WO2013140457A1 - Radio communication system, elevator control system, and electric power transformation equipment control system - Google Patents

Radio communication system, elevator control system, and electric power transformation equipment control system Download PDF

Info

Publication number
WO2013140457A1
WO2013140457A1 PCT/JP2012/001999 JP2012001999W WO2013140457A1 WO 2013140457 A1 WO2013140457 A1 WO 2013140457A1 JP 2012001999 W JP2012001999 W JP 2012001999W WO 2013140457 A1 WO2013140457 A1 WO 2013140457A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication system
wireless communication
frequency
antenna
receiver
Prior art date
Application number
PCT/JP2012/001999
Other languages
French (fr)
Japanese (ja)
Inventor
武井 健
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to CN201280068946.0A priority Critical patent/CN104094541B/en
Priority to JP2014505805A priority patent/JP5868489B2/en
Priority to PCT/JP2012/001999 priority patent/WO2013140457A1/en
Publication of WO2013140457A1 publication Critical patent/WO2013140457A1/en
Priority to IN7000DEN2014 priority patent/IN2014DN07000A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/04Channels characterised by the type of signal the signals being represented by different amplitudes or polarities, e.g. quadriplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/002Reducing depolarization effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity

Definitions

  • the present invention relates to a wireless communication system, an elevator control system, and a transformer control system, and in particular, an environment in which a radio set is located has an obstacle that reflects and scatters radio waves, using multiple waves generated by the obstacle.
  • the present invention relates to a technology for realizing a wireless communication system that performs communication.
  • Radio communication technology that has made remarkable progress in the field of broadcasting and communication is gradually overcoming the problem of the wireless interruption and non-renewable area in sequence, improving the reliability of the communication line, and significantly improving it compared to telephone conversation and audiovisual communication.
  • the reliability of communication means is higher than that of general consumer devices, but in such fields, adoption of wireless technology as a communication means is being considered.
  • the environment in which social infrastructure wireless devices are installed is overwhelmingly larger in size compared to consumer devices because the main operation purpose of the wireless devices is control or monitoring of social infrastructure devices.
  • the social infrastructure equipment itself is the source of scattering electromagnetic waves used for wireless communication.
  • In such an environment as in wireless communication to the broadcast and communication fields, since there is virtually no line-of-sight path or a quasi-line-of-sight path due to diffraction, which is not affected by reflection by electromagnetic wave scatterers It will be performed in the environment where the multiple waves which the reflection by electromagnetic wave scatterer causes mutually interfere.
  • the distance at which the reflection determined by the relative position of the electromagnetic wave scatterer is caused is the antenna distance for realizing space diversity, ie, the half wavelength of the electromagnetic wave used in wireless communication.
  • space diversity ie, the half wavelength of the electromagnetic wave used in wireless communication.
  • the radio wave interference as described above in wireless communication it may be considered to use two orthogonal polarizations. That is, there are two independent polarized waves orthogonal to each other in the electromagnetic wave, and when the electromagnetic wave is reflected by a scatterer such as a social infrastructure device, the direction of the polarized wave changes according to the direction of the polarized wave. Specifically, the polarization perpendicular to the tangent plane of the surface of the scatterer maintains the polarization direction, and the horizontal polarization changes the polarization direction by 180 °. If it is used, there is a possibility that the phenomenon that the electromagnetic wave energy generated by the interference becomes zero can be mitigated.
  • the transmitter has the polarization angles thereof.
  • a technique is disclosed in which the receiver detects the same polarization angle and searches for the polarization angle for performing the best communication to perform communication.
  • two orthogonal electromagnetic waves are transmitted from the transmitter, and the receiver divides the incoming electromagnetic waves into two orthogonal polarization components, receives them, and receives them most by the signal processing technology. There is described a technique of synthesizing so as to increase.
  • the direction of a certain polarization is fixed and an electromagnetic wave is transmitted, and the energy of the electromagnetic wave becomes zero due to interference of multiple waves at the reception point. It means that the direction of polarization of the transmitted electromagnetic wave has the same direction of rotation of polarization so that the two electromagnetic waves are offset at the reception point, so the polarization of the electromagnetic wave transmitted in this state is If the direction of the wave is changed, the rotation direction of polarization changes due to the reflection of radio waves on the surface of the scatterer that is the source of multiple wave generation, and the rotation angle of polarization also changes.
  • phase rotation angles of the electromagnetic waves are not the same, and it is possible to control the energy of the electromagnetic waves not to be zero at the same reception point due to the independence of the polarization of the electromagnetic waves. Further, since there are a plurality of propagation distances of radio waves at the time of multiple reflections determined by the fixture in the multiple reflection environment, the change in phase angle at the time of multiple reflections caused by electromagnetic wave obstacles by fixtures etc. It depends on the rotation speed of the wave and the same distance.
  • Patent Document 1 the prior art of Patent Document 1 is to provide means for performing communication using an optimal polarization angle when the wireless transmission space between the transmitter and the receiver is not an ideal free space. Since the direction of polarization of the electromagnetic wave transmitted from the transmitter to the receiver in wireless communication is constant, an incoming electromagnetic wave at the receiver due to the cancellation of a plurality of multiple reflected waves when there are a plurality of fixtures Can not solve the problem of communication quality deterioration due to the phenomenon of
  • the problem to be solved by the present invention is high reliability in a social infrastructure system in which a plurality of fixtures are arranged, in which the quality deterioration of the radio circuit from the transmitter to the receiver due to the interference of multiple reflected waves generated by the fixtures is reduced.
  • one example is a transmitter for transmitting a plurality of carrier waves modulated by an information signal by rotating polarization at different speeds.
  • a receiver for combining the signals is a transmitter for transmitting a plurality of carrier waves modulated by an information signal by rotating polarization at different speeds.
  • a highly reliable wireless communication means for reducing the quality deterioration of a wireless circuit from a transmitter to a receiver due to interference of multiple reflected waves generated by the fixtures.
  • FIG. 1 is an example of the block diagram of the transmitter and receiver which comprise the radio
  • a signal having a band of frequency f 1 is generated by the information signal generation circuit 3
  • the carrier wave generated by the carrier generation circuit 1 is modulated by the signal by the modulator 2, and the modulated signal is branched.
  • Sine waves of different rotation frequencies lower than the frequency of the carrier wave generated by the plurality of rotation signal generation circuits 4 are respectively superimposed by the plurality of transmission mixers 5, and the plurality of signals after superposition are respectively branched into two.
  • the other signals are synthesized by the first transmission synthesis circuit 7 as they are, and the other signals are transmitted through the plurality of transmission delay circuits 6 that generate a delay of 1 ⁇ 4 wavelength corresponding to the rotation frequency.
  • the two signals synthesized and combined by the second transmission synthesis circuit 8 are input to each of the two orthogonal antennas constituting the orthogonal vertical polarization transmission antenna 880 and polarized at different rotation frequencies. There is radiated into space as a composite wave of a plurality of rotary polarization rotates.
  • the signals received as orthogonal polarization components by the orthogonal vertical polarization receiving antenna 881 are branched, one of the plural signals after branching is unchanged, and the other plural signals are at the respective rotation frequencies.
  • the plurality of reception delay circuits 19 that generate corresponding quarter wavelength delays they are respectively combined for each pair by the plurality of reception combining circuits 18 as the plurality of pairs, and the plurality of signals after the combination Is generated by superimposing sine waves of the same frequency as the carrier wave generating circuit 1 included in the transmitter generated by the plurality of first local signal generating circuits 16 by the plurality of first receiving mixers 17, and each signal of the superimposed word
  • the frequency components above the carrier wave frequency are removed by the first reception filter 15, and the signals after removal are provided by a plurality of transmitters generated by the plurality of second local signal generation circuits 13.
  • the sine waves of a plurality of different frequencies identical to the rotation signal generation circuit 4 are superimposed by a plurality of second reception mixers 14, and each signal of the superimposed word is a frequency of the plurality of rotation frequencies or more by a second reception filter 12.
  • An information signal transmitted from the transmitter to the receiver is separated and obtained for each rotation frequency by a carrier wave whose component is removed, and as a result, the polarization is rotated at different rotation frequencies, and each information signal after the separation is a plurality of information signals.
  • the digital signal is converted by the analog-to-digital converter 11 and input to the digital signal processing circuit 10 respectively.
  • the phase change which is affected by the incident angle of the polarization of the electromagnetic wave to the scatterer changes between 0 ° and 180 °. Therefore, by using the electromagnetic waves of rotational polarization, it is possible to change the phase relationship of a plurality of multiple reflected waves arriving at the receiver even if the relative position of the fixture is fixed. In addition, the degree of change in the polarization angle of the electromagnetic wave during reflection in multiple reflection can be changed by changing the rotational speed of the rotational polarization.
  • an electromagnetic wave is transmitted from the transmitter to the receiver using a plurality of carrier waves whose polarizations are rotated at a plurality of different rotational frequencies, and a composite wave of multiple reflections having different properties corresponding to the different rotational frequencies. Since the transmitted information signal can be obtained as a digital signal, these can be combined with high likelihood by ordinary digital signal processing, and the reliability of the communication line in a multiple reflection radio wave environment where direct waves can not be expected can be improved. .
  • FIG. 2 is an example of a block diagram of a transmitter and a receiver that constitute the wireless communication system in the second embodiment.
  • a different point from the embodiment of FIG. 1 is that circular vertical polarization transmitting antenna 882 and orthogonal vertical polarization receiving antenna 883 are used instead of orthogonal vertical polarization transmitting antenna 880 and orthogonal vertical polarization receiving antenna 881 respectively. is there.
  • the circularly polarized waves having different rotational directions by the circularly vertical polarization transmission antenna 882 are the signal synthesized by the first transmission synthesis circuit 7 and the signal synthesized by the second transmission synthesis circuit 8. Transmit to space by waves.
  • the orthogonal vertical polarization receiving antenna 883 receives circularly polarized light in different rotational directions, and branches the signal for each of the circularly polarized waves received.
  • FIG. 3 is an example of a block diagram of a transmitter and a receiver that constitute the wireless communication system in the third embodiment.
  • the receiver 1032 separates the received signal into orthogonal polarization components by the orthogonal vertical polarization reception antenna 881 and receives it, and one of the separated reception signals is the carrier generation circuit 1 And a first high-cut filter 25 to remove frequency components higher than the carrier frequency by a first high-cut filter 25 to generate a first analog signal.
  • a digital converter 23 converts the signal into a digital signal, and a plurality of first digital filters 21 separate and extract an information signal transmitted by carriers of different rotational frequencies from the signal, and the other of the separated signals is subjected to a second local A transmitter 30, a second receiving mixer 28, a second high cut filter 26, a second analog-to-digital converter 24, a plurality of first Similarly, information signals transmitted by carrier waves of different rotational frequencies can be separated and extracted by the digital filter 22 of the second embodiment, and these can be combined with high likelihood by digital signal processing using these, as in the first embodiment. Can increase the effect of
  • FIG. 4 is an example of the digital signal processing operation of the receiver used in the wireless communication system in the fourth embodiment.
  • the digital signals of the two systems of information signals obtained when the receiver receives orthogonal polarization separately are sequentially delayed by the plurality of first delay units 41, and the phase change for each delay is changed by the first variable.
  • the other is sequentially delayed by the second delay unit 43, and each delay is combined by the plurality of combiners 44.
  • the second variable phase circuit 45 combines the combined output with the delay compensation.
  • the plurality of signals subjected to phase weighting later and combined by the combining circuit 46 are combined.
  • the synthesized signal is decoded by the demodulation circuit 47 and the control circuit 48 shifts the phase to the plurality of first variable phase circuits 42 and the plurality of second variable phase circuits 45 so that the error rate of the information is minimized. Control the quantity.
  • the information signal thus subjected to a high likelihood of offensive is supplied from the demodulation circuit 47 to the baseband circuit 49.
  • the digital signal processing can combine information signals transmitted by a plurality of rotational polarizations different in rotational speed with high likelihood by the digital signal processing, so the receiver constituting the wireless communication system of the present invention
  • the sensitivity improvement of the wireless communication system is realized, and the communication reliability of the wireless system is improved.
  • FIG. 5 is an example of a block diagram of a transmitter and a receiver that constitute the wireless communication system in the fifth embodiment.
  • a plurality of information signal generation circuits 53 generate a signal of a band of frequency f 1, and modulations of a plurality of carriers generated by a plurality of carrier generation circuits 51 of different frequencies are performed by the plurality of modulators 52 by the signals.
  • Each of the carrier waves serving as a reference and each of the other remaining carrier waves is respectively synthesized by the plurality of synthesis circuits 54, and the plurality of signals after synthesis are respectively branched into two, and the plurality of branched signals are One of them is synthesized as it is by the first transmission synthesis circuit 57, and the other signals are transmitted through the second transmission delay circuit 55 which causes a delay of 1 ⁇ 4 wavelength corresponding to the rotation frequency.
  • the two signals synthesized and combined by the transmission combining circuit 56 are input to each of the two orthogonal antennas constituting the orthogonal vertical polarization transmitting antenna 880, and the polarization is rotated at different rotation frequencies. It is radiated into space as a composite wave of a plurality of rotational polarizations.
  • the signals received as orthogonal polarization components orthogonal to each other by the orthogonal vertical polarization reception antenna 881 are branched, one of the plurality of signals after branching being unchanged, and the other signals being the respective rotation frequencies.
  • the plurality of reception delay circuits 66 generating the corresponding quarter wavelength delays, they are respectively combined for each pair by the plurality of reception combining circuits 65 as the plurality of pairs, and the plurality of signals after the combination
  • the plurality of receiving mixers 64 superimposes sine waves generated by a plurality of first local signal generating circuits 63 generating sine waves coincident with different carrier frequencies, and each signal of the superimposed word is received by the receiving filter 62. Frequency components above the carrier frequency are removed, and the removed signal is converted into a digital signal by a plurality of analog-to-digital converters 61 and digital signal processing They are respectively inputted to the road 10.
  • electromagnetic waves of different rotational polarizations rotating at half the frequency of the difference between the frequencies of the carrier waves are related to the rotation frequency. It can be realized in the wireless space without using a separate local transmission circuit.
  • the hardware configuration of the transmitter and the receiver can be simplified, the number of parts of the device can be reduced, and the manufacturing cost can be reduced.
  • FIG. 6 is an example of a block diagram of a transmitter and a receiver that constitute the wireless communication system in the sixth embodiment.
  • the transmitter of this embodiment and the transmitter of the embodiment of FIG. 5 are identical.
  • the signals received as orthogonal polarization components received by the orthogonal vertical polarization reception antenna 881 are branched, and they are divided into a plurality of pairs having the same frequency as the average frequency of a plurality of pairs of carrier waves of the transmitter.
  • Sine waves generated by a plurality of local signal generating circuits 86 generating sine waves are superimposed on each of the pairs by a plurality of pairs of reception mixers 85, and each signal of the pair of superimposed words is paired by a pair of reception filters 83.
  • the frequency components above the carrier frequency are removed, and the removed pair of signals are converted into digital signals by a plurality of pairs of analog-to-digital converters 81 and each input to the digital signal processing circuit 10.
  • the reception delay circuit provided in the receiver of the embodiment of FIG. 5 can be eliminated.
  • the reception delay circuit is an analog element, and in the frequency band of 300 MHz to 3 GHz used for wireless communication, an electrical length of several meters to several tens of centimeters is required, which hinders the realization of downsizing of the device. In the present embodiment, such a delay circuit is not necessary, which is effective in downsizing the receiver.
  • FIG. 7 is an example of the configuration of a radio channel of an electromagnetic wave used in the radio communication system in the fifth and sixth embodiments.
  • the radio channel is obtained by dividing the frequency range given to the radio system in advance.
  • the radio channels arranged at equal intervals are arranged one by one, and the frequency of rotational polarization of one channel is realized using the frequency interval of two channels based on the frequency of channel 0.
  • the reason why the adjacent channels are not used in the present embodiment is to suppress the interference of the information signal superimposed on the carrier waves of these adjacent frequencies.
  • the present embodiment it is possible to realize the wireless system of the present invention by using the normal frequency channel configuration of the existing wireless system, and it is effective to facilitate the market introduction of the wireless system.
  • FIG. 8 is an example of another configuration of a radio channel of an electromagnetic wave used in the radio communication system in the fifth and sixth embodiments.
  • the radio channel is obtained by dividing the frequency range given to the radio system in advance.
  • the radio channel of FIG. 8 is a configuration example of a radio channel used in the radio communication system of the embodiment of FIGS. 5 and 6.
  • One or more radio channels arranged at equal intervals are spaced apart, and other frequency channels are arranged up and down with the frequency of channel 0 as a reference, and one channel's worth of channel spacing is used Realize the frequency of rotational polarization.
  • the reason why the adjacent channels are not used in the present embodiment is to suppress the interference of the information signal superimposed on the carrier waves of these adjacent frequencies.
  • the configuration of the local signal generation circuit of the receiver can be simplified. It is effective to miniaturize the receiver and reduce the manufacturing cost.
  • FIG. 9 is an example of a block diagram of a transmitter and a receiver that constitute the wireless communication system in the ninth embodiment.
  • a plurality of information signal generation circuits 95 generate a signal of a band of frequency f 1
  • a plurality of carriers generated by a plurality of pairs of carrier generation circuits 91 and 92 of different frequencies are converted by a plurality of modulators 93 by a plurality of modulators 93.
  • the carrier waves modulated with the signal and subjected to each pair of modulations are respectively combined by a plurality of combining circuits 96, the plurality of combined signals are respectively branched into two, and one of the plurality of branched signals is A second transmission combining circuit 98 is combined by one transmission combining circuit 99 and a plurality of other signals via a plurality of transmission delay circuits 97 that cause a delay of 1 ⁇ 4 wavelength corresponding to the rotation frequency.
  • the combined two signals are input to each of the two orthogonal antennas that make up the orthogonal vertical polarization transmission antenna 880, and the polarization is rotated at different rotation frequencies in multiple times. It is radiated into space as a synthetic wave polarization. The average frequency of the pair of two carriers is made to be the same.
  • the signals received as orthogonal polarization components by the orthogonal vertical polarization reception antenna 881 are orthogonalized by the first delta sigma modulator 101 and the second delta sigma modulator 102 operated by the clock circuit 103.
  • the digital signal is converted into a digital signal and input to the digital signal processing circuit 100. Since the delta sigma circuit enables the pair of two carriers to extract half the frequency component of the frequency of the difference between the two carriers by the sampling frequency of half the average frequency, the average of each pair of two carriers is averaged. By making the frequencies the same, it is possible to obtain a plurality of frequencies corresponding to the plurality of rotational polarization frequencies with one sampling frequency.
  • electromagnetic waves of different rotational polarizations rotating at half the frequency of the difference between the frequencies of the carrier waves are related to the rotation frequency. It can be realized in the wireless space without using a separate local transmission circuit.
  • the configuration of the receiver can be greatly simplified, which is effective in reducing the manufacturing cost of the receiver.
  • FIG. 10 is an example of the configuration of a radio channel of an electromagnetic wave used for the radio communication system in the ninth embodiment.
  • the radio channel is obtained by dividing the frequency range given to the radio system in advance.
  • the radio channel of FIG. 10 is a configuration example of a radio channel used in the radio communication system of the embodiment of FIG. Plural pairs of radio channels are arranged at different intervals to the left and right with reference to the same center frequency fc. The reason why the adjacent channels are not used in the present embodiment is to suppress the interference of the information signal superimposed on the carrier waves of these adjacent frequencies.
  • the present embodiment it is possible to realize the wireless system of the present invention by using the normal frequency channel configuration of the existing wireless system, and it is effective to facilitate the market introduction of the wireless system.
  • FIG. 11 is an example of a block diagram of a radio of the frequency spectrum of the receiver of the radio used in the radio communication system in the ninth embodiment.
  • a plurality of carrier frequency pairs having a plurality of average frequencies fc are formed around the sampling frequency fc of the delta sigma circuit, and fc is set to a basic period by sampling operation.
  • a periodic frequency spectrum is generated, resulting in the frequency of the difference between the pair of carriers.
  • the sampling frequency of the analog signal processing circuit of the receiver can be fixed, there is no need to separately install a complex frequency variable circuit such as a frequency synthesizer in the receiver, and the receiver can be miniaturized. It is effective to reduce the manufacturing cost.
  • FIG. 12 is an example of another configuration diagram of a receiver configuring the wireless communication system in the ninth embodiment.
  • the signals received as orthogonal polarization components by the orthogonal vertical polarization reception antenna 881 are orthogonalized by the first delta sigma modulator 101 and the second delta sigma modulator 102 operated by the clock circuit 104.
  • the digital signal is converted into a digital signal and input to the digital signal processing circuit 100.
  • the clock circuit 104 is characterized in that it has a lower frequency than the clock circuit 103 of the receiver of the embodiment of FIG.
  • the delta sigma circuit allows the pair of two carriers to extract a half frequency component of the frequency of the difference between the two carriers by a sampling frequency that is an integral number of half of the average frequency. By making the average frequency of the pair of two carriers the same, it is possible to obtain a plurality of frequencies corresponding to the plurality of rotational polarization frequencies at one sampling frequency.
  • the sampling frequency of the receiver constituting the wireless communication system according to the present invention can be reduced, the miniaturization and cost reduction of the circuit generating the sampling frequency can be realized, and as a result, the configuration of the receiver Can be greatly simplified, which is effective in reducing the manufacturing cost of the receiver.
  • FIG. 13 is an example of a block diagram of a radio of the frequency spectrum of the receiver of the radio used in the radio communication system in the twelfth embodiment.
  • a plurality of carrier frequency pairs are formed, with a plurality of average frequencies M * fc centered on an integer multiple M * fc of the sampling frequency fc of the delta sigma circuit, and sampling The operation produces a periodic frequency spectrum with M * fc as the fundamental period, resulting in the frequency of the difference between the pair of carriers.
  • the sampling frequency of the analog signal processing circuit of the receiver can be fixed and the sampling frequency can be lowered, the sampling frequency generation circuit can be simplified, and the receiver can be miniaturized and the manufacturing cost can be reduced. There is.
  • FIG. 14 is an example of the block diagram of the delta sigma circuit of the receiver which comprises the radio
  • FIG. 14 the signal obtained by the orthogonal vertical polarization receiving antenna 881 is added to the main path of the feedback circuit formed by the combiner 126 by the first analog resonant circuit 121, the analog digital converter 123, and the post comparator A sampling circuit (not shown) to be realized is arranged, a digital-to-analog converter 124 and a second analog resonant circuit 122 are arranged in the feedback path, the input of the first analog resonant circuit 121 being at the output of the combiner 126 Coupled, the output of the second analog resonant circuit 122 and the input of this delta sigma circuit become the input of the synthesizer 126.
  • the clock circuit 125 supplies a clock to the analog-to-digital converter 123, the digital-to-analog converter 124 and the sampling circuit.
  • the analog-to-digital converter 123 and the digital-to-analog converter 124 are 1-bit type.
  • the first analog resonant circuit 121 is designed to resonate in the input signal band to perform noise shaving in the input signal band
  • the second analog resonant circuit 124 is a sinc function caused by the zero hold effect of the digital analog conversion circuit. It is designed to compensate for waveform distortion of the feedback signal of the type in the input signal band.
  • the delta sigma circuit can be realized by the analog resonance circuit, the comparator, the 1-bit analog-to-digital converter 123, the 1-bit digital-to-analog converter 124, and the clock circuit 125 which is a fixed frequency transmission circuit. It is effective to reduce the manufacturing cost of the receiver by simplifying the
  • FIG. 15 is an example of the block diagram of the delta sigma circuit of the receiver which comprises the radio
  • FIG. 15 is an example of the block diagram of the delta sigma circuit of the receiver which comprises the radio
  • the signal obtained by the orthogonal vertical polarization receiving antenna 881 is realized in the main path of the feedback circuit formed by the synthesizer 126 by the analog resonant circuit 121, the analog digital converter 123, and the post comparator.
  • a sampling circuit (not shown) is disposed, a digital interpolation circuit 127 and a digital-to-analog converter 124 are disposed in the feedback path, the input of the analog resonant circuit 121 is coupled to the output of the synthesizer 126, and the digital-to-analog converter 124 is The output and the input of this delta sigma circuit become the input of the synthesizer 126.
  • the clock circuit 125 supplies a clock to the analog-to-digital converter 123, the digital-to-analog converter 126, and the sampling circuit.
  • the analog-to-digital converter 123 and the digital-to-analog converter 124 are 1-bit type.
  • the analog resonant circuit 121 is designed to resonate in the input signal band to perform noise shaving in the input signal band.
  • the number of analog circuits can be reduced and, instead, digital circuit elements are increased.
  • the actual state of the digital circuit element is the built-in software of the digital signal processing circuit, and does not lead to an increase in the number of part numbers substantially, and as a result, the simplification of the delta sigma circuit is effective in reducing the manufacturing cost of the receiver.
  • FIG. 16 is an example of the block diagram of the delta sigma circuit of the receiver which comprises the radio
  • FIG. 16 is an example of the block diagram of the delta sigma circuit of the receiver which comprises the radio
  • the signal obtained by the orthogonal vertical polarization receiving antenna 881 is combined with the first analog resonant circuit 221 and the second analog resonance in the main path of the feedforward feedback circuit formed by the combiners 237, 238 and 239.
  • a sampling circuit (not shown) realized by the circuit 222, an analog digital converter 223 and a post-stage comparator, a digital interpolation circuit 227 and a digital analog converter 224 in the feedback path, and a delta sigma circuit
  • the input signal is branched into three, and the signal after each branch is coupled to the input of the combiners 237, 238 and 239 via feed forward multiplier circuits 231, 232 and 233, respectively.
  • First and second analog resonant circuits 226 and 237 are respectively inserted between the output of combiner 237 and the input of combiner 238 and the output of combiner 238 and the input of combiner 239.
  • the output of analog to digital converter 223 coupled to the output of combiner 239 is coupled to the input of digital to analog converter 224 via digital interpolator 227.
  • the output of digital to analog converter 224 is trifurcated, and the signal after each branch is coupled to the input of combiners 237, 238 and 239, respectively, via feedback multiplier circuits 234, 235 and 236, respectively.
  • the clock circuit 228 supplies a clock to the analog-to-digital converter 223, the digital-to-analog converter 224 and the sampling circuit.
  • the analog-to-digital converter 223 and the digital-to-analog converter 224 are 1-bit type.
  • the analog resonant circuits 221 and 222 are designed to resonate in the input signal band to perform noise shaving in the input signal band.
  • the phase and amplitude of each part of the delta sigma circuit can be adjusted by the multiplier values of the feedback multiplier circuits 234, 235 and 236 and the feedforward multiplier circuits 231, 232 and 233, as compared with the embodiment of FIG. Design flexibility of the circuit is improved.
  • FIG. 17 is another example of a hardware configuration of a receiver used for the wireless communication system in the ninth and twelfth embodiments.
  • FIG. 17 is an example of mounting the receiver used in the wireless communication system of FIGS. 9 and 12 on a printed circuit board.
  • the power supply circuit 244, the high frequency connector 241, and the digital signal connector 242 are mounted on the multilayer printed circuit board 243, and the functional element block to which the same symbol as FIG. 16 is given is electrically connected by the analog signal line 245 and the digital signal line 246. Join together.
  • a direct current generated in the power supply circuit is supplied to the active element of the functional element block through a through hole or the like by a power supply line provided in the inner layer of the multilayer printed circuit board 243.
  • a ground plane for the analog signal line 245 and the digital signal line 246 is formed in the inner layer of the multilayer printed circuit board 243, and a strip line is formed by the ground plane and these signal lines to form a signal transmission path.
  • the receiver 200 of the printed circuit board on which the parts are mounted is provided with a high frequency connector 241 as an input end of the reception wave, and a digital signal connector 242 as an output end of the digital signal, and the delta sigma modulator of the embodiment of FIGS.
  • the output point is realized.
  • the mass production of the receiver 200 is possible using the printed circuit board process and the automatic surface mounting process of parts, which is effective in reducing the production cost of the wireless device used in the wireless communication system of the present invention. .
  • FIG. 18 is an example of a configuration diagram of an elevator system to which the wireless system of this embodiment is applied.
  • the elevator car 311 ascends and descends in the building 301 where the elevator is installed.
  • a base station radio 302 having a polarization angle division diversity function and a base station 2 orthogonal polarization integrated antenna 303 are coupled and installed on a floor portion and a ceiling portion inside the building 301.
  • a terminal station 2 orthogonal polarization integrated antenna 312 is installed on the outside ceiling and outside floor surface of the elevator car 311, and is connected to the terminal radio 313 using a high frequency cable 314. Since the base station radio 303 and the terminal station radio 313 use the inside of the building 301 as a wireless transmission medium, the inner wall of the building 301 and the outer wall of the elevator receive multiple reflections to form a multiwave interference environment. Ru.
  • high-quality wireless transmission can be realized even in a multiwave interference environment by polarization angle division diversity, so control and monitoring of the elevator 311 can be performed using a wireless connection means using the same wireless device. Since it can be carried out remotely without using wire connection means from 301, the wire connection means such as cables can be eliminated, the same transport capacity can be realized in a smaller building volume, or the elevator size can be increased in the same building volume Transport capacity improvement can be realized.
  • FIG. 19 is an example of a configuration diagram of a transformation equipment monitoring system to which the wireless communication system of the present embodiment is applied.
  • a plurality of substations 401 and the same substation 401 are provided with a terminal station radio 403 for performing polarization angle division diversity and a terminal station 2 orthogonal polarization integrated antenna 402 coupled
  • a plurality of base station apparatuses 411 smaller in number than the number of the transformers 401 are installed in the vicinity of the plurality of transformers 401, and the base station apparatus 411 performs the polarization angle division diversity according to the present invention.
  • the unit 413 and the base station 2 orthogonal polarization integrated antenna 412 are coupled and installed.
  • the dimensions of the transformer are on the order of several meters and are overwhelmingly larger than the wavelength corresponding to several hundred MHz to several GHz, which is the frequency of the electromagnetic wave used by the radio. To form a multi-wave interference environment.
  • high-quality wireless transmission can be realized even in a multiple wave interference environment by polarization angle division diversity, so control and monitoring of the transformer 401 can be performed using wireless connection means using the same wireless device.
  • control and monitoring of the transformer 401 can be performed using wireless connection means using the same wireless device.
  • the problem of high voltage inductive power which becomes a problem when using the wired connection means such as a cable can be solved, and the cost for laying the cable is eliminated.
  • the safety and cost reduction of the control and monitoring system of the transformer 401 can be achieved.
  • deterioration in communication quality due to interference is resolved by utilizing the property that the respective rotation angles of the polarized waves of the electromagnetic waves are determined by the respective incident angles of the electromagnetic waves entering the scatterer. That is, since multiple waves are components of a plurality of waves reflected by the scatterer, the rotation angles of polarization of the multiple waves are different, and by controlling the different rotation angles, interference of these multiple waves is caused by interference It is possible to avoid the phenomenon that the generated electromagnetic wave energy becomes zero.
  • the multiwave interference environment according to the present invention is realized to improve the degree of reliability and to suppress the decrease in the reliability of wireless communication caused by the loss of electromagnetic wave energy at a receiving point caused by multiwave interference in an environment where multiple electromagnetic wave scatterers exist. It is possible to provide a wireless device capable of improving the communication reliability under it, and to realize a wireless communication system using the same system.

Abstract

A plurality of rotation-polarized radio waves, which have been modulated by use of the same information signal and which have different rotation speeds, are transmitted; the plurality of radio waves are received; the frequency components corresponding to the respective rotation speeds are extracted; and the information signal to be superimposed on those components is weighted and combined therewith. In this way, a radio circuit line having high reliability can be achieved. A radio communication means having high reliability is provided in social infrastructure systems having various fixture distributions. Also provided is a communication system using a plurality of carriers to which the same modulation has been implemented and which have different rotation speeds of polarized waves.

Description

無線通信システム、昇降機制御システムおよび変電設備制御システムWireless communication system, elevator control system and transformer control system
 本発明は、無線通信システム、昇降機制御システムおよび変電設備制御システムにかかわり、特に無線機の置かれる環境が電波を反射・散乱する障害物を有し、該障害物により発生する多重波を用いて通信を行う無線通信システムを実現する技術に関する。 The present invention relates to a wireless communication system, an elevator control system, and a transformer control system, and in particular, an environment in which a radio set is located has an obstacle that reflects and scatters radio waves, using multiple waves generated by the obstacle. The present invention relates to a technology for realizing a wireless communication system that performs communication.
 放送・通信分野で著しい発展を遂げた無線通信技術は、無線特有の寸断・更新不能領域の問題を順次克服しつつあり、通信回線の信頼性を向上させ、通話・聴視に比べて大幅に通信回線の高信頼性が要求される、制御・観測の分野に進出しつつある。特に、社会インフラ系機器では、一般民生機器と比べて通信手段の信頼度がより高いが、このような分野にも無線技術が通信手段として採用が検討されている。 Radio communication technology that has made remarkable progress in the field of broadcasting and communication is gradually overcoming the problem of the wireless interruption and non-renewable area in sequence, improving the reliability of the communication line, and significantly improving it compared to telephone conversation and audiovisual communication. We are moving into the field of control and observation where high reliability of communication lines is required. In particular, in social infrastructure devices, the reliability of communication means is higher than that of general consumer devices, but in such fields, adoption of wireless technology as a communication means is being considered.
 社会インフラ系の無線機器が設置される環境は、同無線機器の主な動作目的が社会インフラ機器の制御あるいは監視であるため、民生機器と比べて圧倒的に寸法が大きく金属部材により堅牢に作られた社会インフラ機器自体が、無線通信に用いる電磁波を散乱する根源となる。このような環境下では、放送・通信分野への無線通信のように、電磁波散乱物による反射の影響を受けない、見通し経路あるいは、回折による準見通し経路が事実上存在しないため、該無線通信は電磁波散乱物による反射が引き起こす多重波がお互いに干渉する環境で行われることとなる。 The environment in which social infrastructure wireless devices are installed is overwhelmingly larger in size compared to consumer devices because the main operation purpose of the wireless devices is control or monitoring of social infrastructure devices. The social infrastructure equipment itself is the source of scattering electromagnetic waves used for wireless communication. In such an environment, as in wireless communication to the broadcast and communication fields, since there is virtually no line-of-sight path or a quasi-line-of-sight path due to diffraction, which is not affected by reflection by electromagnetic wave scatterers It will be performed in the environment where the multiple waves which the reflection by electromagnetic wave scatterer causes mutually interfere.
 このため、該多重波干渉環境下で高信頼性の無線通信を実現することが技術化課題となる。複数の電磁波は送信点から受信点に到達する距離の差が半波長の奇数倍であるとき干渉によりそのエネルギーが相殺されゼロとなり通信不能となる。この課題を解決するための従来技術は空間ダイバシチであり、複数のアンテナを空間的に半波長離して設置することにより、多重波の干渉により電磁波エネルギーがゼロとなる点から半波長離れた点で同多重波が強めあう性質を利用して電磁波のエネルギーがゼロとなる点を代替するものである。 For this reason, it is a technical issue to realize highly reliable wireless communication under the multiwave interference environment. When the difference in distance from the transmission point to the reception point is an odd multiple of a half wavelength, the energy of the plurality of electromagnetic waves is offset by interference and becomes zero and communication becomes impossible. The prior art for solving this problem is space diversity, and by arranging a plurality of antennas spatially apart by half a wavelength, the point where the electromagnetic wave energy becomes zero from the point where the electromagnetic wave energy becomes zero due to interference of multiple waves. The point is to substitute the point where the energy of the electromagnetic wave is zero by utilizing the property that the multiple waves strengthen each other.
 社会インフラ系の無線通信環境では、電磁波散乱体である什器の相対位置によって決定される反射が引き起こされる距離が、空間ダイバシチを実現するための上記アンテナ距離、即ち無線通信で用いる電磁波の半波長に相当する距離と同程度であるとき、別の多重反射による干渉によってアンテナに到達する電磁波のエネルギーがゼロとなる可能性が大きく、無線通信の信頼性確保が困難である。 In a social infrastructure wireless communication environment, the distance at which the reflection determined by the relative position of the electromagnetic wave scatterer is caused is the antenna distance for realizing space diversity, ie, the half wavelength of the electromagnetic wave used in wireless communication. When the distance is comparable to the corresponding distance, there is a high possibility that the energy of the electromagnetic wave reaching the antenna may be zero due to interference due to another multiple reflection, and it is difficult to ensure the reliability of the wireless communication.
 ここで、無線通信において上記のような電波干渉を軽減するために、直交する二つの偏波を用いることが考えられる。つまり、電磁波には直交する二つの独立した偏波があり、電磁波が社会インフラ機器等の散乱体により反射される際に偏波の方向により偏波の方向が変化する。具体的には、散乱体表面の接平面に対して垂直な偏波は偏波の方向が維持され、水平な偏波は偏波の方向が180°変化するため、直交する二つの偏波を用いれば干渉によって生じる電磁波エネルギーがゼロとなる現象を緩和できる可能性がある。 Here, in order to reduce the radio wave interference as described above in wireless communication, it may be considered to use two orthogonal polarizations. That is, there are two independent polarized waves orthogonal to each other in the electromagnetic wave, and when the electromagnetic wave is reflected by a scatterer such as a social infrastructure device, the direction of the polarized wave changes according to the direction of the polarized wave. Specifically, the polarization perpendicular to the tangent plane of the surface of the scatterer maintains the polarization direction, and the horizontal polarization changes the polarization direction by 180 °. If it is used, there is a possibility that the phenomenon that the electromagnetic wave energy generated by the interference becomes zero can be mitigated.
 例えば、直交する偏波を利用して通信を行う技術として、特許文献1の先行技術には、直交する偏波を持つ二つの電磁波を用いて通信を行う場合、送信機はそれらの偏波角を変化させ、受信機は同偏波角を検出し、最も良好な通信を行うための偏波角を探し出して通信を行う技術が記載されている。また、特許文献2の先行技術では、直交する二つの電磁波を送信機から送出し、受信機は到来電磁波を直交する二つの偏波成分に分けて、受信しこれらを信号処理技術によって最も受信感度が高くなるように合成する技術が記載されている。 For example, as a technique for performing communication using orthogonal polarization, in the prior art of Patent Document 1, in the case of performing communication using two electromagnetic waves having orthogonal polarizations, the transmitter has the polarization angles thereof. A technique is disclosed in which the receiver detects the same polarization angle and searches for the polarization angle for performing the best communication to perform communication. Further, in the prior art of Patent Document 2, two orthogonal electromagnetic waves are transmitted from the transmitter, and the receiver divides the incoming electromagnetic waves into two orthogonal polarization components, receives them, and receives them most by the signal processing technology. There is described a technique of synthesizing so as to increase.
特開平6-311135号公報Japanese Patent Laid-Open No. 6-311135 特開昭60-97734号公報Japanese Patent Application Laid-Open No. 60-97734
 前述のように、直交する二つの偏波を用いる技術として、具体的には、ある偏波の方向を固定して電磁波を送信し、受信点で多重波の干渉により電磁波のエネルギーがゼロとなったということは、送った電磁波の偏波の方向が二つの電磁波が受信点で相殺されるような同一の偏波の回転方向を持ったということであるから、この状態で送信する電磁波の偏波の方向を変化させれば、多重波生成の根源である散乱体表面での電波の反射に起因する偏波の回転方向が変化し偏波の回転角度も変化するので、受信点で干渉する電磁波の位相回転角が同一とならない時刻が存在し、電磁波の偏波の独立性により同受信点で電磁波のエネルギーはゼロとはならないように制御することが可能である。また、該什器によって決定される複数反射の際に電波が伝播する距離は、上記多重反射環境では複数存在するため、什器等による電磁波障害物により引き起こされる複数反射の際の位相角の変化は偏波の回転速度と同距離によって異なる。 As described above, as a technique using two orthogonal polarizations, specifically, the direction of a certain polarization is fixed and an electromagnetic wave is transmitted, and the energy of the electromagnetic wave becomes zero due to interference of multiple waves at the reception point. It means that the direction of polarization of the transmitted electromagnetic wave has the same direction of rotation of polarization so that the two electromagnetic waves are offset at the reception point, so the polarization of the electromagnetic wave transmitted in this state is If the direction of the wave is changed, the rotation direction of polarization changes due to the reflection of radio waves on the surface of the scatterer that is the source of multiple wave generation, and the rotation angle of polarization also changes. There are times when the phase rotation angles of the electromagnetic waves are not the same, and it is possible to control the energy of the electromagnetic waves not to be zero at the same reception point due to the independence of the polarization of the electromagnetic waves. Further, since there are a plurality of propagation distances of radio waves at the time of multiple reflections determined by the fixture in the multiple reflection environment, the change in phase angle at the time of multiple reflections caused by electromagnetic wave obstacles by fixtures etc. It depends on the rotation speed of the wave and the same distance.
 ここで、特許文献1の先行技術は、送信機と受信機の間の無線伝送空間が理想的な自由空間でない場合に、最適な偏波角度を用いて通信を行う手段の提供であるが、無線通信において送信機から受信機へと伝送される電磁波の偏波の方向は一定であるため、複数の什器が存在する場合の複数の多重反射波が互いに相殺することによる受信機での到来電磁波の現象による通信品質劣化の問題を解決できない。 Here, the prior art of Patent Document 1 is to provide means for performing communication using an optimal polarization angle when the wireless transmission space between the transmitter and the receiver is not an ideal free space. Since the direction of polarization of the electromagnetic wave transmitted from the transmitter to the receiver in wireless communication is constant, an incoming electromagnetic wave at the receiver due to the cancellation of a plurality of multiple reflected waves when there are a plurality of fixtures Can not solve the problem of communication quality deterioration due to the phenomenon of
 また、特許文献2の先行技術では、無線通信において送信機から受信機へと伝送される電磁波の偏波の方向は一定であるため、複数の什器が存在する場合の複数の多重反射波が互いに相殺することによる受信機での到来電磁波の現象による通信品質劣化の問題を解決できない。 Further, in the prior art of Patent Document 2, the direction of polarization of the electromagnetic wave transmitted from the transmitter to the receiver in wireless communication is constant, so that multiple multiple reflected waves in the presence of multiple fixtures are mutually different. It is not possible to solve the problem of deterioration of communication quality due to the phenomenon of incoming electromagnetic waves at the receiver due to the cancellation.
 すなわち、社会インフラ系の無線システムの電波環境では、電磁波散乱体である什器の相対位置によって決定される反射が引き起こされる距離は複数存在し、これらの距離により送信機から受信機に到達する電磁波は異なった位相で干渉するので、それらが互いに相殺することによる送信機から受信機に至る無線回線の品質が劣化してしまうという課題がある。 That is, in the radio wave environment of a social infrastructure type wireless system, there are a plurality of distances at which reflection determined by the relative position of the fixture as the electromagnetic wave scatterer occurs, and the electromagnetic waves reaching the receiver from the transmitter by these distances are Since interference occurs in different phases, there is a problem that the quality of the radio channel from the transmitter to the receiver is degraded due to their mutual offset.
 本発明が解決しようとする課題は、複数の什器が配置される社会インフラシステムにおいて、該什器が発生させる多重反射波の干渉による送信機から受信機に至る無線回線の品質劣化を軽減する高信頼の無線通信手段を提供することにある。 The problem to be solved by the present invention is high reliability in a social infrastructure system in which a plurality of fixtures are arranged, in which the quality deterioration of the radio circuit from the transmitter to the receiver due to the interference of multiple reflected waves generated by the fixtures is reduced. Providing a wireless communication means of
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。 In order to solve the above problems, for example, the configuration described in the claims is adopted.
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、情報信号によって変調が施された複数の搬送波を、それぞれ異なる速度で偏波を回転させて送信する送信機と、前記送信機によって送信された複数の搬送波を受信し、当該複数の搬送波それぞれの偏波の回転速度ごとに分離し、分離した搬送波ごとに前記情報信号を復調し、搬送波ごとに復調した前記情報信号を合成する受信機と、を有する無線通信システムによって解決される。 Although the present application includes a plurality of means for solving the above problems, one example is a transmitter for transmitting a plurality of carrier waves modulated by an information signal by rotating polarization at different speeds. Receiving the plurality of carriers transmitted by the transmitter, separating each of the plurality of carrier waves at each rotational speed of polarization, demodulating the information signal for each of the separated carriers, and demodulating the information signal for each carrier And a receiver for combining the signals.
 本発明によれば、複数の什器が配置される社会インフラシステムにおいて、該什器が発生させる多重反射波の干渉による送信機から受信機に至る無線回線の品質劣化を軽減する高信頼の無線通信手段を提供できる。 According to the present invention, in a social infrastructure system in which a plurality of fixtures are arranged, a highly reliable wireless communication means for reducing the quality deterioration of a wireless circuit from a transmitter to a receiver due to interference of multiple reflected waves generated by the fixtures. Can provide
本発明からなる無線通信システムの構成図の例である。It is an example of the block diagram of the radio | wireless communications system which consists of this invention. 本発明からなる無線通信システムの他の構成図の例である。It is an example of the other block diagram of the radio | wireless communications system which consists of this invention. 本発明からなる無線通信システムの他の構成図の例である。It is an example of the other block diagram of the radio | wireless communications system which consists of this invention. 本発明からなる無線通信システムの受信機の信号処理部の例である。It is an example of the signal processing part of the receiver of the radio | wireless communications system which consists of this invention. 本発明からなる無線通信システムの他の構成図の例である。It is an example of the other block diagram of the radio | wireless communications system which consists of this invention. 本発明からなる無線通信システムの他の構成図の例である。It is an example of the other block diagram of the radio | wireless communications system which consists of this invention. 本発明からなる無線通信システムの周波数チャネル構成の例である。It is an example of the frequency channel structure of the radio | wireless communications system which consists of this invention. 本発明からなる無線通信システムの周波数チャネル他の構成の例である。It is an example of the frequency channel other structure of the radio | wireless communications system which consists of this invention. 本発明からなる無線通信システムの他の構成図の例である。It is an example of the other block diagram of the radio | wireless communications system which consists of this invention. 本発明からなる無線通信システムの周波数チャネル他の構成の例である。It is an example of the frequency channel other structure of the radio | wireless communications system which consists of this invention. 本発明からなる無線通信システムの受信機の信号処理部の周波数スペクトラムの例である。It is an example of the frequency spectrum of the signal processing part of the receiver of the radio | wireless communications system which consists of this invention. 本発明からなる無線通信システムの他の構成図の例である。It is an example of the other block diagram of the radio | wireless communications system which consists of this invention. 本発明からなる無線通信システムの受信機の他の信号処理部の周波数スペクトラムの例である。It is an example of the frequency spectrum of the other signal processing part of the receiver of the radio | wireless communications system which consists of this invention. 本発明からなる無線通信システムの受信機のデルタシグマ回路の構成図の例である。It is an example of the block diagram of the delta sigma circuit of the receiver of the radio | wireless communications system which consists of this invention. 本発明からなる無線通信システムの他の受信機のデルタシグマ回路の他の構成図の例である。It is an example of the other block diagram of the delta sigma circuit of the other receiver of the radio | wireless communications system which consists of this invention. 本発明からなる無線通信システムの他の受信機のデルタシグマ回路の他の構成図の例である。It is an example of the other block diagram of the delta sigma circuit of the other receiver of the radio | wireless communications system which consists of this invention. 本発明からなる無線通信システムの受信機のハードウェア構成の例である。It is an example of the hardware constitutions of the receiver of the radio | wireless communications system which consists of this invention. 本発明からなる無線通信システムを適用した昇降機システムの構成図の例である。It is an example of the block diagram of the elevator system to which the radio | wireless communications system which consists of this invention is applied. 本発明からなる無線通信システムを適用した変電設備監視システムの構成図の例である。It is an example of the block diagram of the substation installation monitoring system to which the radio | wireless communications system which consists of this invention is applied.
 以下、実施例を図面を用いて説明する。 Examples will be described below with reference to the drawings.
 本実施例では、本発明の無線通信を行う無線機の構成例を説明する。 In this embodiment, a configuration example of a wireless device for performing wireless communication of the present invention will be described.
 図1は、本実施例の無線通信システムを構成する送信機および受信機の構成図の例である。送信機1011では情報信号発生回路3により周波数f1の帯域の信号が生成され、搬送波発生回路1によって生成される搬送波に変調器2によって該信号により変調が施され、変調後の信号は分岐後、複数の回転信号発生回路4により発生した該搬送波の周波数より低い異なる回転周波数の正弦波が複数の送信ミキサ5により其々重畳され、重畳後の複数の信号は各々二分岐され、分岐後の複数の信号の片方はそのまま第一の送信合成回路7により合成され、他の複数の信号は該各々の回転周波数に対応する四分の一波長分の遅延を生じる複数の送信遅延回路6を介して第二の送信合成回路8により合成され、合成後の二つの信号は直交垂直偏波送信アンテナ880を構成する直交する2アンテナの夫々に入力され、異なる回転周波数で偏波が回転する複数の回転偏波の合成波として空間に放射される。 FIG. 1 is an example of the block diagram of the transmitter and receiver which comprise the radio | wireless communications system of a present Example. In the transmitter 1011, a signal having a band of frequency f 1 is generated by the information signal generation circuit 3, the carrier wave generated by the carrier generation circuit 1 is modulated by the signal by the modulator 2, and the modulated signal is branched. Sine waves of different rotation frequencies lower than the frequency of the carrier wave generated by the plurality of rotation signal generation circuits 4 are respectively superimposed by the plurality of transmission mixers 5, and the plurality of signals after superposition are respectively branched into two. The other signals are synthesized by the first transmission synthesis circuit 7 as they are, and the other signals are transmitted through the plurality of transmission delay circuits 6 that generate a delay of 1⁄4 wavelength corresponding to the rotation frequency. The two signals synthesized and combined by the second transmission synthesis circuit 8 are input to each of the two orthogonal antennas constituting the orthogonal vertical polarization transmission antenna 880 and polarized at different rotation frequencies. There is radiated into space as a composite wave of a plurality of rotary polarization rotates.
 受信機1012では直交垂直偏波受信アンテナ881によって直交する2偏波成分として受信された信号は分岐され、分岐後の複数の信号の片方はそのまま、他の複数の信号は該各々の回転周波数に対応する四分の一波長分の遅延を生じる複数の受信遅延回路19を介して、それらは複数の対として複数の受信合成回路18により各対に対して夫々合成され、合成後の複数の信号は、複数の第一のローカル信号発生回路16が発生する送信機が具備する搬送波発生回路1と同一の周波数の正弦波が複数の第一の受信ミキサ17によって重畳され、該重畳語の各信号は第一の受信フィルタ15によって該搬送波周波数以上の周波数成分が除去され、該除去後の信号は、複数の第二のローカル信号発生回路13が発生する送信機が具備する複数の回転信号発生回路4と同一の異なる複数の周波数の正弦波が複数の第二の受信ミキサ14によって重畳され、該重畳語の各信号は第二の受信フィルタ12によって該複数の回転周波数以上の周波数成分が除去され、結果として異なる回転周波数で偏波が回転する搬送波によって送信機から受信機に伝送された情報信号が該回転周波数ごとに分別して得られ、該分別後の各情報信号は複数のアナログデジタル変換器11によってデジタル信号に変換されデジタル信号処理回路10に各々入力される。 In the receiver 1012, the signals received as orthogonal polarization components by the orthogonal vertical polarization receiving antenna 881 are branched, one of the plural signals after branching is unchanged, and the other plural signals are at the respective rotation frequencies. Through the plurality of reception delay circuits 19 that generate corresponding quarter wavelength delays, they are respectively combined for each pair by the plurality of reception combining circuits 18 as the plurality of pairs, and the plurality of signals after the combination Is generated by superimposing sine waves of the same frequency as the carrier wave generating circuit 1 included in the transmitter generated by the plurality of first local signal generating circuits 16 by the plurality of first receiving mixers 17, and each signal of the superimposed word The frequency components above the carrier wave frequency are removed by the first reception filter 15, and the signals after removal are provided by a plurality of transmitters generated by the plurality of second local signal generation circuits 13. The sine waves of a plurality of different frequencies identical to the rotation signal generation circuit 4 are superimposed by a plurality of second reception mixers 14, and each signal of the superimposed word is a frequency of the plurality of rotation frequencies or more by a second reception filter 12. An information signal transmitted from the transmitter to the receiver is separated and obtained for each rotation frequency by a carrier wave whose component is removed, and as a result, the polarization is rotated at different rotation frequencies, and each information signal after the separation is a plurality of information signals. The digital signal is converted by the analog-to-digital converter 11 and input to the digital signal processing circuit 10 respectively.
 什器等の電磁波散乱物が無線通信をおこなう伝送空間に多数存在する環境では、送信機から受信機へと直接伝播する電磁波は通常存在せず、送信機から発射された電磁波は、該什器によって生成される多重反射を受けた複数の電磁波としてお互いに干渉して受信機に到達する。該什器の相対位置により該多重反射波は特定の位相遅延を被るので、該複数の多重反射波は異なる位相遅延を生じてお互いに干渉して受信機に到来するために、該多重反射波が相殺する位相関係を持つ場合、受信機における到来電磁波のエネルギーは減少し受信感度の低下を来たし、無線通信の信頼性は劣化する。什器の相対位置は通信の間で固定されていると考えられるから、該無線通信の信頼性劣化は持続される。 In an environment where many electromagnetic wave scatterers such as fixtures exist in the transmission space where wireless communication is performed, there is usually no electromagnetic wave propagating directly from the transmitter to the receiver, and the electromagnetic waves emitted from the transmitter are generated by the fixtures. The plurality of electromagnetic waves subjected to multiple reflections interfere with each other to reach the receiver. Since the multiple reflected waves suffer a specific phase delay due to the relative position of the cabinet, the multiple reflected waves may cause different phase delays and interfere with each other to arrive at the receiver. If it has a phase relationship that cancels out, the energy of the incoming electromagnetic wave at the receiver decreases, resulting in a decrease in reception sensitivity, and the reliability of wireless communication is degraded. Because the relative position of the fixtures is considered to be fixed during communication, the reliability degradation of the wireless communication is sustained.
 電磁波は什器等の電磁波散乱体によって反射される場合に、同散乱体への電磁波の偏波の入射角度によって被る位相変化は0°から180°間で変化する。従って、回転偏波の電磁波を用いることにより、什器の相対位置が固定されていても受信機に到来する複数の多重反射波の位相関係を変化させることが可能となる。また、多重反射における反射間に電磁波の偏波角の変化の度合いは回転偏波の回転速度を変えることにより変化させることができる。 When an electromagnetic wave is reflected by an electromagnetic wave scatterer such as a cabinet, the phase change which is affected by the incident angle of the polarization of the electromagnetic wave to the scatterer changes between 0 ° and 180 °. Therefore, by using the electromagnetic waves of rotational polarization, it is possible to change the phase relationship of a plurality of multiple reflected waves arriving at the receiver even if the relative position of the fixture is fixed. In addition, the degree of change in the polarization angle of the electromagnetic wave during reflection in multiple reflection can be changed by changing the rotational speed of the rotational polarization.
 本実施例によれば、複数の異なる回転周波数で偏波が回転する複数の搬送波を用いて電磁波を送信機から受信機に、該異なる回転周波数に対応する性質の異なった多重反射の合成波によって伝送された情報信号をデジタル信号として得ることができるので、通常のデジタル信号処理によってこれらを尤度高く合成することができ、直接波が期待できない多重反射電波環境における通信回線の信頼性を向上できる。 According to this embodiment, an electromagnetic wave is transmitted from the transmitter to the receiver using a plurality of carrier waves whose polarizations are rotated at a plurality of different rotational frequencies, and a composite wave of multiple reflections having different properties corresponding to the different rotational frequencies. Since the transmitted information signal can be obtained as a digital signal, these can be combined with high likelihood by ordinary digital signal processing, and the reliability of the communication line in a multiple reflection radio wave environment where direct waves can not be expected can be improved. .
 本実施例では、本実施例の無線通信システムに用いられる無線機の他の構成例を説明する。 In this embodiment, another configuration example of the radio used in the wireless communication system of this embodiment will be described.
 図2は、実施例2における無線通信システムを構成する送信機および受信機の構成図の例である。図1の実施例と異なる点は、直交垂直偏波送信アンテナ880および直交垂直偏波受信アンテナ881の代わりに、夫々、円垂直偏波送信アンテナ882および直交垂直偏波受信アンテナ883を用いることである。 FIG. 2 is an example of a block diagram of a transmitter and a receiver that constitute the wireless communication system in the second embodiment. A different point from the embodiment of FIG. 1 is that circular vertical polarization transmitting antenna 882 and orthogonal vertical polarization receiving antenna 883 are used instead of orthogonal vertical polarization transmitting antenna 880 and orthogonal vertical polarization receiving antenna 881 respectively. is there.
 すなわち本実施例では、第一の送信合成回路7により合成された信号、および、第二の送信合成回路8により合成された信号を円垂直偏波送信アンテナ882によって、それぞれ回転方向の異なる円偏波によって空間に送信する。また、直交垂直偏波受信アンテナ883では、回転方向の異なる円偏波を受信して信号受信した円偏波ごとに信号を分岐する。 That is, in the present embodiment, the circularly polarized waves having different rotational directions by the circularly vertical polarization transmission antenna 882 are the signal synthesized by the first transmission synthesis circuit 7 and the signal synthesized by the second transmission synthesis circuit 8. Transmit to space by waves. The orthogonal vertical polarization receiving antenna 883 receives circularly polarized light in different rotational directions, and branches the signal for each of the circularly polarized waves received.
 実施例1で説明したように、無線空間に互いに直交する偏波を伝送することにより、無線通信の信頼性向上を図ることができるので、互いに直交する偏波の電磁波として、右旋偏波の電磁波と左旋偏波の電磁波を用いることも可能であり、本実施例により実施例1と同様の効果が可能となる。 As described in the first embodiment, by transmitting the polarized waves orthogonal to each other in the wireless space, it is possible to improve the reliability of the wireless communication. It is also possible to use an electromagnetic wave and an electromagnetic wave of left-handed polarized wave, and the same effect as that of the first embodiment becomes possible by this embodiment.
 一般に直線偏波の直交する2偏波のアンテナを製作する際には、これらを物理的に正確に90°の配置にすることが要求され高い精度の製造技術が必要とされ製造コストの上昇に繋がる。本実施例では、回転方向の異なる2円偏波アンテナを配置することで、このような正確な配置を確保する必要が無く、製造コスト低減に効果がある。 In general, when manufacturing linear polarized orthogonal antennas of two polarized waves, it is required to arrange them physically exactly at 90 °, and a high precision manufacturing technique is required, which increases the manufacturing cost. It connects. In this embodiment, it is not necessary to secure such an accurate arrangement by arranging two circularly polarized antennas having different rotational directions, and the manufacturing cost can be reduced.
 本実施例では、本実施例の無線通信システムに用いられる無線機の他の構成例を説明する。図3は、実施例3における無線通信システムを構成する送信機および受信機の構成図の例である。 In this embodiment, another configuration example of the radio used in the wireless communication system of this embodiment will be described. FIG. 3 is an example of a block diagram of a transmitter and a receiver that constitute the wireless communication system in the third embodiment.
 図1の実施例と異なる点は受信機1032が、受信した信号を直交垂直偏波受信アンテナ881によって、直交する異なる偏波成分に分離して受信し、分離受信信号の一方を搬送波発生回路1と同一の周波数の正弦波を発生させる第一のローカル発信器27の出力と第一の受信ミキサ29によって掛け合わせ第一のハイカットフィルタ25によって搬送波周波数以上の周波数成分を除去し、第一のアナログデジタル変換器23でデジタル信号に変換し、該信号から複数の第一のデジタルフィルタ21により異なる回転周波数の搬送波によって伝送された情報信号を分別して取り出し、該分離信号の他方を、第二のローカル発信機30、第二の受信ミキサ28、第二のハイカットフィルタ26、第二のアナログデジタル変換器24、複数の第二のデジタルフィルタ22によって、同様に異なる回転周波数の搬送波によって伝送された情報信号を分別して取り出し、これらを用いてデジタル信号処理することによりこれらを尤度高く合成することができ、実施例1と同様の効果を上げることができる。 A different point from the embodiment of FIG. 1 is that the receiver 1032 separates the received signal into orthogonal polarization components by the orthogonal vertical polarization reception antenna 881 and receives it, and one of the separated reception signals is the carrier generation circuit 1 And a first high-cut filter 25 to remove frequency components higher than the carrier frequency by a first high-cut filter 25 to generate a first analog signal. A digital converter 23 converts the signal into a digital signal, and a plurality of first digital filters 21 separate and extract an information signal transmitted by carriers of different rotational frequencies from the signal, and the other of the separated signals is subjected to a second local A transmitter 30, a second receiving mixer 28, a second high cut filter 26, a second analog-to-digital converter 24, a plurality of first Similarly, information signals transmitted by carrier waves of different rotational frequencies can be separated and extracted by the digital filter 22 of the second embodiment, and these can be combined with high likelihood by digital signal processing using these, as in the first embodiment. Can increase the effect of
 本実施例では、本実施例の無線通信システムに用いられる受信機のデジタル信号処理の動作を説明する。図4は、実施例4における無線通信システムに用いられる受信機のデジタル信号処理の動作の例である。 In this embodiment, the operation of digital signal processing of the receiver used in the wireless communication system of this embodiment will be described. FIG. 4 is an example of the digital signal processing operation of the receiver used in the wireless communication system in the fourth embodiment.
 受信機が直交する偏波別に受信して得られた2系統の情報信号のデジタル信号は、一方が複数の第一の遅延器41により順次遅延を受け、各遅延に対する位相変化を第一の可変位相回路42により施され、他方は第二の遅延器43により順次遅延を受け、各遅延ごとに複数の合成器44により両者は合成され、第二の可変位相回路45により該合成出力は遅延補償後に位相重み付けをうけ、合成回路46により該位相重み付けを施された複数の信号は合成される。該合成信号は復調回路47により情報が解読され同情報の誤り率を最小にするよう制御回路48により該複数の第一の可変位相回路42および該複数の第二の可変位相回路45に移相量を制御する。このように尤度高い攻勢が行われた情報信号は復調回路47からベースバンド回路49へと供給される。 The digital signals of the two systems of information signals obtained when the receiver receives orthogonal polarization separately are sequentially delayed by the plurality of first delay units 41, and the phase change for each delay is changed by the first variable. The other is sequentially delayed by the second delay unit 43, and each delay is combined by the plurality of combiners 44. The second variable phase circuit 45 combines the combined output with the delay compensation. The plurality of signals subjected to phase weighting later and combined by the combining circuit 46 are combined. The synthesized signal is decoded by the demodulation circuit 47 and the control circuit 48 shifts the phase to the plurality of first variable phase circuits 42 and the plurality of second variable phase circuits 45 so that the error rate of the information is minimized. Control the quantity. The information signal thus subjected to a high likelihood of offensive is supplied from the demodulation circuit 47 to the baseband circuit 49.
 本実施例に拠れば、デジタル信号処理で、回転速度の異なる複数の回転偏波により伝送された情報信号をデジタル信号処理により尤度高く合成できるので、本発明の無線通信システムを構成する受信機の感度向上が実現され、該無線システムの通信信頼性向上に効果がある。 According to the present embodiment, the digital signal processing can combine information signals transmitted by a plurality of rotational polarizations different in rotational speed with high likelihood by the digital signal processing, so the receiver constituting the wireless communication system of the present invention The sensitivity improvement of the wireless communication system is realized, and the communication reliability of the wireless system is improved.
 本実施例では、本実施例の無線通信システムに用いられる無線機の他の構成例を説明する。 In this embodiment, another configuration example of the radio used in the wireless communication system of this embodiment will be described.
 図5は、実施例5における無線通信システムを構成する送信機および受信機の構成図の例である。送信機1041では複数の情報信号発生回路53により周波数f1の帯域の信号が生成され、異なる周波数の複数の搬送波発生回路51によって生成される複数の搬送波に複数の変調器52によって該信号により変調が施され、基準となる一つの搬送波と、他の残りの複数の搬送波の各々を複数の合成回路54よって各々合成し、合成後の複数の信号は各々二分岐され、分岐後の複数の信号の片方はそのまま第一の送信合成回路57により合成され、他の複数の信号は該各々の回転周波数に対応する四分の一波長分の遅延を生じる複数の送信遅延回路55を介して第二の送信合成回路56により合成され、合成後の二つの信号は直交垂直偏波送信アンテナ880を構成する直交する2アンテナの夫々に入力され、異なる回転周波数で偏波が回転する複数の回転偏波の合成波として空間に放射される。 FIG. 5 is an example of a block diagram of a transmitter and a receiver that constitute the wireless communication system in the fifth embodiment. In the transmitter 1041, a plurality of information signal generation circuits 53 generate a signal of a band of frequency f 1, and modulations of a plurality of carriers generated by a plurality of carrier generation circuits 51 of different frequencies are performed by the plurality of modulators 52 by the signals. Each of the carrier waves serving as a reference and each of the other remaining carrier waves is respectively synthesized by the plurality of synthesis circuits 54, and the plurality of signals after synthesis are respectively branched into two, and the plurality of branched signals are One of them is synthesized as it is by the first transmission synthesis circuit 57, and the other signals are transmitted through the second transmission delay circuit 55 which causes a delay of 1⁄4 wavelength corresponding to the rotation frequency. The two signals synthesized and combined by the transmission combining circuit 56 are input to each of the two orthogonal antennas constituting the orthogonal vertical polarization transmitting antenna 880, and the polarization is rotated at different rotation frequencies. It is radiated into space as a composite wave of a plurality of rotational polarizations.
 受信機1042では直交垂直偏波受信アンテナ881によって直交する2偏波成分として受信された信号は分岐され、分岐後の複数の信号の片方はそのまま、他の複数の信号は該各々の回転周波数に対応する四分の一波長分の遅延を生じる複数の受信遅延回路66を介して、それらは複数の対として複数の受信合成回路65により各対に対して夫々合成され、合成後の複数の信号は、異なる搬送波の周波数と一致する正弦波を発生させる複数の第一のローカル信号発生回路63が発生する正弦波が複数の受信ミキサ64によって重畳され、該重畳語の各信号は受信フィルタ62によって該搬送波周波数以上の周波数成分が除去され、該除去後の信号は、複数のアナログデジタル変換器61によってデジタル信号に変換されデジタル信号処理回路10に各々入力される。 In the receiver 1042, the signals received as orthogonal polarization components orthogonal to each other by the orthogonal vertical polarization reception antenna 881 are branched, one of the plurality of signals after branching being unchanged, and the other signals being the respective rotation frequencies. Through the plurality of reception delay circuits 66 generating the corresponding quarter wavelength delays, they are respectively combined for each pair by the plurality of reception combining circuits 65 as the plurality of pairs, and the plurality of signals after the combination The plurality of receiving mixers 64 superimposes sine waves generated by a plurality of first local signal generating circuits 63 generating sine waves coincident with different carrier frequencies, and each signal of the superimposed word is received by the receiving filter 62. Frequency components above the carrier frequency are removed, and the removed signal is converted into a digital signal by a plurality of analog-to-digital converters 61 and digital signal processing They are respectively inputted to the road 10.
 本実施例に拠れば、異なる複数の周波数の搬送波を用いて、該複数の搬送波の周波数の差の二分の一の周波数で回転する複数の異なる回転偏波の電磁波を、該回転周波数に関係する別置きのローカル発信回路を用いること無く無線空間に実現可能である。 According to this embodiment, by using carrier waves of different frequencies, electromagnetic waves of different rotational polarizations rotating at half the frequency of the difference between the frequencies of the carrier waves are related to the rotation frequency. It can be realized in the wireless space without using a separate local transmission circuit.
 このため、受信機に置いても該回転周波数に対応するローカル発信機が不要となる。従って、送信機と受信機のハードウェア構成を簡略化でき、同機器の部品点数削減が実現可能となり、製造コストの低減に効果がある。 Therefore, even when placed in the receiver, a local transmitter corresponding to the rotational frequency is not necessary. Therefore, the hardware configuration of the transmitter and the receiver can be simplified, the number of parts of the device can be reduced, and the manufacturing cost can be reduced.
 本実施例では、本実施例の無線通信システムに用いられる無線機の他の構成例を説明する。 In this embodiment, another configuration example of the radio used in the wireless communication system of this embodiment will be described.
 図6は、実施例6における無線通信システムを構成する送信機および受信機の構成図の例である。本実施例の送信機と図5の実施例の送信機は同一である。受信機1052では直交垂直偏波受信アンテナ881によって直交する2偏波成分として受信された信号は分岐され、それらは複数の対として、送信機の複数の一対の搬送波の平均周波数と同一の周波数の正弦波を発生する複数のローカル信号発生回路86が発生する正弦波が複数の一対の受信ミキサ85によって該各対の夫々と重畳され、該重畳語の一対の各信号は一対の受信フィルタ83によって該搬送波周波数以上の周波数成分が除去され、該除去後の一対の信号は、複数の一対のアナログデジタル変換器81によってデジタル信号に変換されデジタル信号処理回路10に各々入力される。 FIG. 6 is an example of a block diagram of a transmitter and a receiver that constitute the wireless communication system in the sixth embodiment. The transmitter of this embodiment and the transmitter of the embodiment of FIG. 5 are identical. In the receiver 1052, the signals received as orthogonal polarization components received by the orthogonal vertical polarization reception antenna 881 are branched, and they are divided into a plurality of pairs having the same frequency as the average frequency of a plurality of pairs of carrier waves of the transmitter. Sine waves generated by a plurality of local signal generating circuits 86 generating sine waves are superimposed on each of the pairs by a plurality of pairs of reception mixers 85, and each signal of the pair of superimposed words is paired by a pair of reception filters 83. The frequency components above the carrier frequency are removed, and the removed pair of signals are converted into digital signals by a plurality of pairs of analog-to-digital converters 81 and each input to the digital signal processing circuit 10.
 本実施例に拠れば図5の実施例の受信機が具備していた受信遅延回路を削除できる。該受信遅延回路はアナログ素子であり、無線通信に用いられる300MHzから3GHzの周波数帯では、数mから数10cmの電気長が必要となり機器小型化実現の妨げとなる。本実施例ではこのような遅延回路が必要ないので受信機の小型化に効果がある。 According to this embodiment, the reception delay circuit provided in the receiver of the embodiment of FIG. 5 can be eliminated. The reception delay circuit is an analog element, and in the frequency band of 300 MHz to 3 GHz used for wireless communication, an electrical length of several meters to several tens of centimeters is required, which hinders the realization of downsizing of the device. In the present embodiment, such a delay circuit is not necessary, which is effective in downsizing the receiver.
 本実施例では、本実施例の無線通信システムに用いられる電磁波の無線チャネルの構成を説明する。 In the present embodiment, the configuration of a radio channel of an electromagnetic wave used in the wireless communication system of the present embodiment will be described.
 図7は、実施例5および6における無線通信システムに用いられる電磁波の無線チャネルの構成の例である。無線チャネルはあらかじめ当該無線システムに与えられた周波数範囲を分割して得られる。等間隔に配置された無線チャネルを一つ飛びに配置して、チャネル0の周波数を基準として、2チャネル分の周波数間隔を利用して1チャネル分の回転偏波の周波数を実現する。本実施例において隣接するチャネルを用いない理由は、これらの隣り合う周波数の搬送波に重畳された情報信号の干渉を抑制するためである。 FIG. 7 is an example of the configuration of a radio channel of an electromagnetic wave used in the radio communication system in the fifth and sixth embodiments. The radio channel is obtained by dividing the frequency range given to the radio system in advance. The radio channels arranged at equal intervals are arranged one by one, and the frequency of rotational polarization of one channel is realized using the frequency interval of two channels based on the frequency of channel 0. The reason why the adjacent channels are not used in the present embodiment is to suppress the interference of the information signal superimposed on the carrier waves of these adjacent frequencies.
 本実施例に拠れば、既存の無線システムの通常の周波数チャネル構成を用いて、本発明の無線システムを実現可能であり、同無線システムの市場導入を容易にする効果がある。 According to the present embodiment, it is possible to realize the wireless system of the present invention by using the normal frequency channel configuration of the existing wireless system, and it is effective to facilitate the market introduction of the wireless system.
 本実施例では、本実施例の無線通信システムに用いられる電磁波の無線チャネルの構成を説明する。 
 図8は、実施例5および6における無線通信システムに用いられる電磁波の無線チャネルの他の構成の例である。無線チャネルはあらかじめ当該無線システムに与えられた周波数範囲を分割して得られる。図8の無線チャネルは図5および図6の実施例の無線通信システムに用いられる無線チャネルの構成例である。等間隔に配置された無線チャネルを一つ以上離して配置して、チャネル0の周波数を基準として、他の周波数チャオネルを上下に配置して2チャネル分の周波数間隔を利用して1チャネル分の回転偏波の周波数を実現する。本実施例において隣接するチャネルを用いない理由は、これらの隣り合う周波数の搬送波に重畳された情報信号の干渉を抑制するためである。
In the present embodiment, the configuration of a radio channel of an electromagnetic wave used in the wireless communication system of the present embodiment will be described.
FIG. 8 is an example of another configuration of a radio channel of an electromagnetic wave used in the radio communication system in the fifth and sixth embodiments. The radio channel is obtained by dividing the frequency range given to the radio system in advance. The radio channel of FIG. 8 is a configuration example of a radio channel used in the radio communication system of the embodiment of FIGS. 5 and 6. One or more radio channels arranged at equal intervals are spaced apart, and other frequency channels are arranged up and down with the frequency of channel 0 as a reference, and one channel's worth of channel spacing is used Realize the frequency of rotational polarization. The reason why the adjacent channels are not used in the present embodiment is to suppress the interference of the information signal superimposed on the carrier waves of these adjacent frequencies.
 本実施例では、回転偏波の周波数に対応する2搬送波の平均周波数が、図7の実施例に比べて狭い範囲に限定できるので、受信機のローカル信号発生回路の構成を簡略化でき、同受信機の小型化、製造コスト低減に効果がある。 In this embodiment, since the average frequency of two carriers corresponding to the frequency of the rotational polarization can be limited to a narrow range as compared with the embodiment of FIG. 7, the configuration of the local signal generation circuit of the receiver can be simplified. It is effective to miniaturize the receiver and reduce the manufacturing cost.
 本実施例では、本実施例の無線通信システムに用いられる無線機の他の構成例を説明する。 In this embodiment, another configuration example of the radio used in the wireless communication system of this embodiment will be described.
 図9は、実施例9における無線通信システムを構成する送信機および受信機の構成図の例である。送信機1061では複数の情報信号発生回路95により周波数f1の帯域の信号が生成され、異なる周波数の複数の一対の搬送波発生回路91、92によって生成される複数の搬送波に複数の変調器93によって該信号により変調が施され、各一対の変調が施された搬送波は複数の合成回路96よって各々合成し、合成後の複数の信号は各々二分岐され、分岐後の複数の信号の片方はそのまま第一の送信合成回路99により合成され、他の複数の信号は該各々の回転周波数に対応する四分の一波長分の遅延を生じる複数の送信遅延回路97を介して第二の送信合成回路98により合成され、合成後の二つの信号は直交垂直偏波送信アンテナ880を構成する直交する2アンテナの夫々に入力され、異なる回転周波数で偏波が回転する複数の回転偏波の合成波として空間に放射される。該一対の2搬送波の平均周波数が同一となるようにする。 FIG. 9 is an example of a block diagram of a transmitter and a receiver that constitute the wireless communication system in the ninth embodiment. In the transmitter 1061, a plurality of information signal generation circuits 95 generate a signal of a band of frequency f 1, and a plurality of carriers generated by a plurality of pairs of carrier generation circuits 91 and 92 of different frequencies are converted by a plurality of modulators 93 by a plurality of modulators 93. The carrier waves modulated with the signal and subjected to each pair of modulations are respectively combined by a plurality of combining circuits 96, the plurality of combined signals are respectively branched into two, and one of the plurality of branched signals is A second transmission combining circuit 98 is combined by one transmission combining circuit 99 and a plurality of other signals via a plurality of transmission delay circuits 97 that cause a delay of 1⁄4 wavelength corresponding to the rotation frequency. And the combined two signals are input to each of the two orthogonal antennas that make up the orthogonal vertical polarization transmission antenna 880, and the polarization is rotated at different rotation frequencies in multiple times. It is radiated into space as a synthetic wave polarization. The average frequency of the pair of two carriers is made to be the same.
 受信機1062では直交垂直偏波受信アンテナ881によって直交する2偏波成分として受信された信号は、クロック回路103によって動作する第一のデルタシグマ変調器101および第二のデルタシグマ変調器102によって各々デジタル信号に変換されデジタル信号処理回路100に各々入力される。デルタシグマ回路によって、該一対の2搬送波はその平均周波数の半分のサンプリング周波数により、該2搬送波の差の周波数の二分の一の周波数成分を抽出することができるので、各一対の2搬送波の平均周波数を同一とすることで、一つのサンプリング周波数で複数の回転偏波の周波数に対応する複数の周波数を得ることができる。 In the receiver 1062, the signals received as orthogonal polarization components by the orthogonal vertical polarization reception antenna 881 are orthogonalized by the first delta sigma modulator 101 and the second delta sigma modulator 102 operated by the clock circuit 103. The digital signal is converted into a digital signal and input to the digital signal processing circuit 100. Since the delta sigma circuit enables the pair of two carriers to extract half the frequency component of the frequency of the difference between the two carriers by the sampling frequency of half the average frequency, the average of each pair of two carriers is averaged. By making the frequencies the same, it is possible to obtain a plurality of frequencies corresponding to the plurality of rotational polarization frequencies with one sampling frequency.
 本実施例に拠れば、異なる複数の周波数の搬送波を用いて、該複数の搬送波の周波数の差の二分の一の周波数で回転する複数の異なる回転偏波の電磁波を、該回転周波数に関係する別置きのローカル発信回路を用いること無く無線空間に実現可能である。 According to this embodiment, by using carrier waves of different frequencies, electromagnetic waves of different rotational polarizations rotating at half the frequency of the difference between the frequencies of the carrier waves are related to the rotation frequency. It can be realized in the wireless space without using a separate local transmission circuit.
 さらに、該回転周波数に対応する一対の2搬送波の平均周波数を同一にすることで、受信機の構成を大幅に簡略化できるので、受信機の製造コストの低減に効果がある。 Furthermore, by making the average frequency of the pair of two carriers corresponding to the rotational frequency the same, the configuration of the receiver can be greatly simplified, which is effective in reducing the manufacturing cost of the receiver.
 本実施例では、本実施例の無線通信システムに用いられる電磁波の無線チャネルの他の構成を説明する。 
 図10は、実施例9における無線通信システムに用いられる電磁波の無線チャネルの構成の例である。無線チャネルはあらかじめ当該無線システムに与えられた周波数範囲を分割して得られる。図10の無線チャネルは図9の実施例の無線通信システムに用いられる無線チャネルの構成例である。同一の中心周波数fcを基準として左右に異なる間隔で一対の無線チャネルを複数配置する。本実施例において隣接するチャネルを用いない理由は、これらの隣り合う周波数の搬送波に重畳された情報信号の干渉を抑制するためである。
In the present embodiment, another configuration of a radio channel of an electromagnetic wave used in the wireless communication system of the present embodiment will be described.
FIG. 10 is an example of the configuration of a radio channel of an electromagnetic wave used for the radio communication system in the ninth embodiment. The radio channel is obtained by dividing the frequency range given to the radio system in advance. The radio channel of FIG. 10 is a configuration example of a radio channel used in the radio communication system of the embodiment of FIG. Plural pairs of radio channels are arranged at different intervals to the left and right with reference to the same center frequency fc. The reason why the adjacent channels are not used in the present embodiment is to suppress the interference of the information signal superimposed on the carrier waves of these adjacent frequencies.
 本実施例に拠れば、既存の無線システムの通常の周波数チャネル構成を用いて、本発明の無線システムを実現可能であり、同無線システムの市場導入を容易にする効果がある。 According to the present embodiment, it is possible to realize the wireless system of the present invention by using the normal frequency channel configuration of the existing wireless system, and it is effective to facilitate the market introduction of the wireless system.
 本実施例では、本実施例の無線通信システムに用いられる無線機の受信機の周波数スペクトラムの例を説明する。 
 図11は、実施例9における無線通信システムに用いられる無線機の受信機の周波数スペクトラムの無線機の構成図の例である。図9の無線通信システムに用いられる受信機では、デルタシグマ回路のサンプリング周波数fcを中心に複数の平均周波数をfcとする複数の搬送波周波数の対が形成され、サンプリング動作によって、fcを基本周期とする周期的な周波数スペクトラムが生成され、結果として、一対の搬送波の差の周波数が得られる。
In this embodiment, an example of the frequency spectrum of the receiver of the wireless device used in the wireless communication system of this embodiment will be described.
FIG. 11 is an example of a block diagram of a radio of the frequency spectrum of the receiver of the radio used in the radio communication system in the ninth embodiment. In the receiver used in the wireless communication system of FIG. 9, a plurality of carrier frequency pairs having a plurality of average frequencies fc are formed around the sampling frequency fc of the delta sigma circuit, and fc is set to a basic period by sampling operation. A periodic frequency spectrum is generated, resulting in the frequency of the difference between the pair of carriers.
 本実施例に拠れば、受信機のアナログ信号処理回路のサンプリング周波数を固定化できるので、同受信機に周波数シンセサイザ等の複雑な周波数可変回路を別置きする必要が無く、受信機の小型化、製造コスト低減に効果がある。 According to this embodiment, since the sampling frequency of the analog signal processing circuit of the receiver can be fixed, there is no need to separately install a complex frequency variable circuit such as a frequency synthesizer in the receiver, and the receiver can be miniaturized. It is effective to reduce the manufacturing cost.
 本実施例では、本実施例の無線通信システムに用いられる受信機の他の構成例を説明する。 In the present embodiment, another configuration example of a receiver used in the wireless communication system of the present embodiment will be described.
 図12は、実施例9における無線通信システムを構成する受信機の他の構成図の例である。受信機1072では直交垂直偏波受信アンテナ881によって直交する2偏波成分として受信された信号は、クロック回路104によって動作する第一のデルタシグマ変調器101および第二のデルタシグマ変調器102によって各々デジタル信号に変換されデジタル信号処理回路100に各々入力される。該クロック回路104は図9の実施例の受信機のクロック回路103に比べて低い周波数であることが特徴である。デルタシグマ回路によって、該一対の2搬送波はその平均周波数の半分のさらに整数分の一のサンプリング周波数により、該2搬送波の差の周波数の二分の一の周波数成分を抽出することができるので、各一対の2搬送波の平均周波数を同一とすることで、一つのサンプリング周波数で複数の回転偏波の周波数に対応する複数の周波数を得ることができる。 FIG. 12 is an example of another configuration diagram of a receiver configuring the wireless communication system in the ninth embodiment. At the receiver 1072, the signals received as orthogonal polarization components by the orthogonal vertical polarization reception antenna 881 are orthogonalized by the first delta sigma modulator 101 and the second delta sigma modulator 102 operated by the clock circuit 104. The digital signal is converted into a digital signal and input to the digital signal processing circuit 100. The clock circuit 104 is characterized in that it has a lower frequency than the clock circuit 103 of the receiver of the embodiment of FIG. The delta sigma circuit allows the pair of two carriers to extract a half frequency component of the frequency of the difference between the two carriers by a sampling frequency that is an integral number of half of the average frequency. By making the average frequency of the pair of two carriers the same, it is possible to obtain a plurality of frequencies corresponding to the plurality of rotational polarization frequencies at one sampling frequency.
 本実施例に拠れば、本発明からなる無線通信システムを構成する受信機のサンプリング周波数を低減できるので、サンプリング周波数を発生する回路の小型化、低コスト化が実現でき、結果として受信機の構成を大幅に簡略化できるので、受信機の製造コストの低減に効果がある。 According to this embodiment, since the sampling frequency of the receiver constituting the wireless communication system according to the present invention can be reduced, the miniaturization and cost reduction of the circuit generating the sampling frequency can be realized, and as a result, the configuration of the receiver Can be greatly simplified, which is effective in reducing the manufacturing cost of the receiver.
 本実施例では、本実施例の無線通信システムに用いられる無線機の受信機の周波数スペクトラムの例を説明する。 
 図13は、実施例12における無線通信システムに用いられる無線機の受信機の周波数スペクトラムの無線機の構成図の例である。図9の無線通信システムに用いられる受信機では、デルタシグマ回路のサンプリング周波数fcの整数倍M*fcを中心に複数の平均周波数をM*fcとする複数の搬送波周波数の対が形成され、サンプリング動作によって、M*fcを基本周期とする周期的な周波数スペクトラムが生成され、結果として、一対の搬送波の差の周波数が得られる。
In this embodiment, an example of the frequency spectrum of the receiver of the wireless device used in the wireless communication system of this embodiment will be described.
FIG. 13 is an example of a block diagram of a radio of the frequency spectrum of the receiver of the radio used in the radio communication system in the twelfth embodiment. In the receiver used in the wireless communication system of FIG. 9, a plurality of carrier frequency pairs are formed, with a plurality of average frequencies M * fc centered on an integer multiple M * fc of the sampling frequency fc of the delta sigma circuit, and sampling The operation produces a periodic frequency spectrum with M * fc as the fundamental period, resulting in the frequency of the difference between the pair of carriers.
 本実施例に拠れば、受信機のアナログ信号処理回路のサンプリング周波数を固定化できさらに該サンプリング周波数を低く採れるので、サンプリング周波数発生回路が簡略化でき、受信機の小型化、製造コスト低減に効果がある。 According to this embodiment, since the sampling frequency of the analog signal processing circuit of the receiver can be fixed and the sampling frequency can be lowered, the sampling frequency generation circuit can be simplified, and the receiver can be miniaturized and the manufacturing cost can be reduced. There is.
 本実施例では、本実施例の無線通信システムに用いられる受信機に用いられるデルタシグマ回路の構成例を説明する。 In this embodiment, a configuration example of a delta sigma circuit used in a receiver used in the wireless communication system of this embodiment will be described.
 図14は、実施例9および12における無線通信システムを構成する受信機のデルタシグマ回路の構成図の例である。デルタシグマ回路1101では直交垂直偏波受信アンテナ881によって得られる信号を合成器126によって形成されるフィードバック回路のメインパスに第一のアナログ共振回路121とアナクロデジタル変換器123と後置きの比較器で実現されるサンプリング回路(図示せず)が配置され、フィードバックパスにデジタルアナログ変換器124と第二のアナログ共振回路122が配置され、第一のアナログ共振回路121の入力が合成器126の出力に結合し、第二のアナログ共振回路122の出力および本デルタシグマ回路の入力が該合成器126の入力となる。クロック回路125はアナログデジタル変換器123、デジタルアナログ変換器124およびサンプリング回路にクロックを供給する。アナログデジタル変換器123、デジタルアナログ変換器124は1bit型である。第一のアナログ共振回路121は入力信号帯域でノイズシェービングを行うために該入力信号帯域で共振するように設計され、第二のアナログ共振回路124はデジタルアナログ変換回路のゼロホールド効果によって生じるsinc関数型のフィードバック信号の波形歪を該入力信号帯域で補償するように設計される。 FIG. 14 is an example of the block diagram of the delta sigma circuit of the receiver which comprises the radio | wireless communications system in Example 9 and 12. FIG. In the delta sigma circuit 1101, the signal obtained by the orthogonal vertical polarization receiving antenna 881 is added to the main path of the feedback circuit formed by the combiner 126 by the first analog resonant circuit 121, the analog digital converter 123, and the post comparator A sampling circuit (not shown) to be realized is arranged, a digital-to-analog converter 124 and a second analog resonant circuit 122 are arranged in the feedback path, the input of the first analog resonant circuit 121 being at the output of the combiner 126 Coupled, the output of the second analog resonant circuit 122 and the input of this delta sigma circuit become the input of the synthesizer 126. The clock circuit 125 supplies a clock to the analog-to-digital converter 123, the digital-to-analog converter 124 and the sampling circuit. The analog-to-digital converter 123 and the digital-to-analog converter 124 are 1-bit type. The first analog resonant circuit 121 is designed to resonate in the input signal band to perform noise shaving in the input signal band, and the second analog resonant circuit 124 is a sinc function caused by the zero hold effect of the digital analog conversion circuit. It is designed to compensate for waveform distortion of the feedback signal of the type in the input signal band.
 本実施例に拠れば、アナログ共振回路、比較器、1bitアナログデジタル変換器123、1bitデジタルアナログ変換器124、固定周波数発信回路であるクロック回路125でデルタシグマ回路を実現できるので、同デルタシグマ回路の簡略化による、受信機の製造コスト低減に効果がある。 According to this embodiment, the delta sigma circuit can be realized by the analog resonance circuit, the comparator, the 1-bit analog-to-digital converter 123, the 1-bit digital-to-analog converter 124, and the clock circuit 125 which is a fixed frequency transmission circuit. It is effective to reduce the manufacturing cost of the receiver by simplifying the
 本実施例では、本実施例の無線通信システムに用いられる受信機に用いられるデルタシグマ回路の他の構成例を説明する。図15は、実施例9および12における無線通信システムを構成する受信機のデルタシグマ回路の構成図の例である。 In this embodiment, another configuration example of the delta sigma circuit used in the receiver used in the wireless communication system of this embodiment will be described. FIG. 15 is an example of the block diagram of the delta sigma circuit of the receiver which comprises the radio | wireless communications system in Example 9 and 12. FIG.
 デルタシグマ回路1102では直交垂直偏波受信アンテナ881によって得られる信号を合成器126によって形成されるフィードバック回路のメインパスにアナログ共振回路121とアナクロデジタル変換器123と後置きの比較器で実現されるサンプリング回路(図示せず)が配置され、フィードバックパスにデジタル補間回路127とデジタルアナログ変換器124が配置され、アナログ共振回路121の入力が合成器126の出力に結合し、デジタルアナログ変換器124の出力および本デルタシグマ回路の入力が該合成器126の入力となる。クロック回路125はアナログデジタル変換器123、デジタルアナログ変換器126およびサンプリング回路にクロックを供給する。アナログデジタル変換器123、デジタルアナログ変換器124は1bit型である。アナログ共振回路121は入力信号帯域でノイズシェービングを行うために該入力信号帯域で共振するように設計される。 In the delta sigma circuit 1102, the signal obtained by the orthogonal vertical polarization receiving antenna 881 is realized in the main path of the feedback circuit formed by the synthesizer 126 by the analog resonant circuit 121, the analog digital converter 123, and the post comparator. A sampling circuit (not shown) is disposed, a digital interpolation circuit 127 and a digital-to-analog converter 124 are disposed in the feedback path, the input of the analog resonant circuit 121 is coupled to the output of the synthesizer 126, and the digital-to-analog converter 124 is The output and the input of this delta sigma circuit become the input of the synthesizer 126. The clock circuit 125 supplies a clock to the analog-to-digital converter 123, the digital-to-analog converter 126, and the sampling circuit. The analog-to-digital converter 123 and the digital-to-analog converter 124 are 1-bit type. The analog resonant circuit 121 is designed to resonate in the input signal band to perform noise shaving in the input signal band.
 本実施例に拠れば、図14の実施例と比べて、アナログ回路を削減でき、その代わりデジタル回路要素が増える。デジタル回路要素の実態はデジタル信号処理回路の組込みソフトであり、実質上の分品点数増体には結びつかず、結果としてデルタシグマ回路の簡略化による、受信機の製造コスト低減に効果がある。 According to this embodiment, compared to the embodiment of FIG. 14, the number of analog circuits can be reduced and, instead, digital circuit elements are increased. The actual state of the digital circuit element is the built-in software of the digital signal processing circuit, and does not lead to an increase in the number of part numbers substantially, and as a result, the simplification of the delta sigma circuit is effective in reducing the manufacturing cost of the receiver.
 本実施例では、本実施例の無線通信システムに用いられる受信機に用いられるデルタシグマ回路の他の構成例を説明する。図16は、実施例9および12における無線通信システムを構成する受信機のデルタシグマ回路の構成図の例である。 In this embodiment, another configuration example of the delta sigma circuit used in the receiver used in the wireless communication system of this embodiment will be described. FIG. 16 is an example of the block diagram of the delta sigma circuit of the receiver which comprises the radio | wireless communications system in Example 9 and 12. FIG.
 デルタシグマ回路1103では直交垂直偏波受信アンテナ881によって得られる信号を合成器237、238および239によって形成されるフィードフォワード・フィードバック回路のメインパスに第一のアナログ共振回路221と第二のアナログ共振回路222とアナクロデジタル変換器223と後置きの比較器で実現されるサンプリング回路(図示せず)が配置され、フィードバックパスにデジタル補間回路227とデジタルアナログ変換器224が配置され、デルタシグマ回路の入力信号は三分岐され、各分岐後の信号は夫々、フィードフォワード乗数回路231、232および233を介し夫々合成器237、238および239の入力に結合する。第一および第二のアナログ共振回路226および237は夫々、合成器237の出力と合成器238の入力および合成器238の出力と合成器239の入力の間に挿入される。合成器239の出力に結合したアナログデジタル変換器223の出力はデジタル補間器227を介しデジタルアナログ変換機224の入力に結合する。デジタルアナログ変換機224の出力は三分岐され、各分岐後の信号は夫々、フィードバック乗数回路234、235および236を介し夫々合成器237、238および239の入力に結合する。クロック回路228はアナログデジタル変換器223、デジタルアナログ変換器224およびサンプリング回路にクロックを供給する。アナログデジタル変換器223、デジタルアナログ変換器224は1bit型である。アナログ共振回路221と222は入力信号帯域でノイズシェービングを行うために該入力信号帯域で共振するように設計される。 In the delta sigma circuit 1103, the signal obtained by the orthogonal vertical polarization receiving antenna 881 is combined with the first analog resonant circuit 221 and the second analog resonance in the main path of the feedforward feedback circuit formed by the combiners 237, 238 and 239. A sampling circuit (not shown) realized by the circuit 222, an analog digital converter 223 and a post-stage comparator, a digital interpolation circuit 227 and a digital analog converter 224 in the feedback path, and a delta sigma circuit The input signal is branched into three, and the signal after each branch is coupled to the input of the combiners 237, 238 and 239 via feed forward multiplier circuits 231, 232 and 233, respectively. First and second analog resonant circuits 226 and 237 are respectively inserted between the output of combiner 237 and the input of combiner 238 and the output of combiner 238 and the input of combiner 239. The output of analog to digital converter 223 coupled to the output of combiner 239 is coupled to the input of digital to analog converter 224 via digital interpolator 227. The output of digital to analog converter 224 is trifurcated, and the signal after each branch is coupled to the input of combiners 237, 238 and 239, respectively, via feedback multiplier circuits 234, 235 and 236, respectively. The clock circuit 228 supplies a clock to the analog-to-digital converter 223, the digital-to-analog converter 224 and the sampling circuit. The analog-to-digital converter 223 and the digital-to-analog converter 224 are 1-bit type. The analog resonant circuits 221 and 222 are designed to resonate in the input signal band to perform noise shaving in the input signal band.
 本実施例に拠れば、図15の実施例と比べて、フィードバック乗数回路234、235および236とフィードフォワード乗数回路231、232および233の乗数値によってデルタシグマ回路の各部の位相と振幅を調整可能で回路の設計自由度が向上する。 According to this embodiment, the phase and amplitude of each part of the delta sigma circuit can be adjusted by the multiplier values of the feedback multiplier circuits 234, 235 and 236 and the feedforward multiplier circuits 231, 232 and 233, as compared with the embodiment of FIG. Design flexibility of the circuit is improved.
 本実施例では、本実施例の無線通信システムに用いられる受信機のハードウェア構成を説明する。 In this embodiment, the hardware configuration of a receiver used in the wireless communication system of this embodiment will be described.
 図17は、実施例9および12における無線通信システムに用いられる受信機のハードウェア構成の他の例である。図17は図9および12の無線通信システムに用いられる受信機をプリント基板上に実装する例である。多層プリント基板243の上に、電源回路244と高周波コネクタ241とデジタル信号コネクタ242が実装され、図16と同一の記号が付与された機能素子ブロックが、アナログ信号線245およびデジタル信号線246によって電気的に結合する。電源回路で発生した直流電流は多層プリント基板243の内層に設けられた電源線により、スルーホール等を用いて機能素子ブロックのアクティブ素子に供給される。該多層プリント基板243の内層には、アナログ信号線245およびデジタル信号線246に対するグランド面が形成され、該グランド面とこれら信号線によりストリップ線路が形成され信号の伝達路が形成される。 FIG. 17 is another example of a hardware configuration of a receiver used for the wireless communication system in the ninth and twelfth embodiments. FIG. 17 is an example of mounting the receiver used in the wireless communication system of FIGS. 9 and 12 on a printed circuit board. The power supply circuit 244, the high frequency connector 241, and the digital signal connector 242 are mounted on the multilayer printed circuit board 243, and the functional element block to which the same symbol as FIG. 16 is given is electrically connected by the analog signal line 245 and the digital signal line 246. Join together. A direct current generated in the power supply circuit is supplied to the active element of the functional element block through a through hole or the like by a power supply line provided in the inner layer of the multilayer printed circuit board 243. A ground plane for the analog signal line 245 and the digital signal line 246 is formed in the inner layer of the multilayer printed circuit board 243, and a strip line is formed by the ground plane and these signal lines to form a signal transmission path.
 部品が実装されたプリント基板の受信機200は受信波の入力端として高周波コネクタ241、デジタル信号の出力端としてデジタル信号コネクタ242が用意され、図9および12の実施例のデルタ・シグマ変調器の出力点を実現している。 The receiver 200 of the printed circuit board on which the parts are mounted is provided with a high frequency connector 241 as an input end of the reception wave, and a digital signal connector 242 as an output end of the digital signal, and the delta sigma modulator of the embodiment of FIGS. The output point is realized.
 本実施例によれば、プリント基板プロセスおよび、部品の自動面実装プロセスを用いて、受信機200の量産が可能であり、本発明の無線通信システムに用いる無線機の生産コスト低減に効果がある。 According to the present embodiment, the mass production of the receiver 200 is possible using the printed circuit board process and the automatic surface mounting process of parts, which is effective in reducing the production cost of the wireless device used in the wireless communication system of the present invention. .
 本実施例では、本発明の無線通信システムの構成例を説明する。 In the present embodiment, a configuration example of a wireless communication system of the present invention will be described.
 図18は、本実施例の無線システムを適用した昇降機システムの構成図の例である。本実施例の昇降機システム300は、昇降機が設置される建物301の内部を昇降カゴ311が昇降する。建物301の内部の床部および天井部には偏波角分割ダイバシチ機能を有する基地局無線機302と基地局2直交偏波一体アンテナ303が結合し設置される。昇降機カゴ311の外部天井と外部床面には其々端末局2直交偏波一体アンテナ312が設置され、高周波ケーブル314を用いて端末無線機313に結合している。基地局無線機303と端末局無線機313は、建物301の内部を無線伝送媒体とするので、該建物301の内壁および該昇降機の外壁により電磁波は多重反射を受け、多重波干渉環境が形成される。 FIG. 18 is an example of a configuration diagram of an elevator system to which the wireless system of this embodiment is applied. In the elevator system 300 of the present embodiment, the elevator car 311 ascends and descends in the building 301 where the elevator is installed. A base station radio 302 having a polarization angle division diversity function and a base station 2 orthogonal polarization integrated antenna 303 are coupled and installed on a floor portion and a ceiling portion inside the building 301. A terminal station 2 orthogonal polarization integrated antenna 312 is installed on the outside ceiling and outside floor surface of the elevator car 311, and is connected to the terminal radio 313 using a high frequency cable 314. Since the base station radio 303 and the terminal station radio 313 use the inside of the building 301 as a wireless transmission medium, the inner wall of the building 301 and the outer wall of the elevator receive multiple reflections to form a multiwave interference environment. Ru.
 本実施例では偏波角度分割ダイバシチにより、多重波干渉環境下でも高品質の無線伝送が実現可能となるので、同無線機を用いた無線接続手段を用いて、昇降機311の制御・監視を建物301より有線接続手段を用いずに遠隔で実施できるので、ケーブル等の該有線接続手段を削除可能で、同一の輸送能力をより小さい建物体積で実現でき、あるいは同一の建物体積で昇降機寸法を増大させることによる輸送能力向上を実現できる。 In this embodiment, high-quality wireless transmission can be realized even in a multiwave interference environment by polarization angle division diversity, so control and monitoring of the elevator 311 can be performed using a wireless connection means using the same wireless device. Since it can be carried out remotely without using wire connection means from 301, the wire connection means such as cables can be eliminated, the same transport capacity can be realized in a smaller building volume, or the elevator size can be increased in the same building volume Transport capacity improvement can be realized.
 本実施例では、本発明の無線通信システムの他の構成例を説明する。 In this embodiment, another configuration example of the wireless communication system of the present invention will be described.
 図19は、本実施例の無線通信システムを適用した変電設備監視システムの構成図の例である。本実施例の変電設備監視システム400は、複数の変電機401と同変電機401には偏波角分割ダイバシチを行う端末局無線機403と端末局2直交偏波一体アンテナ402が結合し設置され、該複数の変電機401の近傍に、該変電機401の数よりも少ない数の複数の基地局装置411が設営され該基地局装置411は本発明の偏波角分割ダイバシチを行う基地局無線機413と基地局2直交偏波一体アンテナ412が結合し設置される。変電機の寸法は数mのオーダーであり無線機が使用する電磁波の周波数である数百MHzから数GHzに対応する波長に比べ圧倒的に大きいため、該複数の変電機401により電磁波は多重反射を受け、多重波干渉環境が形成される。 FIG. 19 is an example of a configuration diagram of a transformation equipment monitoring system to which the wireless communication system of the present embodiment is applied. In the substation monitoring system 400 of this embodiment, a plurality of substations 401 and the same substation 401 are provided with a terminal station radio 403 for performing polarization angle division diversity and a terminal station 2 orthogonal polarization integrated antenna 402 coupled A plurality of base station apparatuses 411 smaller in number than the number of the transformers 401 are installed in the vicinity of the plurality of transformers 401, and the base station apparatus 411 performs the polarization angle division diversity according to the present invention. The unit 413 and the base station 2 orthogonal polarization integrated antenna 412 are coupled and installed. The dimensions of the transformer are on the order of several meters and are overwhelmingly larger than the wavelength corresponding to several hundred MHz to several GHz, which is the frequency of the electromagnetic wave used by the radio. To form a multi-wave interference environment.
 本実施例では偏波角度分割ダイバシチにより、多重波干渉環境下でも高品質の無線伝送が実現可能となるので、同無線機を用いた無線接続手段を用いて、変電機401の制御・監視を複数の無線基地局411により有線接続手段を用いずに遠隔で実施できるので、ケーブル等の該有線接続手段を用いる場合に問題となる高圧誘導電力の問題を解決でき、同ケーブルの敷設コストを削除できるので、変電機401の制御・監視システムの安全性向上およびコスト削減に効果がある。 In this embodiment, high-quality wireless transmission can be realized even in a multiple wave interference environment by polarization angle division diversity, so control and monitoring of the transformer 401 can be performed using wireless connection means using the same wireless device. As it can be implemented remotely by a plurality of wireless base stations 411 without using a wired connection means, the problem of high voltage inductive power which becomes a problem when using the wired connection means such as a cable can be solved, and the cost for laying the cable is eliminated. As a result, the safety and cost reduction of the control and monitoring system of the transformer 401 can be achieved.
 以上のように本発明では、散乱体に入射する電磁波の夫々の入射角によって電磁波の偏波の夫々の回転角が決定される性質を利用して、干渉による通信品質の低下を解消する。すなわち、多重波は散乱体によって反射された複数の波が構成要素であるから、該多重波の偏波の回転角は夫々異なり、この異なる回転角を制御することにより、これら多重波の干渉によって生じる電磁波エネルギーがゼロとなる現象を回避可能となる。 As described above, according to the present invention, deterioration in communication quality due to interference is resolved by utilizing the property that the respective rotation angles of the polarized waves of the electromagnetic waves are determined by the respective incident angles of the electromagnetic waves entering the scatterer. That is, since multiple waves are components of a plurality of waves reflected by the scatterer, the rotation angles of polarization of the multiple waves are different, and by controlling the different rotation angles, interference of these multiple waves is caused by interference It is possible to avoid the phenomenon that the generated electromagnetic wave energy becomes zero.
 すなわち、偏波回転の周波数に対応する波長が異なることにより複数の多重反射波の個々の位相差も異なり、受信される多重波の合成波は異なることになる。従って、受信機は等価的に複数の異なる特性を持った電磁波を異なる偏波回転速度の分だけ得ることができるので、送信機から受信機までの無線空間伝送路は多重化され、通信の信頼度向上が実現され、複数の電磁波散乱体が存在する環境下での多重波干渉によって生じる電磁波エネルギーの受信点での消失を原因とする無線通信の信頼性低下を抑制する、該多重波干渉環境下での通信信頼性を向上可能な無線機を提供でき、同システムを用いる無線通信システムを実現できる。 That is, when the wavelength corresponding to the frequency of polarization rotation is different, the individual phase differences of the multiple reflected waves are also different, and the combined wave of the received multiple waves is different. Therefore, since the receiver can equivalently obtain electromagnetic waves having a plurality of different characteristics for different polarization rotation speeds, the wireless space transmission line from the transmitter to the receiver is multiplexed, and the communication reliability can be obtained. The multiwave interference environment according to the present invention is realized to improve the degree of reliability and to suppress the decrease in the reliability of wireless communication caused by the loss of electromagnetic wave energy at a receiving point caused by multiwave interference in an environment where multiple electromagnetic wave scatterers exist. It is possible to provide a wireless device capable of improving the communication reliability under it, and to realize a wireless communication system using the same system.
1、51、71、91、92 搬送波発生回路
2、52、72、93 変調器
3、53 情報信号発生回路
4 送信ミキサ
5 回転信号発生回路
6、55、75、97 送信遅延回路
7、8、46、56、57、76、77、98、99 合成回路
10、100 デジタル信号処理回路
11、23、24、61、81、123、223 アナログデジタル変換器
12 ローパスフィルタ
13、16、27、30、63、86 ローカル発振器
14、17、64、85 受信ミキサ
15、25、26、62、83 ハイカットフィルタ
18、44、54、65、74、96、126、237、238、239 合成器
19 受信遅延回路
21、22 デジタルフィルタ
28、29 ミキサ
41、43 遅延器
42、45 可変位相回路
47 復調回路
48 制御回路
49 ベースバンド回路
66 受信遅延回路
73、95 情報信号発生回路
101、102 デルタシグマ回路
103、104、125、128、228 クロック発生回路
121、122、221、222 アナログ共振回路
124、126、224 デジタルアナログ変換器
127、227 デジタル補間回路
231、232、233、234、235、236 乗数器
300 昇降機システム
301 建物
302、412 基地局2直交偏波一体アンテナ
303、413 基地局無線機
311 昇降カゴ
312、402 端末局2直交偏波一体アンテナ
313、403 端末局無線機
400 変電設備監視システム
401 変電機
411 無線基地局
881 直交垂直偏波送信アンテナ
882 直交垂直偏波受信アンテナ
883、884 直交円偏波送信アンテナ
1, 51, 71, 91, 92 Carrier wave generation circuit 2, 52, 72, 93 Modulator 3, 53 Information signal generation circuit 4 Transmission mixer 5 Rotation signal generation circuit 6, 55, 75, 97 Transmission delay circuit 7, 8, 46, 56, 57, 76, 77, 98, 99 Synthesizing circuit 10, 100 Digital signal processing circuit 11, 23, 24, 61, 81, 123, 223 Analog-to-digital converter 12 Low-pass filter 13, 16, 27, 30, 63, 86 Local oscillator 14, 17, 64, 85 Reception mixer 15, 25, 26, 62, 83 High cut filter 18, 44, 54, 65, 74, 96, 126, 237, 238, 239 Synthesizer 19 Reception delay circuit 21 and 22 digital filter 28 and 29 mixer 41 and 43 delay device 42 and 45 variable phase circuit 47 demodulation circuit 48 control circuit 49 Subband circuit 66 Reception delay circuit 73, 95 Information signal generation circuit 101, 102 Delta sigma circuit 103, 104, 125, 128, 228 Clock generation circuit 121, 122, 221, 222 Analog resonant circuit 124, 126, 224 Digital to analog converter 127, 227 Digital Interpolation Circuit 231, 232, 233, 234, 235, 236 Multiplier 300 Elevator System 301 Building 302, 412 Base Station 2 Orthogonal Polarization Integrated Antenna 303, 413 Base Station Radio 311 Lifting Basket 312, 402 Terminal Station 2 orthogonal polarization integrated antenna 313, 403 terminal station radio 400 transformation equipment monitoring system 401 substation 411 radio base station 881 orthogonal vertical polarization transmission antenna 882 orthogonal vertical polarization reception antenna 883, 884 orthogonal circular polarization transmission antenna

Claims (19)

  1.  情報信号によって変調が施された複数の搬送波を、それぞれ異なる速度で偏波を回転させて送信する送信機と、
     前記送信機によって送信された複数の搬送波を受信し、当該複数の搬送波それぞれの偏波の回転速度ごとに分離し、分離した搬送波ごとに前記情報信号を復調し、搬送波ごとに復調した前記情報信号を合成する受信機と、を有する無線通信システム。
    A transmitter for transmitting a plurality of carrier waves modulated by an information signal by rotating the polarization at different speeds respectively;
    The plurality of carrier waves transmitted by the transmitter are received, separated for each rotational speed of polarization of each of the plurality of carrier waves, the information signal is demodulated for each separated carrier wave, and the information signal demodulated for each carrier wave And a receiver for combining.
  2.  請求項1に記載の無線通信システムであって、
     前記送信機が送信する複数の搬送波には同一の平均周波数を持つ搬送波対が複数含まれ、
     前記受信機は、前記送信機によって送信された前記複数の搬送波を受信し、前記平均周波数の整数分の一のサンプリング周波数で複数の周波数成分を抽出し、該複数の周波数成分に重畳された前記情報信号を重み付けて合成することを特徴とする無線通信システム。
    The wireless communication system according to claim 1,
    The plurality of carriers transmitted by the transmitter include a plurality of carrier pairs having the same average frequency,
    The receiver receives the plurality of carriers transmitted by the transmitter, extracts a plurality of frequency components at a sampling frequency that is an integral part of the average frequency, and is superimposed on the plurality of frequency components. A wireless communication system characterized by weighting and combining information signals.
  3.  請求項1に記載の無線通信システムであって、
     前記送信機は、情報信号で変調された搬送波を分岐して複数の搬送波を生成し、前記複数の搬送波ごとに異なる周波数の正弦波を重畳し、前記正弦波が重畳された複数の搬送波それぞれを分岐させるとともに、分岐させた当該搬送波のうち一方の搬送波の周波数の位相を所定の角度だけシフトさせて、かつ、他方の搬送波と送信する偏波が交差させて送信し、
     前記受信機は、第一のアンテナと、前記第一のアンテナとは受信する偏波の角度を交差させて設ける第二のアンテナと、からなるアンテナ対を有し、前記送信機によって送信された前記複数の搬送波を前記アンテナ対によって受信し、前記第一のアンテナで受信した搬送波および前記第二のアンテナで受信した搬送波をそれぞれ分岐し、分岐された搬送波に重畳された前記正弦波を用いて搬送波ごとに復調を施し、搬送波ごとに復調した前記情報信号を重み付けて合成することを特徴とする無線通信システム。
    The wireless communication system according to claim 1,
    The transmitter branches a carrier wave modulated by an information signal to generate a plurality of carrier waves, superimposes sine waves of different frequencies on each of the plurality of carrier waves, and generates a plurality of carrier waves on which the sine waves are superimposed. While branching, the phase of the frequency of one of the branched carriers is shifted by a predetermined angle, and the other carrier is crossed with the polarization to be transmitted for transmission.
    The receiver has an antenna pair consisting of a first antenna and a second antenna provided so as to cross the angle of the received polarization with the first antenna, and transmitted by the transmitter The plurality of carrier waves are received by the antenna pair, the carrier wave received by the first antenna and the carrier wave received by the second antenna are respectively branched, and using the sine wave superimposed on the branched carrier A radio communication system comprising: demodulation for each carrier wave; and weighting and combining the information signals demodulated for each carrier wave.
  4.  請求項1に記載の無線通信システムであって、
     前記受信機は、受信した複数の搬送波それぞれに重畳された前記正弦波を用いて復調後、復調した信号をアナログデジタル変換し、前記アナログデジタル変換された信号をデジタル信号処理によって、前記回転速度に対応する複数の周波数成分を抽出し、当該複数の周波数成分に重畳された前記情報信号を重み付け合成することを特徴とする無線通信システム。
    The wireless communication system according to claim 1,
    The receiver demodulates the demodulated signal using the sine wave superimposed on each of the plurality of received carrier waves, converts the demodulated signal to analog-digital, and converts the analog-digital converted signal to the rotation speed by digital signal processing. A wireless communication system comprising: extracting a plurality of corresponding frequency components; and weighting and combining the information signal superimposed on the plurality of frequency components.
  5.  請求項1に記載の無線通信システムであって、
     前記送信機は、異なる周波数の複数の搬送波に情報信号を変調し、変調された前記複数の搬送波のうち基準となる搬送波と他の複数の搬送波とをそれぞれ合成し、合成された前記複数の搬送波それぞれを分岐させるとともに、分岐させた当該搬送波のうち一方の搬送波の周波数の位相を所定の角度だけシフトさせて、かつ、他方の搬送波と送信する偏波が交差させて送信し、
     前記受信機は、第一のアンテナと、前記第一のアンテナとは受信する偏波の角度を交差させて設ける第二のアンテナと、からなるアンテナ対を有し、前記送信機によって送信された前記複数の搬送波を前記アンテナ対によって受信し、受信した信号を分岐するとともに、一方の信号に前記回転速度に対応した遅延を施し、遅延を施した一方の信号と他方の信号を合成し、前記回転速度に対応する複数の周波数成分を抽出し、該複数の周波数成分に重畳された前記情報信号を重み付け合成することを特徴とする無線通信システム。
    The wireless communication system according to claim 1,
    The transmitter modulates an information signal to a plurality of carriers of different frequencies, combines one of the modulated carriers with a reference carrier and a plurality of other carriers, and combines the plurality of carriers. Each of the carriers is branched, the phase of the frequency of one of the branched carriers is shifted by a predetermined angle, and the other carrier is crossed with the polarization to be transmitted for transmission.
    The receiver has an antenna pair consisting of a first antenna and a second antenna provided so as to cross the angle of the received polarization with the first antenna, and transmitted by the transmitter The plurality of carrier waves are received by the antenna pair, the received signal is branched, and a delay corresponding to the rotation speed is applied to one of the signals, and one delayed signal and the other signal are combined, A wireless communication system characterized by extracting a plurality of frequency components corresponding to a rotational speed, and weighting and combining the information signal superimposed on the plurality of frequency components.
  6.  請求項5に記載の無線通信システムであって、
     前記送信機が送信する複数の搬送波は、周波数帯を分割した周波数チャネルを用いて生成させることを特徴とする無線通信システム。
    The wireless communication system according to claim 5,
    The wireless communication system according to claim 1, wherein the plurality of carriers transmitted by the transmitter are generated using frequency channels obtained by dividing frequency bands.
  7.  請求項6に記載の無線通信システムであって、
     前記周波数チャネルは、基準の固定チャネルと該固定チャネルナに対し常に高いあるいは低い周波数のチャネルから形成されることを特徴とする無線通信システム。
    The wireless communication system according to claim 6, wherein
    The wireless communication system according to claim 1, wherein the frequency channel is formed from a fixed channel of reference and a channel of high or low frequency with respect to the fixed channel.
  8.  請求項7に記載の無線通信システムであって、
     前記周波数チャネルは、前記固定チャネルについて高い周波数のチャネルと低い周波数のチャネルを交互に選択して、搬送波対を生成することを特徴とする無線通信システム。
    The wireless communication system according to claim 7,
    The wireless communication system, wherein the frequency channel alternately selects a high frequency channel and a low frequency channel for the fixed channel to generate a carrier pair.
  9.  請求項2に記載の無線通信システムであって、
     前記受信機は、前記受信機は、第一のアンテナと、前記第一のアンテナとは受信する偏波の角度を交差させて設ける第二のアンテナと、からなるアンテナ対を有し、前記送信機によって送信された前記複数の搬送波を前記アンテナ対によって受信し、前記第一のアンテナで受信した搬送波および前記第二のアンテナで受信した搬送波をそれぞれ分岐し、分岐した信号を同一のサンプリング周波数でデルタシグマ回路を用いて、回転周波数に対応する異なる周波数成分に重畳された情報信号を分離し、重み付け合成することを特徴とする無線通信システム。
    The wireless communication system according to claim 2,
    In the receiver, the receiver has an antenna pair including a first antenna and a second antenna provided by crossing the angle of polarization received with the first antenna, Receive the plurality of carriers transmitted by the antenna by the antenna pair, respectively branch the carrier received by the first antenna and the carrier received by the second antenna, and branch the branched signals at the same sampling frequency A wireless communication system characterized by using a delta sigma circuit to separate information signals superimposed on different frequency components corresponding to a rotational frequency, and combining them.
  10.  請求項9の無線通信システムであって、
     前記送信機が送信する複数の搬送波は、周波数帯を分割した周波数チャネルを用いて生成させることを特徴とする無線通信システム。
    The wireless communication system according to claim 9,
    The wireless communication system according to claim 1, wherein the plurality of carriers transmitted by the transmitter are generated using frequency channels obtained by dividing frequency bands.
  11.  請求項9に記載の無線通信システムであって、
     前記デルタシグマ回路がアナログ共振器を用いることを特徴とする無線通信システム。
    The wireless communication system according to claim 9,
    A wireless communication system, wherein the delta sigma circuit uses an analog resonator.
  12.  請求項9の無線通信システムであって、
     前記デルタシグマ回路のサンプリング周波数が該搬送波の周波数よりも低いことを特徴とする無線通信システム。
    The wireless communication system according to claim 9,
    A wireless communication system characterized in that a sampling frequency of the delta sigma circuit is lower than a frequency of the carrier.
  13.  請求項9に記載の無線通信システムであって、
     前記デルタシグマ回路のデジタルアナログ変換器のサンプリング周波数がアナログデジタル変換器のサンプリング周波数の整数倍であることを特徴とする無線通信システム。
    The wireless communication system according to claim 9,
    A wireless communication system, wherein a sampling frequency of the digital-to-analog converter of the delta sigma circuit is an integral multiple of a sampling frequency of the analog-to-digital converter.
  14.  請求項9に記載の無線通信システムであって、
     前記デルタシグマ回路がフィードバックループとフィードフォワードループを有することを特徴とする無線通信システム。
    The wireless communication system according to claim 9,
    A wireless communication system, wherein said delta sigma circuit comprises a feedback loop and a feed forward loop.
  15.  請求項1記載の無線通信システムであって、
     前記送信機及び前記受信機は、送信または受信する偏波の角度がおよそ90°であるアンテナ対を有し、前記アンテナ対は直線偏波アンテナであることを特徴とする無線通信システム。
    The wireless communication system according to claim 1,
    The wireless communication system according to claim 1, wherein the transmitter and the receiver each have an antenna pair whose transmission or reception polarization angle is approximately 90 degrees, and the antenna pair is a linearly polarized antenna.
  16.  請求項1記載の無線通信システムであって、
     前記送信機及び前記受信機は、送信または受信する偏波の角度がおよそ90°であるアンテナ対を有し、前記アンテナ対は円偏波アンテナであることを特徴とする無線通信システム。
    The wireless communication system according to claim 1,
    The wireless communication system according to claim 1, wherein the transmitter and the receiver each have an antenna pair whose transmission or reception polarization angle is approximately 90 degrees, and the antenna pair is a circular polarization antenna.
  17.  請求項1に記載の無線通信システムであって、
     前記送信機及び前記受信機は、デジタル信号処理チップを搭載した多層プリント基板で製造されることを特徴とする無線通信システム。
    The wireless communication system according to claim 1,
    The wireless communication system, wherein the transmitter and the receiver are manufactured on a multilayer printed circuit board on which a digital signal processing chip is mounted.
  18.  請求項1に記載の無線通信システムを適用した昇降機制御システム。 An elevator control system to which the wireless communication system according to claim 1 is applied.
  19.  請求項1に記載の無線通信システムを適用した変電設備制御システム。 A transformer control system to which the wireless communication system according to claim 1 is applied.
PCT/JP2012/001999 2012-03-23 2012-03-23 Radio communication system, elevator control system, and electric power transformation equipment control system WO2013140457A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280068946.0A CN104094541B (en) 2012-03-23 2012-03-23 Radio communication system, elevator control system, and electric power transformation equipment control system
JP2014505805A JP5868489B2 (en) 2012-03-23 2012-03-23 Wireless communication system, elevator control system, and substation equipment control system
PCT/JP2012/001999 WO2013140457A1 (en) 2012-03-23 2012-03-23 Radio communication system, elevator control system, and electric power transformation equipment control system
IN7000DEN2014 IN2014DN07000A (en) 2012-03-23 2014-08-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/001999 WO2013140457A1 (en) 2012-03-23 2012-03-23 Radio communication system, elevator control system, and electric power transformation equipment control system

Publications (1)

Publication Number Publication Date
WO2013140457A1 true WO2013140457A1 (en) 2013-09-26

Family

ID=49221959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001999 WO2013140457A1 (en) 2012-03-23 2012-03-23 Radio communication system, elevator control system, and electric power transformation equipment control system

Country Status (4)

Country Link
JP (1) JP5868489B2 (en)
CN (1) CN104094541B (en)
IN (1) IN2014DN07000A (en)
WO (1) WO2013140457A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016119498A (en) * 2014-12-18 2016-06-30 株式会社日立製作所 Radio communication system
JP2016163204A (en) * 2015-03-03 2016-09-05 株式会社日立製作所 Radio communication system and radio communication receiver
JP2017017406A (en) * 2015-06-29 2017-01-19 株式会社日立製作所 Radio communication system, and elevator system and transformation facility monitoring system using the same
JPWO2016075785A1 (en) * 2014-11-13 2017-09-07 株式会社日立製作所 Wireless communication system and system for using the same
WO2017213102A1 (en) * 2016-06-09 2017-12-14 株式会社日立製作所 Wireless system, elevator control system using same, and transformer facility monitoring system
CN109428644A (en) * 2017-08-24 2019-03-05 株式会社日立制作所 Wireless communication system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106598004A (en) * 2016-12-05 2017-04-26 渤海大学 Robot control circuit
JP7062060B2 (en) * 2018-06-26 2022-05-02 株式会社日立製作所 Multicar elevator system and channel selection method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298918A (en) * 1985-10-25 1987-05-08 Oki Electric Ind Co Ltd Digital sigma modulation circuit for analog-digital converter
JPH08307318A (en) * 1995-04-27 1996-11-22 Sumitomo Electric Ind Ltd Spread spectrum communication equipment
JPH11215001A (en) * 1997-10-24 1999-08-06 Sony United Kingdom Ltd Signal processor
JP2001345777A (en) * 2000-06-01 2001-12-14 Denso Corp Communication system for ofdm and base station and terminal used for it
JP2007259326A (en) * 2006-03-24 2007-10-04 Fujitsu Ltd Radio terminal equipment, method for controlling radio base station, and method for controlling radio terminal equipment
JP2009520418A (en) * 2005-12-20 2009-05-21 ファッハホーホシューレ・アーヘン Wireless link extension device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2836397C (en) * 2011-08-04 2017-01-03 Digital Compression Technology Lp Method and apparatus for increasing the channel capacity of a bandwidth limited communications path

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298918A (en) * 1985-10-25 1987-05-08 Oki Electric Ind Co Ltd Digital sigma modulation circuit for analog-digital converter
JPH08307318A (en) * 1995-04-27 1996-11-22 Sumitomo Electric Ind Ltd Spread spectrum communication equipment
JPH11215001A (en) * 1997-10-24 1999-08-06 Sony United Kingdom Ltd Signal processor
JP2001345777A (en) * 2000-06-01 2001-12-14 Denso Corp Communication system for ofdm and base station and terminal used for it
JP2009520418A (en) * 2005-12-20 2009-05-21 ファッハホーホシューレ・アーヘン Wireless link extension device
JP2007259326A (en) * 2006-03-24 2007-10-04 Fujitsu Ltd Radio terminal equipment, method for controlling radio base station, and method for controlling radio terminal equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIN HAIJUN ET AL.: "Design of High-Resolution Continuous-Time Bandpass Delta-Sigma AD Modulator", IEICE TECHNICAL REPORT, IDC2009-99, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, 7 December 2009 (2009-12-07), pages 127 - 132 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016075785A1 (en) * 2014-11-13 2017-09-07 株式会社日立製作所 Wireless communication system and system for using the same
JP2016119498A (en) * 2014-12-18 2016-06-30 株式会社日立製作所 Radio communication system
US9762296B2 (en) 2014-12-18 2017-09-12 Hitachi, Ltd. Wireless communication system
JP2016163204A (en) * 2015-03-03 2016-09-05 株式会社日立製作所 Radio communication system and radio communication receiver
JP2017017406A (en) * 2015-06-29 2017-01-19 株式会社日立製作所 Radio communication system, and elevator system and transformation facility monitoring system using the same
WO2017213102A1 (en) * 2016-06-09 2017-12-14 株式会社日立製作所 Wireless system, elevator control system using same, and transformer facility monitoring system
CN109428644A (en) * 2017-08-24 2019-03-05 株式会社日立制作所 Wireless communication system
CN109428644B (en) * 2017-08-24 2021-11-16 株式会社日立制作所 Wireless communication system

Also Published As

Publication number Publication date
CN104094541A (en) 2014-10-08
CN104094541B (en) 2017-04-26
IN2014DN07000A (en) 2015-04-10
JP5868489B2 (en) 2016-02-24
JPWO2013140457A1 (en) 2015-08-03

Similar Documents

Publication Publication Date Title
WO2013140457A1 (en) Radio communication system, elevator control system, and electric power transformation equipment control system
US9219506B2 (en) Wireless transmitter, wireless receiver, wireless communication system, elevator control system, and transformer equipment control system
JP4199122B2 (en) Analog regenerative transponder including regenerative transponder system
US7720510B2 (en) Data communications between terminals in a mobile communication system
AU2005303660B2 (en) Data communications system
US8743803B2 (en) Spectrum allocation system and method for multi-band wireless RF data communications
JP5632530B2 (en) Polarization angle division diversity radio transmitter, radio receiver, and radio communication system
EP2506361B1 (en) Method and apparatus for integrated waveguide transmit-receive isolation, filtering, and circular polarization
WO2014128906A1 (en) Radio communication system, transmitter, receiver, elevator control system, and substation facility monitori ng system
CN115833902B (en) Satellite terminal system with wireless link
US10819436B2 (en) Base station apparatus, ground station device, and ground antenna device
CN105743524A (en) Multiple antenna distributed radio system
RU2475958C2 (en) Automated transceiving system of short-wave communication
RU2201023C2 (en) Method and device for integrating plurality of antennas into distributed-antenna communication system
JP5997803B2 (en) Wireless transmitter, wireless receiver, wireless communication system, elevator control system, and substation control system
JP2018088567A (en) Wireless system, and elevator control system using the same, transformation installation monitoring system
WO2017213102A1 (en) Wireless system, elevator control system using same, and transformer facility monitoring system
Deo et al. High isolation spiral antenna configurations for full-duplex communications
KR100969310B1 (en) Radio transceiver system for frequency diversity
KR101674312B1 (en) Wireless backhaul system using multiple bands, and method for managing wireless backhaul system
KR20080005786A (en) Base station antenna of combined shape
KR20230014451A (en) Heterogeneous radio communication device
EP1657786A1 (en) Lens antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871931

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014505805

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871931

Country of ref document: EP

Kind code of ref document: A1