WO2013140877A1 - Continuous gas reaction device, and continuous dissolved gas reaction device - Google Patents

Continuous gas reaction device, and continuous dissolved gas reaction device Download PDF

Info

Publication number
WO2013140877A1
WO2013140877A1 PCT/JP2013/052665 JP2013052665W WO2013140877A1 WO 2013140877 A1 WO2013140877 A1 WO 2013140877A1 JP 2013052665 W JP2013052665 W JP 2013052665W WO 2013140877 A1 WO2013140877 A1 WO 2013140877A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reaction
continuous
tank
solid slurry
Prior art date
Application number
PCT/JP2013/052665
Other languages
French (fr)
Japanese (ja)
Inventor
慶展 辰巳
健三朗 近藤
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Priority to CN201380015875.2A priority Critical patent/CN104203398A/en
Priority to KR1020147026622A priority patent/KR20140144191A/en
Publication of WO2013140877A1 publication Critical patent/WO2013140877A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/80Semi-solid phase processes, i.e. by using slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/80Destroying solid waste or transforming solid waste into something useful or harmless involving an extraction step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series

Definitions

  • the present invention relates to a continuous gas reactor and the like, and in particular, has a small and simple configuration, can continuously and mass-treat a workpiece, and suppress the generation of scale and its growth in subsequent processes.
  • the present invention relates to a continuous gas reactor that can be used.
  • incineration ash generated in municipal waste incineration facilities, etc. contains a large amount of carbon, so it is recycled as a raw material for cement.
  • it contains a large amount of calcium, so it is necessary for the recycling process. It dissolves in the water-washing desalination facility, which causes a scaling failure, leading to a reduction in equipment operation rate and an increase in maintenance costs.
  • Patent Document 1 discloses a method of recycling a salt-containing powder such as incinerated ash by adopting a batch type dissolved gas reactor as a part of a processing system.
  • the batch type dissolved gas reactor 21 adds water W to the waste A such as incinerated ash in the dissolution tank 22 to form a solid slurry S, and the salt contained in the waste A is converted into water.
  • the solid slurry S is brought into contact with the specific gas G in the batch type gas reaction tank 23 to precipitate the scale component.
  • the reaction product R in the batch type gas reaction tank 23 is supplied to the relay tank 24, the scale components are precipitated in the relay tank 24, and the precipitate P and other components O containing salt content are filtered by the filter 25. To separate the scale components.
  • the batch type dissolved gas reactor 21 performs each step of dissolution, reaction, and filtration one by one in this order, the processing efficiency is considerably inferior compared to the continuous type. Therefore, if it is going to process a to-be-processed object in large quantities using the batch type dissolved gas reaction apparatus 21, each apparatus, such as a reaction tank, must be made large.
  • the batch type dissolved gas reaction device 21 deposits the scale component under the uniform conditions in the entire batch type gas reaction tank 23, even when the reaction state in the tank is not uniform, the batch type dissolved gas reaction apparatus 21 is individually selected according to the state. Thus, there is a risk that efficient operation may be hindered, such as excessively performing unnecessary processing.
  • the present invention has been made in view of the above-described problem, and has a small and simple configuration, enables continuous and large-scale processing of an object to be processed, and previously introduces a substance that induces scale. It is an object of the present invention to provide a continuous gas reaction apparatus and the like that can be reacted and precipitated to suppress the generation of scale and the growth thereof in a later step.
  • the present invention is a gas reaction apparatus in which a plurality of reaction vessels are connected in series, and a solid slurry or a liquid and a gas are reacted in each reaction vessel. According to the reaction, the gas diffusion state in each reaction tank is changed.
  • a general reaction tank is simply connected in a plurality of stages in series, a small and simple configuration can be realized.
  • the workpieces can be processed continuously, so that the same amount of workpieces can be processed even if the apparatus scale is reduced.
  • by changing the gas diffusion state in each reaction tank according to the reaction in each reaction tank it is possible to optimize the treatment mode and the type of gas in the tank. It is possible to suppress excessive processing and use of aeration gas, and further increase the processing efficiency of the object to be processed.
  • the gas diffused state can be changed by changing one or more selected from the flow rate, bubble diameter, and type of the diffused gas.
  • a diffuser panel or gas supply device with a large aeration capacity for the upstream tank where the reaction speed is fast, and aeration capacity for the downstream tank where the reaction speed is slow.
  • the desired amount of reactants can be more stable. Can be generated.
  • the solid slurry or the liquid and the gas may react with each other to induce a scale.
  • the substance that induces the scale can be reacted in advance and deposited as a reactant, it is possible to suppress the generation and growth of the scale in the equipment in the subsequent process.
  • the present invention also provides a continuous dissolution gas comprising a dissolution tank for producing a solid slurry or liquid, and a gas reaction tank that is connected in series in a plurality of stages and that reacts the solid slurry or liquid produced in the dissolution tank with gas.
  • the reaction apparatus is characterized in that the gas diffused state in each reaction tank is changed according to the reaction in each reaction tank.
  • the generated solid slurry or liquid and gas can be reacted while generating a solid slurry or liquid in the reaction tank without providing a dissolution tank in the previous stage of the reaction tank. .
  • the gas diffusion state by changing one or more selected from the flow rate, bubble diameter and type of the gas to be diffused.
  • the solid slurry or liquid and the gas may be made to react with each other to induce a scale.
  • the present invention provides a gas reaction method in which a solid slurry or a liquid and a gas are reacted in a reaction vessel connected in series in a plurality of stages, and in each reaction vessel according to a reaction in each reaction vessel. It is characterized by changing the state of gas diffusion.
  • the present invention is a dissolved gas reaction method in which a solid slurry or liquid is generated in a dissolution tank, and the solid slurry or liquid generated in the dissolution tank is reacted in a reaction tank connected in a plurality of stages in series.
  • the gas diffused state in each reaction tank is changed according to the reaction in each reaction tank.
  • the generated solid slurry or liquid can be reacted with the gas while generating the solid slurry or liquid in the reaction tank without providing a dissolution tank in the previous stage of the reaction tank.
  • the present invention has a small and simple configuration, enables continuous and large-scale processing of an object to be processed, and allows a substance that induces a scale to react in advance and precipitate, It is possible to provide a continuous gas reaction apparatus and the like that can suppress the generation of scale and the growth thereof in a later process.
  • FIG. 1 is an overall configuration diagram showing an embodiment of a continuous dissolved gas reaction apparatus according to the present invention. It is a whole block diagram which shows an example of the conventional batch type dissolved gas reaction apparatus.
  • exhaust gas cement kiln exhaust gas
  • FIG. 1 shows an embodiment of a continuous dissolved gas reaction apparatus according to the present invention.
  • This continuous dissolved gas reaction apparatus 1 includes a dissolution tank 2, a continuous gas reaction tank 3, a filter 5 and the like. Composed.
  • the dissolution tank 2 includes a stirring blade or the like in the tank, and is provided to add water W to the incineration ash A to form a solid slurry S, and to dissolve the salt contained in the incineration ash A in water.
  • the continuous gas reaction tank 3 is composed of four stages of reaction tanks 3A to 3D arranged in series.
  • Each of the reaction tanks 3A to 3D has an air diffuser (not shown) on the bottom and a gas supply device (not shown). (Not shown), and is configured such that the solid slurry S moves from the reaction tank 3A toward the reaction tank 3D in an overflow manner.
  • the gas supply device can adjust the amount of gas supplied into the tank, and can adjust the bubble diameter of the gas blown into the tank by the diffuser.
  • the filter 5 is provided for solid-liquid separation of the reaction product R generated in the continuous gas reaction tank 3 into a solid component P such as calcium carbonate and a liquid component O containing salt.
  • Incinerated ash A and water W are charged into the dissolution tank 2, mixed and stirred to produce a solid slurry S, and then the solid slurry S is supplied from the upper end of the first reaction tank 3A.
  • the salt contained in the incineration ash A is dissolved in water.
  • the exhaust gas G1 is introduced from a diffuser installed on the bottom surface of the first reaction tank 3A using a gas supply device.
  • the exhaust gas G1 When the exhaust gas G1 is blown into the solid slurry S, the exhaust gas G1 becomes countless bubbles and rises in the solid slurry S, and efficiently contacts with the solid slurry S supplied from the upper part of the tank.
  • the calcium content in S reacts with the carbon dioxide in the exhaust gas G1 to produce calcium carbonate.
  • the solid slurry S is continuously supplied from the dissolution tank 2, when the capacity of the first reaction tank 3A is exceeded, the excess overflows and flows to the downstream second reaction tank 3B.
  • the exhaust gas G2 is introduced from the diffuser provided on the bottom surface, and calcium carbonate is generated.
  • the concentration of calcium ions contained therein is naturally lower than that in the first reaction tank 3A. . Therefore, since the reaction speed is also slow, a diffuser panel and a gas supply device installed in the second reaction tank 3B need only have a low aeration capacity compared to that used for the first reaction tank 3A.
  • each of the reaction tanks 3A to 3D may have a lower air diffusion capability such as a diffuser board, which can reduce the scale of the apparatus and the amount of the diffused gas.
  • the bubble diameter of the gas ejected from the diffuser installed in each of the reaction tanks 3A to 3D and the gas supply amount from the gas supply device may be fixed to predetermined values in advance.
  • the gas bubble diameter and the supply amount are changed each time according to the change. Therefore, a desired feedback system can be used, and a desired reaction can be performed more stably.
  • new functions such as changing the type of gas to be supplied or adding chemicals depending on the reaction state in each of the reaction tanks 3A to 3D Can also be added.
  • the slurry-like reaction product R produced in the continuous gas reaction tank 3 is solid-liquid separated by a filter 5 into a solid component P such as calcium carbonate and a liquid component O containing salt, and is preliminarily calcium carbonate.
  • a solid component P such as calcium carbonate and a liquid component O containing salt
  • each reaction tank 3A to 3D according to the reaction in each reaction tank 3A to 3D.
  • the diffused state of the exhaust gases G1 to G4 in the reactor it is possible to optimize the reaction in each of the reaction tanks 3A to 3D and to suppress the use of unnecessary unnecessary diffused gas, etc. This can reduce the operating cost.
  • the number of stages of the continuous gas reaction tank 3 is four, but the number of stages is not limited to four as long as it is two or more.
  • the dissolution tank 2 and the continuous gas reaction tank 3 were both provided in the continuous dissolved gas reaction apparatus 1, if the solid slurry S was produced
  • the tank 2 can also be omitted.
  • the solid slurry S is exemplified by a mixture of incineration ash A and water W, and exhaust gas G1 to G4 gas containing carbon dioxide gas.
  • Other substances that react with each other to induce scale can also be treated.
  • the present invention is not limited to processing for preventing scale generation, and can be used for various purposes. Furthermore, it can be used not only for the reaction between the solid slurry and the gas but also for the reaction between the liquid and the gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

[Problem] To provide a continuous gas reaction device and the like having a small, simple structure, capable of continuous and high-volume processing of substances being processed, and capable of suppressing the generation and growth of scales in downstream processes. [Solution] A gas reaction device connecting reaction vessels (3A-3D) in a multiple-stage line, solid slurry (S) or liquid and gas (G1-G4) being caused to react in each reaction vessel, the gas reaction device being a continuous gas reaction apparatus (3) or the like that causes the diffused-air state of the gas to vary in each reaction vessel according to the reaction in each reaction vessel. The variation of the diffused-air state of the gas can be performed by varying at least one of the flow amount of the gas being diffused, the gas-bubble diameter, and the type. The solid slurry or the liquid and gas can also be used as the substance caused to react with each other to induce scales. When solid slurry or liquid must be generated outside the reaction vessel (3), a dissolution vessel (2) may be arranged at the stage before the reaction vessel (3A).

Description

連続式ガス反応装置及び連続式溶解ガス反応装置Continuous gas reactor and continuous dissolved gas reactor
 本発明は、連続式ガス反応装置等に関し、特に、小型で簡単な構成からなり、被処理物の連続的かつ大量処理が可能で、後の工程でのスケールの生成やその成長を抑制することなどが可能な連続式ガス反応装置等に関する。 The present invention relates to a continuous gas reactor and the like, and in particular, has a small and simple configuration, can continuously and mass-treat a workpiece, and suppress the generation of scale and its growth in subsequent processes. The present invention relates to a continuous gas reactor that can be used.
 昨今、産業廃棄物の再資源化が加速的に推進されつつあるが、この産業廃棄物には、リサイクル可能な有益物質が含まれる反面、再資源化工程を非効率なものとする有害物質をも含有する場合が多い。 Recently, recycling of industrial waste is being promoted at an accelerated pace, but this industrial waste contains recyclable beneficial substances, but on the other hand harmful substances that make the recycling process inefficient. Are often included.
 例えば、都市ごみ焼却設備等で発生する焼却灰は炭素分を多く含むことからセメント原燃料等として再資源化されるが、その一方で、カルシウム分も多量に含むため、再資源化工程で必要となる水洗脱塩設備で溶解し、スケーリング障害を引き起こして設備の稼働率低下や保全コストの増大をもたらす。 For example, incineration ash generated in municipal waste incineration facilities, etc. contains a large amount of carbon, so it is recycled as a raw material for cement. On the other hand, it contains a large amount of calcium, so it is necessary for the recycling process. It dissolves in the water-washing desalination facility, which causes a scaling failure, leading to a reduction in equipment operation rate and an increase in maintenance costs.
 その解決手段の代表例が、バッチ式溶解ガス反応装置である(特許文献1参照)。特許文献1は、バッチ式溶解ガス反応装置を処理システムの一部に採用し、焼却灰等の塩含有粉体を再資源化する方法等について開示する。 A typical example of the solution is a batch type dissolved gas reaction apparatus (see Patent Document 1). Patent Document 1 discloses a method of recycling a salt-containing powder such as incinerated ash by adopting a batch type dissolved gas reactor as a part of a processing system.
 このバッチ式溶解ガス反応装置21は、図2に示すように、溶解槽22内で焼却灰等の廃棄物Aに水Wを添加して固体スラリーSとし、廃棄物Aに含まれる塩分を水に溶解させ、固体スラリーSを、バッチ式ガス反応槽23内で特定ガスGと接触させ、スケール成分を析出させる。その後、バッチ式ガス反応槽23での反応生成物Rを中継槽24に供給し、中継槽24内でスケール成分を沈殿させ、ろ過機25で沈殿物Pと、塩分を含むその他の成分Oとに分離してスケール成分を確実に除去する。 As shown in FIG. 2, the batch type dissolved gas reactor 21 adds water W to the waste A such as incinerated ash in the dissolution tank 22 to form a solid slurry S, and the salt contained in the waste A is converted into water. The solid slurry S is brought into contact with the specific gas G in the batch type gas reaction tank 23 to precipitate the scale component. Thereafter, the reaction product R in the batch type gas reaction tank 23 is supplied to the relay tank 24, the scale components are precipitated in the relay tank 24, and the precipitate P and other components O containing salt content are filtered by the filter 25. To separate the scale components.
日本特開2008-229429号公報Japanese Unexamined Patent Publication No. 2008-229429
 しかし、バッチ式溶解ガス反応装置21は、溶解、反応、ろ過の各工程をこの順に一工程づつ行うものであるため、連続式に比べて処理効率がかなり劣る。そのため、バッチ式溶解ガス反応装置21を用いて被処理物を大量に処理しようとすれば、反応槽等の各装置を大掛かりなものとせざるを得ない。 However, since the batch type dissolved gas reactor 21 performs each step of dissolution, reaction, and filtration one by one in this order, the processing efficiency is considerably inferior compared to the continuous type. Therefore, if it is going to process a to-be-processed object in large quantities using the batch type dissolved gas reaction apparatus 21, each apparatus, such as a reaction tank, must be made large.
 また、バッチ式溶解ガス反応装置21は、バッチ式ガス反応槽23内全体で一律条件の下でスケール成分を析出させるため、槽内の反応状態が均一でない場合においても、その状態に応じて個別的に処理態様を見直すなどの対応ができず、結果的に、必要のない処理を過度に施すことになるなど、効率的運用の妨げとなる虞がある。 Moreover, since the batch type dissolved gas reaction device 21 deposits the scale component under the uniform conditions in the entire batch type gas reaction tank 23, even when the reaction state in the tank is not uniform, the batch type dissolved gas reaction apparatus 21 is individually selected according to the state. Thus, there is a risk that efficient operation may be hindered, such as excessively performing unnecessary processing.
 そこで、本発明は、上記解決課題に鑑みてなされたものであって、小型で簡単な構成からなり、被処理物の連続的かつ大量処理を可能とすると共に、スケールを誘発する物質を事前に反応させて析出させることで、後の工程でのスケールの生成やその成長を抑制することなどが可能な連続式ガス反応装置等を提供することを目的とする。 Therefore, the present invention has been made in view of the above-described problem, and has a small and simple configuration, enables continuous and large-scale processing of an object to be processed, and previously introduces a substance that induces scale. It is an object of the present invention to provide a continuous gas reaction apparatus and the like that can be reacted and precipitated to suppress the generation of scale and the growth thereof in a later step.
 上記目的を達成するため、本発明は、反応槽を複数段直列に接続し、該各反応槽内で固体スラリー又は液体とガスとを反応させるガス反応装置であって、該各反応槽での反応に応じて、該各反応槽でのガスの散気状態を変化させることを特徴とする。 In order to achieve the above object, the present invention is a gas reaction apparatus in which a plurality of reaction vessels are connected in series, and a solid slurry or a liquid and a gas are reacted in each reaction vessel. According to the reaction, the gas diffusion state in each reaction tank is changed.
 そして、本発明によれば、一般的な反応槽を複数段直列に接続するのみであるため、小型で簡単な構成を実現することが可能となる。また、従来のバッチ式と異なり、被処理物を連続的に処理できるため、装置規模を小型化しても、従来と同量程度の被処理物を処理できる。さらに、該各反応槽での反応に応じて、該各反応槽でのガスの散気状態を変化させることで、槽内の処理態様やガスの種類を最適化することができるため、必要のない過度な処理や散気ガスの使用を抑えることができ、被処理物の処理効率をさらに高めることができる。 And according to the present invention, since a general reaction tank is simply connected in a plurality of stages in series, a small and simple configuration can be realized. In addition, unlike the conventional batch type, the workpieces can be processed continuously, so that the same amount of workpieces can be processed even if the apparatus scale is reduced. Furthermore, by changing the gas diffusion state in each reaction tank according to the reaction in each reaction tank, it is possible to optimize the treatment mode and the type of gas in the tank. It is possible to suppress excessive processing and use of aeration gas, and further increase the processing efficiency of the object to be processed.
 上記ガス反応装置において、前記ガスの散気状態の変化を、前記散気するガスの流量、気泡径及び種類から選択される一以上を変化させることにより行うことができる。例えば、複数段ある反応槽のうち、反応速度が速い上流側の槽には散気能力の大きい散気盤やガス供給装置を使用し、反応速度が遅くなる下流側の槽には散気能力が小さい散気盤やガス供給装置を使用する。加えて、各反応槽内のpH値等をモニタリングし、その結果に応じて、その下流に位置する反応槽へのガス散気量を増減等すれば、所望の分量の反応物をより安定して生成することができる。 In the gas reaction apparatus, the gas diffused state can be changed by changing one or more selected from the flow rate, bubble diameter, and type of the diffused gas. For example, among the reaction tanks with multiple stages, use a diffuser panel or gas supply device with a large aeration capacity for the upstream tank where the reaction speed is fast, and aeration capacity for the downstream tank where the reaction speed is slow. Use a small diffuser or gas supply. In addition, by monitoring the pH value in each reaction tank and increasing or decreasing the amount of gas diffused into the reaction tank located downstream according to the results, the desired amount of reactants can be more stable. Can be generated.
 上記ガス反応装置において、前記固体スラリー又は前記液体及び前記ガスを、相互に反応してスケールを誘発させる物質とすることもできる。これにより、スケールを誘発させる物質を前もって反応させ、反応物として析出させることができるため、後工程の設備内においてスケールが生成し、成長するのを抑制することが可能となる。 In the gas reaction device, the solid slurry or the liquid and the gas may react with each other to induce a scale. Thereby, since the substance that induces the scale can be reacted in advance and deposited as a reactant, it is possible to suppress the generation and growth of the scale in the equipment in the subsequent process.
 また、本発明は、固体スラリー又は液体を生成する溶解槽と、複数段直列に接続され、前記溶解槽で生成した固体スラリー又は液体とガスとを反応させるガス反応槽とを備える連続式溶解ガス反応装置であって、該各反応槽での反応に応じて、該各反応槽でのガスの散気状態を変化させることを特徴とする。 The present invention also provides a continuous dissolution gas comprising a dissolution tank for producing a solid slurry or liquid, and a gas reaction tank that is connected in series in a plurality of stages and that reacts the solid slurry or liquid produced in the dissolution tank with gas. The reaction apparatus is characterized in that the gas diffused state in each reaction tank is changed according to the reaction in each reaction tank.
 上記連続式溶解ガス反応装置において、反応槽の前段に溶解槽を設けずに、反応槽内で固体スラリー又は液体を生成しながら、該生成した固体スラリー又は液体とガスとを反応させることもできる。 In the above-mentioned continuous dissolved gas reaction apparatus, the generated solid slurry or liquid and gas can be reacted while generating a solid slurry or liquid in the reaction tank without providing a dissolution tank in the previous stage of the reaction tank. .
 上記連続式溶解ガス反応装置によれば、小型で簡単な構成で、装置規模を小型化しても従来と同量程度の被処理物を処理でき、必要のない過度な処理や散気ガスの使用を抑えて被処理物の処理効率をさらに高めることができる。 According to the above-mentioned continuous dissolved gas reaction apparatus, it is possible to process an object to be processed in the same amount as before with a small and simple configuration, and unnecessary processing and use of diffused gas. It is possible to further increase the processing efficiency of the object to be processed.
 前記ガスの散気状態の変化を、前記散気するガスの流量、気泡径及び種類から選択される一以上を変化させることにより行うこともできる。さらに、前記固体スラリー又は液体及び前記ガスとを、相互に反応してスケールを誘発させる物質とすることもできる。 It is also possible to change the gas diffusion state by changing one or more selected from the flow rate, bubble diameter and type of the gas to be diffused. Further, the solid slurry or liquid and the gas may be made to react with each other to induce a scale.
 さらに、本発明は、複数段直列に接続された反応槽において、固体スラリー又は液体とガスとを反応させるガス反応方法であって、該各反応槽での反応に応じて、該各反応槽でのガスの散気状態を変化させることを特徴とする。 Furthermore, the present invention provides a gas reaction method in which a solid slurry or a liquid and a gas are reacted in a reaction vessel connected in series in a plurality of stages, and in each reaction vessel according to a reaction in each reaction vessel. It is characterized by changing the state of gas diffusion.
 また、本発明は、溶解槽で固体スラリー又は液体を生成し、複数段直列に接続された反応槽で、前記溶解槽で生成した固体スラリー又は液体とガスとを反応させる溶解ガス反応方法であって、前記各反応槽での反応に応じて、該各反応槽での該ガスの散気状態を変化させることを特徴とする。 Further, the present invention is a dissolved gas reaction method in which a solid slurry or liquid is generated in a dissolution tank, and the solid slurry or liquid generated in the dissolution tank is reacted in a reaction tank connected in a plurality of stages in series. The gas diffused state in each reaction tank is changed according to the reaction in each reaction tank.
 上記連続式溶解ガス反応方法において、反応槽の前段に溶解槽を設けずに、反応槽内で固体スラリー又は液体を生成しながら、該生成した固体スラリー又は液体とガスとを反応させることもできる。 In the continuous dissolved gas reaction method, the generated solid slurry or liquid can be reacted with the gas while generating the solid slurry or liquid in the reaction tank without providing a dissolution tank in the previous stage of the reaction tank. .
 上記各方法によれば、被処理物の連続的かつ大量処理が可能となると共に、各反応槽内での反応状態に応じて槽内の処理態様やガスの種類を最適化することができ、その結果として、装置規模の縮小やガス使用量の低減、安定的な反応物の生成等が可能となる。 According to each of the above methods, continuous and large-scale processing of the workpiece can be performed, and the processing mode and the type of gas in the tank can be optimized according to the reaction state in each reaction tank, As a result, it is possible to reduce the scale of the apparatus, reduce the amount of gas used, and generate a stable reactant.
 以上のように、本発明によれば、小型で簡単な構成からなり、被処理物の連続的かつ大量処理を可能とすると共に、スケールを誘発する物質を事前に反応させて析出させることで、後の工程でのスケールの生成やその成長を抑制することなどが可能な連続式ガス反応装置等を提供することができる。 As described above, according to the present invention, it has a small and simple configuration, enables continuous and large-scale processing of an object to be processed, and allows a substance that induces a scale to react in advance and precipitate, It is possible to provide a continuous gas reaction apparatus and the like that can suppress the generation of scale and the growth thereof in a later process.
本発明にかかる連続式溶解ガス反応装置の一実施の形態を示す全体構成図である。1 is an overall configuration diagram showing an embodiment of a continuous dissolved gas reaction apparatus according to the present invention. 従来のバッチ式溶解ガス反応装置の一例を示す全体構成図である。It is a whole block diagram which shows an example of the conventional batch type dissolved gas reaction apparatus.
 次に、本発明を実施するための形態について、図面を参照しながら詳細に説明する。尚
、以下の説明においては、焼却灰をスラリー化した後、セメントキルン排ガス(以下「排ガス」という)を用いて処理する場合を例にとって説明する。
Next, an embodiment for carrying out the present invention will be described in detail with reference to the drawings. In the following description, an example will be described in which incineration ash is slurried and then treated using cement kiln exhaust gas (hereinafter referred to as “exhaust gas”).
 図1は、本発明にかかる連続式溶解ガス反応装置の一実施の形態を示し、この連続式溶解ガス反応装置1は、溶解槽2と、連続式ガス反応槽3と、ろ過機5等で構成される。 FIG. 1 shows an embodiment of a continuous dissolved gas reaction apparatus according to the present invention. This continuous dissolved gas reaction apparatus 1 includes a dissolution tank 2, a continuous gas reaction tank 3, a filter 5 and the like. Composed.
 溶解槽2は、槽内に撹拌羽根等を備え、焼却灰Aに水Wを添加して固体スラリーSとし、焼却灰Aに含まれる塩分を水に溶解させるために備えられる。 The dissolution tank 2 includes a stirring blade or the like in the tank, and is provided to add water W to the incineration ash A to form a solid slurry S, and to dissolve the salt contained in the incineration ash A in water.
 連続式ガス反応槽3は、直列に配置された4段の反応槽3A~3Dからなり、各段の反応槽3A~3Dには、底面に散気盤(不図示)と、ガス供給装置(不図示)を備え、オーバーフロー式で反応槽3Aから反応槽3Dに向かって固体スラリーSが移動するように構成される。ガス供給装置は、槽内に供給するガス量を調整することができ、また、散気盤によって、槽内に吹き込むガスの気泡径を調整することができる。 The continuous gas reaction tank 3 is composed of four stages of reaction tanks 3A to 3D arranged in series. Each of the reaction tanks 3A to 3D has an air diffuser (not shown) on the bottom and a gas supply device (not shown). (Not shown), and is configured such that the solid slurry S moves from the reaction tank 3A toward the reaction tank 3D in an overflow manner. The gas supply device can adjust the amount of gas supplied into the tank, and can adjust the bubble diameter of the gas blown into the tank by the diffuser.
 ろ過機5は、連続式ガス反応槽3内で生成した反応生成物Rを、炭酸カルシウム等の固体成分Pと、塩分を含む液体成分Oとに固液分離するために備えられる。 The filter 5 is provided for solid-liquid separation of the reaction product R generated in the continuous gas reaction tank 3 into a solid component P such as calcium carbonate and a liquid component O containing salt.
 次に、上記構成を有する連続式溶解ガス反応装置1の動作について、図1を参照しながら説明する。 Next, the operation of the continuous dissolved gas reaction apparatus 1 having the above configuration will be described with reference to FIG.
 焼却灰Aと水Wとを溶解槽2へ投入し、混合撹拌して固体スラリーSを生成した後、固体スラリーSを第1反応槽3Aの上端から供給する。焼却灰Aに含まれる塩分は、水に溶解する。第1反応槽3A内に固体スラリーSが溜まりはじめると、第1反応槽3Aの底面に設置された散気盤からガス供給装置を用いて排ガスG1を導入する。 Incinerated ash A and water W are charged into the dissolution tank 2, mixed and stirred to produce a solid slurry S, and then the solid slurry S is supplied from the upper end of the first reaction tank 3A. The salt contained in the incineration ash A is dissolved in water. When the solid slurry S begins to accumulate in the first reaction tank 3A, the exhaust gas G1 is introduced from a diffuser installed on the bottom surface of the first reaction tank 3A using a gas supply device.
 排ガスG1が固体スラリーS内に吹き込まれると、排ガスG1は無数の気泡となって固体スラリーS内を上昇し、槽の上部から供給される固体スラリーSと効率良く相互に接触し合い、固体スラリーS中のカルシウム分と排ガスG1中の炭酸ガスとが反応して、炭酸カルシウムが生成される。 When the exhaust gas G1 is blown into the solid slurry S, the exhaust gas G1 becomes countless bubbles and rises in the solid slurry S, and efficiently contacts with the solid slurry S supplied from the upper part of the tank. The calcium content in S reacts with the carbon dioxide in the exhaust gas G1 to produce calcium carbonate.
 固体スラリーSは、溶解槽2から連続的に供給されるため、第1反応槽3Aの容量を超えると、その超過分が溢れ、下流の第2反応槽3Bへと流れる。第2反応槽3Bにおいても、第1反応槽3Aと同様に、その底面に設けられる散気盤から排ガスG2が導入され、炭酸カルシウムが生成される。 Since the solid slurry S is continuously supplied from the dissolution tank 2, when the capacity of the first reaction tank 3A is exceeded, the excess overflows and flows to the downstream second reaction tank 3B. Similarly to the first reaction tank 3A, in the second reaction tank 3B, the exhaust gas G2 is introduced from the diffuser provided on the bottom surface, and calcium carbonate is generated.
 第2反応槽3B内の固体スラリーSは、第1反応槽3A内で既に排ガスG1が導入されているため、そこに含まれるカルシウムイオン濃度は、第1反応槽3A内に比べて当然に低い。従って、反応速度も遅くなるため、第2反応槽3Bに設置する散気盤やガス供給装置は、第1反応槽3Aに使用するものに比べ、散気能力の低いもので足りる。 Since the solid slurry S in the second reaction tank 3B has already introduced the exhaust gas G1 in the first reaction tank 3A, the concentration of calcium ions contained therein is naturally lower than that in the first reaction tank 3A. . Therefore, since the reaction speed is also slow, a diffuser panel and a gas supply device installed in the second reaction tank 3B need only have a low aeration capacity compared to that used for the first reaction tank 3A.
 第1反応槽3Aと第2反応槽3Bの上記関係は、その下流側に接続される第3反応槽3C及び第4反応槽3Dにおいても同様である。従って、各反応槽3A~3Dの下流側の槽ほど散気盤等の散気能力は低いものでよく、これにより、装置規模の縮小や散気ガス量の削減が見込まれる。 The above relationship between the first reaction tank 3A and the second reaction tank 3B is the same in the third reaction tank 3C and the fourth reaction tank 3D connected to the downstream side. Accordingly, the downstream side of each of the reaction tanks 3A to 3D may have a lower air diffusion capability such as a diffuser board, which can reduce the scale of the apparatus and the amount of the diffused gas.
 上記各反応槽3A~3Dに設置される散気盤から噴出するガスの気泡径や、ガス供給装置からのガス供給量は、予め所定の値に固定してもよいが、各反応槽3A~3Dの槽内の固体スラリーSのpH値等をモニタリングし、反応生成物の反応性の変化を随時把握することで、その変化に応じて、ガスの気泡径や供給量をその都度変更するようなフィードバックシステムを用いることもでき、所望の反応をより安定して行うことができる。さらに、排ガスG1~G4の導入態様の変更以外にも、例えば、各反応槽3A~3D内での反応状態に応じて、供給するガスの種類を変えたり、薬剤を添加するなどの新たな機能を付加することもできる。 The bubble diameter of the gas ejected from the diffuser installed in each of the reaction tanks 3A to 3D and the gas supply amount from the gas supply device may be fixed to predetermined values in advance. By monitoring the pH value of the solid slurry S in the 3D tank and grasping the change in the reactivity of the reaction product as needed, the gas bubble diameter and the supply amount are changed each time according to the change. Therefore, a desired feedback system can be used, and a desired reaction can be performed more stably. Further, in addition to the change of the introduction mode of the exhaust gases G1 to G4, for example, new functions such as changing the type of gas to be supplied or adding chemicals depending on the reaction state in each of the reaction tanks 3A to 3D Can also be added.
 連続式ガス反応槽3内で生成したスラリー状の反応生成物Rは、ろ過機5によって、炭酸カルシウム等の固体成分Pと、塩分を含む液体成分Oとに固液分離され、事前に炭酸カルシウム等の固体成分Pを除去することで、ろ過機5の後段に配置された装置等におけるスケールの生成やその成長を抑制することができる。 The slurry-like reaction product R produced in the continuous gas reaction tank 3 is solid-liquid separated by a filter 5 into a solid component P such as calcium carbonate and a liquid component O containing salt, and is preliminarily calcium carbonate. By removing the solid component P such as, it is possible to suppress the generation of scale and the growth thereof in an apparatus or the like disposed in the subsequent stage of the filter 5.
 以上のように、本実施の形態によれば、小型で簡単な構成により、連続的かつ大量処理を可能とすると共に、各反応槽3A~3Dでの反応に応じて、各反応槽3A~3Dでの排ガスG1~G4の散気状態を変化させることで、各反応槽3A~3Dの槽内の反応を最適化することができ、必要のない過度の散気ガスの使用等を抑えることができ、運転コストを低減することができる。 As described above, according to the present embodiment, it is possible to perform continuous and large-scale processing with a small and simple configuration, and each reaction tank 3A to 3D according to the reaction in each reaction tank 3A to 3D. By changing the diffused state of the exhaust gases G1 to G4 in the reactor, it is possible to optimize the reaction in each of the reaction tanks 3A to 3D and to suppress the use of unnecessary unnecessary diffused gas, etc. This can reduce the operating cost.
 尚、上記実施の形態では、連続式ガス反応槽3の段数を4段としたが、2段以上であれば段数は4段に限定されない。 In the above embodiment, the number of stages of the continuous gas reaction tank 3 is four, but the number of stages is not limited to four as long as it is two or more.
 また、上記実施の形態では、連続式溶解ガス反応装置1に溶解槽2と連続式ガス反応槽3の双方を設けたが、連続式ガス反応槽3内で固体スラリーSを生成すれば、溶解槽2を省略することもできる。 Moreover, in the said embodiment, although the dissolution tank 2 and the continuous gas reaction tank 3 were both provided in the continuous dissolved gas reaction apparatus 1, if the solid slurry S was produced | generated in the continuous gas reaction tank 3, it will melt | dissolve The tank 2 can also be omitted.
 さらに、上記実施の形態では、相互に反応してスケールを誘発させる物質として、固体スラリーSを焼却灰Aと水Wとの混合物と、炭酸ガスを含有する排ガスG1~G4ガスを例示したが、その他の相互に反応してスケールを誘発させる物質を処理することもできる。また、スケール生成防止のための処理に留まらず、種々の目的に利用することができる。さらに、固体スラリーとガスとの反応に限らず、液体とガスとの反応にも用いることができる。 Furthermore, in the above embodiment, as a substance that reacts with each other and induces scale, the solid slurry S is exemplified by a mixture of incineration ash A and water W, and exhaust gas G1 to G4 gas containing carbon dioxide gas. Other substances that react with each other to induce scale can also be treated. Further, the present invention is not limited to processing for preventing scale generation, and can be used for various purposes. Furthermore, it can be used not only for the reaction between the solid slurry and the gas but also for the reaction between the liquid and the gas.
1 連続式溶解ガス反応装置
2 溶解槽
3 連続式ガス反応槽
3A 第1反応槽
3B 第2反応槽
3C 第3反応槽
3D 第4反応槽
5 ろ過機
A 焼却灰
G1~G4 セメントキルン排ガス
O 液体成分
P 固体成分
R 反応生成物
S 固体スラリー
W 水
DESCRIPTION OF SYMBOLS 1 Continuous dissolved gas reaction apparatus 2 Dissolution tank 3 Continuous gas reaction tank 3A 1st reaction tank 3B 2nd reaction tank 3C 3rd reaction tank 3D 4th reaction tank 5 Filter A Incineration ash G1-G4 Cement kiln exhaust gas O Liquid Component P Solid component R Reaction product S Solid slurry W Water

Claims (10)

  1.  反応槽を複数段直列に接続し、該各反応槽内で固体スラリー又は液体とガスとを反応させるガス反応装置であって、
     該各反応槽での反応に応じて、該各反応槽でのガスの散気状態を変化させることを特徴とする連続式ガス反応装置。
    A gas reaction apparatus in which a plurality of reaction tanks are connected in series, and a solid slurry or liquid reacts with gas in each reaction tank,
    A continuous gas reaction apparatus characterized by changing the gas diffusion state in each reaction tank in accordance with the reaction in each reaction tank.
  2.  前記ガスの散気状態の変化を、前記散気するガスの流量、気泡径及び種類から選択される一以上を変化させることにより行うことを特徴とする請求項1に記載の連続式ガス反応装置。 The continuous gas reactor according to claim 1, wherein the change of the gas diffusion state is performed by changing one or more selected from the flow rate, bubble diameter and type of the gas to be diffused. .
  3.  前記固体スラリー又は液体及び前記ガスとは、相互に反応してスケールを誘発させる物質であることを特徴とする請求項1又は2に記載の連続式ガス反応装置。 3. The continuous gas reactor according to claim 1, wherein the solid slurry or liquid and the gas are substances that react with each other to induce scale.
  4.  固体スラリー又は液体を生成する溶解槽と、
     複数段直列に接続され、前記溶解槽で生成した固体スラリー又は液体とガスとを反応させるガス反応槽とを備える連続式溶解ガス反応装置であって、
     該各反応槽での反応に応じて、該各反応槽でのガスの散気状態を変化させることを特徴とする連続式溶解ガス反応装置。
    A dissolution tank for producing a solid slurry or liquid;
    A continuous dissolved gas reaction apparatus comprising a gas reaction tank that is connected in a plurality of stages in series and reacts a solid slurry or liquid generated in the dissolution tank with gas,
    A continuous dissolved gas reaction apparatus characterized by changing a gas diffusion state in each reaction tank according to a reaction in each reaction tank.
  5.  反応槽を複数段直列に接続し、該各反応槽内で固体スラリー又は液体を生成しながら、該生成した固体スラリー又は液体とガスとを反応させる連続式溶解ガス反応装置であって、
     該各反応槽での反応に応じて、該各反応槽でのガスの散気状態を変化させることを特徴とする連続式溶解ガス反応装置。
    A continuous dissolved gas reaction apparatus for reacting the generated solid slurry or liquid and gas while connecting the reaction tank in a plurality of stages in series and generating the solid slurry or liquid in each reaction tank,
    A continuous dissolved gas reaction apparatus characterized by changing a gas diffusion state in each reaction tank according to a reaction in each reaction tank.
  6.  前記ガスの散気状態の変化を、前記散気するガスの流量、気泡径及び種類から選択される一以上を変化させることにより行うことを特徴とする請求項4又は5に記載の連続式溶解ガス反応装置。 6. The continuous dissolution according to claim 4 or 5, wherein the change of the gas diffusion state is performed by changing one or more selected from the flow rate, bubble diameter and type of the gas to be diffused. Gas reactor.
  7.  前記固体スラリー又は液体及び前記ガスとは、相互に反応してスケールを誘発させる物質であることを特徴とする請求項4、5又は6に記載の連続式溶解ガス反応装置。 The continuous dissolved gas reactor according to claim 4, 5 or 6, wherein the solid slurry or liquid and the gas are substances that react with each other to induce scale.
  8.  複数段直列に接続された反応槽において、固体スラリー又は液体とガスとを反応させるガス反応方法であって、
     該各反応槽での反応に応じて、該各反応槽でのガスの散気状態を変化させることを特徴とする連続式ガス反応方法。
    In a reaction vessel connected in series in a plurality of stages, a gas reaction method of reacting a solid slurry or liquid with gas,
    A continuous gas reaction method characterized by changing the gas diffusion state in each reaction tank in accordance with the reaction in each reaction tank.
  9.  溶解槽で固体スラリー又は液体を生成し、複数段直列に接続された反応槽で、前記溶解槽で生成した固体スラリー又は液体とガスとを反応させる溶解ガス反応方法であって、
     前記各反応槽での反応に応じて、該各反応槽での該ガスの散気状態を変化させることを特徴とする連続式溶解ガス反応方法。
    A dissolved gas reaction method in which a solid slurry or liquid is generated in a dissolution tank, and the solid slurry or liquid generated in the dissolution tank is reacted in a reaction tank connected in series in a plurality of stages,
    A continuous dissolved gas reaction method, wherein the gas diffused state in each reaction tank is changed according to the reaction in each reaction tank.
  10.  複数段直列に接続された反応槽で固体スラリー又は液体を生成しながら、該生成した固体スラリー又は液体とガスとを反応させる溶解ガス反応方法であって、
     該各反応槽内での反応に応じて、該各反応槽内での該ガスの散気状態を変化させることを特徴とする連続式溶解ガス反応方法。
    A dissolved gas reaction method in which a solid slurry or liquid is generated in a reaction vessel connected in a plurality of stages in series, and the generated solid slurry or liquid is reacted with a gas,
    A continuous dissolved gas reaction method, wherein the gas diffused state in each reaction tank is changed in accordance with the reaction in each reaction tank.
PCT/JP2013/052665 2012-03-23 2013-02-06 Continuous gas reaction device, and continuous dissolved gas reaction device WO2013140877A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380015875.2A CN104203398A (en) 2012-03-23 2013-02-06 Continuous gas reaction device, and continuous dissolved gas reaction device
KR1020147026622A KR20140144191A (en) 2012-03-23 2013-02-06 Continuous gas reaction device, and continuous dissolved gas reaction device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012066687 2012-03-23
JP2012-066687 2012-03-23

Publications (1)

Publication Number Publication Date
WO2013140877A1 true WO2013140877A1 (en) 2013-09-26

Family

ID=49222342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052665 WO2013140877A1 (en) 2012-03-23 2013-02-06 Continuous gas reaction device, and continuous dissolved gas reaction device

Country Status (5)

Country Link
JP (1) JPWO2013140877A1 (en)
KR (1) KR20140144191A (en)
CN (1) CN104203398A (en)
TW (1) TW201344114A (en)
WO (1) WO2013140877A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354843A (en) * 1999-06-16 2000-12-26 Chiyoda Corp Method and system for treating solid containing heavy metals
JP2003165722A (en) * 2001-11-29 2003-06-10 Kureha Chem Ind Co Ltd Method for preparing slaked lime emulsion and method for preventing deposition of scale
JP2005288328A (en) * 2004-03-31 2005-10-20 Asahi Kasei Engineering Kk Treatment method and apparatus for washing incinerator ash
JP2010137141A (en) * 2008-12-10 2010-06-24 Mitsubishi Heavy Ind Ltd Method and system for treating waste ash washing water

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0651081B2 (en) * 1984-11-21 1994-07-06 三井東圧化学株式会社 How to operate the distillation column

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354843A (en) * 1999-06-16 2000-12-26 Chiyoda Corp Method and system for treating solid containing heavy metals
JP2003165722A (en) * 2001-11-29 2003-06-10 Kureha Chem Ind Co Ltd Method for preparing slaked lime emulsion and method for preventing deposition of scale
JP2005288328A (en) * 2004-03-31 2005-10-20 Asahi Kasei Engineering Kk Treatment method and apparatus for washing incinerator ash
JP2010137141A (en) * 2008-12-10 2010-06-24 Mitsubishi Heavy Ind Ltd Method and system for treating waste ash washing water

Also Published As

Publication number Publication date
TW201344114A (en) 2013-11-01
JPWO2013140877A1 (en) 2015-08-03
KR20140144191A (en) 2014-12-18
CN104203398A (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP3893402B2 (en) Exhaust gas wastewater treatment apparatus and exhaust gas wastewater treatment method
EP3693345A1 (en) Treatment system for reverse osmosis concentrated water having high permanent hardness
CN212597897U (en) Flying dust washing processing system
JP2008188479A (en) Method and apparatus for treating waste acid liquid
CN104003554A (en) Waste acid purifying device and process
CN101781064A (en) Process for advanced treatment of gas wastewater
JP2016087578A (en) Contaminant separation volume reduction system and method
WO2013140877A1 (en) Continuous gas reaction device, and continuous dissolved gas reaction device
KR101485500B1 (en) Device and method by the membrane separator activated advanced oxidation process
JP2002531250A (en) Biological treatment equipment for leather wastewater and sludge reduction
US20170225988A1 (en) Sequencing batch facility and method for reducing the nitrogen content in waste water
JP2011078945A (en) Wastewater treatment apparatus and wastewater treatment method using catalyst layer
CN214004262U (en) Natural gas purification production wastewater treatment device
CN112456631B (en) Ozone dosing automatic control system and method based on ozone indirect oxidation
JP2006509618A (en) Waste stream processing method and system
CN210795890U (en) Ozone catalytic oxidation moving bed reaction device
JP2008000653A (en) Wastewater treatment method and arrangement
CA2538684A1 (en) Mechanical flotation device for reduction of oil, alkalinity and undesirable gases
JP2002126480A (en) Ozonized water treatment equipment
JP4451202B2 (en) Electrolytic treatment tank and method for cleaning the electrode plate
US20140319078A1 (en) Process and system for removing urea from an aqueous solution
CN111087115A (en) Polycrystalline silicon wastewater treatment method and wastewater treatment system
CN208583141U (en) A kind of wastewater minimisation processing unit and castoff burning processing system
JP4014679B2 (en) Wastewater treatment method
CN216584506U (en) Desulfurization wastewater treatment system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506068

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147026622

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764598

Country of ref document: EP

Kind code of ref document: A1