.3質量部とを混合することによって、硬化剤を含有する水性樹脂組成物を得た。
Example 18
An aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III-5) with 3.3 parts by mass of a 20% by mass ethylenediamine aqueous solution.
 この硬化剤を含有する水性樹脂組成物を、ポリエチレンテレフタレートからなるフィルム上に、硬化塗膜の膜厚が5μmとなるよう塗布し、100℃で5分間乾燥することよって硬化塗膜を得た。 The aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 μm, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
 実施例19
 前記水性樹脂組成物(III-6)100質量部と、20質量%エチレンジアミン水溶液20.6質量部とを混合することによって、硬化剤を含有する水性樹脂組成物を得た。
Example 19
An aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III-6) with 20.6 parts by mass of a 20% by mass ethylenediamine aqueous solution.
 この硬化剤を含有する水性樹脂組成物を、ポリエチレンテレフタレートからなるフィルム上に、硬化塗膜の膜厚が5μmとなるよう塗布し、100℃で5分間乾燥することよって硬化塗膜を得た。 The aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 μm, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
 実施例20
 前記水性樹脂組成物(III-7)100質量部と、20質量%エチレンジアミン水溶液20.0質量部とを混合することによって、硬化剤を含有する水性樹脂組成物を得た。
Example 20
An aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III-7) and 20.0 parts by mass of a 20% by mass ethylenediamine aqueous solution.
 この硬化剤を含有する水性樹脂組成物を、ポリエチレンテレフタレートからなるフィルム上に、硬化塗膜の膜厚が5μmとなるよう塗布し、100℃で5分間乾燥することよって硬化塗膜を得た。 The aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 μm, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
 実施例21
 前記水性樹脂組成物(III-8)100質量部と、20質量%エチレンジアミン水溶液18.1質量部とを混合することによって、硬化剤を含有する水性樹脂組成物を得た。
Example 21
An aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III-8) and 18.1 parts by mass of a 20% by mass aqueous ethylenediamine solution.
 この硬化剤を含有する水性樹脂組成物を、ポリエチレンテレフタレートからなるフィルム上に、硬化塗膜の膜厚が5μmとなるよう塗布し、100℃で5分間乾燥することよって硬化塗膜を得た。 The aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 μm, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
 実施例22
 前記水性樹脂組成物(III-9)100質量部と、20質量%エチレンジアミン水溶液18.5質量部とを混合することによって、硬化剤を含有する水性樹脂組成物を得た。
Example 22
By mixing 100 parts by mass of the aqueous resin composition (III-9) and 18.5 parts by mass of a 20% by mass ethylenediamine aqueous solution, an aqueous resin composition containing a curing agent was obtained.
 この硬化剤を含有する水性樹脂組成物を、ポリエチレンテレフタレートからなるフィルム上に、硬化塗膜の膜厚が5μmとなるよう塗布し、100℃で5分間乾燥することよって硬化塗膜を得た。 The aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 μm, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
 実施例23
 前記水性樹脂組成物(III-10)100質量部と、20質量%エチレンジアミン水溶液14.8質量部とを混合することによって、硬化剤を含有する水性樹脂組成物を得た。
Example 23
An aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III-10) and 14.8 parts by mass of a 20% by mass aqueous ethylenediamine solution.
 この硬化剤を含有する水性樹脂組成物を、ポリエチレンテレフタレートからなるフィルム上に、硬化塗膜の膜厚が5μmとなるよう塗布し、100℃で5分間乾燥することよって硬化塗膜を得た。 The aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 μm, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
 実施例24
 前記水性樹脂組成物(III-11)100質量部と、20質量%エチレンジアミン水溶液18.5質量部とを混合することによって、硬化剤を含有する水性樹脂組成物を得た。
Example 24
An aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III-11) and 18.5 parts by mass of a 20% by mass aqueous ethylenediamine solution.
 この硬化剤を含有する水性樹脂組成物を、ポリエチレンテレフタレートからなるフィルム上に、硬化塗膜の膜厚が5μmとなるよう塗布し、100℃で5分間乾燥することよって硬化塗膜を得た。 The aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 μm, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
 実施例25
 前記水性樹脂組成物(III-12)100質量部に対して、20質量%エチレンジアミン水溶液11.9質量部とを混合することによって、硬化剤を含有する水性樹脂組成物を得た。
Example 25
An aqueous resin composition containing a curing agent was obtained by mixing 11.9 parts by mass of a 20% by mass aqueous ethylenediamine solution with respect to 100 parts by mass of the aqueous resin composition (III-12).
 この硬化剤を含有する水性樹脂組成物を、ポリエチレンテレフタレートからなるフィルム上に、硬化塗膜の膜厚が5μmとなるよう塗布し、100℃で5分間乾燥することよって硬化塗膜を得た。 The aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 μm, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
 実施例26
 製造例7で得たウレタン樹脂組成物(II-1)1397.8質量部に、製造例1で得たビニルエステル樹脂組成物(I-1)1115.7質量部とトリエチルアミン37.7質量部とイルガノックス184(BASF社製の光重合開始剤)25.1質量部とを加え、イオン交換水1915質量部をゆっくりと添加した。次いで、減圧下、30℃~50℃でメチルエチルケトンを除去することによって、不揮発分=45質量%の水性樹脂組成物(III-13)を調製した。
Example 26
In addition to 1397.8 parts by mass of the urethane resin composition (II-1) obtained in Production Example 7, 1115.7 parts by mass of the vinyl ester resin composition (I-1) obtained in Production Example 1 and 37.7 parts by mass of triethylamine. And 25.1 parts by mass of Irganox 184 (BASF photopolymerization initiator) were added, and 1915 parts by mass of ion-exchanged water were slowly added. Subsequently, methyl ethyl ketone was removed at 30 ° C. to 50 ° C. under reduced pressure to prepare an aqueous resin composition (III-13) having a nonvolatile content of 45% by mass.
 前記水性樹脂組成物(III-13)を、ポリエチレンテレフタレートからなるフィルム上に、硬化塗膜の膜厚が5μmとなるよう塗布し、100℃で5分間乾燥した。その塗布面に、高圧水銀灯を光源として、照射強度500mJ/cmで紫外線を照射することによって、硬化塗膜を得た。 The aqueous resin composition (III-13) was applied onto a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 μm, and dried at 100 ° C. for 5 minutes. The coated surface was irradiated with ultraviolet rays at an irradiation intensity of 500 mJ / cm 2 using a high-pressure mercury lamp as a light source to obtain a cured coating film.
 比較例4
 前記水性樹脂組成物(III’-1)100質量部と、20質量%エチレンジアミン水溶液を21.3質量部とを混合することによって、硬化剤を含有する水性樹脂組成物を得た。
Comparative Example 4
An aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III′-1) and 21.3 parts by mass of a 20% by mass ethylenediamine aqueous solution.
 この硬化剤を含有する水性樹脂組成物を、ポリエチレンテレフタレートからなるフィルム上に、硬化塗膜の膜厚が5μmとなるよう塗布し、100℃で5分間乾燥することよって硬化塗膜を得た。 The aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 μm, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
 比較例5
 前記水性樹脂組成物(III’-2)100質量部と、20質量%エチレンジアミン水溶液16.8質量部とを混合することによって、硬化剤を含有する水性樹脂組成物を得た。
Comparative Example 5
An aqueous resin composition containing a curing agent was obtained by mixing 100 parts by mass of the aqueous resin composition (III′-2) and 16.8 parts by mass of a 20% by mass aqueous ethylenediamine solution.
 この硬化剤を含有する水性樹脂組成物を、ポリエチレンテレフタレートからなるフィルム上に、硬化塗膜の膜厚が5μmとなるよう塗布し、100℃で5分間乾燥することよって硬化塗膜を得た。 The aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 μm, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
 比較例6
 前記水性樹脂組成物(III’-3)100質量部と、BECKAMINE J-101(DIC株式会社製 メラミン系硬化剤、不揮発分=80質量%)5.0質量部とを混合することによって、硬化剤を含有する水性樹脂組成物を得た。
Comparative Example 6
Cured by mixing 100 parts by mass of the aqueous resin composition (III′-3) and 5.0 parts by mass of BECKAMINE J-101 (Melamine-based curing agent, non-volatile content = 80% by mass, manufactured by DIC Corporation). An aqueous resin composition containing an agent was obtained.
 この硬化剤を含有する水性樹脂組成物を、ポリエチレンテレフタレートからなるフィルム上に、硬化塗膜の膜厚が5μmとなるよう塗布し、100℃で5分間乾燥することよって硬化塗膜を得た。 The aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 μm, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
 比較例7
 前記水性樹脂組成物(III’-3)100質量部と、DENACOL EX-614B(ナガセケムテック株式会社製、ソルビトールポリグリシジルエーテル、固形分エポキシ当量=171g/eq、不揮発分=100質量%)1.6質量部とを混合することによって、硬化剤を含有する水性樹脂組成物を得た。
Comparative Example 7
100 parts by mass of the aqueous resin composition (III′-3) and DENACOL EX-614B (manufactured by Nagase Chemtech Co., Ltd., sorbitol polyglycidyl ether, solid content epoxy equivalent = 171 g / eq, nonvolatile content = 100% by mass) 1 An aqueous resin composition containing a curing agent was obtained by mixing 6 parts by mass.
 この硬化剤を含有する水性樹脂組成物を、ポリエチレンテレフタレートからなるフィルム上に、硬化塗膜の膜厚が5μmとなるよう塗布し、100℃で5分間乾燥することよって硬化塗膜を得た。 The aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 μm, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
 比較例8
 前記水性樹脂組成物(III’-3)100質量部と、AQUANATE 210(日本ポリウレタン工業株式会社製、NCO基含有量=16.5重量%、不揮発分=100質量%)4.0質量部とを混合することによって、硬化剤を含有する水性樹脂組成物を得た。
Comparative Example 8
100 parts by mass of the aqueous resin composition (III′-3) and 4.0 parts by mass of AQUANATE 210 (manufactured by Nippon Polyurethane Industry Co., Ltd., NCO group content = 16.5% by weight, nonvolatile content = 100% by mass) Was mixed to obtain an aqueous resin composition containing a curing agent.
 この硬化剤を含有する水性樹脂組成物を、ポリエチレンテレフタレートからなるフィルム上に、硬化塗膜の膜厚が5μmとなるよう塗布し、100℃で5分間乾燥することよって硬化塗膜を得た。 The aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 μm, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
 比較例9
 前記水性樹脂組成物(III’-3)100質量部に対して、EPOCROSS WS-700(株式会社日本触媒製、オキサゾリン価(固形分)=220g/eq、不揮発分=25質量%)7.8質量部とを混合することによって、硬化剤を含有する水性樹脂組成物を得た。
Comparative Example 9
EPOCROSS WS-700 (manufactured by Nippon Shokubai Co., Ltd., oxazoline number (solid content) = 220 g / eq, nonvolatile content = 25% by mass) 7.8 with respect to 100 parts by mass of the aqueous resin composition (III′-3) An aqueous resin composition containing a curing agent was obtained by mixing with parts by mass.
 この硬化剤を含有する水性樹脂組成物を、ポリエチレンテレフタレートからなるフィルム上に、硬化塗膜の膜厚が5μmとなるよう塗布し、100℃で5分間乾燥することよって硬化塗膜を得た。 The aqueous resin composition containing this curing agent was applied on a film made of polyethylene terephthalate so that the thickness of the cured coating film was 5 μm, and dried at 100 ° C. for 5 minutes to obtain a cured coating film.
 [耐溶剤性1の評価方法]
 100質量%のエタノールをしみこませた綿棒を用い、前記で得た硬化塗膜の表面を約0.3kgの圧力で30回擦過した。前記擦過後の硬化塗膜の表面を目視で観察し、以下の評価基準に従って評価した。
[Evaluation method of solvent resistance 1]
Using a cotton swab soaked with 100% by mass of ethanol, the surface of the cured coating film obtained above was rubbed 30 times at a pressure of about 0.3 kg. The surface of the cured coating film after rubbing was visually observed and evaluated according to the following evaluation criteria.
 ◎:擦過前後で、塗膜表面の変化が全くなかった。 ◎: There was no change in the coating surface before and after rubbing.
 ○:擦過前後で塗膜表面に、ごく僅かな白化や傷が確認できたが、十分な透明性を維持しており実用上問題ないレベルであった。 ○: Slight whitening and scratches could be confirmed on the surface of the coating film before and after rubbing, but sufficient transparency was maintained and the level was not problematic in practice.
 △:擦過前後で塗膜表面に明確な白化及び傷が確認でき、透明性の明確な低下が確認できた。 Δ: Clear whitening and scratches could be confirmed on the coating surface before and after rubbing, and a clear decrease in transparency could be confirmed.
 ×:塗膜表面が溶解し、ポリエチレンテレフタレートからなるフィルムの表面が確認できた。 X: The surface of the coating film was dissolved, and the surface of the film made of polyethylene terephthalate was confirmed.
 [耐溶剤性2の評価方法]
 前記で得た硬化塗膜の表面に、JIS S 6037に規定するマーキングペンの黒、赤、青、それぞれのペン先を押しつけ、ペン先の広い幅の辺に対して直角の方向に、毎秒約150mmの速さで動かし、前記塗膜表面に、線幅が約2cmの線を、互いに接するよう3本引くことによって、塗膜表面の約36cmの範囲を塗りつぶした。
[Evaluation method of solvent resistance 2]
The marking pen black, red, and blue pen tips specified in JIS S 6037 are pressed against the surface of the cured coating obtained as described above, and approximately every second in a direction perpendicular to the wide side of the pen tip. The film was moved at a speed of 150 mm, and three lines having a line width of about 2 cm were drawn on the surface of the coating film so as to be in contact with each other, thereby filling an area of about 36 cm 2 on the surface of the coating film.
 前記塗りつぶした後、常温の環境下に18時間放置した塗膜の表面を、石油ベンジンとエタノールとを1:1の質量比で含有する混合溶媒を浸した清潔なガーゼを用いて拭き、皮膜表面に付着したマーキングペンのインクをふき取った。次いで、前記塗膜表面を乾燥した清潔なガーゼを用いて軽く拭き、更に1時間室温で放置した。 After coating, the surface of the coating film left for 18 hours in a room temperature environment is wiped with a clean gauze dipped in a mixed solvent containing petroleum benzine and ethanol at a mass ratio of 1: 1, and the coating surface The ink of the marking pen adhered to the surface was wiped off. Next, the surface of the coating film was lightly wiped with a clean dry gauze and allowed to stand for 1 hour at room temperature.
 前記放置後の硬化塗膜表面を、拡散昼光の下で目視によって観察し、試験前の硬化塗膜と比較して硬化塗膜の色・つやの変化及び膨れの有無を目視評価した。 The surface of the cured coating film after standing was visually observed under diffuse daylight, and the color and gloss of the cured coating film and the presence or absence of swelling were visually evaluated as compared with the cured coating film before the test.
 ◎:色のかすれ、つやの低下等の色及びつやの変化が全く認められなかった。 ◎: No change in color and gloss such as fading of color and reduction in gloss was observed.
 ○:前記色及びつやの変化がごく僅かに認められたが、実用上問題ないレベルであった。 ○: The above-mentioned color and gloss were slightly changed, but the level was not problematic for practical use.
 △:前記色及びつやの変化が、硬化塗膜の約4cmの範囲の約半分の範囲で認められた。 (Triangle | delta): The said color and the change of gloss were recognized in about the half range of the range of about 4 cm < 2 > of a cured coating film.
 ×:前記色及びつやの変化が非常に顕著に認められ、実用上問題があるレベルであった。 X: The change of the color and gloss was recognized remarkably, and there was a problem in practical use.
 [耐水性1の評価方法]
 前記実施例及び比較例で得た硬化塗膜を、水中に40℃×24時間浸漬した後、前記硬化塗膜の表面を目視で観察し、以下の評価基準に従って評価した。
[Evaluation method of water resistance 1]
The cured coating films obtained in the examples and comparative examples were immersed in water at 40 ° C. for 24 hours, and then the surface of the cured coating film was visually observed and evaluated according to the following evaluation criteria.
 ◎:浸漬前後で、硬化塗膜の表面の変化が全くなかった。 A: There was no change in the surface of the cured coating film before and after immersion.
 ○:浸漬前後で、硬化塗膜の表面に、ごく僅かな白化や傷が確認できたが、十分な透明性を維持しており実用上問題ないレベルであった。 ◯: Slight whitening and scratches were confirmed on the surface of the cured coating film before and after immersion, but sufficient transparency was maintained and it was at a level with no practical problems.
 △:浸漬前後で、硬化塗膜の表面に明確な白化及び傷が確認でき、透明性の明確な低下が確認できた。 Δ: Clear whitening and scratches were confirmed on the surface of the cured coating film before and after immersion, and a clear decrease in transparency was confirmed.
 ×:浸漬前後で、硬化塗膜の表面に明確な白化及び傷が確認でき、透明性の著しい低下が確認できた。 X: Clear whitening and scratches were confirmed on the surface of the cured coating film before and after immersion, and a significant decrease in transparency was confirmed.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8中の略称は以下のとおりである。 The abbreviations in Table 8 are as follows.
 ・BECKAMINE J-101(DIC株式会社製 メラミン系硬化剤、不揮発分80質量%)
 ・DENACOL EX-614B(ナガセケムテック株式会社製、ソルビトールポリグリシジルエーテル、固形分エポキシ当量171g/eq、不揮発分100質量%)
 ・AQUANATE 210(日本ポリウレタン工業株式会社製、NCO基含有量16.5質量%、不揮発分100質量%)
 ・EPOCROSS WS-700(株式会社日本触媒製、オキサゾリン価(固形分)220g/eq、不揮発分25質量%)
 実施例13~16で得られた水性樹脂組成物であれば、いずれも優れた耐溶剤性と耐水性とを備えた塗膜を形成することができた。
・ BECKAMINE J-101 (Melamine-based curing agent by DIC Corporation, non-volatile content: 80% by mass)
・ DENACOL EX-614B (manufactured by Nagase Chemtech Co., Ltd., sorbitol polyglycidyl ether, solid content epoxy equivalent 171 g / eq, nonvolatile content 100% by mass)
-AQUANATE 210 (manufactured by Nippon Polyurethane Industry Co., Ltd., NCO group content 16.5% by mass, nonvolatile content 100% by mass)
EPOCROSS WS-700 (manufactured by Nippon Shokubai Co., Ltd., oxazoline number (solid content) 220 g / eq, nonvolatile content 25% by mass)
Any of the aqueous resin compositions obtained in Examples 13 to 16 could form a coating film having excellent solvent resistance and water resistance.
 また、ビニルエステル樹脂(a1)と前記重合体(a2)との質量割合を変更した実施例17及び18で得た水性樹脂組成物もまた、良好な耐溶剤性及び耐水性を備えた塗膜を形成することができた。 In addition, the aqueous resin compositions obtained in Examples 17 and 18 in which the mass ratio of the vinyl ester resin (a1) and the polymer (a2) was changed are also coating films having good solvent resistance and water resistance. Could be formed.
 また、エポキシ樹脂としてフェノールノボラック樹脂を用いて得られた実施例19記載の水性樹脂組成物であれば、優れた耐溶剤性と耐水性とを備えた塗膜を形成することができた。エポキシ樹脂としてビスフェノールA型エポキシ樹脂を用いて得られた実施例20記載の水性樹脂組成物であれば、良好な耐溶剤性と、優れた耐水性とを備えた塗膜を形成することができた。 In addition, the aqueous resin composition described in Example 19 obtained using a phenol novolac resin as an epoxy resin could form a coating film having excellent solvent resistance and water resistance. The aqueous resin composition described in Example 20 obtained using a bisphenol A type epoxy resin as an epoxy resin can form a coating film having good solvent resistance and excellent water resistance. It was.
 また、アクリル酸及びメタクリル酸を組み合わせ使用することによって得られたビニルエステル樹脂を含有する実施例21記載の水性樹脂組成物は、ある程度良好な耐溶剤性及び耐水性に優れた塗膜を形成することができた。 In addition, the aqueous resin composition described in Example 21 containing a vinyl ester resin obtained by using a combination of acrylic acid and methacrylic acid forms a coating film with a certain degree of good solvent resistance and water resistance. I was able to.
 また、前記重合体(a2)の組成を変更した実施例22~25記載の水性樹脂組成物であれば、優れた耐溶剤性と耐水性とを備えた塗膜を形成することができた。 Further, with the aqueous resin composition described in Examples 22 to 25 in which the composition of the polymer (a2) was changed, a coating film having excellent solvent resistance and water resistance could be formed.
 光重合開始剤を用いた実施例26記載の水性樹脂組成物であれば、良好な耐溶剤性と優れた耐水性とを備えた塗膜を形成することができた。 With the aqueous resin composition described in Example 26 using a photopolymerization initiator, a coating film having good solvent resistance and excellent water resistance could be formed.
 一方、ノボラック型エポキシ樹脂及びビスフェノール型エポキシ樹脂の代わりに、ソルビトールポリグリシジルエーテルを用いて得られた比較例4記載の水性樹脂組成物では、ある程度良好な耐水性を備えた塗膜を形成できたものの、優れた耐溶剤性を備えた塗膜を形成することはできなかった。 On the other hand, in the aqueous resin composition described in Comparative Example 4 obtained by using sorbitol polyglycidyl ether instead of the novolak type epoxy resin and bisphenol type epoxy resin, it was possible to form a coating film having a certain degree of good water resistance. However, a coating film having excellent solvent resistance could not be formed.
 また、LATEMUL E-118B(花王株式会社製、ポリオキシエチレンアルキルエーテル硫酸ナトリウム)を用いたことによって、エポキシ樹脂(a1-1)と重合体(a2)とが水性媒体(B)中でそれぞれ独立して分散した比較例5記載の水性樹脂組成物では、特に耐水性に優れた塗膜を形成することができなかった。 Further, by using LATEMUL E-118B (manufactured by Kao Corporation, sodium polyoxyethylene alkyl ether sulfate), the epoxy resin (a1-1) and the polymer (a2) are independent from each other in the aqueous medium (B). In the aqueous resin composition described in Comparative Example 5 dispersed in this manner, it was not possible to form a coating film particularly excellent in water resistance.
 また、エポキシ樹脂(a1-1)を使用せずに得た比較例6~9記載の水性樹脂組成物では、良好な耐溶剤性及び耐水性とを備えた塗膜を形成することができなかった。 Further, the aqueous resin compositions described in Comparative Examples 6 to 9 obtained without using the epoxy resin (a1-1) cannot form a coating film having good solvent resistance and water resistance. It was.

Claims (6)

  1. ノボラック型エポキシ樹脂及びビスフェノール型エポキシ樹脂からなる群より選ばれる1種以上のエポキシ樹脂(a1-1)と、酸基及び重合性不飽和基を有する単量体(a1-2)とを反応させて得られるビニルエステル樹脂(a1)が、親水性基を有する重合体(a2)によって水性媒体(B)中に分散されたものであることを特徴とする水性樹脂組成物。 One or more epoxy resins (a1-1) selected from the group consisting of novolak-type epoxy resins and bisphenol-type epoxy resins are reacted with a monomer (a1-2) having an acid group and a polymerizable unsaturated group. An aqueous resin composition, wherein the vinyl ester resin (a1) obtained in this manner is dispersed in an aqueous medium (B) with a polymer (a2) having a hydrophilic group.
  2. 前記重合体(a2)が、ウレタン樹脂、ポリエステル樹脂及びアクリル樹脂からなる群より選ばれる1種以上である請求項1に記載の水性樹脂組成物。 2. The aqueous resin composition according to claim 1, wherein the polymer (a2) is one or more selected from the group consisting of a urethane resin, a polyester resin, and an acrylic resin.
  3. 前記ビニルエステル樹脂(a1)の一部または全部が、前記重合体(a2)粒子に内在し複合樹脂粒子(A)を形成したものである請求項1に記載の水性樹脂組成物。 The aqueous resin composition according to claim 1, wherein a part or all of the vinyl ester resin (a1) is present in the polymer (a2) particles to form composite resin particles (A).
  4. ビニルエステル樹脂(a1)と前記重合体(a2)との質量割合[ビニルエステル樹脂(a1)/重合体(a2)]が70/30~20/80の範囲である請求項1に記載の水性樹脂組成物。 The aqueous solution according to claim 1, wherein the mass ratio [vinyl ester resin (a1) / polymer (a2)] of the vinyl ester resin (a1) and the polymer (a2) is in the range of 70/30 to 20/80. Resin composition.
  5. さらに架橋剤(C)としてポリアミンを含むものである請求項1に記載の水性樹脂組成物。 Furthermore, the aqueous resin composition of Claim 1 which contains a polyamine as a crosslinking agent (C).
  6. 請求項5に記載の水性樹脂組成物を70℃~150℃で加熱することによって、前記ビニルエステル樹脂(a1)と、前記ポリアミンとをマイケル付加反応させて得られる硬化物。 A cured product obtained by Michael addition reaction of the vinyl ester resin (a1) and the polyamine by heating the aqueous resin composition according to claim 5 at 70 ° C to 150 ° C.
PCT/JP2013/053244 2012-03-22 2013-02-12 Aqueous resin composition and cured article WO2013140893A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013528415A JP5360337B1 (en) 2012-03-22 2013-02-12 Aqueous resin composition and cured product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012065405 2012-03-22
JP2012-065405 2012-03-22

Publications (1)

Publication Number Publication Date
WO2013140893A1 true WO2013140893A1 (en) 2013-09-26

Family

ID=49222358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053244 WO2013140893A1 (en) 2012-03-22 2013-02-12 Aqueous resin composition and cured article

Country Status (3)

Country Link
JP (1) JP5360337B1 (en)
TW (1) TW201348327A (en)
WO (1) WO2013140893A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035749A1 (en) * 2014-09-06 2016-03-10 三菱樹脂株式会社 Coated film
WO2016047431A1 (en) * 2014-09-24 2016-03-31 三菱樹脂株式会社 Coated film
KR20160099584A (en) * 2013-12-20 2016-08-22 디아이씨 가부시끼가이샤 Coating agent and laminate
JP2017014307A (en) * 2015-06-26 2017-01-19 Dic株式会社 Aqueous resin composition, and laminate and article using the same
JP2017179049A (en) * 2016-03-29 2017-10-05 関西ペイント株式会社 Water-based paint composition for can inner surface
JP2018104489A (en) * 2016-12-22 2018-07-05 Dic株式会社 Aqueous epoxy resin composition, fiber sizing agent, fiber material, molding material, and coating agent
CN109810442A (en) * 2019-01-24 2019-05-28 广州秀珀化工涂料有限公司 MMA- vinyl guide brick and preparation method thereof
JP2021008623A (en) * 2016-07-26 2021-01-28 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. Multilayer curable composition containing 1,1-double activated vinyl compound product and related method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101798745B1 (en) * 2016-01-19 2017-12-12 도레이첨단소재 주식회사 Polyester film for optical use

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325509A (en) * 1995-03-29 1996-12-10 Dainippon Ink & Chem Inc Thermosetting type aqueous composition for coating metal
JPH09263625A (en) * 1996-03-28 1997-10-07 Dainippon Ink & Chem Inc Ordinary temperature-drying type aqueous composition
JPH10251611A (en) * 1997-03-11 1998-09-22 Dainippon Ink & Chem Inc Aqueous resin composition for bonding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325509A (en) * 1995-03-29 1996-12-10 Dainippon Ink & Chem Inc Thermosetting type aqueous composition for coating metal
JPH09263625A (en) * 1996-03-28 1997-10-07 Dainippon Ink & Chem Inc Ordinary temperature-drying type aqueous composition
JPH10251611A (en) * 1997-03-11 1998-09-22 Dainippon Ink & Chem Inc Aqueous resin composition for bonding

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160099584A (en) * 2013-12-20 2016-08-22 디아이씨 가부시끼가이샤 Coating agent and laminate
KR102254872B1 (en) * 2013-12-20 2021-05-25 디아이씨 가부시끼가이샤 Coating agent and laminate
JP2016055464A (en) * 2014-09-06 2016-04-21 三菱樹脂株式会社 Laminated film
KR20160101088A (en) * 2014-09-06 2016-08-24 미쓰비시 쥬시 가부시끼가이샤 Coated film
WO2016035749A1 (en) * 2014-09-06 2016-03-10 三菱樹脂株式会社 Coated film
KR101865070B1 (en) * 2014-09-06 2018-06-07 미쯔비시 케미컬 주식회사 Coated film
KR101893786B1 (en) * 2014-09-24 2018-08-31 미쯔비시 케미컬 주식회사 Coated film
WO2016047431A1 (en) * 2014-09-24 2016-03-31 三菱樹脂株式会社 Coated film
JP2016064517A (en) * 2014-09-24 2016-04-28 三菱樹脂株式会社 Lamination film
KR20160102013A (en) * 2014-09-24 2016-08-26 미쓰비시 쥬시 가부시끼가이샤 Coated film
JP2017014307A (en) * 2015-06-26 2017-01-19 Dic株式会社 Aqueous resin composition, and laminate and article using the same
JP2017179049A (en) * 2016-03-29 2017-10-05 関西ペイント株式会社 Water-based paint composition for can inner surface
JP2021008623A (en) * 2016-07-26 2021-01-28 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. Multilayer curable composition containing 1,1-double activated vinyl compound product and related method
US11583891B2 (en) 2016-07-26 2023-02-21 Ppg Industries Ohio, Inc. Multi-layer curable compositions containing 1,1-di-activated vinyl compound products and related processes
JP2018104489A (en) * 2016-12-22 2018-07-05 Dic株式会社 Aqueous epoxy resin composition, fiber sizing agent, fiber material, molding material, and coating agent
CN109810442A (en) * 2019-01-24 2019-05-28 广州秀珀化工涂料有限公司 MMA- vinyl guide brick and preparation method thereof

Also Published As

Publication number Publication date
JPWO2013140893A1 (en) 2015-08-03
JP5360337B1 (en) 2013-12-04
TW201348327A (en) 2013-12-01

Similar Documents

Publication Publication Date Title
JP5360337B1 (en) Aqueous resin composition and cured product
JP5257804B1 (en) Film-forming aid, aqueous resin composition containing the same, and steel sheet surface treatment agent
JP6249137B2 (en) Aqueous urethane resin composition and article
TWI782938B (en) Water-based resin composition, laminate using same, optical film and image display device
WO2015019899A1 (en) Aqueous resin composition, laminate produced using same, and image display device
JP4956384B2 (en) Protective film for display screen and manufacturing method thereof
WO2019004349A1 (en) Urethane resin composition, steel sheet surface treatment agent, and steel sheet having coating film of same
JP6071028B2 (en) Laminate and optical film
JP2011515502A (en) Water-based coating composition and multilayer coating film forming method
JP5273308B2 (en) Aqueous composite resin composition and article
JP6544612B2 (en) Aqueous resin composition, coating agent and article
JP2018104535A (en) Aqueous resin composition, coating agent and article
JP5590406B2 (en) Aqueous urethane resin composition, coating agent, steel sheet surface treatment agent, cured product and laminate
JP6464652B2 (en) Aqueous resin composition, coating agent and optical film
JP6069980B2 (en) Aqueous composite resin composition and article
JP6623744B2 (en) Aqueous resin composition, laminate and article using the same
JP2017014307A (en) Aqueous resin composition, and laminate and article using the same
JP5447313B2 (en) Urethane resin composition and molded product obtained using the same
JPH08157770A (en) Water-base coating composition for coating wood
JP2008285651A (en) Crosslinkable organopolysiloxane composition, aqueous coating composition and method of forming its coating film, and article coated with the same coating composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013528415

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764536

Country of ref document: EP

Kind code of ref document: A1