WO2013140842A1 - Heterogeneous catalyst for producing biodiesel - Google Patents

Heterogeneous catalyst for producing biodiesel Download PDF

Info

Publication number
WO2013140842A1
WO2013140842A1 PCT/JP2013/051218 JP2013051218W WO2013140842A1 WO 2013140842 A1 WO2013140842 A1 WO 2013140842A1 JP 2013051218 W JP2013051218 W JP 2013051218W WO 2013140842 A1 WO2013140842 A1 WO 2013140842A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
zeolite
hours
heterogeneous catalyst
oil
Prior art date
Application number
PCT/JP2013/051218
Other languages
French (fr)
Japanese (ja)
Inventor
キアン ヒー ケイ
クドゥンポー カマルディン
カー ウェイニー ビヴァリー
ノルバリア サリー ピー.ティー.ティー シティ
ウィリントン ウィリアム ア-ロン
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to JP2014506056A priority Critical patent/JP5864724B2/en
Publication of WO2013140842A1 publication Critical patent/WO2013140842A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a catalyst for transesterification.
  • the present invention includes sample preparation, catalyst preparation procedures, and biodiesel production procedures using low quality vegetable oils.
  • Biodiesel is gaining increasing attention as an alternative, non-toxic, biodegradable and renewable diesel fuel (Lam et al., 2010).
  • the major components of vegetable oils and animal fats are triglycerides and are known to be esters of fatty acids attached to glycerol (Lam et al., 2010).
  • triglycerides react with alcohol. The process of this reaction is known as transesterification (Leung et al., 2010).
  • Biodiesel is defined as a monoalkyl ester produced from vegetable oil or animal fat in ASTM (American Society for Testing and Materials) and is one of the most promising alternative fuels (Marchetti & Errazu, 2010).
  • biodiesel is produced by transesterifying triglycerides, but can also be produced by directly esterifying free fatty acids. These reactions can be easily explained by the chemical formula shown below.
  • R ′, R ′′, R ′′ ′, and R represent any hydrocarbon chain (Jitputti, 2006; Marchetti & Errazu, 2010).
  • the triglycerides of vegetable oils react with alcohols to form a mixture of glycerol and fatty acid alkyl esters called so-called biodiesel (Jitputti, 2006; Leung et al., 2010).
  • the European standard EN14214 specifies that the ester content in FAME (Fatty Acid Methyl Ester; fatty acid methyl ester; the same shall apply hereinafter) is at least 96.5% by weight. This content affects the performance of the diesel engine.
  • the transesterification reaction is catalyzed by both an acidic catalyst and a basic catalyst. Acidic catalysts such as sulfuric acid show a slow catalysis for transesterification of triglycerides. Alkali metal hydroxides (eg, KOH and NaOH) are chosen as basic catalysts (Lam et al., 2010; Yoo et al., 2010). In the transesterification reaction, both an acidic catalyst and a basic catalyst can be used. However, since the rate of the transesterification reaction with an alkali catalyst is faster than that with an acidic catalyst, research on the alkaline catalyst has been promoted more widely. ing.
  • Acidic catalysts such as sulfuric acid show a slow catalysis for transesterification of
  • zeolites and related materials are suitable as materials that can achieve these objectives. This is because zeolites and related materials can be easily synthesized, and can be easily modified to impart acidity, basicity, and hydrophobicity to the surface. is there.
  • a conventional FAME production method uses a homogeneous basic catalyst or a homogeneous acidic catalyst.
  • the method using a homogeneous basic catalyst is unsuitable when a deteriorated or low-quality vegetable oil is used as a raw material.
  • a homogeneous acidic catalyst is used, the required reaction time is lengthened and the cost is finally increased.
  • a heterogeneous basic solid catalyst is used, the molar ratio of methanol to oil must be high, a large amount of catalyst is required, the reaction temperature must not be high, and the reaction time is long. Over time. Therefore, the production of FAME becomes expensive.
  • the present invention can solve all the above-mentioned problems by providing a low-cost and high-efficiency catalyst for low-quality vegetable oils.
  • the inventors have conducted research to provide a highly efficient catalyst under various conditions, and have found the following. That is, zeolite particles having a particle size of 0.1 to 1.0 mm, and the zeolite particles are ion-exchanged with 1M to 5M metal alcosides.
  • the zeolite: the metal alcoside (Eg, NaOCH 3 , KOCH 3 , NaOC 2 H 5 , KOC 2 H 5 ) is (1-10) :( 2-20), and the mixture of the zeolite and the metal alkoxides is 50-60
  • the mixture is stirred at 0.5 ° C. for 0.5 to 5 hours, and the stirring is repeated at least three times.
  • the zeolite particles are dried at 110 to 150 ° C. for 1 to 5 hours, so that a low-cost and highly efficient catalyst can be obtained. It can be adjusted.
  • the zeolite particles are washed with deionized water and calcined at 500 to 900 ° C. for 1 to 24 hours before ion exchange is performed. Under such conditions, efficient catalyst production becomes possible.
  • the particle size of the zeolite particles was 0.25 to 0.50 mm, ion exchanged with 5M NaOCH 3 twice the weight ratio, and the mixture was stirred at 50 to 60 ° C. Repeated at least 3 times for 1 hour and dried at 110-150 ° C. for 2 hours, and good results were obtained.
  • the zeolite particles were washed with deionized water and calcined at 500 to 550 ° C. for 5 hours before ion exchange.
  • the sample is prepared by using a rancimat.
  • Rancimat is an apparatus for determining oxidation stability according to EN14112. The sample is heated at 140 ° C. and air is purged into the sample for a specified period (1-24 hours) at a flow rate of 10 L / hour. Vegetable oil is deteriorated by heating and air conditions, and becomes rich in free fatty acid and water.
  • a catalyst is prepared using natural zeolite (clinoptilolite). Natural zeolite is crushed to a smaller particle size (0.25-0.50 mm) and washed with deionized water. Thereafter, the catalyst sample is calcined at 550 ° C. for 5 hours to remove impurities. The catalyst is then mixed with the chemical at a ratio of 2: 1 (chemical: catalyst) and stirred at 700 rpm for 1 hour. This is repeated three times. The chemical substance contains a basic component as a main component. The catalyst is then dried in an oven at 110 ° C. for 2 hours.
  • FAME is produced by a transesterification reaction using a deteriorated oil sample, methanol, and a catalyst.
  • This reaction consists of methanol-oil ratio (6: 1, 10: 1, 15: 1, 20: 1), temperature effect (room temperature to 30 ° C, 40, 50, 60, 70 ° C), amount of catalyst (1, 2, 3, 4, 5, 10%), time effect (0.5-8 hours), catalyst reusability (1-5 times), raw material quality effect, etc. Since the catalyst esterifies the free fatty acid and absorbs the contained water, the transesterification reaction is promoted.
  • the zeolite according to the present invention is different from other catalysts in terms of temperature, time, amount of catalyst, catalytic ability for samples having a large amount of FFA and water, reusability, separation, and cost. Is more prevalent.
  • FIG. 3 illustrates a method for preparing degraded vegetable oil according to an embodiment of the present invention.
  • FIG. 3 shows a method for preparing a zeolite catalyst according to an embodiment of the present invention.
  • FIG. 4 shows FAME production by transesterification chemical reaction according to an embodiment of the present invention. It shows the deterioration of oil. The conditions for FAME production were examined. The optimum size and reusability of the catalyst were examined.
  • the present invention provides a heterogeneous catalyst that can be used to produce biodiesel via transesterification.
  • the heterogeneous catalyst is suitable when a vegetable oil containing a large amount of free fatty acid (> 2%) and a large amount of water (> 500 ppm) is used as a raw material.
  • the catalyst that is the production target can be easily separated from the reaction mixture.
  • the catalyst can be easily recycled (recycled) for use in subsequent catalytic reactions.
  • the synthesis of the catalyst can be carried out very economically using commercially available raw materials.
  • the present invention provides a reusable esterification catalyst or transesterification catalyst in which natural alumina silicate is ion exchanged with an alkali metal salt to further enhance the basicity of these materials.
  • Example preparation As shown in FIG. 1, a special device is used to turn the degraded vegetable oil into a degraded oil sample for transesterification.
  • Degraded SVO was obtained by treating fresh straight vegetable oil (Straight Vegtable Oil; SVO, hereinafter the same) with Lancimat at a temperature of 140 ° C., an air flow rate of 10 L / hour, and a sample size of 35 ml.
  • Degraded SVO has a high acidity index and a high water content.
  • the catalyst is prepared using a new method. Natural zeolite is crushed and sieved to a particle size of 0.25 to 0.50 mm. The particulate zeolite was washed with deionized water and calcined at 500 ° C. for 5 hours. After calcination, the zeolite was ion exchanged with 5M NaOCH 3 by stirring at 700 rpm for 1 hour at 50-60 ° C. Ion exchange was repeated three times. After ion exchange, the zeolite was dried at 150 ° C. for 2 hours. In this way an improved natural zeolite was obtained.
  • FAME is produced through a transesterification reaction.
  • the SVO was heated to 65-70 ° C and the mixture of methanol and catalyst (modified natural zeolite) was warmed to 50 ° C. And in order to perform transesterification, the liquid mixture of SVO, methanol, and a catalyst was mixed. After transesterification, FAME, glycerol, and catalyst were separated. Glycerol was removed and the catalyst was removed by passing through a filter. After removing the glycerol and the catalyst, the FAME was washed with hot water until the pH was 7. And it dried by heating and stirring at 110 degreeC.
  • fresh vegetable oil (crude jatropha oil; CJO) is introduced into the rancimat for 24 hours under conditions of 140 ° C. and an air flow rate of 10 L / hour. Sampling was done every hour.
  • FFA free fatty acid
  • the zeolite mass is crushed to a smaller particle size (0.25 mm to 0.50 mm) and washed with deionized water. Then, it is calcined at 550 ° C. for 5 hours in a heating furnace. Thereafter, a solid-liquid mixture is prepared so that the ratio of chemical substance: zeolite is 2: 1, heated at 60 ° C. and stirred at 700 rpm for 1 hour. The mixture was centrifuged and the supernatant liquid was gently transferred. This operation was repeated three times to improve the zeolite through the ion exchange reaction. The modified zeolite was dried in an oven at 110 ° C. for 2 hours.
  • FIG. 6 shows the effect of the catalyst of the present invention.
  • the particle size of the catalyst is preferably 0.25 to 0.50 mm. It was.
  • the ester content was 97.8% by weight.
  • the catalyst particle size was made smaller than 0.63 ⁇ m, the ester content was 96.9% by weight, but it was difficult to handle.
  • the results of the reusability test showed that the temperature was 70 ⁇ 5 ° C., the MeOH: oil ratio was 20: 1, the catalyst concentration was 5% by weight, and the reaction time was 6 hours.
  • the content of the ester was 96.8% by weight, 96.9% by weight for the second time, 96.5% by weight for the third time, 94.3% by weight for the fourth time, and 93.4% by weight for the fifth time. .
  • FIG. 6 shows the effect of the quality of the raw material.
  • the present invention is applicable to the production of biodiesel using esterification. [References]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Fats And Perfumes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Provided is a heterogeneous catalyst used for the production of biodiesel, as a catalyst capable of being used in conventional production methods for Fatty Acid Methyl Esters (FAME). The heterogeneous catalyst has zeolite particles having a particle size of 0.25-0.50 mm, and the zeolite particles exchange ions, with 5MNaOCH3. During the ion exchange, the zeolite:NaOCH3 ratio is 1:2; the zeolite and NaOCH3 mixture is agitated for 1 hour at 50°-60°C; this agitation is repeated at least 3 times; and the zeolite particles are dried for 2 hours at 110°-150°C.

Description

バイオディーゼルの生産のための不均一系触媒Heterogeneous catalysts for biodiesel production
 本発明は、エステル交換のための触媒に関する。本発明には、サンプルの調製、触媒の調製の手順が含まれ、また、低品質の植物油を用いたバイオディーゼルの生産の手順が含まれる。 The present invention relates to a catalyst for transesterification. The present invention includes sample preparation, catalyst preparation procedures, and biodiesel production procedures using low quality vegetable oils.
 世界の石油埋蔵量が枯渇しつつあり、環境問題が増大しつつあることに起因して、ディーゼル及びガソリン燃料を含む石油をベースとした燃料に代わる代替的な資源に対する大きな需要がある(Leungら、2010年)。バイオディーゼルは、代替的な、毒性のない、生分解可能な、そして再生可能なディーゼル燃料として、ますます注目を浴びるようになってきている(Lamら、2010年)。植物油及び動物性脂肪の主要な成分はトリグリセリドであり、またグリセロールに付着した脂肪酸のエステルであるとして、知られている(Lamら、2010年)。触媒の存在下で、トリグリセリドはアルコールと反応する。この反応の過程は、エステル交換として知られている(Leungら、2010年)。バイオディーゼルは、ASTM(American Society for Testing and Materials;米国材料試験協会)において、植物油又は動物性脂肪から生産されるモノアルキルエステルとして定義されるものであり、最も期待されている代替燃料の一つである(Marchetti&Errazu、2010年)。 There is a great demand for alternative resources to oil-based fuels, including diesel and gasoline fuels, due to the world's oil reserves being depleted and environmental problems increasing (Leung et al. 2010). Biodiesel is gaining increasing attention as an alternative, non-toxic, biodegradable and renewable diesel fuel (Lam et al., 2010). The major components of vegetable oils and animal fats are triglycerides and are known to be esters of fatty acids attached to glycerol (Lam et al., 2010). In the presence of a catalyst, triglycerides react with alcohol. The process of this reaction is known as transesterification (Leung et al., 2010). Biodiesel is defined as a monoalkyl ester produced from vegetable oil or animal fat in ASTM (American Society for Testing and Materials) and is one of the most promising alternative fuels (Marchetti & Errazu, 2010).
 一般的には、バイオディーゼルはトリグリセリドをエステル交換することにより生産されるが、遊離脂肪酸を直接的にエステル化することによっても生産することができる。これらの反応は、以下に示される化学式により簡単に説明することができる。以下の化学式においては、R´、R´´、R´´´、及びRはあらゆる炭化水素鎖を示す(Jitputti、2006年;Marchetti&Errazu、2010年)。エステル交換においては、植物油のトリグリセリドがアルコールと反応して、グリセロールと、いわゆるバイオディーゼルと呼ばれる脂肪酸アルキルエステルと、の混合物を形成する(Jitputti、2006年;Leungら、2010年)。 Generally, biodiesel is produced by transesterifying triglycerides, but can also be produced by directly esterifying free fatty acids. These reactions can be easily explained by the chemical formula shown below. In the chemical formulas below, R ′, R ″, R ″ ′, and R represent any hydrocarbon chain (Jitputti, 2006; Marchetti & Errazu, 2010). In transesterification, the triglycerides of vegetable oils react with alcohols to form a mixture of glycerol and fatty acid alkyl esters called so-called biodiesel (Jitputti, 2006; Leung et al., 2010).
 バイオディーゼルの生産のためのエステル交換は、以下の反応式で示される。 Transesterification for biodiesel production is shown by the following reaction formula.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ヨーロッパの基準であるEN14214においては、FAME(Fatty Acid Methyl Ester;脂肪酸メチルエステル、以下同じ。)中におけるエステル含有量が最小で96.5重量%であることを規定している。この含有量は、ディーゼルエンジンの性能に影響を与える。
 エステル交換反応は、酸性触媒によっても、塩基性触媒によっても、触媒される。硫酸のような酸性触媒は、トリグリセリドのエステル交換に対して、ゆっくりとした触媒作用を示す。アルカリ金属水酸化物(例えば、KOH、及びNaOH)は塩基性触媒として選ばれる(Lamら、2010年;Yooら、2010年)。エステル交換反応には、酸性触媒も塩基性触媒も用いることが可能であるが、アルカリ触媒によるエステル交換反応の速度は酸性触媒による場合の速度よりも速いので、アルカリ触媒についてより広く研究が進められている。
The European standard EN14214 specifies that the ester content in FAME (Fatty Acid Methyl Ester; fatty acid methyl ester; the same shall apply hereinafter) is at least 96.5% by weight. This content affects the performance of the diesel engine.
The transesterification reaction is catalyzed by both an acidic catalyst and a basic catalyst. Acidic catalysts such as sulfuric acid show a slow catalysis for transesterification of triglycerides. Alkali metal hydroxides (eg, KOH and NaOH) are chosen as basic catalysts (Lam et al., 2010; Yoo et al., 2010). In the transesterification reaction, both an acidic catalyst and a basic catalyst can be used. However, since the rate of the transesterification reaction with an alkali catalyst is faster than that with an acidic catalyst, research on the alkaline catalyst has been promoted more widely. ing.
 従来、エステル交換反応においては、メタノールに溶解したナトリウム又はカリウムの水酸化物のような、均一系塩基性触媒が用いられてきた。こうした伝統的な均一系触媒には、活性が高い点(1時間で完全な変換が完了する)や、反応条件が穏和な点(65℃、1atm)などを含む、いくつかの有利な点があった(Sunら、2010年)。しかしながら、これらの触媒を除去することは技術的に困難である点、及び、バイオディーゼルを分離し洗浄する過程において大量の廃水が生産される点においては、不利であった。 Conventionally, in a transesterification reaction, a homogeneous basic catalyst such as sodium or potassium hydroxide dissolved in methanol has been used. These traditional homogeneous catalysts have several advantages, including high activity (complete conversion is completed in 1 hour) and mild reaction conditions (65 ° C., 1 atm). (Sun et al., 2010). However, it is disadvantageous in that it is technically difficult to remove these catalysts and that a large amount of wastewater is produced in the process of separating and washing biodiesel.
 しかしながら、アルカリ金属水酸化物を触媒として用いたエステル交換反応においては、例え水を含有しない植物油及びアルコールを用いたとしても、当該水酸化物とアルコールとの反応により一定量の水が生産される。水が存在することにより、エステルの加水分解を招来し、結果として石鹸が形成される。石鹸が形成されることにより、バイオディーゼルの収率が下がり、また生産物の分離(エステルとグリセロール)が大変困難となる。
 遊離脂肪酸(Free Fatty Acid;FAA)が3%程度から40%程度と大量に含まれる酸性油(Marchettiら、2007年)は、ナトリウム又はカリウムの水酸化物のような均一系塩基性触媒を利用する従来の技術においては、使用することが推奨されていなかった。
 塩基性触媒と遊離脂肪酸(FFA)とは相互に作用して石鹸を生産する(Marchetti&Errazu、2010年)。このことは、エステル交換反応に利用される触媒の量の低下を招来し、また、以後における分離及びバイオディーゼルの精製を困難なものとする(Leungら、2010年)。
However, in the transesterification reaction using an alkali metal hydroxide as a catalyst, even if vegetable oil and alcohol containing no water are used, a certain amount of water is produced by the reaction of the hydroxide and alcohol. . The presence of water leads to ester hydrolysis, resulting in the formation of soap. Soap formation reduces the yield of biodiesel and makes product separation (ester and glycerol) very difficult.
Acidic oil (Marchetti et al., 2007) containing a large amount of free fatty acid (Free Fatty Acid; FAA) of about 3% to 40% uses a homogeneous basic catalyst such as sodium or potassium hydroxide. In the prior art, it was not recommended to use.
Basic catalysts and free fatty acids (FFA) interact to produce soap (Marchetti & Errazu, 2010). This leads to a reduction in the amount of catalyst utilized in the transesterification reaction and makes subsequent separation and biodiesel purification difficult (Leung et al., 2010).
 コストを低く抑え、バイオディーゼルを環境によりやさしい態様で生産するために、均一系触媒に変えて不均一触媒をエステル交換において使用する試みがなされてきた。これらの触媒は、潜在的に、生産及び精製の過程を簡潔化し、液体生産物からの分離が容易となると考えられる(Demirbas、2007年;Liuら、2007年;Zabetiら、2009年)。 Attempts have been made to use heterogeneous catalysts in transesterification instead of homogeneous catalysts to keep costs low and to produce biodiesel in an environmentally friendly manner. These catalysts are potentially thought to simplify the production and purification process and facilitate separation from liquid products (Demirbas, 2007; Liu et al., 2007; Zabeti et al., 2009).
 今や、例えば金属酸化物(Kouzuら、2008年)や、金属錯体(Ferreira、2007年)や、担体の上に担持された活性金属(Xieら、2006年)や、ゼオライト(Suppesら、2004年)や、樹脂(Machetti&Errazu、2010年)や、薄膜(Shiら、2010年)や、リパーゼ(Ranganathanら、2008年)のように、エステル交換の過程において使用されるのに適した不均一系触媒が数多く存在する。これらの触媒はエステル交換の過程において高い活性を有することが明らかにされている。しかしながら、これらの触媒の多くは、大豆油や菜種油のようなヤシ油以外の油に使用されるものである(Kansedo、2009年)。 Now, for example, metal oxides (Kouzu et al., 2008), metal complexes (Ferreira, 2007), active metals supported on a support (Xie et al., 2006), zeolites (Suppes et al., 2004). ), Resins (Machetti & Errazu, 2010), thin films (Shi et al., 2010), and lipases (Ranganathan et al., 2008) suitable heterogeneous catalysts for use in the transesterification process There are many. These catalysts have been shown to have high activity during the transesterification process. However, many of these catalysts are used in oils other than coconut oil such as soybean oil and rapeseed oil (Kansedo, 2009).
 しかしながら、これらの触媒はとても高価であり、準備をするのが困難であったため、産業上利用することが制限されていた。このため、商業生産への適用に際し、植物油のエステル交換をより効果的にかつ安価に行うことができる触媒を探し出すことが望まれていた。よく知られているように、ゼオライト及びこれに関連する物質は、これらの目的を達成することのできる物質として適切である。なぜならば、ゼオライト及びこれに関連する物質は、容易に合成することができ、また、表面に酸性、塩基性、及び疎水性を付与するために修飾をするのも容易に行うことができるからである。 However, these catalysts are very expensive and difficult to prepare, which limits their industrial use. For this reason, in application to commercial production, it has been desired to find a catalyst capable of performing transesterification of vegetable oil more effectively and at low cost. As is well known, zeolites and related materials are suitable as materials that can achieve these objectives. This is because zeolites and related materials can be easily synthesized, and can be easily modified to impart acidity, basicity, and hydrophobicity to the surface. is there.
米国特許第6407269号明細書US Pat. No. 6,407,269
 従来からあるFAMEの生産方法は、均一系塩基性触媒又は均一系酸性触媒を用いるものであった。しかしながら、均一系塩基性触媒を用いる方法は、劣化した又は低品質の植物油を原料とする場合には不適切であった。均一系酸性触媒を用いた場合、必要な反応時間が長くなり、最終的には高コストとなる。一方、不均一系塩基性固体触媒を用いた場合、メタノール-オイルのモル比率が高くなければならず、触媒の量が大量に必要であり、反応温度も高くてはならず、反応時間も長時間にわたる。そのため、FAMEの生産が高コストとなる。 A conventional FAME production method uses a homogeneous basic catalyst or a homogeneous acidic catalyst. However, the method using a homogeneous basic catalyst is unsuitable when a deteriorated or low-quality vegetable oil is used as a raw material. When a homogeneous acidic catalyst is used, the required reaction time is lengthened and the cost is finally increased. On the other hand, when a heterogeneous basic solid catalyst is used, the molar ratio of methanol to oil must be high, a large amount of catalyst is required, the reaction temperature must not be high, and the reaction time is long. Over time. Therefore, the production of FAME becomes expensive.
 本発明は、低品質の植物油のための低コストで高効率の触媒を提供することにより、上述の全ての問題を解決することができる。 The present invention can solve all the above-mentioned problems by providing a low-cost and high-efficiency catalyst for low-quality vegetable oils.
 発明者らは、様々な条件において、高効率の触媒を提供すべく、研究を行い、次のことを見出したものである。すなわち、粒子サイズが0.1~1.0mmのゼオライト粒子であって、当該ゼオライト粒子は1M~5Mの金属アルコシド類とイオン交換されるものであり、当該イオン交換において、前記ゼオライト:前記金属アルコシド類(例;NaOCH、KOCH、NaOC、KOC)の比率が(1~10):(2~20)であり、当該ゼオライトと前記金属アルコシド類の混合物は50~60℃で0.5~5時間攪拌され、当該攪拌を少なくとも3回繰り返されるものであり、当該ゼオライト粒子が110~150℃で1~5時間乾燥されることにより、低コストで高効率の触媒を調整できるものである。
 そして、前記ゼオライト粒子は、イオン交換が行われる前に、脱イオン水で洗浄されて、500~900℃で1~24時間、か焼されるものである。このような条件において、効率よい触媒生産が可能となる。
 なお、いくつかの試行においては、ゼオライト粒子の粒子サイズを、0.25~0.50mmとし、重量比において二倍の5MのNaOCHとイオン交換し、当該混合物の攪拌を50~60℃で1時間、少なくとも3回繰り返し、110~150℃で2時間乾燥し、良好な結果を得た。なお、ゼオライト粒子は、イオン交換が行われる前に、脱イオン水で洗浄されて、500~550℃で5時間、か焼されたものであった。
 上述した本発明の実施形態においては、サンプルはランシマットを使用することにより準備される。ランシマットは、EN14112に従って酸化安定性を決定するための装置である。サンプルは140℃で加熱され、空気が10L/時間の流量で特定期間(1~24時間)の間サンプルにパージされる。植物油が加熱と、空気の条件と、により劣化されて、遊離脂肪酸と水を多く含むものとなる。
The inventors have conducted research to provide a highly efficient catalyst under various conditions, and have found the following. That is, zeolite particles having a particle size of 0.1 to 1.0 mm, and the zeolite particles are ion-exchanged with 1M to 5M metal alcosides. In the ion exchange, the zeolite: the metal alcoside (Eg, NaOCH 3 , KOCH 3 , NaOC 2 H 5 , KOC 2 H 5 ) is (1-10) :( 2-20), and the mixture of the zeolite and the metal alkoxides is 50-60 The mixture is stirred at 0.5 ° C. for 0.5 to 5 hours, and the stirring is repeated at least three times. The zeolite particles are dried at 110 to 150 ° C. for 1 to 5 hours, so that a low-cost and highly efficient catalyst can be obtained. It can be adjusted.
The zeolite particles are washed with deionized water and calcined at 500 to 900 ° C. for 1 to 24 hours before ion exchange is performed. Under such conditions, efficient catalyst production becomes possible.
In some trials, the particle size of the zeolite particles was 0.25 to 0.50 mm, ion exchanged with 5M NaOCH 3 twice the weight ratio, and the mixture was stirred at 50 to 60 ° C. Repeated at least 3 times for 1 hour and dried at 110-150 ° C. for 2 hours, and good results were obtained. The zeolite particles were washed with deionized water and calcined at 500 to 550 ° C. for 5 hours before ion exchange.
In the above-described embodiment of the present invention, the sample is prepared by using a rancimat. Rancimat is an apparatus for determining oxidation stability according to EN14112. The sample is heated at 140 ° C. and air is purged into the sample for a specified period (1-24 hours) at a flow rate of 10 L / hour. Vegetable oil is deteriorated by heating and air conditions, and becomes rich in free fatty acid and water.
 上述した本発明の実施形態においては、天然ゼオライト(クリノプチロライト)を用いて触媒が調製される。天然ゼオライトがより小さい粒子サイズ(0.25~0.50mm)となるように砕かれて、脱イオン水により洗浄される。その後、不純物を取り除くために、触媒サンプルが加熱炉で、550℃で5時間、か焼される。それから、触媒が化学物質と2:1(化学物質:触媒)となる比率で混合され、700rpmで1時間攪拌される。これが3回繰り返される。当該化学物質は、主成分として塩基性成分を含んでいる。それから、触媒はオーブンで、110℃で2時間、乾燥される。 In the above-described embodiment of the present invention, a catalyst is prepared using natural zeolite (clinoptilolite). Natural zeolite is crushed to a smaller particle size (0.25-0.50 mm) and washed with deionized water. Thereafter, the catalyst sample is calcined at 550 ° C. for 5 hours to remove impurities. The catalyst is then mixed with the chemical at a ratio of 2: 1 (chemical: catalyst) and stirred at 700 rpm for 1 hour. This is repeated three times. The chemical substance contains a basic component as a main component. The catalyst is then dried in an oven at 110 ° C. for 2 hours.
 上述した本発明の実施形態においては、FAMEは、劣化したオイルサンプル、メタノール、及び触媒を用いたエステル交換反応により生産される。この反応は、メタノール-オイル比率(6:1、10:1、15:1、20:1)、温度効果(室温~30℃、40、50、60、70℃)、触媒の量(1、2、3、4、5、10%)、時間効果(0.5~8時間)、触媒の再使用可能性(1~5回)、原料品質効果のような複数の条件下で行われる。触媒は、遊離脂肪酸をエステル化し、含有される水を吸収するので、エステル交換反応が促進される。 In the above-described embodiment of the present invention, FAME is produced by a transesterification reaction using a deteriorated oil sample, methanol, and a catalyst. This reaction consists of methanol-oil ratio (6: 1, 10: 1, 15: 1, 20: 1), temperature effect (room temperature to 30 ° C, 40, 50, 60, 70 ° C), amount of catalyst (1, 2, 3, 4, 5, 10%), time effect (0.5-8 hours), catalyst reusability (1-5 times), raw material quality effect, etc. Since the catalyst esterifies the free fatty acid and absorbs the contained water, the transesterification reaction is promoted.
 表1から明らかなように、本発明に係るゼオライトは、温度、時間、触媒の量、FFA及び水の量が多いサンプルに対する触媒能、再利用性、分離、及びコストの点で、他の触媒よりも優勢である。 As is apparent from Table 1, the zeolite according to the present invention is different from other catalysts in terms of temperature, time, amount of catalyst, catalytic ability for samples having a large amount of FFA and water, reusability, separation, and cost. Is more prevalent.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
本発明の実施形態に従って劣化した植物油を調製するための方法を示した図である。FIG. 3 illustrates a method for preparing degraded vegetable oil according to an embodiment of the present invention. 本発明の実施形態に従ってゼオライト触媒を調製するための方法を示した図である。FIG. 3 shows a method for preparing a zeolite catalyst according to an embodiment of the present invention. 本発明の実施形態に従ったエステル交換の化学反応によるFAMEの生産を示した図である。FIG. 4 shows FAME production by transesterification chemical reaction according to an embodiment of the present invention. オイルの劣化を示すものである。It shows the deterioration of oil. FAMEの生産のための条件を検討したものである。The conditions for FAME production were examined. 触媒の最適なサイズ及び再利用性等を検討したものである。The optimum size and reusability of the catalyst were examined.
 本発明は、エステル交換を経由してバイオディーゼルを生産するのに用いることのできる不均一系触媒を提供するものである。当該不均一系触媒は、遊離脂肪酸を多く含み(>2%)、水を多く含む(>500ppm)ような植物油を原料とする場合に適している。生産の目的物である触媒は、反応混合液から容易に分離することができる。触媒は以後の触媒反応に使用するために容易に再利用(リサイクル)することができる。当該触媒の合成は、市販の原料を用いて大変経済的に行うことができる。 The present invention provides a heterogeneous catalyst that can be used to produce biodiesel via transesterification. The heterogeneous catalyst is suitable when a vegetable oil containing a large amount of free fatty acid (> 2%) and a large amount of water (> 500 ppm) is used as a raw material. The catalyst that is the production target can be easily separated from the reaction mixture. The catalyst can be easily recycled (recycled) for use in subsequent catalytic reactions. The synthesis of the catalyst can be carried out very economically using commercially available raw materials.
 したがって、本発明は、再利用可能なエステル化触媒又はエステル交換触媒であって、天然アルミナケイ酸塩をアルカリ金属塩とイオン交換しこれらの材料の塩基性度をさらに強めたものを提供する。 Therefore, the present invention provides a reusable esterification catalyst or transesterification catalyst in which natural alumina silicate is ion exchanged with an alkali metal salt to further enhance the basicity of these materials.
 [サンプルの調製]
 図1に示すように、劣化した植物油をエステル交換のための劣化オイルサンプルとするために、特別の装置が使用される。
 新鮮なストレートの植物油(Straight Vegetable Oil;SVO、以下同じ。)が温度140℃、空気流量10L/時、及びサンプルサイズ35mlの条件でランシマットで処理されることにより、劣化したSVOが得られた。劣化したSVOは酸性度指数が高く、水の含有量が多い。
[Sample preparation]
As shown in FIG. 1, a special device is used to turn the degraded vegetable oil into a degraded oil sample for transesterification.
Degraded SVO was obtained by treating fresh straight vegetable oil (Straight Vegtable Oil; SVO, hereinafter the same) with Lancimat at a temperature of 140 ° C., an air flow rate of 10 L / hour, and a sample size of 35 ml. Degraded SVO has a high acidity index and a high water content.
 [触媒の調製]
 図2に示すように、高い表面活性を得るために、触媒が新しい方法を用いて調製される。
 天然ゼオライトが砕かれてふるいにかけられて、粒子サイズが0.25~0.50mmとされる。粒子状のゼオライトは脱イオン水で洗浄されて、500℃で5時間、か焼された。か焼した後、ゼオライトは、50~60℃で1時間、700rpmで攪拌されることにより5MNaOCHとイオン交換された。イオン交換は3回繰り返された。イオン交換を行った後、ゼオライトは150℃で2時間乾燥された。このようにして、改良された天然ゼオライトが得られた。
[Preparation of catalyst]
As shown in FIG. 2, in order to obtain high surface activity, the catalyst is prepared using a new method.
Natural zeolite is crushed and sieved to a particle size of 0.25 to 0.50 mm. The particulate zeolite was washed with deionized water and calcined at 500 ° C. for 5 hours. After calcination, the zeolite was ion exchanged with 5M NaOCH 3 by stirring at 700 rpm for 1 hour at 50-60 ° C. Ion exchange was repeated three times. After ion exchange, the zeolite was dried at 150 ° C. for 2 hours. In this way an improved natural zeolite was obtained.
 [エステル交換]
 図3に示すように、FAMEはエステル交換反応を通じて生産される。
 SVOは65~70℃に加熱され、メタノールと触媒(改良された天然ゼオライト)との混合液は50℃に温められた。そして、エステル交換を行うために、SVO並びにメタノール及び触媒の混合液が混合された。エステル交換が行われた後、FAME、グリセロール、及び触媒が分離された。グリセロールが除去されて、触媒はフィルターに通すことにより除去された。グリセロールと触媒とを除去した後、FAMEはpHが7となるまで熱水により洗浄された。そして、110℃で加熱するとともに攪拌することにより、乾燥された。
[Transesterification]
As shown in FIG. 3, FAME is produced through a transesterification reaction.
The SVO was heated to 65-70 ° C and the mixture of methanol and catalyst (modified natural zeolite) was warmed to 50 ° C. And in order to perform transesterification, the liquid mixture of SVO, methanol, and a catalyst was mixed. After transesterification, FAME, glycerol, and catalyst were separated. Glycerol was removed and the catalyst was removed by passing through a filter. After removing the glycerol and the catalyst, the FAME was washed with hot water until the pH was 7. And it dried by heating and stirring at 110 degreeC.
 サンプルの調製、触媒の調製、及びFAMEの生産の測定は、以下に示すように行われた。 Sample preparation, catalyst preparation, and FAME production measurements were performed as shown below.
 サンプルの調製に際しては、図4に示すように、新鮮な植物油(粗ジャトロファ油;CJO)が140℃、空気流量10L/時の条件で24時間、ランシマットに導入される。サンプリングは1時間ごとに行われた。FAMEの生産のために用いるのに必要な量の遊離脂肪酸(FFA)と水が含まれる特定のサンプルを選択するために、全てのサンプルについてFFAと水の含有量が分析された。 In preparing the sample, as shown in FIG. 4, fresh vegetable oil (crude jatropha oil; CJO) is introduced into the rancimat for 24 hours under conditions of 140 ° C. and an air flow rate of 10 L / hour. Sampling was done every hour. In order to select specific samples containing the amount of free fatty acid (FFA) and water necessary to use for the production of FAME, the FFA and water content was analyzed for all samples.
 触媒を調製するために、ゼオライト塊がより小さい粒子サイズ(0.25mm~0.50mm)となるように砕かれ、脱イオン水で洗浄される。そして、加熱炉において550℃で5時間、か焼される。その後、化学物質:ゼオライトが2:1となるように固体-液体混合物が作製されて、60℃で加熱されるとともに700rpmで1時間攪拌される。混合物は遠心分離されて、上澄みの液体が静かに移された。イオン交換反応を通じてゼオライトを改良するために、この作業が3回反復された。改良ゼオライトは、オーブンで、110℃で2時間乾燥された。 To prepare the catalyst, the zeolite mass is crushed to a smaller particle size (0.25 mm to 0.50 mm) and washed with deionized water. Then, it is calcined at 550 ° C. for 5 hours in a heating furnace. Thereafter, a solid-liquid mixture is prepared so that the ratio of chemical substance: zeolite is 2: 1, heated at 60 ° C. and stirred at 700 rpm for 1 hour. The mixture was centrifuged and the supernatant liquid was gently transferred. This operation was repeated three times to improve the zeolite through the ion exchange reaction. The modified zeolite was dried in an oven at 110 ° C. for 2 hours.
 FAMEの生産においては、12.5gの植物油(メタノール:油のモル比率が20:1)が70℃で予熱された。10gのメタノールが5%触媒と混合されて、5分間の間50℃で予熱されるとともに攪拌された。メタノール-触媒混合物は、その後、エステル交換のために準備した植物油の中に導入される。オイルバス付ホットプレートが用いられ、メタノール回収用のコンデンサーが取り付けられた100ml三口丸底フラスコが用いられて、温度が70±5℃に保たれた。最適な条件を得るために、反応全体が6時間にわたって続けられた。図5に示すように、反応時間の効果は6時間後に平衡状態となった。温度が70±5℃、MeOH:油の比率が20:1、触媒の濃度が5重量%の条件下で、FAMEを生産するための反応時間を6時間以上取ると、エステルの含有量が96.8重量%以上となる。温度が70±5℃、MeOH:油の比率が20:1、反応時間が6時間の条件下では、触媒の濃度の効果は5重量%で平衡状態となり、エステルの含有量は96.5重量%以上となった。反応時間が6時間、MeOH:油の比率が20:1、触媒の濃度が5重量%の条件下では、温度の効果は70℃で平衡状態となり、エステルの含有量は97.8重量%以上となった。反応時間が6時間、温度が70±5℃、触媒の濃度が5重量%の条件下では、モル比率の効果はMeOH:油の比率が20:1で平衡状態となり、それ以上のモル比率のときも平衡状態が保たれた。 In the production of FAME, 12.5 g of vegetable oil (methanol: oil molar ratio 20: 1) was preheated at 70 ° C. 10 g of methanol was mixed with 5% catalyst and preheated and stirred at 50 ° C. for 5 minutes. The methanol-catalyst mixture is then introduced into the vegetable oil prepared for transesterification. A hot plate with an oil bath was used, and a 100 ml three-necked round bottom flask equipped with a condenser for methanol recovery was used, and the temperature was maintained at 70 ± 5 ° C. The entire reaction was continued for 6 hours to obtain optimal conditions. As shown in FIG. 5, the effect of reaction time reached equilibrium after 6 hours. When the reaction time for producing FAME is 6 hours or more under the conditions of a temperature of 70 ± 5 ° C., a MeOH: oil ratio of 20: 1, and a catalyst concentration of 5% by weight, an ester content of 96 is obtained. .8% by weight or more. Under conditions where the temperature is 70 ± 5 ° C., the MeOH: oil ratio is 20: 1, and the reaction time is 6 hours, the effect of the catalyst concentration is in equilibrium at 5% by weight, and the ester content is 96.5% by weight. It became more than%. Under a reaction time of 6 hours, a MeOH: oil ratio of 20: 1 and a catalyst concentration of 5% by weight, the effect of temperature is in equilibrium at 70 ° C., and the ester content is 97.8% by weight or more. It became. Under conditions where the reaction time is 6 hours, the temperature is 70 ± 5 ° C., and the catalyst concentration is 5% by weight, the effect of the molar ratio is equilibrated with a MeOH: oil ratio of 20: 1. Sometimes the equilibrium was maintained.
 図6は、この発明の触媒の効果を示している。温度が70±5℃、MeOH:油の比率が20:1、触媒の濃度が5重量%、反応時間が6時間の条件下では、触媒の粒子サイズは0.25~0.50mmが望ましかった。触媒の粒子サイズが0.25~0.50mmの場合、エステルの含有量が97.8重量%となった。触媒の粒子サイズを0.63μmよりも小さくした場合、エステルの含有量は96.9重量%となったが、取り扱いが困難であった。再利用性の試験の結果は、温度が70±5℃、MeOH:油の比率が20:1、触媒の濃度が5重量%、反応時間が6時間の条件下では、1回目の触媒の使用ではエステルの含有量が96.8重量%、2回目では96.9重量%、3回目では96.5重量%、4回目では94.3重量%、5回目では93.4重量%であった。 FIG. 6 shows the effect of the catalyst of the present invention. Under conditions where the temperature is 70 ± 5 ° C., the ratio of MeOH: oil is 20: 1, the concentration of the catalyst is 5% by weight, and the reaction time is 6 hours, the particle size of the catalyst is preferably 0.25 to 0.50 mm. It was. When the particle size of the catalyst was 0.25 to 0.50 mm, the ester content was 97.8% by weight. When the catalyst particle size was made smaller than 0.63 μm, the ester content was 96.9% by weight, but it was difficult to handle. The results of the reusability test showed that the temperature was 70 ± 5 ° C., the MeOH: oil ratio was 20: 1, the catalyst concentration was 5% by weight, and the reaction time was 6 hours. The content of the ester was 96.8% by weight, 96.9% by weight for the second time, 96.5% by weight for the third time, 94.3% by weight for the fourth time, and 93.4% by weight for the fifth time. .
 また、図6は、原料の質の効果を示している。温度が70±5℃、MeOH:油の比率が20:1、触媒の濃度が5重量%、反応時間が6時間の条件下でFAMEを生産した場合、7時間が経過した後にエステルの含有量(重量%)は著しく減少し、24時間が経過した後に遊離脂肪酸が増加した。温度が70±5℃、MeOH:油の比率が20:1、触媒の濃度が5重量%、反応時間が6時間の条件下でFAMEを生産した場合、0~6時間では水の含有量(ppm)がゆっくりと増加し、6時間が経過した後は著しく増加した。 FIG. 6 shows the effect of the quality of the raw material. When FAME is produced under the conditions of a temperature of 70 ± 5 ° C., a MeOH: oil ratio of 20: 1, a catalyst concentration of 5% by weight, and a reaction time of 6 hours, the ester content after 7 hours (% By weight) decreased significantly and free fatty acids increased after 24 hours. When FAME was produced under the conditions of a temperature of 70 ± 5 ° C., a MeOH: oil ratio of 20: 1, a catalyst concentration of 5% by weight, and a reaction time of 6 hours, the water content ( ppm) increased slowly and increased significantly after 6 hours.
 本発明は、エステル化を用いたバイオディーゼルの生産に適用できる。
[参考文献]
The present invention is applicable to the production of biodiesel using esterification.
[References]
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (3)

  1.  バイオディーゼルの生産のために用いられる不均一系触媒であって、
     粒子サイズが0.1~1.0mmのゼオライト粒子を有し、
     当該ゼオライト粒子は1M~5Mの金属アルコシド類とイオン交換され、
     当該イオン交換において、前記ゼオライト:前記金属アルコシド類の比率が(1~10):(2~20)であり、当該ゼオライトと前記金属アルコシド類の混合物は50~60℃で0.5~5時間攪拌され、当該攪拌を少なくとも3回繰り返されるものであり、
     当該ゼオライト粒子が110~150℃で1~5時間乾燥される、不均一系触媒。
    A heterogeneous catalyst used for the production of biodiesel,
    Having zeolite particles with a particle size of 0.1 to 1.0 mm,
    The zeolite particles are ion exchanged with 1M-5M metal alkoxides,
    In the ion exchange, the ratio of the zeolite to the metal alkoxides is (1 to 10): (2 to 20), and the mixture of the zeolite and the metal alkoxides is 50 to 60 ° C. for 0.5 to 5 hours. Is stirred and the stirring is repeated at least three times,
    A heterogeneous catalyst in which the zeolite particles are dried at 110 to 150 ° C. for 1 to 5 hours.
  2.  請求項1に記載の不均一系触媒であって、
     前記ゼオライト粒子は、イオン交換が行われる前に、脱イオン水で洗浄されて、500~900℃で1~24時間、か焼される、不均一系触媒。
    The heterogeneous catalyst according to claim 1,
    The heterogeneous catalyst in which the zeolite particles are washed with deionized water and calcined at 500 to 900 ° C. for 1 to 24 hours before ion exchange is performed.
  3.  請求項1又は請求項2に記載の不均一系触媒を用いたFAME(Fatty Acid Methyl Ester;脂肪酸メチルエステル)の生産方法。 A method for producing FAME (Fatty Acid Methyl Ester; fatty acid methyl ester) using the heterogeneous catalyst according to claim 1 or 2.
PCT/JP2013/051218 2012-03-19 2013-01-22 Heterogeneous catalyst for producing biodiesel WO2013140842A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014506056A JP5864724B2 (en) 2012-03-19 2013-01-22 Production method of heterogeneous catalyst for biodiesel production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MYPI2012001236A MY177690A (en) 2012-03-19 2012-03-19 Heterogeneous catalyst for bio-diesel production
MYPI2012001236 2012-03-19

Publications (1)

Publication Number Publication Date
WO2013140842A1 true WO2013140842A1 (en) 2013-09-26

Family

ID=49222310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051218 WO2013140842A1 (en) 2012-03-19 2013-01-22 Heterogeneous catalyst for producing biodiesel

Country Status (3)

Country Link
JP (1) JP5864724B2 (en)
MY (1) MY177690A (en)
WO (1) WO2013140842A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200943A (en) * 1985-02-26 1986-09-05 バスフ アクチェン ゲゼルシャフト Esterification by zeolite catalyst
JP2008536952A (en) * 2005-04-22 2008-09-11 訓一 仲村 Biofuel conversion treatment method
JP2008274030A (en) * 2007-04-26 2008-11-13 Oita Univ Method for producing biodiesel fuel
WO2009063842A1 (en) * 2007-11-16 2009-05-22 Mizusawa Industrial Chemicals, Ltd. Method for producing biofuel
JP2011530396A (en) * 2008-08-08 2011-12-22 イエフペ エネルジ ヌヴェル Catalyst comprising at least one IZM-2 zeolite and its use in the conversion of hydrocarbon feedstock

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200943A (en) * 1985-02-26 1986-09-05 バスフ アクチェン ゲゼルシャフト Esterification by zeolite catalyst
JP2008536952A (en) * 2005-04-22 2008-09-11 訓一 仲村 Biofuel conversion treatment method
JP2008274030A (en) * 2007-04-26 2008-11-13 Oita Univ Method for producing biodiesel fuel
WO2009063842A1 (en) * 2007-11-16 2009-05-22 Mizusawa Industrial Chemicals, Ltd. Method for producing biofuel
JP2011530396A (en) * 2008-08-08 2011-12-22 イエフペ エネルジ ヌヴェル Catalyst comprising at least one IZM-2 zeolite and its use in the conversion of hydrocarbon feedstock

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
E. YODA ET AL.: "Transesterification of ethyl butyrate with methanol over 1-butyl-3- methylimidazolium exchanged mordenite", APPLIED CATALYSIS A: GENERAL, vol. 390, no. 1-2, 20 December 2010 (2010-12-20), pages 45 - 50, XP027527072 *
G.J. SUPPES ET AL.: "Transesterification of soybean oil with zeolite and metal catalysts", APPLIED CATALYSIS A: GENERAL, vol. 257, no. 2, 20 January 2004 (2004-01-20), pages 213 - 223, XP004483064, DOI: doi:10.1016/j.apcata.2003.07.010 *
M. J. RAMOS ET AL.: "Transesterification of sunflower oil over zeolites using different metal loading: A case of leaching and agglomeration studies", APPLIED CATALYSIS A: GENERAL, vol. 346, no. 1-2, 31 August 2008 (2008-08-31), pages 79 - 85, XP022939924, DOI: doi:10.1016/j.apcata.2008.05.008 *

Also Published As

Publication number Publication date
JP5864724B2 (en) 2016-02-17
JPWO2013140842A1 (en) 2015-08-03
MY177690A (en) 2020-09-23

Similar Documents

Publication Publication Date Title
de Lima et al. Heterogeneous basic catalysts for biodiesel production
Roschat et al. Biodiesel production based on heterogeneous process catalyzed by solid waste coral fragment
Li et al. Recyclable Li/NaY zeolite as a heterogeneous alkaline catalyst for biodiesel production: Process optimization and kinetics study
Manique et al. Biodiesel production using coal fly ash-derived sodalite as a heterogeneous catalyst
Chen et al. Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts
Roschat et al. Catalytic performance enhancement of CaO by hydration-dehydration process for biodiesel production at room temperature
Avhad et al. A review on recent advancement in catalytic materials for biodiesel production
Fadhil et al. Transesterification of non-edible oils over potassium acetate impregnated CaO solid base catalyst
Ullah et al. Current advances in catalysis toward sustainable biodiesel production
Romero et al. Biodiesel production by using heterogeneous catalysts
Antunes et al. Transesterification of soybean oil with methanol catalyzed by basic solids
AlSharifi et al. Development of a lithium based chicken bone (Li-Cb) composite as an efficient catalyst for biodiesel production
Semwal et al. Biodiesel production using heterogeneous catalysts
Patil et al. Microwave-assisted catalytic transesterification of camelina sativa oil
Zieba et al. Transesterification of triglycerides with methanol catalyzed by heterogeneous zinc hydroxy nitrate catalyst. Evaluation of variables affecting the activity and stability of catalyst.
Basumatary Transesterification with heterogeneous catalyst in production of biodiesel: A Review
Dai et al. One-pot synthesis of acid-base bifunctional catalysts for biodiesel production
Tang et al. Highly active CaO for the transesterification to biodiesel production from rapeseed oil
CN103801282B (en) A kind of solid base catalyst and Synthesis and applications thereof
Anjana et al. Utilization of limestone derived calcium oxide for biodiesel production from non‐edible pongamia oil
WO2020022143A1 (en) Method for producing biofuel
KR102499622B1 (en) Solid acid catalyst for biodiesel production, solid base catalyst for biodiesel production, methods for preparing the same, and methods for producing biodiesel using the same
CN102172521B (en) Solid basic catalyst and preparation method and application thereof
Fereidooni et al. Evaluation of methyl ester production using cement as a heterogeneous catalyst
Islam et al. Advanced technologies in biodiesel: New advances in designed and optimized catalysts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764195

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506056

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201406293

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 13764195

Country of ref document: EP

Kind code of ref document: A1