WO2013140728A1 - Method for manufacturing long stretched film - Google Patents

Method for manufacturing long stretched film Download PDF

Info

Publication number
WO2013140728A1
WO2013140728A1 PCT/JP2013/001421 JP2013001421W WO2013140728A1 WO 2013140728 A1 WO2013140728 A1 WO 2013140728A1 JP 2013001421 W JP2013001421 W JP 2013001421W WO 2013140728 A1 WO2013140728 A1 WO 2013140728A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
long
group
stretching
stretched film
Prior art date
Application number
PCT/JP2013/001421
Other languages
French (fr)
Japanese (ja)
Inventor
大介 北條
真治 稲垣
晋平 畠山
大輔 植野
博 南部
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014505995A priority Critical patent/JP5983732B2/en
Publication of WO2013140728A1 publication Critical patent/WO2013140728A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/045Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique in a direction which is not parallel or transverse to the direction of feed, e.g. oblique
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers

Definitions

  • the present invention relates to a method for producing a long stretched film.
  • a stretched film formed by stretching a resin is used as an optical film that performs various optical functions in various display devices by utilizing its optical anisotropy.
  • the stretched film is used as an optical compensation film for optical compensation such as anti-coloring and viewing angle expansion, or by bonding the stretched film and a polarizer, It is known to use as a retardation film that also serves as a polarizing plate protective film.
  • a self-luminous display device such as an organic electroluminescence display device (hereinafter also referred to as an organic EL display) has attracted attention as a new display device.
  • the self-luminous display device has a room for suppressing power consumption with respect to a liquid crystal display device whose backlight is always lit, and further, a self-luminous type in which a light source corresponding to each color such as an organic EL display is lit.
  • the contrast can be further increased.
  • the above circularly polarizing plate needs to be bonded so that the in-plane slow axis of the stretched film is inclined at a desired angle with respect to the absorption axis of the polarizer.
  • a general polarizer (polarizing film) is obtained by stretching at a high magnification in the transport direction, and its absorption axis coincides with the transport direction.
  • Conventional retardation films are produced by longitudinal stretching or transverse stretching, and in principle, the in-plane slow axis is in the direction of 0 ° or 90 ° with respect to the longitudinal direction of the film. Therefore, as described above, in order to make the relationship between the absorption axis of the polarizer and the slow axis of the stretched film a desired angle that is inclined, a long polarizing film and / or a stretched film is cut out at a specific angle to obtain a film piece.
  • the resin film is stretched obliquely and has a slow axis at a desired angle of more than 0 ° and less than 90 ° with respect to the width direction.
  • the stretched film is manufactured.
  • a stretched film in which the slow axis is inclined with respect to the width direction a long polarizing film and a stretched film are pasted by roll-to-roll instead of conventional batch-type bonding.
  • the productivity can be dramatically improved and the yield can be greatly improved.
  • a self-luminous display device in which a light source corresponding to each color, such as an organic EL display, is turned on has few members such as a color filter that causes a reduction in contrast. Although the contrast is very high, it has been found that slight variations in optical characteristics are noticeably observed as color unevenness.
  • the oblique stretching apparatus is installed so that a part of the gripping tool traveling support tool provided with a path along which the gripping tool travels passes through the heating furnace, thereby heating the long film to be transported obliquely. Can be stretched in the direction.
  • the heating furnace of the stretching apparatus is divided into a plurality of zones. The long film is heated in a heating furnace and stretched obliquely in a stretching zone.
  • the stretching device can realize various rail patterns by changing the shape of the gripping tool traveling support provided on both sides of the traveling long film.
  • the shape of the gripping tool travel support tool can be changed by adjusting a drive shaft provided at the lower part in the thickness direction of the long film that normally travels.
  • the oblique stretching apparatus is provided with a large number of drive shafts so as to cope with various stretching angles as compared with a stretching apparatus such as a normal transverse stretching.
  • the long film is heated in a heating furnace and stretched in a stretching zone. And generally, in a heating furnace, a long film is heated by the heater arrange
  • FIG. 1 is a schematic diagram for explaining a heater 4 disposed in a heating furnace of a conventional oblique stretching apparatus 1.
  • FIG. 2 is a side view of the stretching apparatus 1 of FIG.
  • the gripping tool travel support tool 2 is provided with a drive shaft 3 for changing the shape of the gripping tool travel support tool 2 at predetermined intervals.
  • a collision wind (not shown) is blown onto the long film.
  • the impingement wind refers to a wind in which air stays due to heat radiated from the heater 4 and is blown onto a long film.
  • the arrows indicate the position and direction of heat applied from the heater 4 to the long film F.
  • the nozzle 4a is provided in the heater 4 arranged in a stepping stone shape, and the nozzle 4a There is a method of blowing hot air on the long film F.
  • the amount of heat that can be applied to the long film F from the nozzle 4 a is smaller than the amount of heat that can be applied to the long film F from the heater 4. Therefore, in this method, heat cannot be sufficiently and uniformly applied in the transport direction of the long film F, and the temperature unevenness of the obtained long stretched film cannot be sufficiently improved.
  • the drive shaft 3 itself has a function as a heater.
  • the drive shaft 3 shown in FIG. 5 has a plurality of holes 3a, and the long film F is heated by hot air blown from the holes 3a.
  • the drive shaft 3 shown in FIGS. 6 and 7 is connected to a support base 3b that supports the gripping tool travel support tool 2, and the long film F is provided with a hole (not shown) provided in the support base 3b. It is heated by hot air blown from
  • the amount of heat applied from the holes by these methods is smaller than the amount of heat that can be applied from the heater 4 to the long film F. Therefore, in this method, heat cannot be sufficiently and uniformly applied in the transport direction of the long film F, and the temperature unevenness of the obtained long stretched film cannot be sufficiently improved.
  • the oblique stretching apparatus has a problem that when the drive shaft 3 is adjusted to change the stretching angle, the movement is hindered by the heater 4 that is installed, so that it is difficult to efficiently change the stretching angle.
  • the film thickness of the long film is thinner, the variation in the orientation angle in the width direction due to temperature unevenness tends to increase.
  • the present invention has been made in view of the above-described conventional problems.
  • a long stretched film that can apply sufficient and constant heat to a stretched long film and has a small variation in the width direction of the orientation angle is provided. It aims at providing the manufacturing method of the elongate stretched film obtained.
  • a sheet heater is provided between the long film and the drive shaft to form a long film. It has been found that by continuously heating the film, sufficient and constant heat is applied to the stretched long film, and the above object can be achieved. Then, the inventors have further studied and have completed the present invention based on these findings.
  • the method for producing a long stretched film includes a step of forming a long film made of a thermoplastic resin, from a specific direction different from the running direction of the film after stretching the long film.
  • the long film is fed into an oblique stretching apparatus, and the long film is obliquely stretched in a direction of greater than 0 ° and less than 90 ° with respect to the width direction while conveying the both ends of the long film with a gripping device of the oblique stretching apparatus.
  • the oblique stretching device obliquely intersects the traveling direction of the long film before stretching.
  • the stretching direction can be arbitrarily changed so that the traveling direction of the long stretched film after stretching is in the stretching direction, and the heating tool and the gripping tool traveling support provided on both sides of the long film are arranged.
  • the gripping tool travel support tool includes a drive shaft below a horizontal position where the long film travels, and in the oblique stretching step, the long film is disposed in the heating furnace. At least in the stretching zone, it is continuously heated by a planar heater provided between the drive shaft and the long film.
  • the “long film” refers to a film formed before being stretched.
  • the “long stretched film” refers to a film stretched through a stretching process.
  • the method for producing a long film is not particularly limited, and known methods such as a coextrusion molding method, a co-casting method (solution casting method and melt casting method), a film lamination method, and a coating method. This method can be adopted. The long film obtained by these methods is stretched through an oblique stretching process to form a long stretched film.
  • FIG. 1 is a schematic view for explaining a heater arranged in a heating furnace of a conventional oblique stretching apparatus.
  • FIG. 2 is a side view of a conventional stretching apparatus.
  • FIG. 3 is a schematic view for explaining a heater arranged in a heating furnace of a conventional stretching apparatus.
  • FIG. 4 is a side view of a conventional stretching apparatus.
  • FIG. 5 is a schematic view for explaining a heater arranged in a heating furnace of a conventional stretching apparatus.
  • FIG. 6 is a schematic view for explaining a heater arranged in a heating furnace of a conventional stretching apparatus.
  • FIG. 7 is a side view of a conventional stretching apparatus.
  • FIG. 1 is a schematic view for explaining a heater arranged in a heating furnace of a conventional oblique stretching apparatus.
  • FIG. 2 is a side view of a conventional stretching apparatus.
  • FIG. 3 is a schematic view for explaining a heater arranged in a heating furnace of a conventional stretching apparatus.
  • FIG. 4 is
  • FIG. 8 is a schematic view for explaining an oblique stretching apparatus used in the method for producing a long stretched film according to one embodiment of the present invention.
  • FIG. 9 is a schematic view for explaining a planar heater disposed in a heating furnace of an oblique stretching apparatus used in the manufacturing method of one embodiment of the present invention.
  • FIG. 10 is a side view of an oblique stretching apparatus used in the manufacturing method of one embodiment of the present invention.
  • FIG. 11 is a schematic diagram for explaining the positions of the stretching zone and the planar heater in the oblique stretching apparatus used in the manufacturing method of one embodiment of the present invention.
  • FIG. 12 is a schematic view for explaining another example of the position of the planar heater in the oblique stretching apparatus used in the manufacturing method of one embodiment of the present invention.
  • FIG. 13 is a schematic view of an organic EL display according to an embodiment of the present invention.
  • An embodiment of the present invention includes a step of forming a long film made of a thermoplastic resin, and the long film is transferred to a diagonal stretching device from a specific direction different from the traveling direction of the stretched film.
  • An oblique stretching step of obliquely stretching the long film in a direction greater than 0 ° and less than 90 ° with respect to the width direction while being gripped and conveyed by a gripping tool of an oblique stretching device, and an oblique stretching step In the method for producing a long stretched film having at least a step of winding the long stretched film after, the oblique stretching apparatus has a long stretched film after being stretched in a direction oblique to the running direction of the long film before stretching.
  • the stretching direction can be arbitrarily changed so that the traveling direction of is, and has a heating furnace and a gripping tool travel support provided on both sides of the long film, the gripping tool travel support is
  • a drive shaft is provided below a horizontal position where the long film travels, and in the oblique stretching step, the long film is formed between the drive shaft and the long film in at least a stretching zone in the heating furnace. It is a manufacturing method of the elongate stretched film continuously heated with the planar heater provided in between.
  • the long length refers to a film having a length of at least about 5 times the width of the film, preferably a length of 10 times or more, specifically in a roll shape. It has a length (film roll) that is wound and stored or transported.
  • the oblique stretching step is a step of stretching the formed long film in a direction oblique to the width direction.
  • a film can be manufactured to desired length by manufacturing a film continuously.
  • the film after film formation may be continuously supplied to the oblique stretching process from the film forming process without winding up the film. It is preferable to perform the film forming step and the oblique stretching step continuously because the film thickness after the stretching and the result of the optical value are fed back to change the film forming conditions to obtain a desired long stretched film. .
  • a long stretched film having a slow axis at an angle of more than 0 ° and less than 90 ° with respect to the width direction of the film is produced.
  • the angle with respect to the width direction of the film is an angle in the film plane. Since the slow axis in the film plane is usually expressed in the stretching direction or a direction perpendicular to the stretching direction, in the production method of this embodiment, stretching is performed at an angle of more than 0 ° and less than 90 ° with respect to the film extension direction. By performing this, a long stretched film having such a slow axis can be produced.
  • the angle formed by the width direction of the long stretched film and the slow axis can be arbitrarily set to a desired angle within a range of more than 0 ° and less than 90 °.
  • an oblique stretching apparatus In order to impart an oblique orientation to the long film subjected to stretching in this embodiment, an oblique stretching apparatus is used.
  • the oblique stretching apparatus used in the present embodiment can freely set the orientation angle of the film by changing the path pattern of the gripping tool traveling support tool in various ways, and further the orientation axis of the film across the film width direction. It is preferable that the film stretching apparatus can be oriented with high precision in the left and right directions and can control the film thickness and retardation with high precision.
  • FIG. 8 is a schematic diagram for explaining an oblique stretching apparatus used in the method for producing a long stretched film of the present embodiment.
  • this is an example, and the present embodiment is not limited to this.
  • the running direction of the long film (running direction of the long film before stretching) D1 when fed into the stretching apparatus is the running direction of the long stretched film when fed from the stretching apparatus (of the long stretched film after stretching). Travel direction) is different from D2 and forms a feeding angle ⁇ i.
  • the feeding angle ⁇ i can be arbitrarily set to a desired angle in the range of more than 0 ° and less than 90 °.
  • the long film has a left and right gripping tool (a pair of left and right grips) at the entrance of the oblique stretching apparatus (the gripping tool is a gripping start point for gripping the long film, and a straight line connecting the gripping start points is indicated by reference symbol A). Gripped by the gripping tool pair) and transported as the gripping tool travels.
  • the gripping tool pair is an entrance of the oblique stretching apparatus, and the left and right gripping tools Ci and gripping tool Co that are opposed to a direction substantially perpendicular to the running direction of the long film (the running direction D1 of the long film before stretching). Consists of.
  • the left and right gripping tools Ci and Co travel along an asymmetrical path, respectively, and the position at the end of stretching (the gripping release point at which the gripping tool releases the gripping, and the straight line connecting the gripping release points is denoted by reference symbol B.
  • the long stretched film gripped in (shown) is released.
  • the left and right gripping tools Ci and gripping tool Co which are opposed to each other at the entrance of the oblique stretching apparatus (position A in the figure), travel on the inner gripping tool travel support tool Ri and the outer gripping tool travel support tool Ro, respectively.
  • the gripping tool Ci traveling on the inner gripping tool travel support tool Ri is in a positional relationship that advances relative to the gripping tool Co traveling on the outer gripping tool travel support tool Ro.
  • the gripping tool Ci and the gripping tool Co which are opposed to the direction substantially perpendicular to the running direction D1 of the long film at the entrance of the oblique stretching apparatus, are in the position B, the gripping tool Ci and the gripping tool Co Is a positional relationship in which an angle ⁇ L is inclined from a direction substantially perpendicular to the running direction D2 of the stretched long stretched film.
  • the term “substantially vertical” indicates that the angle is in the range of 90 ⁇ 1 °.
  • the manufacturing method of the present embodiment is performed using a stretching apparatus capable of oblique stretching.
  • This stretching apparatus is an apparatus that heats a long film to an arbitrary temperature at which it can be stretched and obliquely stretches it.
  • the stretching device includes a heating zone (heating furnace), a plurality of gripping tools that are paired on both sides for traveling on both sides of a long film, and gripping tool traveling for supporting the traveling of the gripping tool. And a support tool. Hold both ends of the long film that is sequentially supplied to the entrance (holding start point) of the stretching device with a gripper, guide the long film into the heating furnace, and hold it at the exit (holding release point) of the stretching device. Release the long stretched film from the tool.
  • the long stretched film released from the gripping tool is wound around the core.
  • the gripping tool traveling support tool having the gripping tool has an endless continuous track, and the gripping tool that has released the grip of the long stretched film at the exit of the stretching device is sequentially returned to the gripping start point by the gripping tool travel support tool. It is supposed to be.
  • the endless chain whose path is regulated by a guide rail or a gear may be provided with the gripper, or the endless guide rail may be provided with the gripper.
  • the gripping tool travel support tool may be, for example, an endless guide rail provided with an endless chain, or may be an endless guide rail provided with an endless chain. It may be an endless guide rail without a chain.
  • the gripper travel support tool does not include a chain, the gripper travels along the path of the gripper travel support tool itself.
  • the gripper travel support tool includes the chain, the gripper travel support tool travels along the path of the gripper travel support tool. Run.
  • the gripping tool is routed through the chain provided with the gripping tool. You may drive.
  • the number of gripping tools provided in each gripping tool travel support tool is not particularly limited, but is preferably the same number.
  • the gripping tool travel support tool of the stretching device has an asymmetric shape on the left and right, and the pattern of the path of the gripping tool travel support tool depends on the orientation angle, stretch ratio, etc. given to the long stretched film to be manufactured. It is configured so that it can be adjusted manually or automatically.
  • the path pattern of the gripper travel support tool is performed by adjusting the drive shaft, which will be described in detail later.
  • the path of each gripper travel support tool can be freely set and the pattern of the path of the gripper travel support tool can be arbitrarily changed.
  • the length (full length) of the gripping tool travel support tool is not particularly limited, and is usually about 10 to 100 m. Moreover, the full length of the holding
  • the traveling speed of the gripping tool of the stretching apparatus can be selected as appropriate, but is preferably 15 to 150 m / min.
  • the traveling speed of the gripping device of the stretching apparatus is higher than 150 m / min, the local stress applied to the end of the film increases at the bent portion, and wrinkles and shifts occur at the end of the film.
  • the effective width obtained as a non-defective product tends to narrow.
  • the traveling speed of the gripping tool is within the above range, the long film is likely to have temperature unevenness due to insufficient heat supply.
  • the stretching apparatus used in the present embodiment is continuously provided with a planar heater at least in the stretching zone, so even when a long film is conveyed at high speed. Heat can be sufficiently and uniformly applied to the traveling long film. As a result, the variation in the width direction of the orientation angle of the obtained long film can be reduced.
  • the traveling speeds of the two gripping tools constituting the gripping tool pair may be the same or different. If there is a difference in travel speed between the left and right of the long stretched film at the grip release point, wrinkles and misalignment may occur in the long stretched film at the grip release point.
  • the speed difference is preferably substantially constant.
  • the difference between the traveling speeds of the gripping tools is preferably 1% or less, more preferably 0.5% or less, even more preferably. Is 0.1% or less.
  • speed irregularities that occur in the order of seconds or less depending on the period of the sprocket (gear) teeth that drive the chain, the frequency of the drive motor, etc. These do not correspond to the speed difference described in this embodiment.
  • the gripping tool traveling support tool that regulates the locus of the gripping tool of the oblique stretching apparatus used in the present embodiment is often required to have a high bending rate, particularly in a portion where the conveyance of the long film is slanted. In order to avoid interference between gripping tools due to sudden bending or local stress concentration, it is desirable that the trajectory of the gripping tool is curved so as to draw an arc at the bent portion.
  • the long film is sequentially gripped by the left and right gripping tools (a pair of gripping tools) at the entrance of the oblique stretching device (position of the straight line A in FIG. 8), and the gripping tool travels. Drive with it.
  • the pair of gripping tools facing the direction substantially perpendicular to the long film traveling direction D1 at the entrance of the oblique stretching apparatus travels along an asymmetric path, and has a preheating zone, a stretching zone, and a heat fixing zone. Pass through.
  • Preheating zone refers to a section where the distance between the gripping tools gripping both ends is kept constant at the heating furnace entrance.
  • the stretching zone refers to the interval until the gap between the gripping tools that grips both ends starts to reach a predetermined interval.
  • the film can be stretched in an oblique direction in the stretching zone.
  • the stretching is not limited to the stretching in the oblique direction. You may extend
  • the heat setting zone refers to the section in which the gripping tools at both ends run parallel to each other during the period when the spacing between the gripping tools after the stretching zone becomes constant again. You may pass through the area (cooling zone) by which the temperature in a zone is set to below the glass transition temperature Tg of the thermoplastic resin which comprises a elongate film, after passing through a heat setting zone. At this time, in consideration of shrinkage of the long stretched film due to cooling, a route pattern that narrows the gap between the opposing gripping tools in advance may be used.
  • transverse stretching and longitudinal stretching may be performed as necessary in the steps before and after introducing the long film into the oblique stretching apparatus.
  • the temperature of the preheating zone is set to Tg to Tg + 30 ° C., the temperature of the stretching zone to Tg to Tg + 30 ° C., and the temperature of the cooling zone to Tg ⁇ 30 ° C. to Tg with respect to the glass transition temperature Tg of the thermoplastic resin.
  • a temperature difference in the width direction may be applied in the stretching zone in order to control thickness unevenness in the width direction.
  • a method of adjusting the opening degree of the nozzle that sends warm air into the temperature-controlled room by making a difference in the width direction, or a method of controlling heating by arranging heaters in the width direction, etc. can be used.
  • the length of the preheating zone, stretching zone, and heat setting zone can be appropriately selected.
  • the length of the preheating zone is usually 100 to 150% and the length of the heat setting zone is usually 50 to 100% with respect to the length of the stretching zone. It is.
  • the draw ratio R (W / W0) in the drawing step is preferably 1.3 to 3.0, more preferably 1.5 to 2.8. When the draw ratio is within this range, thickness unevenness in the width direction is preferably reduced. Further, if necessary, a difference in stretching temperature in the width direction may be made in the stretching zone in order to make the thickness unevenness in the width direction even better.
  • W0 represents the width of the long film before stretching
  • W represents the width of the long stretched film after stretching.
  • FIG. 9 is a schematic diagram for explaining the planar heater 8 disposed in the heating furnace of the oblique stretching apparatus 5 used in the present embodiment.
  • FIG. 10 is a side view of the oblique stretching device 5.
  • FIG. 11 is a schematic diagram for explaining the positions of the stretching zone 7 and the planar heater 8 in the oblique stretching apparatus 5.
  • the long film F is conveyed into the heating furnace 6 while being held by the holding tool.
  • the heating furnace 6 is an apparatus for heating the long film F.
  • the long film F is heated from the lower side of the long film F by the planar heater 8 provided between the long film F and the drive shaft 3 at least in the stretching zone 7. .
  • the planar heater 8 is preferably provided throughout the heating furnace 6. While the inside of the heating furnace 6 is heated by the planar heater 8, the traveling long film F is heated.
  • the heating furnace 6 can be provided with a heating source other than the position where the planar heater 8 is provided.
  • the position of the heating source is not particularly limited. At a position other than the position where the planar heater 8 is provided, the heating source can be provided on at least one of the upper and lower sides of the long film F from the viewpoint of uniformly heating the long film F. Furthermore, at the position where the planar heater 8 is provided, a heating source may be provided on the upper side in the thickness direction of the long film F, and the long film F may be heated together with the planar heater 8 from above and below.
  • the heating method by a heat source is not specifically limited, For example, the method of spraying a hot air is employable.
  • the drive shaft 3 is connected to the gripping tool travel support tool 2.
  • the drive shaft 3 is configured to be movable by a predetermined distance in a direction substantially orthogonal to the traveling direction of the long film F, and changes the shape of the gripping tool traveling support tool 2 by movement.
  • the method for moving the drive shaft 3 is not particularly limited.
  • a part of the gripping tool travel support tool 2 and a part of the drive shaft 3 can be connected by a connecting rod 9.
  • the shape of the gripping tool traveling support tool 2 can be changed via the connecting rod 9.
  • a gripping tool (not shown) travels along the path of the gripping tool travel support tool 2 while gripping the long film F.
  • the long film F conveyed is heated by the planar heater 8 provided continuously on the lower surface.
  • the planar heater 8 is provided between the long film F and the drive shaft 3 at least in the stretching zone 7 of the heating furnace 6.
  • the planar heater 8 can continuously and uniformly heat the traveling long film F from the lower surface, and uniformly moves the ambient air existing on the lower surface of the long film F, thereby making it difficult to generate a collision wind. be able to. Therefore, the long film F hardly causes temperature unevenness. Even when the driving shaft 3 is adjusted to change the stretching direction and the shape of the gripping tool travel support tool 2 is changed, the planar heater 8 is provided between the long film F and the driving shaft 3. Therefore, the adjustment of the drive shaft 3 is not hindered.
  • continuous heating refers to an operation in which the planar heater 8 uniformly applies heat to the traveling long film F as shown in FIG. 10.
  • the heat flow continuously given is shown by the arrows arranged uniformly. That is, the heat from the heater (heater 4) arranged in a stepping stone shape shown in FIG. 2 does not continuously heat the long film F as indicated by the discontinuously arranged arrows.
  • the planar heater 8 of the present embodiment is not disposed between the drive shafts like the heater 4 shown in FIG. 2, but is provided between the long film F and the drive shaft 3. . For this reason, in the oblique stretching device 5 having a large number of drive shafts 3, it can be provided between the long film F and the drive shaft 3 regardless of the number and arrangement of the drive shafts 3.
  • the type of the planar heater 8 is not particularly limited, and a conventionally known electric heater or the like can be used.
  • the planar heater 8 is made of, for example, a planar heater or metal foil obtained by applying or impregnating a carbon paint to a fabric woven with conductive wires and thermally fusing both sides with a heat-resistant synthetic resin sheet (for example, a polyimide sheet).
  • a planar heater or the like integrally formed by sandwiching from both sides with a heat-resistant resin sheet can be employed.
  • it is excellent in high temperature and heat resistance, adopts a ceramic heater using a ceramic substrate such as alumina or aluminum nitride from the viewpoint of high temperature rise rate and long life. be able to.
  • a mica heater, a quartz heater, etc. can be employed.
  • the shape of the planar heater 8 is not particularly limited as long as it can be provided between the long film F and the drive shaft 3. In the present embodiment, a planar heater 8 having a flat shape is employed.
  • the horizontal position where the planar heater 8 is provided is not particularly limited as long as it is between the long film F and the drive shaft 3. That is, the planar heater 8 can be installed on the lower surface side of the long film F with a distance that can provide sufficient and uniform heat to the long film F. Further, the planar heater 8 can be provided at a position relatively close to the long film F. Therefore, there is little heat conducted from the planar heater 8 to the drive shaft 3, and the heat from the planar heater 8 is efficiently applied to the long film F.
  • the method of providing the planar heater 8 is not particularly limited as long as the method is provided between the long film F and the drive shaft 3.
  • it can be connected to the gripping tool travel support tool 2 or formed integrally.
  • the shape of the gripping tool travel support tool 2 is changed by adjusting the drive shaft 3 by connecting to the gripping tool travel support tool 2 or integrally forming the planar heater 8,
  • the shape of the planar heater 8 can be changed following the changed shape of the gripping tool travel support tool 2.
  • the method for changing the shape of the planar heater 8 is not particularly limited.
  • the planar heater 8 may have a slide mechanism such as a garage shutter or a ninety-nine-fold structure. May be.
  • the area occupied by the planar heater 8 in the width direction of the long film F is not particularly limited, as long as it is provided on the lower surface of the long film F that travels at least in the stretching zone 7, as shown in FIG. It may be provided throughout the stretching zone 7.
  • planar heater 8 when the planar heater 8 is provided only on the lower surface of the traveling long film F, heat is not applied to the extra space in the stretching zone 7, so the thermal efficiency of the long film F is good.
  • planar heater 8 when the planar heater 8 is provided in the entire stretching zone 7, for example, even when the stretching angle is changed and the shape of the gripping tool travel support tool 2 is changed, from the lower surface of the long film F that always travels. Heat can be applied.
  • the planar heater 8 when providing the planar heater 8 only in the lower surface of the elongate film F, when changing an extending
  • a contact avoidance mechanism such as a long hole mechanism and a folding mechanism in advance along the movement path of the connecting rod 9. In this case, the planar heater 8 can avoid contact with the connecting rod 9 by being automatically or manually folded inside the long hole as necessary.
  • the planar heater 8 when the planar heater 8 is provided in the entire stretching zone 7, the planar heater 8 may come into contact with the connecting rod 9 when the stretching angle is changed. Therefore, the planar heater 8 can be provided with a contact avoidance mechanism such as a long hole mechanism and a folding mechanism in advance along the movement path of the connecting rod 9. In this case, the planar heater 8 can avoid contact with the connecting rod 9 by being automatically or manually folded inside the long hole as necessary. Further, the planar heater 8 can be provided with a guide mechanism on the front and back surfaces of the planar heater 8 along the movement path of the connecting rod 9. In this case, the connecting rod 9 can be structured to be sandwiched between the planar heater 8 by an actuating member that runs on the guide mechanism from above and below.
  • a contact avoidance mechanism such as a long hole mechanism and a folding mechanism in advance along the movement path of the connecting rod 9.
  • the planar heater 8 can avoid contact with the connecting rod 9 by being automatically or manually folded inside the long hole as necessary.
  • the planar heater 8 can be provided
  • a planar heater 8 may be provided continuously throughout the heating furnace 5 including the stretching zone 7. As described above, when the planar heater 8 is continuously provided throughout the heating furnace 3, the long film F is uniformly heated even before and after the stretching zone 7 without temperature unevenness. As a result, the variation in the width direction of the orientation angle of the obtained long stretched film can be reduced regardless of the stretch angle, and a long stretched film with stable quality can be obtained.
  • the planar heater 8 can be provided only on the lower surface of the traveling long film F. In this case, since heat is not given to the extra space in the heating furnace 6, the thermal efficiency for the long film F is good. On the other hand, when provided throughout the heating furnace 6, for example, even when the shape of the gripping tool travel support tool 2 is changed by changing the stretching angle, heat is always applied from the lower surface of the long film F that travels. Can do. Moreover, it is not necessary to provide the planar heater 8 in accordance with the shape of the gripping tool travel support tool 2 after the shape is changed, and the convenience is excellent.
  • this embodiment should just have the above-mentioned diagonal extending process, and it does not specifically limit about other processes. For this reason, the other steps described below are examples, and the design can be changed as appropriate.
  • the film forming step is a step of forming a long film made of a thermoplastic resin.
  • the long film formed in this embodiment is not particularly limited as long as it is a long film made of a thermoplastic resin.
  • a film made of a resin transparent to a desired wavelength is preferable.
  • resins include polycarbonate resins, polyether sulfone resins, polyethylene terephthalate resins, polyimide resins, polymethyl methacrylate resins, polysulfone resins, polyarylate resins, polyethylene resins, polyvinyl chloride resins.
  • resins include resins, olefin polymer resins having an alicyclic structure, and cellulose ester resins.
  • polycarbonate resins, olefin polymer resins having an alicyclic structure, and cellulose ester resins are preferable from the viewpoints of transparency and mechanical strength.
  • an olefin polymer-based resin having an alicyclic structure and a cellulose ester-based resin, which are easy to adjust the phase difference in the case of an optical film, are more preferable. Therefore, even when the film is obliquely stretched by high-speed conveyance, it is particularly preferable from the viewpoint that wrinkles and shifts hardly occur at the film edge.
  • alicyclic olefin polymer-based resin examples include cyclic olefin random multi-component copolymers described in JP-A No. 05-310845, hydrogenated polymers described in JP-A No. 05-97978, and JP-A No. 11
  • the thermoplastic dicyclopentadiene ring-opening polymer and hydrogenated product thereof described in JP-A-124429 can be employed.
  • the olefin polymer resin having an alicyclic structure will be described more specifically.
  • the alicyclic olefin polymer-based resin is a polymer having an alicyclic structure such as a saturated alicyclic hydrocarbon (cycloalkane) structure or an unsaturated alicyclic hydrocarbon (cycloalkene) structure.
  • the number of carbon atoms constituting the alicyclic structure is not particularly limited, but is usually 4 to 30, preferably 5 to 20, more preferably 5 to 15, and the mechanical strength, heat resistance and The formability characteristics of the long film are highly balanced and suitable.
  • the proportion of the repeating unit containing the alicyclic structure in the alicyclic olefin polymer may be appropriately selected, but is preferably 55% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight. That's it.
  • the ratio of the repeating unit having an alicyclic structure in the alicyclic polyolefin resin is within this range, the transparency and heat resistance of an optical material such as a retardation film obtained from the long stretched film of the present embodiment are improved. This is preferable.
  • Examples of the olefin polymer resin having an alicyclic structure include norbornene resins, monocyclic olefin resins, cyclic conjugated diene resins, vinyl alicyclic hydrocarbon resins, and hydrides thereof.
  • norbornene-based resins can be suitably used because of their good transparency and moldability.
  • a long stretched film obtained using a norbornene-based resin has low stretching stress, the occurrence of wrinkles and shifts at the end of the long stretched film is reduced even when transported at high speed, and the orientation angle is reduced. Variation in the longitudinal direction can be suppressed.
  • Examples of the norbornene-based resin include a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and another monomer, a hydride thereof, and a norbornene structure. And an addition copolymer of a monomer having a norbornene structure and an addition copolymer of another monomer or a hydride thereof.
  • a ring-opening (co) polymer hydride of a monomer having a norbornene structure is particularly suitable from the viewpoints of transparency, moldability, heat resistance, low hygroscopicity, dimensional stability and lightness. Can be used.
  • Examples of the monomer having a norbornene structure include bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.12,5] deca-3,7-diene ( Common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.12,5] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4.0.12, 5.17,10] dodec-3-ene (common name: tetracyclododecene), and derivatives of these compounds (for example, those having a substituent in the ring).
  • examples of the substituent include an alkyl group, an alkylene group, and a polar group. Moreover, these substituents may be the same or different and a plurality may be bonded to the ring. Monomers having a norbornene structure can be used singly or in combination of two or more.
  • Examples of the polar group include heteroatoms or atomic groups having heteroatoms.
  • Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom.
  • Specific examples of the polar group include a carboxyl group, a carbonyloxycarbonyl group, an epoxy group, a hydroxy group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfo group.
  • monomers capable of ring-opening copolymerization with monomers having a norbornene structure include monocyclic olefins such as cyclohexene, cycloheptene and cyclooctene and derivatives thereof; and cyclic conjugated dienes such as cyclohexadiene and cycloheptadiene. And derivatives thereof;
  • a ring-opening polymer of a monomer having a norbornene structure and a ring-opening copolymer of a monomer having a norbornene structure and another monomer copolymerizable with the monomer have a known ring-opening polymerization catalyst. It can be obtained by (co) polymerization in the presence.
  • ⁇ -olefins having 2 to 20 carbon atoms such as ethylene, propylene, and 1-butene, and derivatives thereof; cyclobutene, cyclopentene, and And cycloolefins such as cyclohexene and derivatives thereof; and non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene and 5-methyl-1,4-hexadiene.
  • ⁇ -olefin is preferable, and ethylene is more preferable.
  • An addition polymer of a monomer having a norbornene structure and an addition copolymer of a monomer having a norbornene structure with another monomer copolymerizable with a monomer having a norbornene structure are prepared in the presence of a known addition polymerization catalyst. It can be obtained by polymerization.
  • X bicyclo [3.3.0] octane-2,4-diyl-ethylene structure
  • Y tricyclo [4.3.0.12,5] decane-7, Having a 9-diyl-ethylene structure
  • the content of these repeating units is 90% by weight or more based on the total repeating units of the norbornene resin
  • the X content ratio and the Y content ratio The ratio is preferably 100: 0 to 40:60 by weight ratio of X: Y.
  • the molecular weight of the norbornene-based resin is appropriately selected depending on the purpose of use, but is converted to polyisoprene measured by gel permeation chromatography using cyclohexane (toluene if the thermoplastic resin does not dissolve) as the solvent (the solvent is In the case of toluene, the weight average molecular weight (Mw) in terms of polystyrene is usually 10,000 to 100,000, preferably 15,000 to 80,000, more preferably 20,000 to 50,000. When the weight average molecular weight is in such a range, the mechanical strength and molding processability of the optical material obtained by the long stretched film of this embodiment are highly balanced and suitable.
  • the glass transition temperature of the norbornene-based resin may be appropriately selected depending on the purpose of use, but is preferably 80 ° C. or higher, more preferably in the range of 100 to 250 ° C.
  • the optical material obtained by the long stretched film of the present embodiment can be made excellent in durability without causing deformation or stress in use at high temperatures. it can.
  • the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the norbornene resin is not particularly limited, but is usually 1.0 to 10.0, preferably 1.1 to 4.0, more preferably 1 The range is from 2 to 3.5.
  • the absolute value of the photoelastic coefficient C of norbornene-based resin is preferably 10 ⁇ 10 -12 Pa -1 or less, more preferably 7 ⁇ 10 -12 Pa -1 or less, 4 ⁇ 10 -12 Pa Particularly preferably, it is ⁇ 1 or less.
  • the photoelastic coefficient C is a value expressed by ⁇ n / ⁇ where birefringence is ⁇ n and stress is ⁇ . When the photoelastic coefficient of the thermoplastic resin is within such a range, variation in retardation (Re) in the in-plane direction, which will be described later, can be reduced.
  • thermoplastic resin used in this embodiment is a colorant such as a pigment or dye, a fluorescent brightener, a dispersant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, an antistatic agent, an antioxidant, a lubricant, a solvent, and the like. These compounding agents may be appropriately blended.
  • the content of the residual volatile component in the long stretched film using the norbornene resin is not particularly limited, but is preferably 0.1% by mass or less, more preferably 0.05% by mass or less, and further preferably 0.02%. It is below mass%.
  • the content of the volatile component in such a range, the dimensional stability can be improved, the change with time of Re can be reduced, and further the retardation obtained from the long stretched film of the present embodiment. Deterioration of an image display device such as a film, a polarizing plate or an organic EL display can be suppressed, and the display of the image display device such as an organic EL display can be kept stable and favorable for a long time.
  • the residual volatile component is a substance having a molecular weight of 200 or less contained in a small amount in the long film, and examples thereof include a residual monomer and a solvent.
  • the content of the residual volatile component can be quantified by analyzing the long film by gas chromatography as the total of substances having a molecular weight of 200 or less contained in the long film.
  • the saturated water absorption of the long stretched film using norbornene-based resin is preferably 0.03% by mass or less, more preferably 0.02% by mass or less, and particularly preferably 0.01% by mass or less.
  • the change with time of Re can be reduced, and further, the retardation film obtained from the long stretched film of the present embodiment, a polarizing plate, or an image display device such as an organic EL display can be used. Deterioration can be suppressed, and display on an image display device such as an organic EL display can be stably and satisfactorily maintained over a long period.
  • Saturated water absorption is a value expressed as a percentage of the mass of a test piece of a long film immersed in water at a constant temperature for a fixed time and the increased mass before the immersion. Usually, it is measured by immersing in 23 ° C. water for 24 hours.
  • the saturated water absorption rate in the long stretched film of the present embodiment can be adjusted to the above value, for example, by reducing the amount of polar groups in the thermoplastic resin. In order to adjust the saturated water absorption rate to the above value, in this embodiment, it is preferable to use a norbornene-based resin having no polar group.
  • melt extrusion method As a method for forming a long film using the above preferred norbornene-based resin, a solution casting method or a melt extrusion method is preferred.
  • melt extrusion method include an inflation method using a die, but a method using a T die is preferable in terms of excellent productivity and thickness accuracy.
  • a sheet-like thermoplastic resin extruded from a die is brought into close contact with a cooling drum under a pressure of 50 kPa or less; 2) melting When producing a long film by extrusion, the enclosure member covers from the die opening to the first cooling drum that is in close contact, and the distance from the enclosure member to the die opening or the first contact cooling drum is 100 mm or less.
  • Method 3 Method of heating the temperature of the atmosphere within 10 mm to a specific temperature from the sheet-like thermoplastic resin extruded from the die opening when producing a long film by the melt extrusion method; A sheet-like thermoplastic resin extruded from a die so as to satisfy the above condition is taken into close contact with a cooling drum under a pressure of 50 kPa or less; A method in which a wind having a speed difference of 0.2 m / s or less from the cooling speed of the cooling drum that is first brought into close contact with the sheet-like thermoplastic resin extruded from the die opening is produced. It is done.
  • This long film may be a single layer or a laminated film of two or more layers.
  • the laminated film can be obtained by a known method such as a coextrusion molding method, a co-casting molding method, a film lamination method, or a coating method. Of these, the coextrusion molding method and the co-casting molding method are preferable.
  • cellulose ester-based resin examples include those characterized by containing a cellulose acylate satisfying the following formulas (i) and (ii) and containing a compound represented by the following general formula (A). .
  • Formula (ii) 0 ⁇ X ⁇ 3.0 (In Formula (i) and Formula (ii), Z1 represents the total acyl substitution degree of cellulose acylate, and X represents the sum of the propionyl substitution degree and butyryl substitution degree of cellulose acylate)
  • L 1 and L 2 each independently represent a single bond or a divalent linking group.
  • L 1 and L 2 include the following structures. (R below represents a hydrogen atom or a substituent)
  • L 1 and L 2 are preferably —O—, —COO—, and —OCO—.
  • R 1 , R 2 and R 3 each independently represent a substituent.
  • R 1 , R 2 and R 3 include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl group (methyl group, ethyl group, n-propyl group, Isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl group (cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), alkenyl group (vinyl group, allyl group, etc.) , Cycloalkenyl groups (2-cyclopenten-1-yl, 2-cyclohexen-1-yl group, etc.), alkynyl groups (ethynyl group, propargyl group, etc.), aryl groups (phenyl group, p-tolyl group,
  • Sulfamoyl group N- (3-dodecyloxypropyl) sulfamoyl group, N, N-dimethylsulfamoyl group, N-acetylsulfamoyl group, N-benzoylsulfamoyl group, N- (N′phenylcarbamoyl) ) Sulf Moyl group, etc.), sulfo group, acyl group (acetyl group, pivaloylbenzoyl group, etc.), carbamoyl group (carbamoyl group, N-methylcarbamoyl group, N, N-dimethylcarbamoyl group, N, N-di-n-) Octylcarbamoyl group, N- (methylsulfonyl) carbamoyl group and the like.
  • R 1 and R 2 are preferably a substituted or unsubstituted phenyl group or a substituted or unsubstituted cyclohexyl group. More preferred are a phenyl group having a substituent and a cyclohexyl group having a substituent, and further preferred are a phenyl group having a substituent at the 4-position and a cyclohexyl group having a substituent at the 4-position.
  • R 3 is preferably a hydrogen atom, halogen atom, alkyl group, alkenyl group, aryl group, heterocyclic group, hydroxyl group, carboxyl group, alkoxy group, aryloxy group, acyloxy group, cyano group, amino group, More preferably, they are a hydrogen atom, a halogen atom, an alkyl group, a cyano group, and an alkoxy group.
  • Wa and Wb represent a hydrogen atom or a substituent, (I) Wa and Wb may be bonded to each other to form a ring; (II) At least one of Wa and Wb may have a ring structure, or (III) At least one of Wa and Wb may be an alkenyl group or an alkynyl group.
  • substituent represented by Wa and Wb include halogen atoms (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl groups (methyl group, ethyl group, n-propyl group, isopropyl group, tert- Butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl group (cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), alkenyl group (vinyl group, allyl group, etc.), cycloalkenyl group ( 2-cyclopenten-1-yl, 2-cyclohexen-1-yl group, etc.), alkynyl group (ethynyl group, propargyl group etc.), aryl group (phenyl group, p-tolyl group, naphthyl group etc.),
  • the above substituent may be further substituted with the above substituent.
  • Wa and Wb are bonded to each other to form a ring, it is preferably a nitrogen-containing 5-membered ring or a sulfur-containing 5-membered ring, particularly preferably represented by the following general formula (1) or general formula (2). It is a compound.
  • a 1 and A 2 each independently represent —O—, —S—, —NRx— (Rx represents a hydrogen atom or a substituent) or CO—.
  • Rx represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
  • X represents a nonmetallic atom belonging to Groups 14-16. X is preferably ⁇ O, ⁇ S, ⁇ NRc, ⁇ C (Rd) Re.
  • Rc, Rd, and Re represent substituents, and examples thereof are synonymous with specific examples of the substituents represented by Wa and Wb.
  • L 1, L 2, R 1 , R 2, R 3, n is L 1, L 2, R 1 , same meanings as R 2, R 3, n in the general formula (A).
  • Q 1 is —O—, —S—, —NRy— (Ry represents a hydrogen atom or a substituent), —CRaRb— (Ra and Rb represent a hydrogen atom or a substituent) or Represents CO-.
  • Ry, Ra and Rb represent a hydrogen atom or a substituent, and examples of the substituent are the same as the specific examples of the substituent represented by Wa and Wb.
  • Y represents a substituent.
  • substituent represented by Y it is synonymous with the specific example of the substituent represented by said Wa and Wb.
  • Y is preferably an aryl group, a heterocyclic group, an alkenyl group, or an alkynyl group.
  • the aryl group represented by Y include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group.
  • a phenyl group and a naphthyl group are preferable, and a phenyl group is more preferable.
  • heterocyclic group examples include heterocyclic groups containing at least one hetero atom such as a nitrogen atom, an oxygen atom, a sulfur atom, etc. such as a furyl group, a pyrrolyl group, a thienyl group, a pyridinyl group, a thiazolyl group, and a benzothiazolyl group.
  • a heterocyclic group containing at least one hetero atom such as a nitrogen atom, an oxygen atom, a sulfur atom, etc.
  • a furyl group such as a pyrrolyl group, a thienyl group, a pyridinyl group, a thiazolyl group, and a benzothiazolyl group.
  • pyrrolyl group, thienyl group, pyridinyl group and thiazolyl group are preferred.
  • aryl groups or heterocyclic groups may have at least one substituent.
  • substituents include a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, and 1 to 6 alkylsulfinyl groups, alkylsulfonyl groups having 1 to 6 carbon atoms, carboxyl groups, fluoroalkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, alkylthio groups having 1 to 6 carbon atoms, 1 carbon atom N-alkylamino group having 6 to 6, N, N-dialkylamino group having 2 to 12 carbon atoms, N-alkylsulfamoyl group having 1 to 6 carbon atoms, N, N-dialkylsulfur group having 2 to 12 carbon atoms
  • substituent include a moyl group.
  • L 1, L 2, R 1 , R 2, R 3, n is L 1, L 2, R 1 , same meanings as R 2, R 3, n in the general formula (A).
  • Q 3 represents ⁇ N— or ⁇ CRz— (Rz represents a hydrogen atom or a substituent), and Q 4 represents a nonmetallic atom belonging to Groups 14-16.
  • Z represents a nonmetallic atom group forming a ring together with Q 3 and Q 4 .
  • the ring formed from Q 3 , Q 4 and Z may be further condensed with another ring.
  • the ring formed from Q 3 , Q 4 and Z is preferably a nitrogen-containing 5-membered ring or 6-membered ring condensed with a benzene ring.
  • L 1, L 2, R 1 , R 2, R 3, n is L 1, L 2, R 1 , same meanings as R 2, R 3, n in the general formula (A).
  • a preferred alkenyl group or alkynyl group is a vinyl group or ethynyl group having a substituent.
  • the compound represented by general formula (3) is particularly preferable.
  • the compound represented by the general formula (3) is superior in heat resistance and light resistance to the compound represented by the general formula (1), and is an organic solvent compared to the compound represented by the general formula (2).
  • the solubility with respect to and the compatibility with a polymer are favorable.
  • the compound represented by the general formula (A) can be contained by appropriately adjusting the amount for imparting desired wavelength dispersibility and anti-bleeding property.
  • the content is preferably 1 to 15% by mass, and particularly preferably 2 to 10% by mass. If it is in this range, sufficient wavelength dispersibility and bleeding prevention property can be imparted to the cellulose derivative.
  • the compounds represented by the general formula (A), the general formula (1), the general formula (2), and the general formula (3) can be synthesized with reference to known methods. Specifically, it can be synthesized with reference to Journal of Chemical Crystallography (1997); 27 (9); 512-526), JP2010-31223, JP2008-107767, and the like.
  • the cellulose acylate film that can be used in the present embodiment contains cellulose acylate as a main component.
  • the cellulose acylate film preferably contains cellulose acylate in the range of 60 to 100% by mass with respect to 100% by mass of the total mass of the film. Further, the total acyl group substitution degree of cellulose acylate is 2.0 or more and less than 3.0, and more preferably 2.2 to 2.7.
  • cellulose acylate examples include esters of cellulose and aliphatic carboxylic acids and / or aromatic carboxylic acids having about 2 to 22 carbon atoms, and in particular, esters of cellulose and lower fatty acids having 6 or less carbon atoms. Preferably there is.
  • the acyl group bonded to the hydroxyl group of cellulose may be linear or branched, and may form a ring. Furthermore, another substituent may be substituted.
  • the degree of substitution is the same, birefringence decreases when the number of carbon atoms described above is large. Therefore, the number of carbon atoms is preferably selected from acyl groups having 2 to 6 carbon atoms.
  • the degree of propionyl substitution and the degree of butyryl substitution are preferred. Is a sum of 0 or more and less than 3.0.
  • the cellulose acylate preferably has 2 to 4 carbon atoms, more preferably 2 to 3 carbon atoms.
  • cellulose acylate includes propionate group, butyrate group or phthalyl group in addition to acetyl group such as cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate propionate butyrate or cellulose acetate phthalate.
  • Bound cellulose mixed fatty acid esters can be used.
  • the butyryl group forming butyrate may be linear or branched.
  • cellulose acylate cellulose acetate, cellulose acetate butyrate, or cellulose acetate propionate is particularly preferably used.
  • Y represents the degree of substitution of the acetyl group
  • X represents the degree of substitution of the propionyl group or butyryl group or a mixture thereof.
  • the mixing ratio is preferably 1:99 to 99: 1 (mass ratio).
  • cellulose acetate propionate is particularly preferably used as the cellulose acylate.
  • 0 ⁇ Y ⁇ 2.5 and 0.5 ⁇ X ⁇ 3.0 are preferable (where 2.0 ⁇ X + Y ⁇ 3.0), More preferably, 0.5 ⁇ Y ⁇ 2.0 and 1.0 ⁇ X ⁇ 2.0 (where 2.0 ⁇ X + Y ⁇ 3.0).
  • the substitution degree of the acyl group can be measured according to ASTM-D817-96.
  • the number average molecular weight of the cellulose acylate is preferably in the range of 60000 to 300000, since the mechanical strength of the obtained long stretched film becomes strong. More preferably, cellulose acylate having a number average molecular weight of 70,000 to 200,000 is used.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of cellulose acylate are measured using gel permeation chromatography (GPC).
  • the measurement conditions are as follows. This measuring method can also be used as a measuring method for other polymers.
  • the residual sulfuric acid content in the cellulose acylate is preferably in the range of 0.1 to 45 mass ppm in terms of elemental sulfur. These are considered to be contained in the form of salts. If the residual sulfuric acid content exceeds 45 ppm by mass, the long film tends to break during hot stretching or slitting after hot stretching.
  • the residual sulfuric acid content is more preferably in the range of 1 to 30 ppm by mass.
  • the residual sulfuric acid content can be measured by the method prescribed in ASTM D817-96.
  • the free acid content in the cellulose acylate is preferably 1 to 500 ppm by mass.
  • the free acid content is preferably in the range of 1 to 100 ppm by mass, and the long film is more difficult to break. In particular, the range of 1 to 70 ppm by mass is preferable.
  • the free acid content can be measured by the method prescribed in ASTM D817-96.
  • the residual alkaline earth metal content, residual sulfuric acid content, and residual acid content are within the above ranges. And can be preferable.
  • a cellulose acylate is a thing with few bright spot foreign materials when it is set as a elongate stretched film.
  • Bright spot foreign matter means that when two polarizing plates are placed in a crossed Nicol state, an optical film or the like is placed between them, light is applied from one polarizing plate side, and observation is performed from the other polarizing plate side. It means a point (foreign matter) where light from the opposite side appears to leak.
  • the number of bright spots having a diameter of 0.01 mm or more is preferably 200 / cm 2 or less, more preferably 100 / cm 2 or less, and 50 / cm 2 or less. Is more preferably 30 pieces / cm 2 or less, particularly preferably 10 pieces / cm 2 or less, and most preferably none.
  • the bright spot having a diameter of 0.005 to 0.01 mm is also preferably 200 pieces / cm 2 or less, more preferably 100 pieces / cm 2 or less, and 50 pieces / cm 2 or less. Is more preferably 30 pieces / cm 2 or less, particularly preferably 10 pieces / cm 2 or less, and most preferably none.
  • cellulose as a raw material for cellulose acylate, but examples include cotton linters, wood pulp, and kenaf. Moreover, the cellulose acylate obtained from them can be mixed and used at an arbitrary ratio.
  • Cellulose acylate can be produced by a known method. Specifically, for example, it can be synthesized with reference to the method described in JP-A-10-45804.
  • cellulose acylate is also affected by trace metal components in cellulose acylate.
  • trace metal components are thought to be related to the water used in the production process, but it is preferable that there are few components that can become insoluble nuclei, in particular, metal ions such as iron, calcium, magnesium,
  • An insoluble matter may be formed by salt formation with a polymer degradation product or the like that may contain an organic acidic group, and it is preferable that the amount is small.
  • the calcium (Ca) component easily forms a coordination compound (that is, a complex) with an acidic component such as a carboxylic acid or a sulfonic acid, and many ligands. Insoluble starch, turbidity) may be formed, so it is preferable that the amount be small.
  • the content in cellulose acylate is preferably 1 mass ppm or less.
  • the content in the cellulose acylate is preferably 60 ppm by mass or less, more preferably 0 to 30 ppm by mass.
  • the magnesium (Mg) component if it is too much, an insoluble matter is generated. Therefore, the content in the cellulose acylate is preferably 0 to 70 ppm by mass, and particularly preferably 0 to 20 ppm by mass.
  • the content of metal components such as the content of iron (Fe) component, the content of calcium (Ca) component, the content of magnesium (Mg) component, etc.
  • Fe iron
  • Ca calcium
  • Mg magnesium
  • analysis can be performed using ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometer).
  • the long stretched film obtained by the present embodiment may be obtained by appropriately mixing polymer components other than the cellulose ester described later.
  • the polymer component to be mixed is preferably one having excellent compatibility with the cellulose ester, and the transmittance when formed into a long stretched film is 80% or more, more preferably 90% or more, and further preferably 92% or more. preferable.
  • Additives that can be added include plasticizers, UV absorbers, retardation modifiers, antioxidants, deterioration inhibitors, peeling aids, surfactants, dyes, and fine particles.
  • additives other than the fine particles may be added during the preparation of the cellulose ester solution, or may be added during the preparation of the fine particle dispersion. It is preferable to add a plasticizer, an antioxidant, an ultraviolet absorber, or the like that imparts heat and moisture resistance to a polarizing plate used in an image display device such as an organic EL display.
  • These compounds are preferably contained in an amount of 1 to 30% by mass, preferably 1 to 20% by mass, based on the cellulose ester.
  • a compound having a vapor pressure at 200 ° C. of 1400 Pa or less is preferable.
  • These compounds may be added together with the cellulose ester and the solvent during the preparation of the cellulose ester solution, or may be added during or after the solution preparation.
  • Retardation adjuster As a compound to be added for adjusting retardation, an aromatic compound having two or more aromatic rings as described in the specification of European Patent 911,656A2 can be used.
  • the aromatic ring of the aromatic compound includes an aromatic heterocyclic ring in addition to the aromatic hydrocarbon ring. Particularly preferred is an aromatic heterocycle, and the aromatic heterocycle is generally an unsaturated heterocycle. Of these, a 1,3,5-triazine ring is particularly preferred.
  • the cellulose ester film in the present embodiment has a cellulose ester and a substituent selected from a carboxyl group, a hydroxyl group, an amino group, an amide group, and a sulfo group, and has a weight average molecular weight in the range of 500 to 200,000. It is preferable to contain a polymer or oligomer of a certain vinyl compound.
  • the mass ratio of the content of the cellulose ester and the polymer or oligomer is preferably in the range of 95: 5 to 50:50.
  • fine particles can be contained in the long stretched film as a matting agent, whereby when the stretched film is long, conveyance and winding can be facilitated.
  • the particle size of the matting agent is preferably 10 nm to 0.1 ⁇ m primary particles or secondary particles.
  • a substantially spherical matting agent having a primary particle acicular ratio of 1.1 or less is preferably used.
  • silicon dioxide is particularly preferable.
  • Preferred fine particles of silicon dioxide include those commercially available under the trade names of Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.). Aerosil 200V, R972, R972V, R974, R202, R812 can be preferably used.
  • polymer fine particles include silicone resin, fluororesin and acrylic resin.
  • the polymer fine particles are preferably silicone resins, particularly those having a three-dimensional network structure. For example, Tospearl 103, 105, 108, 120, 145, 3120 and 240 (Toshiba Silicone Corporation ) Made).
  • the silicon dioxide fine particles preferably have a primary average particle diameter of 20 nm or less and an apparent specific gravity of 70 g / L or more.
  • the average primary particle diameter is more preferably 5 to 16 nm, and further preferably 5 to 12 nm. A smaller primary particle average diameter is preferred because haze is low.
  • the apparent specific gravity is preferably 90 to 200 g / L or more, and more preferably 100 to 200 g / L or more. Higher apparent specific gravity makes it possible to produce a high-concentration fine particle dispersion, which is preferable because no haze or aggregates are generated.
  • the amount of the matting agent added in this embodiment is preferably 0.01 to 1.0 g, more preferably 0.03 to 0.3 g, and further preferably 0.08 to 0.16 g per 1 m 2 of the stretched film.
  • thermal stabilizers such as inorganic fine particles such as kaolin, talc, diatomaceous earth, quartz, calcium carbonate, barium sulfate, titanium oxide, and alumina, and salts of alkaline earth metals such as calcium and magnesium may be added.
  • a surfactant, a peeling accelerator, an antistatic agent, a flame retardant, a lubricant, an oil agent and the like may be added.
  • the cellulose ester resin film that can be used in the present embodiment can be formed by a known method, and among them, the solution casting method and the melt casting method are preferable.
  • polycarbonate-based resin various resins can be used without particular limitation, and aromatic polycarbonate-based resins are preferable from the viewpoint of chemical properties and physical properties, and bisphenol A-based polycarbonate resins are particularly preferable.
  • aromatic polycarbonate-based resins are preferable from the viewpoint of chemical properties and physical properties
  • bisphenol A-based polycarbonate resins are particularly preferable.
  • those using a bisphenol A derivative in which a benzene ring, a cyclohexane ring, an aliphatic hydrocarbon group and the like are introduced into bisphenol A are more preferable.
  • a polycarbonate resin obtained by using a derivative in which the above functional group is introduced asymmetrically with respect to the central carbon of bisphenol A and having a structure in which the anisotropy in the unit molecule is reduced is particularly preferable.
  • polycarbonate resins examples include those in which two methyl groups in the center carbon of bisphenol A are replaced with benzene rings, and one hydrogen in each benzene ring of bisphenol A is replaced by a methyl group or a phenyl group.
  • a polycarbonate resin obtained by using an asymmetric substitution with respect to the central carbon is particularly preferred.
  • 4,4′-dihydroxydiphenylalkane or a halogen-substituted product thereof can be obtained by a phosgene method or a transesterification method.
  • 4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenyl Examples include ethane and 4,4'-dihydroxydiphenylbutane.
  • Other examples include polycarbonate resins described in JP-A-2006-215465, JP-A-2006-91836, JP-A-2005-121813, JP-A-2003-167121, and the like.
  • the polycarbonate resin may be used by mixing with a transparent resin such as polystyrene resin, methyl methacrylate resin, and cellulose acetate resin. Moreover, you may laminate
  • the polycarbonate resin preferably has a glass transition point (Tg) of 110 ° C. or higher and a water absorption rate (measured under conditions of 23 ° C. water and 24 hours) of 0.3% or less. Moreover, Tg is 120 degreeC or more, and a water absorption rate is 0.2% or less more preferable.
  • Tg glass transition point
  • water absorption rate measured under conditions of 23 ° C. water and 24 hours
  • the polycarbonate-based resin film that can be used in the present embodiment can be formed by a known method, and among them, the solution casting method and the melt casting method are preferable.
  • thermoplastic resin film Next, a method for forming a thermoplastic resin film will be described. In the following description, a method of forming a long film of cellulose ester resin will be described as an example.
  • the solution casting method is preferable from the viewpoints of suppression of film coloring, suppression of foreign matter defects, suppression of optical defects such as die lines, excellent film flatness, and transparency.
  • Organic solvent An organic solvent useful for forming a dope for producing a cellulose ester resin film by a solution casting method can be used without limitation as long as it dissolves cellulose acetate and other additives simultaneously.
  • methylene chloride as a non-chlorine organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc.
  • Methylene chloride, methyl acetate, ethyl acetate and acetone can be preferably used.
  • the dope preferably contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • the proportion of alcohol in the dope increases, the web gels and becomes easy to peel off from the metal support.
  • the proportion of alcohol is small, the role of promoting cellulose acetate dissolution in non-chlorine organic solvent systems There is also.
  • the dope composition is dissolved in%.
  • linear or branched aliphatic alcohol having 1 to 4 carbon atoms examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol.
  • ethanol is preferable because of stability of the dope, relatively low boiling point, and good drying properties.
  • solution casting method In the solution casting method, a step of preparing a dope by dissolving a resin and an additive in a solvent, a step of casting the dope on a belt-like or drum-like metal support, and a step of drying the cast dope as a web , A step of peeling from the metal support, a step of stretching or maintaining the width, a step of drying, and a step of winding up the finished long stretched film.
  • the concentration of cellulose acetate in the dope is preferably higher because the drying load after casting on a metal support can be reduced. However, if the concentration of cellulose acetate is too high, the load during filtration increases and the filtration accuracy increases. Becomes worse.
  • the concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass.
  • the metal support in the casting (casting) step preferably has a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
  • the surface temperature of the metal support in the casting process is set to ⁇ 50 ° C. to a temperature at which the solvent boils and does not foam. A higher temperature is preferred because the web can be dried faster, but if it is too high, the web may foam or the flatness may deteriorate.
  • a preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably 5 to 30 ° C.
  • the method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short.
  • the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 130%. % By mass, particularly preferably 20 to 30% by mass or 70 to 120% by mass.
  • the amount of residual solvent is defined by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100
  • M is the mass of a sample collected at any time during or after the production of the web or long film
  • N is a sample collected at any time during or after the production of the web or long film. It is the mass after heating at 1 ° C. for 1 hour.
  • the web is preferably peeled off from the metal support and further dried to make the residual solvent amount 1% by mass or less, more preferably 0.1% by mass or less. Particularly preferably, it is 0 to 0.01% by mass or less.
  • a roll drying method (a method in which webs are alternately passed through a plurality of rolls arranged above and below) and a method in which the web is dried while being conveyed by a tenter method are employed.
  • the melt casting method is a preferable film forming method from the viewpoint that it is easy to reduce the retardation Rt in the thickness direction after oblique stretching, the amount of residual volatile components is small, and the dimensional stability of the film is excellent.
  • the melt casting method is a method in which a composition containing an additive such as a resin and a plasticizer is heated and melted to a temperature exhibiting fluidity, and then a melt containing fluid cellulose acetate is cast.
  • the melt casting method can be classified into a melt extrusion molding method, a press molding method, an inflation method, an injection molding method, a blow molding method, a stretch molding method, and the like. Among these, the melt extrusion method is preferable, in which a long film having excellent mechanical strength and surface accuracy can be obtained.
  • a plurality of raw materials used for melt extrusion are usually kneaded and pelletized in advance.
  • Pelletization may be performed by a known method. For example, dry cellulose acetate, a plasticizer, and other additives are fed to an extruder with a feeder, kneaded using a single or twin screw extruder, and formed into a strand form from a die. Extrusion, water cooling or air cooling and cutting may be employed.
  • Additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders.
  • a small amount of additives such as particles and antioxidants are preferably mixed in advance in order to mix uniformly.
  • the extruder is preferably processed at as low a temperature as possible so that it can be pelletized so as to suppress the shearing force and prevent the resin from deteriorating (molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above.
  • the melting temperature at the time of extrusion is about 200 to 300 ° C, filtered through a leaf disk type filter, etc. to remove foreign matter, and then formed into a film from the T die. And the film is nipped with a cooling roll and an elastic touch roll and solidified on the cooling roll.
  • the extrusion flow rate is preferably carried out stably by introducing a gear pump.
  • a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances.
  • the stainless steel fiber sintered filter is a united stainless steel fiber body that is intricately intertwined and compressed, and the contact points are sintered and integrated. The density of the fiber is changed depending on the thickness of the fiber and the amount of compression, and the filtration accuracy is improved. Can be adjusted.
  • Additives such as plasticizers and particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
  • the film temperature on the touch roll side when the film is nipped by the cooling roll and the elastic touch roll is preferably Tg or more and Tg + 110 ° C. or less of the film.
  • a well-known roll can be used for the roll which has the elastic body surface used for such a purpose.
  • the elastic touch roll is also called a pinching rotator.
  • As the elastic touch roll a commercially available one can be used.
  • the long film may be a single layer or a laminated film of two or more layers.
  • the laminated film can be obtained by a known method such as a coextrusion molding method, a co-casting molding method, a film lamination method, or a coating method. Of these, the coextrusion molding method and the co-casting molding method are preferable.
  • the long film formed by the above method is conveyed to the above stretching apparatus and stretched in an oblique direction.
  • the thickness of the long film is preferably 20 to 400 ⁇ m, more preferably 30 to 200 ⁇ m.
  • the thickness unevenness ⁇ m in the flow direction of the long film supplied for stretching keeps the take-up tension of the long film at the above-described oblique stretching tenter inlet constant, and stabilizes the optical characteristics such as the orientation angle and retardation. From the viewpoint of reducing the thickness, it is preferably less than 0.30 ⁇ m, preferably less than 0.25 ⁇ m, more preferably less than 0.20 ⁇ m. When the thickness unevenness ⁇ m in the flow direction of the long film is 0.30 ⁇ m or more, variations in optical properties such as retardation and orientation angle of the long stretched film are remarkably deteriorated.
  • a long film having a thickness gradient in the width direction may be supplied as the long film.
  • the gradient of the thickness of the long film was experienced by stretching a long film with various thickness gradients experimentally so that the film thickness at the position where the stretching of the subsequent process was completed could be the most uniform. Can be obtained.
  • the gradient of the thickness of the long film can be adjusted, for example, so that the thickness of the end on the thick side is about 0.5 to 3% thicker than the end on the thin side.
  • the width of the long film is not particularly limited, but can be 500 to 4000 mm, preferably 1000 to 2000 mm.
  • the preferable elastic modulus at the stretching temperature at the time of oblique stretching of the long film is 0.01 MPa or more and 5000 MPa or less, more preferably 0.1 MPa or more and 500 MPa or less, expressed as Young's modulus. If the modulus of elasticity is too low, the shrinkage rate during stretching and after stretching will be low, and wrinkles will be difficult to disappear. If it is too high, the tension applied during stretching will increase, and the part that holds both side edges of the long film will be It is necessary to increase the strength, and the load on the tenter in the subsequent process increases.
  • a non-oriented film may be used, or a long film having an orientation in advance may be supplied. Further, if necessary, the width distribution of the orientation of the long film may be bowed, so-called bowing. That is, the orientation state of the long film can be adjusted so that the orientation of the long stretched film at the position where stretching in the subsequent step is completed can be made desirable.
  • the oblique stretching process has already been described above.
  • the long stretched film that has undergone the oblique stretching step is stretched obliquely in a direction greater than 0 ° and less than 90 ° with respect to the width direction of the long film.
  • the stretched long stretched film is wound up by a subsequent winding process.
  • the winding device is provided at the outlet of the oblique stretching device.
  • the take-up position and angle of the long stretched film can be finely controlled. It becomes possible to wind up a long stretched film with small variations. Therefore, the occurrence of wrinkles in the long stretched film can be effectively prevented, and the windability of the long stretched film is improved, so that the stretched film can be wound up in a long length.
  • the take-up tension T (N / m) of the stretched long film can be adjusted between 100 N / m ⁇ T ⁇ 300 N / m, preferably 150 N / m ⁇ T ⁇ 250 N / m. preferable.
  • the take-up tension When the take-up tension is 100 N / m or less, slack and wrinkles of the long stretched film are likely to occur, and the retardation and the profile in the width direction of the orientation axis tend to deteriorate. On the other hand, when the take-up tension is 300 N / m or more, the variation in the orientation angle in the width direction is deteriorated, and the width yield (taking efficiency in the width direction) tends to be deteriorated.
  • the fluctuation of the take-up tension T it is preferable to control the fluctuation of the take-up tension T with an accuracy of less than ⁇ 5%, preferably less than ⁇ 3%.
  • the fluctuation of the take-up tension T is ⁇ 5% or more, variations in optical characteristics in the width direction and the flow direction become large.
  • the load applied to the first roll of the tenter outlet that is, the tension of the long stretched film is measured, and the value is kept constant.
  • a method of controlling the rotation speed of the take-up roll by a different PID control method a different PID control method.
  • Examples of the method for measuring the load include a method in which a load cell is attached to a bearing portion of a roll and a load applied to the roll, that is, a tension of a long stretched film is measured.
  • a load cell a known tensile type or compression type can be used.
  • the stretched long film is released from the tenter exit after being held by the gripper, and is wound around a winding core (winding roll) to form a wound body of the long stretched film.
  • a winding core winding roll
  • both ends (both sides) of the long stretched film may be trimmed for the purpose of excising grip marks on both sides of the long stretched film held by the tenter gripping tool or obtaining a desired width. desirable.
  • the above trimming may be performed at once or may be performed in a plurality of times.
  • the long stretched film is fed out again as necessary, trimming both ends of the long stretched film, and winding up again as a wound body of the long stretched film. Good.
  • the masking film may be overlapped and wound up at the same time, or at least one of the long stretched films, preferably tapes or the like at both ends. You may wind up while bonding.
  • the masking film is not particularly limited as long as it can protect the long stretched film, and examples thereof include a polyethylene terephthalate film, a polyethylene film, and a polypropylene film.
  • the long stretched film obtained by the production method of the present embodiment has an orientation angle inclined in a range of greater than 0 ° and less than 90 ° with respect to the winding direction. Specific values can be appropriately selected depending on the application, and examples thereof include 15 °, 22.5 °, 45 °, 67.5 °, and 75 °.
  • the variation in the orientation angle in the width direction of the long stretched film obtained by the production method of the present embodiment is preferably 0.6 ° or less, more preferably 0.4 ° or less in a width of at least 1300 mm. is there.
  • a long stretched film with an orientation angle variation exceeding 0.6 ° is bonded to a polarizer to obtain a circularly polarizing plate. When this is installed on a self-luminous image display device such as an organic EL display, Unevenness may occur.
  • the value of the in-plane retardation of the long stretched film obtained by the production method of the present embodiment is preferably 120 to 160 nm, more preferably 130 to 150 nm.
  • the variation in the in-plane retardation of the long stretched film obtained by the production method of the present embodiment is preferably 3 nm or less, more preferably 1 nm or less, at least 1300 mm in the width direction.
  • the optimum value of the in-plane retardation of the long stretched film obtained by the production method of the present embodiment is selected according to the design of the display device used.
  • the in-plane retardation of the film is obtained by multiplying the difference between the refractive index nx in the in-plane slow axis direction and the refractive index ny in the direction orthogonal to the slow axis by the average thickness d of the long stretched film. Value ((nx ⁇ ny) ⁇ d).
  • the film thickness of the long stretched film obtained by the production method of the present embodiment is preferably 10 to 200 ⁇ m, more preferably 10 to 60 ⁇ m, and still more preferably from the viewpoint of mechanical strength and the like. Is 10 to 35 ⁇ m.
  • the thickness unevenness in the width direction is preferably 3 ⁇ m or less, more preferably 2 ⁇ m or less, because it affects the availability of winding.
  • the circularly polarizing plate of this embodiment has a polarizing plate protective film, a polarizer, a ⁇ / 4 retardation film (long stretched film obtained in the above-described embodiment), and an adhesive layer laminated in this order.
  • the angle formed by the slow axis of the ⁇ / 4 retardation film and the absorption axis of the polarizer is 45 °.
  • a long polarizing plate protective film, a long polarizer, and a long ⁇ / 4 retardation film are laminated in this order.
  • the circularly polarizing plate can be produced by using a stretched polyvinyl alcohol doped with iodine or a dichroic dye as a polarizer, and laminating with a configuration of ⁇ / 4 retardation film / polarizer.
  • the film thickness of the polarizer is 5 to 40 ⁇ m, preferably 5 to 30 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
  • the polarizing plate can be produced by a general method.
  • the ⁇ / 4 retardation film subjected to the alkali saponification treatment is preferably bonded to one surface of a polarizer prepared by immersing and stretching a polyvinyl alcohol film in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution.
  • the polarizing plate can be constituted by further bonding a release film on the opposite surface of the polarizing plate protective film of the polarizing plate.
  • the protective film and the release film are used for the purpose of protecting the polarizing plate at the time of shipping the polarizing plate, product inspection, and the like.
  • the circularly-polarizing plate using the elongate stretched film of above-mentioned embodiment is used especially preferably as a circularly-polarizing plate used for the reflection prevention use of a self-light-emitting display device like an organic EL display.
  • the long stretched film according to the above-described embodiment is excellent in uniformity in the direction of the slow axis in the width direction (orientation angle). Therefore, when used in an organic EL display, particularly in color uniformity. An excellent display device can be obtained.
  • FIG. 13 shows an example of the configuration of the organic EL display D, but the present embodiment is not limited to this.
  • the organic EL display D is an organic EL display having a metal electrode F2, a light emitting layer F3, a transparent electrode (ITO etc.) F4, and a sealing layer F5 on a substrate F1 made of glass, polyimide, or the like.
  • an organic EL display is configured by providing a circularly polarizing plate with a polarizer F8 sandwiched between a ⁇ / 4 retardation film F7 and a protective film F9 via an adhesive layer F6. It is preferable that a cured layer is laminated on the protective film F9. The cured layer not only prevents scratches on the surface of the organic EL display but also has an effect of preventing warpage due to the circularly polarizing plate. Further, an antireflection layer may be provided on the cured layer.
  • the thickness of the organic EL element itself is about 1 ⁇ m.
  • the light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative and the like and a light emitting layer made of a fluorescent organic solid such as anthracene, or Structures with various combinations such as a laminate of such a light-emitting layer and an electron injection layer composed of a perylene derivative, and / or a laminate of these hole injection layer, light-emitting layer, and electron injection layer are known. ing.
  • holes and electrons are injected into the light emitting layer by applying a voltage to the transparent electrode and the metal electrode, and the energy generated by recombination of these holes and electrons excites the fluorescent material, It emits light based on the principle that it emits light when the excited fluorescent material returns to the ground state.
  • the mechanism of recombination on the way is the same as that of a general diode, and as can be expected from this, the current and the light emission intensity show strong nonlinearity with rectification with respect to the applied voltage.
  • an organic EL display in order to extract light emitted from the light emitting layer, at least one of the electrodes must be transparent, and a transparent electrode usually formed of a transparent conductor such as indium tin oxide (ITO) is used as an anode. ing.
  • ITO indium tin oxide
  • metal electrodes such as Mg—Ag and Al—Li are used.
  • the light emitting layer is formed of a very thin film having a thickness of about 10 nm. For this reason, the light emitting layer transmits light almost completely like the transparent electrode. As a result, the light that is incident from the surface of the transparent substrate when not emitting light, passes through the transparent electrode and the light emitting layer, and is reflected by the metal electrode again exits to the surface side of the transparent substrate.
  • the display surface of the EL display looks like a mirror surface.
  • the circularly polarizing plate made of a long stretched film obtained by the above embodiment is suitable for an organic EL display in which such external light reflection is particularly problematic.
  • the method for producing a long stretched film includes a step of forming a long film made of a thermoplastic resin, and a diagonal stretch from a specific direction different from the running direction of the film after stretching the long film.
  • the slanted film is obliquely stretched in the direction of greater than 0 ° and less than 90 ° with respect to the width direction while feeding and feeding both ends of the long film with the gripping tool of the oblique stretching device.
  • the oblique stretching device is oblique to the running direction of the long film before stretching.
  • the stretching direction can be arbitrarily changed so that the travel direction of the long stretched film after stretching is in line, and a heating furnace and gripping tool travel supports provided on both sides of the long film are provided.
  • the gripping tool travel support includes a drive shaft below a horizontal position where the long film travels, and in the oblique stretching step, the long film is at least in the stretching zone in the heating furnace.
  • the heating is continuously performed by a planar heater provided between the drive shaft and the long film.
  • a planar heater is continuously provided between the drive shaft and the long film in the stretching zone where the long film is stretched.
  • the planar heater can continuously heat a long film that travels without temperature unevenness, and can apply heat sufficiently and uniformly. Further, since the planar heater can uniformly apply heat to the long film, it is possible to prevent the occurrence of a collision wind. As a result, it is possible to produce a long stretched film with a small variation in the width direction of the orientation angle.
  • the long film is continuously heated by the planar heater throughout the heating furnace.
  • the planar heater when the planar heater is provided throughout the heating furnace, the temperature unevenness of the long film is more reliably suppressed. As a result, regardless of the stretching angle, the variation in the width direction of the orientation angle of the obtained long stretched film is reduced, and a long stretched film with stable quality can be obtained.
  • the in-plane retardation of the obtained long stretched film is preferably 120 to 160 nm.
  • the long film can be uniformly heated using the planar heater, the in-plane retardation of the obtained long stretched film can be within the above range.
  • the long film is used for a circularly polarizing plate for an organic EL display, reflection of external light can be suppressed and image display quality is improved.
  • the thermoplastic resin is preferably a norbornene resin.
  • the traveling speed of the gripping tool is preferably 15 to 150 m / min.
  • the long film is likely to have temperature unevenness due to insufficient heat supply.
  • the stretching device used in the production method of the present invention is continuously provided with a planar heater at least in the stretching zone, the long film that travels even when the long film is conveyed at high speed Heat can be applied sufficiently and uniformly. As a result, the variation in the width direction of the orientation angle of the obtained long film can be reduced.
  • the film thickness of the obtained long stretched film is preferably 10 to 35 ⁇ m.
  • the stretching apparatus used in the production method of the present invention has a planar heater at least in the stretching zone. Is provided continuously, and temperature unevenness of the long film can be effectively suppressed. Therefore, even if the film thickness of the obtained long stretched film is in the above range, variations in the width direction of the long stretched film orientation angle are suppressed.
  • long films A1 to C2 were prepared by the following method.
  • the long film A1 is an alicyclic olefin polymer resin film, and was produced by the following production method.
  • DCP dicyclopentadiene
  • MTF 9a-tetrahydrofluorene
  • MTD 8-methyl-tetracyclo [4.4.0.12, 5.17,10] -dodec-3-ene
  • a norbornene-based monomer mixture composed of parts and 40 parts by mass of tungsten hexachloride (0.7% toluene solution) were continuously added over 2 hours for polymerization.
  • 1.06 parts by mass of butyl glycidyl ether and 0.52 parts by mass of isopropyl alcohol were added to deactivate the polymerization catalyst and stop the polymerization reaction.
  • a soft polymer manufactured by Kuraray Co., Ltd .; Septon 2002
  • an antioxidant manufactured by Ciba Specialty Chemicals Co., Ltd .; Irganox 1010
  • cyclohexane and other volatile components which are solvents, are removed from the solution using a cylindrical concentration dryer (manufactured by Hitachi, Ltd.), and the hydrogenated polymer is extruded in a strand form from an extruder in a molten state. After cooling, it was pelletized and collected.
  • the obtained ring-opened polymer hydrogenated pellets were dried at 70 ° C. for 2 hours using a hot air dryer in which air was circulated to remove moisture.
  • the pellets were subjected to a short-shaft extruder having a coat hanger type T die (manufactured by Mitsubishi Heavy Industries, Ltd .: screw diameter 90 mm, T die lip material is tungsten carbide, peel strength 44N from molten resin).
  • a cycloolefin polymer film having a thickness of 75 ⁇ m (the thickness of the long film after drying obtained by the film forming process and not the thickness of the long stretched film produced through the stretching process) was manufactured by melt extrusion molding. .
  • a long film A1 having a width of 1000 mm was obtained in a clean room of class 10,000 or less under molding conditions of a molten resin temperature of 240 ° C. and a T-die temperature of 240 ° C.
  • the thickness after melt extrusion is 35 ⁇ m (the thickness of the long film after drying obtained by the film forming step, and the length of the long stretched film produced through the stretching step.
  • a long film A2 was obtained in the same manner as the long film A1, except that the die gap of the T die lip was appropriately adjusted so that the thickness was not.
  • the long film B1 is a cellulose ester resin film and was produced by the following production method.
  • Fine particles (Aerosil R972V manufactured by Nippon Aerosil Co., Ltd.) 11 parts by mass Ethanol 89 parts by mass The above was stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin.
  • ⁇ Fine particle additive solution Based on the following composition, the fine particle dispersion was slowly added to a dissolution tank containing methylene chloride with sufficient stirring. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution.
  • a main dope solution having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose acetate was added to a pressurized dissolution tank containing a solvent while stirring. This was heated and completely dissolved while stirring, and this was dissolved in Azumi Filter Paper No. The main dope solution was prepared by filtration using 244. In addition, the compound synthesize
  • Composition of main dope solution Methylene chloride 340 parts by mass Ethanol 64 parts by mass Cellulose acetate propionate (acetyl group substitution degree 1.39, propionyl group substitution degree 0.50, total substitution degree 1.89) 100 parts by mass Compound (B) 5.0 parts by mass Sugar ester compound 5.0 parts by mass Ester compound 2.5 parts by mass Particulate additive solution 1 part by mass
  • the inside of the Kolben was depressurized to 4 ⁇ 10 2 Pa or less, and after excess pyridine was distilled off at 60 ° C., the inside of the Kolben was depressurized to 1.3 ⁇ 10 Pa or less and the temperature was raised to 120 ° C. Most of the acid and benzoic acid formed were distilled off.
  • LC section Equipment Column oven (JASCO CO-965) manufactured by JASCO Corporation, detector (JASCO UV-970-240 nm), pump (JASCO PU-980), degasser (JASCO DG-980-50) Column: Inertsil ODS-3 Particle size 5 ⁇ m 4.6 ⁇ 250 mm (manufactured by GL Sciences Inc.) Column temperature: 40 ° C Flow rate: 1 ml / min Mobile phase: THF (1% acetic acid): H 2 O (50:50) Injection volume: 3 ⁇ l 2) MS unit Device: LCQ DECA (manufactured by Thermo Quest Co., Ltd.) Ionization method: Electrospray ionization (ESI) method Spray Voltage: 5 kV Capillary temperature: 180 ° C Vaporizer temperature: 450 ° C
  • the ester compound had an ester of benzoic acid at the end of the polyester chain formed by condensation of 1,2-propylene glycol, phthalic anhydride and adipic acid.
  • the acid value of the ester compound was 0.10, and the number average molecular weight was 450.
  • the main dope solution was cast uniformly on a stainless steel belt support.
  • the solvent is evaporated until the amount of residual solvent in the cast (cast) long film reaches 75%, peeled off from the stainless steel belt support, and dried while being transported by a number of rolls.
  • a long film B1 was obtained.
  • the film thickness of the long film B1 was 100 ⁇ m (the thickness of the long film after drying obtained in the film forming process, not the thickness of the long stretched film produced through the stretching process).
  • the thickness after the drying step is 50 ⁇ m (the thickness of the long film after drying obtained by the film forming step, and the thickness of the long stretched film produced through the stretching step.
  • the long film B2 was obtained in the same manner as the long film B1, except that the film thickness at the time of casting was adjusted as appropriate.
  • the long film C1 is a polycarbonate resin film, and was produced by the following production method.
  • ⁇ Dope composition Polycarbonate resin (viscosity average molecular weight 40,000, bisphenol A type) 100 parts by mass 2- (2′hydroxy-3 ′, 5′-di-t-butylphenyl) -benzotriazole 1.0 part by mass Methylene chloride 430 parts by mass Methanol 90 parts by mass
  • the above composition was put into a sealed container, kept at 80 ° C. under pressure, and completely dissolved with stirring to obtain a dope composition.
  • this dope composition was filtered, cooled and kept at 33 ° C., cast uniformly on a stainless steel band, and dried at 33 ° C. for 5 minutes. Thereafter, the drying time was adjusted so that the retardation was 5 nm at 65 ° C., and after peeling from the stainless steel band, drying was completed while being conveyed by a number of rolls, and the film thickness was 85 ⁇ m (after drying obtained by the film forming process). This is the thickness of the long film, not the thickness of the long stretched film produced through the stretching step), and a long film C1 having a width of 1000 mm was obtained.
  • the thickness at the time when the drying is finished is 40 ⁇ m (the thickness of the long film after drying obtained by the film forming process, which is produced through the stretching process.
  • a long film C2 was obtained in the same manner as the long film C1, except that the film thickness at the time of casting was appropriately adjusted so that it was not the thickness of the stretched film.
  • the long films A1 to C2 were stretched by a diagonal stretching apparatus (T1 to T3) adjusted to the following conditions to form a long stretched film, and then wound into a roll shape. .
  • the stretching device T1 is shown in FIGS.
  • the stretching apparatus T1 is provided with a planar heater between the drive shaft and the long film in the stretching zone of the heating furnace, and the long film F is continuously heated by the planar heater.
  • the planar heater has a structure in which a stainless steel foil heater is attached to a polyimide film, and a heat generation density of 1 W / cm 2 is continuously arranged along the stretching zone.
  • the same number of gripping tools were provided on the gripping tool running support tools on both sides.
  • the stretching device T1 has a configuration that can arbitrarily change the angle (stretching angle) formed by the feeding direction and the winding direction of the long film.
  • the total length of the inner gripping tool travel support tool was 43 m.
  • the overall length of the outer gripping tool travel support tool was 43 m.
  • the end trimming process of the long stretched film discharged from the stretching apparatus T1 was performed, and the final long stretched film was adjusted to have a film width of 1600 mm. Then, it wound up in roll shape with the take-up tension
  • the obtained long stretched film had a total length of 2000 m.
  • the stretching device T2 is shown in FIG.
  • the stretching apparatus T2 has the same configuration as the stretching apparatus T1 except that a sheet heater is provided between the drive shaft and the long film along the path of the gripping tool travel support tool throughout the heating furnace. .
  • the stretching device T3 is shown in FIGS.
  • the stretching device T3 has the same configuration as the stretching device T1 except that a total of five heating elements are arranged between adjacent drive shafts in the stretching zone instead of the planar heater described in the stretching device T1.
  • Each heating element employed a common plenum duct for a tenter oven.
  • Examples 1 to 6, Comparative Examples 1 to 3 Based on the combinations shown in Table 1, the long films A1 to C1 were stretched by the stretching apparatuses T1 to T3. The stretching angles at this time were 22.5 ° and 45 °, and the long stretched films obtained at the respective stretching angles were long stretched films 1-1 to 9-2 (Examples 1 to 6, Comparative Examples 1 to 3). The traveling speed of the gripping tool at this time was 12 m / min. Moreover, as temperature conditions of the tenter oven when using the long film A1, the preheating zone was adjusted to 140 ° C, the stretching zone was 140 ° C, the heat setting zone was 137 ° C, and the cooling zone was adjusted to 80 ° C.
  • the preheating zone was adjusted to 180 ° C.
  • the stretching zone was adjusted to 180 ° C.
  • the heat setting zone was adjusted to 177 ° C.
  • the cooling zone was adjusted to 90 ° C.
  • the preheating zone was adjusted to 160 ° C
  • the stretching zone was adjusted to 160 ° C
  • the heat setting zone was adjusted to 157 ° C
  • the cooling zone was adjusted to 80 ° C.
  • Examples 7 to 9, Comparative Examples 4 to 6> Based on the combinations shown in Table 2, the long films A1 to C1 were stretched by the stretching apparatuses T2 and T3. The stretching angles at this time were 22.5 ° and 45 °, and the long stretched films obtained at the respective stretching angles were long stretched films 10-1 to 15-2 (Examples 7 to 9, Comparative Examples 4 to 6). The traveling speed of the gripping tool at this time was 100 m / min. Moreover, as temperature conditions of the tenter oven when using the long film A1, the preheating zone was adjusted to 150 ° C., the stretching zone was 148 ° C., the heat setting zone was 144 ° C., and the cooling zone was adjusted to 90 ° C.
  • the preheating zone was adjusted to 187 ° C.
  • the stretching zone was 187 ° C.
  • the heat setting zone was 181 ° C.
  • the cooling zone was adjusted to 95 ° C.
  • the temperature conditions of the tenter oven when the long film C was used were adjusted to 166 ° C. for the preheating zone, 166 ° C. for the stretching zone, 164 ° C. for the heat setting zone, and 90 ° C. for the cooling zone.
  • Examples 10 to 12, Comparative Examples 7 to 9> Based on the combinations shown in Table 3, the long films A2 to C2 were stretched by the stretching apparatuses T2 and T3. The stretching angles at this time were 22.5 ° and 45 °, and the long stretched films obtained at the respective stretching angles were long stretched films 16-1 to 21-2 (Examples 10 to 12, Comparative Examples 7 to 9). The traveling speed of the gripping tool at this time was 12 m / min. The temperature conditions of the tenter oven when using the long film A2 were adjusted to 140 ° C for the preheating zone, 140 ° C for the stretching zone, 137 ° C for the heat setting zone, and 80 ° C for the cooling zone.
  • the preheating zone was adjusted to 180 ° C
  • the stretching zone was adjusted to 180 ° C
  • the heat setting zone was adjusted to 177 ° C
  • the cooling zone was adjusted to 90 ° C.
  • the preheating zone was adjusted to 160 ° C
  • the stretching zone was adjusted to 160 ° C
  • the heat setting zone was adjusted to 157 ° C
  • the cooling zone was adjusted to 80 ° C.
  • Example 13 A 120 ⁇ m-thick polyvinyl alcohol film was uniaxially stretched (temperature: 110 ° C., stretch ratio: 5 times). This was immersed in an aqueous solution composed of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, and then immersed in an aqueous solution of 68 ° C. composed of 6 g of potassium iodide, 7.5 g of boric acid and 100 g of water. This was washed with water and dried to obtain a polarizer.
  • the long film 1-2 was bonded to one side of the polarizer using a 5% aqueous solution of polyvinyl alcohol as an adhesive. In that case, it bonded so that the transmission axis of a polarizer and the slow axis of the produced elongate stretched film ((lambda) / 4 phase difference film) may become 45 degrees direction.
  • Konica Minolta Tack Film KC6UA manufactured by Konica Minolta Opto Co., Ltd. was similarly subjected to alkali saponification treatment and bonded to produce a circularly polarizing plate 1.
  • a reflective electrode made of chromium having a thickness of 80 nm is formed on a glass substrate by sputtering, ITO (indium tin oxide) is formed as a positive electrode on the reflective electrode to a thickness of 40 nm by sputtering, and a polyelectrolyte is formed on the anode as a hole transport layer.
  • ITO indium tin oxide
  • PEDOT polystyrene sulfonate
  • red light emitting layer tris (8-hydroxyquinolinate) aluminum (Alq 3 ) as a host and a light emitting compound [4- (dicyanomethylene) -2-methyl-6 (p-dimethylaminostyryl) -4H-pyran] (DCM ) Were co-evaporated (mass ratio 99: 1) to form a thickness of 100 nm.
  • the green light-emitting layer was formed with a thickness of 100 nm by co-evaporating Alq 3 as a host and the light-emitting compound coumarin 6 (mass ratio 99: 1).
  • the blue light-emitting layer was formed as a host by co-evaporating BAlq shown below and a light-emitting compound Perylene (mass ratio 90:10) with a thickness of 100 nm.
  • first cathode having a low work function so that electrons can be efficiently injected onto the light-emitting layer calcium is deposited to a thickness of 4 nm by a vacuum deposition method, and a second cathode is formed on the first cathode.
  • Aluminum was formed to a thickness of 2 nm.
  • the aluminum used as the second cathode has a role to prevent the calcium as the first cathode from being chemically altered when the transparent electrode formed thereon is formed by sputtering.
  • an organic light emitting layer was obtained.
  • a transparent conductive film with a thickness of 80 nm was formed on the cathode by sputtering.
  • ITO was used as the transparent conductive film.
  • an insulating film was formed by depositing silicon nitride with a thickness of 200 nm on the transparent conductive film by a CVD method (chemical vapor deposition method).
  • the light emitting area of the produced organic EL element was 1296 mm ⁇ 784 mm. Further, the front luminance when a DC voltage of 6 V was applied to the organic EL element was 1200 cd / m 2 . The front luminance is measured using a spectral radiance meter CS-1000 manufactured by Konica Minolta Sensing Co., Ltd., so that the front luminance of the 2 ° C. viewing angle is aligned with the normal line from the light emitting surface. Then, the range of visible light wavelength of 430 to 480 nm was measured, and the integrated intensity was taken.
  • the circularly polarizing plate 1 is fixed on the insulating film of the organic EL element prepared above with an adhesive so that the surface of the prepared long stretched film ( ⁇ / 4 retardation film) faces the surface of the insulating film.
  • An EL display 1 was produced (Example 13).
  • Liquid crystal display devices 2 and 3 were produced in the same manner except that the circularly polarizing plate 7 was changed to circularly polarizing plates 8 and 9 in the production of the liquid crystal display device 1. It shows in Table 5 about the used elongate stretched film and the obtained liquid crystal display device.
  • orientation angles of the prepared long stretched films 1-1 to 21-2 were measured using a phase difference measuring apparatus (manufactured by Oji Scientific Co., Ltd., KOBRA-WXK).
  • In-plane retardation and lateral distribution of in-plane retardation In-plane retardation of the produced long stretched films 1-1 to 21-2 was measured using a phase difference measuring device (manufactured by Oji Scientific Co., Ltd., KOBRA-WXK). As an evaluation method, measurement was performed at an interval of 50 mm of the long stretched film in the film width direction of the long stretched film and evaluated.
  • the obtained organic EL display and liquid crystal display device were evaluated as follows.
  • Tables 1 to 5 summarize the various elongated stretched films, organic EL displays, and liquid crystal display devices, and the results of various evaluations.
  • the film thickness, orientation angle, and in-plane retardation (in-plane Re) all indicate the physical property values of the obtained long stretched film.
  • the long stretched films 1-1 to 6-2 corresponding to Examples 1 to 6 are compared with the long stretched films 7-1 to 9-2 corresponding to Comparative Examples 1 to 3.
  • the variation in the width direction of the orientation angle was less than ⁇ 0.6 °, which was good.
  • the long stretched films 4-1 to 6-2 obtained using the stretching apparatus T2 were particularly good because the variation of the orientation angle in the width direction was less than ⁇ 0.4 °.
  • the elongated stretched films 10-1 to 12-2 corresponding to Examples 7 to 9 are compared with the elongated stretched films 13-1 to 15-2 corresponding to Comparative Examples 4 to 6.
  • the variation in the width direction of the orientation angle was less than ⁇ 0.6 °, which was good.
  • the long stretched films 10-1 and 10-2 obtained using norbornene-based resins as the thermoplastic resins are particularly good because the variation of the orientation angle in the width direction is less than ⁇ 0.4 °. there were.
  • the long stretched films 16-1 to 18-2 corresponding to Examples 10 to 12 are compared with the long stretched films 19-1 to 21-2 corresponding to Comparative Examples 7 to 9.
  • the variation in the width direction of the orientation angle was less than ⁇ 0.6 °, which was good.
  • the long stretched films 16-1 and 16-2 obtained using a norbornene-based resin as a thermoplastic resin are particularly good because the variation in the width direction of the orientation angle is less than ⁇ 0.4 °. there were.
  • the organic EL displays 10 to 12 and the organic EL displays 16 to 18 corresponding to Examples 19 to 24 are compared with the organic EL displays 13 to 15 and the organic EL displays 19 to 12 corresponding to Comparative Examples 13 to 18. There was no difference in color, or there was only a difference in color to the extent that there was no problem as a product.
  • the organic EL displays 10 and 16 prepared using a long stretched film obtained by using a norbornene-based resin as a thermoplastic resin were particularly good with no difference in color.
  • the liquid crystal display devices 1 to 3 corresponding to Reference Examples 1 to 3 have no difference in color compared to the organic EL displays 7 to 9 corresponding to Comparative Examples 10 to 12, It was found that these problems are observed when a long stretched film is applied to an organic EL display.
  • the present invention can be widely used in technical fields such as a method for producing a long stretched film.

Abstract

This method for manufacturing a long stretched film has a long film formation step, an oblique stretching step, and a winding step, an oblique stretching device has a heating furnace and a gripper travel support tool, and the stretching direction of the oblique stretching device can be arbitrarily changed, the gripper travel support tool is provided with a drive shaft, and in the oblique stretching step, a long film is continuously heated by a planar heater provided between the drive shaft and the long film in at least a stretching zone inside the heating furnace.

Description

長尺延伸フィルムの製造方法Manufacturing method of long stretched film
 本発明は、長尺延伸フィルムの製造方法に関する。 The present invention relates to a method for producing a long stretched film.
 樹脂を延伸してなる延伸フィルムは、その光学異方性を利用して、各種ディスプレイ装置において様々な光学的機能を果たす光学フィルムとして用いられている。たとえば、液晶表示装置において、該延伸フィルムを着色防止、視野角拡大などの光学補償などのための光学補償フィルムとして用いたり、該延伸フィルムと偏光子とを貼り合わせることで、該延伸フィルムを、偏光板保護フィルムを兼ねた位相差フィルムとして用いたりすることが知られている。 A stretched film formed by stretching a resin is used as an optical film that performs various optical functions in various display devices by utilizing its optical anisotropy. For example, in a liquid crystal display device, the stretched film is used as an optical compensation film for optical compensation such as anti-coloring and viewing angle expansion, or by bonding the stretched film and a polarizer, It is known to use as a retardation film that also serves as a polarizing plate protective film.
 一方、近年では新たなディスプレイ装置として、有機エレクトロルミネッセンス表示装置(以下、有機ELディスプレイともいう)のような自発光型の表示装置が注目されている。自発光型表示装置は、バックライトが常に点灯している液晶表示装置に対して消費電力を抑制できる余地があり、さらに、有機ELディスプレイのような各色に対応した光源がそれぞれ点灯する自発光型表示装置では、コントラスト低減の要因となるカラーフィルターを設置する必要がないため、コントラストをさらに高めることが可能である。しかしながら、有機ELディスプレイにおいては、光取り出し効率を高めるためにディスプレイの背面側に設けられるアルミニウム板等の反射体により、ディスプレイに入射した外光が反射されることで画像のコントラストを低下させる問題がある。そこで、外光反射防止による明暗コントラスト向上のために該延伸フィルムと偏光子とを貼り合わせて円偏光板をディスプレイの表面側に用いることが知られている。このような円偏光板は、立体映像を表示するいわゆる3D液晶表示装置においても用いられる場合がある。 On the other hand, in recent years, a self-luminous display device such as an organic electroluminescence display device (hereinafter also referred to as an organic EL display) has attracted attention as a new display device. The self-luminous display device has a room for suppressing power consumption with respect to a liquid crystal display device whose backlight is always lit, and further, a self-luminous type in which a light source corresponding to each color such as an organic EL display is lit. In the display device, since it is not necessary to install a color filter that causes a reduction in contrast, the contrast can be further increased. However, in the organic EL display, there is a problem that the external light incident on the display is reflected by a reflector such as an aluminum plate provided on the back side of the display in order to increase the light extraction efficiency, thereby reducing the contrast of the image. is there. Therefore, it is known to use a circularly polarizing plate on the surface side of the display by bonding the stretched film and a polarizer in order to improve contrast of light and darkness by preventing reflection of external light. Such a circularly polarizing plate may also be used in a so-called 3D liquid crystal display device that displays a stereoscopic image.
 上記の円偏光板は、偏光子の吸収軸に対して、該延伸フィルムの面内遅相軸が所望の角度で傾斜するように貼り合わされる必要がある。 The above circularly polarizing plate needs to be bonded so that the in-plane slow axis of the stretched film is inclined at a desired angle with respect to the absorption axis of the polarizer.
 しかしながら、一般的な偏光子(偏光フィルム)は、搬送方向に高倍率延伸することで得られ、その吸収軸が搬送方向と一致している。従来の位相差フィルムは、縦延伸、または横延伸で製造され、原理的に面内の遅相軸がフィルムの長尺方向に対し0°または90°方向になる。そのため、上記のように偏光子の吸収軸と延伸フィルムの遅相軸との関係を傾斜した所望の角度にするには長尺の偏光フィルムおよび/または延伸フィルムを特定の角度で切り出してフィルム片同士を1枚ずつ貼り合せるバッチ式で行わざるを得ず、生産性の悪化や切り屑等の付着による製品の歩留まりの低下が問題として挙げられていた。特に、有機ELディスプレイが大型化されつつある昨今においては、得られた延伸フィルムを斜めに切りだして偏光子に貼り合わせる方法では、さらにフィルムの利用効率が悪くなり生産性が悪化するため、改善が必要とされていた。 However, a general polarizer (polarizing film) is obtained by stretching at a high magnification in the transport direction, and its absorption axis coincides with the transport direction. Conventional retardation films are produced by longitudinal stretching or transverse stretching, and in principle, the in-plane slow axis is in the direction of 0 ° or 90 ° with respect to the longitudinal direction of the film. Therefore, as described above, in order to make the relationship between the absorption axis of the polarizer and the slow axis of the stretched film a desired angle that is inclined, a long polarizing film and / or a stretched film is cut out at a specific angle to obtain a film piece. There was no choice but to batch-paste them one by one, and problems such as deterioration in productivity and reduction in product yield due to adhesion of chips and the like were cited as problems. In particular, in recent years when organic EL displays are becoming larger in size, the method of cutting the obtained stretched film diagonally and pasting it on a polarizer further improves the efficiency of use of the film and decreases productivity. Was needed.
 これに対し、所望の角度で斜め方向に延伸し、遅相軸がフィルムの幅手方向に対し、0°でも90°でもない方向に自在に制御可能な長尺の位相差フィルムの製造方法が種々提案されている(たとえば特許文献1~4参照)。これらの方法では、樹脂フィルムを延伸後のフィルム巻取り方向と異なる方向から繰出して、該樹脂フィルムの両端部を一対の把持具によって把持して搬送しながら、その搬送方向を変える際に一方の把持部と他方の把持部の移動距離を異ならせることで、前記樹脂フィルムを斜め延伸し、その幅手方向に対して0°を超え90°未満の所望の角度に遅相軸を有する長尺状の延伸フィルムを製造している。このような幅手方向に対して遅相軸が傾斜配向した延伸フィルムを使用することにより、従来のバッチ式の貼り合わせではなく、長尺の偏光フィルムと延伸フィルムをロール・トウ・ロールで貼り合わせて円偏光板を製造することが可能になることから生産性を飛躍的に向上させ、歩留まりも大幅に改善することができる。 On the other hand, there is a method for producing a long retardation film that is stretched obliquely at a desired angle and whose slow axis is freely controllable in a direction that is neither 0 ° nor 90 ° with respect to the width direction of the film. Various proposals have been made (see, for example, Patent Documents 1 to 4). In these methods, the resin film is unwound from a direction different from the film winding direction after stretching, and the both ends of the resin film are gripped and transported by a pair of gripping tools while changing the transport direction. By changing the moving distance between the gripping part and the other gripping part, the resin film is stretched obliquely and has a slow axis at a desired angle of more than 0 ° and less than 90 ° with respect to the width direction. The stretched film is manufactured. By using a stretched film in which the slow axis is inclined with respect to the width direction, a long polarizing film and a stretched film are pasted by roll-to-roll instead of conventional batch-type bonding. In addition, since it becomes possible to manufacture a circularly polarizing plate, the productivity can be dramatically improved and the yield can be greatly improved.
 また、ロール・トウ・ロールで貼り合わせて円偏光板を作成することができるため、大型のディスプレイに用いられる場合においても、長尺延伸フィルムの利用面積を高め、円偏光板の製造コストを大幅に低減することが可能となる。 In addition, since a circularly polarizing plate can be created by laminating with rolls, tows, and rolls, even when used in large displays, the use area of the long stretched film is increased and the manufacturing cost of the circularly polarizing plate is greatly increased. It becomes possible to reduce it.
 ところが、上記のような従来の斜め延伸装置で製造した長尺延伸フィルムを用いて作成した円偏光板を有機ELディスプレイに搭載した際に、有機ELディスプレイの黒表示時の画像を見てみると、黒に対して赤あるいは青の色味がかかり、さらにはディスプレイ上の場所によって色味が異なる、いわゆる「色ムラ」という現象が見られた。 However, when a circularly polarizing plate made using a long stretched film manufactured by the conventional oblique stretching apparatus as described above is mounted on an organic EL display, an image at the time of black display of the organic EL display is seen. In addition, a phenomenon of so-called “color unevenness” was observed, in which red or blue was applied to black and the color was different depending on the location on the display.
 また、上記現象は円偏光板を搭載した3D液晶表示装置では観察されず、円偏光板を搭載する有機ELディスプレイにて顕著に観察されることが判った。 Further, it was found that the above phenomenon was not observed in a 3D liquid crystal display device equipped with a circularly polarizing plate, but was observed remarkably in an organic EL display equipped with a circularly polarizing plate.
 これらの課題を検討した結果、液晶表示装置とは異なり、有機ELディスプレイのような各色に対応した光源がそれぞれ点灯する自発光型表示装置では、コントラスト低減の要因となるカラーフィルター等の部材が少なく、非常にコントラストが高い反面、わずかな光学特性のばらつきが色ムラとなって顕著に観察されることが判明した。 As a result of examining these problems, unlike a liquid crystal display device, a self-luminous display device in which a light source corresponding to each color, such as an organic EL display, is turned on has few members such as a color filter that causes a reduction in contrast. Although the contrast is very high, it has been found that slight variations in optical characteristics are noticeably observed as color unevenness.
 このような問題をさらに検討した結果、上記した従来の斜め延伸装置で製造された長尺延伸フィルムには、延伸角度によって、製品の幅手方向にわたって配向角のばらつきが発生し、このようなわずかな配向角のばらつきが色ムラとなって観察されることが判った。この問題は、斜め延伸フィルムを作成する場合に生じる問題であり、通常の横延伸装置では生じない。 As a result of further examination of such a problem, in the long stretched film manufactured by the above-described conventional oblique stretching apparatus, the orientation angle varies over the width direction of the product depending on the stretching angle, and such a slight amount is caused. It was found that a large variation in orientation angle was observed as color unevenness. This problem occurs when an obliquely stretched film is produced, and does not occur with a normal transverse stretching apparatus.
 本発明者らは、研究の末、この問題が、延伸方向(延伸角度)を任意に変更することができる斜め延伸装置において、延伸を行う際に長尺フィルムに温度ムラが発生していることによって引き起こされることを突き止めた。 As a result of research, the present inventors have found that this problem is that temperature unevenness occurs in a long film when stretching is performed in an oblique stretching apparatus that can arbitrarily change the stretching direction (stretching angle). I found out that it was caused by.
 ここで、斜め延伸装置は、把持具が走行する経路を備えた把持具走行支持具の一部が加熱炉を通過するように設置することにより、搬送される長尺フィルムを加熱してから斜め方向に延伸することができる。なお、後記により詳述するが、延伸装置の加熱炉は複数のゾーンに分けられる。長尺フィルムは、加熱炉内において加熱され、延伸ゾーンにおいて斜め延伸される。 Here, the oblique stretching apparatus is installed so that a part of the gripping tool traveling support tool provided with a path along which the gripping tool travels passes through the heating furnace, thereby heating the long film to be transported obliquely. Can be stretched in the direction. As will be described in detail later, the heating furnace of the stretching apparatus is divided into a plurality of zones. The long film is heated in a heating furnace and stretched obliquely in a stretching zone.
 そして、延伸装置は、走行する長尺フィルムの両側に備えられる把持具走行支持具の形状を変更することにより種々のレールパターンを実現することができる。具体的には、把持具走行支持具は、通常は走行する長尺フィルムの厚み方向の下部に設けられた駆動軸を調整することにより、形状を変更することができる。斜め延伸装置は、通常の横延伸等の延伸装置と比較して、種々の延伸角度に対応できるように、多くの駆動軸が設けられている。 Further, the stretching device can realize various rail patterns by changing the shape of the gripping tool traveling support provided on both sides of the traveling long film. Specifically, the shape of the gripping tool travel support tool can be changed by adjusting a drive shaft provided at the lower part in the thickness direction of the long film that normally travels. The oblique stretching apparatus is provided with a large number of drive shafts so as to cope with various stretching angles as compared with a stretching apparatus such as a normal transverse stretching.
 上記のとおり、長尺フィルムは加熱炉内で加熱され、延伸ゾーンにおいて延伸される。そして、一般的に、加熱炉では、長尺フィルムは、走行する長尺フィルムの厚み方向の上下に配置されたヒータにより加熱される。しかしながら、多くの駆動軸が設けられた斜め延伸装置では、長尺フィルムの厚み方向の下部にヒータを均等に設置しにくい。 As described above, the long film is heated in a heating furnace and stretched in a stretching zone. And generally, in a heating furnace, a long film is heated by the heater arrange | positioned up and down of the thickness direction of the long film to drive | work. However, in an oblique stretching apparatus provided with many drive shafts, it is difficult to uniformly install heaters in the lower part of the long film in the thickness direction.
 すなわち、斜め延伸装置では、駆動軸を避けてヒータを設置せざるを得ないという問題がある。図1は、従来の斜め延伸装置1の加熱炉内に配置されたヒータ4を説明するための概略図である。図2は、図1の延伸装置1の側面図である。こういった従来の斜め延伸装置1の場合、図1および図2に示されるように、ヒータ4からの熱は、走行する長尺フィルムに不均一に放射される。把持具走行支持具2には、所定の間隔ごとに、把持具走行支持具2の形状を変更するための駆動軸3が設けられている。不均一に熱が放射される場合には、長尺フィルムには衝突風(図示せず)が吹き付けられる。なお、本明細書において、衝突風とは、ヒータ4から放射される熱により空気が滞留し、長尺フィルムに吹き付けられる風をいう。図2において、矢印は、ヒータ4から長尺フィルムFに加えられる熱の位置および方向を示している。また、飛び石状に配置されたヒータ4から不連続的に放射された熱は、一部が駆動軸3に伝導されるため、充分かつ均一な熱が長尺フィルムFに付与されない。その結果、得られる長尺フィルムFには温度ムラが生じ、配向角の幅手方向のばらつきが大きくなることが判った。 That is, in the oblique stretching apparatus, there is a problem that the heater must be installed avoiding the drive shaft. FIG. 1 is a schematic diagram for explaining a heater 4 disposed in a heating furnace of a conventional oblique stretching apparatus 1. FIG. 2 is a side view of the stretching apparatus 1 of FIG. In the case of such a conventional oblique stretching apparatus 1, as shown in FIGS. 1 and 2, the heat from the heater 4 is radiated non-uniformly to the traveling long film. The gripping tool travel support tool 2 is provided with a drive shaft 3 for changing the shape of the gripping tool travel support tool 2 at predetermined intervals. When heat is radiated non-uniformly, a collision wind (not shown) is blown onto the long film. In the present specification, the impingement wind refers to a wind in which air stays due to heat radiated from the heater 4 and is blown onto a long film. In FIG. 2, the arrows indicate the position and direction of heat applied from the heater 4 to the long film F. Further, since a part of the heat dissipated discontinuously from the heater 4 arranged in a stepping stone shape is conducted to the drive shaft 3, sufficient and uniform heat is not applied to the long film F. As a result, it was found that the obtained long film F had temperature unevenness, and the variation of the orientation angle in the width direction was increased.
 また、駆動軸3が配置してある箇所において長尺フィルムFを加熱する方法としては、図3および図4に示されるように、飛び石状に配置したヒータ4にノズル4aを設け、当該ノズル4aから長尺フィルムFに熱風を吹き付ける等の方法がある。しかしながら、ノズル4aから長尺フィルムFに付与し得る熱量は、ヒータ4から長尺フィルムFに付与し得る熱量よりも小さい。そのため、この方法では、長尺フィルムFの搬送方向に対して充分かつ均一に熱を付与することができず、得られる長尺延伸フィルムの温度ムラを充分に改善できない。 Further, as a method of heating the long film F at the place where the drive shaft 3 is arranged, as shown in FIGS. 3 and 4, the nozzle 4a is provided in the heater 4 arranged in a stepping stone shape, and the nozzle 4a There is a method of blowing hot air on the long film F. However, the amount of heat that can be applied to the long film F from the nozzle 4 a is smaller than the amount of heat that can be applied to the long film F from the heater 4. Therefore, in this method, heat cannot be sufficiently and uniformly applied in the transport direction of the long film F, and the temperature unevenness of the obtained long stretched film cannot be sufficiently improved.
 他にも、駆動軸3が配置してある箇所において長尺フィルムFを加熱する方法としては、図5~図7に示されるように、駆動軸3そのものがヒータとしての機能を備え、当該ヒータから放射される熱により長尺フィルムFを加熱する方法がある。図5に示される駆動軸3は、複数の孔3aを有しており、長尺フィルムFは、当該孔3aから吹きつけられる熱風により加熱される。また、図6および図7に示される駆動軸3は、把持具走行支持具2を支える支柱土台3bと接続されており、長尺フィルムFは、当該支柱土台3bに設けられた孔(図示せず)から吹き付けられる熱風により加熱される。 In addition, as a method of heating the long film F at the place where the drive shaft 3 is arranged, as shown in FIGS. 5 to 7, the drive shaft 3 itself has a function as a heater. There is a method of heating the long film F by the heat radiated from. The drive shaft 3 shown in FIG. 5 has a plurality of holes 3a, and the long film F is heated by hot air blown from the holes 3a. Further, the drive shaft 3 shown in FIGS. 6 and 7 is connected to a support base 3b that supports the gripping tool travel support tool 2, and the long film F is provided with a hole (not shown) provided in the support base 3b. It is heated by hot air blown from
 しかしながら、これらの方法により孔から付与される熱量は、ヒータ4から長尺フィルムFに付与し得る熱量よりも小さい。そのため、この方法では、長尺フィルムFの搬送方向に対して充分かつ均一に熱を付与することができず、得られる長尺延伸フィルムの温度ムラを充分に改善できない。 However, the amount of heat applied from the holes by these methods is smaller than the amount of heat that can be applied from the heater 4 to the long film F. Therefore, in this method, heat cannot be sufficiently and uniformly applied in the transport direction of the long film F, and the temperature unevenness of the obtained long stretched film cannot be sufficiently improved.
 また、斜め延伸装置では、延伸角度を変更するために駆動軸3を調整する際に、設置されていたヒータ4により移動が妨げられるため、効率よく延伸角度を変更しにくいという問題がある。 Also, the oblique stretching apparatus has a problem that when the drive shaft 3 is adjusted to change the stretching angle, the movement is hindered by the heater 4 that is installed, so that it is difficult to efficiently change the stretching angle.
 また、長尺フィルムが高速搬送される場合には、走行する長尺フィルムに加えられる熱が充分でなく、かつ、一定でなくなり、温度ムラを生じやすい。 Also, when a long film is conveyed at high speed, heat applied to the traveling long film is not sufficient and is not constant, and temperature unevenness is likely to occur.
 さらに、長尺フィルムの膜厚が薄いほど、温度ムラによる幅手方向の配向角のばらつきが大きくなりやすい。 Furthermore, as the film thickness of the long film is thinner, the variation in the orientation angle in the width direction due to temperature unevenness tends to increase.
特開2008-80674号公報JP 2008-80674 A 特開2009-78474号公報JP 2009-78474 A 特開2010-173261号公報JP 2010-173261 A 特開2006-159775号公報JP 2006-159775 A
 本発明は、上記従来の問題に鑑みてなされたものであり、延伸される長尺フィルムに充分かつ一定の熱を加えることができ、配向角の幅手方向のばらつきが小さい長尺延伸フィルムが得られる長尺延伸フィルムの製造方法を提供することを目的とする。 The present invention has been made in view of the above-described conventional problems. A long stretched film that can apply sufficient and constant heat to a stretched long film and has a small variation in the width direction of the orientation angle is provided. It aims at providing the manufacturing method of the elongate stretched film obtained.
 本発明者らは、上記目的を達成するために検討した結果、斜め延伸装置において、少なくとも加熱炉内の延伸ゾーンにおいて、長尺フィルムと駆動軸との間に面状ヒータを設けて長尺フィルムを連続的に加熱することにより、延伸される長尺フィルムに充分かつ一定の熱が加えられ、上記目的が達成できることを見出した。そして、本発明者らは、さらに検討を進め、これらの知見に基づいて本発明を完成するに至った。 As a result of studies conducted by the present inventors to achieve the above-mentioned object, in the oblique stretching apparatus, at least in the stretching zone in the heating furnace, a sheet heater is provided between the long film and the drive shaft to form a long film. It has been found that by continuously heating the film, sufficient and constant heat is applied to the stretched long film, and the above object can be achieved. Then, the inventors have further studied and have completed the present invention based on these findings.
 すなわち、本発明の一局面による長尺延伸フィルムの製造方法は、熱可塑性樹脂からなる長尺フィルムを製膜する工程、前記長尺フィルムを延伸後のフィルムの走行方向とは異なる特定の方向から斜め延伸装置に繰入れ、該長尺フィルムの両端部を斜め延伸装置の把持具によって把持して搬送しつつ前記長尺フィルムを幅手方向に対して0°より大きく90°未満の方向に斜め延伸する斜め延伸工程、及び、斜め延伸工程後の長尺延伸フィルムを巻き取る工程を少なくとも有する長尺延伸フィルムの製造方法において、前記斜め延伸装置は、延伸前の長尺フィルムの走行方向と斜交する方向に延伸後の長尺延伸フィルムの走行方向がくるように延伸方向を任意に変更でき、かつ、加熱炉と、前記長尺フィルムの両側に設けられた把持具走行支持具とを有し、前記把持具走行支持具は、前記長尺フィルムが走行する水平位置よりも下部に駆動軸を備え、前記斜め延伸工程において、前記長尺フィルムは、前記加熱炉内の少なくとも延伸ゾーンにおいて、前記駆動軸と前記長尺フィルムとの間に設けられた面状ヒータにより連続的に加熱されることを特徴とする。 That is, the method for producing a long stretched film according to one aspect of the present invention includes a step of forming a long film made of a thermoplastic resin, from a specific direction different from the running direction of the film after stretching the long film. The long film is fed into an oblique stretching apparatus, and the long film is obliquely stretched in a direction of greater than 0 ° and less than 90 ° with respect to the width direction while conveying the both ends of the long film with a gripping device of the oblique stretching apparatus. In the manufacturing method of the long stretched film having at least the step of winding the long stretched film after the oblique stretching step and the step of winding the long stretched film after the oblique stretching step, the oblique stretching device obliquely intersects the traveling direction of the long film before stretching. The stretching direction can be arbitrarily changed so that the traveling direction of the long stretched film after stretching is in the stretching direction, and the heating tool and the gripping tool traveling support provided on both sides of the long film are arranged. The gripping tool travel support tool includes a drive shaft below a horizontal position where the long film travels, and in the oblique stretching step, the long film is disposed in the heating furnace. At least in the stretching zone, it is continuously heated by a planar heater provided between the drive shaft and the long film.
 なお、本明細書において、「長尺フィルム」とは、製膜されたフィルムであって延伸前のフィルムをいう。一方、「長尺延伸フィルム」とは、延伸工程を経て延伸されたフィルムをいう。後述するように、長尺フィルムの作製方法としては特に限定されず、共押出成形法、共流延成形法(溶液流延法や溶融流延法)、フィルムラミネイション法、塗布法などの公知の方法を採用することができる。これらの方法により得られた長尺フィルムは、斜め延伸工程を経て延伸され、長尺延伸フィルムとされる。 In the present specification, the “long film” refers to a film formed before being stretched. On the other hand, the “long stretched film” refers to a film stretched through a stretching process. As will be described later, the method for producing a long film is not particularly limited, and known methods such as a coextrusion molding method, a co-casting method (solution casting method and melt casting method), a film lamination method, and a coating method. This method can be adopted. The long film obtained by these methods is stretched through an oblique stretching process to form a long stretched film.
 本発明の目的、特徴および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
図1は、従来の斜め延伸装置の加熱炉内に配置されたヒータを説明するための概略図である。FIG. 1 is a schematic view for explaining a heater arranged in a heating furnace of a conventional oblique stretching apparatus. 図2は、従来の延伸装置の側面図である。FIG. 2 is a side view of a conventional stretching apparatus. 図3は、従来の延伸装置の加熱炉内に配置されたヒータを説明するための概略図である。FIG. 3 is a schematic view for explaining a heater arranged in a heating furnace of a conventional stretching apparatus. 図4は、従来の延伸装置の側面図である。FIG. 4 is a side view of a conventional stretching apparatus. 図5は、従来の延伸装置の加熱炉内に配置されたヒータを説明するための概略図である。FIG. 5 is a schematic view for explaining a heater arranged in a heating furnace of a conventional stretching apparatus. 図6は、従来の延伸装置の加熱炉内に配置されたヒータを説明するための概略図である。FIG. 6 is a schematic view for explaining a heater arranged in a heating furnace of a conventional stretching apparatus. 図7は、従来の延伸装置の側面図である。FIG. 7 is a side view of a conventional stretching apparatus. 図8は、本発明の一実施形態の長尺延伸フィルムの製造方法に用いられる斜め延伸装置を説明するための模式図である。FIG. 8 is a schematic view for explaining an oblique stretching apparatus used in the method for producing a long stretched film according to one embodiment of the present invention. 図9は、本発明の一実施形態の製造方法において使用する斜め延伸装置の加熱炉内に配置された面状ヒータを説明するための概略図である。FIG. 9 is a schematic view for explaining a planar heater disposed in a heating furnace of an oblique stretching apparatus used in the manufacturing method of one embodiment of the present invention. 図10は、本発明の一実施形態の製造方法において使用する斜め延伸装置の側面図である。FIG. 10 is a side view of an oblique stretching apparatus used in the manufacturing method of one embodiment of the present invention. 図11は、本発明の一実施形態の製造方法において使用する斜め延伸装置において、延伸ゾーンおよび面状ヒータの位置を説明するための概略図である。FIG. 11 is a schematic diagram for explaining the positions of the stretching zone and the planar heater in the oblique stretching apparatus used in the manufacturing method of one embodiment of the present invention. 図12は、本発明の一実施形態の製造方法において使用する斜め延伸装置において、面状ヒータの位置の別例を説明するための概略図である。FIG. 12 is a schematic view for explaining another example of the position of the planar heater in the oblique stretching apparatus used in the manufacturing method of one embodiment of the present invention. 図13は、本発明の一実施形態の有機ELディスプレイの概略図である。FIG. 13 is a schematic view of an organic EL display according to an embodiment of the present invention.
 以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although the form for implementing this invention is demonstrated in detail, this invention is not limited to these.
 本発明の実施態様は、熱可塑性樹脂からなる長尺フィルムを製膜する工程、前記長尺フィルムを延伸後のフィルムの走行方向とは異なる特定の方向から斜め延伸装置に繰入れ、該長尺フィルムの両端部を斜め延伸装置の把持具によって把持して搬送しつつ前記長尺フィルムを幅手方向に対して0°より大きく90°未満の方向に斜め延伸する斜め延伸工程、及び、斜め延伸工程後の長尺延伸フィルムを巻き取る工程を少なくとも有する長尺延伸フィルムの製造方法において、前記斜め延伸装置は、延伸前の長尺フィルムの走行方向と斜交する方向に延伸後の長尺延伸フィルムの走行方向がくるように、延伸方向を任意に変更でき、かつ、加熱炉と、前記長尺フィルムの両側に設けられた把持具走行支持具とを有し、前記把持具走行支持具は、前記長尺フィルムが走行する水平位置よりも下部に駆動軸を備え、前記斜め延伸工程において、前記長尺フィルムは、前記加熱炉内の少なくとも延伸ゾーンにおいて、前記駆動軸と前記長尺フィルムとの間に設けられた面状ヒータにより連続的に加熱される、長尺延伸フィルムの製造方法である。 An embodiment of the present invention includes a step of forming a long film made of a thermoplastic resin, and the long film is transferred to a diagonal stretching device from a specific direction different from the traveling direction of the stretched film. An oblique stretching step of obliquely stretching the long film in a direction greater than 0 ° and less than 90 ° with respect to the width direction while being gripped and conveyed by a gripping tool of an oblique stretching device, and an oblique stretching step In the method for producing a long stretched film having at least a step of winding the long stretched film after, the oblique stretching apparatus has a long stretched film after being stretched in a direction oblique to the running direction of the long film before stretching. The stretching direction can be arbitrarily changed so that the traveling direction of is, and has a heating furnace and a gripping tool travel support provided on both sides of the long film, the gripping tool travel support is A drive shaft is provided below a horizontal position where the long film travels, and in the oblique stretching step, the long film is formed between the drive shaft and the long film in at least a stretching zone in the heating furnace. It is a manufacturing method of the elongate stretched film continuously heated with the planar heater provided in between.
 本実施形態は、上記工程のうち、斜め延伸工程に特徴を有しているため、斜め延伸工程を特に詳細に説明する。 Since the present embodiment has a feature in the oblique stretching process among the above processes, the oblique stretching process will be described in detail.
 本明細書において長尺とは、フィルムの幅に対し、少なくとも5倍程度以上の長さを有するものをいい、好ましくは10倍もしくはそれ以上の長さを有し、具体的にはロール状に巻回されて保管または運搬される程度の長さを有するもの(フィルムロール)をいう。 In the present specification, the long length refers to a film having a length of at least about 5 times the width of the film, preferably a length of 10 times or more, specifically in a roll shape. It has a length (film roll) that is wound and stored or transported.
 以下において、本実施形態を、適宜図面を参照して具体的に説明する。 Hereinafter, the present embodiment will be specifically described with reference to the drawings as appropriate.
 <長尺延伸フィルムの製造方法>
 (斜め延伸工程)
 斜め延伸工程は、製膜された長尺フィルムを幅手方向に対して斜めの方向に延伸する工程である。長尺フィルムの製造方法では、フィルムを連続的に製造することにより、所望の長さにフィルムを製造しうる。なお、長尺延伸フィルムの製造方法は、長尺フィルムを製膜した後に一度巻芯に巻き取り、巻回体(原反ともいう)にしてから斜め延伸工程に供給するようにしてもよいし、製膜後のフィルムを巻き取ることなく、製膜工程から連続して斜め延伸工程に供給してもよい。製膜工程と斜め延伸工程とを連続して行うことは、延伸後の膜厚や光学値の結果をフィードバックして製膜条件を変更し、所望の長尺延伸フィルムを得ることができるので好ましい。
<Method for producing long stretched film>
(Oblique stretching process)
The oblique stretching step is a step of stretching the formed long film in a direction oblique to the width direction. In the manufacturing method of a long film, a film can be manufactured to desired length by manufacturing a film continuously. In addition, after manufacturing a long film into a manufacturing method of a long stretched film, you may make it wind up to a core once and make it a wound body (it is also called an original fabric), and you may make it supply to the diagonal stretch process. Alternatively, the film after film formation may be continuously supplied to the oblique stretching process from the film forming process without winding up the film. It is preferable to perform the film forming step and the oblique stretching step continuously because the film thickness after the stretching and the result of the optical value are fed back to change the film forming conditions to obtain a desired long stretched film. .
 本実施形態の長尺延伸フィルムの製造方法では、フィルムの幅手方向に対して0°を超え90°未満の角度に遅相軸を有する長尺延伸フィルムを製造する。ここで、フィルムの幅手方向に対する角度とは、フィルム面内における角度である。フィルム面内の遅相軸は、通常延伸方向または延伸方向に直角な方向に発現するので、本実施形態の製造方法では、フィルムの延長方向に対して0°を超え90°未満の角度で延伸を行うことにより、このような遅相軸を有する長尺延伸フィルムを製造しうる。 In the method for producing a long stretched film of the present embodiment, a long stretched film having a slow axis at an angle of more than 0 ° and less than 90 ° with respect to the width direction of the film is produced. Here, the angle with respect to the width direction of the film is an angle in the film plane. Since the slow axis in the film plane is usually expressed in the stretching direction or a direction perpendicular to the stretching direction, in the production method of this embodiment, stretching is performed at an angle of more than 0 ° and less than 90 ° with respect to the film extension direction. By performing this, a long stretched film having such a slow axis can be produced.
 長尺延伸フィルムの幅手方向と遅相軸とがなす角度、すなわち配向角は、0°を超え90°未満の範囲で、所望の角度に任意に設定することができる。 The angle formed by the width direction of the long stretched film and the slow axis, that is, the orientation angle, can be arbitrarily set to a desired angle within a range of more than 0 ° and less than 90 °.
 (斜め延伸装置による延伸)
 本実施形態における延伸に供される長尺フィルムに斜め方向の配向を付与するために、斜め延伸装置を用いる。本実施形態で用いられる斜め延伸装置は、把持具走行支持具の経路パターンを多様に変化させることにより、フィルムの配向角を自在に設定でき、さらに、フィルムの配向軸をフィルム幅方向に渡って左右均等に高精度に配向させることができ、かつ、高精度でフィルム厚みやリタデーションを制御できるフィルム延伸装置であることが好ましい。
(Stretching with an oblique stretching device)
In order to impart an oblique orientation to the long film subjected to stretching in this embodiment, an oblique stretching apparatus is used. The oblique stretching apparatus used in the present embodiment can freely set the orientation angle of the film by changing the path pattern of the gripping tool traveling support tool in various ways, and further the orientation axis of the film across the film width direction. It is preferable that the film stretching apparatus can be oriented with high precision in the left and right directions and can control the film thickness and retardation with high precision.
 図8は、本実施形態の長尺延伸フィルムの製造方法に用いられる斜め延伸装置を説明するための模式図である。ただし、これは一例であって本実施形態はこれに限定されるものではない。 FIG. 8 is a schematic diagram for explaining an oblique stretching apparatus used in the method for producing a long stretched film of the present embodiment. However, this is an example, and the present embodiment is not limited to this.
 延伸装置に繰入る際の長尺フィルムの走行方向(延伸前の長尺フィルムの走行方向)D1は、延伸装置から繰出る際の長尺延伸フィルムの走行方向(延伸後の長尺延伸フィルムの走行方向)D2と異なっており、繰出角度θiを成している。繰出角度θiは0°を超え90°未満の範囲で、所望の角度に任意に設定することができる。 The running direction of the long film (running direction of the long film before stretching) D1 when fed into the stretching apparatus is the running direction of the long stretched film when fed from the stretching apparatus (of the long stretched film after stretching). Travel direction) is different from D2 and forms a feeding angle θi. The feeding angle θi can be arbitrarily set to a desired angle in the range of more than 0 ° and less than 90 °.
 長尺フィルムは斜め延伸装置入口(把持具が長尺フィルムを把持する把持開始点であり、当該把持開始点を結んだ直線を参照符号Aで示す)においてその両端を左右の把持具(一対の把持具対)によって把持され、把持具の走行に伴い搬送される。 The long film has a left and right gripping tool (a pair of left and right grips) at the entrance of the oblique stretching apparatus (the gripping tool is a gripping start point for gripping the long film, and a straight line connecting the gripping start points is indicated by reference symbol A). Gripped by the gripping tool pair) and transported as the gripping tool travels.
 把持具対は、斜め延伸装置入口で、長尺フィルムの走行方向(延伸前の長尺フィルムの走行方向D1)に対して略垂直な方向に相対している左右の把持具Ciおよび把持具Coからなる。左右の把持具CiおよびCoは、それぞれ左右非対称な経路を走行し、延伸終了時の位置(把持具が把持を解放する把持解放点であり、当該把持解放点を結んだ直線を参照符号Bで示す)で把持した長尺延伸フィルムを解放する。 The gripping tool pair is an entrance of the oblique stretching apparatus, and the left and right gripping tools Ci and gripping tool Co that are opposed to a direction substantially perpendicular to the running direction of the long film (the running direction D1 of the long film before stretching). Consists of. The left and right gripping tools Ci and Co travel along an asymmetrical path, respectively, and the position at the end of stretching (the gripping release point at which the gripping tool releases the gripping, and the straight line connecting the gripping release points is denoted by reference symbol B. The long stretched film gripped in (shown) is released.
 このとき、斜め延伸装置入口(図中Aの位置)で相対していた左右の把持具Ciおよび把持具Coは、それぞれ内側の把持具走行支持具Riおよび外側の把持具走行支持具Roを走行するにつれて、内側の把持具走行支持具Riを走行する把持具Ciが外側の把持具走行支持具Roを走行する把持具Coに対して進行する位置関係となる。 At this time, the left and right gripping tools Ci and gripping tool Co, which are opposed to each other at the entrance of the oblique stretching apparatus (position A in the figure), travel on the inner gripping tool travel support tool Ri and the outer gripping tool travel support tool Ro, respectively. As a result, the gripping tool Ci traveling on the inner gripping tool travel support tool Ri is in a positional relationship that advances relative to the gripping tool Co traveling on the outer gripping tool travel support tool Ro.
 すなわち、斜め延伸装置入口で長尺フィルムの走行方向D1に対して略垂直な方向に相対していた把持具Ciおよび把持具Coが、位置Bにある状態では、該把持具Ciおよび把持具Coを結んだ直線が延伸後の長尺延伸フィルムの走行方向D2に対して略垂直な方向からに対して角度θLだけ傾斜する位置関係となる。本明細書において略垂直とは、90±1°の範囲にあることを示す。以上の所作をもって、長尺フィルムは、θLの方向に斜め延伸される。 That is, in the state where the gripping tool Ci and the gripping tool Co, which are opposed to the direction substantially perpendicular to the running direction D1 of the long film at the entrance of the oblique stretching apparatus, are in the position B, the gripping tool Ci and the gripping tool Co Is a positional relationship in which an angle θL is inclined from a direction substantially perpendicular to the running direction D2 of the stretched long stretched film. In the present specification, the term “substantially vertical” indicates that the angle is in the range of 90 ± 1 °. With the above operation, the long film is obliquely stretched in the direction of θL.
 本実施形態の製造方法は、斜め延伸可能な延伸装置を用いて行う。この延伸装置は、長尺フィルムを延伸可能な任意の温度に加熱し、斜め延伸する装置である。この延伸装置は、加熱ゾーン(加熱炉)と、長尺フィルムの両側を把持して走行するための両側で一対となる複数の把持具と、前記把持具の走行を支持するための把持具走行支持具とを備えている。延伸装置の入口部(把持開始点)に順次供給される長尺フィルムの両端を、把持具で把持し、加熱炉内に長尺フィルムを導き、延伸装置の出口部(把持解放点)で把持具から長尺延伸フィルムを解放する。把持具から解放された長尺延伸フィルムは巻芯に巻き取られる。把持具を備える把持具走行支持具は無端状の連続軌道を有し、延伸装置の出口部で長尺延伸フィルムの把持を解放した把持具は、把持具走行支持具によって順次把持開始点に戻されるようになっている。 The manufacturing method of the present embodiment is performed using a stretching apparatus capable of oblique stretching. This stretching apparatus is an apparatus that heats a long film to an arbitrary temperature at which it can be stretched and obliquely stretches it. The stretching device includes a heating zone (heating furnace), a plurality of gripping tools that are paired on both sides for traveling on both sides of a long film, and gripping tool traveling for supporting the traveling of the gripping tool. And a support tool. Hold both ends of the long film that is sequentially supplied to the entrance (holding start point) of the stretching device with a gripper, guide the long film into the heating furnace, and hold it at the exit (holding release point) of the stretching device. Release the long stretched film from the tool. The long stretched film released from the gripping tool is wound around the core. The gripping tool traveling support tool having the gripping tool has an endless continuous track, and the gripping tool that has released the grip of the long stretched film at the exit of the stretching device is sequentially returned to the gripping start point by the gripping tool travel support tool. It is supposed to be.
 把持具走行支持具は、たとえば、ガイドレールやギアによってそれぞれ経路を規制されている無端状のチェーンが把持具を備える形態であってもよいし、無端状のガイドレールが把持具を備える形態であってもよい。すなわち、本実施形態では、把持具走行支持具は、たとえば無端状のチェーンを備えた有端状のガイドレールであってもよく、無端状のチェーンを備えた無端状のガイドレールであってもよく、チェーンを備えない無端状のガイドレールであってもよい。把持具は、把持具走行支持具がチェーンを備えない場合には、把持具走行支持具そのものの経路を走行し、チェーンを備える場合には、当該チェーンを介して把持具走行支持具の経路を走行する。以下、本実施形態では、一例として、把持具走行支持具の経路を把持具が走行する場合を説明するが、把持具は、把持具が設けられたチェーンを介して把持具走行支持具の経路を走行してもよい。 For example, the endless chain whose path is regulated by a guide rail or a gear may be provided with the gripper, or the endless guide rail may be provided with the gripper. There may be. That is, in the present embodiment, the gripping tool travel support tool may be, for example, an endless guide rail provided with an endless chain, or may be an endless guide rail provided with an endless chain. It may be an endless guide rail without a chain. When the gripper travel support tool does not include a chain, the gripper travels along the path of the gripper travel support tool itself. When the gripper travel support tool includes the chain, the gripper travel support tool travels along the path of the gripper travel support tool. Run. Hereinafter, in the present embodiment, as an example, the case where the gripping tool travels along the path of the gripping tool travel support tool will be described. However, the gripping tool is routed through the chain provided with the gripping tool. You may drive.
 それぞれの把持具走行支持具に設けられた把持具の数は特に限定されないが、同数であることが好ましい。 The number of gripping tools provided in each gripping tool travel support tool is not particularly limited, but is preferably the same number.
 なお、延伸装置の把持具走行支持具は左右で非対称な形状となっており、製造すべき長尺延伸フィルムに与える配向角、延伸倍率等に応じて、把持具走行支持具の経路のパターンは手動で、または自動で調整できるように構成されている。把持具走行支持具の経路のパターンは、後記により詳述する駆動軸を調整することにより行う。 The gripping tool travel support tool of the stretching device has an asymmetric shape on the left and right, and the pattern of the path of the gripping tool travel support tool depends on the orientation angle, stretch ratio, etc. given to the long stretched film to be manufactured. It is configured so that it can be adjusted manually or automatically. The path pattern of the gripper travel support tool is performed by adjusting the drive shaft, which will be described in detail later.
 本実施形態の延伸装置では、各把持具走行支持具の経路を自由に設定でき、把持具走行支持具の経路のパターンを任意に変更できることが好ましい。 In the stretching apparatus of the present embodiment, it is preferable that the path of each gripper travel support tool can be freely set and the pattern of the path of the gripper travel support tool can be arbitrarily changed.
 把持具走行支持具の長さ(全長)としては特に限定されず、通常は10~100m程度である。また、両側の把持具走行支持具の全長は同じであってもよく、異なっていてもよい。 The length (full length) of the gripping tool travel support tool is not particularly limited, and is usually about 10 to 100 m. Moreover, the full length of the holding | gripping tool traveling support tool of both sides may be the same, and may differ.
 本実施形態において、延伸装置の把持具の走行速度は適宜選択できるが、なかでも15~150m/分が好ましい。延伸装置の把持具の走行速度が150m/分より高速になると、屈曲部において、フィルムの端部にかかる局所的な応力が大きくなり、フィルムの端部にシワや寄りが発生し、延伸終了後に得られるフィルムの全幅のうち、良品として得られる有効幅が狭くなる傾向がある。また、一般に、把持具の走行速度が上記範囲内の場合には、長尺フィルムには、熱の供給不足に伴う温度ムラが発生しやすい。しかしながら、本実施形態で使用する延伸装置には、後記により詳述するように、少なくとも延伸ゾーンにおいて面状ヒータが連続的に設けられているため、長尺フィルムを高速搬送した場合であっても、走行する長尺フィルムに充分かつ均一に熱を付与することができる。その結果、得られる長尺フィルムの配向角の幅手方向のばらつきを小さくすることができる。 In this embodiment, the traveling speed of the gripping tool of the stretching apparatus can be selected as appropriate, but is preferably 15 to 150 m / min. When the traveling speed of the gripping device of the stretching apparatus is higher than 150 m / min, the local stress applied to the end of the film increases at the bent portion, and wrinkles and shifts occur at the end of the film. Of the entire width of the film obtained, the effective width obtained as a non-defective product tends to narrow. In general, when the traveling speed of the gripping tool is within the above range, the long film is likely to have temperature unevenness due to insufficient heat supply. However, as will be described in detail later, the stretching apparatus used in the present embodiment is continuously provided with a planar heater at least in the stretching zone, so even when a long film is conveyed at high speed. Heat can be sufficiently and uniformly applied to the traveling long film. As a result, the variation in the width direction of the orientation angle of the obtained long film can be reduced.
 把持具対を構成する2つの把持具の走行速度は、同じであってもよく、異なっていてもよい。把持解放点で長尺延伸フィルムの左右に走行速度差があると、把持解放点において長尺延伸フィルムにシワ、寄りが発生する可能性があるため、把持具対を構成する左右の把持具の速度差は、実質的に等速であることが好ましい。 The traveling speeds of the two gripping tools constituting the gripping tool pair may be the same or different. If there is a difference in travel speed between the left and right of the long stretched film at the grip release point, wrinkles and misalignment may occur in the long stretched film at the grip release point. The speed difference is preferably substantially constant.
 把持具対を構成する把持具の走行速度を等速とする場合において、それぞれの把持具の走行速度の差は、1%以下であることが好ましく、より好ましくは0.5%以下、さらに好ましくは0.1%以下である。一般的な延伸装置等では、チェーンを駆動するスプロケット(ギア)の歯の周期、駆動モーターの周波数等に応じ、秒以下のオーダーで発生する速度ムラがあり、しばしば数%のムラを生ずるが、これらは本実施形態で述べる速度差には該当しない。 When the traveling speeds of the gripping tools constituting the gripping tool pair are made constant, the difference between the traveling speeds of the gripping tools is preferably 1% or less, more preferably 0.5% or less, even more preferably. Is 0.1% or less. In general stretching devices, etc., there are speed irregularities that occur in the order of seconds or less depending on the period of the sprocket (gear) teeth that drive the chain, the frequency of the drive motor, etc. These do not correspond to the speed difference described in this embodiment.
 本実施形態で用いられる斜め延伸装置の把持具の軌跡を規制する把持具走行支持具には、特に長尺フィルムの搬送が斜めになる箇所において、しばしば大きい屈曲率が求められる。急激な屈曲による把持具同士の干渉、あるいは局所的な応力集中を避ける目的から、屈曲部では把持具の軌跡が円弧を描くように湾曲していることが望ましい。 The gripping tool traveling support tool that regulates the locus of the gripping tool of the oblique stretching apparatus used in the present embodiment is often required to have a high bending rate, particularly in a portion where the conveyance of the long film is slanted. In order to avoid interference between gripping tools due to sudden bending or local stress concentration, it is desirable that the trajectory of the gripping tool is curved so as to draw an arc at the bent portion.
 本実施形態において、長尺フィルムは、斜め延伸装置入口(図8の直線Aの位置)において、その両端が左右の把持具(一対の把持具対)によって順次把持されて、把持具の走行に伴い走行される。斜め延伸装置入口で、長尺フィルム進行方向D1に対して略垂直な方向に相対している把持具対は、左右非対称な経路を走行し、予熱ゾーン、延伸ゾーン、熱固定ゾーンを有する加熱炉を通過する。 In the present embodiment, the long film is sequentially gripped by the left and right gripping tools (a pair of gripping tools) at the entrance of the oblique stretching device (position of the straight line A in FIG. 8), and the gripping tool travels. Drive with it. The pair of gripping tools facing the direction substantially perpendicular to the long film traveling direction D1 at the entrance of the oblique stretching apparatus travels along an asymmetric path, and has a preheating zone, a stretching zone, and a heat fixing zone. Pass through.
 予熱ゾーンとは、加熱炉入口において、両端を把持した把持具の間隔が一定の間隔を保ったまま走行する区間をさす。 予 Preheating zone refers to a section where the distance between the gripping tools gripping both ends is kept constant at the heating furnace entrance.
 延伸ゾーンとは、両端を把持した把持具の間隔が開きだし、所定の間隔になるまでの区間をさす。本実施形態では、延伸ゾーン内で斜め方向に延伸することができるが、斜め方向の延伸だけに限らず、延伸ゾーン内で横延伸した後に斜め延伸してもよいし、斜め延伸した後にさらに幅手方向に延伸してもよい。 The stretching zone refers to the interval until the gap between the gripping tools that grips both ends starts to reach a predetermined interval. In the present embodiment, the film can be stretched in an oblique direction in the stretching zone. However, the stretching is not limited to the stretching in the oblique direction. You may extend | stretch in a hand direction.
 熱固定ゾーンとは、延伸ゾーンより後の把持具の間隔が再び一定となる期間において、両端の把持具が互いに平行を保ったまま走行する区間をさす。熱固定ゾーンを通過した後に、ゾーン内の温度が長尺フィルムを構成する熱可塑性樹脂のガラス転移温度Tg以下に設定される区間(冷却ゾーン)を通過してもよい。このとき、冷却による長尺延伸フィルムの縮みを考慮して、予め対向する把持具間隔を狭めるような経路パターンとしてもよい。 The heat setting zone refers to the section in which the gripping tools at both ends run parallel to each other during the period when the spacing between the gripping tools after the stretching zone becomes constant again. You may pass through the area (cooling zone) by which the temperature in a zone is set to below the glass transition temperature Tg of the thermoplastic resin which comprises a elongate film, after passing through a heat setting zone. At this time, in consideration of shrinkage of the long stretched film due to cooling, a route pattern that narrows the gap between the opposing gripping tools in advance may be used.
 本実施形態では、フィルムの機械物性や光学特性を調整する目的で斜め延伸装置に長尺フィルムを導入する前後の工程において必要に応じて横延伸および縦延伸を実施してもよい。 In this embodiment, for the purpose of adjusting the mechanical properties and optical characteristics of the film, transverse stretching and longitudinal stretching may be performed as necessary in the steps before and after introducing the long film into the oblique stretching apparatus.
 熱可塑性樹脂のガラス転移温度Tgに対し、予熱ゾーンの温度はTg~Tg+30℃、延伸ゾーンの温度はTg~Tg+30℃、冷却ゾーンの温度はTg-30℃~Tgに設定することが好ましい。 It is preferable to set the temperature of the preheating zone to Tg to Tg + 30 ° C., the temperature of the stretching zone to Tg to Tg + 30 ° C., and the temperature of the cooling zone to Tg−30 ° C. to Tg with respect to the glass transition temperature Tg of the thermoplastic resin.
 なお、幅方向の厚みムラの制御のために延伸ゾーンにおいて幅方向に温度差を付けてもよい。延伸ゾーンにおいて幅方向に温度差をつけるには、温風を恒温室内に送り込むノズルの開度を幅方向で差を付けて調整する方法や、ヒータを幅方向に並べて加熱制御するなどの公知の手法を用いることができる。予熱ゾーン、延伸ゾーンおよび熱固定ゾーンの長さは適宜選択でき、延伸ゾーンの長さに対して、予熱ゾーンの長さが通常100~150%、熱固定ゾーンの長さが通常50~100%である。 Note that a temperature difference in the width direction may be applied in the stretching zone in order to control thickness unevenness in the width direction. In order to make a temperature difference in the width direction in the stretching zone, a method of adjusting the opening degree of the nozzle that sends warm air into the temperature-controlled room by making a difference in the width direction, or a method of controlling heating by arranging heaters in the width direction, etc. Techniques can be used. The length of the preheating zone, stretching zone, and heat setting zone can be appropriately selected. The length of the preheating zone is usually 100 to 150% and the length of the heat setting zone is usually 50 to 100% with respect to the length of the stretching zone. It is.
 延伸工程における延伸倍率R(W/W0)は、好ましくは1.3~3.0、より好ましくは1.5~2.8である。延伸倍率がこの範囲にあると幅方向の厚みムラが小さくなるので好ましい。また必要に応じ、幅方向の厚みムラをさらに良好なレベルにするために、延伸ゾーンにおいて幅方向で延伸温度に差を付けてもよい。なお、W0は延伸前の長尺フィルムの幅をあらわし、Wは延伸後の長尺延伸フィルムの幅をあらわす。 The draw ratio R (W / W0) in the drawing step is preferably 1.3 to 3.0, more preferably 1.5 to 2.8. When the draw ratio is within this range, thickness unevenness in the width direction is preferably reduced. Further, if necessary, a difference in stretching temperature in the width direction may be made in the stretching zone in order to make the thickness unevenness in the width direction even better. In addition, W0 represents the width of the long film before stretching, and W represents the width of the long stretched film after stretching.
 図9~図11を参照しながら、より具体的に本実施形態の製造方法の斜め延伸工程について説明する。図9は、本実施形態において使用する斜め延伸装置5の加熱炉内に配置された面状ヒータ8を説明するための概略図である。図10は、斜め延伸装置5の側面図である。図11は、斜め延伸装置5において、延伸ゾーン7および面状ヒータ8の位置を説明するための概略図である。 The oblique stretching process of the manufacturing method of the present embodiment will be described more specifically with reference to FIGS. FIG. 9 is a schematic diagram for explaining the planar heater 8 disposed in the heating furnace of the oblique stretching apparatus 5 used in the present embodiment. FIG. 10 is a side view of the oblique stretching device 5. FIG. 11 is a schematic diagram for explaining the positions of the stretching zone 7 and the planar heater 8 in the oblique stretching apparatus 5.
 上記のとおり、長尺フィルムFは、把持具に把持された状態で加熱炉6内に搬送される。加熱炉6は、長尺フィルムFを加熱するための装置である。本実施形態の製造方法では、長尺フィルムFは、少なくとも延伸ゾーン7において長尺フィルムFと駆動軸3との間に設けられた面状ヒータ8により長尺フィルムFの下側から加熱される。後記により詳述するように、面状ヒータ8は、加熱炉6内の全体に設けられていることが好ましい。面状ヒータ8により加熱炉6内が加熱されるとともに、走行する長尺フィルムFが加熱される。 As described above, the long film F is conveyed into the heating furnace 6 while being held by the holding tool. The heating furnace 6 is an apparatus for heating the long film F. In the manufacturing method of this embodiment, the long film F is heated from the lower side of the long film F by the planar heater 8 provided between the long film F and the drive shaft 3 at least in the stretching zone 7. . As will be described in detail later, the planar heater 8 is preferably provided throughout the heating furnace 6. While the inside of the heating furnace 6 is heated by the planar heater 8, the traveling long film F is heated.
 加熱炉6は、面状ヒータ8が設けられた位置以外にも加熱源を設けることができる。加熱源の位置は特に限定されない。面状ヒータ8を設けた位置以外の位置では、加熱源は、長尺フィルムFを均一に加熱する観点から、長尺フィルムFの上下の少なくとも一方に設けることができる。さらに、面状ヒータ8を設けた位置では、長尺フィルムFの厚み方向の上側に加熱源を設けて、面状ヒータ8とともに長尺フィルムFを上下から加熱してもよい。加熱源による加熱方法は特に限定されず、たとえば熱風を吹き付ける方法を採用することができる。 The heating furnace 6 can be provided with a heating source other than the position where the planar heater 8 is provided. The position of the heating source is not particularly limited. At a position other than the position where the planar heater 8 is provided, the heating source can be provided on at least one of the upper and lower sides of the long film F from the viewpoint of uniformly heating the long film F. Furthermore, at the position where the planar heater 8 is provided, a heating source may be provided on the upper side in the thickness direction of the long film F, and the long film F may be heated together with the planar heater 8 from above and below. The heating method by a heat source is not specifically limited, For example, the method of spraying a hot air is employable.
 図9および図10に示されるように、駆動軸3は、把持具走行支持具2と連結されている。駆動軸3は、長尺フィルムFの走行方向と略直交する方向に所定の距離だけ移動可能に構成されており、移動により把持具走行支持具2の形状を変更する。 As shown in FIGS. 9 and 10, the drive shaft 3 is connected to the gripping tool travel support tool 2. The drive shaft 3 is configured to be movable by a predetermined distance in a direction substantially orthogonal to the traveling direction of the long film F, and changes the shape of the gripping tool traveling support tool 2 by movement.
 駆動軸3を移動させる方法としては特に限定されない。たとえば、図9および図10に示されるように、把持具走行支持具2の一部と駆動軸3の一部とを連結杆9により連結することができる。この場合、駆動軸3を長尺フィルムFの走行方向と略直交する方向に移動させることにより、連結杆9を介して把持具走行支持具2の形状を変更することができる。 The method for moving the drive shaft 3 is not particularly limited. For example, as shown in FIGS. 9 and 10, a part of the gripping tool travel support tool 2 and a part of the drive shaft 3 can be connected by a connecting rod 9. In this case, by moving the drive shaft 3 in a direction substantially orthogonal to the traveling direction of the long film F, the shape of the gripping tool traveling support tool 2 can be changed via the connecting rod 9.
 把持具(図示せず)は、長尺フィルムFを把持しながら把持具走行支持具2の経路を走行する。搬送される長尺フィルムFは、下面に連続的に設けられた面状ヒータ8により加熱される。 A gripping tool (not shown) travels along the path of the gripping tool travel support tool 2 while gripping the long film F. The long film F conveyed is heated by the planar heater 8 provided continuously on the lower surface.
 面状ヒータ8は、図9および図10に示されるように、加熱炉6の少なくとも延伸ゾーン7において、長尺フィルムFと駆動軸3との間に設けられている。面状ヒータ8は、走行する長尺フィルムFを下面から連続的に均一に加熱することができるとともに、長尺フィルムFの下面に存在する周辺空気を均一に移動させ、衝突風を生じにくくすることができる。そのため、長尺フィルムFは、温度ムラが生じにくい。また、延伸方向を変更するために駆動軸3を調整して把持具走行支持具2の形状を変更した場合であっても、面状ヒータ8は、長尺フィルムFと駆動軸3との間に設けられているため、駆動軸3の調整を妨げることがない。 As shown in FIGS. 9 and 10, the planar heater 8 is provided between the long film F and the drive shaft 3 at least in the stretching zone 7 of the heating furnace 6. The planar heater 8 can continuously and uniformly heat the traveling long film F from the lower surface, and uniformly moves the ambient air existing on the lower surface of the long film F, thereby making it difficult to generate a collision wind. be able to. Therefore, the long film F hardly causes temperature unevenness. Even when the driving shaft 3 is adjusted to change the stretching direction and the shape of the gripping tool travel support tool 2 is changed, the planar heater 8 is provided between the long film F and the driving shaft 3. Therefore, the adjustment of the drive shaft 3 is not hindered.
 なお、本明細書において、「連続的に加熱する」とは、図10に示されるように、面状ヒータ8が、走行する長尺フィルムFに熱を均一に付与する動作をいう。図10では、均等に配置された矢印により、連続的に付与される熱の流れを示している。すなわち、図2に示される飛び石状に配置されたヒータ(ヒータ4)からの熱は、不連続に配置された矢印が示すとおり、長尺フィルムFを連続的に加熱していない。 In the present specification, “continuously heating” refers to an operation in which the planar heater 8 uniformly applies heat to the traveling long film F as shown in FIG. 10. In FIG. 10, the heat flow continuously given is shown by the arrows arranged uniformly. That is, the heat from the heater (heater 4) arranged in a stepping stone shape shown in FIG. 2 does not continuously heat the long film F as indicated by the discontinuously arranged arrows.
 本実施形態の面状ヒータ8は、図2に示されるヒータ4のように駆動軸の間に飛び石状に配置されておらず、長尺フィルムFと駆動軸3との間に設けられている。そのため、駆動軸3の本数が多い斜め延伸装置5において、駆動軸3の本数や配置とは無関係に、長尺フィルムFと駆動軸3との間に設けることができる。 The planar heater 8 of the present embodiment is not disposed between the drive shafts like the heater 4 shown in FIG. 2, but is provided between the long film F and the drive shaft 3. . For this reason, in the oblique stretching device 5 having a large number of drive shafts 3, it can be provided between the long film F and the drive shaft 3 regardless of the number and arrangement of the drive shafts 3.
 面状ヒータ8の種類としては特に限定されず、従来公知の電気ヒータなどを使用することができる。面状ヒータ8は、たとえば、導電線を織り込んだ布地にカーボン塗料を塗布または含浸させ、両面から耐熱性の合成樹脂シート(たとえばポリイミドシート等)で熱融着させた面状ヒータ、金属箔を耐熱性のある樹脂シートで両側から挟んで一体成形した面状ヒータなどを採用することができる。他にも、高絶縁性に加え、高温性、高耐熱性にも優れ、昇温速度が速く、寿命が長い等の観点から、アルミナや窒化アルミなどのセラミック基板を用いたセラミックヒータを採用することができる。さらに、マイカヒータ、石英ヒータ等を採用することができる。 The type of the planar heater 8 is not particularly limited, and a conventionally known electric heater or the like can be used. The planar heater 8 is made of, for example, a planar heater or metal foil obtained by applying or impregnating a carbon paint to a fabric woven with conductive wires and thermally fusing both sides with a heat-resistant synthetic resin sheet (for example, a polyimide sheet). A planar heater or the like integrally formed by sandwiching from both sides with a heat-resistant resin sheet can be employed. In addition, in addition to high insulation, it is excellent in high temperature and heat resistance, adopts a ceramic heater using a ceramic substrate such as alumina or aluminum nitride from the viewpoint of high temperature rise rate and long life. be able to. Furthermore, a mica heater, a quartz heater, etc. can be employed.
 面状ヒータ8の形状は特に限定されず、長尺フィルムFと駆動軸3との間に設けることができる形状であればよい。本実施形態では、扁平な形状を呈する面状ヒータ8を採用している。 The shape of the planar heater 8 is not particularly limited as long as it can be provided between the long film F and the drive shaft 3. In the present embodiment, a planar heater 8 having a flat shape is employed.
 面状ヒータ8を設ける水平位置は、長尺フィルムFと駆動軸3との間であれば特に限定されない。すなわち、面状ヒータ8は、長尺フィルムFに充分かつ均一な熱を付与できる距離を空けて、長尺フィルムFの下面側に設置することができる。また、面状ヒータ8は、長尺フィルムFと比較的近い位置に設けることができる。そのため、面状ヒータ8から駆動軸3に伝導される熱が少なく、面状ヒータ8からの熱は、長尺フィルムFに効率よく付与される。 The horizontal position where the planar heater 8 is provided is not particularly limited as long as it is between the long film F and the drive shaft 3. That is, the planar heater 8 can be installed on the lower surface side of the long film F with a distance that can provide sufficient and uniform heat to the long film F. Further, the planar heater 8 can be provided at a position relatively close to the long film F. Therefore, there is little heat conducted from the planar heater 8 to the drive shaft 3, and the heat from the planar heater 8 is efficiently applied to the long film F.
 面状ヒータ8を設ける方法は特に限定されず、長尺フィルムFと駆動軸3との間に設ける方法であればよい。たとえば、把持具走行支持具2と連結するか、一体的に形成することができる。 The method of providing the planar heater 8 is not particularly limited as long as the method is provided between the long film F and the drive shaft 3. For example, it can be connected to the gripping tool travel support tool 2 or formed integrally.
 面状ヒータ8は、把持具走行支持具2と連結するか、一体的に形成することにより、駆動軸3を調整することにより把持具走行支持具2の形状が変更した場合であっても、変更した把持具走行支持具2の形状に追従して面状ヒータ8の形状を変更することができる。面状ヒータ8の形状を変更する方法としては特に限定されず、たとえば面状ヒータ8はガレージシャッターのようなスライド機構を有していてもよいし、九十九折状の構造を有していてもよい。 Even if the shape of the gripping tool travel support tool 2 is changed by adjusting the drive shaft 3 by connecting to the gripping tool travel support tool 2 or integrally forming the planar heater 8, The shape of the planar heater 8 can be changed following the changed shape of the gripping tool travel support tool 2. The method for changing the shape of the planar heater 8 is not particularly limited. For example, the planar heater 8 may have a slide mechanism such as a garage shutter or a ninety-nine-fold structure. May be.
 長尺フィルムFの幅方向における面状ヒータ8の占有面積は特に限定されず、図11に示されるように、少なくとも延伸ゾーン7を走行する長尺フィルムFの下面に設けられていればよく、延伸ゾーン7の全体に設けられていてもよい。 The area occupied by the planar heater 8 in the width direction of the long film F is not particularly limited, as long as it is provided on the lower surface of the long film F that travels at least in the stretching zone 7, as shown in FIG. It may be provided throughout the stretching zone 7.
 図11に示されるように、走行する長尺フィルムFの下面にのみ面状ヒータ8を設ける場合、延伸ゾーン7の余分な空間に熱を付与しないため、長尺フィルムFへの熱効率がよい。一方、延伸ゾーン7の全体に面状ヒータ8を設ける場合、たとえば延伸角度を変更して把持具走行支持具2の形状が変化した場合であっても、常に走行する長尺フィルムFの下面から熱を加えることができる。また、形状を変化した後の把持具走行支持具2の形状に合わせて面状ヒータ8を設ける必要がなく、利便性に優れる。なお、長尺フィルムFの下面にのみ面状ヒータ8を設ける場合、延伸角度を変更する際に、面状ヒータ8の側面と連結杆9とが接触する可能性がある。そのため、面状ヒータ8は、あらかじめ連結杆9の移動経路に沿う形で、面状ヒータ8が長孔機構および折りたたみ機構のような接触回避機構を具備することができる。この場合、面状ヒータ8は、必要に応じて自動または手動で長孔の内側に折りたたむことで連結杆9との接触を回避できる。 As shown in FIG. 11, when the planar heater 8 is provided only on the lower surface of the traveling long film F, heat is not applied to the extra space in the stretching zone 7, so the thermal efficiency of the long film F is good. On the other hand, when the planar heater 8 is provided in the entire stretching zone 7, for example, even when the stretching angle is changed and the shape of the gripping tool travel support tool 2 is changed, from the lower surface of the long film F that always travels. Heat can be applied. Moreover, it is not necessary to provide the planar heater 8 in accordance with the shape of the gripping tool travel support tool 2 after the shape is changed, and the convenience is excellent. In addition, when providing the planar heater 8 only in the lower surface of the elongate film F, when changing an extending | stretching angle, the side surface of the planar heater 8 and the connecting rod 9 may contact. Therefore, the planar heater 8 can be provided with a contact avoidance mechanism such as a long hole mechanism and a folding mechanism in advance along the movement path of the connecting rod 9. In this case, the planar heater 8 can avoid contact with the connecting rod 9 by being automatically or manually folded inside the long hole as necessary.
 また、面状ヒータ8を延伸ゾーン7の全体に設ける場合、延伸角度を変更すると面状ヒータ8が連結杆9と接触する可能性がある。そのため、面状ヒータ8は、あらかじめ連結杆9の移動経路に沿う形で、面状ヒータ8が長孔機構および折りたたみ機構のような接触回避機構を具備することができる。この場合、面状ヒータ8は、必要に応じて自動または手動で長孔の内側に折りたたむことで連結杆9との接触を回避できる。また、面状ヒータ8は、面状ヒータ8の表裏面に、連結杆9の移動経路に沿うようガイド機構を備えることができる。この場合、連結杆9は面状ヒータ8に対して上下から前記ガイド機構を走行する稼働式部材によって挟まれた構造とすることができる。 Further, when the planar heater 8 is provided in the entire stretching zone 7, the planar heater 8 may come into contact with the connecting rod 9 when the stretching angle is changed. Therefore, the planar heater 8 can be provided with a contact avoidance mechanism such as a long hole mechanism and a folding mechanism in advance along the movement path of the connecting rod 9. In this case, the planar heater 8 can avoid contact with the connecting rod 9 by being automatically or manually folded inside the long hole as necessary. Further, the planar heater 8 can be provided with a guide mechanism on the front and back surfaces of the planar heater 8 along the movement path of the connecting rod 9. In this case, the connecting rod 9 can be structured to be sandwiched between the planar heater 8 by an actuating member that runs on the guide mechanism from above and below.
 図12に示されるように、延伸ゾーン7を含む加熱炉5内の全体に連続的に面状ヒータ8を設けてもよい。このように面状ヒータ8が、加熱炉3内の全体に連続的に設けられている場合には、延伸ゾーン7の前後においても長尺フィルムFが温度ムラ無く均一に加熱される。その結果、延伸角度によらず、得られる長尺延伸フィルムの配向角の幅手方向のばらつきを小さくすることができ、安定した品質の長尺延伸フィルムが得られる。 As shown in FIG. 12, a planar heater 8 may be provided continuously throughout the heating furnace 5 including the stretching zone 7. As described above, when the planar heater 8 is continuously provided throughout the heating furnace 3, the long film F is uniformly heated even before and after the stretching zone 7 without temperature unevenness. As a result, the variation in the width direction of the orientation angle of the obtained long stretched film can be reduced regardless of the stretch angle, and a long stretched film with stable quality can be obtained.
 面状ヒータ8は、走行する長尺フィルムFの下面にのみ設けることができる。この場合、加熱炉6内の余分な空間に熱を付与しないため、長尺フィルムFへの熱効率がよい。一方、加熱炉6内の全体に設ける場合、たとえば延伸角度を変更して把持具走行支持具2の形状が変化した場合であっても、常に走行する長尺フィルムFの下面から熱を加えることができる。また、形状を変化した後の把持具走行支持具2の形状に合わせて面状ヒータ8を設ける必要がなく、利便性に優れる。 The planar heater 8 can be provided only on the lower surface of the traveling long film F. In this case, since heat is not given to the extra space in the heating furnace 6, the thermal efficiency for the long film F is good. On the other hand, when provided throughout the heating furnace 6, for example, even when the shape of the gripping tool travel support tool 2 is changed by changing the stretching angle, heat is always applied from the lower surface of the long film F that travels. Can do. Moreover, it is not necessary to provide the planar heater 8 in accordance with the shape of the gripping tool travel support tool 2 after the shape is changed, and the convenience is excellent.
 次に、本実施形態が採用し得るその他の工程について説明する。なお、本実施形態は、上記した斜め延伸工程を有していればよく、その他の工程については特に限定されない。そのため、以下に説明するその他の工程は、例示であり、適宜設計変更を行うことができる。 Next, other steps that can be adopted by this embodiment will be described. In addition, this embodiment should just have the above-mentioned diagonal extending process, and it does not specifically limit about other processes. For this reason, the other steps described below are examples, and the design can be changed as appropriate.
 (長尺フィルムの製膜工程)
 製膜工程は、熱可塑性樹脂からなる長尺フィルムを製膜する工程である。
(Long film forming process)
The film forming step is a step of forming a long film made of a thermoplastic resin.
 本実施形態で製膜する長尺フィルムとしては、特に限定されず、熱可塑性樹脂から構成されている長尺フィルムであればよい。 The long film formed in this embodiment is not particularly limited as long as it is a long film made of a thermoplastic resin.
 たとえば、延伸後の長尺延伸フィルムを光学用途に使用する場合には、所望の波長に対して透明な樹脂からなるフィルムが好ましい。このような樹脂としては、ポリカーボネート系樹脂、ポリエーテルスルフォン系樹脂、ポリエチレンテレフタレート系樹脂、ポリイミド系樹脂、ポリメチルメタクリレート系樹脂、ポリスルフォン系樹脂、ポリアリレート系樹脂、ポリエチレン系樹脂、ポリ塩化ビニル系樹脂、脂環構造を有するオレフィンポリマー系樹脂、セルロースエステル系樹脂などが挙げられる。これらの中でも、透明性や機械強度などの観点からポリカーボネート系樹脂、脂環構造を有するオレフィンポリマー系樹脂、セルロースエステル系樹脂が好ましい。その中でも光学フィルムとした場合の位相差を調整することが容易である、脂環構造を有するオレフィンポリマー系樹脂とセルロースエステル系樹脂とがさらに好ましく、脂環構造を有するオレフィンポリマー系樹脂は延伸応力が低いために、高速搬送で斜め延伸した際においても、フィルム端部にシワや寄りが発生しにくい点から特に好ましい。 For example, when using a stretched long stretched film for optical purposes, a film made of a resin transparent to a desired wavelength is preferable. Such resins include polycarbonate resins, polyether sulfone resins, polyethylene terephthalate resins, polyimide resins, polymethyl methacrylate resins, polysulfone resins, polyarylate resins, polyethylene resins, polyvinyl chloride resins. Examples thereof include resins, olefin polymer resins having an alicyclic structure, and cellulose ester resins. Among these, polycarbonate resins, olefin polymer resins having an alicyclic structure, and cellulose ester resins are preferable from the viewpoints of transparency and mechanical strength. Among them, an olefin polymer-based resin having an alicyclic structure and a cellulose ester-based resin, which are easy to adjust the phase difference in the case of an optical film, are more preferable. Therefore, even when the film is obliquely stretched by high-speed conveyance, it is particularly preferable from the viewpoint that wrinkles and shifts hardly occur at the film edge.
 <脂環式オレフィンポリマー系樹脂>
 脂環式オレフィンポリマー系樹脂としては、特開平05-310845号公報に記載されている環状オレフィンランダム多元共重合体、特開平05-97978号公報に記載されている水素添加重合体、特開平11-124429号公報に記載されている熱可塑性ジシクロペンタジエン系開環重合体およびその水素添加物等を採用することができる。
<Alicyclic olefin polymer resin>
Examples of the alicyclic olefin polymer-based resin include cyclic olefin random multi-component copolymers described in JP-A No. 05-310845, hydrogenated polymers described in JP-A No. 05-97978, and JP-A No. 11 The thermoplastic dicyclopentadiene ring-opening polymer and hydrogenated product thereof described in JP-A-124429 can be employed.
 脂環構造を有するオレフィンポリマー系樹脂をより具体的に説明する。脂環式オレフィンポリマー系樹脂は、飽和脂環炭化水素(シクロアルカン)構造や不飽和脂環炭化水素(シクロアルケン)構造などの脂環式構造を有するポリマーである。脂環式構造を構成する炭素原子数には、特に制限はないが、通常4~30個、好ましくは5~20個、より好ましくは5~15個であるときに、機械強度、耐熱性および長尺フィルムの成形性の特性が高度にバランスされ、好適である。 The olefin polymer resin having an alicyclic structure will be described more specifically. The alicyclic olefin polymer-based resin is a polymer having an alicyclic structure such as a saturated alicyclic hydrocarbon (cycloalkane) structure or an unsaturated alicyclic hydrocarbon (cycloalkene) structure. The number of carbon atoms constituting the alicyclic structure is not particularly limited, but is usually 4 to 30, preferably 5 to 20, more preferably 5 to 15, and the mechanical strength, heat resistance and The formability characteristics of the long film are highly balanced and suitable.
 脂環式オレフィンポリマー中の脂環式構造を含有してなる繰り返し単位の割合は、適宜選択すればよいが、好ましくは55重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。脂環式ポリオレフィン樹脂中の脂環式構造を有する繰り返し単位の割合がこの範囲にあると、本実施形態の長尺延伸フィルムより得られる位相差フィルム等の光学材料の透明性および耐熱性が向上するので好ましい。 The proportion of the repeating unit containing the alicyclic structure in the alicyclic olefin polymer may be appropriately selected, but is preferably 55% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight. That's it. When the ratio of the repeating unit having an alicyclic structure in the alicyclic polyolefin resin is within this range, the transparency and heat resistance of an optical material such as a retardation film obtained from the long stretched film of the present embodiment are improved. This is preferable.
 脂環構造を有するオレフィンポリマー系樹脂としては、ノルボルネン系樹脂、単環の環状オレフィン系樹脂、環状共役ジエン系樹脂、ビニル脂環式炭化水素系樹脂およびこれらの水素化物等を挙げることができる。これらの中で、ノルボルネン系樹脂は、透明性と成形性が良好なため、好適に用いることができる。また、ノルボルネン系樹脂を用いて得られた長尺延伸フィルムは、延伸応力が低いために、高速搬送した際においても、長尺延伸フィルムの端部にシワや寄りの発生が軽減され、配向角の長手方向のばらつきを抑制することができる。 Examples of the olefin polymer resin having an alicyclic structure include norbornene resins, monocyclic olefin resins, cyclic conjugated diene resins, vinyl alicyclic hydrocarbon resins, and hydrides thereof. Among these, norbornene-based resins can be suitably used because of their good transparency and moldability. In addition, since a long stretched film obtained using a norbornene-based resin has low stretching stress, the occurrence of wrinkles and shifts at the end of the long stretched film is reduced even when transported at high speed, and the orientation angle is reduced. Variation in the longitudinal direction can be suppressed.
 ノルボルネン系樹脂としては、たとえば、ノルボルネン構造を有する単量体の開環重合体またはノルボルネン構造を有する単量体と他の単量体との開環共重合体またはそれらの水素化物、ノルボルネン構造を有する単量体の付加重合体またはノルボルネン構造を有する単量体と他の単量体との付加共重合体、またはそれらの水素化物等を挙げることができる。これらの中で、ノルボルネン構造を有する単量体の開環(共)重合体水素化物は、透明性、成形性、耐熱性、低吸湿性、寸法安定性および軽量性などの観点から、特に好適に用いることができる。 Examples of the norbornene-based resin include a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and another monomer, a hydride thereof, and a norbornene structure. And an addition copolymer of a monomer having a norbornene structure and an addition copolymer of another monomer or a hydride thereof. Among these, a ring-opening (co) polymer hydride of a monomer having a norbornene structure is particularly suitable from the viewpoints of transparency, moldability, heat resistance, low hygroscopicity, dimensional stability and lightness. Can be used.
 ノルボルネン構造を有する単量体としては、ビシクロ〔2.2.1〕ヘプト-2-エン(慣用名:ノルボルネン)、トリシクロ〔4.3.0.12,5〕デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、7,8-ベンゾトリシクロ〔4.3.0.12,5〕デカ-3-エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ〔4.4.0.12,5.17,10〕ドデカ-3-エン(慣用名:テトラシクロドデセン)、およびこれらの化合物の誘導体(たとえば、環に置換基を有するもの)などを挙げることができる。ここで、置換基としては、たとえばアルキル基、アルキレン基および極性基などを挙げることができる。また、これらの置換基は、同一または相異なって複数個が環に結合していてもよい。ノルボルネン構造を有する単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。 Examples of the monomer having a norbornene structure include bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.12,5] deca-3,7-diene ( Common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.12,5] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4.0.12, 5.17,10] dodec-3-ene (common name: tetracyclododecene), and derivatives of these compounds (for example, those having a substituent in the ring). Here, examples of the substituent include an alkyl group, an alkylene group, and a polar group. Moreover, these substituents may be the same or different and a plurality may be bonded to the ring. Monomers having a norbornene structure can be used singly or in combination of two or more.
 極性基の種類としては、ヘテロ原子、またはヘテロ原子を有する原子団などが挙げられる。ヘテロ原子としては、たとえば、酸素原子、窒素原子、硫黄原子、ケイ素原子およびハロゲン原子などが挙げられる。極性基の具体例としては、カルボキシル基、カルボニルオキシカルボニル基、エポキシ基、ヒドロキシ基、オキシ基、エステル基、シラノール基、シリル基、アミノ基、ニトリル基およびスルホ基などが挙げられる。 Examples of the polar group include heteroatoms or atomic groups having heteroatoms. Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom. Specific examples of the polar group include a carboxyl group, a carbonyloxycarbonyl group, an epoxy group, a hydroxy group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfo group.
 ノルボルネン構造を有する単量体と開環共重合可能な他の単量体としては、シクロヘキセン、シクロヘプテンおよびシクロオクテンなどのモノ環状オレフィン類やその誘導体;並びにシクロヘキサジエンおよびシクロヘプタジエンなどの環状共役ジエンやその誘導体;などが挙げられる。 Other monomers capable of ring-opening copolymerization with monomers having a norbornene structure include monocyclic olefins such as cyclohexene, cycloheptene and cyclooctene and derivatives thereof; and cyclic conjugated dienes such as cyclohexadiene and cycloheptadiene. And derivatives thereof;
 ノルボルネン構造を有する単量体の開環重合体およびノルボルネン構造を有する単量体と共重合可能な他の単量体との開環共重合体は、単量体を公知の開環重合触媒の存在下に(共)重合することにより得ることができる。 A ring-opening polymer of a monomer having a norbornene structure and a ring-opening copolymer of a monomer having a norbornene structure and another monomer copolymerizable with the monomer have a known ring-opening polymerization catalyst. It can be obtained by (co) polymerization in the presence.
 ノルボルネン構造を有する単量体と付加共重合可能な他の単量体としては、たとえば、エチレン、プロピレンおよび1-ブテンなどの炭素数2~20のα-オレフィンやこれらの誘導体;シクロブテン、シクロペンテンおよびシクロヘキセンなどのシクロオレフィンやこれらの誘導体;並びに1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエンおよび5-メチル-1,4-ヘキサジエンなどの非共役ジエンなどが挙げられる。これらの単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。これらの中でも、α-オレフィンが好ましく、エチレンがより好ましい。 Other monomers that can be copolymerized with a monomer having a norbornene structure include, for example, α-olefins having 2 to 20 carbon atoms such as ethylene, propylene, and 1-butene, and derivatives thereof; cyclobutene, cyclopentene, and And cycloolefins such as cyclohexene and derivatives thereof; and non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene and 5-methyl-1,4-hexadiene. These monomers can be used alone or in combination of two or more. Among these, α-olefin is preferable, and ethylene is more preferable.
 ノルボルネン構造を有する単量体の付加重合体およびノルボルネン構造を有する単量体と共重合可能な他の単量体との付加共重合体は、単量体を公知の付加重合触媒の存在下に重合することにより得ることができる。 An addition polymer of a monomer having a norbornene structure and an addition copolymer of a monomer having a norbornene structure with another monomer copolymerizable with a monomer having a norbornene structure are prepared in the presence of a known addition polymerization catalyst. It can be obtained by polymerization.
 ノルボルネン構造を有する単量体の開環重合体の水素添加物、ノルボルネン構造を有する単量体とこれと開環共重合可能なその他の単量体との開環共重合体の水素添加物、ノルボルネン構造を有する単量体の付加重合体の水素添加物、およびノルボルネン構造を有する単量体とこれと共重合可能なその他の単量体との付加共重合体の水素添加物は、これらの重合体の溶液に、ニッケル、パラジウムなどの遷移金属を含む公知の水素添加触媒を添加し、炭素-炭素不飽和結合を好ましくは90%以上水素添加することによって得ることができる。 A hydrogenated product of a ring-opening polymer of a monomer having a norbornene structure, a hydrogenated product of a ring-opening copolymer of a monomer having a norbornene structure and another monomer capable of ring-opening copolymerization thereof, Hydrogenated products of addition polymers of monomers having a norbornene structure, and hydrogenated products of addition copolymers of monomers having a norbornene structure and other monomers copolymerizable therewith It can be obtained by adding a known hydrogenation catalyst containing a transition metal such as nickel or palladium to the polymer solution and hydrogenating carbon-carbon unsaturated bonds, preferably 90% or more.
 ノルボルネン系樹脂の中でも、繰り返し単位として、X:ビシクロ〔3.3.0〕オクタン-2,4-ジイル-エチレン構造と、Y:トリシクロ〔4.3.0.12,5〕デカン-7,9-ジイル-エチレン構造とを有し、これらの繰り返し単位の含有量が、ノルボルネン系樹脂の繰り返し単位全体に対して90重量%以上であり、かつ、Xの含有割合とYの含有割合との比が、X:Yの重量比で100:0~40:60であるものが好ましい。このような樹脂を用いることにより、本実施形態の長尺延伸フィルムにより得られる光学材料を、長期的に寸法変化がなく、光学特性の安定性に優れるものにすることができる。 Among norbornene-based resins, as a repeating unit, X: bicyclo [3.3.0] octane-2,4-diyl-ethylene structure and Y: tricyclo [4.3.0.12,5] decane-7, Having a 9-diyl-ethylene structure, the content of these repeating units is 90% by weight or more based on the total repeating units of the norbornene resin, and the X content ratio and the Y content ratio The ratio is preferably 100: 0 to 40:60 by weight ratio of X: Y. By using such a resin, the optical material obtained by the long stretched film of the present embodiment can be made long-term without dimensional change and excellent in optical properties.
 ノルボルネン系樹脂の分子量は、使用目的に応じて適宜選定されるが、溶媒としてシクロヘキサン(熱可塑性樹脂が溶解しない場合はトルエン)を用いるゲル・パーミエーション・クロマトグラフィーで測定したポリイソプレン換算(溶媒がトルエンのときは、ポリスチレン換算)の重量平均分子量(Mw)で、通常10,000~100,000、好ましくは15,000~80,000、より好ましくは20,000~50,000である。重量平均分子量がこのような範囲にあるときに、本実施形態の長尺延伸フィルムにより得られる光学材料の機械的強度および成型加工性とが高度にバランスされ好適である。 The molecular weight of the norbornene-based resin is appropriately selected depending on the purpose of use, but is converted to polyisoprene measured by gel permeation chromatography using cyclohexane (toluene if the thermoplastic resin does not dissolve) as the solvent (the solvent is In the case of toluene, the weight average molecular weight (Mw) in terms of polystyrene is usually 10,000 to 100,000, preferably 15,000 to 80,000, more preferably 20,000 to 50,000. When the weight average molecular weight is in such a range, the mechanical strength and molding processability of the optical material obtained by the long stretched film of this embodiment are highly balanced and suitable.
 ノルボルネン系樹脂のガラス転移温度は、使用目的に応じて適宜選択されればよいが、好ましくは80℃以上、より好ましくは100~250℃の範囲である。ガラス転移温度がこのような範囲にあると、本実施形態の長尺延伸フィルムにより得られる光学材料を、高温下での使用における変形や応力が生じることがなく耐久性に優れるものにすることができる。 The glass transition temperature of the norbornene-based resin may be appropriately selected depending on the purpose of use, but is preferably 80 ° C. or higher, more preferably in the range of 100 to 250 ° C. When the glass transition temperature is in such a range, the optical material obtained by the long stretched film of the present embodiment can be made excellent in durability without causing deformation or stress in use at high temperatures. it can.
 ノルボルネン系樹脂の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は特に制限されないが、通常1.0~10.0、好ましくは1.1~4.0、より好ましくは1.2~3.5の範囲である。 The molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the norbornene resin is not particularly limited, but is usually 1.0 to 10.0, preferably 1.1 to 4.0, more preferably 1 The range is from 2 to 3.5.
 ノルボルネン系樹脂の光弾性係数Cの絶対値は、10×10-12Pa-1以下であることが好ましく、7×10-12Pa-1以下であることがより好ましく、4×10-12Pa-1以下であることが特に好ましい。光弾性係数Cは、複屈折をΔn、応力をσとしたとき、Δn/σで表される値である。熱可塑性樹脂の光弾性係数がこのような範囲にあると、後述する、面内方向のリタデーション(Re)のばらつきを小さくすることができる。 The absolute value of the photoelastic coefficient C of norbornene-based resin is preferably 10 × 10 -12 Pa -1 or less, more preferably 7 × 10 -12 Pa -1 or less, 4 × 10 -12 Pa Particularly preferably, it is −1 or less. The photoelastic coefficient C is a value expressed by Δn / σ where birefringence is Δn and stress is σ. When the photoelastic coefficient of the thermoplastic resin is within such a range, variation in retardation (Re) in the in-plane direction, which will be described later, can be reduced.
 本実施形態に用いる熱可塑性樹脂は、顔料や染料のごとき着色剤、蛍光増白剤、分散剤、熱安定剤、光安定剤、紫外線吸収剤、帯電防止剤、酸化防止剤、滑剤および溶剤などの配合剤が適宜配合されたものであってもよい。 The thermoplastic resin used in this embodiment is a colorant such as a pigment or dye, a fluorescent brightener, a dispersant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, an antistatic agent, an antioxidant, a lubricant, a solvent, and the like. These compounding agents may be appropriately blended.
 ノルボルネン系樹脂を用いた長尺延伸フィルム中の残留揮発性成分の含有量は特に限定されないが、好ましくは0.1質量%以下、より好ましくは0.05質量%以下、さらに好ましくは0.02質量%以下である。揮発性成分の含有量をこのような範囲にすることにより、寸法安定性が向上し、前記Reの経時変化を小さくすることができ、さらには本実施形態の長尺延伸フィルムから得られる位相差フィルム、偏光板または有機ELディスプレイ等の画像表示装置の劣化を抑制でき、長期的に有機ELディスプレイ等の画像表示装置の表示を安定で良好に保つことができる。残留揮発性成分は、長尺フィルム中に微量含まれる分子量200以下の物質であり、たとえば、残留単量体や溶媒などが挙げられる。残留揮発性成分の含有量は、長尺フィルム中に含まれる分子量200以下の物質の合計として、長尺フィルムをガスクロマトグラフィーにより分析することにより定量することができる。 The content of the residual volatile component in the long stretched film using the norbornene resin is not particularly limited, but is preferably 0.1% by mass or less, more preferably 0.05% by mass or less, and further preferably 0.02%. It is below mass%. By making the content of the volatile component in such a range, the dimensional stability can be improved, the change with time of Re can be reduced, and further the retardation obtained from the long stretched film of the present embodiment. Deterioration of an image display device such as a film, a polarizing plate or an organic EL display can be suppressed, and the display of the image display device such as an organic EL display can be kept stable and favorable for a long time. The residual volatile component is a substance having a molecular weight of 200 or less contained in a small amount in the long film, and examples thereof include a residual monomer and a solvent. The content of the residual volatile component can be quantified by analyzing the long film by gas chromatography as the total of substances having a molecular weight of 200 or less contained in the long film.
 ノルボルネン系樹脂を用いた長尺延伸フィルムの飽和吸水率は、好ましくは0.03質量%以下、さらに好ましくは0.02質量%以下、特に好ましくは0.01質量%以下である。飽和吸水率が上記範囲であると、Reの経時変化を小さくすることができ、さらには本実施形態の長尺延伸フィルムから得られる位相差フィルム、偏光板または有機ELディスプレイ等の画像表示装置の劣化を抑制でき、長期的に有機ELディスプレイ等の画像表示装置の表示を安定で良好に保つことができる。 The saturated water absorption of the long stretched film using norbornene-based resin is preferably 0.03% by mass or less, more preferably 0.02% by mass or less, and particularly preferably 0.01% by mass or less. When the saturated water absorption is in the above range, the change with time of Re can be reduced, and further, the retardation film obtained from the long stretched film of the present embodiment, a polarizing plate, or an image display device such as an organic EL display can be used. Deterioration can be suppressed, and display on an image display device such as an organic EL display can be stably and satisfactorily maintained over a long period.
 飽和吸水率は、長尺フィルムの試験片を一定温度の水中に一定時間、浸漬し、増加した質量の浸漬前の試験片質量に対する百分率で表される値である。通常は、23℃の水中に24時間、浸漬して測定される。本実施形態の長尺延伸フィルムにおける飽和吸水率は、たとえば、熱可塑性樹脂中の極性基の量を減少させることにより、前記値に調節することができる。飽和吸水率を前記値に調整するために、本実施形態では、極性基を持たないノルボルネン系樹脂が使用されることが好ましい。 Saturated water absorption is a value expressed as a percentage of the mass of a test piece of a long film immersed in water at a constant temperature for a fixed time and the increased mass before the immersion. Usually, it is measured by immersing in 23 ° C. water for 24 hours. The saturated water absorption rate in the long stretched film of the present embodiment can be adjusted to the above value, for example, by reducing the amount of polar groups in the thermoplastic resin. In order to adjust the saturated water absorption rate to the above value, in this embodiment, it is preferable to use a norbornene-based resin having no polar group.
 上記した好ましいノルボルネン系樹脂を用いた長尺フィルムを成形する方法としては、溶液製膜法や溶融押出法の製造方法が好まれる。溶融押出法としては、ダイスを用いるインフレーション法等が挙げられるが、生産性や厚さ精度に優れる点でTダイを用いる方法が好ましい。 As a method for forming a long film using the above preferred norbornene-based resin, a solution casting method or a melt extrusion method is preferred. Examples of the melt extrusion method include an inflation method using a die, but a method using a T die is preferable in terms of excellent productivity and thickness accuracy.
 Tダイを用いる溶融押出法では、特開2004-233604号公報に記載されているような、冷却ドラムに密着させる時の溶融状態の熱可塑性樹脂を安定な状態に保つ方法により、リタデーションや配向角といった光学特性のバラツキが良好な長尺フィルムを製造できる。 In the melt extrusion method using a T-die, as described in JP-A-2004-233604, a method of maintaining retardation and orientation angle by a method of keeping a molten thermoplastic resin in a stable state when closely contacting a cooling drum. Thus, it is possible to produce a long film with good optical property variation.
 具体的には、1)溶融押出法で長尺フィルムを製造する際に、ダイスから押し出されたシート状の熱可塑性樹脂を50kPa以下の圧力下で冷却ドラムに密着させて引き取る方法;2)溶融押出法で長尺フィルムを製造する際に、ダイス開口部から最初に密着する冷却ドラムまでを囲い部材で覆い、囲い部材からダイス開口部または最初に密着する冷却ドラムまでの距離を100mm以下とする方法;3)溶融押出法で長尺フィルムを製造する際に、ダイス開口部から押し出されたシート状の熱可塑性樹脂より10mm以内の雰囲気の温度を特定の温度に加温する方法;4)関係を満たすようにダイスから押し出されたシート状の熱可塑性樹脂を50kPa以下の圧力下で冷却ドラムに密着させて引き取る方法;5)溶融押出法で長尺フィルムを製造する際に、ダイス開口部から押し出されたシート状の熱可塑性樹脂に、最初に密着する冷却ドラムの引取速度との速度差が0.2m/s以下の風を吹き付ける方法;が挙げられる。 Specifically, 1) When producing a long film by the melt extrusion method, a sheet-like thermoplastic resin extruded from a die is brought into close contact with a cooling drum under a pressure of 50 kPa or less; 2) melting When producing a long film by extrusion, the enclosure member covers from the die opening to the first cooling drum that is in close contact, and the distance from the enclosure member to the die opening or the first contact cooling drum is 100 mm or less. Method: 3) Method of heating the temperature of the atmosphere within 10 mm to a specific temperature from the sheet-like thermoplastic resin extruded from the die opening when producing a long film by the melt extrusion method; A sheet-like thermoplastic resin extruded from a die so as to satisfy the above condition is taken into close contact with a cooling drum under a pressure of 50 kPa or less; A method in which a wind having a speed difference of 0.2 m / s or less from the cooling speed of the cooling drum that is first brought into close contact with the sheet-like thermoplastic resin extruded from the die opening is produced. It is done.
 この長尺フィルムは、単層若しくは2層以上の積層フィルムであってもよい。積層フィルムは共押出成形法、共流延成形法、フィルムラミネイション法、塗布法などの公知の方法で得ることができる。これらのうち共押出成形法、共流延成形法が好ましい。 This long film may be a single layer or a laminated film of two or more layers. The laminated film can be obtained by a known method such as a coextrusion molding method, a co-casting molding method, a film lamination method, or a coating method. Of these, the coextrusion molding method and the co-casting molding method are preferable.
 <セルロースエステル系樹脂>
 セルロースエステル系樹脂としては、下記式(i)および(ii)を満たすセルロースアシレートを含有し、かつ、下記一般式(A)で表される化合物を含有することを特徴とするものが挙げられる。
<Cellulose ester resin>
Examples of the cellulose ester-based resin include those characterized by containing a cellulose acylate satisfying the following formulas (i) and (ii) and containing a compound represented by the following general formula (A). .
 式(i)  2.0≦Z1<3.0
 式(ii) 0≦X<3.0
 (式(i)および式(ii)において、Z1はセルロースアシレートの総アシル置換度を表し、Xはセルロースアシレートのプロピオニル置換度およびブチリル置換度の総和を表す)
Formula (i) 2.0 ≦ Z1 <3.0
Formula (ii) 0 ≦ X <3.0
(In Formula (i) and Formula (ii), Z1 represents the total acyl substitution degree of cellulose acylate, and X represents the sum of the propionyl substitution degree and butyryl substitution degree of cellulose acylate)
 (一般式(A)の化合物)
 以下、一般式(A)の化合物について詳細に説明する。
(Compound of general formula (A))
Hereinafter, the compound of the general formula (A) will be described in detail.
Figure JPOXMLDOC01-appb-C000001
 一般式(A)において、LおよびLは各々独立に単結合または2価の連結基を表す。 
Figure JPOXMLDOC01-appb-C000001
In the general formula (A), L 1 and L 2 each independently represent a single bond or a divalent linking group.
 LおよびLとしては、たとえば、下記構造が挙げられる。(下記Rは水素原子または置換基を表す) Examples of L 1 and L 2 include the following structures. (R below represents a hydrogen atom or a substituent)
Figure JPOXMLDOC01-appb-C000002
 LおよびLとして、好ましくは-O-、-COO-、-OCO-である。R、RおよびRは各々独立に置換基を表す。
Figure JPOXMLDOC01-appb-C000002
L 1 and L 2 are preferably —O—, —COO—, and —OCO—. R 1 , R 2 and R 3 each independently represent a substituent.
 R、RおよびRで表わされる置換基の具体例としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、アルケニル基(ビニル基、アリル基等)、シクロアルケニル基(2-シクロペンテン-1-イル、2-シクロヘキセン-1-イル基等)、アルキニル基(エチニル基、プロパルギル基等)、アリール基(フェニル基、p-トリル基、ナフチル基等)、ヘテロ環基(2-フリル基、2-チエニル基、2-ピリミジニル基、2-ベンゾチアゾリル基等)、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基(メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、n-オクチルオキシ基、2-メトキシエトキシ基等)、アリールオキシ基(フェノキシ基、2-メチルフェノキシ基、4-tert-ブチルフェノキシ基、3-ニトロフェノキシ基、2-テトラデカノイルアミノフェノキシ基等)、アシルオキシ基(ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p-メトキシフェニルカルボニルオキシ基等)、アミノ基(アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N-メチル-アニリノ基、ジフェニルアミノ基等)、アシルアミノ基(ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基等)、アルキルおよびアリールスルホニルアミノ基(メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5-トリクロロフェニルスルホニルアミノ基、p-メチルフェニルスルホニルアミノ基等)、メルカプト基、アルキルチオ基(メチルチオ基、エチルチオ基、n-ヘキサデシルチオ基等)、アリールチオ基(フェニルチオ基、p-クロロフェニルチオ基、m-メトキシフェニルチオ基等)、スルファモイル基(N-エチルスルファモイル基、N-(3-ドデシルオキシプロピル)スルファモイル基、N,N-ジメチルスルファモイル基、N-アセチルスルファモイル基、N-ベンゾイルスルファモイル基、N-(N’フェニルカルバモイル)スルファモイル基等)、スルホ基、アシル基(アセチル基、ピバロイルベンゾイル基等)、カルバモイル基(カルバモイル基、N-メチルカルバモイル基、N,N-ジメチルカルバモイル基、N,N-ジ-n-オクチルカルバモイル基、N-(メチルスルホニル)カルバモイル基等)が挙げられる。 Specific examples of the substituent represented by R 1 , R 2 and R 3 include a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl group (methyl group, ethyl group, n-propyl group, Isopropyl group, tert-butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl group (cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), alkenyl group (vinyl group, allyl group, etc.) , Cycloalkenyl groups (2-cyclopenten-1-yl, 2-cyclohexen-1-yl group, etc.), alkynyl groups (ethynyl group, propargyl group, etc.), aryl groups (phenyl group, p-tolyl group, naphthyl group, etc.) Heterocyclic group (2-furyl group, 2-thienyl group, 2-pyrimidinyl group, 2-benzothiazolyl group, etc.), cyano group, hydride Roxyl group, nitro group, carboxyl group, alkoxy group (methoxy group, ethoxy group, isopropoxy group, tert-butoxy group, n-octyloxy group, 2-methoxyethoxy group, etc.), aryloxy group (phenoxy group, 2- Methylphenoxy group, 4-tert-butylphenoxy group, 3-nitrophenoxy group, 2-tetradecanoylaminophenoxy group, etc.), acyloxy group (formyloxy group, acetyloxy group, pivaloyloxy group, stearoyloxy group, benzoyloxy group) , P-methoxyphenylcarbonyloxy group, etc.), amino group (amino group, methylamino group, dimethylamino group, anilino group, N-methyl-anilino group, diphenylamino group, etc.), acylamino group (formylamino group, acetylamino group) Group, pivaloylamino group Lauroylamino group, benzoylamino group, etc.), alkyl and arylsulfonylamino groups (methylsulfonylamino group, butylsulfonylamino group, phenylsulfonylamino group, 2,3,5-trichlorophenylsulfonylamino group, p-methylphenylsulfonylamino group) Group), mercapto group, alkylthio group (methylthio group, ethylthio group, n-hexadecylthio group, etc.), arylthio group (phenylthio group, p-chlorophenylthio group, m-methoxyphenylthio group, etc.), sulfamoyl group (N-ethyl). Sulfamoyl group, N- (3-dodecyloxypropyl) sulfamoyl group, N, N-dimethylsulfamoyl group, N-acetylsulfamoyl group, N-benzoylsulfamoyl group, N- (N′phenylcarbamoyl) ) Sulf Moyl group, etc.), sulfo group, acyl group (acetyl group, pivaloylbenzoyl group, etc.), carbamoyl group (carbamoyl group, N-methylcarbamoyl group, N, N-dimethylcarbamoyl group, N, N-di-n-) Octylcarbamoyl group, N- (methylsulfonyl) carbamoyl group and the like.
 RおよびRとしては、好ましくは、置換もしくは無置換のフェニル基、置換もしくは無置換のシクロヘキシル基である。より好ましくは置換基を有するフェニル基、置換基を有するシクロヘキシル基であり、さらに好ましくは4位に置換基を有するフェニル基、4位に置換基を有するシクロヘキシル基である。 R 1 and R 2 are preferably a substituted or unsubstituted phenyl group or a substituted or unsubstituted cyclohexyl group. More preferred are a phenyl group having a substituent and a cyclohexyl group having a substituent, and further preferred are a phenyl group having a substituent at the 4-position and a cyclohexyl group having a substituent at the 4-position.
 Rとして、好ましくは、水素原子、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロ環基、ヒドロキシル基、カルボキシル基、アルコキシ基、アリールオキシ基、アシルオキシ基、シアノ基、アミノ基であり、さらに好ましくは、水素原子、ハロゲン原子、アルキル基、シアノ基、アルコキシ基である。 R 3 is preferably a hydrogen atom, halogen atom, alkyl group, alkenyl group, aryl group, heterocyclic group, hydroxyl group, carboxyl group, alkoxy group, aryloxy group, acyloxy group, cyano group, amino group, More preferably, they are a hydrogen atom, a halogen atom, an alkyl group, a cyano group, and an alkoxy group.
 WaおよびWbは水素原子または置換基を表すが、
 (I)WaおよびWbが互いに結合して環を形成してもよく、
 (II)WaおよびWbの少なくとも1つが環構造を有してもよく、または
 (III)WaおよびWbの少なくとも1つがアルケニル基またはアルキニル基であってもよい。
Wa and Wb represent a hydrogen atom or a substituent,
(I) Wa and Wb may be bonded to each other to form a ring;
(II) At least one of Wa and Wb may have a ring structure, or (III) At least one of Wa and Wb may be an alkenyl group or an alkynyl group.
 WaおよびWbで表わされる置換基の具体例としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、アルケニル基(ビニル基、アリル基等)、シクロアルケニル基(2-シクロペンテン-1-イル、2-シクロヘキセン-1-イル基等)、アルキニル基(エチニル基、プロパルギル基等)、アリール基(フェニル基、p-トリル基、ナフチル基等)、ヘテロ環基(2-フリル基、2-チエニル基、2-ピリミジニル基、2-ベンゾチアゾリル基等)、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基(メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、n-オクチルオキシ基、2-メトキシエトキシ基等)、アリールオキシ基(フェノキシ基、2-メチルフェノキシ基、4-tert-ブチルフェノキシ基、3-ニトロフェノキシ基、2-テトラデカノイルアミノフェノキシ基等)、アシルオキシ基(ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p-メトキシフェニルカルボニルオキシ基等)、アミノ基(アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N-メチル-アニリノ基、ジフェニルアミノ基等)、アシルアミノ基(ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基等)、アルキルおよびアリールスルホニルアミノ基(メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5-トリクロロフェニルスルホニルアミノ基、p-メチルフェニルスルホニルアミノ基等)、メルカプト基、アルキルチオ基(メチルチオ基、エチルチオ基、n-ヘキサデシルチオ基等)、アリールチオ基(フェニルチオ基、p-クロロフェニルチオ基、m-メトキシフェニルチオ基等)、スルファモイル基(N-エチルスルファモイル基、N-(3-ドデシルオキシプロピル)スルファモイル基、N,N-ジメチルスルファモイル基、N-アセチルスルファモイル基、N-ベンゾイルスルファモイル基、N-(N’フェニルカルバモイル)スルファモイル基等)、スルホ基、アシル基(アセチル基、ピバロイルベンゾイル基等)、カルバモイル基(カルバモイル基、N-メチルカルバモイル基、N,N-ジメチルカルバモイル基、N,N-ジ-n-オクチルカルバモイル基、N-(メチルスルホニル)カルバモイル基等)が挙げられる。 Specific examples of the substituent represented by Wa and Wb include halogen atoms (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl groups (methyl group, ethyl group, n-propyl group, isopropyl group, tert- Butyl group, n-octyl group, 2-ethylhexyl group, etc.), cycloalkyl group (cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), alkenyl group (vinyl group, allyl group, etc.), cycloalkenyl group ( 2-cyclopenten-1-yl, 2-cyclohexen-1-yl group, etc.), alkynyl group (ethynyl group, propargyl group etc.), aryl group (phenyl group, p-tolyl group, naphthyl group etc.), heterocyclic group ( 2-furyl group, 2-thienyl group, 2-pyrimidinyl group, 2-benzothiazolyl group, etc.), cyano group, hydroxy Group, nitro group, carboxyl group, alkoxy group (methoxy group, ethoxy group, isopropoxy group, tert-butoxy group, n-octyloxy group, 2-methoxyethoxy group, etc.), aryloxy group (phenoxy group, 2-methyl group) Phenoxy group, 4-tert-butylphenoxy group, 3-nitrophenoxy group, 2-tetradecanoylaminophenoxy group, etc.), acyloxy group (formyloxy group, acetyloxy group, pivaloyloxy group, stearoyloxy group, benzoyloxy group, p-methoxyphenylcarbonyloxy group, etc.), amino group (amino group, methylamino group, dimethylamino group, anilino group, N-methyl-anilino group, diphenylamino group, etc.), acylamino group (formylamino group, acetylamino group) , Pivaloylamino group, laur Ylamino group, benzoylamino group, etc.), alkyl and arylsulfonylamino groups (methylsulfonylamino group, butylsulfonylamino group, phenylsulfonylamino group, 2,3,5-trichlorophenylsulfonylamino group, p-methylphenylsulfonylamino group) Etc.), mercapto group, alkylthio group (methylthio group, ethylthio group, n-hexadecylthio group, etc.), arylthio group (phenylthio group, p-chlorophenylthio group, m-methoxyphenylthio group, etc.), sulfamoyl group (N-ethylsulfide group, etc.) Famoyl group, N- (3-dodecyloxypropyl) sulfamoyl group, N, N-dimethylsulfamoyl group, N-acetylsulfamoyl group, N-benzoylsulfamoyl group, N- (N'phenylcarbamoyl) Sulfamoy Group), sulfo group, acyl group (acetyl group, pivaloylbenzoyl group, etc.), carbamoyl group (carbamoyl group, N-methylcarbamoyl group, N, N-dimethylcarbamoyl group, N, N-di-n-) Octylcarbamoyl group, N- (methylsulfonyl) carbamoyl group and the like.
 上記の置換基は、さらに上記の置換基で置換されていてもよい。 The above substituent may be further substituted with the above substituent.
 (1)WaおよびWbが互いに結合して環を形成する場合、以下のような構造が挙げられる。 (1) When Wa and Wb are bonded to each other to form a ring, the following structures may be mentioned.
 WaおよびWbが互いに結合して環を形成する場合、好ましくは、含窒素5員環または含硫黄5員環であり、特に好ましくは、下記一般式(1)または一般式(2)で表される化合物である。 When Wa and Wb are bonded to each other to form a ring, it is preferably a nitrogen-containing 5-membered ring or a sulfur-containing 5-membered ring, particularly preferably represented by the following general formula (1) or general formula (2). It is a compound.
Figure JPOXMLDOC01-appb-C000003
 一般式(1)において、AおよびAは各々独立に、-O-、-S-、-NRx-(Rxは水素原子または置換基を表す)またはCO-を表す。Rxで表される置換基の例は、上記WaおよびWbで表わされる置換基の具体例と同義である。Rxとして、好ましくは水素原子、アルキル基、アリール基、ヘテロ環基である。一般式(1)において、Xは第14~16族の非金属原子を表す。Xとしては、=O、=S、=NRc、=C(Rd)Reが好ましい。ここでRc、Rd、Reは置換基を表し、例としては上記WaおよびWbで表わされる置換基の具体例と同義である。L、L、R、R、R、nは、一般式(A)におけるL、L、R、R、R、nと同義である。
Figure JPOXMLDOC01-appb-C000003
In the general formula (1), A 1 and A 2 each independently represent —O—, —S—, —NRx— (Rx represents a hydrogen atom or a substituent) or CO—. The example of the substituent represented by Rx is synonymous with the specific example of the substituent represented by said Wa and Wb. Rx is preferably a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group. In the general formula (1), X represents a nonmetallic atom belonging to Groups 14-16. X is preferably ═O, ═S, ═NRc, ═C (Rd) Re. Here, Rc, Rd, and Re represent substituents, and examples thereof are synonymous with specific examples of the substituents represented by Wa and Wb. L 1, L 2, R 1 , R 2, R 3, n is L 1, L 2, R 1 , same meanings as R 2, R 3, n in the general formula (A).
Figure JPOXMLDOC01-appb-C000004
 一般式(2)において、Qは-O-、-S-、-NRy-(Ryは水素原子または置換基を表す)、-CRaRb-(RaおよびRbは水素原子または置換基を表す)またはCO-を表す。ここで、Ry、Ra、Rbは水素原子または置換基を表し、置換基の例としては上記WaおよびWbで表わされる置換基の具体例と同義である。
Figure JPOXMLDOC01-appb-C000004
In the general formula (2), Q 1 is —O—, —S—, —NRy— (Ry represents a hydrogen atom or a substituent), —CRaRb— (Ra and Rb represent a hydrogen atom or a substituent) or Represents CO-. Here, Ry, Ra and Rb represent a hydrogen atom or a substituent, and examples of the substituent are the same as the specific examples of the substituent represented by Wa and Wb.
 Yは置換基を表す。Yで表わされる置換基の例としては、上記WaおよびWbで表される置換基の具体例と同義である。Yとして、好ましくは、アリール基、ヘテロ環基、アルケニル基、アルキニル基である。Yで表わされるアリール基としては、フェニル基、ナフチル基、アンスリル基、フェナンスリル基、ビフェニル基等が挙げられ、フェニル基、ナフチル基が好ましく、フェニル基がより好ましい。 Y represents a substituent. As an example of the substituent represented by Y, it is synonymous with the specific example of the substituent represented by said Wa and Wb. Y is preferably an aryl group, a heterocyclic group, an alkenyl group, or an alkynyl group. Examples of the aryl group represented by Y include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group. A phenyl group and a naphthyl group are preferable, and a phenyl group is more preferable.
 ヘテロ環基としては、フリル基、ピロリル基、チエニル基、ピリジニル基、チアゾリル基、ベンゾチアゾリル基等の窒素原子、酸素原子、硫黄原子等のヘテロ原子を少なくとも1つ含むヘテロ環基が挙げられ、フリル基、ピロリル基、チエニル基、ピリジニル基、チアゾリル基が好ましい。 Examples of the heterocyclic group include heterocyclic groups containing at least one hetero atom such as a nitrogen atom, an oxygen atom, a sulfur atom, etc. such as a furyl group, a pyrrolyl group, a thienyl group, a pyridinyl group, a thiazolyl group, and a benzothiazolyl group. Group, pyrrolyl group, thienyl group, pyridinyl group and thiazolyl group are preferred.
 これらのアリール基またはヘテロ環基は、少なくとも1つの置換基を有していてもよく、置換基としては、ハロゲン原子、炭素数1~6のアルキル基、シアノ基、ニトロ基、炭素数1~6のアルキルスルフィニル基、炭素数1~6のアルキルスルホニル基、カルボキシル基、炭素数1~6のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルキルチオ基、炭素数1~6のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~6のN-アルキルスルファモイル基、炭素数2~12のN,N-ジアルキルスルファモイル基等が挙げられる。 These aryl groups or heterocyclic groups may have at least one substituent. Examples of the substituent include a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, and 1 to 6 alkylsulfinyl groups, alkylsulfonyl groups having 1 to 6 carbon atoms, carboxyl groups, fluoroalkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, alkylthio groups having 1 to 6 carbon atoms, 1 carbon atom N-alkylamino group having 6 to 6, N, N-dialkylamino group having 2 to 12 carbon atoms, N-alkylsulfamoyl group having 1 to 6 carbon atoms, N, N-dialkylsulfur group having 2 to 12 carbon atoms Examples include a moyl group.
 L、L、R、R、R、nは、一般式(A)におけるL、L、R、R、R、nと同義である。 L 1, L 2, R 1 , R 2, R 3, n is L 1, L 2, R 1 , same meanings as R 2, R 3, n in the general formula (A).
 (2)一般式(A)において、WaおよびWbの少なくとも1つが環構造を有する場合の具体例としては、好ましくは、下記一般式(3)である。 (2) In the general formula (A), a specific example when at least one of Wa and Wb has a ring structure is preferably the following general formula (3).
Figure JPOXMLDOC01-appb-C000005
 一般式(3)において、Qは=N-または=CRz-(Rzは水素原子または置換基)を表し、Qは第14~16族の非金属原子を表す。ZはQおよびQと共に環を形成する非金属原子群を表す。Q、QおよびZから形成される環は、さらに別の環で縮環していてもよい。Q、QおよびZから形成される環として、好ましくは、ベンゼン環で縮環した含窒素5員環または6員環である。L、L、R、R、R、nは、一般式(A)におけるL、L、R、R、R、nと同義である。
Figure JPOXMLDOC01-appb-C000005
In the general formula (3), Q 3 represents ═N— or ═CRz— (Rz represents a hydrogen atom or a substituent), and Q 4 represents a nonmetallic atom belonging to Groups 14-16. Z represents a nonmetallic atom group forming a ring together with Q 3 and Q 4 . The ring formed from Q 3 , Q 4 and Z may be further condensed with another ring. The ring formed from Q 3 , Q 4 and Z is preferably a nitrogen-containing 5-membered ring or 6-membered ring condensed with a benzene ring. L 1, L 2, R 1 , R 2, R 3, n is L 1, L 2, R 1 , same meanings as R 2, R 3, n in the general formula (A).
 (3)WaおよびWbの少なくとも1つがアルケニル基またはアルキニル基である場合には、好ましいアルケニル基またはアルキニル基は、置換基を有するビニル基、エチニル基である。 (3) When at least one of Wa and Wb is an alkenyl group or an alkynyl group, a preferred alkenyl group or alkynyl group is a vinyl group or ethynyl group having a substituent.
 上記一般式(1)、一般式(2)および一般式(3)で表される化合物のうち、特に、一般式(3)で表される化合物が好ましい。 Among the compounds represented by the above general formula (1), general formula (2), and general formula (3), the compound represented by general formula (3) is particularly preferable.
 一般式(3)で表される化合物は、一般式(1)で表される化合物に比べて耐熱性および耐光性に優れており、一般式(2)で表される化合物に比べ、有機溶媒に対する溶解性やポリマーとの相溶性が良好である。 The compound represented by the general formula (3) is superior in heat resistance and light resistance to the compound represented by the general formula (1), and is an organic solvent compared to the compound represented by the general formula (2). The solubility with respect to and the compatibility with a polymer are favorable.
 一般式(A)で表される化合物は、所望の波長分散性、および滲み防止性を付与するのに適宜量を調整して含有させることができるが、添加量としてはセルロース誘導体に対して、1~15質量%含むことが好ましく、特には、2~10質量%含むことが好ましい。この範囲内であれば、セルロース誘導体に充分な波長分散性、および滲み防止性を付与することができる。 The compound represented by the general formula (A) can be contained by appropriately adjusting the amount for imparting desired wavelength dispersibility and anti-bleeding property. The content is preferably 1 to 15% by mass, and particularly preferably 2 to 10% by mass. If it is in this range, sufficient wavelength dispersibility and bleeding prevention property can be imparted to the cellulose derivative.
 なお、一般式(A)、一般式(1)、一般式(2)および一般式(3)で表わされる化合物は、既知の方法を参照して合成することができる。具体的には、Journal of Chemical Crystallography(1997);27(9);512-526)、特開2010-31223号公報、特開2008-107767号公報等を参照して合成することができる。 In addition, the compounds represented by the general formula (A), the general formula (1), the general formula (2), and the general formula (3) can be synthesized with reference to known methods. Specifically, it can be synthesized with reference to Journal of Chemical Crystallography (1997); 27 (9); 512-526), JP2010-31223, JP2008-107767, and the like.
 (セルロースアシレート)
 本実施形態で用いることができるセルロースアシレートフィルムは、セルロールアシレートを主成分として含有する。
(Cellulose acylate)
The cellulose acylate film that can be used in the present embodiment contains cellulose acylate as a main component.
 セルロースアシレートフィルムは、フィルムの全質量100質量%に対して、セルロースアシレートを好ましくは60~100質量%の範囲で含む。また、セルロースアシレートの総アシル基置換度は、2.0以上3.0未満であり、2.2~2.7であることがより好ましい。 The cellulose acylate film preferably contains cellulose acylate in the range of 60 to 100% by mass with respect to 100% by mass of the total mass of the film. Further, the total acyl group substitution degree of cellulose acylate is 2.0 or more and less than 3.0, and more preferably 2.2 to 2.7.
 セルロースアシレートとしては、セルロースと、炭素数2~22程度の脂肪族カルボン酸および/または芳香族カルボン酸とのエステルが挙げられ、特に、セルロースと炭素数が6以下の低級脂肪酸とのエステルであることが好ましい。 Examples of the cellulose acylate include esters of cellulose and aliphatic carboxylic acids and / or aromatic carboxylic acids having about 2 to 22 carbon atoms, and in particular, esters of cellulose and lower fatty acids having 6 or less carbon atoms. Preferably there is.
 セルロースの水酸基に結合するアシル基は、直鎖であっても分岐していてもよく、また環を形成してもよい。さらに別の置換基が置換してもよい。同じ置換度である場合、上述した炭素数が多いと複屈折性が低下するため、炭素数としては炭素数2~6のアシル基の中で選択することが好ましく、プロピオニル置換度およびブチリル置換度の総和は0以上3.0未満である。前記セルロースアシレートとしての炭素数が2~4であることが好ましく、炭素数が2~3であることがより好ましい。 The acyl group bonded to the hydroxyl group of cellulose may be linear or branched, and may form a ring. Furthermore, another substituent may be substituted. When the degree of substitution is the same, birefringence decreases when the number of carbon atoms described above is large. Therefore, the number of carbon atoms is preferably selected from acyl groups having 2 to 6 carbon atoms. The degree of propionyl substitution and the degree of butyryl substitution are preferred. Is a sum of 0 or more and less than 3.0. The cellulose acylate preferably has 2 to 4 carbon atoms, more preferably 2 to 3 carbon atoms.
 具体的には、セルロースアシレートとしては、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートプロピオネートブチレートまたはセルロースアセテートフタレートのようなアセチル基の他にプロピオネート基、ブチレート基またはフタリル基が結合したセルロースの混合脂肪酸エステルを用いることができる。なお、ブチレートを形成するブチリル基は、直鎖であっても分岐していてもよい。 Specifically, cellulose acylate includes propionate group, butyrate group or phthalyl group in addition to acetyl group such as cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate propionate butyrate or cellulose acetate phthalate. Bound cellulose mixed fatty acid esters can be used. The butyryl group forming butyrate may be linear or branched.
 セルロースアシレートとしては、セルロースアセテート、セルロースアセテートブチレート、またはセルロースアセテートプロピオネートが特に好ましく用いられる。 As the cellulose acylate, cellulose acetate, cellulose acetate butyrate, or cellulose acetate propionate is particularly preferably used.
 また、セルロースアシレートとしては、下記の数式(iii)および数式(iv)を同時に満足するものが好ましい。 Further, as the cellulose acylate, those that simultaneously satisfy the following formula (iii) and formula (iv) are preferable.
 式(iii) 2.0≦X+Y<3.0
 式(iv)  0≦X<3.0
 式中、Yはアセチル基の置換度を表し、Xはプロピオニル基もしくはブチリル基またはその混合物の置換度を表す。
Formula (iii) 2.0 ≦ X + Y <3.0
Formula (iv) 0 ≦ X <3.0
In the formula, Y represents the degree of substitution of the acetyl group, and X represents the degree of substitution of the propionyl group or butyryl group or a mixture thereof.
 また、目的に叶う光学特性を得るために、置換度の異なる樹脂を混合して用いてもよい。その際の混合比としては、1:99~99:1(質量比)が好ましい。 Also, in order to obtain optical properties that meet the purpose, resins having different degrees of substitution may be mixed and used. In this case, the mixing ratio is preferably 1:99 to 99: 1 (mass ratio).
 上述した中でも、特にセルロースアセテートプロピオネートが、セルロースアシレートとして好ましく用いられる。セルロースアセテートプロピオネートでは、0≦Y≦2.5であり、かつ、0.5≦X<3.0である(ただし、2.0≦X+Y<3.0である)ことが好ましく、0.5≦Y≦2.0であり、かつ、1.0≦X≦2.0である(ただし、2.0≦X+Y<3.0である)ことがより好ましい。なお、アシル基の置換度は、ASTM-D817-96に準じて測定されうる。 Among the above, cellulose acetate propionate is particularly preferably used as the cellulose acylate. In cellulose acetate propionate, 0 ≦ Y ≦ 2.5 and 0.5 ≦ X <3.0 are preferable (where 2.0 ≦ X + Y <3.0), More preferably, 0.5 ≦ Y ≦ 2.0 and 1.0 ≦ X ≦ 2.0 (where 2.0 ≦ X + Y <3.0). The substitution degree of the acyl group can be measured according to ASTM-D817-96.
 セルロースアシレートの数平均分子量は、60000~300000の範囲であると、得られる長尺延伸フィルムの機械的強度が強くなるため、好ましい。より好ましくは、数平均分子量が70000~200000のセルロースアシレートが用いられる。 The number average molecular weight of the cellulose acylate is preferably in the range of 60000 to 300000, since the mechanical strength of the obtained long stretched film becomes strong. More preferably, cellulose acylate having a number average molecular weight of 70,000 to 200,000 is used.
 セルロースアシレートの重量平均分子量(Mw)および数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される。測定条件は以下の通りである。なお、本測定方法は、他の重合体の測定方法としても使用することができる。 The weight average molecular weight (Mw) and number average molecular weight (Mn) of cellulose acylate are measured using gel permeation chromatography (GPC). The measurement conditions are as follows. This measuring method can also be used as a measuring method for other polymers.
 溶媒:メチレンクロライド;
 カラム:Shodex K806、K805、K803G(昭和電工(株)製)を3本接続して使用する;
 カラム温度:25℃;
 試料濃度:0.1質量%;
 検出器:RI Model 504(GLサイエンス社製);
 ポンプ:L6000((株)日立製作所製);
 流量:1.0ml/min
 校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1000000~500の13サンプルによる校正曲線を使用する。13サンプルは、ほぼ等間隔に用いる。
Solvent: methylene chloride;
Column: Three Shodex K806, K805, K803G (manufactured by Showa Denko KK) are connected and used;
Column temperature: 25 ° C .;
Sample concentration: 0.1% by mass;
Detector: RI Model 504 (manufactured by GL Sciences);
Pump: L6000 (manufactured by Hitachi, Ltd.);
Flow rate: 1.0 ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corp.) Mw = 1000,000 to 500, using a calibration curve with 13 samples. Thirteen samples are used at approximately equal intervals.
 セルロースアシレート中の残留硫酸含有量は、硫黄元素換算で0.1~45質量ppmの範囲であることが好ましい。これらは塩の形で含有していると考えられる。残留硫酸含有量が45質量ppmを超えると、熱延伸時や熱延伸後でのスリッティングの際に長尺フィルムが破断しやすくなる傾向がある。なお、残留硫酸含有量は、1~30質量ppmの範囲がより好ましい。残留硫酸含有量は、ASTM D817-96に規定の方法により測定することができる。 The residual sulfuric acid content in the cellulose acylate is preferably in the range of 0.1 to 45 mass ppm in terms of elemental sulfur. These are considered to be contained in the form of salts. If the residual sulfuric acid content exceeds 45 ppm by mass, the long film tends to break during hot stretching or slitting after hot stretching. The residual sulfuric acid content is more preferably in the range of 1 to 30 ppm by mass. The residual sulfuric acid content can be measured by the method prescribed in ASTM D817-96.
 また、セルロースアシレート中の遊離酸含有量は、1~500質量ppmであることが好ましい。上記の範囲であると、上記と同様に長尺フィルムが破断しにくい。なお、遊離酸含有量は、1~100質量ppmの範囲であることが好ましく、長尺フィルムがさらに破断しにくくなる。特に1~70質量ppmの範囲であることが好ましい。遊離酸含有量はASTM D817-96に規定の方法により測定することができる。 In addition, the free acid content in the cellulose acylate is preferably 1 to 500 ppm by mass. When it is in the above range, the long film is hardly broken as described above. The free acid content is preferably in the range of 1 to 100 ppm by mass, and the long film is more difficult to break. In particular, the range of 1 to 70 ppm by mass is preferable. The free acid content can be measured by the method prescribed in ASTM D817-96.
 合成したセルロースアシレートの洗浄を、溶液流延法に用いられる場合に比べて、さらに充分に行うことによって、残留アルカリ土類金属含有量、残留硫酸含有量、および残留酸含有量を上記の範囲とすることができ好ましい。 By washing the synthesized cellulose acylate more sufficiently than when used in the solution casting method, the residual alkaline earth metal content, residual sulfuric acid content, and residual acid content are within the above ranges. And can be preferable.
 また、セルロースアシレートは、長尺延伸フィルムにしたときの輝点異物が少ないものであることが好ましい。輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間に光学フィルム等を置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)を意味する。輝点異物は、直径0.01mm以上の輝点の個数が200個/cm以下であることが好ましく、100個/cm以下であることがより好ましく、50個/cm以下であることがさらに好ましく、30個/cm以下であることがいっそう好ましく、10個/cm以下であることが特に好ましく、皆無であることが最も好ましい。 Moreover, it is preferable that a cellulose acylate is a thing with few bright spot foreign materials when it is set as a elongate stretched film. Bright spot foreign matter means that when two polarizing plates are placed in a crossed Nicol state, an optical film or the like is placed between them, light is applied from one polarizing plate side, and observation is performed from the other polarizing plate side. It means a point (foreign matter) where light from the opposite side appears to leak. The number of bright spots having a diameter of 0.01 mm or more is preferably 200 / cm 2 or less, more preferably 100 / cm 2 or less, and 50 / cm 2 or less. Is more preferably 30 pieces / cm 2 or less, particularly preferably 10 pieces / cm 2 or less, and most preferably none.
 また、直径0.005~0.01mmの輝点についても、200個/cm以下であることが好ましく、100個/cm以下であることがより好ましく、50個/cm以下であることがさらに好ましく、30個/cm以下であることがいっそう好ましく、10個/cm以下であることが特に好ましく、皆無であることが最も好ましい。 Further, the bright spot having a diameter of 0.005 to 0.01 mm is also preferably 200 pieces / cm 2 or less, more preferably 100 pieces / cm 2 or less, and 50 pieces / cm 2 or less. Is more preferably 30 pieces / cm 2 or less, particularly preferably 10 pieces / cm 2 or less, and most preferably none.
 セルロースアシレートの原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ、ケナフなどが挙げられる。また、それらから得られたセルロースアシレートは、それぞれ任意の割合で混合使用されうる。 There are no particular limitations on cellulose as a raw material for cellulose acylate, but examples include cotton linters, wood pulp, and kenaf. Moreover, the cellulose acylate obtained from them can be mixed and used at an arbitrary ratio.
 セルロースアシレートは、公知の方法により製造することができる。具体的には、たとえば、特開平10-45804号公報に記載の方法を参考にして合成することができる。 Cellulose acylate can be produced by a known method. Specifically, for example, it can be synthesized with reference to the method described in JP-A-10-45804.
 また、セルロースアシレートは、セルロースアシレート中の微量金属成分によっても影響を受ける。これらの微量金属成分は、製造工程で使われる水に関係していると考えられるが、不溶性の核となりうるような成分は少ない方が好ましく、特に、鉄、カルシウム、マグネシウム等の金属イオンは、有機の酸性基を含んでいる可能性のあるポリマー分解物等と塩形成することにより不溶物を形成する場合があり、少ないことが好ましい。また、カルシウム(Ca)成分は、カルボン酸やスルホン酸等の酸性成分と、また多くの配位子と配位化合物(すなわち、錯体)を形成しやすく、多くの不溶なカルシウムに由来するスカム(不溶性の澱、濁り)を形成する虞があるため、少ないことが好ましい。 In addition, cellulose acylate is also affected by trace metal components in cellulose acylate. These trace metal components are thought to be related to the water used in the production process, but it is preferable that there are few components that can become insoluble nuclei, in particular, metal ions such as iron, calcium, magnesium, An insoluble matter may be formed by salt formation with a polymer degradation product or the like that may contain an organic acidic group, and it is preferable that the amount is small. In addition, the calcium (Ca) component easily forms a coordination compound (that is, a complex) with an acidic component such as a carboxylic acid or a sulfonic acid, and many ligands. Insoluble starch, turbidity) may be formed, so it is preferable that the amount be small.
 具体的には、鉄(Fe)成分については、セルロースアシレート中の含有量が1質量ppm以下であることが好ましい。また、カルシウム(Ca)成分については、セルロースアシレート中の含有量が好ましくは60質量ppm以下であり、より好ましくは0~30質量ppmである。さらに、マグネシウム(Mg)成分については、多過ぎると不溶分を生ずるため、セルロースアシレート中の含有量が0~70質量ppmであることが好ましく、特に0~20質量ppmであることが好ましい。 Specifically, for the iron (Fe) component, the content in cellulose acylate is preferably 1 mass ppm or less. As for the calcium (Ca) component, the content in the cellulose acylate is preferably 60 ppm by mass or less, more preferably 0 to 30 ppm by mass. Further, regarding the magnesium (Mg) component, if it is too much, an insoluble matter is generated. Therefore, the content in the cellulose acylate is preferably 0 to 70 ppm by mass, and particularly preferably 0 to 20 ppm by mass.
 なお、鉄(Fe)成分の含有量、カルシウム(Ca)成分の含有量、マグネシウム(Mg)成分の含有量などの金属成分の含有量は、絶乾したセルロースアシレートをマイクロダイジェスト湿式分解装置(硫硝酸分解)、アルカリ溶融で前処理を行った後、ICP-AES(誘導結合プラズマ発光分光分析装置)を用いて分析することができる。 It should be noted that the content of metal components such as the content of iron (Fe) component, the content of calcium (Ca) component, the content of magnesium (Mg) component, etc., is a micro digest wet cracking device ( After pretreatment with sulfuric acid decomposition (sulfuric acid decomposition) and alkali melting, analysis can be performed using ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometer).
 (添加剤)
 本実施形態により得られる長尺延伸フィルムは後述するセルロースエステル以外の高分子成分を適宜混合したものでもよい。混合される高分子成分はセルロースエステルと相溶性に優れるものが好ましく、長尺延伸フィルムにした時の透過率が80%以上、さらに好ましくは90%以上、さらに好ましくは92%以上であることが好ましい。
(Additive)
The long stretched film obtained by the present embodiment may be obtained by appropriately mixing polymer components other than the cellulose ester described later. The polymer component to be mixed is preferably one having excellent compatibility with the cellulose ester, and the transmittance when formed into a long stretched film is 80% or more, more preferably 90% or more, and further preferably 92% or more. preferable.
 添加される添加剤としては、可塑剤、紫外線吸収剤、リタデーション調整剤、酸化防止剤、劣化防止剤、剥離助剤、界面活性剤、染料、微粒子等がある。本実施形態において、微粒子以外の添加剤についてはセルロースエステル溶液の調製の際に添加してもよいし、微粒子分散液の調製の際に添加してもよい。有機ELディスプレイ等の画像表示装置に使用する偏光板には耐熱耐湿性を付与する可塑剤、酸化防止剤や紫外線吸収剤等を添加することが好ましい。 Additives that can be added include plasticizers, UV absorbers, retardation modifiers, antioxidants, deterioration inhibitors, peeling aids, surfactants, dyes, and fine particles. In the present embodiment, additives other than the fine particles may be added during the preparation of the cellulose ester solution, or may be added during the preparation of the fine particle dispersion. It is preferable to add a plasticizer, an antioxidant, an ultraviolet absorber, or the like that imparts heat and moisture resistance to a polarizing plate used in an image display device such as an organic EL display.
 これらの化合物は、セルロースエステルに対して1~30質量%、好ましくは1~20質量%となるように含まれていることが好ましい。また、延伸および乾燥中のブリードアウト等を抑制させるため、200℃における蒸気圧が1400Pa以下の化合物であることが好ましい。 These compounds are preferably contained in an amount of 1 to 30% by mass, preferably 1 to 20% by mass, based on the cellulose ester. In order to suppress bleeding out during stretching and drying, a compound having a vapor pressure at 200 ° C. of 1400 Pa or less is preferable.
 これらの化合物は、セルロースエステル溶液の調製の際に、セルロースエステルや溶媒と共に添加してもよいし、溶液調製中や調製後に添加してもよい。 These compounds may be added together with the cellulose ester and the solvent during the preparation of the cellulose ester solution, or may be added during or after the solution preparation.
 (リタデーション調整剤)
 リタデーションを調整するために添加する化合物としては、欧州特許911,656A2号明細書に記載されているような、2つ以上の芳香族環を有する芳香族化合物を使用することができる。
(Retardation adjuster)
As a compound to be added for adjusting retardation, an aromatic compound having two or more aromatic rings as described in the specification of European Patent 911,656A2 can be used.
 また、2種類以上の芳香族化合物を併用してもよい。該芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。芳香族性ヘテロ環であることが特に好ましく、芳香族性ヘテロ環は一般に、不飽和ヘテロ環である。中でも1,3,5-トリアジン環が特に好ましい。 Two or more aromatic compounds may be used in combination. The aromatic ring of the aromatic compound includes an aromatic heterocyclic ring in addition to the aromatic hydrocarbon ring. Particularly preferred is an aromatic heterocycle, and the aromatic heterocycle is generally an unsaturated heterocycle. Of these, a 1,3,5-triazine ring is particularly preferred.
 (ポリマーまたはオリゴマー)
 本実施形態におけるセルロースエステルフィルムは、セルロースエステルと、カルボキシル基、ヒドロキシル基、アミノ基、アミド基、およびスルホ基から選ばれる置換基を有しかつ重量平均分子量が500~200,000の範囲内であるビニル系化合物のポリマーまたはオリゴマーとを含有することが好ましい。当該セルロースエステルと、当該ポリマーまたはオリゴマーとの含有量の質量比が、95:5~50:50の範囲内であることが好ましい。
(Polymer or oligomer)
The cellulose ester film in the present embodiment has a cellulose ester and a substituent selected from a carboxyl group, a hydroxyl group, an amino group, an amide group, and a sulfo group, and has a weight average molecular weight in the range of 500 to 200,000. It is preferable to contain a polymer or oligomer of a certain vinyl compound. The mass ratio of the content of the cellulose ester and the polymer or oligomer is preferably in the range of 95: 5 to 50:50.
 (マット剤)
 本実施形態では、マット剤として微粒子を長尺延伸フィルム中に含有させることができ、これによって、延伸フィルムが長尺の場合、搬送や巻き取りをしやすくすることができる。
(Matting agent)
In the present embodiment, fine particles can be contained in the long stretched film as a matting agent, whereby when the stretched film is long, conveyance and winding can be facilitated.
 マット剤の粒径は10nm~0.1μmの一次粒子もしくは二次粒子であることが好ましい。一次粒子の針状比は1.1以下の略球状のマット剤が好ましく用いられる。 The particle size of the matting agent is preferably 10 nm to 0.1 μm primary particles or secondary particles. A substantially spherical matting agent having a primary particle acicular ratio of 1.1 or less is preferably used.
 微粒子としては、ケイ素を含むものが好ましく、特に二酸化珪素が好ましい。好ましい二酸化珪素の微粒子としては、たとえば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されているものを挙げることができ、アエロジル200V、R972、R972V、R974、R202、R812を好ましく用いることができる。ポリマーの微粒子の例として、シリコーン樹脂、フッ素樹脂およびアクリル樹脂を挙げることができる。ポリマーの微粒子としては、シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、たとえば、トスパール103、同105、同108、同120、同145、同3120および同240(東芝シリコーン(株)製)を挙げることができる。 As the fine particles, those containing silicon are preferable, and silicon dioxide is particularly preferable. Preferred fine particles of silicon dioxide include those commercially available under the trade names of Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.). Aerosil 200V, R972, R972V, R974, R202, R812 can be preferably used. Examples of polymer fine particles include silicone resin, fluororesin and acrylic resin. The polymer fine particles are preferably silicone resins, particularly those having a three-dimensional network structure. For example, Tospearl 103, 105, 108, 120, 145, 3120 and 240 (Toshiba Silicone Corporation ) Made).
 二酸化珪素の微粒子は、一次平均粒子径が20nm以下であり、かつ見かけ比重が70g/L以上であるものが好ましい。一次粒子の平均径は5~16nmがより好ましく、5~12nmがさらに好ましい。一次粒子の平均径が小さい方が、ヘイズが低く好ましい。見かけ比重は90~200g/L以上が好ましく、100~200g/L以上がより好ましい。見かけ比重が大きいほど、高濃度の微粒子分散液を作ることが可能になり、ヘイズ、凝集物が発生せず好ましい。 The silicon dioxide fine particles preferably have a primary average particle diameter of 20 nm or less and an apparent specific gravity of 70 g / L or more. The average primary particle diameter is more preferably 5 to 16 nm, and further preferably 5 to 12 nm. A smaller primary particle average diameter is preferred because haze is low. The apparent specific gravity is preferably 90 to 200 g / L or more, and more preferably 100 to 200 g / L or more. Higher apparent specific gravity makes it possible to produce a high-concentration fine particle dispersion, which is preferable because no haze or aggregates are generated.
 本実施形態におけるマット剤の添加量は、長尺延伸フィルム1m当たり0.01~1.0gが好ましく、0.03~0.3gがより好ましく、0.08~0.16gがさらに好ましい。 The amount of the matting agent added in this embodiment is preferably 0.01 to 1.0 g, more preferably 0.03 to 0.3 g, and further preferably 0.08 to 0.16 g per 1 m 2 of the stretched film.
 (その他の添加剤)
 その他、カオリン、タルク、ケイソウ土、石英、炭酸カルシウム、硫酸バリウム、酸化チタン、アルミナ等の無機微粒子、カルシウム、マグネシウム等のアルカリ土類金属の塩等の熱安定剤を加えてもよい。さらに界面活性剤、剥離促進剤、帯電防止剤、難燃剤、滑剤、油剤等も加えてもよい。
(Other additives)
In addition, thermal stabilizers such as inorganic fine particles such as kaolin, talc, diatomaceous earth, quartz, calcium carbonate, barium sulfate, titanium oxide, and alumina, and salts of alkaline earth metals such as calcium and magnesium may be added. Further, a surfactant, a peeling accelerator, an antistatic agent, a flame retardant, a lubricant, an oil agent and the like may be added.
 本実施形態で用いることができるセルロースエステル系樹脂フィルムは公知の方法で製膜することができ、その中でも溶液流延法や溶融流延法が好ましい。 The cellulose ester resin film that can be used in the present embodiment can be formed by a known method, and among them, the solution casting method and the melt casting method are preferable.
 <ポリカーボネート系樹脂>
 次に、ポリカーボネート系樹脂について説明する。
<Polycarbonate resin>
Next, the polycarbonate resin will be described.
 ポリカーボネート系樹脂としては、特に限定なく種々のものが使用でき、化学的性質および物性の点から芳香族ポリカーボネート系樹脂が好ましく、特にビスフェノールA系ポリカーボネート樹脂が好ましい。その中でも、ビスフェノールAにベンゼン環、シクロヘキサン環、および脂肪族炭化水素基等を導入したビスフェノールA誘導体を用いたものがより好ましい。さらに、ビスフェノールAの中央の炭素に対して、非対称に上記官能基が導入された誘導体を用いて得られた、単位分子内の異方性を減少させた構造のポリカーボネート系樹脂が特に好ましい。このようなポリカーボネート系樹脂としては、たとえば、ビスフェノールAの中央の炭素の2個のメチル基をベンゼン環に置き換えたもの、ビスフェノールAのそれぞれのベンゼン環の1つの水素をメチル基やフェニル基などで中央炭素に対し非対称に置換したものを用いて得られるポリカーボネート系樹脂が特に好ましい。具体的には、4,4′-ジヒドロキシジフェニルアルカンまたはこれらのハロゲン置換体からホスゲン法またはエステル交換法によって得られるものであり、たとえば、4,4′-ジヒドロキシジフェニルメタン、4,4′-ジヒドロキシジフェニルエタン、4,4′-ジヒドロキシジフェニルブタン等が挙げられる。この他にもたとえば、特開2006-215465号公報、特開2006-91836号公報、特開2005-121813号公報、特開2003-167121号公報等に記載されているポリカーボネート樹脂が挙げられる。 As the polycarbonate-based resin, various resins can be used without particular limitation, and aromatic polycarbonate-based resins are preferable from the viewpoint of chemical properties and physical properties, and bisphenol A-based polycarbonate resins are particularly preferable. Among these, those using a bisphenol A derivative in which a benzene ring, a cyclohexane ring, an aliphatic hydrocarbon group and the like are introduced into bisphenol A are more preferable. Furthermore, a polycarbonate resin obtained by using a derivative in which the above functional group is introduced asymmetrically with respect to the central carbon of bisphenol A and having a structure in which the anisotropy in the unit molecule is reduced is particularly preferable. Examples of such polycarbonate resins include those in which two methyl groups in the center carbon of bisphenol A are replaced with benzene rings, and one hydrogen in each benzene ring of bisphenol A is replaced by a methyl group or a phenyl group. A polycarbonate resin obtained by using an asymmetric substitution with respect to the central carbon is particularly preferred. Specifically, 4,4′-dihydroxydiphenylalkane or a halogen-substituted product thereof can be obtained by a phosgene method or a transesterification method. For example, 4,4′-dihydroxydiphenylmethane, 4,4′-dihydroxydiphenyl Examples include ethane and 4,4'-dihydroxydiphenylbutane. Other examples include polycarbonate resins described in JP-A-2006-215465, JP-A-2006-91836, JP-A-2005-121813, JP-A-2003-167121, and the like.
 前記ポリカーボネート系樹脂は、ポリスチレン系樹脂、メチルメタクリレート系樹脂、およびセルロースアセテート系樹脂等の透明性樹脂と混合して使用してもよい。また、セルロースアセテート系樹脂を用いて形成した樹脂フィルムの少なくとも一方の面にポリカーボネート系樹脂を含有する樹脂層を積層してもよい。 The polycarbonate resin may be used by mixing with a transparent resin such as polystyrene resin, methyl methacrylate resin, and cellulose acetate resin. Moreover, you may laminate | stack the resin layer containing a polycarbonate-type resin on the at least one surface of the resin film formed using the cellulose acetate type resin.
 前記ポリカーボネート系樹脂は、ガラス転移点(Tg)が110℃以上であって、吸水率(23℃水中、24時間の条件で測定した値)が0.3%以下のものであることが好ましい。また、Tgが120℃以上であって、吸水率が0.2%以下のものがより好ましい。 The polycarbonate resin preferably has a glass transition point (Tg) of 110 ° C. or higher and a water absorption rate (measured under conditions of 23 ° C. water and 24 hours) of 0.3% or less. Moreover, Tg is 120 degreeC or more, and a water absorption rate is 0.2% or less more preferable.
 本実施形態で用いることができるポリカーボネート系樹脂フィルムは公知の方法で製膜することができ、その中でも溶液流延法や溶融流延法が好ましい。 The polycarbonate-based resin film that can be used in the present embodiment can be formed by a known method, and among them, the solution casting method and the melt casting method are preferable.
 次に、熱可塑性樹脂の製膜方法について説明する。以下の説明では、セルロースエステル系樹脂の長尺フィルムを製膜する方法を例に説明する。 Next, a method for forming a thermoplastic resin film will be described. In the following description, a method of forming a long film of cellulose ester resin will be described as an example.
 <溶液流延法>
 フィルムの着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制、フィルムの平面性、透明度に優れるなどの観点からは溶液流延法が好ましい。
<Solution casting method>
The solution casting method is preferable from the viewpoints of suppression of film coloring, suppression of foreign matter defects, suppression of optical defects such as die lines, excellent film flatness, and transparency.
 (有機溶媒)
 セルロースエステル系樹脂フィルムを溶液流延法で製造する場合のドープを形成するのに有用な有機溶媒は、セルロースアセテート、その他の添加剤を同時に溶解するものであれば制限なく用いることができる。
(Organic solvent)
An organic solvent useful for forming a dope for producing a cellulose ester resin film by a solution casting method can be used without limitation as long as it dissolves cellulose acetate and other additives simultaneously.
 たとえば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等を挙げることができ、塩化メチレン、酢酸メチル、酢酸エチル、アセトンを好ましく使用し得る。 For example, as a chlorine organic solvent, methylene chloride, as a non-chlorine organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc. Methylene chloride, methyl acetate, ethyl acetate and acetone can be preferably used.
 ドープには、上記有機溶媒の他に、1~40質量%の炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールを含有させることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ない時は非塩素系有機溶媒系でのセルロースアセテートの溶解を促進する役割もある。 In addition to the organic solvent, the dope preferably contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. When the proportion of alcohol in the dope increases, the web gels and becomes easy to peel off from the metal support. When the proportion of alcohol is small, the role of promoting cellulose acetate dissolution in non-chlorine organic solvent systems There is also.
 特に、メチレンクロライド、および炭素数1~4の直鎖または分岐鎖状の脂肪族アルコールを含有する溶媒に、アクリル樹脂と、セルロースエステル樹脂と、アクリル粒子の3種を、少なくとも計15~45質量%溶解させたドープ組成物であることが好ましい。 In particular, in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms, at least 15 to 45 mass in total of at least three kinds of acrylic resin, cellulose ester resin, and acrylic particles are used. It is preferable that the dope composition is dissolved in%.
 炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらの中でも、ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。 Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Among these, ethanol is preferable because of stability of the dope, relatively low boiling point, and good drying properties.
 (溶液流延法)
 溶液流延法では、樹脂および添加剤を溶剤に溶解させてドープを調製する工程、ドープをベルト状もしくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸または幅保持する工程、さらに乾燥する工程、仕上がった長尺延伸フィルムを巻き取る工程により行われる。
(Solution casting method)
In the solution casting method, a step of preparing a dope by dissolving a resin and an additive in a solvent, a step of casting the dope on a belt-like or drum-like metal support, and a step of drying the cast dope as a web , A step of peeling from the metal support, a step of stretching or maintaining the width, a step of drying, and a step of winding up the finished long stretched film.
 ドープ中のセルロースアセテートの濃度は、濃度が高い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、セルロースアセテートの濃度が高過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%が好ましく、さらに好ましくは、15~25質量%である。流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。 The concentration of cellulose acetate in the dope is preferably higher because the drying load after casting on a metal support can be reduced. However, if the concentration of cellulose acetate is too high, the load during filtration increases and the filtration accuracy increases. Becomes worse. The concentration that achieves both of these is preferably 10 to 35% by mass, and more preferably 15 to 25% by mass. The metal support in the casting (casting) step preferably has a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
 流延工程の金属支持体の表面温度は-50℃~溶剤が沸騰して発泡しない温度以下に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高すぎるとウェブが発泡したり、平面性が劣化する場合がある。 The surface temperature of the metal support in the casting process is set to −50 ° C. to a temperature at which the solvent boils and does not foam. A higher temperature is preferred because the web can be dried faster, but if it is too high, the web may foam or the flatness may deteriorate.
 好ましい支持体温度としては0~100℃で適宜決定され、5~30℃がさらに好ましい。または、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は特に制限されないが、温風または冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。 A preferable support temperature is appropriately determined at 0 to 100 ° C., and more preferably 5 to 30 ° C. Alternatively, it is also a preferable method that the web is gelled by cooling and peeled from the drum in a state containing a large amount of residual solvent. The method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short.
 温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。特に、流延から剥離するまでの間で支持体の温度および乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。 When using warm air, considering the temperature drop of the web due to the latent heat of vaporization of the solvent, while using warm air above the boiling point of the solvent, there may be cases where wind at a temperature higher than the target temperature is used while preventing foaming. . In particular, it is preferable to perform drying efficiently by changing the temperature of the support and the temperature of the drying air during the period from casting to peeling.
 セルロースエステル系樹脂フィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10~150質量%が好ましく、さらに好ましくは20~40質量%または60~130質量%であり、特に好ましくは、20~30質量%または70~120質量%である。 In order for the cellulose ester resin film to exhibit good flatness, the amount of residual solvent when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 130%. % By mass, particularly preferably 20 to 30% by mass or 70 to 120% by mass.
 残留溶媒量は下記式で定義される。 The amount of residual solvent is defined by the following formula.
 残留溶媒量(質量%)={(M-N)/N}×100
 なお、Mはウェブまたは長尺フィルムを製造中または製造後の任意の時点で採取した試料の質量で、Nはウェブまたは長尺フィルムを製造中または製造後の任意の時点で採取した試料を115℃で1時間の加熱後の質量である。
Residual solvent amount (% by mass) = {(MN) / N} × 100
Here, M is the mass of a sample collected at any time during or after the production of the web or long film, and N is a sample collected at any time during or after the production of the web or long film. It is the mass after heating at 1 ° C. for 1 hour.
 また、セルロース系樹脂フィルムの乾燥工程においては、ウェブを金属支持体より剥離し、さらに乾燥し、残留溶媒量を1質量%以下にすることが好ましく、さらに好ましくは0.1質量%以下であり、特に好ましくは0~0.01質量%以下である。 In the drying step of the cellulose resin film, the web is preferably peeled off from the metal support and further dried to make the residual solvent amount 1% by mass or less, more preferably 0.1% by mass or less. Particularly preferably, it is 0 to 0.01% by mass or less.
 フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールにウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。 In the film drying process, generally, a roll drying method (a method in which webs are alternately passed through a plurality of rolls arranged above and below) and a method in which the web is dried while being conveyed by a tenter method are employed.
 <溶融流延法>
 溶融流延法は、斜め延伸後の厚み方向のリタデーションRtを小さくすることが容易となり、残留揮発性成分量が少なくフィルムの寸法安定性にも優れる等の観点から好ましい製膜法である。溶融流延法は、樹脂および可塑剤などの添加剤を含む組成物を、流動性を示す温度まで加熱溶融し、その後、流動性のセルロースアセテートを含む溶融物を流延する方法である。溶融流延法は、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの中で、機械的強度および表面精度などに優れる長尺フィルムが得られる、溶融押出し法が好ましい。
<Melt casting method>
The melt casting method is a preferable film forming method from the viewpoint that it is easy to reduce the retardation Rt in the thickness direction after oblique stretching, the amount of residual volatile components is small, and the dimensional stability of the film is excellent. The melt casting method is a method in which a composition containing an additive such as a resin and a plasticizer is heated and melted to a temperature exhibiting fluidity, and then a melt containing fluid cellulose acetate is cast. The melt casting method can be classified into a melt extrusion molding method, a press molding method, an inflation method, an injection molding method, a blow molding method, a stretch molding method, and the like. Among these, the melt extrusion method is preferable, in which a long film having excellent mechanical strength and surface accuracy can be obtained.
 溶融押出しに用いる複数の原材料は、通常予め混錬してペレット化しておくことが好ましい。 It is preferable that a plurality of raw materials used for melt extrusion are usually kneaded and pelletized in advance.
 ペレット化は、公知の方法でよく、たとえば、乾燥セルロースアセテートや可塑剤、その他添加剤をフィーダーで押出し機に供給し1軸や2軸の押出し機を用いて混錬し、ダイからストランド状に押出し、水冷または空冷し、カッティングする方法を採用することができる。 Pelletization may be performed by a known method. For example, dry cellulose acetate, a plasticizer, and other additives are fed to an extruder with a feeder, kneaded using a single or twin screw extruder, and formed into a strand form from a die. Extrusion, water cooling or air cooling and cutting may be employed.
 添加剤は、押出し機に供給する前に混合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。 Additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders.
 粒子や酸化防止剤等少量の添加剤は、均一に混合するため、事前に混合しておくことが好ましい。 A small amount of additives such as particles and antioxidants are preferably mixed in advance in order to mix uniformly.
 押出し機は、剪断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能でなるべく低温で加工することが好ましい。たとえば、2軸押出し機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。 The extruder is preferably processed at as low a temperature as possible so that it can be pelletized so as to suppress the shearing force and prevent the resin from deteriorating (molecular weight reduction, coloring, gel formation, etc.). For example, in the case of a twin screw extruder, it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
 以上のようにして得られたペレットを用いてフィルム製膜を行う。なお、ペレット化せず、原材料の粉末をそのままフィーダーで押出し機に供給し、そのままフィルム製膜することも可能である。 Film formation is performed using the pellets obtained as described above. In addition, it is also possible to supply the raw material powder as it is to the extruder with a feeder and form a film as it is without pelletizing.
 上記ペレットを1軸や2軸タイプの押出し機を用いて、押出す際の溶融温度を200~300℃程度とし、リーフディスクタイプのフィルターなどで濾過し異物を除去した後、Tダイからフィルム状に流延し、冷却ロールと弾性タッチロールでフィルムをニップし、冷却ロール上で固化させる。 Using a single-screw or twin-screw type extruder, the melting temperature at the time of extrusion is about 200 to 300 ° C, filtered through a leaf disk type filter, etc. to remove foreign matter, and then formed into a film from the T die. And the film is nipped with a cooling roll and an elastic touch roll and solidified on the cooling roll.
 供給ホッパーから押出し機へ導入する際は真空下または減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。 When introducing from the supply hopper to the extruder, it is preferable to prevent oxidative decomposition or the like under vacuum or reduced pressure or in an inert gas atmosphere.
 押出し流量は、ギヤポンプを導入するなどして安定に行うことが好ましい。また、異物の除去に用いるフィルターは、ステンレス繊維焼結フィルターが好ましく用いられる。ステンレス繊維焼結フィルターは、ステンレス繊維体を複雑に絡み合った状態を作り出した上で圧縮し接触箇所を焼結し一体化したもので、その繊維の太さと圧縮量により密度を変え、濾過精度を調整できる。 The extrusion flow rate is preferably carried out stably by introducing a gear pump. Further, a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances. The stainless steel fiber sintered filter is a united stainless steel fiber body that is intricately intertwined and compressed, and the contact points are sintered and integrated. The density of the fiber is changed depending on the thickness of the fiber and the amount of compression, and the filtration accuracy is improved. Can be adjusted.
 可塑剤や粒子などの添加剤は、予め樹脂と混合しておいてもよいし、押出し機の途中で練り込んでもよい。均一に添加するために、スタチックミキサーなどの混合装置を用いることが好ましい。 Additives such as plasticizers and particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
 冷却ロールと弾性タッチロールでフィルムをニップする際のタッチロール側のフィルム温度はフィルムのTg以上Tg+110℃以下にすることが好ましい。このような目的で使用する弾性体表面を有するロールは、公知のロールが使用できる。 The film temperature on the touch roll side when the film is nipped by the cooling roll and the elastic touch roll is preferably Tg or more and Tg + 110 ° C. or less of the film. A well-known roll can be used for the roll which has the elastic body surface used for such a purpose.
 弾性タッチロールは挟圧回転体ともいう。弾性タッチロールとしては、市販されているものを用いることもできる。 The elastic touch roll is also called a pinching rotator. As the elastic touch roll, a commercially available one can be used.
 冷却ロールから長尺フィルムを剥離する際は、張力を制御して長尺フィルムの変形を防止することが好ましい。 When peeling the long film from the cooling roll, it is preferable to prevent the deformation of the long film by controlling the tension.
 長尺フィルムは、単層若しくは2層以上の積層フィルムであってもよい。積層フィルムは共押出成形法、共流延成形法、フィルムラミネイション法、塗布法などの公知の方法で得ることができる。これらのうち共押出成形法、共流延成形法が好ましい。 The long film may be a single layer or a laminated film of two or more layers. The laminated film can be obtained by a known method such as a coextrusion molding method, a co-casting molding method, a film lamination method, or a coating method. Of these, the coextrusion molding method and the co-casting molding method are preferable.
 上記方法により製膜された長尺フィルムは、上記した延伸装置に搬送され、斜め方向に延伸される。 The long film formed by the above method is conveyed to the above stretching apparatus and stretched in an oblique direction.
 長尺フィルムの厚さは、好ましくは20~400μm、より好ましくは30~200μmである。 The thickness of the long film is preferably 20 to 400 μm, more preferably 30 to 200 μm.
 本実施形態では、延伸に供給される長尺フィルムの流れ方向の厚みムラσmは、上記した斜め延伸テンター入口での長尺フィルムの引取張力を一定に保ち、配向角やリタデーションといった光学特性を安定させる観点から、0.30μm未満、好ましくは0.25μm未満、さらに好ましくは0.20μm未満であることが好ましい。長尺フィルムの流れ方向の厚みムラσmが0.30μm以上となると長尺延伸フィルムのリタデーションや配向角といった光学特性のバラツキが顕著に悪化する。 In this embodiment, the thickness unevenness σm in the flow direction of the long film supplied for stretching keeps the take-up tension of the long film at the above-described oblique stretching tenter inlet constant, and stabilizes the optical characteristics such as the orientation angle and retardation. From the viewpoint of reducing the thickness, it is preferably less than 0.30 μm, preferably less than 0.25 μm, more preferably less than 0.20 μm. When the thickness unevenness σm in the flow direction of the long film is 0.30 μm or more, variations in optical properties such as retardation and orientation angle of the long stretched film are remarkably deteriorated.
 また、長尺フィルムとして、幅方向の厚み勾配を有する長尺フィルムが供給されてもよい。長尺フィルムの厚みの勾配は、後工程の延伸が完了した位置におけるフィルム厚みを最も均一なものとしうるよう、実験的に厚み勾配を様々に変化させた長尺フィルムを延伸することにより、経験的に求めることができる。長尺フィルムの厚みの勾配は、たとえば、厚みの厚い側の端部の厚みが、厚みの薄い側の端部よりも0.5~3%程度厚くなるように調整することができる。 Further, a long film having a thickness gradient in the width direction may be supplied as the long film. The gradient of the thickness of the long film was experienced by stretching a long film with various thickness gradients experimentally so that the film thickness at the position where the stretching of the subsequent process was completed could be the most uniform. Can be obtained. The gradient of the thickness of the long film can be adjusted, for example, so that the thickness of the end on the thick side is about 0.5 to 3% thicker than the end on the thin side.
 長尺フィルムの幅は、特に限定されないが、500~4000mm、好ましくは1000~2000mmとすることができる。 The width of the long film is not particularly limited, but can be 500 to 4000 mm, preferably 1000 to 2000 mm.
 長尺フィルムの斜め延伸時の延伸温度での好ましい弾性率は、ヤング率で表して、0.01MPa以上5000MPa以下、さらに好ましくは0.1MPa以上500MPa以下である。弾性率が低すぎると、延伸時・延伸後の収縮率が低くなり、シワが消えにくくなり、また高すぎると、延伸時にかかる張力が大きくなり、長尺フィルムの両側縁部を保持する部分の強度を高くする必要が生じ、後工程のテンターに対する負荷が大きくなる。 The preferable elastic modulus at the stretching temperature at the time of oblique stretching of the long film is 0.01 MPa or more and 5000 MPa or less, more preferably 0.1 MPa or more and 500 MPa or less, expressed as Young's modulus. If the modulus of elasticity is too low, the shrinkage rate during stretching and after stretching will be low, and wrinkles will be difficult to disappear.If it is too high, the tension applied during stretching will increase, and the part that holds both side edges of the long film will be It is necessary to increase the strength, and the load on the tenter in the subsequent process increases.
 長尺フィルムとしては、無配向なものを用いてもよいし、あらかじめ配向を有する長尺フィルムが供給されてもよい。また、必要であれば長尺フィルムの配向の幅手分布が弓なり状、いわゆるボウイングを成していてもよい。すなわち、長尺フィルムの配向状態を、後工程の延伸が完了した位置における長尺延伸フィルムの配向を所望なものとしうるよう、調整することができる。 As the long film, a non-oriented film may be used, or a long film having an orientation in advance may be supplied. Further, if necessary, the width distribution of the orientation of the long film may be bowed, so-called bowing. That is, the orientation state of the long film can be adjusted so that the orientation of the long stretched film at the position where stretching in the subsequent step is completed can be made desirable.
 (斜め延伸工程)
 斜め延伸工程は、すでに上記したとおりである。斜め延伸工程を経た長尺延伸フィルムは、長尺フィルムの幅手方向に対して0°より大きく90°未満の方向に斜め延伸されている。延伸された長尺延伸フィルムは、後続する巻取り工程により巻き取られる。
(Oblique stretching process)
The oblique stretching process has already been described above. The long stretched film that has undergone the oblique stretching step is stretched obliquely in a direction greater than 0 ° and less than 90 ° with respect to the width direction of the long film. The stretched long stretched film is wound up by a subsequent winding process.
 (巻取り工程)
 巻取り装置は、斜め延伸装置の出口に設けられている。巻取り装置は、延伸装置に対して所定角度で長尺延伸フィルムを引き取れるように配置することにより、長尺延伸フィルムの引き取り位置および角度を細かく制御することが可能となり、膜厚、光学値のバラツキが小さい長尺延伸フィルムを巻き取ることが可能となる。そのため、長尺延伸フィルムのシワの発生を有効に防止することができるとともに、長尺延伸フィルムの巻き取り性が向上するため、延伸フィルムを長尺で巻き取ることが可能となる。本実施形態において、延伸後の長尺フィルムの引取張力T(N/m)は、100N/m<T<300N/m、好ましくは150N/m<T<250N/mの間で調整することが好ましい。
(Winding process)
The winding device is provided at the outlet of the oblique stretching device. By arranging the winding device so that the long stretched film can be pulled at a predetermined angle with respect to the stretching device, the take-up position and angle of the long stretched film can be finely controlled. It becomes possible to wind up a long stretched film with small variations. Therefore, the occurrence of wrinkles in the long stretched film can be effectively prevented, and the windability of the long stretched film is improved, so that the stretched film can be wound up in a long length. In the present embodiment, the take-up tension T (N / m) of the stretched long film can be adjusted between 100 N / m <T <300 N / m, preferably 150 N / m <T <250 N / m. preferable.
 前記引取張力が100N/m以下では長尺延伸フィルムのたるみや皺が発生しやすく、リタデーション、配向軸の幅方向のプロファイルも悪化する傾向がある。一方、引取張力が300N/m以上となると幅方向の配向角のバラツキが悪化し、幅収率(幅方向の取り効率)を悪化させてしまう傾向がある。 When the take-up tension is 100 N / m or less, slack and wrinkles of the long stretched film are likely to occur, and the retardation and the profile in the width direction of the orientation axis tend to deteriorate. On the other hand, when the take-up tension is 300 N / m or more, the variation in the orientation angle in the width direction is deteriorated, and the width yield (taking efficiency in the width direction) tends to be deteriorated.
 また、本実施形態においては、上記引取張力Tの変動を±5%未満、好ましくは±3%未満の精度で制御することが好ましい。上記引取張力Tの変動が±5%以上であると、幅方向および流れ方向の光学特性のバラツキが大きくなる。上記引取張力Tの変動を上記範囲内に制御する方法としては、テンター出口部の最初のロールにかかる荷重、すなわち長尺延伸フィルムの張力を測定し、その値を一定とするように、一般的なPID制御方式により引取ロールの回転速度を制御する方法が挙げられる。前記荷重を測定する方法としては、ロールの軸受部にロードセルを取り付け、ロールに加わる荷重、すなわち長尺延伸フィルムの張力を測定する方法が挙げられる。ロードセルとしては、引張型や圧縮型の公知のものを用いることができる。 In the present embodiment, it is preferable to control the fluctuation of the take-up tension T with an accuracy of less than ± 5%, preferably less than ± 3%. When the fluctuation of the take-up tension T is ± 5% or more, variations in optical characteristics in the width direction and the flow direction become large. As a method of controlling the fluctuation of the take-up tension T within the above range, the load applied to the first roll of the tenter outlet, that is, the tension of the long stretched film is measured, and the value is kept constant. And a method of controlling the rotation speed of the take-up roll by a different PID control method. Examples of the method for measuring the load include a method in which a load cell is attached to a bearing portion of a roll and a load applied to the roll, that is, a tension of a long stretched film is measured. As the load cell, a known tensile type or compression type can be used.
 延伸後の長尺フィルムは、把持具による把持が開放され、テンター出口から排出され、順次巻芯(巻取りロール)に巻き取られて、長尺延伸フィルムの巻回体にすることができる。 The stretched long film is released from the tenter exit after being held by the gripper, and is wound around a winding core (winding roll) to form a wound body of the long stretched film.
 また、テンターの把持具で把持されていた長尺延伸フィルムの両側についた把持痕を切除したり、所望の幅を得たりする目的で、長尺延伸フィルムの両端(両側)をトリミングすることが望ましい。 In addition, the both ends (both sides) of the long stretched film may be trimmed for the purpose of excising grip marks on both sides of the long stretched film held by the tenter gripping tool or obtaining a desired width. desirable.
 上記トリミングは、一度に行ってもよいし、複数回に分けて実施してもよい。 The above trimming may be performed at once or may be performed in a plurality of times.
 また、長尺延伸フィルムを一旦巻き取った後に、必要に応じて再度長尺延伸フィルムを繰り出して、長尺延伸フィルムの両端をトリミングし、再度巻き取って長尺延伸フィルムの巻回体としてもよい。 In addition, after winding up the long stretched film, the long stretched film is fed out again as necessary, trimming both ends of the long stretched film, and winding up again as a wound body of the long stretched film. Good.
 また、巻き取る前に、長尺延伸フィルム同士のブロッキングを防止する目的で、マスキングフィルムを重ねて同時に巻き取ってもよいし、長尺延伸フィルムの少なくとも一方、好ましくは両方の端にテープ等を張り合わせながら巻き取ってもよい。マスキングフィルムとしては、上記長尺延伸フィルムを保護することができるものであれば特に制限されず、たとえば、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルムなどが挙げられる。 Further, before winding, for the purpose of preventing blocking between the long stretched films, the masking film may be overlapped and wound up at the same time, or at least one of the long stretched films, preferably tapes or the like at both ends. You may wind up while bonding. The masking film is not particularly limited as long as it can protect the long stretched film, and examples thereof include a polyethylene terephthalate film, a polyethylene film, and a polypropylene film.
 <長尺延伸フィルム>
 本実施形態の製造方法により得られた長尺延伸フィルムは、配向角が巻取り方向に対して、0°より大きく90°未満の範囲に傾斜している。具体的な値は用途によって適宜選択することができるが、たとえば15°、22.5°、45°、67.5°、75°などの値があげられる。
<Long stretched film>
The long stretched film obtained by the production method of the present embodiment has an orientation angle inclined in a range of greater than 0 ° and less than 90 ° with respect to the winding direction. Specific values can be appropriately selected depending on the application, and examples thereof include 15 °, 22.5 °, 45 °, 67.5 °, and 75 °.
 本実施形態の製造方法により得られた長尺延伸フィルムの幅方向の配向角のバラツキは、少なくとも1300mmの幅において、0.6°以下であることが好ましく、さらに好ましくは0.4°以下である。配向角のバラツキが0.6°を超える長尺延伸フィルムを偏光子と貼り合せて円偏光板を得、これを有機ELディスプレイなどの自発光型画像表示装置に据え付けると、黒画像表示時に色ムラが生じることがある。 The variation in the orientation angle in the width direction of the long stretched film obtained by the production method of the present embodiment is preferably 0.6 ° or less, more preferably 0.4 ° or less in a width of at least 1300 mm. is there. A long stretched film with an orientation angle variation exceeding 0.6 ° is bonded to a polarizer to obtain a circularly polarizing plate. When this is installed on a self-luminous image display device such as an organic EL display, Unevenness may occur.
 本実施形態の製造方法により得られた長尺延伸フィルムの面内リタデーションの値は120~160nmであることが好ましく、さらに好ましくは130~150nmである。面内リタデーションの値を上記範囲にすることにより、有機ELディスプレイ用の円偏光板用の位相差フィルムとして用いた場合に外光反射を抑制し、表示品質を良好なものにすることが可能になる。 The value of the in-plane retardation of the long stretched film obtained by the production method of the present embodiment is preferably 120 to 160 nm, more preferably 130 to 150 nm. By making the in-plane retardation value within the above range, it is possible to suppress external light reflection and improve display quality when used as a retardation film for a circularly polarizing plate for organic EL displays. Become.
 本実施形態の製造方法により得られた長尺延伸フィルムの面内リタデーションのバラツキは、幅方向の少なくとも1300mmにおいて、3nm以下であることが好ましく、さらに好ましくは1nm以下である。面内リタデーションのバラツキを、上記範囲にすることにより、有機ELディスプレイ用の位相差フィルムとして用いた場合に黒画面表示時の色ムラ等を抑制することが可能となる。 The variation in the in-plane retardation of the long stretched film obtained by the production method of the present embodiment is preferably 3 nm or less, more preferably 1 nm or less, at least 1300 mm in the width direction. By setting the variation of the in-plane retardation within the above range, it is possible to suppress color unevenness when displaying a black screen when used as a retardation film for an organic EL display.
 本実施形態の製造方法により得られた長尺延伸フィルムの面内リタデーションは、用いられる表示装置の設計によって最適値が選択される。なお、前記フィルムの面内リタデーションは、面内遅相軸方向の屈折率nxと面内で前記遅相軸に直交する方向の屈折率nyとの差に長尺延伸フィルムの平均厚みdを乗算した値((nx-ny)×d)である。 The optimum value of the in-plane retardation of the long stretched film obtained by the production method of the present embodiment is selected according to the design of the display device used. The in-plane retardation of the film is obtained by multiplying the difference between the refractive index nx in the in-plane slow axis direction and the refractive index ny in the direction orthogonal to the slow axis by the average thickness d of the long stretched film. Value ((nx−ny) × d).
 本実施形態の製造方法により得られた長尺延伸フィルムの膜厚としては機械的強度などの観点から、たとえば、10~200μmであることが好ましく、より好ましくは、10~60μmであり、さらに好ましくは、10~35μmである。 The film thickness of the long stretched film obtained by the production method of the present embodiment is preferably 10 to 200 μm, more preferably 10 to 60 μm, and still more preferably from the viewpoint of mechanical strength and the like. Is 10 to 35 μm.
 また、幅方向の厚みムラは、巻取りの可否に影響を与えるため、3μm以下であることが好ましく、2μm以下であることがより好ましい。 Further, the thickness unevenness in the width direction is preferably 3 μm or less, more preferably 2 μm or less, because it affects the availability of winding.
 <円偏光板>
 本実施形態の円偏光板は、偏光板保護フィルム、偏光子、λ/4位相差フィルム(上記した実施形態で得られた長尺延伸フィルム)、粘着層がこの順で積層されており、前記λ/4位相差フィルムの遅相軸と偏光子の吸収軸とのなす角度が45°である。
<Circularly polarizing plate>
The circularly polarizing plate of this embodiment has a polarizing plate protective film, a polarizer, a λ / 4 retardation film (long stretched film obtained in the above-described embodiment), and an adhesive layer laminated in this order. The angle formed by the slow axis of the λ / 4 retardation film and the absorption axis of the polarizer is 45 °.
 本実施形態においては、長尺状偏光板保護フィルム、長尺状偏光子、長尺状λ/4位相差フィルムがこの順で積層されることが好ましい。 In this embodiment, it is preferable that a long polarizing plate protective film, a long polarizer, and a long λ / 4 retardation film are laminated in this order.
 円偏光板は、偏光子としてヨウ素または二色性染料をドープしたポリビニルアルコールを延伸したものを使用し、λ/4位相差フィルム/偏光子の構成で貼合して製造することができる。 The circularly polarizing plate can be produced by using a stretched polyvinyl alcohol doped with iodine or a dichroic dye as a polarizer, and laminating with a configuration of λ / 4 retardation film / polarizer.
 偏光子の膜厚は、5~40μm、好ましくは5~30μmであり、特に好ましくは5~20μmである。 The film thickness of the polarizer is 5 to 40 μm, preferably 5 to 30 μm, and particularly preferably 5 to 20 μm.
 偏光板は、一般的な方法で作製することができる。アルカリ鹸化処理したλ/4位相差フィルムは、ポリビニルアルコール系フィルムをヨウ素溶液中に浸漬延伸して作製した偏光子の一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。 The polarizing plate can be produced by a general method. The λ / 4 retardation film subjected to the alkali saponification treatment is preferably bonded to one surface of a polarizer prepared by immersing and stretching a polyvinyl alcohol film in an iodine solution using a completely saponified polyvinyl alcohol aqueous solution.
 偏光板は、さらに当該偏光板の偏光板保護フィルムの反対面に剥離フィルムを貼合して構成することができる。保護フィルムおよび剥離フィルムは偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。 The polarizing plate can be constituted by further bonding a release film on the opposite surface of the polarizing plate protective film of the polarizing plate. The protective film and the release film are used for the purpose of protecting the polarizing plate at the time of shipping the polarizing plate, product inspection, and the like.
 <有機ELディスプレイでの実施態様>
 また、上記した実施形態の長尺延伸フィルムを用いた円偏光板は、有機ELディスプレイのような自発光型表示装置の反射防止の用途に用いられる円偏光板として特に好ましく用いられる。上記した実施形態に係る長尺延伸フィルムは、幅手方向における遅相軸の方向(配向角)の均一性に優れるため、有機ELディスプレイに用いられた場合には、特に色味の均一性に優れた表示装置とすることができる。
<Embodiment with organic EL display>
Moreover, the circularly-polarizing plate using the elongate stretched film of above-mentioned embodiment is used especially preferably as a circularly-polarizing plate used for the reflection prevention use of a self-light-emitting display device like an organic EL display. The long stretched film according to the above-described embodiment is excellent in uniformity in the direction of the slow axis in the width direction (orientation angle). Therefore, when used in an organic EL display, particularly in color uniformity. An excellent display device can be obtained.
 図13に、有機ELディスプレイDの構成の一例を示すが、本実施形態は、これに限定されるものではない。 FIG. 13 shows an example of the configuration of the organic EL display D, but the present embodiment is not limited to this.
 図13に示されるように、有機ELディスプレイDは、ガラスやポリイミド等を用いた基板F1上に順に金属電極F2、発光層F3、透電極(ITO等)F4、封止層F5を有する有機EL素子上に、接着層F6を介して、偏光子F8をλ/4位相差フィルムF7と保護フィルムF9によって挟持した円偏光板を設けて、有機ELディスプレイを構成する。該保護フィルムF9には硬化層が積層されていることが好ましい。硬化層は、有機ELディスプレイの表面のキズを防止するだけではなく、円偏光板による反りを防止する効果を有する。さらに硬化層上には、反射防止層を有していてもよい。上記有機EL素子自体の厚さは1μm程度である。 As shown in FIG. 13, the organic EL display D is an organic EL display having a metal electrode F2, a light emitting layer F3, a transparent electrode (ITO etc.) F4, and a sealing layer F5 on a substrate F1 made of glass, polyimide, or the like. On the element, an organic EL display is configured by providing a circularly polarizing plate with a polarizer F8 sandwiched between a λ / 4 retardation film F7 and a protective film F9 via an adhesive layer F6. It is preferable that a cured layer is laminated on the protective film F9. The cured layer not only prevents scratches on the surface of the organic EL display but also has an effect of preventing warpage due to the circularly polarizing plate. Further, an antireflection layer may be provided on the cured layer. The thickness of the organic EL element itself is about 1 μm.
 一般に、有機ELディスプレイは、透明基板上に金属電極と発光層と透明電極とを順に積層して発光体である素子(有機EL素子)を形成している。ここで、発光層は、種々の有機薄膜の積層体であり、たとえばトリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性の有機固体からなる発光層との積層体や、あるいはこのような発光層とペリレン誘導体等からなる電子注入層の積層体や、またあるいはこれらの正孔注入層、発光層、および電子注入層の積層体等、種々の組み合わせをもった構成が知られている。 Generally, in an organic EL display, a metal electrode, a light emitting layer, and a transparent electrode are sequentially laminated on a transparent substrate to form a light emitting element (organic EL element). Here, the light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative and the like and a light emitting layer made of a fluorescent organic solid such as anthracene, or Structures with various combinations such as a laminate of such a light-emitting layer and an electron injection layer composed of a perylene derivative, and / or a laminate of these hole injection layer, light-emitting layer, and electron injection layer are known. ing.
 有機ELディスプレイは、透明電極と金属電極とに電圧を印加することによって、発光層に正孔と電子とが注入され、これら正孔と電子との再結合によって生じるエネルギーが蛍光物資を励起し、励起された蛍光物質が基底状態に戻るときに光を放射する、という原理で発光する。途中再結合というメカニズムは、一般のダイオードと同様であり、このことからも予想できるように、電流と発光強度は印加電圧に対して整流性を伴う強い非線形性を示す。 In the organic EL display, holes and electrons are injected into the light emitting layer by applying a voltage to the transparent electrode and the metal electrode, and the energy generated by recombination of these holes and electrons excites the fluorescent material, It emits light based on the principle that it emits light when the excited fluorescent material returns to the ground state. The mechanism of recombination on the way is the same as that of a general diode, and as can be expected from this, the current and the light emission intensity show strong nonlinearity with rectification with respect to the applied voltage.
 有機ELディスプレイにおいては、発光層での発光を取り出すために、少なくとも一方の電極が透明でなくてはならず、通常酸化インジウムスズ(ITO)などの透明導電体で形成した透明電極を陽極として用いている。一方、電子注入を容易にして発光効率を上げるには、陰極に仕事関数の小さな物質を用いることが重要で、通常Mg-Ag、Al-Liなどの金属電極を用いている。 In an organic EL display, in order to extract light emitted from the light emitting layer, at least one of the electrodes must be transparent, and a transparent electrode usually formed of a transparent conductor such as indium tin oxide (ITO) is used as an anode. ing. On the other hand, in order to facilitate electron injection and increase luminous efficiency, it is important to use a material having a small work function for the cathode, and usually metal electrodes such as Mg—Ag and Al—Li are used.
 このような構成の有機ELディスプレイにおいて、発光層は、厚さ10nm程度ときわめて薄い膜で形成されている。このため、発光層も透明電極と同様、光をほぼ完全に透過する。その結果、非発光時に透明基板の表面から入射し、透明電極と発光層とを透過して金属電極で反射した光が、再び透明基板の表面側へと出るため、外部から視認したとき、有機ELディスプレイの表示面が鏡面のように見える。 In the organic EL display having such a configuration, the light emitting layer is formed of a very thin film having a thickness of about 10 nm. For this reason, the light emitting layer transmits light almost completely like the transparent electrode. As a result, the light that is incident from the surface of the transparent substrate when not emitting light, passes through the transparent electrode and the light emitting layer, and is reflected by the metal electrode again exits to the surface side of the transparent substrate. The display surface of the EL display looks like a mirror surface.
 上記した実施形態により得られた長尺延伸フィルムからなる円偏光板は、このような外光反射が特に問題となる有機ELディスプレイに適している。 The circularly polarizing plate made of a long stretched film obtained by the above embodiment is suitable for an organic EL display in which such external light reflection is particularly problematic.
 上記長尺延伸フィルムの製造方法の技術的特徴を下記にまとめる。 The technical characteristics of the above-described method for producing a long stretched film are summarized below.
 本発明の一局面による長尺延伸フィルムの製造方法は、熱可塑性樹脂からなる長尺フィルムを製膜する工程、前記長尺フィルムを延伸後のフィルムの走行方向とは異なる特定の方向から斜め延伸装置に繰入れ、該長尺フィルムの両端部を斜め延伸装置の把持具によって把持して搬送しつつ前記長尺フィルムを幅手方向に対して0°より大きく90°未満の方向に斜め延伸する斜め延伸工程、及び、斜め延伸工程後の長尺延伸フィルムを巻き取る工程を少なくとも有する長尺延伸フィルムの製造方法において、前記斜め延伸装置は、延伸前の長尺フィルムの走行方向と斜交する方向に延伸後の長尺延伸フィルムの走行方向がくるように延伸方向を任意に変更でき、かつ、加熱炉と、前記長尺フィルムの両側に設けられた把持具走行支持具とを有し、前記把持具走行支持具は、前記長尺フィルムが走行する水平位置よりも下部に駆動軸を備え、前記斜め延伸工程において、前記長尺フィルムは、前記加熱炉内の少なくとも延伸ゾーンにおいて、前記駆動軸と前記長尺フィルムとの間に設けられた面状ヒータにより連続的に加熱されることを特徴とする。 The method for producing a long stretched film according to one aspect of the present invention includes a step of forming a long film made of a thermoplastic resin, and a diagonal stretch from a specific direction different from the running direction of the film after stretching the long film. The slanted film is obliquely stretched in the direction of greater than 0 ° and less than 90 ° with respect to the width direction while feeding and feeding both ends of the long film with the gripping tool of the oblique stretching device. In the method for producing a long stretched film having at least a stretching step and a step of winding the long stretched film after the oblique stretching step, the oblique stretching device is oblique to the running direction of the long film before stretching. The stretching direction can be arbitrarily changed so that the travel direction of the long stretched film after stretching is in line, and a heating furnace and gripping tool travel supports provided on both sides of the long film are provided. The gripping tool travel support includes a drive shaft below a horizontal position where the long film travels, and in the oblique stretching step, the long film is at least in the stretching zone in the heating furnace. The heating is continuously performed by a planar heater provided between the drive shaft and the long film.
 本発明の製造方法において使用する延伸装置には、長尺フィルムが延伸される延伸ゾーンにおいて、面状ヒータが、駆動軸と長尺フィルムとの間に連続的に設けられている。面状ヒータは、走行する長尺フィルムを温度ムラなく連続的に加熱し、充分かつ均一に熱を加えることができる。また、面状ヒータは、長尺フィルムに均一に熱を加えることができるため、衝突風の発生を防ぐことができる。その結果、配向角の幅手方向のばらつきが小さい長尺延伸フィルムを製造することができる。 In the stretching apparatus used in the production method of the present invention, a planar heater is continuously provided between the drive shaft and the long film in the stretching zone where the long film is stretched. The planar heater can continuously heat a long film that travels without temperature unevenness, and can apply heat sufficiently and uniformly. Further, since the planar heater can uniformly apply heat to the long film, it is possible to prevent the occurrence of a collision wind. As a result, it is possible to produce a long stretched film with a small variation in the width direction of the orientation angle.
 前記長尺フィルムは、前記加熱炉内の全体において、前記面状ヒータにより連続的に加熱されることが好ましい。 It is preferable that the long film is continuously heated by the planar heater throughout the heating furnace.
 このように、面状ヒータが加熱炉内の全体に設けられている場合、長尺フィルムの温度ムラがより確実に抑制される。その結果、延伸角度によらず、得られる長尺延伸フィルムの配向角の幅手方向のばらつきが小さくなり、安定した品質の長尺延伸フィルムが得られる。 Thus, when the planar heater is provided throughout the heating furnace, the temperature unevenness of the long film is more reliably suppressed. As a result, regardless of the stretching angle, the variation in the width direction of the orientation angle of the obtained long stretched film is reduced, and a long stretched film with stable quality can be obtained.
 得られる長尺延伸フィルムの面内リタデーションが、120~160nmであることが好ましい。 The in-plane retardation of the obtained long stretched film is preferably 120 to 160 nm.
 本発明では、面状ヒータを用いて長尺フィルムを均一に加熱できるため、得られる長尺延伸フィルムの面内リタデーションを上記範囲内とすることができる。このような長尺フィルムは、有機ELディスプレイ用の円偏光板に用いた際に、外光反射を抑制することができ、画像表示品質が向上する。 In the present invention, since the long film can be uniformly heated using the planar heater, the in-plane retardation of the obtained long stretched film can be within the above range. When such a long film is used for a circularly polarizing plate for an organic EL display, reflection of external light can be suppressed and image display quality is improved.
 前記熱可塑性樹脂が、ノルボルネン系樹脂であることが好ましい。 The thermoplastic resin is preferably a norbornene resin.
 ノルボルネン系樹脂を用いて得られた長尺延伸フィルムは、延伸応力が低いために、高速搬送した際においても、長尺延伸フィルムの端部にシワや寄りの発生が軽減され、配向角の幅手方向のばらつきが抑制される。 Long stretched films obtained using norbornene-based resins have low stretching stress, so even when they are conveyed at high speed, the occurrence of wrinkles and offsets at the ends of the long stretched films is reduced, and the orientation angle width is reduced. Variation in hand direction is suppressed.
 前記把持具の走行速度は、15~150m/分であることが好ましい。 The traveling speed of the gripping tool is preferably 15 to 150 m / min.
 一般に、把持具の走行速度が上記範囲内の場合には、長尺フィルムには、熱の供給不足に伴う温度ムラが発生しやすい。しかしながら、本発明の製造方法で使用する延伸装置には、少なくとも延伸ゾーンにおいて面状ヒータが連続的に設けられているため、長尺フィルムを高速搬送した場合であっても、走行する長尺フィルムに充分かつ均一に熱を付与することができる。その結果、得られる長尺フィルムの配向角の幅手方向のばらつきを小さくすることができる。 Generally, when the traveling speed of the gripping tool is within the above range, the long film is likely to have temperature unevenness due to insufficient heat supply. However, since the stretching device used in the production method of the present invention is continuously provided with a planar heater at least in the stretching zone, the long film that travels even when the long film is conveyed at high speed Heat can be applied sufficiently and uniformly. As a result, the variation in the width direction of the orientation angle of the obtained long film can be reduced.
 得られる長尺延伸フィルムの膜厚は、10~35μmであることが好ましい。 The film thickness of the obtained long stretched film is preferably 10 to 35 μm.
 一般に、長尺フィルムが薄膜であると、わずかな温度ムラであっても延伸時に配向角のばらつきが起こりやすいが、本発明の製造方法で使用する延伸装置には、少なくとも延伸ゾーンにおいて面状ヒータが連続的に設けられており、長尺フィルムの温度ムラを効果的に抑制することができる。そのため、得られる長尺延伸フィルムの膜厚が上記のような範囲にある場合であっても、長尺延伸フィルム配向角の幅手方向のばらつきが抑制される。 In general, when the long film is a thin film, even if the temperature is slightly uneven, the orientation angle is likely to vary during stretching. However, the stretching apparatus used in the production method of the present invention has a planar heater at least in the stretching zone. Is provided continuously, and temperature unevenness of the long film can be effectively suppressed. Therefore, even if the film thickness of the obtained long stretched film is in the above range, variations in the width direction of the long stretched film orientation angle are suppressed.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 <長尺フィルムの作製>
 製膜工程では、以下の方法により、長尺フィルムA1~C2を作製した。
<Production of long film>
In the film forming process, long films A1 to C2 were prepared by the following method.
 (長尺フィルムA1)
 長尺フィルムA1は、脂環式オレフィンポリマー系樹脂フィルムであり、以下の製造方法により作製した。
(Long film A1)
The long film A1 is an alicyclic olefin polymer resin film, and was produced by the following production method.
 窒素雰囲気下、脱水したシクロヘキサン500質量部に、1-ヘキセン1.2質量部、ジブチルエーテル0.15質量部、トリイソブチルアルミニウム0.30質量部を室温で反応器に入れ混合した後、45℃に保ちながら、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(ジシクロペンタジエン、以下、DCPと略記)20質量部、1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレン(以下、MTFと略記)140質量部および8-メチル-テトラシクロ[4.4.0.12,5.17,10]-ドデカ-3-エン(以下、MTDと略記)40質量部からなるノルボルネン系モノマー混合物と、六塩化タングステン(0.7%トルエン溶液)40質量部とを、2時間かけて連続的に添加し重合した。重合溶液にブチルグリシジルエーテル1.06質量部とイソプロピルアルコール0.52質量部を加えて重合触媒を不活性化し重合反応を停止させた。 In a nitrogen atmosphere, 500 parts by mass of dehydrated cyclohexane, 1.2 parts by mass of 1-hexene, 0.15 parts by mass of dibutyl ether, and 0.30 parts by mass of triisobutylaluminum were mixed in a reactor at room temperature, and then mixed at 45 ° C. 20 parts by mass of tricyclo [4.3.0.12,5] deca-3,7-diene (dicyclopentadiene, hereinafter abbreviated as DCP), 1,4-methano-1,4,4a, 140 parts by mass of 9a-tetrahydrofluorene (hereinafter abbreviated as MTF) and 40 parts by mass of 8-methyl-tetracyclo [4.4.0.12, 5.17,10] -dodec-3-ene (hereinafter abbreviated as MTD) A norbornene-based monomer mixture composed of parts and 40 parts by mass of tungsten hexachloride (0.7% toluene solution) were continuously added over 2 hours for polymerization. To the polymerization solution, 1.06 parts by mass of butyl glycidyl ether and 0.52 parts by mass of isopropyl alcohol were added to deactivate the polymerization catalyst and stop the polymerization reaction.
 次いで、得られた開環重合体を含有する反応溶液100質量部に対して、シクロヘキサン270質量部を加え、さらに水素化触媒としてニッケル-アルミナ触媒(日揮触媒化成(株)製)5質量部を加え、水素により5MPaに加圧して攪拌しながら温度200℃まで加温した後、4時間反応させ、DCP/MTF/MTD開環重合体水素化ポリマーを20%含有する反応溶液を得た。 Next, 270 parts by mass of cyclohexane is added to 100 parts by mass of the resulting reaction solution containing the ring-opening polymer, and 5 parts by mass of a nickel-alumina catalyst (manufactured by JGC Catalysts & Chemicals) is added as a hydrogenation catalyst. In addition, the pressure was increased to 5 MPa with hydrogen and the mixture was heated to 200 ° C. with stirring and then reacted for 4 hours to obtain a reaction solution containing 20% of a DCP / MTF / MTD ring-opening polymer hydrogenated polymer.
 濾過により水素化触媒を除去した後、軟質重合体((株)クラレ製;セプトン2002)および酸化防止剤(チバスペシャリティ・ケミカルズ(株)製;イルガノックス1010)を、得られた溶液にそれぞれ添加して溶解させた(いずれも重合体100質量部あたり0.1質量部)。次いで、溶液から、溶媒であるシクロヘキサンおよびその他の揮発成分を、円筒型濃縮乾燥器((株)日立製作所製)を用いて除去し、水素化ポリマーを溶融状態で押出機からストランド状に押出し、冷却後ペレット化して回収した。重合体中の各ノルボルネン系モノマーの共重合比率を、重合後の溶液中の残留ノルボルネン類組成(ガスクロマトグラフィー法による)から計算したところ、DCP/MTF/MTD=10/70/20でほぼ仕込組成に等しかった。この開環重合体水素添加物の、重量平均分子量(Mw)は31,000、分子量分布(Mw/Mn)は2.5、水素添加率は99.9%であった。 After removing the hydrogenation catalyst by filtration, a soft polymer (manufactured by Kuraray Co., Ltd .; Septon 2002) and an antioxidant (manufactured by Ciba Specialty Chemicals Co., Ltd .; Irganox 1010) were added to the resulting solutions, respectively. And dissolved (both 0.1 parts by mass per 100 parts by mass of the polymer). Next, cyclohexane and other volatile components, which are solvents, are removed from the solution using a cylindrical concentration dryer (manufactured by Hitachi, Ltd.), and the hydrogenated polymer is extruded in a strand form from an extruder in a molten state. After cooling, it was pelletized and collected. When the copolymerization ratio of each norbornene monomer in the polymer was calculated from the composition of residual norbornenes in the solution after polymerization (by gas chromatography method), it was almost charged at DCP / MTF / MTD = 10/70/20. It was equal to the composition. The hydrogenated product of this ring-opening polymer had a weight average molecular weight (Mw) of 31,000, a molecular weight distribution (Mw / Mn) of 2.5, and a hydrogenation rate of 99.9%.
 得られた開環重合体水素添加物のペレットを、空気を流通させた熱風乾燥器を用いて70℃で2時間乾燥して水分を除去した。次いで、前記ペレットを、コートハンガータイプのTダイを有する短軸押出機(三菱重工業(株)製:スクリュー径90mm、Tダイリップ部の材質は炭化タングステン、溶融樹脂との剥離強度44N)を用いて溶融押出成形して厚み75μm(製膜工程により得られた乾燥後の長尺フィルムの厚みであり、延伸工程を経て作製される長尺延伸フィルムの厚みではない)のシクロオレフィンポリマーフィルムを製造した。押出成形は、クラス10,000以下のクリーンルーム内で、溶融樹脂温度240℃、Tダイ温度240℃の成形条件にて幅1000mmの長尺フィルムA1を得た。 The obtained ring-opened polymer hydrogenated pellets were dried at 70 ° C. for 2 hours using a hot air dryer in which air was circulated to remove moisture. Next, the pellets were subjected to a short-shaft extruder having a coat hanger type T die (manufactured by Mitsubishi Heavy Industries, Ltd .: screw diameter 90 mm, T die lip material is tungsten carbide, peel strength 44N from molten resin). A cycloolefin polymer film having a thickness of 75 μm (the thickness of the long film after drying obtained by the film forming process and not the thickness of the long stretched film produced through the stretching process) was manufactured by melt extrusion molding. . In extrusion molding, a long film A1 having a width of 1000 mm was obtained in a clean room of class 10,000 or less under molding conditions of a molten resin temperature of 240 ° C. and a T-die temperature of 240 ° C.
 (長尺フィルムA2)
 上記長尺フィルムA1の作成方法のうち、溶融押出成形後の厚みが35μm(製膜工程により得られた乾燥後の長尺フィルムの厚みであり、延伸工程を経て作製される長尺延伸フィルムの厚みではない)となるようにTダイリップのダイスギャップを適宜調整した他は長尺フィルムA1と同様にして、長尺フィルムA2を得た。
(Long film A2)
Among the methods for producing the long film A1, the thickness after melt extrusion is 35 μm (the thickness of the long film after drying obtained by the film forming step, and the length of the long stretched film produced through the stretching step. A long film A2 was obtained in the same manner as the long film A1, except that the die gap of the T die lip was appropriately adjusted so that the thickness was not.
 (長尺フィルムB1)
 長尺フィルムB1は、セルロースエステル系樹脂フィルムであり、以下の製造方法により作製した。
(Long film B1)
The long film B1 is a cellulose ester resin film and was produced by the following production method.
 <微粒子分散液>
 微粒子(アエロジル R972V 日本アエロジル(株)製)11質量部
 エタノール                       89質量部
 以上をディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散を行った。
<Fine particle dispersion>
Fine particles (Aerosil R972V manufactured by Nippon Aerosil Co., Ltd.) 11 parts by mass Ethanol 89 parts by mass The above was stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin.
 <微粒子添加液>
 以下の組成に基づいて、メチレンクロライドを入れた溶解タンクに充分攪拌しながら、上記微粒子分散液をゆっくりと添加した。さらに二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液を調製した。
<Fine particle additive solution>
Based on the following composition, the fine particle dispersion was slowly added to a dissolution tank containing methylene chloride with sufficient stirring. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution.
 メチレンクロライド                   99質量部
 微粒子分散液                       5質量部
99 parts by mass of methylene chloride 5 parts by mass of fine particle dispersion
 <主ドープ液>
 下記組成の主ドープ液を調製した。まず加圧溶解タンクにメチレンクロライドとエタノールを添加した。溶剤の入った加圧溶解タンクにセルロースアセテートを攪拌しながら投入した。これを加熱し、攪拌しながら完全に溶解し、これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープ液を調製した。なお、糖エステル化合物およびエステル化合物は、以下の合成例により合成した化合物を用いた。また、化合物(B)は、以下のものを用いた。
<Main dope solution>
A main dope solution having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose acetate was added to a pressurized dissolution tank containing a solvent while stirring. This was heated and completely dissolved while stirring, and this was dissolved in Azumi Filter Paper No. The main dope solution was prepared by filtration using 244. In addition, the compound synthesize | combined by the following synthesis examples was used for the sugar ester compound and the ester compound. Moreover, the following were used for the compound (B).
 <主ドープ液の組成>
 メチレンクロライド                  340質量部
 エタノール                       64質量部
 セルロースアセテートプロピオネート(アセチル基置換度1.39、プロ
ピオニル基置換度0.50、総置換度1.89)      100質量部
 化合物(B)                     5.0質量部
 糖エステル化合物                   5.0質量部
 エステル化合物                    2.5質量部
 微粒子添加液                       1質量部
<Composition of main dope solution>
Methylene chloride 340 parts by mass Ethanol 64 parts by mass Cellulose acetate propionate (acetyl group substitution degree 1.39, propionyl group substitution degree 0.50, total substitution degree 1.89) 100 parts by mass Compound (B) 5.0 parts by mass Sugar ester compound 5.0 parts by mass Ester compound 2.5 parts by mass Particulate additive solution 1 part by mass
Figure JPOXMLDOC01-appb-C000006
 (糖エステル化合物の合成)
 以下の工程により、糖エステル化合物を合成した。
Figure JPOXMLDOC01-appb-C000006
(Synthesis of sugar ester compounds)
A sugar ester compound was synthesized by the following steps.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 攪拌装置、還流冷却器、温度計および窒素ガス導入管を備えた四頭コルベンに、ショ糖34.2g(0.1モル)、無水安息香酸180.8g(0.6モル)、ピリジン379.7g(4.8モル)を仕込み、攪拌下に窒素ガス導入管から窒素ガスをバブリングさせながら昇温し、70℃で5時間エステル化反応を行った。 Four-headed Kolben equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen gas inlet tube was charged with 34.2 g (0.1 mol) of sucrose, 180.8 g (0.6 mol) of benzoic anhydride, pyridine 379. 7 g (4.8 mol) was charged, the temperature was raised while bubbling nitrogen gas through a nitrogen gas inlet tube with stirring, and an esterification reaction was carried out at 70 ° C. for 5 hours.
 次に、コルベン内を4×10Pa以下に減圧し、60℃で過剰のピリジンを留去した後に、コルベン内を1.3×10Pa以下に減圧し、120℃まで昇温させ、無水安息香酸、生成した安息香酸の大部分を留去した。 Next, the inside of the Kolben was depressurized to 4 × 10 2 Pa or less, and after excess pyridine was distilled off at 60 ° C., the inside of the Kolben was depressurized to 1.3 × 10 Pa or less and the temperature was raised to 120 ° C. Most of the acid and benzoic acid formed were distilled off.
 最後に、分取したトルエン層に水100gを添加し、常温で30分間水洗後、トルエン層を分取し、減圧下(4×10Pa以下)、60℃でトルエンを留去させ、化合物A-1、A-2、A-3、A-4およびA-5の混合物(糖エステル化合物)を得た。 Finally, 100 g of water is added to the collected toluene layer, and after washing with water at room temperature for 30 minutes, the toluene layer is separated, and toluene is distilled off at 60 ° C. under reduced pressure (4 × 10 2 Pa or less). A mixture (sugar ester compound) of A-1, A-2, A-3, A-4 and A-5 was obtained.
 得られた混合物をHPLCおよびLC-MASSで解析したところ、A-1が1.3質量%、A-2が13.4質量%、A-3が13.1質量%、A-4が31.7質量%、A-5が40.5質量%であった。平均置換度は5.5であった。 When the obtained mixture was analyzed by HPLC and LC-MASS, A-1 was 1.3% by mass, A-2 was 13.4% by mass, A-3 was 13.1% by mass, and A-4 was 31% by mass. 0.7% by mass and A-5 was 40.5% by mass. The average degree of substitution was 5.5.
 <HPLC-MSの測定条件>
 1)LC部
 装置:日本分光(株)製カラムオーブン(JASCO CO-965)、ディテクター(JASCO UV-970-240nm)、ポンプ(JASCO PU-980)、デガッサ-(JASCO DG-980-50)
 カラム:Inertsil ODS-3 粒子径5μm 4.6×250mm(ジーエルサイエンス(株)製)
 カラム温度:40℃
 流速:1ml/min
 移動相:THF(1%酢酸):HO(50:50)
 注入量:3μl
 2)MS部
 装置:LCQ DECA(Thermo Quest(株)製)
 イオン化法:エレクトロスプレーイオン化(ESI)法
 Spray Voltage:5kV
 Capillary温度:180℃
 Vaporizer温度:450℃
<Measurement conditions for HPLC-MS>
1) LC section Equipment: Column oven (JASCO CO-965) manufactured by JASCO Corporation, detector (JASCO UV-970-240 nm), pump (JASCO PU-980), degasser (JASCO DG-980-50)
Column: Inertsil ODS-3 Particle size 5 μm 4.6 × 250 mm (manufactured by GL Sciences Inc.)
Column temperature: 40 ° C
Flow rate: 1 ml / min
Mobile phase: THF (1% acetic acid): H 2 O (50:50)
Injection volume: 3 μl
2) MS unit Device: LCQ DECA (manufactured by Thermo Quest Co., Ltd.)
Ionization method: Electrospray ionization (ESI) method Spray Voltage: 5 kV
Capillary temperature: 180 ° C
Vaporizer temperature: 450 ° C
 (エステル化合物の合成)
 以下の工程により、エステル化合物を合成した。
(Synthesis of ester compounds)
An ester compound was synthesized by the following steps.
 1,2-プロピレングリコール251g、無水フタル酸278g、アジピン酸91g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、攪拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、攪拌しながら徐々に昇温した。15時間脱水縮合反応させ、反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、エステル化合物を得た。エステル化合物は、1,2-プロピレングリコール、無水フタル酸およびアジピン酸が縮合して形成されたポリエステル鎖の末端に安息香酸のエステルを有した。エステル化合物の酸価は0.10、数平均分子量は450であった。 251 g of 1,2-propylene glycol, 278 g of phthalic anhydride, 91 g of adipic acid, 610 g of benzoic acid, 0.191 g of tetraisopropyl titanate as an esterification catalyst, 2 L four-neck equipped with a thermometer, stirrer, and slow cooling tube The flask was charged and gradually heated with stirring until it reached 230 ° C. in a nitrogen stream. An ester compound was obtained by allowing dehydration condensation reaction for 15 hours, and distilling off unreacted 1,2-propylene glycol under reduced pressure at 200 ° C. after completion of the reaction. The ester compound had an ester of benzoic acid at the end of the polyester chain formed by condensation of 1,2-propylene glycol, phthalic anhydride and adipic acid. The acid value of the ester compound was 0.10, and the number average molecular weight was 450.
 次いで、無端ベルト流延装置を用い、ステンレスベルト支持体上に均一に流延した。 Then, using an endless belt casting apparatus, the casting was uniformly performed on a stainless belt support.
 無端ベルト流延装置では、上記主ドープ液をステンレススティールベルト支持体上に均一に流延した。流延(キャスト)した長尺フィルム中の残留溶媒量が75%になるまで溶媒を蒸発させ、ステンレススティールベルト支持体上から剥離し、多数のロールで搬送させながら乾燥を終了させ、幅1000mmの長尺フィルムB1を得た。このとき長尺フィルムB1の膜厚は100μm(製膜工程により得られた乾燥後の長尺フィルムの厚みであり、延伸工程を経て作製される長尺延伸フィルムの厚みではない)であった。 In the endless belt casting apparatus, the main dope solution was cast uniformly on a stainless steel belt support. The solvent is evaporated until the amount of residual solvent in the cast (cast) long film reaches 75%, peeled off from the stainless steel belt support, and dried while being transported by a number of rolls. A long film B1 was obtained. At this time, the film thickness of the long film B1 was 100 μm (the thickness of the long film after drying obtained in the film forming process, not the thickness of the long stretched film produced through the stretching process).
 (長尺フィルムB2)
 上記長尺フィルムB1の作成方法のうち、乾燥工程後の厚みが50μm(製膜工程により得られた乾燥後の長尺フィルムの厚みであり、延伸工程を経て作製される長尺延伸フィルムの厚みではない)となるように流延時の膜厚を適宜調整した他は長尺フィルムB1と同様にして、長尺フィルムB2を得た。
(Long film B2)
Among the methods for producing the long film B1, the thickness after the drying step is 50 μm (the thickness of the long film after drying obtained by the film forming step, and the thickness of the long stretched film produced through the stretching step. The long film B2 was obtained in the same manner as the long film B1, except that the film thickness at the time of casting was adjusted as appropriate.
 (長尺フィルムC1)
 長尺フィルムC1は、ポリカーボネート系樹脂フィルムであり、以下の製造方法により作製した。
(Long film C1)
The long film C1 is a polycarbonate resin film, and was produced by the following production method.
 <ドープ組成物>
 ポリカーボネート樹脂(粘度平均分子量4万、ビスフェノールA型)
                            100質量部
2-(2′ヒドロキシ-3′,5′-ジ-t-ブチルフェニル)-ベンゾト
リアゾール                       1.0質量部
メチレンクロライド                   430質量部
メタノール                        90質量部
<Dope composition>
Polycarbonate resin (viscosity average molecular weight 40,000, bisphenol A type)
100 parts by mass 2- (2′hydroxy-3 ′, 5′-di-t-butylphenyl) -benzotriazole 1.0 part by mass Methylene chloride 430 parts by mass Methanol 90 parts by mass
 上記組成物を密閉容器に投入し、加圧下で80℃に保温し攪拌しながら完全に溶解して、ドープ組成物を得た。 The above composition was put into a sealed container, kept at 80 ° C. under pressure, and completely dissolved with stirring to obtain a dope composition.
 次いで、このドープ組成物を濾過し、冷却して33℃に保ち、ステンレスバンド上に均一に流延し、33℃で5分間乾燥した。その後、65℃でリタデーションが5nmになるように乾燥時間を調整し、ステンレスバンド上から剥離後、多数のロールで搬送させながら乾燥を終了させ膜厚85μm(製膜工程により得られた乾燥後の長尺フィルムの厚みであり、延伸工程を経て作製される長尺延伸フィルムの厚みではない)、幅1000mmの長尺フィルムC1を得た。 Next, this dope composition was filtered, cooled and kept at 33 ° C., cast uniformly on a stainless steel band, and dried at 33 ° C. for 5 minutes. Thereafter, the drying time was adjusted so that the retardation was 5 nm at 65 ° C., and after peeling from the stainless steel band, drying was completed while being conveyed by a number of rolls, and the film thickness was 85 μm (after drying obtained by the film forming process). This is the thickness of the long film, not the thickness of the long stretched film produced through the stretching step), and a long film C1 having a width of 1000 mm was obtained.
 (長尺フィルムC2)
 上記長尺フィルムC1の作成方法のうち、乾燥を終了させた時点での厚みが40μm(製膜工程により得られた乾燥後の長尺フィルムの厚みであり、延伸工程を経て作製される長尺延伸フィルムの厚みではない)となるように流延時の膜厚を適宜調整した他は長尺フィルムC1と同様にして、長尺フィルムC2を得た。
(Long film C2)
Among the methods for producing the long film C1, the thickness at the time when the drying is finished is 40 μm (the thickness of the long film after drying obtained by the film forming process, which is produced through the stretching process. A long film C2 was obtained in the same manner as the long film C1, except that the film thickness at the time of casting was appropriately adjusted so that it was not the thickness of the stretched film.
 <長尺延伸フィルムの作製>
 斜め延伸工程および巻取り工程では、以下の条件に調整された斜め延伸装置(T1~T3)により、長尺フィルムA1~C2を延伸し、長尺延伸フィルムとした後に、ロール状に巻き取った。
<Production of long stretched film>
In the oblique stretching step and the winding step, the long films A1 to C2 were stretched by a diagonal stretching apparatus (T1 to T3) adjusted to the following conditions to form a long stretched film, and then wound into a roll shape. .
 (延伸装置T1)
 延伸装置T1は、図9~図11に示される。すなわち、延伸装置T1には、加熱炉の延伸ゾーンにおいて、駆動軸と長尺フィルムとの間に面状ヒータを設け、長尺フィルムFが面状ヒータにより連続的に加熱される構成とした。面状ヒータは、ポリイミドフィルムにステンレス箔のヒータを取り付けた構成のもので、発熱密度として1W/cmのものを延伸ゾーンに沿って連続的に配置した。両側の把持具走行支持具は、同数の把持具を設けた。延伸装置T1は、長尺フィルムの繰り出し方向と巻取り方向とがなす角度(延伸角度)を任意に変更することができる構成とした。内側の把持具走行支持具の全長は43mとした。外側の把持具走行支持具の全長は43mとした。
(Stretching device T1)
The stretching device T1 is shown in FIGS. In other words, the stretching apparatus T1 is provided with a planar heater between the drive shaft and the long film in the stretching zone of the heating furnace, and the long film F is continuously heated by the planar heater. The planar heater has a structure in which a stainless steel foil heater is attached to a polyimide film, and a heat generation density of 1 W / cm 2 is continuously arranged along the stretching zone. The same number of gripping tools were provided on the gripping tool running support tools on both sides. The stretching device T1 has a configuration that can arbitrarily change the angle (stretching angle) formed by the feeding direction and the winding direction of the long film. The total length of the inner gripping tool travel support tool was 43 m. The overall length of the outer gripping tool travel support tool was 43 m.
 延伸装置T1から排出された長尺延伸フィルムの端部トリミング処理を施し、最終的な長尺延伸フィルムのフィルム幅が1600mmとなるように調整した。その後、出口に設けられた巻取り装置により、引取り張力200(N/m)でロール状に巻き取った。得られた長尺延伸フィルムは、全長2000mであった。 The end trimming process of the long stretched film discharged from the stretching apparatus T1 was performed, and the final long stretched film was adjusted to have a film width of 1600 mm. Then, it wound up in roll shape with the take-up tension | tensile_strength 200 (N / m) with the winding device provided in the exit. The obtained long stretched film had a total length of 2000 m.
 (延伸装置T2)
 延伸装置T2は、図12に示される。延伸装置T2では、加熱炉内の全体において、把持具走行支持具の経路に沿って駆動軸と長尺フィルムとの間に面状ヒータを設けた以外は、延伸装置T1と同様の構成とした。
(Stretching device T2)
The stretching device T2 is shown in FIG. The stretching apparatus T2 has the same configuration as the stretching apparatus T1 except that a sheet heater is provided between the drive shaft and the long film along the path of the gripping tool travel support tool throughout the heating furnace. .
 (延伸装置T3)
 延伸装置T3は、図1および図2に示される。延伸装置T3では、延伸ゾーンにおいて、延伸装置T1記載の面状ヒータの代わりに、隣接する駆動軸の間に発熱体を、計5個配置した以外は、延伸装置T1と同様の構成とした。それぞれの発熱体は、一般的なテンターオーブン用のプレナムダクトを採用した。
(Stretching device T3)
The stretching device T3 is shown in FIGS. The stretching device T3 has the same configuration as the stretching device T1 except that a total of five heating elements are arranged between adjacent drive shafts in the stretching zone instead of the planar heater described in the stretching device T1. Each heating element employed a common plenum duct for a tenter oven.
 <実施例1~6、比較例1~3>
 表1に示す組み合わせに基づいて、長尺フィルムA1~C1を、延伸装置T1~T3により延伸した。このときの延伸角度は22.5°および45°とし、それぞれの延伸角度で得られた長尺延伸フィルムを長尺延伸フィルム1-1~9-2(実施例1~6、比較例1~3)とした。このときの把持具の走行速度は12m/分とした。また、長尺フィルムA1を用いた際のテンターオーブンの温度条件としては、予熱ゾーンは140℃、延伸ゾーンは140℃、熱固定ゾーンは137℃、冷却ゾーンは80℃に調整した。また、長尺フィルムB1を用いた際のテンターオーブンの温度条件としては、予熱ゾーンは180℃、延伸ゾーンは180℃、熱固定ゾーンは177℃、冷却ゾーンは90℃に調整した。また、長尺フィルムC1を用いた際のテンターオーブンの温度条件としては、予熱ゾーンは160℃、延伸ゾーンは160℃、熱固定ゾーンは157℃、冷却ゾーンは80℃に調整した。
<Examples 1 to 6, Comparative Examples 1 to 3>
Based on the combinations shown in Table 1, the long films A1 to C1 were stretched by the stretching apparatuses T1 to T3. The stretching angles at this time were 22.5 ° and 45 °, and the long stretched films obtained at the respective stretching angles were long stretched films 1-1 to 9-2 (Examples 1 to 6, Comparative Examples 1 to 3). The traveling speed of the gripping tool at this time was 12 m / min. Moreover, as temperature conditions of the tenter oven when using the long film A1, the preheating zone was adjusted to 140 ° C, the stretching zone was 140 ° C, the heat setting zone was 137 ° C, and the cooling zone was adjusted to 80 ° C. Moreover, as temperature conditions of the tenter oven when the long film B1 was used, the preheating zone was adjusted to 180 ° C., the stretching zone was adjusted to 180 ° C., the heat setting zone was adjusted to 177 ° C., and the cooling zone was adjusted to 90 ° C. Moreover, as temperature conditions of the tenter oven when using the long film C1, the preheating zone was adjusted to 160 ° C, the stretching zone was adjusted to 160 ° C, the heat setting zone was adjusted to 157 ° C, and the cooling zone was adjusted to 80 ° C.
 <実施例7~9、比較例4~6>
 表2に示す組み合わせに基づいて、長尺フィルムA1~C1を、延伸装置T2およびT3により延伸した。このときの延伸角度は22.5°および45°とし、それぞれの延伸角度で得られた長尺延伸フィルムを長尺延伸フィルム10-1~15-2(実施例7~9、比較例4~6)とした。このときの把持具の走行速度は100m/分とした。また、長尺フィルムA1を用いた際のテンターオーブンの温度条件としては、予熱ゾーンは150℃、延伸ゾーンは148℃、熱固定ゾーンは144℃、冷却ゾーンは90℃に調整した。また、長尺フィルムB1を用いた際のテンターオーブンの温度条件としては、予熱ゾーンは187℃、延伸ゾーンは187℃、熱固定ゾーンは181℃、冷却ゾーンは95℃に調整した。また、長尺フィルムCを用いた際のテンターオーブンの温度条件としては、予熱ゾーンは166℃、延伸ゾーンは166℃、熱固定ゾーンは164℃、冷却ゾーンは90℃に調整した。
<Examples 7 to 9, Comparative Examples 4 to 6>
Based on the combinations shown in Table 2, the long films A1 to C1 were stretched by the stretching apparatuses T2 and T3. The stretching angles at this time were 22.5 ° and 45 °, and the long stretched films obtained at the respective stretching angles were long stretched films 10-1 to 15-2 (Examples 7 to 9, Comparative Examples 4 to 6). The traveling speed of the gripping tool at this time was 100 m / min. Moreover, as temperature conditions of the tenter oven when using the long film A1, the preheating zone was adjusted to 150 ° C., the stretching zone was 148 ° C., the heat setting zone was 144 ° C., and the cooling zone was adjusted to 90 ° C. Moreover, as temperature conditions of the tenter oven when using the long film B1, the preheating zone was adjusted to 187 ° C., the stretching zone was 187 ° C., the heat setting zone was 181 ° C., and the cooling zone was adjusted to 95 ° C. The temperature conditions of the tenter oven when the long film C was used were adjusted to 166 ° C. for the preheating zone, 166 ° C. for the stretching zone, 164 ° C. for the heat setting zone, and 90 ° C. for the cooling zone.
 <実施例10~12、比較例7~9>
 表3に示す組み合わせに基づいて、長尺フィルムA2~C2を、延伸装置T2およびT3により延伸した。このときの延伸角度は22.5°および45°とし、それぞれの延伸角度で得られた長尺延伸フィルムを長尺延伸フィルム16-1~21-2(実施例10~12、比較例7~9)とした。このときの把持具の走行速度は12m/分とした。また、長尺フィルムA2を用いた際のテンターオーブンの温度条件としては、予熱ゾーンは140℃、延伸ゾーンは140℃、熱固定ゾーンは137℃、冷却ゾーンは80℃に調整した。また、長尺フィルムB2を用いた際のテンターオーブンの温度条件としては、予熱ゾーンは180℃、延伸ゾーンは180℃、熱固定ゾーンは177℃、冷却ゾーンは90℃に調整した。また、長尺フィルムC2を用いた際のテンターオーブンの温度条件としては、予熱ゾーンは160℃、延伸ゾーンは160℃、熱固定ゾーンは157℃、冷却ゾーンは80℃に調整した。
<Examples 10 to 12, Comparative Examples 7 to 9>
Based on the combinations shown in Table 3, the long films A2 to C2 were stretched by the stretching apparatuses T2 and T3. The stretching angles at this time were 22.5 ° and 45 °, and the long stretched films obtained at the respective stretching angles were long stretched films 16-1 to 21-2 (Examples 10 to 12, Comparative Examples 7 to 9). The traveling speed of the gripping tool at this time was 12 m / min. The temperature conditions of the tenter oven when using the long film A2 were adjusted to 140 ° C for the preheating zone, 140 ° C for the stretching zone, 137 ° C for the heat setting zone, and 80 ° C for the cooling zone. Moreover, as temperature conditions of the tenter oven when the long film B2 was used, the preheating zone was adjusted to 180 ° C, the stretching zone was adjusted to 180 ° C, the heat setting zone was adjusted to 177 ° C, and the cooling zone was adjusted to 90 ° C. Moreover, as temperature conditions of the tenter oven when using the long film C2, the preheating zone was adjusted to 160 ° C, the stretching zone was adjusted to 160 ° C, the heat setting zone was adjusted to 157 ° C, and the cooling zone was adjusted to 80 ° C.
 <実施例13>
 厚さ120μmのポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。これをヨウ素0.075g、ヨウ化カリウム5g、水100gからなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gからなる68℃の水溶液に浸漬した。これを水洗、乾燥し偏光子を得た。
<Example 13>
A 120 μm-thick polyvinyl alcohol film was uniaxially stretched (temperature: 110 ° C., stretch ratio: 5 times). This was immersed in an aqueous solution composed of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, and then immersed in an aqueous solution of 68 ° C. composed of 6 g of potassium iodide, 7.5 g of boric acid and 100 g of water. This was washed with water and dried to obtain a polarizer.
 長尺フィルム1-2を、ポリビニルアルコール5%水溶液を粘着剤として、上記偏光子の片面に貼合した。その際、偏光子の透過軸と作製した長尺延伸フィルム(λ/4位相差フィルム)の遅相軸とが45°の向きになるように貼合した。偏光子のもう一方の面に、コニカミノルタタックフィルムKC6UA(コニカミノルタオプト(株)製)を、同様にアルカリケン化処理して貼り合わせて円偏光板1を作製した。 The long film 1-2 was bonded to one side of the polarizer using a 5% aqueous solution of polyvinyl alcohol as an adhesive. In that case, it bonded so that the transmission axis of a polarizer and the slow axis of the produced elongate stretched film ((lambda) / 4 phase difference film) may become 45 degrees direction. On the other surface of the polarizer, Konica Minolta Tack Film KC6UA (manufactured by Konica Minolta Opto Co., Ltd.) was similarly subjected to alkali saponification treatment and bonded to produce a circularly polarizing plate 1.
 (有機ELディスプレイの作成)
 ガラス基板上にスパッタリング法によって厚さ80nmのクロムからなる反射電極、反射電極上に陽極としてITO(酸化インジウムスズ)をスパッタリング法で厚さ40nmに製膜し、陽極上に正孔輸送層としてポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT:PSS)をスパッタリング法で厚さ80nm、正孔輸送層上にシャドーマスクを用いて、RGBそれぞれの発光層を100nmの膜厚で形成した。
(Creation of organic EL display)
A reflective electrode made of chromium having a thickness of 80 nm is formed on a glass substrate by sputtering, ITO (indium tin oxide) is formed as a positive electrode on the reflective electrode to a thickness of 40 nm by sputtering, and a polyelectrolyte is formed on the anode as a hole transport layer. (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT: PSS) is formed by sputtering to form a light emitting layer for each of RGB with a thickness of 100 nm using a shadow mask on the hole transport layer. did.
 赤色発光層としては、ホストとしてトリス(8-ヒドロキシキノリナート)アルミニウム(Alq)と発光性化合物[4-(dicyanomethylene)-2-methyl-6(p-dimethylaminostyryl)-4H-pyran](DCM)とを共蒸着(質量比99:1)して100nmの厚さで形成した。緑色発光層としては、ホストとしてAlqと、発光性化合物クマリン6とを共蒸着(質量比99:1)して100nmの厚さで形成した。青色発光層としては、ホストとして、以下に示すBAlqと発光性化合物Peryleneとを共蒸着(質量比90:10)して厚さ100nmで形成した。 For the red light emitting layer, tris (8-hydroxyquinolinate) aluminum (Alq 3 ) as a host and a light emitting compound [4- (dicyanomethylene) -2-methyl-6 (p-dimethylaminostyryl) -4H-pyran] (DCM ) Were co-evaporated (mass ratio 99: 1) to form a thickness of 100 nm. The green light-emitting layer was formed with a thickness of 100 nm by co-evaporating Alq 3 as a host and the light-emitting compound coumarin 6 (mass ratio 99: 1). The blue light-emitting layer was formed as a host by co-evaporating BAlq shown below and a light-emitting compound Perylene (mass ratio 90:10) with a thickness of 100 nm.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 さらに、発光層上に電子が効率的に注入できるような仕事関数の低い第1の陰極としてカルシウムを真空蒸着法により4nmの厚さで製膜し、第1の陰極上に第2の陰極としてアルミニウムを2nmの厚さで製膜した。ここで、第2の陰極として用いたアルミニウムはその上に形成される透明電極をスパッタリング法により製膜する際に、第1の陰極であるカルシウムが化学的変質をすることを防ぐ役割がある。以上のようにして、有機発光層を得た。次に、陰極上にスパッタリング法によって透明導電膜を80nmの厚さで製膜した。ここで透明導電膜としてはITOを用いた。さらに、透明導電膜上にCVD法(化学蒸着法)によって窒化珪素を200nmの厚さで製膜することで、絶縁膜とした。 Further, as a first cathode having a low work function so that electrons can be efficiently injected onto the light-emitting layer, calcium is deposited to a thickness of 4 nm by a vacuum deposition method, and a second cathode is formed on the first cathode. Aluminum was formed to a thickness of 2 nm. Here, the aluminum used as the second cathode has a role to prevent the calcium as the first cathode from being chemically altered when the transparent electrode formed thereon is formed by sputtering. As described above, an organic light emitting layer was obtained. Next, a transparent conductive film with a thickness of 80 nm was formed on the cathode by sputtering. Here, ITO was used as the transparent conductive film. Further, an insulating film was formed by depositing silicon nitride with a thickness of 200 nm on the transparent conductive film by a CVD method (chemical vapor deposition method).
 上記作製した有機EL素子の発光面積は1296mm×784mmであった。また、この有機EL素子に6Vの直流電圧を印加した際の正面輝度は1200cd/mであった。正面輝度の測定は、コニカミノルタセンシング(株)製分光放射輝度計CS-1000を用いて、2℃視野角正面輝度を、発光面からの法線に分光放射輝度計の光軸が一致するようにして、可視光波長430~480nmの範囲を測定し、積分強度をとった。 The light emitting area of the produced organic EL element was 1296 mm × 784 mm. Further, the front luminance when a DC voltage of 6 V was applied to the organic EL element was 1200 cd / m 2 . The front luminance is measured using a spectral radiance meter CS-1000 manufactured by Konica Minolta Sensing Co., Ltd., so that the front luminance of the 2 ° C. viewing angle is aligned with the normal line from the light emitting surface. Then, the range of visible light wavelength of 430 to 480 nm was measured, and the integrated intensity was taken.
 上記作製した有機EL素子の絶縁膜上に、円偏光板1を、作製した長尺延伸フィルム(λ/4位相差フィルム)の面が絶縁膜の面に向くように粘着剤で固定化し、有機ELディスプレイ1を作製した(実施例13)。 The circularly polarizing plate 1 is fixed on the insulating film of the organic EL element prepared above with an adhesive so that the surface of the prepared long stretched film (λ / 4 retardation film) faces the surface of the insulating film. An EL display 1 was produced (Example 13).
 <実施例14~24、比較例10~18>
 実施例13と同様の方法により、長尺延伸フィルム2-2~21-2を用いて、円偏光板2~21および有機ELディスプレイ2~21を作製した(実施例14~24、比較例10~18)。使用した長尺延伸フィルムおよび得られた有機ELディスプレイについて表4に示す。
<Examples 14 to 24, Comparative Examples 10 to 18>
Circular polarizing plates 2 to 21 and organic EL displays 2 to 21 were produced using the long stretched films 2-2 to 21-2 in the same manner as in Example 13 (Examples 14 to 24, Comparative Example 10). To 18). It shows in Table 4 about the used elongate stretched film and the obtained organic electroluminescent display.
 <参考例1>
 作成した円偏光板7を用いて、市販の液晶表示パネル(ソニー(株)製:型名BRAVIA KDL-26J5)の視認側の偏光板を剥がし、上記作製した円偏光板7と貼合して、液晶パネルを作製した。次に液晶パネルを液晶テレビにセットし、液晶表示装置1を作製した。
<Reference Example 1>
Using the prepared circular polarizing plate 7, the polarizing plate on the viewing side of a commercially available liquid crystal display panel (manufactured by Sony Corporation: model name BRAVIA KDL-26J5) is peeled off and bonded to the circular polarizing plate 7 prepared above. A liquid crystal panel was produced. Next, the liquid crystal panel was set on the liquid crystal television, and the liquid crystal display device 1 was produced.
 <参考例2~3>
 上記液晶表示装置1の作製において、円偏光板7を円偏光板8および9に、それぞれ変更した以外は同様にして液晶表示装置2および3を作製した。使用した長尺延伸フィルムおよび得られた液晶表示装置について表5に示す。
<Reference Examples 2 to 3>
Liquid crystal display devices 2 and 3 were produced in the same manner except that the circularly polarizing plate 7 was changed to circularly polarizing plates 8 and 9 in the production of the liquid crystal display device 1. It shows in Table 5 about the used elongate stretched film and the obtained liquid crystal display device.
 <評価>
 得られた長尺延伸フィルムについて、以下の評価を行った。
<Evaluation>
The following evaluation was performed about the obtained elongate stretched film.
 (配向角および配向角の幅手方向のばらつき)
 作成した長尺延伸フィルム1-1~21-2の配向角を位相差測定装置(王子計測(株)製、KOBRA-WXK)を用いて測定した。
(Orientation angle and width variation of orientation angle)
The orientation angles of the prepared long stretched films 1-1 to 21-2 were measured using a phase difference measuring apparatus (manufactured by Oji Scientific Co., Ltd., KOBRA-WXK).
 (配向角の幅手方向のばらつきの評価基準)
 ◎:配向角の幅手方向のばらつきが0.4°未満であった。
 ○:配向角の幅手方向のばらつきが0.4°以上0.6°未満であった。
 △:配向角の幅手方向のばらつきが0.6°以上1.0°未満であった。
 ×:配向角の幅手方向のばらつきが1.0°以上であった。
(Evaluation criteria for variation of orientation angle in width direction)
A: The variation in the width direction of the orientation angle was less than 0.4 °.
A: The variation in the width direction of the orientation angle was 0.4 ° or more and less than 0.6 °.
Δ: The variation in the width direction of the orientation angle was 0.6 ° or more and less than 1.0 °.
X: The variation in the width direction of the orientation angle was 1.0 ° or more.
(面内リタデーションおよび面内リタデーションの幅手分布)
 作成した長尺延伸フィルム1-1~21-2の面内リタデーションを位相差測定装置(王子計測(株)製、KOBRA-WXK)を用いて測定した。評価方法としては、長尺延伸フィルムのフィルム幅方向に長尺延伸フィルムの50mmの間隔で測定を行い、評価した。
(In-plane retardation and lateral distribution of in-plane retardation)
In-plane retardation of the produced long stretched films 1-1 to 21-2 was measured using a phase difference measuring device (manufactured by Oji Scientific Co., Ltd., KOBRA-WXK). As an evaluation method, measurement was performed at an interval of 50 mm of the long stretched film in the film width direction of the long stretched film and evaluated.
 得られた有機ELディスプレイおよび液晶表示装置について、以下の評価を行った。 The obtained organic EL display and liquid crystal display device were evaluated as follows.
 (色ムラ)
 上記作成した有機ELディスプレイおよび液晶表示装置において、黒表示した際のディスプレイ全面における色ムラを、以下の基準で目視評価した。
(Color unevenness)
In the created organic EL display and liquid crystal display device, color unevenness on the entire display surface when black was displayed was visually evaluated according to the following criteria.
 (色ムラの評価基準)
 ◎:作成した有機ELディスプレイおよび液晶表示装置において、箇所ごとの色味に違いは見られなかった。
 ○:作成した有機ELディスプレイおよび液晶表示装置において、箇所ごとに色味に違いが見られるが使用に際して問題がない程度であった。
 △:作成した有機ELディスプレイおよび液晶表示装置において、箇所ごとに色味に違いが見られ、製品として使用できない程度であった。
 ×:作成した有機ELディスプレイおよび液晶表示装置において、箇所ごとに色味違いが大きく、製品として使用できない程度であった。
(Evaluation criteria for uneven color)
A: In the prepared organic EL display and liquid crystal display device, no difference was observed in the color of each part.
○: In the prepared organic EL display and liquid crystal display device, although there is a difference in color for each part, there was no problem in use.
(Triangle | delta): In the produced organic electroluminescent display and liquid crystal display device, the difference was seen in the color for every location, and it was the grade which cannot be used as a product.
X: In the produced organic electroluminescent display and liquid crystal display device, the color difference was large for every location and it was a grade which cannot be used as a product.
 上記各種長尺延伸フィルムと有機ELディスプレイおよび液晶表示装置の概要と各種評価の結果をまとめて表1~表5に示す。なお、表1~3において、膜厚、配向角、面内リタデーション(面内Re)は、すべて得られた長尺延伸フィルムに関する物性値を示している。 Tables 1 to 5 summarize the various elongated stretched films, organic EL displays, and liquid crystal display devices, and the results of various evaluations. In Tables 1 to 3, the film thickness, orientation angle, and in-plane retardation (in-plane Re) all indicate the physical property values of the obtained long stretched film.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表1に示されるように、実施例1~6に相当する長尺延伸フィルム1-1~6-2は、比較例1~3に相当する長尺延伸フィルム7-1~9-2と比較して、配向角の幅手方向のばらつきが±0.6°未満であり良好であった。特に、延伸装置T2を使用して得られた長尺延伸フィルム4-1~6-2は、配向角の幅手方向のばらつきが±0.4°未満であり、特に良好であった。
Figure JPOXMLDOC01-appb-T000005
As shown in Table 1, the long stretched films 1-1 to 6-2 corresponding to Examples 1 to 6 are compared with the long stretched films 7-1 to 9-2 corresponding to Comparative Examples 1 to 3. The variation in the width direction of the orientation angle was less than ± 0.6 °, which was good. In particular, the long stretched films 4-1 to 6-2 obtained using the stretching apparatus T2 were particularly good because the variation of the orientation angle in the width direction was less than ± 0.4 °.
 表2に示されるように、実施例7~9に相当する長尺延伸フィルム10-1~12-2は、比較例4~6に相当する長尺延伸フィルム13-1~15-2と比較して、配向角の幅手方向のばらつきが±0.6°未満であり良好であった。特に、熱可塑性樹脂としてノルボルネン系樹脂を使用して得られた長尺延伸フィルム10-1および10-2は、配向角の幅手方向のばらつきが±0.4°未満であり、特に良好であった。 As shown in Table 2, the elongated stretched films 10-1 to 12-2 corresponding to Examples 7 to 9 are compared with the elongated stretched films 13-1 to 15-2 corresponding to Comparative Examples 4 to 6. The variation in the width direction of the orientation angle was less than ± 0.6 °, which was good. In particular, the long stretched films 10-1 and 10-2 obtained using norbornene-based resins as the thermoplastic resins are particularly good because the variation of the orientation angle in the width direction is less than ± 0.4 °. there were.
 表3に示されるように実施例10~12に相当する長尺延伸フィルム16-1~18-2は、比較例7~9に相当する長尺延伸フィルム19-1~21-2と比較して、配向角の幅手方向のばらつきが±0.6°未満であり良好であった。特に、熱可塑性樹脂としてノルボルネン系樹脂を使用して得られた長尺延伸フィルム16-1および16-2は、配向角の幅手方向のばらつきが±0.4°未満であり、特に良好であった。 As shown in Table 3, the long stretched films 16-1 to 18-2 corresponding to Examples 10 to 12 are compared with the long stretched films 19-1 to 21-2 corresponding to Comparative Examples 7 to 9. Thus, the variation in the width direction of the orientation angle was less than ± 0.6 °, which was good. In particular, the long stretched films 16-1 and 16-2 obtained using a norbornene-based resin as a thermoplastic resin are particularly good because the variation in the width direction of the orientation angle is less than ± 0.4 °. there were.
 表4に示されるように、実施例13~18に相当する有機ELディスプレイ1~6は、比較例10~12に相当する有機ELディスプレイ7~9と比較して、色味の違いがないか、製品として問題のない程度の色味の違いしかなく、良好であった。特に、延伸装置T2を使用して得られた有機ELディスプレイ4~6は、色味の違いがなく、特に良好であった。 As shown in Table 4, are the organic EL displays 1 to 6 corresponding to Examples 13 to 18 different in color from the organic EL displays 7 to 9 corresponding to Comparative Examples 10 to 12? There was only a difference in color to the extent that there was no problem as a product, and it was good. In particular, the organic EL displays 4 to 6 obtained using the stretching apparatus T2 were particularly good with no difference in color.
 また、実施例19~24に相当する有機ELディスプレイ10~12および有機ELディスプレイ16~18は、比較例13~18に相当する有機ELディスプレイ13~15および有機ELディスプレイ19~12と比較して、色味の違いがないか、製品として問題のない程度の色味の違いしかなく、良好であった。特に、熱可塑性樹脂としてノルボルネン系樹脂を使用して得られた長尺延伸フィルムを用いて作成した有機ELディスプレイ10および16は、色味の違いがなく、特に良好であった。 Further, the organic EL displays 10 to 12 and the organic EL displays 16 to 18 corresponding to Examples 19 to 24 are compared with the organic EL displays 13 to 15 and the organic EL displays 19 to 12 corresponding to Comparative Examples 13 to 18. There was no difference in color, or there was only a difference in color to the extent that there was no problem as a product. In particular, the organic EL displays 10 and 16 prepared using a long stretched film obtained by using a norbornene-based resin as a thermoplastic resin were particularly good with no difference in color.
 表5に示されるように、参考例1~3に相当する液晶表示装置1~3は、比較例10~12に相当する有機ELディスプレイ7~9と比較して、色味の違いがなく、これらの課題が有機ELディスプレイに長尺延伸フィルムを適用した際に観察されることがわかった。 As shown in Table 5, the liquid crystal display devices 1 to 3 corresponding to Reference Examples 1 to 3 have no difference in color compared to the organic EL displays 7 to 9 corresponding to Comparative Examples 10 to 12, It was found that these problems are observed when a long stretched film is applied to an organic EL display.
 本発明は、長尺延伸フィルムの製造方法等の技術分野において広く利用することができる。
 
The present invention can be widely used in technical fields such as a method for producing a long stretched film.

Claims (6)

  1.  熱可塑性樹脂からなる長尺フィルムを製膜する工程、前記長尺フィルムを延伸後のフィルムの走行方向とは異なる特定の方向から斜め延伸装置に繰入れ、該長尺フィルムの両端部を斜め延伸装置の把持具によって把持して搬送しつつ前記長尺フィルムを幅手方向に対して0°より大きく90°未満の方向に斜め延伸する斜め延伸工程、及び、斜め延伸工程後の長尺延伸フィルムを巻き取る工程を少なくとも有する長尺延伸フィルムの製造方法において、
     前記斜め延伸装置は、延伸前の長尺フィルムの走行方向と斜交する方向に延伸後の長尺延伸フィルムの走行方向がくるように、延伸方向を任意に変更でき、かつ、加熱炉と、前記長尺フィルムの両側に設けられた把持具走行支持具とを有し、
     前記把持具走行支持具は、前記長尺フィルムが走行する水平位置よりも下部に駆動軸を備え、
     前記斜め延伸工程において、前記長尺フィルムは、前記加熱炉内の少なくとも延伸ゾーンにおいて、前記駆動軸と前記長尺フィルムとの間に設けられた面状ヒータにより連続的に加熱される、長尺延伸フィルムの製造方法。
    The step of forming a long film made of a thermoplastic resin, the long film is fed into an oblique stretching device from a specific direction different from the running direction of the stretched film, and both ends of the long film are obliquely stretched. An oblique stretching step in which the long film is obliquely stretched in a direction larger than 0 ° and less than 90 ° with respect to the width direction while being gripped and conveyed by a gripping tool, and a long stretched film after the oblique stretching step In the method for producing a long stretched film having at least a winding step,
    The oblique stretching apparatus can arbitrarily change the stretching direction so that the traveling direction of the long stretched film after stretching is in the direction oblique to the traveling direction of the long film before stretching, and a heating furnace, A gripping tool travel support provided on both sides of the long film,
    The gripping tool travel support tool includes a drive shaft below a horizontal position where the long film travels,
    In the oblique stretching step, the long film is continuously heated by a planar heater provided between the drive shaft and the long film in at least a stretching zone in the heating furnace. A method for producing a stretched film.
  2.  前記長尺フィルムは、前記加熱炉内の全体において、前記面状ヒータにより連続的に加熱される、請求項1記載の長尺延伸フィルムの製造方法。 The method for producing a long stretched film according to claim 1, wherein the long film is continuously heated by the planar heater throughout the heating furnace.
  3.  得られる長尺延伸フィルムの面内リタデーションが、120~160nmである、請求項1または2記載の長尺延伸フィルムの製造方法。 The method for producing a long stretched film according to claim 1 or 2, wherein the in-plane retardation of the obtained long stretched film is 120 to 160 nm.
  4.  前記熱可塑性樹脂が、ノルボルネン系樹脂である、請求項1~3のいずれか1項に記載の長尺延伸フィルムの製造方法。 The method for producing a long stretched film according to any one of claims 1 to 3, wherein the thermoplastic resin is a norbornene resin.
  5.  前記把持具の走行速度は、15~150m/分である、請求項1~4のいずれか1項に記載の長尺延伸フィルムの製造方法。 The method for producing a long stretched film according to any one of claims 1 to 4, wherein a traveling speed of the gripping tool is 15 to 150 m / min.
  6.  得られる長尺延伸フィルムの膜厚は、10~35μmである、請求項1~5のいずれか1項に記載の長尺延伸フィルムの製造方法。 The method for producing a long stretched film according to any one of claims 1 to 5, wherein a film thickness of the obtained long stretched film is 10 to 35 µm.
PCT/JP2013/001421 2012-03-21 2013-03-06 Method for manufacturing long stretched film WO2013140728A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014505995A JP5983732B2 (en) 2012-03-21 2013-03-06 Manufacturing method of long stretched film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012063671 2012-03-21
JP2012-063671 2012-03-21

Publications (1)

Publication Number Publication Date
WO2013140728A1 true WO2013140728A1 (en) 2013-09-26

Family

ID=49222212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001421 WO2013140728A1 (en) 2012-03-21 2013-03-06 Method for manufacturing long stretched film

Country Status (2)

Country Link
JP (1) JP5983732B2 (en)
WO (1) WO2013140728A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088457A (en) * 2013-10-29 2015-05-07 エルジー ディスプレイ カンパニー リミテッド Organic electroluminescent display and method of fabricating the same
CN114368176A (en) * 2022-01-14 2022-04-19 宿迁市金田塑业有限公司 Preparation process and automatic production line of biaxially oriented polyethylene heat-sealing film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003276082A (en) * 2002-01-16 2003-09-30 Fuji Photo Film Co Ltd Tentering machine
JP2006159775A (en) * 2004-12-09 2006-06-22 Nippon Zeon Co Ltd Film stretching equipment and film stretching method
JP2009119774A (en) * 2007-11-16 2009-06-04 Konica Minolta Opto Inc Method for manufacturing obliquely stretched optical film, and stretching apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238514A (en) * 2007-03-27 2008-10-09 Nippon Zeon Co Ltd Manufacturing method of stretched film, stretched film, polarizing plate, and liquid crystal display device
WO2009119328A1 (en) * 2008-03-27 2009-10-01 コニカミノルタオプト株式会社 Process for producing optical film and optical film
JP5233746B2 (en) * 2009-02-27 2013-07-10 日本ゼオン株式会社 Method for producing obliquely stretched film, obliquely stretched film, polarizing plate, and liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003276082A (en) * 2002-01-16 2003-09-30 Fuji Photo Film Co Ltd Tentering machine
JP2006159775A (en) * 2004-12-09 2006-06-22 Nippon Zeon Co Ltd Film stretching equipment and film stretching method
JP2009119774A (en) * 2007-11-16 2009-06-04 Konica Minolta Opto Inc Method for manufacturing obliquely stretched optical film, and stretching apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088457A (en) * 2013-10-29 2015-05-07 エルジー ディスプレイ カンパニー リミテッド Organic electroluminescent display and method of fabricating the same
US9461269B2 (en) 2013-10-29 2016-10-04 Lg Display Co., Ltd. Organic light emitting display and method of fabricating the same
CN114368176A (en) * 2022-01-14 2022-04-19 宿迁市金田塑业有限公司 Preparation process and automatic production line of biaxially oriented polyethylene heat-sealing film

Also Published As

Publication number Publication date
JP5983732B2 (en) 2016-09-06
JPWO2013140728A1 (en) 2015-08-03

Similar Documents

Publication Publication Date Title
JP5333698B1 (en) Long diagonally stretched film, circularly polarizing plate and organic EL display using the long diagonally stretched film
JP5083483B1 (en) Manufacturing method of long stretched film
JP5177332B1 (en) Manufacturing method and manufacturing apparatus for long stretched film
WO2013161581A1 (en) Process for manufacturing obliquely stretched film
WO2014064736A1 (en) Long stretched film manufacturing method, long stretched film, circular polarization plate and organic el display using such long stretched film
JP5088718B1 (en) Stretched film manufacturing method, stretched film manufacturing apparatus, and stretched film manufacturing system
JP5126456B1 (en) Manufacturing method and manufacturing apparatus for long diagonally stretched film
JP5083482B1 (en) Manufacturing method of long stretched film
JP5979224B2 (en) Manufacturing method and manufacturing apparatus for long stretched film
JP2013202979A (en) Method and apparatus for manufacturing obliquely stretched film
JP5105034B1 (en) Stretched film manufacturing method, stretched film manufacturing apparatus, and stretched film manufacturing system
JP5983732B2 (en) Manufacturing method of long stretched film
JP5979217B2 (en) Method for producing long stretched film and oblique stretching apparatus
JP5987896B2 (en) Method for producing long stretched film and oblique stretching apparatus
JP5110234B1 (en) Manufacturing method and manufacturing apparatus for long diagonally stretched film
JP5862686B2 (en) Manufacturing method of long stretched film
JP2013193226A (en) Method of manufacturing long stretched film
JP5971327B2 (en) Manufacturing method of long stretched film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764457

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014505995

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764457

Country of ref document: EP

Kind code of ref document: A1